
Generalized Network 
Improvement and
Packing Problems

Michael Holzhauser



Generalized Network Improvement and 
Packing Problems



Michael Holzhauser

Generalized Network 
Improvement and 
Packing Problems 



Michael Holzhauser
Technische Universität Kaiserslautern
Germany

ISBN 978-3-658-16811-7	 ISBN 978-3-658-16812-4  (eBook)
DOI 10.1007/978-3-658-16812-4

Library of Congress Control Number: 2016961699

Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur Verleihung 
des akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium, Dr. 
rer. nat.) genehmigte Dissertation, 2016 

D 386 

Erstgutachter: Prof. Dr. Sven O. Krumke 
Zweitgutachter: Prof. Dr. Andreas Bley 
Tag der Disputation: 19. August 2016

Springer Spektrum  
© Springer Fachmedien Wiesbaden GmbH 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission 
or information storage and retrieval, electronic adaptation, computer software, or by similar or 
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the 
authors or the editors give a warranty, express or implied, with respect to the material contained 
herein or for any errors or omissions that may have been made. The publisher remains neutral with 
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer Spektrum imprint is published by Springer Nature
The registered company is Springer Fachmedien Wiesbaden GmbH
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany 



Acknowledgments

First and foremost, I am most indebted to my supervisor Prof. Dr. Sven O. Krumke,
who gave me the opportunity to work in the Optimization Research Group at the
University of Kaiserslautern and to write this thesis. Much more than this, I thank
him for the never-ending support he gave me and the pleasant atmosphere when
working together. His unlimited treasure of ideas and his overview of related work
contributed significantly to the results of this thesis.

Furthermore, I would like to thank my co-supervisor Juniorprof. Dr. Clemens Thielen
for all the support he gave me during the last three years and the dozens of hours we
spent together while publishing our results. I also thank Prof. Dr. Andreas Bley for
his effort in serving as a co-referee for this thesis.

I wish to thank all my colleagues in the Optimization Research Group for all the
leisure time spent during lunch and coffee breaks and the interesting discussions. In
particular, I want to express my gratitude to André Chassein, Michael Hopf, Lena
Leiß, and Marco Natale (in alphabetical order) for their great support in proofreading
parts of this thesis. Moreover, I thank the members of our Pub-Quiz team for all the
evenings spiked with triumphs and full of dismal failures.

Last but not least, I would like to thank my parents, grandparents, and my brother for
their never-ending support as well as Bernadette for all the patience and for making
my life more beautiful.

Michael Holzhauser



Abstract

Network flow problems and packing problems in general are two of the most investi-
gated classes of problems in discrete optimization. In the last decades, many combina-
torial algorithms have been developed and steadily improved that compute exact or
approximate solutions for these problems. Although these algorithms allow to solve
many real world applications, most of them are highly tailored to the inherent struc-
ture of the underlying problems and do not admit even slight variations or extensions
to these.

In this thesis, we investigate such extensions and variations of known network flow
and packing problems with respect to their complexity and approximability. In the
budget-constrained minimum cost flow problem, one seeks to determine a minimum cost
flow subject to a budget constraint based on a second kind of costs. For this problem,
we study efficient exact and approximate combinatorial algorithms. We also investi-
gate two discrete variants, which can be interpreted as network improvement problems
in which the edge capacities in the underlying network are allowed to be modified.
Although the problem becomes hard to solve in these discrete settings, we are able to
derive exact and approximate algorithms by exploiting an interesting connection to a
novel variant of the traditional knapsack problem.

We also investigate two extensions of the traditional maximum flow problem. In the
maximum flow problem in generalized processing networks, the aim is to determine a max-
imum flow in which the flow on each edge is additionally bounded by a dynamic
capacity that depends on the total amount of flow leaving the starting node of the
edge. Although this problem is as hard to solve as any linear fractional packing prob-
lem, we are able to adapt algorithms for the traditional maximum and minimum cost
flow problem. Finally, we investigate an extension of the traditional maximum flow
problem in which the flow leaving an edge is described by a convex increasing func-
tion of the flow entering the edge. While the problem becomes hard to solve and
approximate even in its most simple form, we are able to derive exact algorithms.

Beyond these problems, we investigate the connection between network flow prob-
lems and packing problems in general by extending a well-known framework for
deriving efficient approximation algorithms for packing problems to a large class of
network flow problems.



Zusammenfassung

Netzwerkfluss- und Packungsprobleme gehören zu den meistuntersuchten Problem-
klassen der diskreten Optimierung. In den vergangenen Jahrzehnten wurde eine Viel-
zahl an kombinatorischen Algorithmen zur Berechnung von exakten oder approxima-
tiven Lösungen entwickelt und stetig weiterentwickelt. Obwohl sich diese Algorith-
men auf eine große Zahl von realen Problemen anwenden lassen, sind die meisten
stark auf die Struktur des zugrunde liegenden Problems zugeschnitten und erlauben
keine Abänderungen oder Erweiterungen desselben.

In dieser Arbeit werden solche Erweiterungen und Variationen von bekannten Netz-
werkfluss- und Packungsproblemen hinsichtlich ihrer Komplexität und Approximier-
barkeit untersucht. Ziel im budgetrestringierten Minimalkostenflussproblem ist es, einen
Minimalkostenfluss zu bestimmen, welcher zusätzlich durch eine Budgetbedingung
basierend auf einem zweiten Kostentyp beschränkt ist. Für dieses Problem werden
effiziente exakte und approximative kombinatorische Algorithmen präsentiert. Zu-
dem werden zwei diskrete Varianten desselben Problems untersucht, welche als Netz-
werkausbauprobleme interpretiert werden können, in denen die Kantenkapazitäten des
zugrunde liegenden Netzwerks modifiziert werden können. Obwohl das Problem in
diesen Varianten vom Standpunkt der Komplexitätstheorie schwer zu lösen ist, leiten
wir exakte und approximative Lösungsverfahren her, indem unter anderem eine in-
teressante Verbindung zu einer neuartigen Variante des Rucksackproblems aufgezeigt
wird.

Des Weiteren werden zwei Erweiterungen des traditionellen Maximalflussproblems
untersucht. Im Maximalflussproblem in verallgemeinerten Prozessnetzwerken ist das Ziel
einen maximalen Fluss zu bestimmen, bei welchem der Fluss auf den Kanten zusätz-
lich durch eine dynamische Kapazität beschränkt ist, abhängig vom Gesamtfluss, der
den Startknoten der Kante verlässt. Obwohl dieses Problem so schwer zu lösen ist
wie jedes lineare fraktionale Packungsproblem, ist es möglich, Algorithmen für das
Maximalfluss- und Minimalkostenflussproblem zu adaptieren. Schließlich werden wir
eine Erweiterung des traditionellen Maximalflussproblems untersuchen, in dem der
Fluss, der eine Kante verlässt, durch eine konvexe steigende Funktion in Abhängig-
keit des einkommenden Flusses beschrieben ist. Für dieses Problem, welches schwer
zu lösen und zu approximieren ist, werden exakte Algorithmen präsentiert.

Neben den genannten Problemen wird der Zusammenhang zwischen Netzwerkfluss-
problemen und Packungsproblemen im Allgemeinen untersucht, indem ein weit be-
kanntes Framework zum Ableiten von effizienten Approximationsalgorithmen für Pa-
ckungsprobleme auf eine große Klasse von Netzwerkflussproblemen erweitert wird.
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1 Introduction

Network Flow and Packing Problems

Networks are ubiquitous in our everyday lives — be it transportation, communication,
or social networks. In each of these networks, several nodes (crossings, peers, persons)
are connected to each other via edges (streets, cables, friendship). In most cases, one is
interested in some solution for moving entities (commodities, messages, information)
from one place to another in this network. This solution — which we refer to as a
network flow — is restricted by several constraints like lower bounds on the amount of
entities that need to be moved or upper bounds on the amount of entities that can be
moved via one single edge. On the other hand, the quality of a solution is measured
by some objective function. Usually, one is interested in solutions that transport flow
from one point in the network to another in a somewhat most cost-effective way. We
refer to the problem of finding such a solution as the minimum cost flow problem. Stated
as a linear program, this problem is given as follows:

min
∑
e∈E

ce · xe (1.1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = −bv for all v ∈ V , (1.1b)

0 6 xe 6 ue for all e ∈ E. (1.1c)

Thereby, xe denotes the amount of flow that is routed via edge e while ce and ue

denote the cost and capacity of the corresponding edges, respectively. The value bv
denotes the supply of entities at each node v. We give more insights in this general
formulation in the subsequent chapter.

Another popular set of problems is the class of packing problems. One famous represen-
tative for this kind of problem is the knapsack problem, in which one is interested in the
best way of packing items with a specific profit and weight into a knapsack without
exceeding a maximum weight. In its most general form, for some matrix A ∈ Rm×n

>0

with non-negative entries and two vectors c ∈ Rn
>0 and b ∈ Rm

>0 with positive entries,
a (fractional) packing problem can be stated as follows:

max cTx (1.2a)

s.t. Ax 6 b, (1.2b)

x > 0. (1.2c)

© Springer Fachmedien Wiesbaden GmbH 2016
M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_1



2 Introduction

The knapsack problem complies with this form with the additional restriction that
the variables are required to be integral. At a first glance, the minimum cost flow
problem and a packing problem do not seem to have much in common. However,
according to the well-known flow decomposition theorem, each minimum cost flow
can be decomposed into flows on simple paths and cycles (cf. (Ahuja et al., 1993)). In
other words, we can see each minimum cost flow as a “bundle” of “packed” flows on
paths and cycles that do not violate the edge capacities. Hence, each flow problem can
be seen as a packing problem in its core, so both problems are in fact strongly related
to each other. This central observation will be underlined and exploited throughout
this thesis.

