
6 Generalized Processing Networks

We turn our considerations to a generalization of the maximum flow prob-
lem in which each edge e = (v,w) ∈ E is assigned with a so called flow ra-
tio αe ∈ [0, 1] that imposes an upper bound on the fraction of the total outgo-
ing flow at v that may be routed through the edge e. This model embodies
a generalization of the maximum flow problem in processing networks (Koene,
1982), in which the corresponding flow ratios specify the exact fraction of flow
rather than only an upper bound. We show that a flow decomposition similar
to the one for traditional network flows is possible and can be computed in
strongly polynomial time. Moreover, we prove that the problem is at least as
hard to solve as any packing LP but that there also exists a fully polynomial-
time approximation scheme for the maximum flow problem in these general-
ized processing networks if the underlying graph is acyclic. For the case of
series-parallel graphs, we provide two exact algorithms with strongly polyno-
mial running time. Finally, we study the case of integral flows and show that
the problem becomes NP-hard to solve and approximate in this case.
This chapter is based on joint work with Sven O. Krumke and Clemens Thielen
(Holzhauser et al., 2016c).

6.1 Introduction

Traditional flows in networks that were introduced in Section 2.4 and extended in the
previous chapters embody a useful tool to model the transshipment of commodities
from nodes with supply to nodes with demand. However, in order to model advanced
issues such as the production of goods in a manufacturing process, the considered
network flow problems are not powerful enough since they lack the possibility to
model the splitting of flow at nodes by specific ratios. Processing networks (cf. (Koene,
1982)) generalize traditional flow problems by the introduction of processing nodes that
involve additional flow ratios αe ∈ [0, 1] for their outgoing edges e. The flow on such
an outgoing edge e is required to equal a fraction αe of the total flow on the outgoing
edges of the processing node. In order to maintain flow conservation, these flow ratios
of all outgoing edges of each processing node are required to sum up to one.

© Springer Fachmedien Wiesbaden GmbH 2016
M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_6



118 Generalized Processing Networks

In this chapter, we investigate a generalization of processing networks in which a flow
ratio αe ∈ [0, 1] is assigned to every edge e. The flow ratios are required to sum up
to at least one at every node with outgoing edges and only impose an upper bound on
the ratio of flow on the corresponding edges. Clearly, this extended model subsumes
both the maximum flow problem in processing networks and the maximum flow
problem in traditional networks but also allows to model more advanced situations.
We provide several structural results about flows in such networks and present both
approximation and exact algorithms for the maximum flow problem in several special
cases of these networks.

The possible applications of our model are manifold. The most natural one is the mod-
eling of distillation processes (e.g., in refineries), in which raw materials are split into
intermediate and end products in specific ratios. However, in contrast to traditional
processing networks, we are now able to model possible variations in these ratios
that are only bounded by specific technical limitations. Similarly, by inverting the
direction of each edge, we can model manufacturing processes of goods in which the
composition ratios of the basic commodities may vary up to specific upper bounds.

6.1.1 Previous Work

Research on the topic of processing networks has a long history under several dif-
ferent names. To the best of our knowledge, first work was done by Schaefer (1978)
who introduced the maximum flow problem in processing networks and a first al-
gorithm for the problem. In particular, he considered the case that there are two
kind of nodes: ordinary nodes as in traditional network flow problems and special
nodes for which each of the outgoing edges has an assigned value αe ∈ (0, 1) that
determines the fraction of flow that is routed through the corresponding edge e. In
order to maintain flow conservation, these values are required to sum up to one at
each special node. Schaefer presented a (super-polynomial-time) algorithm that gen-
eralizes the augmenting path algorithm for the traditional maximum flow problem
(cf. (Ahuja et al., 1993)). However, the author refrained from giving an exact running
time analysis and a complete description on how to handle several special cases that
might occur in the course of his algorithm. In the 1980s, Koene (1980) considered the
maximum flow problem in a processing network where the only special node (called
processing node) coincides with the source node s of the network. For this special case,
he presented a polynomial-time exact algorithm.

In his PhD-thesis, Koene (1982) later generalized the problem in three ways: Besides
the introduction of a third kind of nodes (representing so called blending processes that



6.1 Introduction 119

assign proportionality values to the incoming edges of a node) and the introduction
of gains on edges similar to the generalized flow problem (cf. Section 2.4), he con-
sidered the more general minimum cost flow variant of the problem. He showed that
every linear program can be transformed into an instance of this minimum cost flow
problem and developed a customized variant of the simplex method in order to solve
the problem. This simplex method was later improved by Chen and Engquist (1986)
and Chang et al. (1989).

Many years later, in 2003, research on processing networks was revived by Fang and
Qi (2003) under the name manufacturing network flows in which they derived the al-
gebraic foundations for a network simplex method. In the following years, Lu et al.
(2006), Lu et al. (2009), Venkateshan et al. (2008), and Wang and Lin (2009) extended
this foundation, partially under the name minimum distribution cost flow problem, with
the introduction of explicit graph operations that are used in a network simplex algo-
rithm. Moreover, Wang and Lin (2009) showed that the maximum flow problem in a
processing network with both processing and blending nodes is at least as hard as the
maximum generalized flow problem as introduced in Section 2.4.

The maximum flow variant of the problem was again investigated by Sheu et al. (2006)
and Huang (2011). In the former paper, the authors provide a similar algorithm
to the very early procedure introduced by Schaefer (1978) with super-exponential
running time but neither give a proof of correctness nor handle every special case
that may occur. In Huang (2011), the author presents a network simplex method for
the problem without processing nodes in combination with computational results.

The case that the corresponding factors do not sum up to one at some nodes was
considered in Lu et al. (2006). However, the authors do not assume flow conservation
to hold at these nodes and are, thus, able to define preprocessing procedures in order
to remove such nodes. To the best of our knowledge, the more general case that is
considered in this chapter, in which these factors only provide upper bounds on the
flow while flow conservation is maintained at each node has not been investigated so
far.

6.1.2 Chapter Outline

After defining the maximum flow problem in generalized processing networks and the neces-
sary notation in Section 6.2, we show in Section 6.3 that there is a flow decomposition
theorem similar to the one for traditional flows (cf. (Ahuja et al., 1993)) and that such
a flow decomposition can be computed more efficiently in the case of acyclic graphs.
In Section 6.4, we consider the complexity and approximability of the problem. In



120 Generalized Processing Networks

particular, we show that the problem of finding a maximum flow in a generalized
processing network is solvable in weakly polynomial-time on the one hand, but at
least as hard to solve as any packing LP on the other hand. Moreover, we present
an FPTAS for the problem on acyclic graphs that is based on the generalized packing
framework introduced in Section 3.3. To the best of our knowledge, this comprises the
first approximation algorithm for the maximum flow problem in processing networks.
In Section 6.5, we turn our focus to the case of series-parallel graphs and present two
different approaches on how to solve the problem exactly in strongly polynomial time.
The first of these approaches is an analogue to the augmenting path algorithm for the
traditional maximum flow problem (cf. (Ahuja et al., 1993)) and achieves a running
time of O(m2) while the second approach exhaustedly uses the inherent structure
of series-parallel graphs in order to repeatedly shrink series-parallel subcomponents
into single edges, which results in an algorithm with an improved running time of
O(m · (n+ logm)). Finally, in Section 6.6, we briefly investigate the case of flows that
are required to be integral on every edge. As it turns out, the problem with integral
flows becomes strongly NP-complete to solve and to approximate even on bipartite
acyclic graphs and weakly NP-complete to solve and to approximate on series-parallel
graphs. An overview of the results of this chapter is given in Table 6.1 and Table 6.2
on page 152.

6.2 Preliminaries

We start by defining the maximum flow problem in a directed graph G = (V ,E) with
edge capacities ue ∈ N and flow ratios αe ∈ (0, 1] on the edges e ∈ E. Let s ∈ V and
t ∈ V denote a distinguished source and sink of the network, respectively.

Definition 6.1 (Flow, flow value, maximum flow, static/dynamic capacity constraint):
A function x : E → R>0 is called a feasible flow in a generalized processing network or
just flow if excessx(v) :=

∑
e∈δ−(v) xe −

∑
e∈δ+(v) xe = 0 for each v ∈ V \ {s, t} and both

xe := x(e) 6 ue (called the static capacity constraint for e) and xe 6 αe ·
∑
e ′∈δ+(v) xe ′

(called the dynamic capacity constraint for e) for each e = (v,w) ∈ E. The flow value of
a flow x is given by val(x) := excessx(t). A flow x of maximum flow value is called a
maximum flow in a generalized processing network or just maximum flow. C

The above definition allows us to define the maximum flow problem in a generalized
processing network:



6.2 Preliminaries 121

Definition 6.2 (Maximum flow problem in a generalized processing network (MFGPN)):
Instance: A directed graph G = (V ,E) with source s ∈ V , sink t ∈ V , capaci-

ties ue ∈ N, and flow ratios αe ∈ (0, 1] on the edges e ∈ E such that∑
e∈δ+(v) αe > 1 for each v ∈ V with δ+(v) 6= ∅.

Task: Determine a maximum flow in G. C

Note that we have required that
∑
e∈δ+(v) αe > 1 for each v ∈ V with δ+(v) 6= ∅ in

Definition 6.2. However, this does not yield any restriction since flow conservation
holds at nodes with

∑
e∈δ+(v) αe ∈ (0, 1) only if the flow on the outgoing edges is

zero. Consequently, we can find and remove such nodes in a preprocessing step in
O(n+m) time. This fact is held down in the following assumption:

Assumption 6.3: For every node v ∈ V with δ+(v) 6= ∅, the flow ratios of its outgoing
edges fulfill

∑
e∈δ+(v) αe > 1. C

In addition to Assumption 6.3, we make the following assumptions on the structure
of the underlying graph:

Assumption 6.4: For every node v ∈ V \ {s, t}, it holds that δ+(v) 6= ∅ and δ−(v) 6= ∅.
C

Assumption 6.5: For every node v ∈ V \ {s, t}, there is at least one directed path from
s to v or from v to t. C

Assumption 6.4 does not impose any restriction on the underlying model since the
inflow and outflow of every node v ∈ V \ {s, t} with δ+(v) = ∅ or δ−(v) = ∅ must
equal zero due to flow conservation at v, which implies that the incident edges can
be deleted in a preprocessing step. Similarly, Assumption 6.5 yields no restriction
since the corresponding connected components do not contribute to the flow value
in any flow and can be deleted as well. Note that, for any instance of MFGPN, both
assumptions can be established in O(n+m) time by performing a depth-first search
and repeatedly deleting single nodes and edges. The resulting graph is connected,
such that we can assume that n ∈ O(m) in the following.

Using the above definitions, we can formulate the maximum flow problem in a gener-
alized processing network as a linear program as follows:

max
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe (6.1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}, (6.1b)



122 Generalized Processing Networks

xe 6 αe ·
∑

e ′∈δ+(v)

xe ′ for all e = (v,w) ∈ E, (6.1c)

0 6 xe 6 ue for all e ∈ E. (6.1d)

Note that this formulation as a linear program only differs in equation (6.1c) from
the linear programming formulation of the traditional maximum flow problem given
in equations (2.1) on page 14. However, the known combinatorial algorithms for the
traditional maximum flow problem cannot be applied directly to MFGPN. Instead,
we need to make use of new approaches and generalizations of existing results. The
following definitions build the basis for the theoretical framework that will be used
in the remainder of this chapter.

