
7 Convex Generalized Flows

In this chapter, we give insights into the structural properties and the complex-
ity of an extension of the generalized maximum flow problem in which the
outflow of an edge is a strictly increasing convex function of its inflow. In con-
trast to the traditional generalized maximum flow problem, which is solvable
in polynomial time as shown in Section 2.4, we show that the problem becomes
NP-hard to solve and approximate in this novel setting. Nevertheless, we show
that a flow decomposition similar to the one for traditional generalized flows
is possible and present (exponential-time) exact algorithms for computing op-
timal flows on acyclic, series-parallel, and extension-parallel graphs as well as
optimal preflows on general graphs. We also identify a polynomially solvable
special case and show that the problem is solvable in pseudo-polynomial time
when restricting to integral flows on series-parallel graphs.
This chapter is based on joint work with Sven O. Krumke and Clemens Thielen
(Holzhauser et al., 2015b).

7.1 Introduction

As it was shown in Section 2.4, the traditional generalized flow problem may be used
in order to model real world scenarios such as the loss of water in a broken pipe
or the conversion of money between currencies. However, the fixed ratio between
the outflow and the inflow of an edge that comes with traditional generalized flows
may be insufficient in several applications. In this chapter, we investigate an exten-
sion of generalized flows from linear outflow functions ge(xe) = γe · xe to general
strictly increasing continuous convex outflow functions ge. These more general out-
flow functions enable us to model processes in which the effectiveness increases with
the load. This happens, e.g., in various trading applications where better rates are
obtained if larger amounts are traded. By identifying the possible goods with nodes
and introducing edges to represent trading options, this effect can be modeled more
realistically with the help of convex outflow functions. For two nodes representing
the goods A and B, a flow of maximum flow value between these two nodes then
yields a strategy for obtaining the maximum amount of good B out of a existing stock
of goods of type A.
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7.1.1 Previous Work

The traditional generalized maximum flow problem with linear outflow functions has
been studied extensively in the past fifty years and is still a topic of active research.
In 1977, Truemper (1977) discovered an analogy between generalized maximum flows
and traditional minimum cost flows and noted that many of the combinatorial algo-
rithms for the generalized maximum flow problem known at this time were in fact
pseudo-polynomial time variations of well-known algorithms for standard minimum
cost flow problems. Although the generalized maximum flow problem can be ex-
pressed as a linear program and solved in polynomial time, e.g., by interior point
methods, it took until 1991 that Goldberg et al. (1991) developed the first (weakly)
polynomial-time combinatorial algorithm for the generalized maximum flow prob-
lem. For series-parallel graphs, a strongly polynomial-time algorithm was presented
by Krumke and Zeck (2013). The first strongly polynomial-time algorithm for general
graphs was recently given by Végh (2013).

Ahlfeld et al. (1987) and Tseng and Bertsekas (2000) studied extensions of generalized
flows in which the objective function is replaced by a nonlinear function and a mini-
mum cost flow is sought. Nevertheless, the outflow functions are assumed to be linear
in both papers. Nonlinear outflow functions in the generalized maximum flow prob-
lem have first been studied by Truemper (1978) and later by Shigeno (2006). In both
papers, a generalization to (increasing and continuous) concave outflow functions is
suggested and optimality criteria are presented. By exploiting several analogies to the
case of linear outflow functions, Végh (2012) obtained an efficient combinatorial algo-
rithm for this problem. This algorithm, however, makes heavy use of the concavity of
the outflow functions, so it cannot be used for the case of convex outflow functions
studied here. To the best of our knowledge, (general) convex outflow functions in the
generalized maximum flow problem have not been studied so far.

7.1.2 Chapter Outline

After the introduction of the necessary assumptions and definitions in Section 7.2,
we derive useful lemmas in Section 7.3 and show that a flow decomposition simi-
lar to the one for the traditional generalized flow problem is possible in the case of
convex generalized flows as well. In Section 7.4, we consider the complexity and ap-
proximability of the convex generalized flow problem and show that the problem is
both NP-hard to solve and approximate. Afterwards, in Section 7.5, we present algo-
rithms for the problem on graph classes with decreasing complexity. We present an
algorithm that computes a maximum convex generalized preflow on general graphs
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in O(3m ·m) time. Although such a maximum convex generalized preflow cannot
be turned into a feasible flow on general graphs without further assumptions, it
will be possible to derive a maximum convex generalized flow within the same time
bound when restricting to acyclic graphs. Moreover, we show that we can improve
this running time to O(2.707m · (m + n2)) in the case of series-parallel graphs and
to O(2.404m · (m+ n2)) time on extension-parallel graphs. Furthermore, we identify
a special case of extension-parallel graphs for which the problem becomes solvable
in polynomial time. Finally, in Section 7.6, we consider a variant of the problem in
which the flows are restricted to be integral and present a pseudo-polynomial time
algorithm for the problem on series-parallel graphs. An overview of the results of this
chapter is given in Table 7.1 on page 191.

7.2 Preliminaries

We start by defining the convex generalized maximum flow problem in a directed
graph G = (V ,E) with positive edge capacities ue > 0 and outflow functions ge : [0,ue]→
R>0 on the edges e ∈ E, and distinguished source s ∈ V and sink t ∈ V . We assume
that the outflow functions ge fulfill the following property:

Assumption 7.1: The outflow functions ge are strictly increasing continuous convex
functions fulfilling ge(0) = 0 for all e ∈ E. C

Note that, by standard results from analysis, Assumption 7.1 implies that the inverse
functions g−1e are well-defined and continuous as well (cf., e.g., (Rudin, 1964)).

Definition 7.2 (Inflow, outflow, excess):
For any function x : E → R>0, the inflow of an edge e ∈ E is given by xe := x(e) and
the outflow of edge e is given by ge(xe). Similarly, the inflow (outflow) of a path P equals
the inflow (outflow) of the first (last) edge on P. For a node v ∈ V , the inflow of v is
defined as

∑
e∈δ−(v) ge(xe) and the outflow of v is given by

∑
e∈δ+(v) xe. The excess of a

node v ∈ V with respect to x is given as excessx(v) :=
∑
e∈δ−(v) ge(xe) −

∑
e∈δ+(v) xe. C

As in a traditional generalized flow, the outflow of an edge may differ from its in-
flow. Whereas the ratio between the outflow and the inflow of an edge is constant in
traditional generalized flows, this ratio is now a non-decreasing function of the inflow.

Definition 7.3 (Pseudoflow, preflow, flow, flow value, maximum flow):
A function x : E → R>0 is called a (feasible) convex generalized pseudoflow (or just
pseudoflow) if xe 6 ue for all e ∈ E. If, in addition, excessx(v) > 0 for all v ∈ V \ {s, t}, it
is called a (feasible) preflow. If excessx(v) = 0 for all v ∈ V \ {s, t}, the function is called
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a (feasible) convex generalized flow (or just flow). The flow value of a (pre-)flow x is given
by val(x) := excessx(t). A (pre-)flow of maximum flow value is called a maximum
(pre-)flow. C

Note that a preflow is basically a flow that may send “too much” flow to some nodes
such that flow conservation is not fulfilled. In some situations, such a relaxed flow
may be much easier to compute than a feasible flow. In fact, while any preflow can be
turned into a flow within polynomial time on acyclic graphs, such a transformation is
uncomputable on general graphs as it will be shown in Section 7.5.1 and Section 7.5.2.

Using the above definitions, the convex generalized maximum flow problem is de-
fined as follows:

Definition 7.4 (Convex Generalized Maximum Flow Problem (CGMFP)):
Instance: Directed graph G = (V ,E) with source s ∈ V , sink t ∈ V , and non-

negative capacities ue and outflow functions ge on the edges e ∈ E.

Task: Determine a maximum flow.
C

In addition to Assumption 7.1, we make the following assumptions on the structure
of the underlying graph:

Assumption 7.5: For every node v ∈ V \ {s, t}, it holds that δ+(v) 6= ∅ and δ−(v) 6= ∅.
C

Assumption 7.6: For every node v ∈ V \ {s, t}, there is at least one directed path from
s to v or from v to t. C

Assumption 7.5 does not impose any restriction on the underlying model since the
inflow and outflow of every node v ∈ V \ {s, t} with δ+(v) = ∅ or δ−(v) = ∅ must
equal zero due to flow conservation at v, which implies that the incident edges can
be deleted in a preprocessing step. Similarly, Assumption 7.6 yields no restriction
since the corresponding connected components that do not contain the sink t do not
contribute to the flow value and can be deleted as well. Note that, for any instance
of CGMFP, both assumptions can be established in O(n +m) time by performing
a depth-first search and repeatedly deleting single nodes and edges. The resulting
graph is connected, such that we can assume that n ∈ O(m) in the following.

An important special case of CGMFP considered throughout this chapter is the case
of quadratic outflow functions of the form ge(xe) = αe · x2e for some positive constants
αe > 0.
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The problem CGMFP can be formulated as the following nonlinear program:

max
∑

e∈δ−(t)

ge(xe) −
∑

e∈δ+(t)

xe

s.t.
∑

e∈δ−(v)

ge(xe) −
∑

e∈δ+(v)

xe = 0, for all v ∈ V \ {s, t},

0 6 xe 6 ue, for all e ∈ E.

Note that this model is not solvable (in polynomial time) by standard solution meth-
ods for convex programs since a convex function is maximized (instead of minimized)
over a set defined by convex and non-affine equality constraints (so the set of feasible
solutions is non-convex in general). In the rest of this chapter, we will concentrate on
combinatorial algorithms for the problem.