Contributions

The minimum cost flow problem is one of most investigated problems in the field of
discrete optimization. A large variety of combinatorial algorithms have emerged over
the last decades that make the problem tractable both from a theoretical as well as
a practical point of view. However, since these algorithms became more and more
tailored to the inherent structure of the minimum cost flow problem, slight changes
to this structure often make the usage of the corresponding algorithms or even their
underlying ideas impossible to apply. An extension of the model by new constraints
or a modification of the given constraints in (1.1) may influence the complexity and
approximability of the problem significantly. Similarly, although dynamic program-
ming schemes and approximation algorithms are known for the knapsack problem,
additional constraints typically lead to much more difficult variants of the problem.

In this thesis, we investigate novel extensions to well-known network flow and pack-
ing problems. In particular, we are interested in results about the complexity and
approximability of these problems and seek to find efficient combinatorial algorithms
that exploit the underlying structure of the corresponding models, in contrast to
highly generic simplex-type methods. Among others, this thesis addresses the fol-
lowing major issues:

• We investigate a network improvement problem, in which the capacities of the edges
can be upgraded up to a specific amount by spending a separate upgrade budget.
This problem is equivalent to the addition of an additional budget constraint of
the form

∑
e∈E be · xe 6 B to the formulation (1.1).

• We address an extended network flow problem in which the amount of flow
entering an edge is not only bounded by the capacity constraints (1.1c), but must
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also satisfy constraints that restrict the distribution of flow among all outgoing
edges of each node.

• We investigate the case in which the flow that leaves an edge does not nec-
essarily equal the flow entering the edge, but is given by a increasing convex
function depending on the entering flow. In other words, we study a variant of
problem (1.1) in which constraint (1.1b) is generalized.

• In addition to these three network flow problems, we consider a variant of the
traditional knapsack problem in which one is confronted with a set of cardinality
constraints of the form

∑
i∈Ij xi 6 µj for all sets Ij in a laminar family. We show

a connection of this problem to the above network improvement problem.

• Finally, we investigate how a well-known framework to derive approximation
algorithms for fractional packing problems can be generalized to a large class of
network flow problems.

Outline of the Thesis

This thesis is divided into eight chapters. Besides this introductory chapter and a
conclusion of the results in Chapter 8, the above mentioned issues are dealt with in
the remaining six chapters as follows:

Chapter 2: This preliminary chapter provides the reader with the notational and con-
ceptional preliminaries used throughout the thesis. In particular, we settle the basic
notation and define the underlying model of computation. Moreover, we introduce
the most common network flow problems that will be used and extended throughout
the thesis and define the notion of approximation algorithms.

Chapter 3: In addition to the concepts introduced in Chapter 2, we introduce three
generic frameworks that will be used throughout this thesis in Chapter 3. We combine
two of these frameworks into a generalized packing framework that may be used to
derive efficient approximation algorithms for fractional packing problems on finitely
generated polyhedral cones. This generalized framework may in particular be applied
to network flow problems and will be used in Chapter 4 and Chapter 6.

Chapter 4: In this chapter, we study an extension of the well-known minimum cost
flow problem in which a second kind of costs is associated with each edge. The
goal is to minimize the first kind of costs as in traditional minimum cost flows while
the secondary costs of the flow must additionally fulfill a budget constraint. We
present a specialized network simplex algorithm for this problem and provide both a
weakly and a strongly polynomial-time algorithm. Moreover, we derive approxima-
tion schemes for the problem on general and on acyclic graphs.



4 Introduction

Chapter 5: We consider two discrete variants of the problem investigated in Chapter 4.
We show that both variants may be interpreted as network improvement problems,
which yields several fields of applications. While both variants are hard to solve and
approximate, in contrast to the original problem considered in Chapter 4, we show
that the problem on extension-parallel graphs is strongly related to a novel variant
of the bounded knapsack problem. By adapting results of the latter problem, we are
able to derive efficient approximation algorithms for both variants.

Chapter 6: In this chapter, we present a generalization of the maximum flow problem
in which each edge is assigned with a flow ratio that imposes an upper bound on the
fraction of the total outgoing flow at the starting node that may be routed through the
edge. While a flow decomposition can still be found efficiently for this problem, we
prove that the problem becomes at least as hard to solve as any packing LP. On the
other hand, we derive an efficient approximation scheme for the problem on acyclic
graphs. For the case of series-parallel graphs, we provide two exact algorithms with
strongly polynomial running time. Finally, we study the case of integral flows and
show that the problem becomes hard to solve and approximate.

Chapter 7: As a third and last network flow problem, we give insights into the struc-
tural properties and the complexity of an extension of the generalized maximum flow
problem in which the outflow of an edge is a strictly increasing convex function of
its inflow. We show that the problem becomes hard to solve and approximate in this
novel setting even in the fractional case. Nevertheless, we show that a flow decom-
position similar to the one for traditional generalized flows is possible and present
(exponential-time) exact algorithms for computing optimal flows on specific graph
classes. We also identify a polynomially solvable special case of the problem and
show that the problem is solvable in pseudo-polynomial time when restricting to in-
tegral flows on series-parallel graphs.
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this thesis.



2 Preliminaries

In this chapter, we introduce the basic definitions, on which the remainder
of this thesis relies. In particular, we settle the basic notation and define the
underlying model of computation. Moreover, we introduce the most common
network flow problems that will be used and extended throughout the thesis
and define the notion of approximation algorithms. In the very most cases,
we comply with standard notations and definitions, so the familiar reader may
skip parts of this chapter at will.

2.1 Basic Notation

Throughout this thesis, we denote by R (Q, Z, N) the set of real (rational, integral,
natural) numbers. We denote the corresponding subsets of R and Q that contain
all non-negative numbers by R>0 and Q>0, respectively. Similarly, we write R>0

and Q>0, respectively, for the subsets of all positive numbers. The set N of natural
numbers does not contain zero while N>0 does. For two sets A and B, we use the
notation A ⊆ B (A ⊇ B) to denote that A is a subset (superset) of B. If A is a proper
subset (superset) of B, we write A ⊂ B (A ⊃ B). Moreover, we denote the union
(intersection) of the two sets A and B by A ∪ B (A ∩ B). Finally, we write ∅ to denote
the empty set.

We use the notation A ∈ Bm×n to denote that A is a matrix with m rows and
n columns, each of which contains elements from the set B. Moreover, we denote
by Aij the element in the i-th row and the j-th column of A and use Ai· and A·j to
denote the i-th row vector and the j-th column vector of A, respectively.

For a function f : N>0 → N>0, the set O(f(n)) contains all functions g : N>0 → N>0

with the property that there are constants n0 and c such that g(n) 6 c · f(n) for each
n > n0. Similarly, the set Ω(f(n)) contains all functions g : N>0 → N>0 with the
property that there are constants n0 and c such that g(n) > c · f(n) for each n > n0.
The intersection of O(f(n)) and Ω(f(n)) is denoted by Θ(f(n)) := O(f(n))∩Ω(f(n)).

Finally, we denote the logarithm of the number a to the basis b by logb a. Whenever the
basis of the logarithm is omitted, it can be assumed to be 2 without loss of generality.
We denote the natural logarithm of a by lna (i.e., the logarithm to the basis e, where

© Springer Fachmedien Wiesbaden GmbH 2016
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e is Euler’s number). Moreover, we let sgn : R → {−1, 0, 1} denote the sign function,
which returns −1, 0, or 1 depending on whether the given argument is negative, zero,
or positive.

2.2 Theory of Computation

In this section, we give a short definition of the computational model that is used
throughout this thesis and introduce the tools that will be used to measure the com-
putational complexity of the upcoming problems. Again, we will thereby stick to basic
definitions and notations such that the experienced reader may skip parts of this sec-
tion at will. In-depth treatments of the upcoming topics can be found in (Garey and
Johnson, 1979; Grötschel et al., 1993; Motwani and Raghavan, 1995; Papadimitriou,
1994; Blum et al., 1989).

Instance Encoding

Throughout this thesis, we assume that the instances of the problems that investigate
are encoded by using a “reasonable” encoding scheme into a string over some alpha-
bet Σ. The set of all strings over Σ will be denoted by Σ∗. The encoding length or size
of a problem instance I, denoted by |I|, is then the length of such a string. Although
the number of symbols in Σ will be of no great importance for our results (as long as
|Σ| > 2), we will assume a binary encoding Σ = {0, 1}. As a result, an integer of value n
will, e.g., have a size of

⌈
log2 |n|+ 1

⌉
bits in any instance (Grötschel et al., 1993; Garey

and Johnson, 1979).

Computational Models

The complexity results stated throughout this thesis are based on the random access
machine (RAM) model[1234], which is an alternative to the classical Turing machine (Pa-
padimitriou, 1994) that is capable of an infinite set of registers, each of which can store
one integer of arbitrary size and sign. A random access machine supports a set of in-
structions such as direct and indirect addressing of registers, jumping and branching,
comparisons, as well as arithmetic operations such as addition, subtraction, multipli-
cation and division of numbers. More precisely, we will stick to the unit-cost RAM,
in which each of these operations can be performed in constant time, independent of
the size of the involved integers (in contrast to the log-cost RAM, which accounts for



2.2 Theory of Computation 7

the size of the operands). This simplification leads to a “too powerful” model in com-
parison to the Turing machine since we can generate very large numbers too quickly
using repeated multiplication. Nevertheless, an equivalence between the models (up
to a logarithmic factor) holds in case that the encoding length of the involved inte-
gers is polynomially bounded by the encoding length of the instance (Motwani and
Raghavan, 1995). Since the numbers that are used in the Chapters 3 – 6 fulfill this
property, we can use the unit-cost RAM without loss of generality. The (worst case)
time complexity or (worst case) running time of an algorithm is a function f : N>0 →N>0

such that f(|I|) denotes the maximum number of instructions that are executed by the
random access machine at an input of size |I| (Grötschel et al., 1993).