Definition 6.6 (Types of edges):
Let x be a feasible flow in a generalized processing network. An edge e = (v,w) ∈ E
is said to be of type u if xe = ue. Similarly, if xe < ue and xe = αe ·

∑
e ′∈δ+(v) xe ′ , the

edge is said to be of type α. C

Definition 6.7 ((Basic) Flow distribution scheme):
A function β : E→ [0, 1] with βe := β(e) 6 αe for each e ∈ E is called a flow distribution
scheme if, for each v ∈ V \ {t}, it holds that

∑
e∈δ+(v) βe = 1. Furthermore, if there is

at most one edge e ∈ δ+(v) with βe /∈ {0,αe} at each node v ∈ V \ {t}, the function is
called a basic flow distribution scheme. C

Intuitively, each flow distribution scheme determines how flow that arrives at some
node v ∈ V is sent through the outgoing edges without violating the dynamic capacity
constraints or the flow conservation constraints. Thus, each flow distribution scheme
together with a sufficiently small flow value val(x) determines a feasible flow x. Note
that the concept of basic flow distribution schemes is a generalization of the notion
of s-t-paths in traditional network flow problems since we obtain such a path for the
case that αe = 1 for each e ∈ E. Moreover, note that the fraction xe

val(x) is constant for
each edge e ∈ E and every flow x determined by a given flow distribution scheme β,
which leads to the following definition:

Definition 6.8 (Flow on flow distribution scheme, weight of edge in flow distribution
scheme):
Let β be a flow distribution scheme. A flow x that fulfills xe = βe ·

∑
e ′∈δ+(v) xe ′

for each e = (v,w) ∈ E is called a flow on β. For a flow x on β with positive flow
value val(x), the fraction wβ(e) := xe

val(x) ∈ [0, 1] (which is independent of the choice of
x) is called the weight of e in β. C



6.3 Structural Results 123

In particular, note that the weight function wβ also embodies a flow with unit flow
value for each flow distribution scheme β.

The notion of flow distribution schemes shows the main difference between our model
and traditional processing networks: In the latter model, for each flow distribution
scheme β, it always holds that βe = αe for each edge e = (v,w) that leaves a special
node v. This implies that the flow on each edge in δ+(v) is determined by the flow
on e. In our generalized model, however, there are multiple possible (basic) flow
distribution schemes at each such node, which prevents us from directly applying the
known algorithms for traditional processing networks to the generalized model.

6.3 Structural Results

We start by generalizing existing results for traditional flows to the case of MFGPN.
As it turns out, a flow decomposition that is similar to the well-known flow decompo-
sition of traditional flows is possible in the case of MFGPN as well (cf. (Ahuja et al.,
1993)). To obtain this result, we need the following lemma:

Lemma 6.9:
A feasible flow on a given flow distribution scheme β that is positive on at least one
edge can be determined in O(m3) time.

Proof: Let E0 := E ∪ {e0} with e0 = (t, s) and βe0 := 1. We show that we can find a
non-zero feasible circulation1 x on β (extended to e0) in G0 = (V ,E0) within the given
time bound, which clearly shows the claim.

Consider some edge e = (v,w) ∈ E0. For every feasible circulation x on β, it must
hold that xe − βe ·

∑
e ′∈δ−(v) xe ′ = 0 in order to be feasible on β and to fulfill flow

conservation. The set of these constraints for each e ∈ E builds a homogeneous linear
equation system of the form A · x = 0 over m + 1 variables with m+ 1 constraints.
Note that the sum of the coefficients amounts to zero in each row and column. Hence,
the rank of the matrix A is at most m and, thus, the dimension of the kernel is at least
one. Consequently, there is a non-zero vector x that solves the linear equation system.
Without loss of generality, there is at least one edge e = (v,w) with xe > 0 in this
vector. Since xe − βe ·

∑
e ′∈δ−(v) xe ′ = 0, it both holds that

∑
e ′∈δ−(v) xe ′ > 0 (i.e. there

is at least one edge e ′ ∈ δ−(v) with xe ′ > 0) and that xe ′′ > 0 for each e ′′ ∈ δ+(v) (since
xe ′′ − βe ′′ ·

∑
e ′∈δ−(v) xe ′ = 0 as well and βe ′′ > 0). Since the underlying graph G0

is strongly connected according to Assumption 6.4, Assumption 6.5, and due to the

1 A feasible circulation x is a feasible flow that fulfills excessx(v) = 0 for each node v ∈ V .



124 Generalized Processing Networks

additional edge e0, an inductive argument yields that xe > 0 for each e ∈ E0. Hence,
a suitable multiple of x yields a feasible flow in the underlying network. Since such a
vector x can, e.g., be found by the Gaussian elimination procedure in O(m3) time, the
claim follows.

Theorem 6.10:
Each flow x can be decomposed into κ 6 2m flows x(i) on basic flow distribution
schemes β(i) for i ∈ {1, . . . , κ}. Such a decomposition can be found in O(m4) time.

Proof: Let x be a feasible flow in G = (V ,E) with flow value val(x) > 0. Without loss
of generality, we can ignore edges carrying zero flow. For each v ∈ V with positive
outflow, let (e1, . . . , ek) denote an ordering of the edges in δ+(v) such that

xei
αei

>
xej
αej

for i < j (in particular, edges of type α are located at the front of the ordering). If∑k
i=1 αei = 1, we set βei := αei for each i ∈ {1, . . . , k}. Else, if

∑k
i=1 αei > 1, there

is some index h 6 k with
∑h−1
i=1 αei 6 1 and

∑h
i=1 αei > 1. By setting βei := αei for

i ∈ {1, . . . ,h− 1}, βeh := 1−
∑h
i=1 βei , and βej := 0 for j ∈ {h+ 1, . . . , k} for each such

node v ∈ V , we, thus, obtain a basic flow distribution scheme. Note that, for each
e ∈ E, it holds that βe > 0 only if xe > 0 and that βe = αe whenever e is of type α.

Let x denote a feasible flow on β, which can be found in O(m3) time according to
Lemma 6.9. We claim that, for a suitable choice of δ > 0, the flow x(δ) := x− δ · x
remains feasible. Obviously, for each choice of δ, flow conservation remains fulfilled
at each node v ∈ V since∑

e∈δ−(v)

(x(δ))e −
∑

e∈δ+(v)

(x(δ))e =
∑

e∈δ−(v)

(xe − δ · xe) −
∑

e∈δ+(v)

(xe − δ · xe)

=

 ∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe

− δ ·

 ∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe

 = 0− 0 = 0.

For the flow on each edge e ∈ E to remain non-negative, it must hold that x((δ))e =
xe − δ · xe > 0, i.e., δ 6 xe

xe
for each e ∈ E with xe > 0. Moreover, in order to fulfill the

dynamic capacity of each edge e = (v,w) ∈ E, the value δ must fulfill the following
constraint:

(x(δ))e 6 αe ·
∑

e ′∈δ+(v)

(x(δ))e ′

⇐⇒ (xe − δ · xe) 6 αe ·
∑

e ′∈δ+(v)

(xe ′ − δ · xe ′)

⇐⇒ δ ·

αe ·
 ∑
e ′∈δ+(v)

xe ′

− xe

 6 αe ·

 ∑
e ′∈δ+(v)

xe ′

− xe. (6.2)



6.3 Structural Results 125

Note that both sides of inequality (6.2) are non-negative since x and x fulfill the dy-
namic capacity constraints. For the case that e is of type α in x (which is, e.g., true if
e is also of type α in x according to the construction of β), inequality (6.2) is fulfilled
for every choice of δ since αe · (

∑
e ′∈δ+(v) xe ′) − xe = 0. Otherwise, (6.2) is equivalent

to

δ 6
αe ·

(∑
e ′∈δ+(v) xe ′

)
− xe

αe ·
(∑

e ′∈δ+(v) xe ′
)
− xe

. (6.3)

Let δ be the maximum value that fulfills both δ 6 xe
xe

for each e with xe > 0 and
inequality (6.3) for each e ∈ E that is not of type α in x. By the above arguments, it
follows that δ · x is a feasible flow on β and that the remaining flow x(δ) is feasible
as well. Moreover, note that the flow on at least one edge in x(δ) becomes zero (for
the case that δ = xe

xe
for some edge e ∈ E), or at least one edge e ∈ E that was not of

type α in x is of type α in x(δ). In the latter case, edge e will remain of type α after
each of the following iterations of the algorithm according to the definition of β.

Hence, the above procedure executes at most 2m iterations while each of these itera-
tions runs in O(m3) time according to Lemma 6.9, which shows the claim.

Note that, on a graph without dynamic capacities (i.e., with αe = 1 for each e ∈ E),
each flow on a basic flow distribution scheme β either corresponds to a flow on an s-t-
path or on a cycle. Thus, Theorem 6.10 is a generalization of the flow decomposition
theorem for traditional flows (cf. (Ahuja et al., 1993)).

We now restrict our considerations to the case of acyclic graphs. In this case, the run-
ning time of finding a flow decomposition can be significantly improved compared
to Theorem 6.10. Recall that the weight wβ(e) of an edge e ∈ E in a flow distribu-
tion scheme β is independent of the choice of the underlying flow x according to
Definition 6.8.

Lemma 6.11:
The weights wβ(e) of all edges e ∈ E in a given flow distribution scheme β can be
determined in O(m) time on acyclic graphs.

Proof: Let (v1 = s, v2, . . . , vn−1, vn = t) denote a topological sorting of the nodes,
which can be determined in O(m) time (cf., e.g., Cormen et al. (2009)). For i = 1, the
weight of each edge e ∈ δ+(vi) is directly given by β, i.e., we get that wβ(e) := βe.
Now assume that we know the weights for all edges in δ+(vj) for j ∈ {1, . . . , i} and
consider the subsequent node vi+1 in the ordering. In each flow x on β with flow
value val(x), the amount of flow that reaches vi+1 is given by F :=

∑
e∈δ−(vi+1)

xe =



126 Generalized Processing Networks

∑
e∈δ−(vi+1)

val(x) · wβ(e). For each e ∈ δ+(vi+1), the flow on xe is then given by
xe = βe · F, i.e., the weight of e amounts to

wβ(e) =
xe

val(x)
=
βe · F
val(x)

= βe ·
∑

e ′∈δ−(vi+1)

wβ(e
′).

Repeating the above procedure for each node vi ∈ V , the weight of each edge in β can
be determined in O(m) time, which shows the claim.

Corollary 6.12:
A feasible flow on a given flow distribution scheme β that is positive on at least one
edge can be determined in O(m) time on acyclic graphs.