Moreover, note that, since we allow arbitrary strictly increasing continuous convex
outflow functions ge, it is not canonically clear how the functions are given in the in-
put. In addition, neither the inflow nor the outflow of an edge in a maximum convex
generalized flow can be assumed to be rational even if all capacities are integral: Con-
sider, e.g., the instance that is depicted in Figure 7.1, in which the unique maximum
generalized flow leads to an irrational inflow of 4

√
2 and outflow of

√
2 on the first

edge. Therefore, similar to the computational model used by Végh (2012) for the case

s v1 v2 t
2 2 2

Figure 7.1: An example of a network with integral capacities where the first edge has an
irrational inflow and outflow in the unique maximum flow. The labels on the
edges represent the capacities. The outflow function of each edge is set to ge(xe) =
x2e.

of concave generalized flows, we assume oracle access to the functions ge and their
inverses g−1e and the running time estimations for our algorithms provide bounds on
the number of elementary arithmetic operations and oracle calls. We assume through-
out this chapter that we can perform oracle calls returning the value ge(xe) for some
xe ∈ [0,ue] and the value g−1e (ye) for some ye ∈ [0,ge(ue)] as well as elementary
arithmetic operations on real numbers within infinite precision in constant time O(1).
This is similar to standard assumptions in convex and semi-definite programming
(cf. (Nesterov and Nemirovskii, 1994; Blum, 1998; Blum et al., 1989; Grötschel et al.,
1993)).
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7.3 Structural Results

In this section, we give insights into structural properties of convex generalized flows.
On the one hand, we show that a flow decomposition theorem similar to the well-
known flow decomposition theorem for traditional generalized flows is possible in
the case of CGMFP as well. On the other hand, we derive a set of useful lemmas that
will be used throughout the rest of this chapter.

The following result allows us to handle paths in the underlying network similarly as
single edges:

Lemma 7.7:
Let P = (e1, . . . , ek) with ei = (vi, vi+1), i ∈ {1, . . . , k}, be a simple path and x a convex
generalized pseudoflow in an acyclic graph G = (V ,E). When restricting the flow on
each edge e /∈ P and the excess at each node v /∈ {v1, vk+1} to remain unchanged, the
outflow of ek can be described by a function g of the inflow of e1. This function g is
continuous, convex, and strictly increasing on the set of feasible inflows [Lx(P),Ux(P)]
of P, i.e., the set of all inflows y1 > 0 of e1 such that there exist values y2, . . . ,yk > 0

for which the function x ′ with x ′ei := yi for i ∈ {1, . . . , k} and x ′e := xe for e /∈ P is a
feasible pseudoflow with excessx ′(vi) = excessx(vi) for all i ∈ {2, . . . , k}.

Proof: Consider the first two edges e1 = (v1, v2) ∈ P and e2 = (v2, v3) ∈ P. Let δ be
the excess that needs to be generated by the flows on e1 and e2 in order to maintain a
total excess of excessx(v2) at v2:

δ := excessx(v2) −

 ∑
e∈δ−(v2)\{e1}

ge(xe) −
∑

e∈δ+(v2)\{e2}

xe


= ge1(xe1) − xe2 . (7.1)

Furthermore, let [Lei ,Uei ] := [0,uei ] be the interval of feasible inflows of each edge ei
for i ∈ {1, . . . , k}. When requiring the excess δ to remain constant, we can describe
the outflow of e2 depending on the inflow of e1 by a strictly convex and increasing
function g as well as the set of feasible inflows [L,U] of the path (e1, e2) as follows:

According to equation (7.1), we get that it must hold that xe2 = ge1(xe1) − δ. As
defined above, the inflow xe2 of edge e2 must both fulfill xe2 > Le2 and xe2 6 Ue2 .
Consequently, this is equivalent to the requirement that xe1 > g−1e1 (Le2 + δ) and that
xe1 6 g−1e1 (Ue2 + δ). Since, furthermore, it must hold that xe1 ∈ [Le1 ,Ue1 ], we get
that L = max{Le1 ,g−1e1 (Le2 + δ)} and U = min{Ue1 ,g−1e1 (Ue2 + δ)}. For each valid inflow
x ∈ [L,U], we can then express the outflow of ge2 by g(x) = ge2(ge1(x)− δ). Obviously,
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[L,U] ⊆ [Le1 ,Ue1 ] and [ge1(L) − δ,ge1(U) − δ] ⊆ [Le2 ,Ue2 ]. Thus, both ge1 and ge2
behave strictly convex and increasing for inflows in [L,U]. So, g is strictly convex and
increasing as well.

By the above procedure, we are able to virtually join the first two edges of the path and
to describe the outflow of the new edge by a strictly convex and increasing function.
By induction, the claim follows.

Using the results of Lemma 7.7, we are able to differentiate between full and empty
paths – analogously to full and empty single edges:

Definition 7.8 (Full path, empty path):
Let P = (e1, . . . , ek) be a simple path and x a convex generalized pseudoflow in G =

(V ,E). The path P is called full (with respect to x) if xe1 = Ux(P) and empty (with respect
to x) if xe1 = Lx(P). C

Note that a path P is full if and only if there is at least one edge e ∈ P with xe = ue.
Analogously, we have that xe = 0 for at least one edge e ∈ P if and only if P is an
empty path.

Example 7.9:
Consider the instance of CGMFP that is depicted in Figure 7.2, in which the outflow
function and the capacity of each edge e ∈ E is assumed to be ge(xe) := x2e and
ue := 15, respectively. According to equation (7.1) in the proof of Lemma 7.7, we get
that δ = 0 − (4 − 5) = 9 − 8 = 1. It then follows that we can express the outflow
of edge e3 depending on the inflow of edge e1 by the function g(x) = (x2 − 1)2 =

x4 − 2x2 + 1, which is convex, continuous, and increasing on the interval [L,U] with
L := max

{
0,
√
0+ 1

}
= 1 and U := min

{
15,
√
15+ 1

}
= 4. Note that for xe1 := L = 1

the path P is empty and the inflow of edge e3 is zero. Conversely, for xe1 := U = 4 the
inflow of edge e3 equals 15 such that the path P is full. C

As it turns out, there is a flow decomposition that is similar to the one for traditional
generalized flows, which will be shown in the following. To do so, we adapt the
corresponding proof for traditional generalized flows with linear outflow functions
from Goldberg et al. (1991).

One essential ingredient for the following results is the definition of a subtraction
of flow. In the case of linear outflow functions (or traditional network flows), it is
possible to subtract flow on some path P in the given graph (i.e., to reduce the flow
on the edges of P) without influencing the flow on other paths P ′ 6= P. For general
convex outflow functions, however, the subtraction becomes more complicated since
the removal of flow on some edge e on a path P may reduce the flow value on other
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Figure 7.2: An example application of Lemma 7.7 on an instance of CGMFP with outflow
functions ge := x2e and capacities ue := 15 for each e ∈ E (left). The situation for
xe1 = L = 1 (xe1 = U = 4) is depicted on the upper (lower) right figure. The
label on the tail (head) of each edge corresponds to the inflow (outflow) of the
corresponding edge.

paths P ′ with e ∈ P ′ as well. Nevertheless, we show that a subtraction similar to the
traditional one is possible in our setting as well.

Definition 7.10 (Feasible subtraction):
Let x be a convex generalized pseudoflow in some graph G = (V ,E) and let P =

(e1, . . . , el) with ei = (vi, vi+1), i ∈ {1, . . . , l}, denote a (not necessarily simple) path
in G. A function x : E → R>0 with xei > 0 for each i ∈ {1, . . . , l} and xe = 0 for
e /∈ P is called a feasible subtraction on P if xei − xei > 0 for each i ∈ {1, . . . , l} and
excessx−x(vi) = excessx(vi) for each i ∈ {2, . . . , l}. C

Note that, while the excess at the nodes v2, . . . , vl is required to remain unchanged
when reducing the flow on P by a feasible subtraction, the excess at the starting
node v1 and the end node vl+1 of the path may change during this procedure in case
that v1, vl+1 /∈ {v2, . . . , vl}.

Now consider a pseudoflow x and a simple path P = (e1, . . . , el) with ei = (vi, vi+1)
and xei > 0 for each i ∈ {1, . . . , l}. According to Lemma 7.7, there is a flow x ′ with
x ′e = xe for each e /∈ P and with x ′e1 = Lx(P) as well as excessx ′(vi) = excessx(vi) for
each i ∈ {2, . . . , l} such that the path P is empty. Clearly, the function x := x− x ′ is then
a feasible subtraction on P fulfilling xe = 0 for e /∈ P and xei > 0 for each i ∈ {1, . . . , l}.
We call this subtraction x the largest subtraction on P in the following. Moreover, for
a cycle C, we can consider C as a simple path with starting node and end node v for
some node v ∈ C and apply the above definition of a largest subtraction. However, the
largest subtraction on C as well as the excess that is generated at the starting node v
when reducing the flow on P by the largest subtraction may depend on the choice of
the starting node.

Similar to traditional flows and generalized flows with linear outflow functions, a
convex generalized pseudoflow x does not only decompose into s-t-paths, but also
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into cycles. As in the case of generalized flows with linear outflow functions, we
distinguish three classes of cycles: flow generating cycles, flow absorbing cycles, and
flow conserving cycles. The intuition is that a cycle is flow generating (flow absorbing)
if removing the flow on the cycle yields a negative (positive) excess at some node on
the cycle. If no excess is generated, the cycle is flow conserving.

Definition 7.11 (Flow generating cycle, flow absorbing cycle, flow conserving cycle):
Let C be a simple cycle in G, v ∈ C a node on C, and x a convex generalized pseud-
oflow in G. The pair (C, v) is called a flow generating cycle (flow absorbing cycle) with
respect to x if excessx−x(v) < excessx(v) (excessx−x(v) > excessx(v)), where x denotes
the largest subtraction on C when C is considered as a path with starting node (and
end node) v. If excessx−x(v) = excessx(v), the pair (C, v) is called a flow conserving
cycle. C

Note that, for generalized flows with linear outflow functions, Definition 7.11 can
easily be seen to coincide with the standard definitions of flow generating and flow
absorbing cycles independent of the choice of the starting node.

In the following, for some convex generalized pseudoflow x, let D(x) denote the set of
nodes with demand, i.e., negative excess, and S(x) denote the set of nodes with supply,
i.e., positive excess. Analogously to the elementary pseudoflows studied by Gondran
and Minoux (1984) and Goldberg et al. (1991), we distinguish five types of elementary
subtractions, where the type is determined by the graph induced by the set of edges
on which the elementary subtraction is positive:

Definition 7.12 (Types of elementary subtractions):
Type I The largest subtraction on a simple path from a node in D(x) to a node

in S(x).

Type II The largest subtraction on a simple path composed of a flow generating
cycle (C, v) and a simple path from v to a node w ∈ S(x).

Type III The largest subtraction on a simple path composed of a flow absorbing
cycle (C, v) and a simple path from a node w ∈ D(x) to v.

Type IV The largest subtraction on a flow conserving cycle (C, v).

Type V The largest subtraction on a simple path composed of a flow generating
cycle (C1, v1) and a flow absorbing cycle (C2, v2) that are connected by a
simple path from v1 to v2.