Note that a random access machine is only capable of handling integral (or, more
general, rational) numbers. In Chapter 7, however, we will be confronted with real
numbers, which may have an infinite (explicit) representation. For this reason, we will
stick to the Blum-Shub-Smale model (BSS model) in the corresponding chapter, which is
basically a random access machine that is extended by the possibilities to store real
rather than integral numbers in its registers and to evaluate rational functions on the
register contents at unit cost (Blum et al., 1989; Blum, 1998).

Decision Problems

A decision problem Π is a problem that, for each instance I, either gives the answer
Yes or No. That is, the problem Π can be seen as a subset of Σ∗ × {0, 1} such that,
for each instance I, either (I, 0) or (I, 1) is contained in Π (Grötschel et al., 1993). We
say that a decision problem Π has a time complexity of f(|I|) or is solvable in f(|I|) time
if there is an algorithm with time complexity g(|I|) for g ∈ O(f(|I|)) that decides
whether or not some problem instance I of size |I| is a Yes-instance of Π. A decision
problem Π is solvable in (weakly) polynomial time if it has a time complexity of p(|I|)
for some polynomial p : N>0 → N>0. Moreover, if Π has a time complexity of p(m)

and uses q(|I|) space, where m denotes the number of integers that occur in the
problem instance (regardless of the magnitude of the integers) and p and q are two
polynomials, it is solvable in strongly polynomial time. Conversely, if Π is not solvable in
polynomial time but has a time complexity that is polynomial in |I| and the absolute
value of the integers in I, we call it solvable in pseudo-polynomial time (Grötschel et al.,
1993; Garey and Johnson, 1979).

The class P consists of all decision problems that are solvable in (weakly or strongly,
but not pseudo-) polynomial time. The class NP consists of all decision problems that
are verifiable in polynomial time, i.e., the set of problems Π for which there is a decision
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problem Π ′ ∈ P such that, for each Yes-instance I of Π and for some polynomial p ′,
there is a certificate x ∈ Σ∗ with |x| 6 p ′(|I|) and ((I, x), 1) ∈ Π ′ (Grötschel et al., 1993).1

A decision problem Π is polynomial-time reducible to a decision problem Π ′ if there is
a function t that transforms an instance I of Π into an instance I ′ := t(I) of Π ′ in
polynomial time such that I is a Yes-instance of Π if and only if I ′ is a Yes-instance of
Π ′. A decision problem Π is said to be NP-hard if every problem in NP is polynomial-
time reducible to Π. If, in addition, Π ∈ NP, the decision problem is said to be
NP-complete. If the decision problem remains NP-complete even if the numbers that
occur in each problem instance I are polynomially bounded by |I|, the problem is
strongly NP-complete. Otherwise, we call the decision problem weakly NP-complete.
Unless P = NP, an NP-complete decision problem is not solvable in polynomial time
(Garey and Johnson, 1979).

Optimization Problems

In many problems that occur in practice, one is not only interested in the information
whether or not a given instance is a Yes-instance (as in the case of decision problems)
but wants to determine the somewhat best solution among all feasible solutions to
the underlying problem with respect to some quality measurement. In an optimization
problem, the aim is to determine an optimal solution x out of the set of feasible solutions X
that maximizes (minimizes) some objective function z : X→ R in case of a maximization
problem (minimization problem). The definition of time complexity as well as the notion
of weakly, strongly, and pseudo-polynomial time solvability can then be applied to the
case of an optimization problem without further ado. For the sake of convenience, we
usually say that an optimization problem is weakly or strongly NP-hard (NP-complete) to
solve if the corresponding decision problem that asks if there is a feasible solution x ∈
X with z(x) > k (z(x) 6 k) in case of a maximization problem (minimization problem)
for some given value k is weakly or strongly NP-complete to solve, respectively.

In a k-criteria optimization problem, the aim is to optimize a set of objective func-
tions z(j) : X → R for j ∈ {1, . . . ,k} over the set X of feasible solutions, each of which
can either be a maximization or a minimization objective. The objective space Z is then

given by Z :=

{(
z(1)(x), . . . , z(k)(x)

)T
: x ∈ X

}
. The notion of an “optimal solution”

becomes ambiguous in case of a k-criteria optimization problem if k > 2. Instead, we
call a solution x ∈ X efficient if, for every other solution x ′ 6= x ∈ X, there is an index j ∈
{1, . . . ,k} such that z(j)(x ′) < z(j)(x) (z(j)(x ′) > z(j)(x)) in case of a maximization (min-

1 An alternative definition of the class P (NP) is that it contains all problems that are solvable in
polynomial time on a deterministic (non-deterministic) Turing machine (Garey and Johnson, 1979).
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imization) objective. The set P :=

{(
z(1)(x), . . . , z(k)(x)

)T
: x ∈ X and x is efficient

}
⊆

Z is then called the pareto frontier of the optimization problem. The corresponding set
of efficient solutions is sometimes called pareto frontier as well.

2.3 Graph Theory

Throughout this thesis, we consider directed (multi-)graphs (or simply graphs) G =

(V ,E), which are induced by a finite node set V and a finite multiset E, called edge
set, that contains ordered pairs of V × V . The elements in V and E are referred to
as nodes and edges, respectively. We denote the cardinalities of V and E by n and m,
respectively. At some points, we restrict our considerations to simple graphs in which
E is a set rather than a multiset. If the edge set contains two-element subsets of V
rather than ordered pairs of V × V , the graph is called a undirected.

For each edge e = (v,w) ∈ E, we call v the starting node and w the end node of e and
say that e heads from v to w. Similarly, we call e both an outgoing edge of v and an
ingoing edge of w or simply say that e leaves v and reaches w. Two nodes v ∈ V and
w ∈ V are furthermore called adjacent if there is an edge e ∈ E that heads from v to
w or vice versa. Likewise, we call a node v and an edge e incident if v is the starting
or the end node of e. Moreover, we call two edges e and e ′ adjacent if they are both
incident to the same node v.

For each node v ∈ V , we denote by δ+(v) := {e ∈ E : e leaves v} and δ−(v) := {e ∈ E :

e reaches v} the set of outgoing edges and ingoing edges of v, respectively. Accordingly,
we call |δ+(v)| and |δ−(v)| the out-degree and in-degree of node v, respectively. For a
set V ′ ⊆ V , we write δ+(V ′) (δ−(V ′)) to denote the set of edges e = (v,w) ∈ E with
v ∈ V ′ and w /∈ V ′ (v /∈ V ′ and w ∈ V ′).

For a given graph G = (V ,E), we call each graph H = (V ′,E ′) with V ′ ⊆ V and E ′ ⊆ E
a subgraph of G. For a given subset V ′ ⊆ V of the node set, we call G[V ′] the subgraph
induced by V ′, which consists of all nodes v ∈ V ′ and all edges e ∈ E ∩ (V ′ × V ′).
Similarly, for a subset E ′ ⊆ E of the edge set, the graph G[E ′] denotes the subgraph
induced by E ′, i.e., the graph with edge set E ′ and the node set V ′ that contains all end
nodes of edges in E ′.

A sequence P := (e1, . . . , ek) of edges in E in which the end node of ei and the starting
node of ei+1 coincide for each i ∈ {1, . . . ,k−1} is called a path (of length k). If v0 denotes
the starting node of e1 and vk the end node of ek, then P is also referred to as a v0-vk-
path. Moreover, we say that P connects v0 and vk and that vk is reachable from v0 (via P).
If all of the involved nodes are distinct, we call P a simple path. A path C := (e1, . . . , ek)
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in which the end node of ek and the starting node of e1 coincide is called a circuit (of
length k). Furthermore, if the paths P1 := (e1, . . . , ek−1) and P2 := (e2, . . . , ek) are both
simple, we call C a simple cycle (of length k)simple cycle or just cycle. We call a (simple)
path, circuit, or cycle undirected if we obtain a corresponding (simple) path, circuit, or
cycle by reverting the direction of one or more of the contained edges.

For two distinguished nodes s, t ∈ V , an s-t-cut (S, T) is a partition of the node set into
two disjoint sets S and T such that s ∈ S and t ∈ T . We denote by δ+(S) (δ−(S)) the
set of forward edges (backward edges) in the cut. Usually, we also use the set of forward
edges δ+(S) to refer to the s-t-cut (S, T).

We call a graph G = (V ,E) connected if, for each two nodes v1, v2 ∈ V , there is a
(possibly undirected) v1-v2-path P in G. Accordingly, we call G strongly connected if
there is both a directed path from v1 to v2 and a directed path from v2 to v1 for every
pair of nodes v1, v2 ∈ V . Each maximal subgraph (with respect to the edge set) of G
that is (strongly) connected is called a (strongly) connected component.

A graph G = (V ,E) with the property that its node set V can be partitioned into two
sets V1 and V2 such that E ⊆ (V1 × V2) ∪ (V2 × V1) is called bipartite. A graph G is
called acyclic if it does not contain cycles. A topological sorting of a graph G = (V ,E)
with node set V = {v1, . . . , vn} is a sequence (vi1 , . . . , vin) with ij 6= il for j 6= l (i.e.,
a ordering of the node set) such that ij < il for each edge e = (vij , vil) ∈ E. As it
is well-known, a graph is acyclic if and only if it has a topological sorting (cf., e.g.,
(Ahuja et al., 1993)).