Proof: According to Lemma 6.11, we can determine the weights wβ(e) in β of all
edges e ∈ E in O(m) time. Note that a flow of value F on β results in a flow of
value wβ(e) · F on each edge e ∈ E. Hence, for any F with 0 < F 6 min{ ue

wβ(e)
: e ∈

E and wβ(e) > 0}, the flow x with xe := F ·wβ(e) for each e ∈ E is a feasible flow with
positive flow value F, which shows the claim.

Using the result of Corollary 6.12 in the proof of Theorem 6.10, we immediately get
the following result:

Theorem 6.13:
On acyclic graphs, each flow x can be decomposed into at most 2m flows on basic
flow distribution schemes in O(m2) time.

6.4 Complexity and Approximability

In this section, we consider the complexity and approximability of the maximum
flow problem in generalized processing networks. Although MFGPN is solvable in
polynomial time, it turns out to be much harder to solve than the maximum flow
problem in traditional networks. Nevertheless, for the case of acyclic graphs, we will
be able to derive an FPTAS for the problem that runs in strongly polynomial time.

6.4.1 Complexity

Note that the linear program (6.1a) – (6.1d) can be solved in (weakly) polynomial
time by known techniques such as interior point methods (cf. (Schrijver, 1998)). In



6.4 Complexity and Approximability 127

particular, using the procedure by Vaidya (1989) that was described in Section 4.2, we
get the following weakly polynomial running time for MFGPN:

Theorem 6.14:
MFGPN is solvable in weakly polynomial time O

(
m3.5 logM

)
if M > maxe∈E ue and

each flow ratio is a rational number with numerator and denominator at most M.

However, as in the previous chapters of this thesis, we are in particular interested in
combinatorial algorithms for the treated problems that exploit the discrete structure
of the underlying network. As for the case of traditional flows, the flow decompo-
sition theorem that was derived in Section 6.3 is only a structural result and does
not immediately yield an algorithm that solves the problem of finding an optimal
solution. In fact, it turns out that the problem MFGPN seems to be much more com-
plicated than the traditional maximum flow problem since every packing LP of the
form max

{
cTx : Ax 6 b, x > 0

}
for positive rational vectors c and b and a matrix A

with non-negative entries can be reduced to MFGPN in linear time. This result was
first published by Schaefer (1978). Since it seems to be widely unnoticed in present
literature, we present a short proof in the following.

Theorem 6.15 (Schaefer (1978)):
Every packing LP can be solved by computing a maximum flow in a generalized
processing network. This network can be constructed from the given packing LP in
linear time.

Proof: Let max
{
cTx : ATx 6 b, x > 0

}
be a packing LP with c ∈ Qn, b ∈ Qm, A ∈

Qm×n, cj > 0 for j ∈ {1, . . . ,n}, bi > 0 for i ∈ {1, . . . ,m}, and aij > 0 for j ∈
{1, . . . ,n}, i ∈ {1, . . . ,m}.

Without loss of generality, we may assume that bi = 1 for each i ∈ {1, . . . ,m} and
that cj > 1 for each j ∈ {1, . . . ,n} since we can otherwise scale the corresponding
row or the objective function, respectively, by appropriate factors. Similarly, we
may assume that

∑m
i=1 aij 6 1 for each j ∈ {1, . . . ,n}: Otherwise, for 1 < q :=

max
{∑m

i=1 aij : j ∈ {1, . . . ,n}
}

, we could use the equivalent LP formulation max{ 1qc
Tx ′ :

1
qA

Tx ′ 6 1, x ′ > 0} and afterwards substitute x := 1
q · x

′.

We construct an instance of MFGPN as follows: Aside from a source s and sink t, we
insert two nodes vj and v ′j for each j ∈ {1, . . . ,n} and a node wi for each i ∈ {1, . . . ,m}.
We connect s with each node vj and insert an edge with capacity 1 between each
node wi and the sink t. Moreover, we insert an edge between vj and v ′j with flow
ratio 1

cj
and an edge that heads from vj to t with flow ratio 1− 1

cj
. Finally, we add

an edge between each v ′j and each wi with flow ratio aij and one edge between each
v ′j and t with flow ratio 1 −

∑m
i=1 aij. If not mentioned explicitly, the flow ratio of



128 Generalized Processing Networks

each edge is 1 and the capacity is infinite. An example of a packing LP and the
corresponding network is depicted in Figure 6.1.

max 4x1 + 5x2

s.t. 0.2x1 + 0.7x2 6 1

0.3x1 + 0.2x2 6 1

x1, x2 > 0

(a) Packing LP

s

v1

v2

v ′1

v ′2

w1

w2

t

α = 1
4

α = 3
4

α = 1
5

α = 4
5

α = 0.2

α = 0.3 α = 0.5

α = 0.7

α = 0.2

α = 0.1

u = 1

u = 1

(b) Instance of MFGPN

Figure 6.1: An example packing LP (left) and the corresponding instance of MFGPN (right).
If not depicted, the flow ratio of each edge is 1 and the capacity is infinite.

It is now easy to see that the flow value of a maximum flow in the constructed net-
work equals the optimum value of the given (transformed) packing LP instance: For
j ∈ {1, . . . ,n}, the flow on the edge between vj and v ′j can be interpreted as the value
of variable xj. Since this edge has a flow ratio of 1

cj
, it is necessary to send cj · xj units

of flow from s to vj in order to obtain a flow of value xj between vj and v ′j , which cor-
responds to the contribution of xj to the objective function value of the LP. Moreover,
for i ∈ {1, . . . ,m}, the flow on the edge between wi and t can be interpreted as the left-
hand side of the constraint

∑n
j=1 aij · xj 6 1 and the capacity of the edge enforces the

constraint to be fulfilled. Finally, the interconnections between the nodes v ′j and wi
model the effect that the corresponding variables xj have on the value of the left-hand
side of each constraint i.

Hence, by solving the constructed instance of MFGPN and interpreting the flow val-
ues on each edge between vj and v ′j as the value of variable xj, we obtain an optimal
solution of the given packing LP. Since the above transformations and construction of
the network work in linear time, the claim follows.

6.4.2 Approximability

The results of the previous subsection imply that, even on acyclic graphs, the max-
imum flow problem in generalized processing networks is much more complicated
than the maximum flow problem in traditional networks, so strongly polynomial-
time combinatorial algorithms may not necessarily exist for MFGPN. Nevertheless, as



6.4 Complexity and Approximability 129

it will be shown in the following, we can use the special structure of acyclic graphs
in order to obtain an FPTAS for finding a maximum flow in an acyclic generalized
processing network by incorporating the generalized packing framework that was in-
troduced in Section 3.3. Even more, this FPTAS can be implemented to run in strongly
polynomial time, in contrast to interior point methods. To this end, we need the fol-
lowing result:

Lemma 6.16:
Let y denote a function that assigns a positive weight ye := y(e) > 0 to each edge e ∈ E.
A basic flow distribution scheme β that minimizes the total weight

∑
e∈Ewβ(e) · ye

can be found in O(m) time on acyclic graphs.

Proof: Let (v1, . . . , vn) denote a topological sorting of the node set V , which can be
found in O(m) time. For each i ∈ {1, . . . ,n}, let G(i) := (V(i),E(i)) with V(i) :=

{vi, . . . , vn} and E(i) := {e = (vj, vl) ∈ E : j, l > i} denote the subgraph induced
by {vi, . . . , vn}. Moreover, let w(i) denote the minimum total weight of a basic flow
distribution scheme in G(i) with respect to y.

Clearly, since G(n) contains no edge at all, it holds that w(n) = 0. Now assume that
we want to determine the value of w(i) for some i ∈ {1, . . . ,n− 1} and that the values
w(i+ 1), . . . ,w(n) are already known. In order to find a (not necessarily basic) flow
distribution scheme β, we need to assign values βe ∈ [0, 1] to each e ∈ δ+(vi) such
that

∑
e∈δ+(vi)

βe = 1. A value of βe for some edge e = (vi, vl) ∈ δ+(vi) increases the
total weight w(i) by βe · ye +βe ·w(l) since wβ(e) = βe in G(i) and since a fraction βe
of the total flow must be sent through G(l). Thus, the minimum total weight in G(i) is
given by the following linear program:

w(i) = min
∑

e=(vi,vl)∈δ+(vi)

βe · (ye +w(l))

s.t.
∑

e∈δ+(vi)

βe = 1,

0 6 βe 6 αe for all e ∈ E.

Similarly to the fractional knapsack problem (cf. Kellerer et al. (2004)), it is easy to see
that an optimal solution to this fractional packing problem can be determined by the
following procedure: If

∑
e∈δ+(vi)

αe = 1, the only feasible solution is given by βe = αe
for each e ∈ δ+(vi). Otherwise, if

∑
e∈δ+(vi)

αe > 1, let (e1, . . . , ek) denote a sorting of
the outgoing edges of vi in non-decreasing order of their coefficients ye +w(l). Let l
be the unique index such that

∑l−1
j=1 αe 6 1 and

∑l
j=1 αe > 1. By setting βej := αej for

j ∈ {1, . . . , l− 1}, βel = 1−
∑l−1
j=1 βej , and βej = 0 for j ∈ {l+ 1, . . . , k}, we then get an

optimal solution. Similar to the fractional knapsack problem, we can find this index l



130 Generalized Processing Networks

in O(k) time by using weighted medians (cf. (Korte and Vygen, 2002)). Note that, in
this solution, it holds that βe /∈ {0,αe} for at most one edge, i.e., the optimal solution
is a basic flow distribution scheme.

Note that the above algorithm is strongly combinatorial according to the definition
that was given in Section 3.1. This leads to the following theorem:

Theorem 6.17:
There is an FPTAS for the maximum flow problem in acyclic generalized processing
networks that runs in O

(
1
ε2
·m2 logm

)
time.

Proof: The proof is composed of three results that have already been shown before:
According to Theorem 6.10 (and Theorem 6.13), each flow x in a generalized pro-
cessing network can be decomposed into at most 2m flows on basic flow distribu-
tion schemes, i.e., each flow x lies in the cone C that is generated by the (possibly
exponential-size, but finite) set S := {wβ : β is a flow distribution scheme} of flows
with unit flow value on basic flow distribution schemes. Moreover, since we can
rewrite the objective function of the maximum flow problem in generalized process-
ing networks as max

∑
e∈E ce ·xe with ce := 1 for e ∈ δ−(t) and ce := 0 for e ∈ E \ δ−(t),

it holds that
∑
e∈E ce ·wβ(e) = 1 for all flows wβ ∈ S. Hence, we obtain the following

equivalent formulation of MFGPN:

max
∑
e∈E

ce · xe

s.t. xe 6 ue for all e ∈ E,

x ∈ C.

The constraint matrix of this formulation only contains N = m non-zero entries since
both the flow conservation constraints and the dynamic capacity constraints are mod-
eled by the containment in the cone C. Since, for a given cost vector y, we can deter-
mine a flow distribution scheme β that minimizes the total weight

∑
e∈Ewβ(e) · ye

in O(m) time according to Lemma 6.16, the claim immediately follows by Theo-
rem 3.5.