C

Note that, by definition of feasible subtractions and flow conserving cycles, the ex-
cess may only change at the mentioned nodes in D(x) and S(x) when subtracting an
elementary subtraction from the current pseudoflow x.
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We are now ready to adopt the decomposition theorem for linear outflow functions
from Goldberg et al. (1991) to the case of convex outflow functions.

Theorem 7.13 (Decomposition theorem for convex generalized pseudoflows):
A convex generalized pseudoflow x in a graph G can be decomposed into a sequence
(x(1), . . . , x(k)) of k 6 m elementary subtractions x(j) such that xe =

∑k
j=1 x

(j)
e for each

e ∈ E.

Proof: We prove the claim by induction on the number p of edges with positive flow.
If p = 0, then x = 0 and the claim trivially holds. Otherwise, let G ′ be the graph
obtained from G by removing all edges with zero flow.

If G ′ is acyclic, we can find a simple path P from some node v ∈ D(x) to some
node w ∈ S(x) with positive flow on each edge and the largest subtraction x on P
is an elementary subtraction of Type I. Furthermore, as described above, x− x is a
feasible convex generalized pseudoflow with at most p− 1 edges with positive flow.
Thus, the claim follows by induction.

If G ′ is not acyclic, let C = (v1, . . . , vl+1 = v1) be a simple cycle in G ′. We consider C
as a simple path with starting node and end node v1. As above, if we consider the
largest subtraction x on C, then x− x is a feasible generalized pseudoflow that is zero
on at least one edge in C. While the excess is maintained at each node vi, i ∈ {2, . . . , l},
the excess at v1 may change by some amount δ ∈ R. If δ = 0, the removal of flow on
the cycle did not affect the remaining pseudoflow and x is an elementary subtraction
of Type IV.

If δ < 0, the pair (C, v1) was a flow generating cycle. Since x− x is a valid general-
ized pseudoflow and has at most p− 1 edges with positive flow, we can apply the
induction hypothesis and decompose x− x. Since there was a demand at v1, there
are elementary subtractions of Type I and III in the decomposition of x− x that are
responsible for the demand. These subtractions together with some appropriate frac-
tions of x consequently correspond to elementary subtractions of Type II and Type V
in G ′. If δ > 0, the pair (C, v1) was a flow absorbing cycle and, by the same arguments
as before, we obtain elementary subtractions of Type III and Type V.

In all three cases, the remaining pseudoflow is feasible again and contains at most
p− 1 edges with positive flow. Hence, the claim follows by induction.

Note that, since the largest subtraction on a path or cycle depends on the current
pseudoflow x, each elementary subtraction x(j) will only be an elementary subtrac-
tion with respect to the pseudoflow obtained after all previous elementary subtrac-
tions x(1), . . . , x(j−1) have already been subtracted from x. In particular, the order of
the elementary subtractions within the sequence (x(1), . . . , x(k)) is important.
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Also note that, in case that the pseudoflow x itself is a flow, the components in the
decomposition for generalized pseudoflows with linear outflow functions obtained in
Goldberg et al. (1991) are generalized flows again. Even if the pseudoflow x itself is
a flow, however, each elementary subtraction in Theorem 7.13 will only be a feasible
convex generalized flow with respect to different (strictly increasing, continuous, and
convex) outflow functions given by ge(xe) := ge(ce+ xe) − ge(ce) with ce denoting the
remaining flow on edge e after the subtraction.

Finally, note that the computation of a flow decomposition using the recursive proce-
dure presented in the proof of Theorem 7.13 is computationally intractable in general:
For example, assume that a largest feasible subtraction x on a flow generating cycle
(C, v1) is being removed from the current pseudoflow x in some iteration of the pro-
cedure, which changes the excess at node v1 by δ < 0. A recursive application of the
procedure to x− x yields elementary subtractions x(1), . . . , x(h) of Type I or III that are
responsible for the demand at v1. However, for each such elementary subtraction x(j)

that generates an excess of δ(j) < 0 at v1, we then need to determine the appropriate
fraction of x that generates an excess of exactly −δ(j) at v1, i.e., we need to create a
specific amount of flow on the cycle C. This is computationally intractable as we will
see in the following section.

Example 7.14:
Figure 7.3 shows an exemplary flow and a possible decomposition into a sequence
(x(1), x(2)) of two elementary subtractions according to Theorem 7.13. In this example,
all outflow functions are quadratic functions of the form ge(xe) = αe · x2e with positive
constants αe > 0. Besides the source, which provides one unit of flow, the left-hand
cycle is flow generating and creates two units of flow and the right-hand cycle is flow
absorbing and consumes two units of flow (independently of the choice of the starting
node). The rest of the flow is delivered to the sink.

In the example, there are several ways how to start the decomposition. Assume that
we start by extracting an elementary subtraction x(1) of Type I that is depicted on
the lower left of Figure 7.3. While the inflow at node v1 is reduced by one unit, the
inflow at v2 sinks by 9 units. The elementary subtraction x(1) is a feasible convex
generalized flow when changing the outflow function of the edge e = (v1, v2) to
ge(xe) = ge(4+ xe) − ge(4) = (4+ xe)

2 − 16 = x2e + 8 · xe. In this case, we are done
since the remaining flow is an elementary subtraction x(2) of Type V (shown on the
right side of Figure 7.3). C

We end this section with a useful property of paths in acyclic graphs:

Lemma 7.15:
Let x be a convex generalized flow in an acyclic graph G = (V ,E) and let P1,P2 be two
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Figure 7.3: A sample flow and a possible decomposition. In the upper figure, the tail (head) of
each edge is labeled with the corresponding inflow (outflow). The constant αe in
the outflow function ge(xe) = αe · x2e is equal to one if not given explicitly. In the
lower figures, each edge is labeled with the amount of flow subtracted. The given
flow can be decomposed into an elementary subtraction x(1) of Type I (bottom
left) and an elementary subtraction x(2) of Type V (bottom right).

edge-disjoint v1-v2-paths for some nodes v1, v2 ∈ V . If both paths are neither full nor
empty, then there exists a convex generalized flow x ′ with val(x ′) = val(x) for which
at least one of the paths P1 and P2 is full or empty.

Proof: By Lemma 7.7, we can describe the outflow of each Pi, i ∈ {1, 2}, by a convex
function gi of its inflow xi. Writing ε := x1 + x2, the total amount of flow arriving at
v2 via P1 and P2 is then given as

f(x1) := g1(x1) + g2(ε− x1)
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for

x1 ∈ [L,U] := [Lx(P1),Ux(P1)]∩ [ε−Ux(P2), ε− Lx(P2)].

Since both g1 and g2 are convex and increasing, so is f. Thus, the maximum of f on
[L,U] is obtained at either L or U and, hence, at a boundary of [Lx(P1),Ux(P1)] or [ε−
Ux(P2), ε− Lx(P2)], which means that we can obtain an excess of at least excessx(v2)
at v2 by choosing x1 = L or x1 = U. By definition of L, U, and ε, this corresponds to
turning P1 or P2 into a full or empty path.

In case that the excess of v2 was increased by the above procedure, we can regain the
old excess at v2 by reducing x1 or x2 appropriately: If Lx ′(Pi) < x ′i < Ux ′(Pi) for the
new pseudoflow x ′ and some i ∈ {1, 2}, we can reduce x ′i until either x ′i = Lx ′(Pi) or
the excess at v2 attains its old value. In the former case, the path Pi becomes empty
and we can reduce the flow on the other path until the excess at v2 attains its old
value. If one path Pi is full and the other path is empty, we can simply reduce x ′i until
the excess at v2 attains its old value.

Note that this procedure for regaining the old excess at v2 may create a positive excess
at v1. This excess can be eliminated by reducing the flow on some of the paths that
transport flow from the source s to v1 in a similar way as above. Hence, only the
excess of the source s is changed in the overall procedure. In particular, we obtain a
feasible flow with the same flow value as x, which proves the claim.

Example 7.16:
Figure 7.4 shows an application of Lemma 7.15 on a small acyclic graph. None of the
two paths (edges) between v1 and v2 is full or empty, but the flow is optimal since
the single edge leading to the sink t is filled to its capacity. According to the proof of
Lemma 7.15, we can redistribute the flow on the lower path to the upper path, which
creates an outflow of value 16 and, thus, an excess of 8 at v2. We then reduce the
inflow of the upper path to

√
8 in order to regain flow conservation at v2. This, in

turn, leads to an excess of 4−
√
8 > 0 at v1, which can be resolved by reducing the

inflow of the edge (s, v1) from 2 to 4
√
8 < 2. C

7.4 Complexity and Approximability

In this section, we consider the complexity and approximability of the convex gen-
eralized flow problem. As it turns out – in contrast to traditional generalized flows
and generalized flows with concave outflow functions – the problem is NP-hard to
solve and approximate in general, which will be shown in Section 7.4.1 and 7.4.2,
respectively.
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Figure 7.4: A sample application of Lemma 7.15. The number above each edge denotes the
capacity of the corresponding edge. The outflow function of every edge e is
ge(xe) = x2e. The upper scenario shows an optimal solution in which none of
the two paths (edges) from v1 to v2 is full or empty. By applying the steps from
the proof of Lemma 7.15, we obtain another optimal solution in which the lower
path between v1 and v2 is empty.

As noted above, we assume the underlying computational model to cohere with the
Blum-Shub-Smale model in which we can perform arithmetic operations on irrational
numbers within infinite precision in constant time. For this model, an independent
theory of NP-completeness has been developed and the connection between this the-
ory and the traditional theory based on the RAM model is unclear. For example, the
well-known traveling salesman problem, which is NP-complete in the standard RAM
model, is not known to be NP-complete in the BSS model. Nevertheless, we want to
stress that we use the BSS model only for the sake of simplicity. It can be easily seen
that the upcoming algorithms and complexity results are also valid when restricting
our considerations to outflow functions that map rational numbers to rational num-
bers. Hence, the complexity results presented in this section will be based on the
traditional theory of NP-completeness in the RAM model. We refer the reader to
(Blum, 1998) for further details on the BSS model and the connection to the RAM
model.

7.4.1 Complexity

We start by proving that the convex generalized maximum flow problem is strongly
NP-hard to solve on general graphs.

Theorem 7.17:
CGMFP is strongly NP-hard to solve, even if all outflow functions are quadratic out-
flow functions of the form ge(xe) = x2e, the capacities are integral, and the graph is
bipartite and acyclic.