A tree is a connected graph that does not contain undirected cycles. A graph G in
which each connected component is a tree is called a forest. We call a tree T = (V ,E)
rooted if there is some distinguished root node r ∈ T . In such a rooted tree T , we say that
a node v ∈ V is on level k if it is connected to the root node by an undirected path Pv
of length k. Every node w 6= v on this path Pv is called an ancestor of v while v itself is
a successor of w. If, in addition, there is an edge from v to w or from w to v in T , we
call v a child node of w and w the parent node of v. Each node v that has no children is
called a leaf node or simply leaf while every other node of T (including the root node)
is called an inner node. If every inner node of the tree has exactly two children, we
call T a binary tree. Furthermore, if every node is reachable from the root node via
a directed path, we call the tree an out-tree. Conversely, if the root node is reachable
from every node via a directed path, we call the tree an in-tree. The subgraph of a
tree T = (V ,E) that is induced by a node v ∈ V and all of its successors is called a
subtree of T . Finally, for a graph G = (V ,E), we call a tree T a spanning tree of G if it is
a subgraph of G and contains all nodes in V .
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Another important class of graphs that is used throughout this thesis is the class
of series-parallel graphs. Each series-parallel graph G = (V ,E) is associated with a
source s ∈ V and a sink t ∈ V and can be recursively defined as follows:

Single edge: Each graph that consists of a single edge e = (s, t) is series-parallel with
source s and sink t (denoted by G = e).

Parallel composition: For two series-parallel graphsG1,G2 with sources si and sinks ti,
i ∈ {1, 2}, the graph G that is obtained by identifying s1 with s2 and t1 with t2 is
series-parallel with source s1 = s2 and sink t1 = t2 (denoted by G = G1 | G2).

Series composition: For two series-parallel graphs G1,G2 with sources si and sinks ti,
i ∈ {1, 2}, the graph G that is obtained by identifying t1 with s2 is series-parallel
with source s1 and sink t2 (denoted by G = G1 ◦G2).

In particular, note that series-parallel graphs are acyclic and connected according to
the above definition. If, additionally, in each series composition of G1 and G2 at least
one of G1 or G2 consists of a single edge, the graph is called extension-parallel. A
decomposition tree T of a series-parallel graph G is a binary tree in which the leaves cor-
respond to single edges of G and each inner node v either corresponds to a series or
a parallel composition of the two series-parallel graphs that are induced by the leaves
of the two subtrees of v. Such a decomposition tree T of a series-parallel graph G with
m edges and n nodes contains m leaves, n− 2 inner nodes that correspond to series
compositions, and m − n + 1 inner nodes that correspond to parallel compositions.
Moreover, such a decomposition tree can be constructed from a given series-parallel
graph in O(m) time (cf. Valdes et al. (1982)). A series-parallel graph G and a corre-
sponding decomposition tree T are depicted in Figure 2.1. Note that this graph is not
extension-parallel while the subgraph that is induced by the nodes {s, v,w} is.

s v w t

e1
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e4
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e6

(a) Series-parallel graph G.

S

P

S

P

e1 e2

e4

e3

P

e5 e6

(b) Decomposition tree T .

Figure 2.1: A series-parallel graph (left) and a possible decomposition tree (right). Inner
nodes representing parallel compositions (series compositions) are denoted by the
letter P (S).
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Throughout this thesis, we assume that each graph G = (V ,E) is given in the adjacency-
list representation, in which a list Adj(v) is connected with each node v ∈ V containing
the outgoing edges δ+(v) of v.

2.4 Network Flow Problems

In this section we give a short introduction to the field of network flow problems. In
general, such problems aim at finding the “best” way to send some amount of a
commodity from one point in a network to another one. Thereby, we will concentrate
on the definitions and complexities of the four possibly most important network flow
problems, namely the shortest path problem, the maximum flow problem, the minimum
cost flow problem, and the maximum generalized flow problem. For an in-depth treatment
of these topics, we refer the reader to Ahuja et al. (1993) and Wayne (1999).

In its most general form, each node v ∈ V in a network flow problem is associated with
an integral number bv that represents the supply of the corresponding node. Moreover,
each edge e ∈ E has both a non-negative lower capacity le > 0 and a (possibly infinite)
upper capacity or just capacity ue > le. A pseudoflow is a function x : E → R that
assigns a value xe := x(e) ∈ [le,ue] to each edge, which represents the amount of
goods that are transported along e from the starting node to the end node of e. For
a pseudoflow x, the excess of a node v ∈ V if given as excessx(v) :=

∑
e∈δ−(v) xe −∑

e∈δ+(v) xe and describes the difference of the incoming amount of flow and the
outgoing amount of flow at v. Similarly, the imbalance of a node v ∈ V is given as
excessx(v) + bv and describes the deviation of the excess from the demand −bv of
the node. If a pseudoflow x fulfills excessx(v) > −bv at each v ∈ V , it is called
a preflow. Moreover, if x fulfills the flow conservation constraint excessx(v) = −bv at
each node v ∈ V , the pseudoflow is called a feasible flow or simply flow. The flow
value val(x) of a pseudoflow x is defined as the amount of flow that remains at the
sink, i.e., val(x) := excessv(t). Note that, in order to allow feasible flows, we require
that

∑
v∈V bv = 0. However, as it is well-known, we can assume without loss of

generality that le = 0 and that ue is finite for each e ∈ E. Furthermore, we may
assume that there is a distinct source s ∈ V as well as a distinct sink t ∈ V such
that bs > 0, bt < 0, and bv = 0 for each v ∈ V \ {s, t} (Ahuja et al., 1993). As it is
well known that the polyhedron described by the above constraints is integral, we can
assume without loss of generality that the optimal flow is integral as long as the input
data is integral as well (Ahuja et al., 1993).

For a flow x in a network that is based on a graph G = (V ,E), the residual network G(x)
contains at most two edges for each e = (v,w) ∈ E in the original graph G: Unless



2.4 Network Flow Problems 13

xe = ue, there is some forward edge e(1) heading from v to w with a (positive) capacity
of ue(1) := ue − xe. Moreover, unless xe = 0, a backward edge e(2) heads from w to v
with a (positive) capacity of ue(2) := xe.

Shortest Paths

For a given graph with edge labels ce for each e ∈ E, the shortest path problem in general
aims at finding a (directed) path P between two nodes v,w ∈ V with a minimum
length c(P) :=

∑
e∈P ce among all such paths. In the single-source shortest path problem,

one seeks to find a shortest path from some node v ∈ V to every other nodew ∈ V \ {v}.
Conversely, in the all-pairs shortest path problem, the task is to determine a shortest path
between every pair of nodes in V . In particular, the shortest path problem is in fact a
network flow problem since it can be seen as the problem of shipping one unit of a
good from one point in the network to each of the n− 1 other points in the cheapest
possible way. As we will see later, the problem can be seen as a special case of the
more general minimum cost flow problem.

At present, the best bound for the single-source shortest path problem in a simple
graph with non-negative lengths ce is given by

SP(m,n,C) ∈ O
(

min
{
m+n logn,m log logC,m+n

√
C
})

,

with C := maxe∈E ce, where the corresponding bounds are due to Fredman and Tar-
jan (1987), Johnson (1981), and Ahuja et al. (1990), respectively. The best strongly
polynomial time bound is consequently given by SP(m,n) ∈ O(m+ n logn). More-
over, in an acyclic graph, the single-source shortest path problem can be solved in
O(m+n) time (Ahuja et al., 1993). Algorithms for the all-pairs shortest path problem
will be investigated in Chapter 4.

Maximum Flows

In the maximum flow problem, the task is to determine a flow that sends the maxi-
mum possible amount of flow from the source s to the sink t of the network without
violating any edge capacity. More precisely, the aim is to find a feasible flow x with
maximum flow value val(x) among all feasible flows or, equivalently, to determine the
largest value bs = −bt that allows a feasible flow x. Hence, we are able to leave out
the flow conservation constraints for s and t and can maximize over −bt = excessx(t)
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instead. Stated as a linear program, we then obtain the following formulation for the
maximum flow problem:

max
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe (2.1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}, (2.1b)

0 6 xe 6 ue for all e ∈ E. (2.1c)

Note that we can transform each instance of the maximum flow problem on a multi-
graph into an equivalent instance on a simple graph in linear time without increasing
the number of nodes and edges by simply aggregating the capacities of all parallel
edges between two nodes into the capacity of a new artificial edge and deleting the
previous edges in O(m) time.

The maximum flow problem is probably the network flow problem with the longest
history of steady improvements. The first algorithm for the maximum flow prob-
lem was introduced in 1956 by Ford and Fulkerson (1956) with a pseudo-polynomial
running time of O(nmU) for U := maxe∈E ue. The underlying idea of repeatedly
sending flow on s-t-paths with positive capacity in the residual network was later
independently refined by Dinic (1970) and Edmonds and Karp (1972), resulting in
strongly polynomial running times of O(n2m) and O(nm2), respectively. Another
class of algorithms, called push-relabel algorithms, in which flow is augmented along
single edges rather than full s-t-paths, was introduced by Karzanov (1974) and Gold-
berg and Tarjan (1986). It resulted in running times of O(nm logm/(n logn) n) and

O(min{n2/3,m1/2} ·m log(n2/m) logU)) due to King et al. (1994) and Goldberg and
Rao (1998), respectively. In 2013, after there was no significant progress in the field
of maximum flows for about 15 years, Orlin (2013) was able to give an affirmative
answer to the long standing open question whether there is an algorithm with a run-
ning time in O(nm) by combining the ideas of King et al. (1994) and Goldberg and
Rao (1998) with a new algorithm for sparse graphs. At present, the best bound for the
maximum flow problem is given by

MF(m,n,U) ∈ O
(

min
{

min{n2/3,m1/2} ·m log(n2/m) logU,nm
})

due to Goldberg and Rao (1998) and Orlin (2013), respectively. The best strongly
polynomial time bound is given by MF(m,n) ∈ O(nm) due to Orlin (2013).
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Minimum Cost Flows

The minimum cost flow problem is the most fundamental network flow problem, partic-
ularly since it subsumes both the shortest path and the maximum flow problem and
is strongly related to the maximum generalized flow problem that is described in the
next subsection (Truemper, 1977). For given edge costs ce ∈ Z for each e ∈ E, we seek
to obtain a flow x that minimizes the total flow costs c(x) =

∑
e∈E ce · xe among all

feasible flows. Note that we obtain the shortest path problem by setting bs := 1 and
bt := −1 (if the flow is integral, which we can assume without loss of generality as
described above) and the maximum flow problem by setting ce = −1 for e ∈ δ−(t)
and ce = 0 for e ∈ E \ δ−(t).