Note that Theorem 6.17 can be easily generalized to the minimum-cost flow problem in a
generalized processing network, in which the objective function is replaced by a general
linear cost function of the form min

∑
e∈E ce · xe. By the same arguments that were

used in the proof of Theorem 6.17, we get an FPTAS for this much more general prob-
lem running in O

(
1
ε2
·m3 logm

)
time by using Theorem 3.10. Moreover, note that we

can solve budget-constrained versions of both the maximum and the minimum cost
flow problem in a generalized processing network within the same running times as
the unconstrained versions according to Theorem 3.5 and Theorem 3.10, respectively.



6.5 Series-Parallel Graphs 131

6.5 Series-Parallel Graphs

In this section, we investigate the maximum flow problem for generalized process-
ing networks on series-parallel graphs. Since each series-parallel graph is acyclic, in
particular, the positive results from Section 6.4 apply here as well. However, we are
now able to derive two algorithms that compute a maximum flow in a series-parallel
generalized processing network in (strongly) polynomial time. In the following three
results, we investigate a special case of the problem which will be used as a building
block for the two upcoming polynomial-time procedures in Section 6.5.1 and Sec-
tion 6.5.2. To this end, let E(v,w) := δ+(v)∩ δ−(w) denote the set of all edges between
the two nodes v,w ∈ V .

Lemma 6.18:
Let v and w be two nodes such that all edges {e1, . . . , ek} that leave v are parallel edges
heading to w, i.e., δ+(v) = E(v,w), and assume that the edges are ordered such that
uei
αei

6
uej
αej

for i < j. Then the maximum flow between v and w fulfills the property that

there exists an index h ∈ {1, . . . , k} such that all edges ei with 1 6 i 6 h are of type u
and all edges ej with h+ 1 6 j 6 k are of type α. This index h can be computed in
O(k) time.

Proof: Let x be any maximum flow between v and w. Clearly, we may assume that
each edge is either of type u or of type α in x since the total flow value could else
be further improved. In the following, we show that we can label several edges with
type α in an iterative process from right to left (i.e., from higher indices to lower
indices) until we find the desired index h, which allows us to assign the remaining
edges to type u and stop the procedure.

Let ei be some edge that has not yet been labeled such that all edges ej with i+ 1 6

j 6 k are of type α (initially, choose i := k). Since these edges ej are of type α, a
fixed fraction α(i) :=

∑k
j=i+1 αej of the total outflow of v flows through the edges ej,

i+ 1 6 j 6 k. Thus, the maximum flow value F := val(x) =
∑k
j=1 xej is determined by

the flow values on the edges e1, . . . , ei as

F =

k∑
j=1

xej =

i∑
j=1

xej +

k∑
j=i+1

xej =

i∑
j=1

xej +α
(i) · F

⇐⇒ F =
1

1−α(i)
·
i∑
j=1

xej .



132 Generalized Processing Networks

First consider the case that αei < (1−α(i)) · uei∑i
j=1 uej

. In this case, edge ei cannot be of

type u since this would imply that

αei · F = αei ·
1

1−α(i)
·
i∑
j=1

xej 6 αei ·
1

1−α(i)
·
i∑
j=1

uej < uei = xei ,

so the dynamic capacity of edge ei would be violated. Thus, edge ei and, hence, all
edges ej with j ∈ {i, . . . , k} are of type α.

Now consider the case that αei > (1 − α(i)) · uei∑i
j=1 uej

. By setting x ′ej := uej for j ∈

{1, . . . , i} and x ′el := xel for l ∈ {i+ 1, . . . , k}, the dynamic capacity constraint of each
edge ej is fulfilled for x ′ since

αej · F = αej ·
1

1−α(i)
·
i∑
l=1

xel =
αej
uej
· uej ·

1

1−α(i)
·
i∑
l=1

uel

>
αei
uei
· uej ·

1

1−α(i)
·
i∑
l=1

uel > uej = x
′
ej

.

Thus, by maximality of x, we must have xej = uej for j ∈ {1, . . . , i}. In total, by setting
h := i, we can label each edge ej with j ∈ {1, . . . ,h} with type u and each edge el for
l ∈ {h+ 1, . . . , k} with type α, which shows the claim.

Corollary 6.19:
Let v and w be two nodes such that all edges {e1, . . . , ek} that leave v are parallel edges
heading to w, i.e., δ+(v) = E(v,w), and assume that the edges are ordered such that
uei
αei

6
uej
αej

for i < j. The maximum flow between v and w can be found in O(k) time.

Proof: According to Lemma 6.18, there exists a maximum flow x and an index h such
that each edge ei with 1 6 i 6 h is of type u and each edge ej with h+ 1 6 j 6 k

is of type α in x and this index h can be computed in O(k) time. The flow xei
on the edges ei is consequently given by xei := uei for 1 6 i 6 h. Since a fixed
fraction α(h) =

∑k
j=h+1 αej of the total flow is sent along the edges ej for h+ 1 6 j 6 k,

the total flow value is given by F := 1
1−α(h)

·
∑h
i=1 uei and the flow on each edge ej

amounts to xej := αej · F.

As seen in Lemma 6.18, there is some index h such that all edges ei with 1 6 i 6 h are
of type u and the remaining edges are of type α in a maximum flow. In the following
lemma, we show that the converse is true as well. In particular, this shows that the
maximum flow is unique. Note that this lemma considers the more general case, in
which the edges in δ+(v) are not assumed to be necessarily parallel:



6.5 Series-Parallel Graphs 133

Lemma 6.20:
Let v be a node such that, for some given feasible flow x, at least one of the outgoing
edges δ+(v) of v is of type u while the rest of the edges is of type α. Then the flow on
the edges in δ+(v) is unique and maximum.

Proof: As in Lemma 6.18, assume that the edges {e1, . . . , ek} are ordered such that
uei
αei

6
uej
αej

for i < j. Since all edges in δ+(v) are either of type u or of type α in the

flow x, the same arguments that were used in the proof of Lemma 6.18 show that
there is some index h ∈ {1, . . . , k} with αeh > (1−α(h)) · ueh∑h

l=1 uel
such that none of the

edges ej for j ∈ {h+ 1, . . . , k} can be of type u and is, thus, of type α. Furthermore,
since

uei
αei

6
ueh
αeh

for each i ∈ {1, . . . ,h}, we get that

αei >
uei
ueh
·αeh >

uei
ueh
· (1−α(h)) ·

ueh∑h
l=1 uel

= (1−α(h)) ·
uei∑h
l=1 uel

.

Let Iα := {i ∈ {1, . . . ,h} : ei is of type α} and Iu := {i ∈ {1, . . . ,h} : ei is of type u},
where Iu 6= ∅ by assumption. The flow value F out of node v is then given by

F =

k∑
i=1

xei =

k∑
j=h+1

αej · F+
∑
i∈Iα

αei · F+
∑
i∈Iu

uei ,

which is equivalent to

F =
1

1−α(h) −
∑
i∈Iα αei

·
∑
i∈Iu

uei

>
1

1−α(h) −
∑
i∈Iα(1−α

(h)) · uei∑h
l=1 uel

·
∑
i∈Iu

uei

=
1

(1−α(h)) ·
(
1−

∑
i∈Iα uei∑h
l=1 uel

) ·∑
i∈Iu

uei

=
1

(1−α(h)) ·
∑
i∈Iu uei∑h
l=1 uel

·
∑
i∈Iu

uei =
1

1−α(h)
·
h∑
l=1

uel .

Note that this lower bound on the flow value equals the flow value that is given by
setting xei := uei for each i ∈ {1, . . . ,h}. Thus, since the given flow is feasible, each
of the edges ei for i ∈ {1, . . . ,h} must be of type u, which is clearly maximum and
shows the claim.



134 Generalized Processing Networks

6.5.1 Augmenting on Flow Distribution Schemes

In this subsection, we describe an algorithm that repeatedly sends flow on flow dis-
tribution schemes with positive residual capacity, i.e., on which a given flow can be
increased without violating any capacity constraint. This algorithm is similar to the
well-known augmenting path algorithm for the traditional maximum flow problem,
but generalizes the procedure from augmentations on single paths to augmentations
on (basic) flow distribution schemes. As it turns out, it is possible to augment flow
in a greedy manner without the need to use some form of residual network in order
to revert prior decisions, which allows us to obtain a strongly polynomial-time algo-
rithm for the problem on series-parallel graphs that runs in O(m2) time. Note that
a similar result is known for the traditional maximum flow and minimum cost flow
problem in series-parallel graphs (Bein et al., 1985).

The result will be established in four steps: We first show that we can find a suit-
able starting solution efficiently (Lemma 6.21). We then define a measurement αx
that allows us to evaluate easily if or if not there is an augmenting flow distribution
scheme (Lemma 6.22). In a next step, we prove that the procedure terminates within
2m augmentations (Corollary 6.28). Finally, we show that the resulting flow is in fact
maximal (Theorem 6.31).

As a starting flow for our algorithm, we use a flow that is positive on each edge. Such
a flow can be found in linear time even on general acyclic graphs, as the following
lemma shows:

Lemma 6.21:
Let G be an acyclic graph. In O(m) time, we can compute a feasible flow x that is
positive on each edge and that fulfills the property that, for each v ∈ V \ {t}, either all
or no edges in δ+(v) are of type α and no edge is of type u.

Proof: For each e = (v,w) ∈ E, let βe := αe∑
e ′∈δ+(v) αe ′

. Clearly, β is a feasible flow

distribution scheme that assigns a positive value βe to each edge. Moreover, for each
v ∈ V \ {t}, if

∑
e ′∈δ+(v) αe ′ = 1, then βe = αe for all e ∈ δ+(v) (so all edges in δ+(v) are

of type α in any flow on β). Otherwise,
∑
e ′∈δ+(v) αe ′ > 1 and we obtain that βe < αe

for each e ∈ δ+(v) (so no edge in δ+(v) is of type α in any flow on β). According
to Lemma 6.11, we can compute the corresponding (positive) weights wβ(e) of all
edges in O(m) time. Using these weights, we obtain a feasible flow x with the desired
properties by setting xe := wβ(e) · F for 0 < F < min

{
ue

wβ(e)
: e ∈ E

}
.

After sending a small amount of flow that is positive on each edge as described in
Lemma 6.21, we may assume in the following that the values αe of all outgoing edges



6.5 Series-Parallel Graphs 135

of type α sum up to at most one at each node, which may not be true for the zero-
flow2.

In the following, for a given series-parallel graph G and a feasible flow x in G, we call
a flow distribution scheme β augmenting if we can increase x by adding some flow x ′

on β of positive flow value without violating any static or dynamic capacity constraint.
Clearly, if we can find an augmenting flow distribution scheme β, the flow x cannot
be optimal since we are able to increase the flow value by sending flow on β. As we
will see in the following, the reverse is true as well, i.e., as soon as there is no further
augmenting flow distribution scheme, the flow is maximum.

Given a flow x, we start by defining a function αx(G ′) that measures the maximum
fraction of augmenting flow that can be sent through each subgraph G ′ corresponding
to a node in the decomposition tree of the given series-parallel network G:

αx(G
′ = e) =


0, if e is of type u in x,

αe, if e is of type α in x,

1, else.