7.4 Complexity and Approximability 169

Proof: We use a reduction from the ExactCoverBy3Sets problem, which is known to
be strongly NP-complete (cf. (Garey and Johnson, 1979, Problem SP2)):

Instance: Set X with 3q elements and a collection C = {C1, . . . ,Ck} of 3-element
subsets of X.

Question: Does there exist a subcollection C ′ ⊆ C such that every element j ∈ X is
contained in exactly one of the subsets in C ′?

Given an instance of ExactCoverBy3Sets, we construct a network for CGMFP as
follows:

We introduce a single source s and sink t as well as a node s ′, which is reachable
from s via a single edge with capacity 3q. For each subset Ci ∈ C, i ∈ {1, . . . , k}, we
insert a node vi and an edge between s ′ and vi with capacity 32q. Furthermore, we
introduce a node v ′j for each j ∈ X, which is reachable from every vi with j ∈ Ci via
an edge with capacity 33q2. Finally, we connect each v ′j to the sink t by an edge with
capacity 36q4. All outflow functions are set to ge(xe) := x2e. The resulting network for
the set X = {1, . . . , 9} and the collection C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}} is
shown in Figure 7.5.

u = 3q

u = 32q

u = 33q2

u = 36q4

s

s ′

t

v1 v2 v3 v4 v5

v ′1 v ′2 v ′3 v ′4 v ′5 v ′6 v ′7 v ′8 v ′9

Figure 7.5: The resulting network for a given instance of ExactCoverBy3Sets with q = 3,
X = {1, . . . , 9} and C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}}. On the right hand
side, the capacities of the edges in each level of the graph are depicted. The
outflow function of every edge is given by ge(xe) := x2e.
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We now show that there exists a convex generalized flow of value at least 313q9 if and
only if the given instance of ExactCoverBy3Sets is a Yes-instance.

Suppose that there is a convex generalized flow x in the constructed network with
flow value val(x) > 313q9. The maximum amount of flow that may arrive at s ′ is
32q2 since the capacity of the edge between s and s ′ is 3q and the outflow function
is given as g(xe) = x2e. Furthermore, we claim that the total amount of flow arriving
at the nodes vi, i ∈ {1, . . . , k}, is at most 34q3 and this value is achieved if and only
if the inflow of 32q2 at s ′ is distributed equally on exactly q of the edges (s ′, vi). To
see this, consider a set I ⊆ {1, . . . , k} with |I| = q. By sending xi := 32q units of flow
to vi, i ∈ I, and xi := 0 units to the remaining vi, i ∈ {1, . . . , k} \ I, flow conservation
at node s ′ is fulfilled and, in total,

∑
i∈I g(xi) = q · (32q)2 = 34q3 units of flow reach

the nodes vi. Conversely, consider a flow x ′ that uses more than q of the edges (s ′, vi).
Then, there are at least two nodes vi1 and vi2 such that x ′i1 , x ′i2 ∈ (0, 32q). Without
loss of generality, we can assume that x ′i1 > x ′i2 . This flow cannot yield the highest
possible amount of flow arriving at the nodes vi since increasing x ′i1 and decreasing
x ′i2 by some positive amount ε 6 min{32q− x ′i1 , x ′i2} leads to a strictly higher amount
of flow arriving at the nodes vi1 , vi2 :

(x ′i1 + ε)
2 + (x ′i2 − ε)

2 = (x ′i1)
2 + (x ′i2)

2 + 2ε(x ′i1 − x
′
i2
)︸ ︷︷ ︸

>0

+ 2ε2︸︷︷︸
>0

> (x ′i1)
2 + (x ′i2)

2.

Hence, the total amount of flow arriving at each of the nodes vi, i ∈ {1, . . . , k}, is at
most 34q3. Additionally, this is only the case if exactly q out of k nodes vi are used
which in turn produce outflows of value 34q2 each. Since the sum of the capacities of
the three edges leaving each vi is 3 · 33q2 = 34q2, every such edge must have an inflow
of value 33q2 and produce an outflow of value 36q4 in this situation. On the other
hand, note that each of the 3q edges leading to the sink must receive the maximum
inflow of value 36q4 since this is the only possibility how to obtain the claimed flow
value of 313q9 = 3q · (36q4)2.

In summary, the total flow arriving at the nodes v ′j , j ∈ X, is at most 3q · 36q4 = 37q5

which, in turn, is the minimum flow needed to achieve the flow value val(x) at t.
Since this flow can only be achieved by selecting q out of the k nodes vi whose sets of
adjacent nodes v ′j are pairwise disjoint and cover all nodes v ′j , we obtain a solution to
ExactCoverBy3Sets by identifying the used nodes vi with the given sets Ci ∈ C.

Conversely assume that there exists a solution C ′ ⊆ C for the given instance of
ExactCoverBy3Sets. By sending 3q units of flow to s ′ and 32q units of flow to
each of the nodes vi corresponding to the subsets Ci ∈ C ′, we achieve q inflows
of value (32q)2 = 34q2 each at the nodes vi. The flow can further be distributed
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to the nodes v ′j , j ∈ X, in packages of 33q2 each. Thus, we get an inflow of value
(33q2)2 = 36q4 at every node v ′j . Since each element j ∈ X is contained in exactly one
of the sets Ci ∈ C ′, each of these packages can further be sent to t producing outflows
of (36q4)2 = 312q8 each. Consequently, since there are 3q edges leading to the sink,
we achieve a flow value of 3q · 312q8 = 313q9.

Theorem 7.17 shows that, unless P = NP, one cannot expect to find an algorithm that
solves the problem exactly and runs in polynomial time. The reason why the the-
orem only claims NP-hardness instead of NP-completeness (in the standard Turing
machine model) is that the problem CGMFP need not always have rational solutions
(of polynomial size). In the Blum-Shub-Smale model (Blum et al., 1989), however,
CGMFP is readily seen to be in NP since the feasibility and the flow value of a given
convex generalized flow can then be checked easily in (oracle) polynomial time. Nev-
ertheless, we want to stress that, in the presented reduction, a Yes-instance of CGMFP
contains only integral numbers and can, thus, be verified in polynomial time using
the standard Turing machine model.

Theorem 7.18:
CGMFP on extension-parallel graphs is weakly NP-hard to solve, even if all out-
flow functions are quadratic functions of the form ge(xe) = αe · x2e with integral con-
stants αe > 0 and all capacities are integral.

Proof: We use a reduction from the weakly NP-complete SubsetSum problem, which
is defined as follows (cf. (Garey and Johnson, 1979, Problem SP13)):

Instance: Finite set A = {a1, . . . ,ak} of k positive integers and a positive integer B.

Question: Is there a subset I ⊆ {1, . . . , k} such that
∑
i∈I ai = B?

Given an instance of SubsetSum, we construct a network for CGMFP by introducing
three nodes s, v, and t. Between s and v, we insert an edge e0 with capacity 1 and
outflow function ge0(xe0) := B · x2e0 . Additionally, we introduce an edge ei between v
and t with capacity ai and outflow function gei(xei) :=

π
ai
· x2ei for each i ∈ {1, . . . , k},

where π :=
∏k
j=1 aj. Note that the factors αei := π

ai
=
∏
j 6=i aj are integral and the

resulting graph is extension-parallel. The constructed network is shown in Figure 7.6.

We now show that there exists a convex generalized flow of value at least B · π if and
only if the given instance of SubsetSum is a Yes-instance.

Suppose that there is a convex generalized flow x of value val(x) > B · π in the con-
structed network. Note that, for each edge ei between v and t with capacity ai and
inflow xei , the outflow is given by π

ai
· x2ei , which evaluates to π · xei if xei = ai and to

some smaller multiple of xei if xei < ai. Hence, since the maximum possible outflow
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ak, πak

)
...

Figure 7.6: The constructed network for the given instance of SubsetSum. The label on each
edge e denotes the capacity ue and the factor αe, respectively.

of e0 is B, the flow value of val(x) > B · π implies that B units of flow must arrive at
v and each edge among e1, . . . , ek that has positive inflow satisfies xei = ai. Hence,
the B units of flow arriving at v are distributed to some edges ei, i ∈ I, for some
subset I ⊆ {1, . . . , k} that satisfies

∑
i∈I ai = B, i.e, the given instance of SubsetSum is

a Yes-instance.

Conversely assume that there exists a solution I ⊆ {1, . . . , k} of the given instance
of SubsetSum, i.e.,

∑
i∈I ai = B. By sending xe0 := 1 units of flow along e0 (which

amounts to an inflow of value B at v), xei := ai units of flow over the edges ei for i ∈ I,
and xej := 0 units along the edges ej for j ∈ {1, . . . , k} \ I, we obtain flow conservation
at v and get a feasible convex generalized flow x of value

val(x) =
∑

i∈{1,...,k}
gei(xei) =

∑
i∈I
gei(ai) =

∑
i∈I

π

ai
· a2i =

∑
i∈I
π · ai

= B · π.

7.4.2 Approximability

Since the convex generalized flow problem is strongly NP-hard to solve on general
graphs, as it was shown in the preceding section, one might still hope for efficient
approximation algorithms for the problem. However, as it turns out, the problem is
NP-hard to approximate as well, even on simple graph classes:

Theorem 7.19:
CGMFP is NP-hard to approximate within constant factors, even on extension-parallel
graphs.

Proof: For ε ∈ (0, 1), suppose that there was an (1− ε)-approximation algorithm for
CGMFP that computes a feasible flow x with (1− ε) · val(x∗) 6 val(x) 6 val(x∗) in
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polynomial time, where x∗ is a maximum convex generalized flow. We show that this
(1− ε)-approximation algorithm allows us to decide if any instance of SubsetSum is
a Yes-instance, which is a contradiction unless P = NP.

Let ({a1, . . . ,ak},B) denote an instance of SubsetSum. Without loss of generality, we
may assume that ai > 2 for each i ∈ {1, . . . , k} since we can otherwise multiply each
of the values ai and B by two. Similar to the proof of Theorem 7.18, we construct a
network for CGMFP by introducing four nodes s, v, w, and t. Between s and v, we
insert an edge e0 with capacity 1 and outflow function ge0(xe0) := B · xe0 . For each
i ∈ {1, . . . , k}, we introduce an edge ei between v and w with capacity ai and outflow
function

gei(xei) :=


xei
ai−1

· 12 , if xei 6 ai − 1,

(xei − (ai − 1)) · (ai − 1
2) +

1
2 , else.