Throughout this thesis, we usually restrict our considerations to the case that no flow
value is prescribed, i.e., we drop the flow conservation constraints both for the source
and the sink of the network (similar to the case of minimum cost circulations, cf. (Ahuja
et al., 1993)). This assumption, however, does not constrain the capabilities of the
model, which can be seen as follows: On the one hand, it can be shown that every
minimum cost flow with a flow value of F decomposes into some flow with value F
(which can be found by a maximum flow computation in O(nm) time as shown before)
and a minimum cost circulation in the residual network of this flow. On the other
hand, we can model a desired flow value of F > 1 by adding an artificial edge e
heading from the original sink t to a new artificial sink t ′ with capacity ue := F and
cost ce := −(mCU + 1). Since the absolute cost of any flow is bounded by mCU,
the cost of a minimum cost flow in this transformed network is then smaller than
−(F− 1)(mCU+ 1) if and only if it has a value of F and is minimum among all such
flows. Note that this transformation is only connected with no loss of generality
when talking about exact algorithms. For approximation algorithms (see Section 2.5),
the transformation has an influence on the approximation guarantee of an algorithm.
Nevertheless, as one usually needs to make assumptions in order to guarantee a
non-negative or non-positive objective function value for a proper definition of an
approximation guarantee, we restrict our considerations on the flow model described
above.

Hence, we can formulate the minimum cost flow problem as a linear program as
follows:

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t},

0 6 xe 6 ue for all e ∈ E.
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Note that the total flow costs are non-positive for each minimum cost flow in this
setting since the all-zero flow is always feasible.

Similarly to the case of the maximum flow problem, the minimum cost flow prob-
lem has a long history of steady research and improvements. At present, the best
bound MCF(m,n,C,U) for the minimum cost flow problem is given by

MCF(m,n,C,U) ∈ O(min{nm · log(n2/m) log(nC),nm · log logU log(nC),

m logn · (m+n logn)}).

These bounds are due to Goldberg and Tarjan (1987), Ahuja et al. (1992), and Orlin
(1993), respectively. The best strongly polynomial time bound MCF(m,n) is achieved
by Orlin’s enhanced capacity scaling algorithm (cf. Ahuja et al. (1993) and Orlin (1993))
and is given by MCF(m,n) ∈ O(m logn · (m+n logn)).

Note that each of these bounds only applies to simple graphs. Clearly, we can con-
vert every multigraph into a simple graph by replacing each edge e = (v,w) by two
edges e1 = (v, v ′) and e2 = (v ′,w) for an artificial node v ′. This transformation in-
creases the number of edges from m to 2m and the number of nodes from n to n+m.
However, in Chapter 4, we will see that we can avoid this transformation for the case
of the enhanced capacity scaling algorithm, which in turn yields a time bound of
O(m logm · (m+n logn)) for the problem on multigraphs.

Maximum Generalized Flows

The is an extension of the traditional maximum flow problem in which the implicit
assumption of flow being conserved when it traverses an edge is dropped. Instead, the
flow xe that enters some edge e will have a value of γe · xe for some gain factor γe > 0
when it leaves that edge. For different values of these gain factors, one can model
effects like evaporation in a gas pipeline (if γe < 1) or money exchanges among
different currencies (Wayne, 1999). Clearly, the resulting polyhedron is no longer
integral, so we cannot assume a maximum generalized flow to be integral as well.
The maximum generalized flow problem can be formulated as a linear program as
follows:

max
∑

e∈δ−(t)

γe · xe −
∑

e∈δ+(t)

xe

s.t.
∑

e∈δ−(v)

γe · xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}

0 6 xe 6 ue for all e ∈ E.



2.5 Approximation Algorithms 17

Note that the capacity of an edge bounds the flow that enters an edge (rather than the
flow that leaves the edge). At present, the best bound for the maximum generalized
flow problem is given by

MGF(m,n,B) ∈ O
(

min
{
nm · (m+n logn) logB),m5

})
if the capacities are integers between 1 and B and the gain factors are fractions of
numbers between 1 and B. The first time bound is due to (Radzik, 2004) while the
strongly polynomial time bound is due to Végh (2013), who recently showed that
the generalized maximum flow problem can be solved in strongly polynomial time
MGF(m,n) ∈ O(m5).

2.5 Approximation Algorithms

For a maximization (minimization) problem Π with non-negative objective function z,
an algorithm is called an approximation algorithm with performance guarantee α ∈ [1,∞)

or simply α-approximation algorithm if, for each instance I of Π, it computes a feasible
solution x with objective value z(x) > 1

α · z(x
∗) (z(x) 6 α · z(x∗)) in polynomial time,

where x∗ denotes an optimal solution of I.

An algorithm that receives an instance I of a maximization (minimization) problem Π

and a real number ε ∈ (0, 1) as its input is called a polynomial-time approximation
scheme (PTAS) if, on input (I, ε), it computes a feasible solution x with objective value
z(x) > (1− ε) · z(x∗) (z(x) 6 (1+ ε) · z(x∗)) with a running time that is polynomial
in the encoding size |I| of I. If this running time is additionally polynomial in 1

ε ,
the algorithm is called a fully polynomial-time approximation scheme (FPTAS). Similarly,
for a k-criteria optimization problem Π with objective functions z(j) for j ∈ {1, . . . ,k},
we call an algorithm a k-criteria fully polynomial-time approximation scheme (k-criteria
FPTAS) if, on input (I, ε) with I ∈ Π and ε ∈ (0, 1), it computes a feasible solution x
with objective value z(j)(x) > (1− ε) · z(j)(x∗) for each maximization objective z(j) and
z(j)(x) 6 (1+ ε) · z(j)(x∗) for each minimization objective z(j).

The notion of a k-criteria FPTAS is strongly related to the concept of ε-approximate
pareto frontiers: For some instance I of a k-criteria optimization problem, the ε-approx-
imate pareto frontier P(ε) is a subset of the feasibility set X such that, for each x ∈ X,
there is a point xP ∈ P(ε) that fulfills z(j)(xP) > 1

1+ε · z
(j)(x) for each maximization

objective and z(j)(xP) 6 (1+ ε) · z(j)(x) for each minimization objective (cf. (Papadim-
itriou and Yannakakis, 2000)). Intuitively, the ε-approximate pareto frontier is a “suffi-
ciently good” approximation of the real pareto frontier P with respect to the precision
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parameter ε. Note that, for ε ∈ (0, 1), the fact that z(j)(xP) > 1
1+ε · z

(j)(x) also implies
that z(j)(xP) > (1− ε) · z(j)(x) as in the definition of an FPTAS above.

Finally, an optimization problem Π is said to be NP-hard to approximate if the existence
of an approximation algorithm with a specific performance guarantee α would imply
that an NP-hard decision problem is solvable in polynomial time.



3 Fractional Packing and Parametric Search
Frameworks

The following chapter introduces three generic frameworks that will be used
throughout this thesis. On the one hand, the focus will be set on the paramet-
ric search framework due to Megiddo (1979, 1983), which can often be used to
solve parametric variants of known combinatorial problems in strongly polyno-
mial time. On the other hand, we will review the fractional packing framework
by Garg and Koenemann (2007), which yields generic fully polynomial-time ap-
proximation schemes (FPTASs) for problems that can be formulated as packing
LPs1. In the second part of this chapter, we combine both approaches into a
generalized packing framework that may be used to derive FPTASs for pack-
ing problems on finitely generated polyhedral cones. In particular, for a given
oracle for this cone, the result extends to the case of cones that are generated
by an exponential number of vectors. We show that we obtain FPTASs with
varying time complexities for oracles with varying power. Finally, we show
that this generalized packing framework, which will be used in Chapter 4 and
6, yields FPTASs for a large class of network flow problems in general.

3.1 Parametric Search

At several times throughout this thesis, we will make use of the parametric search
technique due to Megiddo (1979), which often leads to faster algorithms for paramet-
ric problems in case that an algorithm is already known for the version without a
parameter (Megiddo, 1979, 1983). We will briefly discuss the basic idea of this para-
metric search technique in the following before we come to a concrete application in
Section 3.3.

Suppose that we have an algorithm A that solves a given optimization problem in
O(TA) time. Assume that we generalize the input of this problem from constant val-
ues to linear parametric values of the form a0 + λ · a1 that linearly depend on some
parameter λ, which yields a parametric version of the optimization problem. More-
over, assume that we want to find a specific value λ∗ such that the optimum solution

1 A packing LP is a linear program of the form max{cTx : Ax 6 b, x > 0} where cj > 0, bi > 0, and
Aij > 0 for each i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}.
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M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_3



20 Fractional Packing and Parametric Search Frameworks

to the problem with the input values a0 + λ∗ · a1 (which is then no longer paramet-
ric) achieves some specific objective value z∗. For example, in the minimum ratio cycle
problem (also known as minimum cost-to-time cycle problem, cf. (Megiddo, 1979, 1983;
Lawler, 2001)), one is interested in a cycle C∗ in a graph G = (V ,E) that minimizes the
value

∑
e∈C ce∑
e∈C be

among all cycles C, where ce and be are two kinds of costs connected
with each e ∈ E such that

∑
e∈C be > 0 for each cycle C. It is well-known that λ∗

equals the objective function value of a minimum ratio cycle C∗ if and only if the cost
of a minimum cost cycle with edge costs ae − λ∗ · be for each e ∈ E is zero (we will
show a more general variant of this claim in Section 3.3).