(6.4a)

αx(G
′ = G1 | G2) = min {1,αx(G1) +αx(G2)} . (6.4b)

αx(G
′ = G1 ◦G2) =

αx(G1), if αx(G2) = 1,

0, else.
(6.4c)

Clearly, all values αx(G ′) can be computed in O(m) time using a dynamic program-
ming scheme on the decomposition tree of G. The following lemma and the resulting
corollary show that we can use αx(G) in order to decide whether an augmenting flow
distribution scheme exists:

Lemma 6.22:
For a given flow x in a series-parallel graph G, it holds that αx(G ′) = q for a given
subgraph G ′ corresponding to a node in the composition tree of G and for some
q ∈ [0, 1] if and only if q is the maximum value in [0, 1] such that a fraction q of a
sufficiently small amount of additional flow that arrives at the source node of G ′ can
be sent through G ′.

Proof: We show the claim in a bottom-up manner by induction on the decomposition
tree of G. Consider a leaf of the tree that corresponds to an edge e = (v,w). Obviously,
if e is of type u, the flow on e cannot be increased. If the edge is of type α, at most a

2 Clearly, this does not imply that the values αe of all outgoing edges of some node v sum up to at
most one, in contrast to the case of traditional processing networks.



136 Generalized Processing Networks

fraction αe of additional flow that arrives at v can be sent through e without violating
the dynamic capacity constraint of the edge. Otherwise, if neither of the two capacities
of e is reached, we can send all of the additional flow that arrives at v tow using edge e
until e becomes of type u or type α. This behavior is modeled by equation (6.4a).

Now assume that G ′ with source s ′ is the parallel composition of the two series-
parallel components G1 and G2, which can carry at most a fraction αx(G1) =: q1 and
αx(G2) =: q2 of additional flow at s ′ by the induction hypothesis, respectively. Since
flow that it sent through G ′ splits into two fractions that pass G1 and G2, respectively,
the fraction of additional flow that can flow throughG ′ amounts to at most min{1,q1+
q2}, as given by equation (6.4b).

Finally, let G ′ with source s ′ be the series composition of two components G1 and
G2 with common node v. Assume that G ′ can carry a positive fraction q > 0 of
additional flow that arrives at s ′. This is possible if and only if G1 can carry a fraction
of q (i.e., if αx(G1) > q) and, since all the edges in δ+(v) are already contained in G2,
the component G2 can carry all the flow that arrives at v (i.e., if αx(G2) = 1). Thus,
according to equation (6.4c), αx(G ′) = q in this case. Similarly, it holds that αx(G ′) = 0
if and only if αx(G1) = 0 or αx(G2) < 1, which is true if and only if G1 cannot carry
flow at all or G2 cannot carry all of the flow that arrives at v, i.e., we cannot send a
fraction of additional flow that arrives at s ′ through G ′.

Corollary 6.23:
There exists an augmenting flow distribution scheme in a series-parallel graph G with
a given flow x if and only if αx(G) = 1.

In the following, for a fixed decomposition tree of the series-parallel graph G, we
define a total order ≺ on the edges with e ≺ e ′ if and only if there is an inner node
in the decomposition tree such that e is reachable via the left and e ′ is reachable via
the right child of the inner node. For example, in Figure 2.1 on page 11, it holds that
e1 ≺ e3 and that e4 ≺ e6, but not that e4 ≺ e2.

Lemma 6.24:
For a given flow x in a series-parallel graph G satisfying αx(G) = 1, it is possible to
find an augmenting (basic) flow distribution scheme in O(m) time.

Proof: We show that we can recursively compute a partial augmenting basic flow dis-
tribution scheme β(G ′,q) for each series-parallel graph G ′ corresponding to a node
in the decomposition tree of G with source s ′ in O(m) time. This flow distribution
scheme describes how a fraction q with 0 6 q 6 αx(G

′) of the flow that leaves s ′ is
routed through G ′. Evaluating β(G, 1) then gives the desired flow distribution scheme
in O(m) time.



6.5 Series-Parallel Graphs 137

For a component consisting of a single edge e = (s ′, t ′), the only possible partial flow
distribution scheme that fulfills the required properties is given by βe := q. Now let
G ′ be the series composition of two series-parallel graphs G1 and G2. Similar to the
definition of αx in equation (6.4c), we need to evaluate both β(G1,q) and β(G2, 1) in
order to distribute a fraction of q of the flow arriving at s ′ through G1 and G2. Finally,
let G ′ be the parallel composition of the two series-parallel graphs G1 and G2 where
G1 is the left child of the inner node that corresponds to G ′ in the decomposition
tree of G. We distribute the fraction q to both components by evaluating β(G1,q1)
and β(G2,q2) with q1 := min{q,αx(G1)} and q2 := q− q1. It is now easy to see that
starting the recursive procedure from the root of the decomposition tree by evaluating
β(G, 1) yields the desired augmenting flow distribution scheme in O(m) time.

In summary, for a given flow x in a series-parallel graph G, we are able to determine
in O(m) time if the flow x can be improved by sending additional flow on some flow
distribution scheme. If so, we can obtain such a flow distribution scheme within the
same running-time. It remains to show that we can incorporate these results into a
general procedure that yields a maximum flow within O(m) iterations.

In the following, for a feasible flow x, we refer to an edge e as dead if e is of type u
or if there is a series-parallel subgraph G ′ that corresponds to an inner node in the
decomposition tree, contains edge e, and satisfies αx(G ′) = 0. Note that a dead edge
remains dead after an augmentation over any flow distribution scheme as described
in the proof of Lemma 6.24.

Lemma 6.25:
For a flow x in a series-parallel graph G ′ with source s ′ that satisfies αx(G ′) < 1, let
β denote the flow distribution scheme that is obtained by evaluating β(G ′,αx(G ′)),
where the function β(·, ·) is defined as in the proof of Lemma 6.24. It then holds
that βe = αe for each e ∈ δ+(s ′) that is of type α, and that βe = 0 for each dead
edge e ∈ δ+(s ′). Moreover, there is no e ∈ δ+(s ′) that is neither of type α nor dead.

Proof: If G ′ consists of a single edge e = (s ′, t ′), the claim clearly follows according
to the definition of β. Now let G ′ denote a series composition of two series-parallel
subgraphs G1 and G2. If αx(G ′) = 0, it holds that all edges in G1 and, thus, all edges
in δ+(s ′) are dead by definition. Since we obtain βe for each e ∈ δ+(s ′) by evaluating
β(G1,αx(G ′)) = β(G1, 0), the claim then follows. Otherwise, if αx(G ′) ∈ (0, 1), it
holds that αx(G1) = αx(G ′) by equation (6.4c) such that the values βe for all edges in
δ+(s ′) are obtained by evaluating β(G1,αx(G1)) and the claim follows by induction.
Finally, if G ′ is the parallel composition of two series-parallel subgraphs G1 and G2, it
must hold that αx(G1) + αx(G2) < 1 and, thus, that αx(G1) < 1 and αx(G2) < 1. The



138 Generalized Processing Networks

claim then follows by induction since the values βe for all e ∈ δ+(s ′) are obtained by
evaluating β(G1,αx(G1)) and β(G2,αx(G2)).

Lemma 6.26:
Let x denote a flow in a series-parallel graph G ′ that satisfies αx(G ′) = 1 and let
β be an augmenting basic flow distribution scheme as described in the proof of
Lemma 6.24. If βe > 0 for some edge e = (v,w), then, for each e ′ ∈ δ+(v) with
e ′ ≺ e, it either holds that e ′ is dead and βe ′ = 0 or that e ′ is of type α and βe ′ = αe ′ .

Proof: Let e ′ and e with e ′ ≺ e be defined as above. Clearly, there is an inner node
in the decomposition tree that corresponds to a parallel composition of two series-
parallel subgraphs G1 and G2 with e ′ in G1 and e in G2. Let 0 < q 6 1 denote the
fraction of additional flow that was distributed in two quantities q1 := min{q,αx(G1)}
and q2 := q− q1 among G1 and G2, respectively, in the construction process of β as
described in the proof of Lemma 6.24. Since βe > 0, it holds that q2 > 0 and, hence,
that αx(G1) = q1 < 1. The claim then follows by Lemma 6.25.

Our augmenting flow distribution scheme algorithm for computing a maximum flow
in a series-parallel generalized processing network works as follows: After computing
the initial flow x as described in the proof of Lemma 6.21, we compute the value αx(G)
at the beginning of each iteration in O(m) time. If this value is less than one, we
terminate and return the current flow x (we will show later that the flow is then
optimum). Otherwise, we compute an augmenting basic flow distribution scheme β
as described in the proof of Lemma 6.24. According to Lemma 6.11, we can determine
the weight wβ(e) of each edge e ∈ E in O(m) time. The maximum amount of flow
that can be sent on β is then given by the largest value δ > 0 such that the flow x(δ)

with (x(δ))e := xe + δ ·wβ(e) is feasible. To be more precise, the value of δ is given by
δ := min{δ1, δ2} with

δ1 := max {δ : (x(δ))e 6 ue ∀e ∈ E}

= min
{
ue − xe
wβ(e)

: e ∈ E with wβ(e) > 0
}

and

δ2 := max

δ : (x(δ))e 6 αe · ∑
e ′∈δ+(v)

(x(δ))e ′ ∀e = (v,w) ∈ E


= max

δ : xe + δ ·wβ(e) 6 αe · ∑
e ′∈δ+(v)

(xe ′ + δ ·wβ(e ′)) ∀e = (v,w)





6.5 Series-Parallel Graphs 139

= max

δ : δ ·
wβ(e) −αe · ∑

e ′∈δ+(v)

wβ(e
′)

 6

αe · ∑
e ′∈δ+(v)

xe ′

− xe ∀e = (v,w) ∈ E


= min


(
αe ·
∑
e ′∈δ+(v) xe ′

)
− xe

wβ(e) −αe ·
∑
e ′∈δ+(v)wβ(e

′)
: e = (v,w) ∈ E with βe > αe

 ,

where the last equality follows from the fact that only those edges e = (v,w) ∈ E
restrict δ for which wβ(e) − αe ·

∑
e ′∈δ+(v)wβ(e

′) > 0, which is true if and only if
βe > αe since wβ(e) is proportional to βe and

∑
e ′∈δ+(v) βe ′ = 1.

Note that, for the value of δ determined above, at least one edge becomes of type α
or of type u that was not of this type in x. We show in the following that at the
same time it cannot happen that an edge that was dead or of type α before will be
neither dead nor of type α after the augmentation. If we were not able to guarantee
this, our procedure would not be guaranteed to terminate within a finite number of
augmentations.

Lemma 6.27:
Let x ′ denote the flow that is obtained after augmenting a flow x with αx(G) = 1 over
a flow distribution scheme β as described above and let D(x) (D(x ′)) and A(x) (A(x ′))
denote the set of dead edges and α-edges in x (x ′), respectively. It then holds that
D(x ′)∪A(x ′) ) D(x)∪A(x) or that D(x ′)∪A(x ′) = D(x)∪A(x) and D(x ′) ) D(x).