Note that the functions gei are continuous, increasing, and convex for each i ∈
{1, . . . , k}: Let g(1)ei (xei) :=

xei
ai−1

· 12 and g
(2)
ei (xei) := (xei − (ai − 1)) · (ai − 1

2) +
1
2 de-

note the two linear segments of gei . It holds that g(1)ei (ai− 1) =
1
2 = g

(2)
ei (ai− 1), which

shows continuity of gei . Moreover, it holds that

0 <
d

dxei
g
(1)
ei (xei) =

1

2(ai − 1)
< 1 < ai −

1

2
=

d

dxei
g
(2)
ei (xei),

which shows both convexity and monotonicity of gei .

Moreover, we insert an edge e between w and t with capacity B and outflow function

ge(xe) :=


xe
B−12
· (1− ε)B4 , if xe 6 B− 1

2 ,

(xe − (B− 1
2)) · (1+ ε)

B
2 + (1− ε)B4 , else.

Similar to the functions gei , the function ge is continuous, increasing, and convex as
well: For g(1)e (xe) :=

xe
B−12
· (1− ε)B4 and g(2)e (xe) := (xe − (B− 1

2)) · (1+ ε)
B
2 + (1− ε)B4 ,

it holds that g(1)e (B − 1
2) = (1 − ε)B4 = g

(2)
e (B − 1

2), which shows continuity of ge.
Furthermore, since

0 <
d

dxe
g
(1)
e (xe) =

(1− ε) · B4
B− 1

2

=
(1− ε)

2B− 1
· B
2
<
B

2
< (1+ ε)

B

2
=

d

dxe
g
(2)
e (xe),

the function ge is increasing and convex as well.
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Figure 7.7: The constructed network for the given instance of SubsetSum. The label on each
edge e denotes the capacity ue and the outflow function ge, respectively.

The resulting network is depicted in Figure 7.7. We now show that the flow value of a
maximum convex generalized flow equals B if there is a solution to the given instance
of SubsetSum and less than (1− ε) ·B else.

Let I ⊆ {1, . . . , k} be a solution to the given instance of SubsetSum, i.e.,
∑
i∈I ai = B.

By sending xe0 := 1 unit of flow through e0, xei := ai units of flow through edge ei for
i ∈ I, xej := 0 units of flow through edge ej, j ∈ {1, . . . , k} \ I, and xe := B units of flow
through e, we get a feasible convex generalized flow x with flow value val(x) = B,
which is clearly maximum.

Now suppose that there is no solution to the given instance of SubsetSum and let
I := {i ∈ {1, . . . , k} : x∗ei > 0}, where x∗ is a maximum convex generalized flow in
the constructed instance of CGMFP. Clearly, if

∑
i∈I ai 6 B− 1, the flow arriving at

node w amounts to at most
∑
i∈I gei(ai) =

∑
i∈I ai 6 B− 1, which causes a flow value

of less than (1− ε) · B4 < (1− ε) · B after passing edge e due to the definition of ge. If∑
i∈I ai > B+ 1, there is exactly one i ∈ I with 0 < x∗ei < ai without loss of generality

according to Lemma 7.15 since there are only at most B units of flow arriving at
node v. Moreover, since all of the values ai are integral, it holds that x∗ei 6 ai− 1 such
that gi(x∗ei) 6

1
2 . Then, however, the amount of flow that arrives at node w is given by∑

j∈I x
∗
j 6
∑
j∈I\{i} aj +

1
2 6 B− 1

2 , which implies that the maximum flow value val(x∗)
is less than (1− ε) · B4 < (1− ε) ·B.

Hence, the flow value of a maximum convex generalized flow in the constructed
network is B if there is a solution to the given instance of SubsetSum and less than
(1− ε) · B else. Thus, any (1− ε)-approximation algorithm returns a solution x with
flow value val(x) > (1− ε) · B if and only if the underlying instance of SubsetSum is
a Yes-instance, which proves the theorem.
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7.5 Exact Algorithms

As it was shown in the preceding section, the problem CGMFP is both NP-hard to
solve and to approximate. Thus, unless P = NP, we will not be able to solve the
problem in polynomial time. However, we are able to derive exponential-time exact
algorithms that compute maximal generalized (pre-)flows. In this section, we consider
different graph classes with decreasing structural complexity. We will be able to
derive more efficient algorithms with decreasing complexity of the underlying graph.
Moreover, in Section 7.5.5, we introduce a special case of extension-parallel graphs for
which a maximum convex generalized flow can be computed in polynomial time.

7.5.1 General Graphs

In this section, we present an exponential-time algorithm that computes a maximum
preflow on general graphs in O(3m ·m) time. We start by proving several auxiliary
results.

The proof of the following well-known fact is provided for the sake of completeness:

Lemma 7.20:
A full-dimensional polytope in Rn has at least n+ 1 facets.

Proof: Let {x ∈ Rn : Ax 6 b} be an non-redundant formulation of a full-dimensional
polytope P ⊆ Rn, A ∈ Rm×n, b ∈ Rm. Since P is full-dimensional and bounded,
it contains at least two distinct extreme points x(1) and x(2). Each of these extreme
points can be determined by setting a set of n inequalities to equality. Thus, since
x(1) 6= x(2), the formulation has at least n+ 1 inequalities. It is well known that, in
such a non-redundant formulation, there is a one-to-one correspondence between the
inequalities and the facets of P, see e.g. (Schrijver, 1998).

Consider a partition (L, T ,U) of the edge set E into three sets L, T , and U, where T
forms a spanning tree of the graph G. Similar to the network simplex algorithm for
the traditional minimum cost flow problem (cf. Section 4.3), we refer to this parti-
tion (L, T ,U) as a basis structure in the following. We refer to any convex generalized
preflow x fulfilling xe = 0 for each e ∈ L and xe = ue for each e ∈ U as a preflow cor-
responding to the basis structure. As in the case of traditional and budget-constrained
minimum cost flows, we can restrict our considerations to such preflows:

Proposition 7.21:
Let x be a convex generalized preflow in a graph G = (V ,E). Then there exists



176 Convex Generalized Flows

a convex generalized preflow x ′ corresponding to a basis structure (L, T ,U) with
val(x ′) > val(x).

Proof: For the given convex generalized preflow x, consider the partition of the edge
set given as L := {e ∈ E : xe = 0}, U := {e ∈ E : xe = ue}, and T := {e ∈ E : xe ∈ (0,ue)}.
If the subgraph that is induced by the edges in T does not contain any cycle, the claim
clearly follows since we can add edges from L or U to T until the edges in T form a
spanning tree of G.

Now let C = (e1, . . . , ek) be a (possibly undirected) cycle in G such that ei ∈ T and
xei ∈ (0,uei) for each i ∈ {1, . . . , k}. In the following, we refer to such a cycle as a
T -cycle. We show that there also exists a preflow x ′ with val(x ′) > val(x) in which the
flow on C is rerouted in a way such that at least one edge on C belongs to L or U. By
a repeated application of these arguments, the claim then follows.

Let (P1, . . . ,Pκ) denote the partition of C into maximal directed subpaths. We replace
each of the subpaths Pi by a single edge ei. The outflow of each such edge ei can then
be described by a convex function gi of its inflow according to Lemma 7.7. If κ = 1,
i.e., C is a directed cycle, we can set the flow entering the cycle at the starting node v
of P1 to Ux(P1) or Lx(P1) depending on whether (C, v) is a flow generating cycle or a
flow absorbing cycle for x. Since the excess then increases at v and remains constant
at every other node, the claim follows.

Now let C be an undirected cycle. By construction, in the resulting (undirected) cy-
cle C = (e1, . . . , eκ), the directions of the edges alternate. The situation before and
after this procedure is depicted in Figure 7.8.

Note that the number κ of nodes and edges on C is even since the direction of the
edges changes at each node. Moreover, we may assume without loss of generality
that κ > 4 since, for the case κ = 2, the cycle consists of two parallel paths and
we can proceed as in the proof of Lemma 7.15 in order to make one of the paths
full or empty while only generating positive excess at the end node. Furthermore,
each node on C has either two incoming edges or two outgoing edges in C and we
assume that the edges and nodes are labeled as in Figure 7.8, i.e., nodes with odd
index have two outgoing edges and nodes with even index have two incoming edges.
Furthermore, edges with odd index j start from vj and head to vj+1, while edges with
even index l head from vl+1 to vl. Let gi be the function describing the outflow of ei
for i ∈ {1, . . . , κ}, which is convex according to the above explanations. Furthermore,
let sj denote the sum of the inflows of the edges ej−1 and ej in the given preflow x

for j ∈ {1, 3, 5, . . . , κ− 1}, i.e., the flow leaving node vj along the edges of the cycle C.
Similarly, let dl denote the flow arriving at vl via el−1 and el in x, l ∈ {2, 4, . . . , κ}. Note
that, due to notational convenience, we avoid using modulo-functions, i.e., whenever
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Figure 7.8: Replacing each maximal directed subpath of a cycle by a single edge yields a cycle
in which the directions of the edges alternate. The left figure shows the situation
before, the right figure after the procedure. The new outflow functions gi are
convex on the set of feasible inflows.

an index evaluates to 0 or κ+ 1, it should be κ or 1, respectively. Moreover, we will
always denote odd indices by j and even indices by l.

Our aim is to distribute the flows sj leaving the odd nodes vj onto ej−1 and ej in
a way such that the inflow of each even node vl is at least dl, while the flow on at
least one edge ei lies in {Lx(Pi),Ux(Pi)} (which means that at least one edge e ∈ Pi
will have x ′e = 0 or x ′e = ue as remarked above after Definition 7.8). To do so, we
formulate a system of nonlinear inequalities in the inflows yj of the odd edges ej. The
inflow yl of each even edge el can then be expressed as yl = sl+1 − yl+1. We then
have the boundary conditions yj ∈ [Lx(Pj),Ux(Pj)] and sj− yj ∈ [Lx(Pj−1),Ux(Pj−1)] or,
equivalently,

yj ∈ [Lj,Uj] := [Lx(Pj),Ux(Pj)]∩ [sj −Ux(Pj−1), sj − Lx(Pj−1)].