Now assume that we have a decision oracle or callback function B that decides in
O(TB) time if a candidate value λ ′ for λ∗ is smaller, larger, or equal to λ∗. In the
example of the minimum ratio cycle problem, we only need to check the sign of a
minimum mean cycle with (constant) edge costs ae − λ ′ · be, which can be done in
O(nm) time (Karp, 1978).

Megiddo’s (1979) parametric search technique now proceeds as follows: Let I denote
an interval for which we know that it contains the optimal value λ∗ (initially, we set
I := (−∞,+∞)). We simulate the execution of the algorithm A with the linear para-
metric values a0 + λ · a1 step by step, where λ is now handled as a symbolic variable.
As long as we add two linear parametric values a0 + λ · a1 and b0 + λ · b1, the result-
ing value (a0 + b0) + λ · (a1 + b1) is linear parametric again. Similarly, if we subtract
two linear parametric values or multiply a linear parametric value by a constant, the
result is linear parametric again. In contrast, multiplications or divisions of two linear
parametric values would destroy the linear parametric structure. In the following, we
call an algorithm strongly combinatorial if it only uses the above three valid operations
on its register contents and restrict our considerations on such types of algorithms in
the following2.

Now suppose that we encounter a branching in the execution path of A that depends
on a comparison of two linear parametric values a0 + λ · a1 and b0 + λ · b1. By inter-
preting both values as linear functions, we get that there are two cases to consider
for the result of the comparison: Either a1 = b1, in which case the two functions do
not intersect and the result of the comparison does not depend on the value of λ, or
a1 6= b1, in which case the two functions intersect at exactly one point λ ′. In the first
case, we can easily resolve the comparison by comparing a0 to b0 and proceed the
simulation of A. In the second case, we need to distinguish the two cases whether λ ′

lies outside or inside of I. In the first case, the comparison, again, does not depend

2 In fact, most of the known combinatorial algorithms for network flow problems turn out to be
strongly combinatorial as well. In our example, it can be easily seen that the minimum mean cycle
algorithm by Karp (1978) fulfills this property.
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on the value of λ (since one of the two functions is greater than the other one within
the set I of relevant values of λ) and we can resolve it in constant time. In the other
case, however, the result of the comparison depends on the value of λ. Nevertheless,
we can use the decision oracle B in order to decide if λ∗ = λ ′ or whether λ ′ < λ∗ or
λ ′ > λ∗. In the first case, we have found the optimal value of λ and are able to set
I := {λ∗}, which allows us to resolve the present and each subsequent comparison. If
λ ′ < λ∗, the candidate value λ ′ was too small, which implies that all of the relevant
values for λ are larger than λ ′, i.e., we can update the interval I to I ∩ (λ ′,+∞). The
comparison becomes then independent from the value of λ over the set I and we can
proceed the execution as above. Similarly, if λ ′ > λ∗, we update I to I ∩ (−∞, λ ′) and
proceed as well.

After at most O(TA) steps, the simulation of A finishes with an optimum solution
(which may still depend on λ) with objective value z0 + λ · z1. Solving z0 + λ · z1 = z∗

for λ, we get the desired value λ∗ (which consequently lies in I). By inserting λ∗ in the
parametric description of the optimum solution, we in turn obtain the exact optimum
solution.

In the worst-case, we need to evaluate the callback for each of the O(TA) comparisons
that may encounter in the course of the simulation, which yields a total running time
for the procedure of O(TA ·TB). In the above example, we use the minimum mean cycle
algorithm both for the strongly combinatorial algorithm A and the callback function B

until we end with the value λ∗ for which the minimum mean cycle has zero mean costs.
This cycle then yields the minimum ratio cycle. Since a minimum mean cycle can be
computed in O(nm) time, we get an overall strongly polynomial running time of
O(n2m2). This running time, however, can be significantly improved by incorporating
parallelization techniques (Megiddo, 1979, 1983). One such technique is given in the
following lemma:

Lemma 3.1:
For a parameter λ and a corresponding callback function B running in O(TB) time, a
set of k independent comparisons between linear parametric values depending on λ
can be resolved simultaneously in O(k+ logk · TB) time.

Proof: As shown above, each of the k comparisons can be resolved by evaluating the
callback function once, which would imply a running time of O(k · TB). However, we
can improve this running time if we consider all comparisons simultaneously rather
than sequentially: In a first step, we calculate the candidate value λi for each compar-
ison without yet evaluating the callback function. We then determine the median λj
among all candidate values, which can be done in O(k) time according to Blum et al.
(1972) (see also (Cormen et al., 2009) for further details on this algorithm). For this
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median, we evaluate the callback function, which allows us to discard half of the can-
didate values and determine the outcome of their corresponding comparisons. For the
remaining set, we again compute the median and so on until we know the outcome
of each comparison. Since the size of the set of candidate values is halved in every
step, we only need to invoke the callback function O(logk) times at an overhead of
O(2k) for the determination of the medians and for maintaining the candidate values.
This shows the claim.

The above lemma is in particular useful in the case of parallel algorithms that exploit
a large number of processors (Megiddo, 1983). The following lemma (which will turn
out to be useful in Chapter 4) illustrates this fact:

Lemma 3.2:
Let G = (V ,E) denote a multigraph with linear parametric edge length le(λ) for each
e ∈ E and let B denote a callback function for the parameter λ running in TB(m,n) ∈
Ω
(

m
logm

)
time. The graph G can be turned into a simple graph G ′ that only contains

the shortest edge among all parallel edges between two nodes in O(logm · log logm ·
TB(m,n)) time.

Proof: Let S :=
{
(v,w) ∈ V2 : |δ+(v)∩ δ−(w)| > 2

}
denote the set of all pairs of nodes

with at least two parallel edges between them. In order to determine the simple
graph G ′ with the desired properties, we need to evaluate the minimum length of
all edges in δ+(v) ∩ δ−(w) for each (v,w) ∈ S. As shown in (Valiant, 1975), we
can determine the minimum of k values in O(log logk) time when using O(k) pro-
cessors. We simulate the computation of this algorithm for all pairs in S in par-
allel, which results in a total number of O

(∑
(v,w)∈S |δ

+(v)∩ δ−(w)|
)

= O(m) pro-
cessors. In order to reduce the number of callback evaluations, we simulate these
O(m) processors sequentially in a round-robin manner until each of them either fin-
ishes its computation or halts at the comparison of two linear parametric values, yield-
ing O(m) candidate values for λ that need to be resolved using the callback for λ.
As shown in Lemma 3.1, we can resolve all of these comparisons simultaneously in
O(m+ logm · TB(m,n)) = O(logm · TB(m,n)) time and continue the simulation of the
processors. After O(log logm) iterations of the above procedure, each processor has
finished its computation and the edge with minimum length is determined for each
(v,w) ∈ S, which shows the claim.
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3.2 Fractional Packing Framework

In the course of this thesis, we will make use of the fractional packing framework
introduced by Garg and Koenemann (2007), which allows to obtain fully polynomial-
time approximation schemes for general packing problems. In the following, we will
briefly discuss the basic idea of this framework and present the essential results of
Garg and Koenemann (2007) that will be used throughout this thesis.

The fractional packing framework can be best understood at the example of the tra-
ditional maximum flow problem. In order to obtain an FPTAS, we use the path-based
formulation for this problem: Since every maximum flow can be decomposed into at
most m flows on s-t-paths P in the set P of all s-t-paths (cf. (Ahuja et al., 1993)), we
can state the maximum flow problem as

max
∑
P∈P

xP (3.1a)

s.t.
∑

P∈P:e∈P
xP 6 ue for all e ∈ E, (3.1b)

xP > 0 for all P ∈ P, (3.1c)

where xP denotes the amount of flow that is sent on the path P ∈ P. Consequently,
for each edge e ∈ E, the sum of the flows on all paths that use e is bounded by the
capacity ue of the edge. Note that this formulation is in fact a packing LP, in contrast
to the standard formulation of the maximum flow problem that was introduced in
Section 2.4. The dual formulation of the primal problem (3.1) is given as follows:

min
∑
e∈E

ye · ue

s.t.
∑
e∈P

ye > 1 for all P ∈ P,

ye > 0 for all e ∈ E.

Although both the primal and the dual formulation of the problem are of exponen-
tial size in general, the fractional packing framework of Garg and Koenemann (2007)
allows us to obtain an FPTAS for the maximum flow problem by using these formu-
lations only implicitly, which will be shown in the following.

Suppose that we want to find an ε-approximate solution for the maximum flow prob-
lem with ε ∈ (0, 1) and let ε ′ := ε

2 . The procedure described in (Garg and Koenemann,
2007) starts with the feasible primal solution x = 0 and the infeasible dual solution
given by ye := δ

ue
> 0 for each e ∈ E with δ :=

(1+ε ′)

((1+ε ′)m)
1
ε ′

. In each step of the algo-

rithm, the most violated dual constraint (i.e., the constraint in the dual formulation with
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the largest relative deviation of the left-hand side value to the right-hand side value)
that corresponds to some path P ∈ P is determined based on the current dual solu-
tion y. Although there are exponentially many constraints in the dual formulation,
we can find the most violated constraint in O(SP(m,n)) time by computing a shortest
s-t-path with the edge lengths ye for each e ∈ E. We then increase xP for the shortest
path P by the maximum value uP := mine∈E ue (i.e., we send uP units of flow on P)
that does not violate any capacity constraint of the edges on P without considering the
flow that has been sent in previous iterations, which will most likely make the primal
solution infeasible. At the same time, each variable ye for e ∈ P will be multiplied by
a factor of

(
1+ ε ′ · uPue

)
. Intuitively, the “congested” edges will get “longer” over time

and will, thus, be used less likely in future iterations, which somehow balances the
flow among all paths.