Proof: First, consider some node v ∈ V \ {t} and let e ∈ δ+(v) denote the unique
edge with βe > 0 and e ′ ≺ e for each e ′ ∈ δ+(v) \ {e} with βe ′ > 0. According
to Lemma 6.26, it holds that every such edge e ′ is either dead or of type α and
remains so after an augmentation of value δ ′ < δ, where δ := min{δ1, δ2} is defined
as above. Moreover, if edge e was of type α as well before the augmentation, it holds
that βe = 1−

∑
e ′∈δ+(v):e ′≺e βe ′ = 1−

∑
e ′∈δ+(v):e ′≺e,e ′∈A(x) αe ′ = αe and e remains of

type α. So, as long as we send less than δ units of flow on β, each edge remains its
type.

By sending δ units of flow over β as described above, one of the following cases
applies: If δ = δ1, some edge becomes of type u in x ′ that was either of type α
or of no type in x. In the first case, it holds that D(x ′) ∪A(x ′) = D(x) ∪A(x) and
D(x ′) ) D(x), while in the second case we get that D(x ′) ∪A(x ′) ) D(x) ∪A(x). On
the other side, if δ = δ2, some edge that was of no type in x becomes of type α in x ′,
which implies that D(x ′)∪A(x ′) ) D(x)∪A(x). This shows the claim.



140 Generalized Processing Networks

Corollary 6.28:
The augmenting flow distribution scheme algorithm terminates after O(m) augmen-
tations and runs in O(m2) time.

Proof: The claim directly follows from the discussion before and from the combina-
tion of Lemma 6.27 and the fact that |D(x)| 6 m and |A(x)| 6 m for any flow x.

It remains to show that the computed flow is maximum. To this end, we need the
following lemma:

Lemma 6.29:
Let G be a series-parallel graph and x be a flow in G that is positive on each edge e ∈ E.
Moreover, assume that αx(G) < 1. Then there is an s-t-cut (S, T) such that

1. each edge in δ+(S) is either of type α or of type u,

2. for each node v ∈ V with ∅ 6= δ+(v) ⊆ δ+(S), it holds that at least one edge in
δ+(v) is of type u, and

3. δ−(S) = ∅.

Proof: Let x be a flow in a series-parallel graph G that fulfills αx(G) < 1. Consider the
following function cx defined on series-parallel subgraphs G ′ corresponding to nodes
in the decomposition tree of G:

cx(G
′ = e) = {e},

cx(G
′ = G1 | G2) = cx(G1)∪ cx(G2),

cx(G
′ = G1 ◦G2) =

cx(G2) if αx(G2) < 1,

cx(G1) else.

We now show that the set cx(G) contains exactly the edges in an s-t-cut that fulfills
the required properties. First, suppose that G consists of a single edge e. Since
we are looking for an s-t-cut of G, the only possible cut is given by {e} = cx(G).
Note that, since αx(G) < 1, edge e must be either of type u or of type α. Now
assume that G is the series composition of two series-parallel graphs G1 and G2. Since
αx(G) < 1, it holds that either αx(G2) < 1 or that αx(G2) = 1 but αx(G1) < 1 (cf.
equation (6.4c)). In the first (second) case, we set cx(G) := cx(G2) (cx(G) := cx(G1))
and proceed recursively. Finally, suppose that G is the parallel composition of the two
series-parallel graphs G1 and G2. Since each s-t-cut of G must pass both G1 and G2,
we set cx(G) := cx(G1)∪ cx(G2).



6.5 Series-Parallel Graphs 141

Note that all the series-parallel subgraphs G ′ in the decomposition tree of G that con-
tain edges in cx(G) fulfill αx(G ′) < 1. Hence, by evaluating cx(G) as described above,
we obtain an s-t-cut (S, T) that only consists of edges of type α and type u, which
shows claim (1). Now suppose that there is a node v ∈ V with δ+(v) ⊆ δ+(S) such
that each edge in δ+(v) is of type α. Since xe > 0 for each e ∈ E, this implies that∑
e∈δ+(v) αe = 1. Let G ′ denote the inclusionwise minimal series-parallel subgraph

of G that contains all edges in δ+(v) and corresponds to an inner node in the decom-
position tree of G. For every series composition G ′′ = G1 ◦G2 that is contained in
the decomposition tree of G ′, since δ+(v) ⊆ δ+(S), it must hold that αx(G2) = 1 and
αx(G1) < 1 and, thus, that αx(G ′′) = αx(G1). But then, according to the definition of
cx and αx, it finally holds that αx(G ′) =

∑
e∈δ+(v) αe = 1, which contradicts the fact

that αx(G ′) < 1 for all series-parallel subgraphs G ′ corresponding to an inner node in
the decomposition tree of G.

Finally, the third claim follows from the fact that the graph G is acyclic and that, for
each s-t-path P in G, the set cx(G) only contains one edge in P by construction. Hence,
the cut that is implied by cx(G) fulfills all of the required properties and the claim of
the lemma follows.

Lemma 6.30:
Let G be a series-parallel graph and let (S, T) denote an s-t-cut in G. Then there exists
a node v ∈ S with δ+(v) ⊆ δ+(S).

Proof: Let S ′ ⊆ S denote the set of all nodes in S that are reachable from s via a
(possibly empty) directed path using nodes in S only. Since s ∈ S ′, the set is non-
empty. For a given topological sorting of the nodes in G, let v ∈ S ′ denote the node in
S ′ with the highest index in the topological sorting. Since v 6= t, it holds that δ+(v) 6= ∅.
However, for each e = (v,w) ∈ δ+(v), if e was not contained in δ+(S), it would hold
that w ∈ S and, thus, that w ∈ S ′. However, this would contradict the definition of v,
which shows the claim.

We are now ready to prove the main theorem of this subsection:

Theorem 6.31:
The augmenting flow distribution scheme algorithm computes a maximum flow in a
series-parallel generalized processing network in O(m2) time.

Proof: The claimed running time follows from the above arguments. It remains to
show that the computed flow x is maximum.



142 Generalized Processing Networks

First, consider some arbitrary flow x ′ and the s-t-cut (S, T) obtained from applying
Lemma 6.29 to the flow x computed by the algorithm. Using that excessx ′(v) = 0 for
each v ∈ V \ {s, t} according to equation (6.1b), we get that

val(x ′) = excessx(t) =
∑
v∈T

excessx ′(v) =
∑
v∈T

 ∑
e∈δ−(v)

x ′e −
∑

e∈δ+(v)

x ′e


=
∑

v∈δ−(T)

x ′e −
∑

v∈δ+(T)

x ′e =
∑

v∈δ+(S)

x ′e −
∑

v∈δ−(S)

x ′e 6
∑

v∈δ+(S)

x ′e,

i.e., the flow value of each flow x ′ is bounded by the total flow value on edges that
head from S to T . We now show that the flow x that is computed by the augmenting
flow distribution scheme algorithm fulfills val(x) =

∑
v∈δ+(S) xe and maximizes this

value among all feasible flows, which shows the claim.

The first claim follows directly from the construction of the cut since there are no
edges in δ−(S). Now assume that there is a feasible flow x ′ with val(x ′) > val(x).
Clearly, there must be at least one edge in δ+(S) for which x ′e > xe. According to
Lemma 6.30, there is at least one node v ∈ S with δ+(v) ⊆ δ+(S). Moreover, according
to Lemma 6.29, it holds that each of the edges in δ+(v) is of type α or of type u in
x and that at least one of these edges is of type u, which, according to Lemma 6.20,
implies that the flow leaving v is maximum and unique and, thus, the flow on each
of the edges in δ+(v) is maximum. Thus, it holds that x ′e 6 xe for each e ∈ δ+(v). If
v = s, it additionally holds that val(x ′) =

∑
e∈δ+(s) x

′
e 6
∑
e∈δ+(s) xe = val(x) and the

claim of the theorem follows. Otherwise, v results from merging the sink of G1 with
the source of G2 in a series composition of two series-parallel subgraphs G1 and G2.
Let G denote the graph that results from G by replacing G1 ◦G2 with a single edge e
with capacity ue :=

∑
e∈δ+(v) xe. Clearly, the flow x with xe := ue and xe := xe for

each e ∈ E(G) \ {e} is feasible in G. Since there is a flow x ′ in G with val(x ′) > val(x)
and x ′e 6 xe for each e ∈ δ+(v), there must be a flow x ′ with val(x ′) > val(x) in G.
However, since the new edge e is of type u in x and is contained in the cut (S, T) with
S := S ∩ V(G) and T := T ∩ V(G), we can repeat the above arguments until S = {s}

and δ+(s) = δ+(S). Thus, there is no flow x ′ in G with val(x ′) > val(x) and the claim
follows.

6.5.2 A Faster Approach

Lemma 6.18 and Corollary 6.19 already give insights about the behavior of a special
case of series-parallel graphs, namely the case of parallel edges between two nodes v
and w. We now show how to incorporate the behavior of other edges in δ+(v) that do



6.5 Series-Parallel Graphs 143

not reach w into the above algorithm. Until the end of the following discussion, we
again assume that the edges in E(v,w) = {e1, . . . , ek} are ordered such that

uei
αei

6
uej
αej

for i < j.

Consider the set E(v,w) := {e1, . . . , ek} of parallel edges between two nodes v and w
and assume that the total flow on the remaining edges e ∈ δ+(v) \ E(v,w) that leave v
is given by x0. For a fixed value of x0, we can find the maximum flow on the edges in
E(v,w) by using the algorithm described in the proof of Corollary 6.19 as follows: By
introducing an artificial edge e0 between v and w with capacity ue0 := x0 and αe0 := 1
and evaluating the algorithm on the graph G ′ := ({v,w},E(v,w) ∪ {e0}), edge e0 will
eventually be labeled as type u since αe0 = 1 (so the second case must hold in the
proof of Lemma 6.18 when we reach edge e0) and will, thus, carry the desired amount
of flow x0 while

∑
e∈E(v,w) xe is maximum according to Corollary 6.19.

Now let x0 be of variable value. Note that, for each ei ∈ E(v,w), there is some
(not necessarily positive) value b(ei) such that edge ei is declared to be of type α
for x0 < b(ei) and is labeled as type u for x0 > b(ei). We call this value b(ei) the
breakpoint of edge ei in the following. Clearly, according to the proof of Lemma 6.18, it
holds that

x0 = b(ei) ⇐⇒ αei =
(
1−α(i)

)
·

uei

x0 +
∑i
j=1 uej

⇐⇒ x0 =
(
1−α(i)

)
·
uei
αei

−

i∑
j=1

uej (6.5)

with α(i) =
∑k
j=i+1 αej as before. Using the sorting of the edges in E(v,w), we get the

following result:

Lemma 6.32:
Consider a set of edges E(v,w) = {e1, . . . , ek} with

uei
αei

6
uej
αej

for i < j between two

nodes v,w ∈ V . For i ∈ {1, . . . , k− 1}, it holds that b(ei) 6 b(ei+1).