Hence, we want to find a solution to the following system of nonlinear inequalities
for which yj ∈ {Lj,Uj} for at least one j ∈ {1, 3, . . . , κ− 1}:

g1(y1) + g2(s3 − y3) > d2,

g3(y3) + g4(s5 − y5) > d4,
...

gκ−1(yκ−1) + gκ(s1 − y1) > dκ,

yj ∈ [Lj,Uj], j ∈ {1, 3, . . . , κ− 1}.
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According to the definitions of sj and dj, choosing yj to be the inflow of the path Pj
in the original preflow x yields a solution y of the system that fulfills all inequalities
with equality. In the following, let S := {(y1,y3, . . . ,yκ−1) : gj(yj) + gj+1(sj+2 − yj+2) >
dj+1 for j = 1, 3, . . . , κ− 1} be the set of vectors satisfying the inequalities and D :=

[L1,U1]× [L3,U3]× . . .× [Lκ−1,Uκ−1] the set of vectors of allowed inflows. Since C was
a T -cycle, the solution y mentioned above lies in S ∩D◦ and we are done if we can
show that there also exists a solution in S∩ ∂D.1

For the sake of a contradiction, assume that there is no solution in S ∩ ∂D and, for
j ∈ {1, 3, . . . , κ− 1}, let

Cj := {(y1,y3, . . . ,yκ−1) : gj(yj) + gj+1(sj+2 − yj+2) < dj+1}

denote the set of points violating inequality j. Since S = Rκ/2 \
⋃
j∈{1,3,...,κ−1}Cj and

we assumed that there is no solution in S ∩ ∂D, the boundary ∂D must be contained
in
⋃
j∈{1,3,...,κ−1}Cj. Since the functions gi are convex, the sets D ∩ Cj are convex as

well and we can find a hyperplane Hj := {y = (y1,y3, . . . ,yκ−1) : ωj · y = bj} with
ωj · y < bj that separates D ∩ Cj from y for each j ∈ {1, 3, . . . , κ− 1}. Thus, the set
P := {y = (y1,y3, . . . ,yκ−1) : ωj · y 6 bj for j = 1, 3, . . . , κ− 1} is a polyhedron with
y ∈ P. In fact, since y ∈ P ∩ (S ∩D), the polyhedron P must be a polytope enclosing
y (otherwise, it would be possible to pass S ∩ ∂D following an extreme ray of P).
Moreover, since y lies in the topological interior of P, we have P◦ 6= ∅, which shows
that P is a full-dimensional polytope in Rκ/2. According to Lemma 7.20, a polytope
of dimension κ

2 must have at least κ
2 + 1 facets, whereas P was defined by only κ

2

inequalities, which yields a contradiction. Thus, there exists a solution in S∩ ∂D.

Hence, in terms of the original problem, we have now shown that there exists a feasi-
ble generalized preflow on G with flow value at least val(x) for which the flow on at
least one edge e ∈ C is contained in {0,ue} (the flow value can have increased in case
that the sink t is one of the nodes vl). Note that we only changed the flow on edges
on C. Hence, by a repeated application of the above arguments, we finally obtain that
there are no T -cycles left, which proves the claim.

Proposition 7.21 builds the foundation of the following main result of this subsection:

Theorem 7.22:
A maximum convex generalized preflow can be computed in O(3m ·m) time.

Proof: Since we can restrict our considerations to preflows corresponding to basis
structures as shown in Proposition 7.21, the theorem follows if we can show that,

1 Here, D◦ denotes the topological interior of D and ∂D := D̄ \D◦ the boundary.
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given such a basis structure, we can compute feasible flow values on the edges in T
that yield a maximum convex generalized preflow (or decide that the partition does
not allow a feasible preflow) in O(m) time. We show that we can proceed similarly
as in the traditional network simplex algorithm in order to reconstruct the flow that
corresponds to a partition of the edge set. In doing so, we may discard partitions that
may lead to feasible preflows. Nevertheless, we never discard partitions that lead to
a maximum convex generalized preflow.

Clearly, we can discard partitions in which some node v ∈ V that is incident only to
L-edges and U-edges has a negative excess. Moreover, by Proposition 7.21, we can
discard partitions that contain T -cycles and restrict our considerations to partitions in
which the edges in T form a spanning tree of G.2 Since T is a spanning tree, it contains
the sink t. We designate t as the root of the tree T and seek to move the excess from
each leaf of the tree towards the root in the following.

Each leaf v of the tree T is incident to exactly one edge e ∈ T . Let δv denote the excess
at v generated by the L- and U-edges incident to v. We try to specify the flow on
e in a way such that the excess at v becomes zero and will get transported towards
the root node: If e is heading from v to some node w and δv < 0, we discard the
current partition since it does not allow a feasible preflow (since xe is required to be
non-negative, a negative excess will remain at v). If δv > 0, we set xe := min{ue, δv} in
order to move the excess at v towards the root. Similarly, if e is heading from some
node w to v, we set xe := min{ue,g−1e (−δv)} if δv 6 0 in order to satisfy the demand
at v and discard the partition if δv > 0. In any case, since we have specified the flow
on e, we can delete the edge from the tree and continue with the next leaf and so on.
Note that this procedure maintains a non-negative excess at each leaf while creating
the maximum possible excess at the corresponding adjacent inner node of the tree.
Eventually, the flow on each edge e ∈ T is determined (if possible) while creating the
maximum possible excess at the root of the tree.

For each of the 3m possible partitions (L, T ,U) of E, we are able to find a node that
is incident to exactly one edge in T efficiently by maintaining values b(v) that corre-
spond to the number of incident T -edges of a node v ∈ V for which the flow value
has not yet been fixed and a queue Q of nodes v with b(v) = 1. Whenever the flow
value xe of an edge e ∈ T with end nodes v and w is fixed, we are able to decrease
b(v) and b(w) and update Q in constant time O(1). Consequently, the reconstruction
needs O(m) time, which proves the claimed total running time of O(3m ·m).

2 Note that one can check in O(m) time whether a given graph contains an undirected cycle by using
a depth-first search in the corresponding undirected graph.
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Note that the maximum convex generalized preflow that is obtained by the above
algorithm cannot be transformed into a maximum convex generalized flow without
further assumptions: Suppose that there is a flow generating cycle (C, v) for some
preflow x that creates sv units of flow at v resulting in an excess of δv ∈ (0, sv) at v.
According to Lemma 7.7, we can describe the outflow of C at v by a convex function g
of the inflow xC of C at v that fulfills g(xC) − xC = sv. In order to get rid of the
positive excess at v, we need to solve the equation g(xC) − xC = sv− δv in xC, which is
uncomputable in general even for a strictly increasing continuous convex function g
since we do not have oracle access for the function g(xC) − xC.

However, if we suppose that there is an oracle A that solves the above kind of equa-
tions in O(TA) time, it is possible to find a maximum convex generalized flow on
general graphs in O(3m · nmTA) time as follows: For some partition (L, T ,U) of the
edge set E that implies a feasible preflow, consider a node v ∈ V \ {s, t} with positive
excess. Starting at z := v, we recursively follow some edge e = (w, z) ∈ Ewith positive
flow xe and set z := w. Eventually, we either reach the source s or some node v ′ con-
sidered before, i.e., we obtain a cycle. In the first case, we find a feasible subtraction
of Type I that either removes the excess at v or removes all flow on some edge on the
underlying s-v-path. Note that this case may occur up to O(m+n) = O(m) times and
causes an overhead of O(n). In the second case, there is a minimum inflow xP into the
path P between v ′ and v such that the excess at node v and the flow on each edge on
the path between v ′ and v remains non-negative. By incorporating the oracle A, we
can then either find a flow on the cycle such that the inflow into the path equals xP
while the excess at v ′ remains constant or we can reduce the flow on the cycle com-
pletely. Again, this case can occur up to O(m+ n) times and causes an overhead of
O(n · TA). This yields a total time requirement of O(nm · TA) per partition for convert-
ing the maximum preflow corresponding to the partition into a flow with the same
flow value.

7.5.2 Acyclic Graphs

As shown above, according to Theorem 7.22, we can obtain a maximum convex gener-
alized preflow on general graphs in O(3m ·m) time. When restricting to acyclic graphs,
we are able to turn preflows into flows efficiently, which can be incorporated into the
proof of Theorem 7.22 in order to obtain a maximum convex generalized flow within
the same time bound. This will be shown in the following corollary:
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Corollary 7.23:
A maximum convex generalized flow in an acyclic graph can be computed in O(3m ·
m) time.

Proof: The algorithm used in the proof of Theorem 7.22 considers each possible parti-
tion of E into L, T , and U and computes a feasible preflow for this partition if possible.
In acyclic graphs, the positive excess that might occur at any node v ∈ V \ {s, t} stems
from flows on s-v-paths according to Theorem 6.10. Thus, each of the computed pre-
flows can afterwards be turned into a feasible flow by computing feasible subtractions
of Type I on those paths that create the excess at the nodes v ∈ V \ {s, t} with positive
excess. This can be done in linear time O(m) as follows: Let (v1, . . . , vn) with v1 = s

and vn = t denote a topological sorting of the nodes in V and let δv denote the excess
of each node v ∈ V , which is non-negative for each v ∈ V \ {s, t}. Let i denote the
maximum index with i < n such that δvi > 0. Note that the positive excess at vi stems
from the ingoing edges e ∈ δ−(vi) only. Hence, as long as δvi > 0, we can reduce
the inflow of some e = (vj, vi) ∈ δ−(vi) with xe > 0, decrease δvi , and increase δvj
appropriately until either xe = 0 or δvi = 0. In the first case, we proceed with another
edge in δ−(vi) with positive flow. In the second case, we again consider the maximum
index i < n with δvi > 0 until no such index exists. Eventually, we get rid of the
positive excess at each v ∈ V \ {s, t} by considering each edge at most once, which
shows the claim.

7.5.3 Series-Parallel Graphs

We now restrict our considerations to the case of series-parallel graphs. Although
Corollary 7.23 already provides an algorithm that solves CGMFP on series-parallel
graphs exactly, it is possible to obtain a better running time by exploiting the inherent
structure of the underlying graph. As it was shown in (Holzhauser et al., 2015b), the
problem becomes solvable in O(2.83m · (m+ n2)) time when using a more sophisti-
cated approach of creating the basis structures. We present a revised approach that
comes with an improved running-time of O(2.707m · (m+ n2)) time and a simplified
proof:

Theorem 7.24:
A maximum convex generalized flow in a series-parallel graph can be computed in
O(2.707m · (m+n2)) time.