The algorithm stops as soon as the dual solution fulfills
∑
e∈E ue · ye > 1. As noted

above, the primal solution will most likely be infeasible since, in each iteration, flow is
added regardless of the existing flow in the network. However, Garg and Koenemann
(2007) show that we obtain a feasible primal solution by scaling down the solution x by
log1+ε ′

1+ε ′

δ and that this solution is within a factor (1− 2ε ′) = (1− ε) of the optimal
solution. Moreover, they prove that the described procedure terminates within 1

ε ′ ·
m · (1+ log1+ε ′m) = O

(
1
ε2
·m logm

)
iterations. Subsequently, Garg and Koenemann

(2007) generalized this idea from the maximum flow problem to the case of general
packing problems of the form max{cTx : Ax 6 b, x > 0} for a cost vector c with
positive entries, a right-hand side vector b with positive entries and a matrix A with
non-negative entries. If N denotes the total number of non-zero entries in A and m
the number of rows in A, the authors show that this general problem can be solved
in O

(
1
ε2
·m logm ·N

)
time. We refer to (Garg and Koenemann, 2007; Fleischer and

Wayne, 2002) for further details on the general procedure.

3.3 A Generalized Framework

In this section, we generalize the result of Garg and Koenemann (2007) to the case of
packing problems on polyhedral cones. In order to do so, we incorporate Megiddo’s
parametric search technique that was described in Section 3.1 into the fractional pack-
ing framework considered in Section 3.2. We will also give insights into possible
applications of this generalized framework.
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In the following, let S := {x(1), . . . , x(k)} denote a finite set of k non-negative n-dimen-
sional vectors x(l) ∈ Rn

>0 with x(l) 6= 0. The cone that is spanned by these vectors is
given by

C :=

{
x ∈ Rn : x =

k∑
l=1

αl · x(l) with αl > 0 for all l ∈ {1, . . . ,k}

}
. (3.2)

The main result of this section is that we are able to derive an FPTAS for the problem
to maximize a linear function over the cone C subject to a set of packing constraints
under specific assumptions that will be investigated in the following. As we will
see, this extended framework is especially useful for the case of such network flow
problems for which some kind of flow decomposition theorem is known.

Note that we do neither require the set S to be of polynomial size nor assume the set S
or the cone C to be given explicitly. Instead, as it is common when dealing with im-
plicitly given polyhedra, we only assume the cone to be well-described, which implies
that it has an encoding length of at least n+ 1 (cf. (Grötschel et al., 1993) for further de-
tails). Moreover, we make decisions over S and C via a given oracle A (to be specified
later) that yields information about S based on a given cost vector d. In particular,
since we are interested in polynomial-time approximation schemes, we assume the
oracle to run in polynomial time depending on the dimension n of the ground set
and the encoding length O(

∑n
j=1 logdi) of the cost vector d. Note that, based on this

assumption, a vector x ∈ C returned by the oracle has an encoding length that is poly-
nomially bounded by n and the encoding length of d as well. Moreover, we assume
that the running-time TA of such an oracle A fulfills TA ∈ Ω(n) since it would not be
able to investigate each component of d or return a vector x ∈ C otherwise.

In the following, let A ∈ Rm×n
>0 denote a constraint matrix with non-negative entries,

b ∈ Rm
>0 a positive right-hand side vector, and c ∈ Rn the cost vector with arbitrary

sign. Without loss of generality, we assume that at least one entry in each row and
each column of A is positive. Moreover, we define N to be the number of non-zero
entries contained in the matrix A.

As described above, the problem that we want to approximate is given as follows:

max cTx (3.3a)

s.t. Ax 6 b, (3.3b)

x ∈ C. (3.3c)

We summarize the task of the generalized packing framework as follows:
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Definition 3.3 (Generalized Packing Framework (GPF)):
Instance: A cost vector c > 0, right-hand side vector b > 0, constraint matrix A >

0 as well as an implicitly given set S and an oracle A for S.

Task: Return an FPTAS for the problem (3.3).
C

Using the definition of the cone C based on equation (3.2), we obtain the following
equivalent formulation of the problem (3.3):

max cT
k∑
l=1

αl · x(l)

s.t. A

(
k∑
l=1

αl · x(l)
)

6 b,

αl > 0 for all l ∈ {1, . . . ,k}.

In particular, we replaced the original variables x by the weight vector α and, in
doing so, incorporated the constraints of the cone. As noted above, this formulation
might be of exponential size. However, in the following, we will never need to state
it explicitly but will derive results based on its implicit structure. By rearranging the
objective function and the packing constraints, we obtain the following equivalent
formulation of the problem:

max
k∑
l=1

αl ·
(
cTx(l)

)
(3.4a)

s.t.
k∑
l=1

αl ·
(
Ai·x

(l)
)
6 bi for all i ∈ {1, . . . ,m}, (3.4b)

αl > 0 for all l ∈ {1, . . . ,k}. (3.4c)

Clearly, we can neglect vectors x(l) for which cTx(l) 6 0 since, without loss of gen-
erality, it holds that αl = 0 for each such l in an optimal solution. Hence, in the
following, we restrict our considerations on vectors x(l) with cTx(l) > 0 such that the
primal problem (3.4) is in fact a packing LP (again, possibly of exponential size). The
dual formulation of this problem is given as follows:

min
m∑
i=1

yi · bi (3.5a)

s.t.
m∑
i=1

yi ·
(
Ai·x

(l)
)
> cTx(l) for all l ∈ {1, . . . ,k} with cTx(l) > 0, (3.5b)

yi > 0 for all i ∈ {1, . . . ,m}. (3.5c)
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As it was shown in Section 3.2, we can apply the fractional packing framework of Garg
and Koenemann (2007) to the original problem (3.3) provided we are able to determine
the most violated dual constraint in equation (3.5b) efficiently. Hence, given a dual
solution y > 0, we need to be able to solve the following subproblem in polynomial
time:

min
l∈{1,...,k}
cT x(l)>0

∑m
i=1 yi ·

(
Ai·x

(l)
)

cTx(l)
= min

l∈{1,...,k}
cT x(l)>0

∑m
i=1 yi ·

∑n
j=1Aij · x

(l)
j

cTx(l)

= min
l∈{1,...,k}
cT x(l)>0

∑n
j=1 x

(l)
j ·
∑m
i=1 yi ·Aij

cTx(l)
.

For aj :=
∑m
i=1 yi ·Aij for j ∈ {1, . . . ,n} and a = (a1, . . . ,an)T , this subproblem reduces

to

min
l∈{1,...,k}
cT x(l)>0

aTx(l)

cTx(l)
. (3.6)

Note that aj > 0 for each j ∈ {1, . . . ,n} since yi > 0 for each i ∈ {1, . . . ,m} throughout
the procedure of Garg and Koenemann (2007) and since the matrix A has at least one
positive and no negative entry in each row as assumed above. Since x(l) 6= 0 and
x(l) ∈ Rn

>0 for each l ∈ {1, . . . ,k}, this also yields that aTx(l) > 0, so the minimum in
equation (3.6) is strictly positive.

Clearly, if the vectors in S are given explicitly in the instance of GPF, we immedi-
ately obtain an FPTAS for the original problem (3.3) using the arguments given in
Section 3.2. In the following, we discuss three cases in which we are still able to solve
this subproblem efficiently even if we can access the set S and the cone C only via an
oracle.

3.3.1 Minimizing Oracles

First consider the case that we have a minimizing oracle over S, which is defined as
follows:

Definition 3.4 (Minimizing Oracle):
For a given vector d ∈ Rn, a minimizing oracle for the set S returns a vector x(l

∗) ∈ S
that minimizes dTx(l) among all vectors x(l) ∈ S. C

For a given minimizing oracle for the set S, we are able to solve the following special
case efficiently:
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Theorem 3.5:
Suppose that cTx(l) = c for all x(l) ∈ S and some constant c > 0. Given a minimizing
oracle A for S running in TA time, there is an FPTAS for the problem (3.3) with a
running time in O

(
1
ε2
·m logm · (N+ TA)

)
.

Proof: Since cTx(l) = c for each x(l) ∈ S, the subproblem given in equation (3.6) re-
duces to the problem of finding a vector x(l) with minimum cost

(
1
c · a

)T
x(l) among

all vectors in S. Using the minimizing oracle, we can compute a minimizer for (3.6) in
O(TA) time based on the cost vector d := 1

c ·a (which can be built in O(N) time). Hence,
we are able to determine the most violated dual constraint of (3.5) in O(N+ TA) time,
so the claim follows immediately from the arguments outlined in Section 3.2.

Example 3.6:
In the budget-constrained maximum flow problem, the aim is to determine a flow with
maximum value in an s-t-network that is additionally restricted by a budget-constraint
of the form

∑
e∈E be · xe 6 B for positive integers be ∈N for each e ∈ E and B ∈N (cf.

(Ahuja and Orlin, 1995)). Without loss of generality, since each budget-constrained
maximum flow x is also a traditional s-t-flow and since flows on cycles do not con-
tribute to the flow value, it holds that x can be decomposed into m ′ 6 m flows x(j)

on s-t-paths Pj such that x =
∑m ′

j=1 x
(j). Hence, if x(l) denotes the flow with unit flow

value on some path Pl in the set of s-t-paths {P1, . . . ,Pk}, it holds that each (budget-
constrained) maximum flow x is contained in the cone C that is generated by the
vectors in the set S := {x(l) : l ∈ {1, . . . ,k}}. Hence, we can formulate the budget-
constrained maximum flow problem as follows:

max
∑
e∈E

ce · xe (3.7a)

s.t.
∑
e∈E

be · xe 6 B, (3.7b)

xe 6 ue for each e ∈ E, (3.7c)

x ∈ C, (3.7d)

where ce = 1 if e ∈ δ−(t), and ce = 0, else. In particular, it holds that cTx(l) = 1

for each x(l) ∈ S since each s-t-path contributes equally to the value of the flow.
In order to apply Theorem 3.5, we need to show that there is a minimizing ora-
cle for S, i.e., that we can determine a vector x(l) that minimizes dTx(l) for a given
cost vector d. However, this reduces to the determination of a shortest s-t-path
with respect to the edge lengths d. According to Theorem 3.5, we, thus, get that
there is an FPTAS for the budget-constrained maximum flow problem running in
O
(
1
ε2
·m logm · SP(m,n)

)
time since the number N of non-zero entries in the con-
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straint matrix is bounded by 2m ∈ O(SP(m,n)). Note that this running time is still
obtained even if we add up to O(m) different budget-constraints.