Proof: Using the definitions of b(ei) and b(ei+1) and the ordering of the edges in
E(v,w), we get that

b(ei) =
(
1−α(i)

)
·
uei
αei

−

i∑
j=1

uej 6
(
1−α(i)

)
·
uei+1
αei+1

−

i∑
j=1

uej

=
(
1−αei+1 −α

(i+1)
)
·
uei+1
αei+1

−

i∑
j=1

uej

=
(
1−α(i+1)

)
·
uei+1
αei+1

− uei+1 −

i∑
j=1

uej



144 Generalized Processing Networks

=
(
1−α(i+1)

)
·
uei+1
αei+1

−

i+1∑
j=1

uej = b(ei+1),

which shows the claim.

Lemma 6.33:
Let f(v,w)(x0) denote the maximum flow that can be sent through the parallel edges
E(v,w) = {e1, . . . , ek} depending on the total flow x0 on the remaining edges in δ+(v) \
E(v,w). The function f(v,w) is continuous, non-decreasing, concave, and piecewise
linear with breakpoints contained in {b(ei) : i ∈ {1, . . . , k}} and non-negative slopes
between two adjacent breakpoints. Moreover, it holds that f(v,w)(x0) > 0 for each
x0 > 0. The function can be determined in O(k) time.

Proof: First consider the case that x0 = 0. According to Lemma 6.18 and 6.20, there is
some index h such that, in every maximum flow x between v andw, we have xei = uei
for 1 6 i 6 h and xej = αej · F for h+ 1 6 j 6 k, where F = x0 +

∑k
i=1 xei is the total

outflow of node v. If h = k, the claim clearly follows since, in this case, f(v,w) is a
constant function. Else, the partitioning of the edges into the types u and α remains
valid until the first breakpoint is reached. According to Lemma 6.32, this breakpoint
is given by b(eh+1). Note that, for x0 ∈ [0,b(eh+1)), the maximum flow through the
edges in E(v,w) is given by

f(v,w)(x0) =

k∑
i=1

xei =

h∑
i=1

uei +

k∑
j=h+1

αej · F

=

h∑
i=1

uei +
(
f(v,w)(x0) + x0

)
·α(h),

so

f(v,w)(x0) =
1

1−α(h)
·

(
h∑
i=1

uei + x0 ·α
(h)

)
> 0, (6.6)

which is an increasing linear function of x0 with slope α(h)

1−α(h)
> 0. Again, if h+ 1 = k,

the claim follows.

Else, as x0 reaches the value b(eh+1), edge eh+1 turns from type α to type u and,
accordingly, the function f(v,w)(x0) behaves as a linear function of x0 until the next
breakpoint b(eh+2) is reached and so on. The slope of f(v,w) on [b(eh+1),b(eh+2))

evaluates to α(h+1)

1−α(h+1)
6 α(h)

1−α(h)
, so the slopes of the linear segments do not increase

with x0.



6.5 Series-Parallel Graphs 145

It remains to show the continuity of f(v,w), which – in combination with the above
arguments – in turn yields that the function is concave and non-decreasing. Consider
the intersection of the above two adjacent linear segments of f(v,w):

1

1−α(h)
·

(
h∑
i=1

uei + x0 ·α
(h)

)
=

1

1−α(h+1)
·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
.

Multiplying by (1−α(h)) and (1−α(h+1)), we get that

(
1−α(h+1)

)
·

(
h∑
i=1

uei + x0 ·α
(h)

)
=
(
1−α(h)

)
·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
. (6.7)

The left-hand side of equation (6.7) evaluates to

(
1−α(h+1)

)
·

(
h∑
i=1

uei + x0 ·α
(h+1)

)
+
(
1−α(h+1)

)
· x0 ·αeh+1 ,

while the right-hand side of equation (6.7) can be rearranged into

(
1−α(h+1)

)
·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
−αeh+1 ·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
.

Hence, subtracting
(
1−α(h+1)

)
·
(∑h

i=1 uei + x0 ·α(h+1)
)

from both sides of equa-
tion (6.7) and dividing by αeh+1 yields

(
1−α(h+1)

)
· x0 =

(
1−α(h+1)

)
·
ueh+1
αeh+1

−

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)

⇐⇒ x0 =
(
1−α(h+1)

)
·
ueh+1
αe(h+1)

−

h+1∑
i=1

uei ,

i.e., both line segments intersect at x0 = b(eh+1). Repeating the above arguments until
the last breakpoint is reached then yields the claim.

Lemma 6.34:
Consider three nodes v,w, z ∈ V with parallel edges E(v,w) = {e1, . . . , ek} between v
and w and δ+(w) = {e}, where e is heading to z. The set of edges E(v,w) ∪ {e} can
be replaced by i 6 k parallel edges {e ′1, . . . , e

′
i} from v to z such that, for each flow

value x0 on the edges in δ+(v) \ E(v,w), the maximum amount of flow that can arrive
at z through the edges {e ′1, . . . , e

′
i} equals the maximum amount of flow that can reach

z through E(v,w) and e. This transformation can be performed in O(k) time.

Proof: Let g(v,z)(x0) denote the maximum amount of flow that can be sent from v to
z using the edges in E(v,w) and the edge e depending on the total flow value x0



146 Generalized Processing Networks

on the edges in δ+(v) \ E(v,w). Clearly, due to the structure of the subgraph that is
considered, g(v,z)(x0) = min{ue, f(v,w)(x0)}, where f(v,w) is defined as in Lemma 6.33.
If ue > maxx0>0 f(v,w)(x0), the claim follows by deleting the edge e and merging the
nodes w and z.

Else, if ue < maxx0>0 f(v,w)(x0), it either holds that ue < f(v,w)(0) or there must be
two adjacent breakpoints b(ei−1) and b(ei) with f(v,w)(b(ei−1)) 6 ue < f(v,w)(b(ei))

(which are uniquely defined since f(v,w) is non-decreasing and continuous according
to Lemma 6.33). In the first case, it clearly holds that g(v,z)(x0) = ue and the claim
follows by deleting the edges in E(v,w) and merging the nodes v and w.

Now assume that f(v,w)(b(ei−1)) 6 ue < f(v,w)(b(ei)) for some i ∈ {2, . . . , k} and let
x denote the (uniquely defined) flow value such that f(v,w)(x) = ue. Note that all
of the edges ej with i 6 j 6 k remain of type α within the interval [0, x] since the
respective breakpoints are not yet reached, i.e., a constant fraction α(i−1) =

∑k
j=i αej

of f(v,w)(x0) = g(v,z)(x0) flows through the edges ei, . . . , ek as long as x0 ∈ [0, x]. Hence,
we can replace the edges ei, . . . , ek by a single edge e ′i with αe ′i

:= α(i−1) without
changing the behavior of f(v,w) and g(v,z) in [0, x]. Since e ′i is the only edge of type α
within the interval [b(ei−1), x], we achieve that f(v,w)(x0) = ue = g(v,z)(x0) for x0 > x

by setting ue ′i := ue −
∑i−1
j=1 uej .

Thus, after the transformation, it holds that f(v,w)(x0) = g(v,z)(x0) for each x0 > 0,
i.e., edge e does not influence the flow value anymore. By deleting the edge e and
merging the nodes w and z, the claim then follows.

Note that the edges in E ′(v,w) := {e ′1, . . . , e
′
i} remain ordered by

ue ′
j

αe ′
j

after the trans-

formation performed in the proof of Lemma 6.34: For the case that i = 1, the claim
clearly holds. Otherwise, by construction, it holds that ue > f(v,w)(b(ei−1)), so

ue ′i
αe ′i

=
ue −

∑i−1
j=1 uej

α(i−1)
>
f(v,w)(b(ei−1)) −

∑i−1
j=1 uej

α(i−1)

(6.6)
=

1
1−α(i−1)

·
(∑i−1

j=1 uej + b(ei−1) ·α(i−1)
)
−
∑i−1
j=1 uej

α(i−1)

=

(
1

1−α(i−1)
− 1
)
·
∑i−1
j=1 uej + b(ei−1) ·

α(i−1)

1−α(i−1)

α(i−1)

=

α(i−1)

1−α(i−1)
·
∑i−1
j=1 uej + b(ei−1) ·

α(i−1)

1−α(i−1)

α(i−1)
=

∑i−1
j=1 uej + b(ei−1)

1−α(i−1)

(6.5)
=

∑i−1
j=1 uej +

(
1−α(i−1)

)
· uei−1αei−1

−
∑i−1
j=1 uej

1−α(i−1)
=
uei−1
αei−1

,



6.5 Series-Parallel Graphs 147

where the last inequality follows from Lemma 6.32. Since the transformation assures
that e ′j = ej for j ∈ {1, . . . , i− 1}, we get the following observation:

Observation 6.35:
After applying the procedure described in Lemma 6.34 to a set of edges E(v,w) =

{e1, . . . , ek} and e = (w, z), the resulting edge set {e ′1, . . . , e
′
i} is ordered by the val-

ues
ue ′
j

αe ′
j

again. C

Lemma 6.36:
Let v and w be two nodes such that all edges {e1, . . . , ek} that leave v are parallel edges
heading to w and let F denote the maximum flow that can be sent from v to w. Then
each flow value F ′ with 0 6 F ′ 6 F can be achieved as well.

Proof: The claim follows by a simple scaling argument: Consider the maximum flow x

on the edges e1, . . . , ek with flow value F that is, e.g., determined using the algorithm
described in the proof of Corollary 6.19. It is easy to see that the flow x ′ with x ′ei :=
F ′

F · xei for each i ∈ {1, . . . , k} is feasible as well and achieves a flow value of F ′.

Theorem 6.37:
A maximum flow in a series-parallel graph G = (V ,E) can be computed in O(m · (n+

logm)) time.

Proof: Consider a decomposition tree T of G. By sorting the leaves of T in O(m ·
logm) time, we can assure that

uei
αei

6
uej
αej

for i < j in each set of edges {e1, . . . , ek}.

In a second step, we use a breadth-first-search in the decomposition tree starting at
the root in order to get a list S of all nodes that correspond to series compositions in
O(m) time. Note that this list is inherently sorted by the depth of the respective nodes
in the tree.

Let v ∈ T denote a node in T of maximum depth that corresponds to a series-parallel
graph G ′ that is the series composition of two series-parallel graphs G1 and G2 (note
that v can be found in O(1) time by looking at the tail of S). Due to the maximum
depth of v, neither G1 nor G2 can contain series compositions, i.e., each of the graphs
either consists of a single edge or of parallel edges.

Let k1 and k2 denote the number of edges contained in G1 and G2, respectively. First,
consider the case that G2 consists of parallel-edges e1, . . . , ek2 with k2 > 2. Due to the
structure of series-parallel graphs, there are no other edges leaving the source node
of G2, so we can find the maximum amount of flow F2 that can be sent through G2 in
O(k2) time according to Corollary 6.19. Consequently, we can replace the edges in G2
by a single edge with capacity F2. This in turn enables us to replace the edges in G1



148 Generalized Processing Networks

and G2 by at most k1 edges E ′ in O(k1) time using Lemma 6.34. Note that these edges
are ordered according to Observation 6.35, but the set δ+(sG ′), where sG ′ is the source
of G ′, may not be ordered anymore. However, since both the edges in E ′ and the
edges in δ+(sG ′) \ E ′ are sorted, we can regain the ordering of δ+(sG ′) in O(m) time.