Proof: The idea of the algorithm is similar to the one presented in the proof of The-
orem 7.22: For a given basis structure (L, T ,U), we try to reconstruct the flow on the
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edges such that flow conservation is fulfilled at each node v ∈ V if possible. Although
the reconstruction procedure used in this proof has an increased running time of
O(m+ n2) compared to the procedure used in the proof of Theorem 7.22, it yields a
better overall running time since it can be interleaved with a traversal of a decomposi-
tion tree of the series-parallel graph in order to reduce the number of partitions that
need to be considered within the algorithm.

Contraction Procedure:

We start by describing the new procedure for reconstructing the flow from a given
partition of E into L, T , and U (or deciding that the partition does not correspond to
a feasible flow). As a fourth kind of node, we introduce unspecified edges e ∈ X for
which the type will be determined in a later step of the algorithm. For each edge e ∈ E,
we store two attributes: the interval ine of potential inflows and the interval oute of
potential outflows. Obviously, for each e ∈ L, we get ine = oute = [0, 0] and, for each
edge e ∈ U, we get ine = [ue,ue] and oute = [ge(ue),ge(ue)]. Analogously, for e ∈ T
or e ∈ X, we have ine = [0,ue] and oute = [0,ge(ue)] initially.

The algorithm is based on a fixed decomposition tree of the underlying series-parallel
graph G. It repeatedly identifies series trees (maximal subtrees in which all inner nodes
correspond to series compositions, cf. Figures 7.9a and 7.9c) or parallel trees (maximal
subtrees in which all inner nodes correspond to parallel compositions, cf. Figure 7.9b)
of the decomposition tree and contracts them into single edges. As an invariant that
will be established in the creation process of the partitions below, we assume that
every edge that corresponds to a leaf in a series tree is contained in X. Similarly, we
assume that exactly one edge corresponding to a leaf in a parallel tree is in X while
every other edge is contained in L∪U.

Contraction of a series trees: Consider a series tree T with kT > 2 leaves correspond-
ing to edges e1, . . . , ekT in the underlying series-parallel graph. As noted above,
we can assume that the type of all of these edges is unspecified, so inei = [ai,bi]
and outei = [ci,di] for some values ai,bi, ci,di > 0. In the original graph, the
sequence (e1, . . . , ekT ) corresponds to a path P of length kT . Note that the flow
on P is determined by the flow on one single edge on P. Similar as in the proof
of Lemma 7.2, we can find a maximal interval of the form [a,b] such that, for
each y ∈ [a,b], it holds that xei ∈ [ai,bi] for each i ∈ {2, . . . , kT } in a flow x on P
with xe1 = y. We can, thus, replace the path P by a single unspecified edge e ∈ X
with ine = [a,b] and oute = [gekT (. . . (ge1(a)) . . .),gekT (. . . (ge1(b)) . . .)]. In the
decomposition tree, we similarly replace the series tree T by a new leaf corre-
sponding to the edge e. Note that, if ine = ∅, we can skip the given partition
since it does not allow a feasible flow.
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Contraction of parallel trees: Now consider a parallel tree T with kT > 2 leaves cor-
responding to edges e1, . . . , ekT in the underlying series-parallel graph. Accord-
ing to the above invariant, we can assume that there is exactly one index j ∈
{1, . . . , kT } such that ej ∈ X and that there are two disjoint index sets IL and IU
denoting empty and full edges, respectively, such that IL ∪ IU = {1, . . . , kT } \ {j}.
Note that the intervals inej and outej are of the form inej = [aj,bj] and outej =
[cj,dj] while the intervals of every other edge ei are of the form inei = [ai,ai]
and outei = [ci, ci]. Hence, the flow in the series-parallel subgraph G ′ that corre-
sponds to the parallel tree T only depends on the flow on ej, so we can replace
T by a single leaf corresponding to an edge e with the intervals

ine :=

aj + ∑
i∈IL∪IU

ai,bj +
∑

i∈IL∪UL

ai


and

oute :=

cj + ∑
i∈IL∪IU

ci,dj +
∑

i∈IL∪UL

ci

 .

Virtually, we replace the parallel edges e1, . . . , ekT in G by the single edge e.

Before we derive the running time of the above contraction procedure, first note that
each parallel tree and series tree can be determined by a single traversal of the de-
composition tree in O(m) time in a preprocessing step. For each of the O(n) series
trees, we need to compute the new intervals ine and oute, which results in an evalu-
ation of O(kT ) outflow functions. Since each of these functions may result from the
decomposition of other outflow functions from prior contraction steps, we obtain an
overhead of O(n) per series tree. Similarly, each parallel tree T with kT leaves causes
an overhead of O(kT ). Since there are at most O(n) parallel trees (since the root of
each parallel tree is either the root of the decomposition tree or a child of a series
composition) and since each leaf in a parallel tree either corresponds to an edge in
the original graph G or a series tree, the contraction steps of all parallel trees cause a
total overhead of O(m+n). Hence, we obtain a total running-time of O(m+n2) time
for the reconstruction of the flow in each considered partition.

Partitioning procedure:

We now show how we can interleave the generation of the partitions into the con-
traction procedure described above while maintaining the claimed invariants. In par-
ticular, we are able to save some of the 3m possible combinations by generating the
partitions “just in time”, i.e., prior to each contraction step.
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Initially, we assume each edge to be unspecified. Suppose that the algorithm starts
with the contraction of a series tree T with kT leaves corresponding to the edges
e1, . . . , ekT . As described above, we do not need to consider any partition of these
edges but can replace them by a new unspecified edge. At some point in time (if the
graph does not consist of a single path), we come across a parallel tree T with kT leaves
corresponding to the edges e1, . . . , ekT . At that time, all of these edges are unspecified.
In order to fulfill the invariant required above, we need to consider different partitions
of these edges into L, T , and U before the subsequent contraction step. According to
Proposition 7.21, we can assume that at most one of these edges is of type T in a basis
structure while the remaining edges are either empty or full. Equivalently, we can
assess that exactly one edge remains unspecified while the remaining edges must be
of type L or U. In total, we need to consider each of the kT possible positions of the
unspecified edge and, for every such position, each of the 2kT−1 possible assignments
of the remaining edges into L and U. We then contract the parallel tree into a single
leaf, which is again unspecified as described above, and continue the procedure. An
exemplary course of the overall procedure is depicted in Figure 7.9.
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X
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X X

(a) Series tree
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X
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(b) Parallel tree

X X
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X X

(c) Series tree

X

X

X

(d) Result

Figure 7.9: Iterative contraction of series and parallel trees in the algorithm. For each iteration,
the upper figure shows the current graph and the lower one the current decompo-
sition tree. The series tree in (a) can be contracted to a single edge without con-
sidering any further partitions, which yields the graph shown in (b). Afterwards,
the two leaves of the parallel tree need to be assigned to L, U, or X such that the
tree can be contracted. This yields the tree shown in (c), which can immediately
be contracted into the single leaf shown in (d).
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Complexity of the overall algorithm:

The bound on the time needed for the contraction steps has already been derived
above. It remains to prove that the number of partitions that need to be considered
can be bounded by 2.707m. To this end, note that the number of partitions only
increases when contracting a parallel tree.

Now consider a series tree T with k := kT leaves e1, . . . , ek prior to its contraction.
Several contraction steps before, each ei either corresponded to a parallel tree Ti with
ki leaves or to a tree Ti with only ki = 1 leaf ei that corresponds to an edge in the
original graph (cf. Figure 7.10).

S

S

P

P P

e1 e2 e3 e4

e5 P

Pe6

e7 e8

Figure 7.10: A series tree with k = 3 leaves and two parallel trees with k1 = 4 and k3 = 3

leaves. Before the algorithm contracts the series tree, it considers partitions for
the two parallel trees and contracts these trees into single edges. It then contracts
the series tree into a single edge.

Let M(T) denote the number of partitions that need to be considered in order to
process all of these trees Ti and the series tree T . As shown above, we get that

M(T) =

k∏

i=1

ki · 2ki−1. (7.2)

Since each of the considered trees is binary, it holds that the number ni of nodes in
each tree Ti is given by 2ki − 1 and that the number nS of nodes in the series tree
together with the nodes in the trees Ti is given by nS =

(∑k
i=1 ni

)
+ k− 1. Note that,

after the contraction steps of the trees Ti and the series tree T , the number of nodes in
the decomposition tree is reduced by an absolute amount of nS − 1. By substituting
ki =

ni+1
2 in (7.2), we can bound the number M(T) of partitions as follows:

M(T) =

k∏

i=1

ni + 1

2
· 2ni−1

2 =

k∏

i=1

ni + 1

2
√
2

· 2ni
2 = 2

∑k
i=1

ni
2 ·

k∏

i=1

ni + 1

2
√
2

.



186 Convex Generalized Flows

By using the inequality of arithmetic and geometric means (cf. Cauchy (1821)), we get
that

M(T) 6
(√
2
)∑k

i=1 ni ·

(∑k
i=1(ni + 1)

2
√
2 · k

)k

=
(√
2
)∑k

i=1 ni ·

(
1

2
√
2
·

(∑k
i=1 ni
k

+ 1

))k
.

For z :=
∑k
i=1 ni
k > 1, we further obtain that

M(T) =
(√
2
)∑k

i=1 ni ·
(
1

2
√
2
· (z+ 1)

)∑ki=1 ni
z

=

(
√
2 ·
(
1

2
√
2
· (z+ 1)

)1
z

)∑k
i=1 ni

.

It can be seen that the term
√
2 ·
(
1

2
√
2
· (z+ 1)

)1
z

has a maximum value of

−4eW

(
−
(
2
√
2e
)−1)

≈ 1.64524

for z > 1, where e is Euler’s number and W denotes the Lambert W function. Hence,
since k > 2, we get that

M(T) 6 1.64524
∑k
i=1 ni = 1.64524nS−k+1 6 1.64524nS−1.