The algorithm stops when no series composition is left, i.e., the remaining graph con-
sists of parallel edges only. The maximum flow value can then be determined using
the procedure described in the proof of Corollary 6.19. Since the maximum flow
in each series composition can be computed in O(m) time as described above, the
claimed running time follows. Note that the procedure only describes the computa-
tion of the maximum flow value in G. However, using the procedures described in
the proofs of Corollary 6.19, Lemma 6.34, and Lemma 6.36, the flow on each edge can
be determined as well within the same running time.

6.6 Integral Flows

In the traditional maximum flow problem, there always exists an integral optimal
solution if the capacities are integral (cf. Section 2.4). It is easy to see that this is
no longer valid for the case of flows in processing networks. In particular, if we add
the requirement that the flow on each edge needs to be integral, the maximum flow
problem in a generalized processing network becomes both NP-hard to solve and to
approximate as we will see in the following two theorems.

Theorem 6.38:
The problem of finding a maximum integral flow in a generalized processing network
is strongly NP-complete to solve and NP-hard to approximate within constant factors,
even if the graph is acyclic and bipartite.

Proof: We first show the NP-completeness of the problem. Clearly, the problem is
contained in NP since we can check if a given solution candidate (which has a poly-
nomially bounded encoding length) is feasible and has a specific flow value in poly-
nomial time. In order to show NP-hardness, we use a reduction from the Exact-
CoverBy3Sets-problem, which is known to be strongly NP-complete (cf. (Garey and
Johnson, 1979, Problem SP2)):

Instance: A set X with 3q elements and a collection C = {C1, . . . ,Ck} of 3-element
subsets of X.

Question: Does there exist a subcollection C ′ ⊆ C such that every element j ∈ X is
contained in exactly one of the subsets in C ′?



6.6 Integral Flows 149

Given an instance of ExactCoverBy3Sets, we construct a generalized processing net-
work as follows:

We introduce a source s and a sink t as well as nodes vi and v ′i for each Ci ∈ C

and a node wj for each j ∈ X. For each subset Ci ∈ C, we insert an edge with
capacity 3 between s and vi and three edges, each with flow ratio of 1

3 between vi
and v ′i. Furthermore, we introduce an edge between v ′i and wj if j ∈ Ci and an edge
between each node wj and the sink t. If not mentioned explicitly, we set αe = 1 and
ue = 1 for every other edge e ∈ E. The resulting network for X = {1, . . . , 9} and
C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}} is shown in Figure 6.2. It is easy to see
that the constructed network is always acyclic and bipartite, as claimed.

ue = 3

αe = 1

ue = 1

αe =
1
3

ue = 1

αe = 1

ue = 1

αe = 1

s

t

v1

v ′1

v2

v ′2

v3

v ′3

v4

v ′4

v5

v ′5

w1 w2 w3 w4 w5 w6 w7 w8 w9

Figure 6.2: The resulting network for a given instance of ExactCoverBy3Sets with X =

{1, . . . , 9} and C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}}. On the right hand side,
the capacities and flow ratios of the edges in each level of the graph are depicted.

We now show that there exists an integral flow x with flow value val(x) > 3q if and
only if the underlying instance of ExactCoverBy3Sets is a Yes-instance. First assume
that there is an integral flow x with flow value val(x) > 3q. In fact, since there are
3q edges leading to the sink, each with a capacity of one, it must hold that val(x) = 3q.
Thus, each of these edges must carry one unit of flow. Moreover, note that each of the
edges between s and vi for i ∈ {1, . . . , k} may either carry zero or three units of flow
since there are three edges between each vi and v ′i that are linked such that they can
only carry the same (integral) amount of flow at the same time. Hence, the amount
of flow that arrives at the nodes v ′1, . . . , v

′
k equals three units for exactly q of these



150 Generalized Processing Networks

nodes and zero for the remaining k− q nodes. Let K ⊆ {1, . . . , k} denote the set of the
indices of those nodes v ′i for which three units of flow arrive. Since each of the 3q
edges between wj and t, for j ∈ {1, . . . , 3q}, carries one unit of flow as described above,
it, thus, follows that the adjacent nodes to the nodes v ′i for i ∈ K are disjoint, which in
turn implies that the corresponding sets Ci are mutually disjoint and cover X. Hence,
C ′ := {Ci : i ∈ K} is a solution to the underlying instance of ExactCoverBy3Sets.

Now suppose that C ′ is a solution to a given instance of ExactCoverBy3Sets. For
each Ci ∈ C ′, we send three units of flow from s to vi and one unit on each of the
three edges between vi and v ′i. Since the sets in C ′ do not intersect, we can send one
unit of flow to each of the nodes wj for j ∈ {1, . . . , 3q} and finally to the sink. The
resulting flow is feasible, integral, and has a flow value of val(x) = 3q, which shows
the claim.

In order to show the NP-hardness of approximation, we add an artificial sink t ′ to
the above network and connect t and t ′ by 3q parallel edges with capacity 1 and flow
ratio 1

3q each. By similar arguments as above, all of these edges carry the same amount
of flow in each feasible flow x such that, due to integrality, the amount of flow that
can reach the new sink t ′ is either zero or 3q. Thus, if there was an α-approximation
algorithm for α ∈ (1,∞) that computes a solution x ′ with 1

α · val(x∗) 6 val(x ′) 6

val(x∗) where x∗ denotes an optimal solution, we can decide whether the underlying
instance of ExactCoverBy3Sets is a Yes-instance by checking if val(x ′) > 0, which
concludes the proof.

Theorem 6.39:
The problem of finding a maximum integral flow in a generalized processing network
is weakly NP-complete to solve and NP-hard to approximate within constant factors
on series-parallel graphs.

Proof: For the reduction, we use the SubsetSum-problem, which is defined as follows
(cf. (Garey and Johnson, 1979, Problem SP13)):

Instance: Finite set {a1, . . . ,ak} of k positive integers and a positive integer A.

Question: Is there a subset I ⊆ {1, . . . , k} such that
∑
i∈I ai = A?

Given an instance of SubsetSum, we construct a series-parallel generalized processing
network as follows:

We insert three nodes s, v0, and t. Between v0 and t, we introduce two parallel edges,
one of them with capacity 1 and flow ratio 1

A and the other one with capacity A− 1

and flow ratio A−1
A . Moreover, for each i ∈ {1, . . . , k}, we insert an additional node vi,

an edge between s and vi with capacity ai and flow ratio 1, and two parallel edges



6.7 Conclusion 151

between vi and v0, one of them with capacity 1 and flow ratio 1
ai

and the other one

with capacity ai− 1 and flow ratio ai−1
ai

. The resulting graph is depicted in Figure 6.3.

s v0 t

v1

vk

...

1

a1

1
a1

1
a1−1
a1

a1 − 1

1

ak

1
ak

1

ak−1
ak

ak − 1

1
A

1

A−1
A

A− 1

Figure 6.3: The resulting network for a given instance of SubsetSum. The edges are labeled
with the corresponding capacities while the edge tails are labeled with the flow
ratios.

Note that, due to integrality, the flow that reaches the sink is either zero or A, since
the flow on the edge with capacity 1, which amounts to either zero or one, only makes
up a fraction 1

A of the flow that reaches t. Accordingly, for i ∈ {1, . . . , k}, the amount
of flow that reaches v0 via vi may either be zero or ai. By identifying those nodes vi
that receive ai units of flow from s with those elements that are contained in I, the
claims follow by similar arguments as in the proof of Theorem 6.38.

6.7 Conclusion

In this chapter, we generalized the well-known maximum flow problem in processing
networks from flow ratios that determine the exact fraction of flow routed through
an edge to flow ratios that determine an upper bound on this fraction. We were able
to generalize the notion of paths as a central unit in traditional network flows to
the concept of flow distribution schemes and could show that a flow decomposition
similar to the one for traditional network flows is possible on general graphs. Al-
though it was easy to see that the problem is solvable in weakly polynomial time, we
could show that the problem is at least as hard to solve as any packing LP. Never-
theless, for acyclic graphs, we presented a (strongly polynomial-time) FPTAS with a
running time of O

(
1
ε2
·m2 logm

)
that also embodies the first approximation scheme

for the maximum flow problem in processing networks. Moreover, for the case of
series-parallel graphs, we presented two very different approaches on how to solve
the problem exactly. The first of these approaches generalizes the idea of the aug-
menting path algorithm for the traditional maximum flow problem and resulted in



152 Generalized Processing Networks

an algorithm with a running time of O(m2). The second approach used the structure
of series-parallel graphs in a more sophisticated way in order to improve this running
time based on a successive shrinking of subgraphs to O(m · (n+ logm)). Finally, we
investigated the case of integral flows and showed that the problem becomes strongly
NP-hard to solve and approximate on bipartite acyclic graphs and weakly NP-hard to
solve and approximate on series-parallel graphs. A complete overview of the results
for the continuous and the integral version of MFGPN is given in Table 6.1 and 6.2,
respectively.

General Graphs Acyclic Graphs Series-Parallel Graphs

Theorem 6.10:
Decomposable in
O(m4) time

Theorem 6.13:
Decomposable in
O(m2) time

−→

←−
Theorem 6.15:
At least as hard to solve as
any packing LP

Theorem 6.14:
Solvable in
O(m3.5 logM) time

−→

Theorem 6.31:
Solvable in O(m2) time
Theorem 6.37:
Solvable in O(m · (n +

logm)) time

Theorem 6.17:
FPTAS in
O
(
1
ε2
m2 logm

)
time

−→

Table 6.1: The summarized results for the continuous maximum flow problem in generalized
processing networks in Chapter 6. Implied results are denotes with gray arrows.

General Graphs Acyclic Graphs Series-Parallel Graphs

←−
Theorem 6.38:
Strongly NP-complete to
solve

Theorem 6.39:
Weakly NP-complete to
solve

←−
Theorem 6.38:
NP-hard to approximate

Theorem 6.39:
NP-hard to approximate

Table 6.2: The summarized results for the integral maximum flow problem in generalized
processing networks in Chapter 6. Implied results are denoted with gray arrows.

The introduced generalized model provides many topics for future research. On the
one hand, it would be worth investigating if a network simplex algorithm as described



6.7 Conclusion 153

in (Wang and Lin, 2009) could be adopted to the extended model. Although the prob-
lem lies in P, there are no polynomial-time combinatorial algorithms for the maxi-
mum flow problem both in the traditional and the generalized model yet. On the
other hand, the introduced model could be further extended to the case of minimum
cost flows. It remains open if some of the algorithms introduced in this chapter can
be generalized in order to compute a minimum cost flow in a given acyclic or series-
parallel network.


	6 Generalized Processing Networks
	6.1 Introduction
	6.1.1 Previous Work
	6.1.2 Chapter Outline

	6.2 Preliminaries
	6.3 Structural Results
	6.4 Complexity and Approximability
	6.4.1 Complexity
	6.4.2 Approximability

	6.5 Series-Parallel Graphs
	6.5.1 Augmenting on Flow Distribution Schemes
	6.5.2 A Faster Approach

	6.6 Integral Flows
	6.7 Conclusion