Thus, in total, we only need to evaluate 1.64524nS−1 partitions in order to remove
nS − 1 nodes from the decomposition tree. After contracting the series tree, we can
repeat this procedure until the decomposition tree only consists of a single edge or
of a single parallel tree. In any case, since we are interested in a maximum convex
generalized flow, we do not need to consider any further partitions since it is clearly
optimal to assign the remaining edges to U. Hence, since there are 2m− 1 nodes in the
decomposition tree, we get the following bound on the total number M of partitions
that need to be considered:

M 6
∏

series tree

1.64524nS−1 = 1.64524
∑

series tree(nS−1) 6 1.645242m−1

6 1.645242m 6 2.707m,

which shows the claim.
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7.5.4 Extension-Parallel Graphs

As it was shown in Theorem 7.24, we can reduce the number of partitions that need to
be considered from 3m to 2.707m by using a more sophisticated generation procedure
for the problem of series-parallel graphs. When applying this algorithm to the con-
vex generalized maximum flow problem on extension-parallel graphs, the number of
partitions that need to be considered can be further reduced to 2.404m as it is shown
in the following corollary:

Corollary 7.25:
A maximum convex generalized flow can be computed in O(2.404m ·m) time on
extension-parallel graphs.

Proof: Assume that we apply the algorithm that was described in the proof of Theo-
rem 7.24 to an instance of CGMFP on an extension-parallel graph G. Again, in order
to bound the number of partitions that need to be evaluated, consider a series tree T
with k leaves corresponding to the edges e1, . . . , ek. According to the structure of
extension-parallel graphs, it holds that at most one edge ej among these edges results
from a prior contraction of a parallel tree Tj with kj leaves into a single edge. Again,
since all of the considered trees are binary, it holds that the number nj of nodes in Tj
is given by nj = 2kj − 1 and that the number of nodes nS in the series tree T together
with the nodes in Tj is given by nS = 2k − 1 + (nj − 1). Since k > 2, we get that
nj = nS + 2− 2k 6 nS − 2. The number M(T) of partitions that need to be considered
in order to process the parallel tree (together with the series tree) is then given by

M(T) 6 kj · 2kj−1 =
nj + 1

2
· 2

nj−1

2 6
nS − 1

2
· 2

nS−3
2 =

nS − 1

4
·
(√
2
)nS−1

.

For z := nS − 1, we then get that

M(T) 6
z

4
·
(√
2
)nS−1

=

((z
4

)1
z

)nS−1
·
(√
2
)nS−1

=

(√
2 ·
(z
4

)1
z

)nS−1
.

The maximum of
√
2 ·
(
z
4

)1
z is given by

√
2e

1
4e ≈ 1.55045. As in the proof of Theo-

rem 7.24, we finally get that the number M of partitions that need to be considered is
bounded by

M 6
∏

series tree

1.55045nS−1 = 1.55045
∑

series tree(nS−1) 6 1.550452m−1

6 1.550452m 6 2.404m,

which shows the claim.
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7.5.5 Restricted Extension-Parallel Graphs

We close the study of graph classes with a special case of extension-parallel graphs
that is solvable in polynomial time. As it was shown in Theorem 7.18, the prob-
lem CGMFP is NP-hard to solve even if the underlying graph is restricted to be
extension-parallel, i.e., if it is series-parallel but series compositions are only allowed
in case that one of the two graphs consists of a single edge. We now show that CGMFP
can be solved in linear time if we require that the right hand side graph (i.e., the graph
whose source is identified with the sink of the other graph) in every series composi-
tion consists of a single edge. In the following, we refer to extension-parallel graphs
with this additional restriction as restricted extension-parallel graphs.

Theorem 7.26:
A maximum convex generalized flow in a restricted extension-parallel graph can be
computed in O(m) time.

Proof: Let G = (V ,E) be a restricted extension-parallel graph. The idea of the al-
gorithm is to “pump” as much flow as possible into the graph in order to obtain a
maximum preflow and to subsequently turn this preflow into a flow. For any series-
parallel subgraph G ′ of G that corresponds to a node in the decomposition tree of G,
we let F(G ′) denote the maximum value of a convex generalized flow in G ′. Starting
from the leaves of the decomposition tree of G, these values F(G ′) can be computed
recursively as follows:

• If G ′ is a leaf of the decomposition tree corresponding to a single edge e ∈ E, we
set F(G ′) := ge(ue).

• If G ′ is the parallel composition of G1 and G2, we set F(G ′) := F(G1) + F(G2).

• If G ′ is the series composition of G1 and G2, the right hand side graph G2 must
be a single edge e and we set F(G ′) := ge(min{F(G1),ue}).

Since each of the above steps requires only constant time O(1) and the decomposition
tree contains O(m) nodes, this shows that we can compute the flow value F(G) of a
maximum convex generalized flow in G in O(m) time.

In order to compute the flow xe on the edges of G in a maximum convex generalized
flow x, we let outx(G ′) denote the outflow of each graph G ′ in the decomposition of
G under x. Starting from the root of the decomposition tree, where we set outx(G) :=
F(G), each of these values outx(G ′) can be computed recursively as follows:

• If G ′ is the parallel composition of G1 and G2, we split the value outx(G ′)
arbitrarily such that outx(G ′) = outx(G1) + outx(G2) and outx(G1) 6 F(G1),
outx(G2) 6 F(G2).
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• If G ′ is the series composition of G1 and G2, the right hand side graph G2

must be a single edge e and we set outx(G2) := outx(G ′) and outx(G1) :=

g−1e (outx(G ′)).

Note that we always have that outx(G ′) 6 F(G ′) during the above procedure, so
the splitting of outx(G ′) in case of a parallel composition is always possible and the
procedure computes all values outx(G ′) in O(m) time. Afterwards, the flow xe on
each edge e can be computed from the value outx(e) obtained for the corresponding
leaf of the decomposition tree as xe := g−1e (outx(e)).

7.6 Integral Flows

We finally consider integral flows (i.e., feasible flows with integral in- and outflows for
all edges) and assume that the outflow functions map integers to integers. Note that
the NP-completeness results from Theorem 7.17 and Theorem 7.18 remain valid for
the case of integral flows. However, we are now able to derive a pseudo-polynomial-
time algorithm for the problem on series-parallel graphs. In the following, let U :=

maxe∈E ue and U := maxe∈E ge(ue) denote the maximum possible inflow and outflow
of an edge, respectively, which can be assumed to be integral as well without loss of
generality.

Theorem 7.27:
A maximum integral convex generalized flow in a series-parallel graph can be com-
puted in O(m5 ·U2 ·U2) time.

Proof: Consider a decomposition tree of G. For each component G ′ of this decompo-
sition tree and for each value x ∈ {0, . . . ,m ·U} and y ∈ {0, . . . ,m ·U}, we compute
the boolean function AG ′(x,y), which is true if and only if an inflow of value x can
produce an outflow of value y in G ′.

Consider a leaf G ′ of the decomposition tree that corresponds to some edge e of the
original graph G. For each x ∈ {0, . . . ,m ·U} and y ∈ {0, . . . ,m ·U}, we set AG ′(x,y) :=
True if and only if x 6 ue and ge(x) = y. If G ′ is the series composition of the two
series-parallel graphs G1 and G2, we are able to achieve an outflow y with an inflow
of x in G ′ if and only if there is some value x ′ ∈ {0, . . . ,m ·U} that is both an outflow
of G1 and an inflow of G2, i.e.,

AG ′(x,y) =
∨

x ′∈{0,...,m·U}
AG1(x, x ′)∧AG2(x

′,y).
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Similarly, if G ′ is the parallel composition of the two series-parallel graphs G1 and G2,
an outflow of y can be achieved with an inflow of x if and only if some amount y1 of
the outflow can be created with an inflow of x1 in G1 and the remaining outflow y−y1

can be created with the remaining inflow x− x1 in G2. Hence, we get

AG ′(x,y) =
∨

x1∈{0,...,x}

∨
y1∈{0,...,y}

AG1(x1,y1)∧AG2(x− x1,y− y1).

Note that there are O(m) nodes in the decomposition tree of G and we need to eval-
uate O((m ·U) · (m ·U)) entries for each node. Clearly, for a single edge, each entry
can be computed in constant time O(1). For the case of a series composition, we need
to iterate over all possible values of x1, which yields a complexity of O(m ·U) per
entry. Finally, the evaluation of an entry for a node G ′ of the decomposition tree that
corresponds to a parallel composition takes O((m ·U) · (m ·U)) time. This yields the
claimed running time of O

(
m · (m ·U)2 · (m ·U)2

)
= O

(
m5 ·U2 ·U2

)
.

7.7 Conclusion

We studied an extension of the generalized maximum flow problem in which the out-
flow of an edge is a strictly increasing convex function of its inflow. It turned out that
the problem of computing a maximum convex generalized flow is strongly NP-hard
to solve even on bipartite acyclic graphs and weakly NP-hard on extension-parallel
graphs. For both cases and the case of preflows on general graphs, we presented
exponential-time exact algorithms. Moreover, we showed that a flow decomposition
similar to the case of traditional generalized flows is still possible and showed that
the problem can be solved in pseudo-polynomial-time on series-parallel graphs for the
case of integral flows. An overview of the results of this chapter is given in Table 7.1.

The model introduced in this chapter raises several interesting questions for future
research. Since CGMFP was only shown to be weakly NP-hard to solve on series-
parallel graphs, it remains an open question whether a pseudo-polynomial-time algo-
rithm exists also for the general case in which the flow is not restricted to be integral
or whether the problem is actually strongly NP-hard in this case. Furthermore, al-
though the problem was shown to be NP-hard to approximate, it remains open if and
how approximate oracles could be used in order to obtain “almost feasible” solutions.
Finally, although the running-time of the presented algorithms could be improved for
the case of more simple graph classes, it may be possible to obtain faster algorithms
by making even more use of the structure of such graph classes.
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General Graphs Acyclic Graphs SP Graphs EP Graphs

Theorem 7.13:
Decomposable into
m elementary sub-
tractions

−→ −→ −→

←−
Theorem 7.17:
strongly NP-
complete to solve

←−
Theorem 7.18:
weakly NP-complete
to solve

←− ←− ←−
Theorem 7.19:
NP-hard to approxi-
mate

Theorem 7.22:
maximum preflow
in O(3m ·m) time

Corollary 7.23:
maximum flow in
O(3m ·m) time

Theorem 7.24:
maximum flow in
O(2.707m · (m +

n2)) time

Corollary 7.25:
maximum flow in
O(2.404m · (m +

n2)) time

Theorem 7.26:
maximum flow
in O(m) time on
restricted extension-
parallel graphs

Theorem 7.27:
maximum in-
tegral flow in
O(m5 ·U2 ·U2) time

−→

Table 7.1: The summarized results for the convex generalized maximum flow problem in
Chapter 7. Implied results are denoted with gray arrows.
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