We want to stress that our framework allows to stick to the commonly used edge-
based formulation of the problem, in which there is a linear number of variables
defining the flow on single edges. In contrast, one is required to use the path-based
formulation of the problem when using the original framework of Garg and Koene-
mann (2007) (as it was done in the problem (3.1) on page 23): The flow conservation
constraints, which define the “shape” of a feasible flow, cannot be directly used in a
formulation as a packing problem. These constraints, however, are now modeled by
the containment in the cone C. C

3.3.2 Sign Oracles

The result of Theorem 3.5 yields a fast FPTAS for the problem (3.3) but relies both on
a severe restriction on the vectors in S and the existence of a rather powerful oracle.
We will now relax these assumptions and focus on the more general case in which the
costs cTx(l) of the vectors in S differ. As it turns out, it suffices to assume a weaker
oracle to be given for the set S, which can be defined as follows:

Definition 3.7 (Sign Oracle):
For a given vector d ∈ Rn, a sign oracle for the set S returns a vector x(l) ∈ S with
sgndTx(l) = sgndTx(l

∗), where x(l
∗) minimizes dTx(i) among all vectors in S. C

Note that any minimizing oracle also implies a sign oracle for the set S, so the results
of this subsection also apply to the case of a minimizing oracle. We now show that
we can incorporate a strongly combinatorial sign oracle into Megiddo’s parametric
search framework in order to obtain an FPTAS for the problem (3.3) that does not rely
on any further restrictions.

Let λ∗ denote the value of the minimum in equation (3.6) and, for λ ∈ R, let d(λ) :=
a− λc and D(λ) := min{d(λ)Tx(l) : l ∈ {1, . . . ,k} with cTx(l) > 0}. Similar to the mini-
mum ratio cycle problem that was considered in Section 3.1 (Lawler, 2001; Megiddo,
1979, 1983), we get the following characterization of the relation between the sign of
D(λ) and the sign of λ∗ − λ:

Lemma 3.8:
For some given value of λ ∈ R, it holds that sgn(D(λ)) = sgn(λ∗ − λ).
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Proof: Let L := {l ∈ {1, . . . ,k} : cTx(l) > 0}. First, consider the case that D(λ) > 0. The
claim follows by simple arguments:

D(λ) > 0⇐⇒ d(λ)Tx(l) > 0 for all l ∈ L
⇐⇒ (a− λc)Tx(l) > 0 for all l ∈ L

⇐⇒ aTx(l)

cTx(l)
> λ for all l ∈ L

⇐⇒ λ∗ > λ.

Conversely, if D(λ) < 0, we get the following equivalences by similar arguments:

D(λ) < 0⇐⇒ d(λ)Tx(l) < 0 for some l ∈ L
⇐⇒ (a− λc)Tx(l) < 0 for some l ∈ L

⇐⇒ aTx(l)

cTx(l)
< λ for some l ∈ L

⇐⇒ λ∗ < λ.

Finally, in the remaining case D(λ) = 0, it follows by continuity that λ∗ = λ, which
shows the claim.

According to Lemma 3.8, we can decide about the direction of the deviation between
some candidate value λ and the desired value λ∗ if we are able to determine the sign
of D(λ). Clearly, this sounds like a suitable task for a sign oracle for S. However,
the value D(λ) is defined to be the minimum of d(λ)Tx(l) among all vectors x(l) that
additionally fulfill cTx(l) > 0 whereas the sign oracle is not required to consider such
vectors only according to Definition 3.7. Nevertheless, as it will be shown in the
following lemma, we can neglect this additional restriction when evaluating the sign
oracle:

Lemma 3.9:
For any positive value of λ, it holds that sgn(D(λ)) = sgn(d(λ)Tx(l)) where x(l) is the
vector returned by a sign oracle for S.

Proof: First, consider the case that sgn(d(λ)Tx(l)) = −1, i.e., that d(λ)Tx(l) < 0. Insert-
ing the definition of d(λ), we get that (a− λc)Tx(l) = aTx(l) − λ · cTx(l) < 0. Since both
aTx(l) > 0 and λ > 0, it must hold that cTx(l) > 0 as well. Thus, we can conclude that
D(λ) 6 d(λ)Tx(l) < 0.

Now consider the case that sgn(d(λ)Tx(l)) = 0. According to Definition 3.7, it holds
that there are no vectors x(i) ∈ S with d(λ)Tx(i) < 0, so D(λ) > 0. As in the previous
case, we get that (a− λc)Tx(l) = aTx(l) − λ · cTx(l) = 0 if and only if cTx(l) > 0 since
both aTx(l) > 0 and λ > 0. Hence, we also get that D(λ) 6 d(λ)Tx(l) = 0, so D(λ) = 0.
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Finally, if sgn(d(λ)Tx(l)) = 1, there are no vectors x(i) ∈ S with d(λ)Tx(i) 6 0. Thus, it
also holds that D(λ) > 0, which shows the claim.

Theorem 3.10:
Given a strongly combinatorial and strongly polynomial-time sign oracle A for the
set S running in TA time, there is an FPTAS for the problem (3.3) with a running time
in O

(
1
ε2
·m logm ·

(
N+ T2A

))
.

Proof: Lemma 3.8 and Lemma 3.9 imply that λ∗ is the unique value for λ for which
the sign oracle returns a vector x(l) ∈ S with d(λ)Tx(l) = 0. In particular, the returned
vector x(l) is a minimizer for (3.6). Hence, since the values ai can be computed in
O(N) time, we are done if we are able to determine such a vector x(l) in O(T2A) time.

Let d(λ) be defined as above, where λ is now treated as a symbolic value that is con-
tained in the interval I. Initially, we set I to (0,+∞) since the optimal value λ∗ is
known to be strictly positive (cf. equation (3.6)). Note that the costs d(λ)i = ai − λ · ci
fulfill the linear parametric value property. We simulate the execution of the sign
oracle A at input d(λ) using Megiddo’s parametric search technique as described in
Section 3.1. The underlying idea is to “direct” the control flow during the execution
of A in a way such that it eventually returns the desired vector that minimizes (3.6).

Whenever we need to resolve a comparison between two linear parametric values that
intersect at some point λ ′ ∈ I, we call the sign oracle itself with the cost vector d :=

d(λ ′) in order to determine the sign of D(λ ′). If D(λ ′) = 0, we found a minimizer for
equation (3.6) and are done. IfD(λ ′) < 0 (D(λ ′) > 0), the candidate value λ ′ for λ∗ was
too large (too small) according to Lemma 3.8 and Lemma 3.9 such that we can update
the interval I to I ∩ (−∞, λ ′) (I ∩ (λ ′,+∞)), resolve the comparison, and continue the
simulation of the oracle algorithm. After O(TA) steps, the simulation terminates and
returns a vector x(l) ∈ S that fulfills d(λ∗)Tx(l) = 0 for the desired value λ∗ ∈ I. Hence,
this vector yields the most violated constraint in (3.5b). Since the described simulation
runs in O(T2A) time, we obtain an FPTAS with the claimed running time according to
the arguments outlined in Section 3.2.

Note that we actually still obtain a polynomial running-time of the above algorithm
even if we do not assume the sign oracle to run in strongly polynomial time but only to
run in weakly polynomial time. However, the running-time of the resulting algorithm
might exceed the stated time bound since the candidate values λ ′ that determine the
input to the callback oracle are rational numbers whose representation might involve
exponential-size numbers of the form MTA for some M with polynomial encoding
length. Although the running-time of a weakly polynomial-time oracle algorithm
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depends only logarithmically on the size of these numbers, the running-time might
still increase by a large (polynomial) factor.

Since any minimizing oracle also yields a sign oracle, we immediately get the follow-
ing corollary from the results of Theorem 3.10:

Corollary 3.11:
Given a strongly combinatorial and strongly polynomial-time minimizing oracle A

for S, there is an FPTAS for the problem (3.3) running in O
(
1
ε2
·m logm ·

(
N+ T2A

))
time.

Example 3.12:
In the budget-constrained minimum cost flow problem, the aim is to determine a minimum
cost flow subject to a budget constraint of the form

∑
e∈E be · xe 6 B, equivalently

to the budget-constrained maximum flow problem that was studied in Example 3.6.
When considering the circulation based version of the problem in which excessx(v) =
0 for each v ∈ V , it is easy to see that each optimal flow can be decomposed into
flows on simple cycles. Hence, we can restrict our considerations to flows that are
contained in the cone C that is spanned by flows on simple cycles with unit flow value.
The result of Theorem 3.5 cannot be applied to this problem for two reasons: On the
one hand, since we are dealing with arbitrary costs, it clearly does no longer hold
that cTx(l) is constant among all flows on cycles with unit flow value. On the other
hand, any minimizing oracle would be required to return a vector x(l) that minimizes
dTx(l) for a given cost vector d, so it would be necessary to find a most negative
cycle C∗ in the underlying graph. However, this problem is known to be NP-complete
since finding a most negative simple cycle in a graph with edge costs de = −1 for
each e ∈ E is equivalent to deciding if the graph contains a Hamiltonian cycle (cf.
Garey and Johnson (1979)). Nevertheless, we are able to determine a cycle C with
the same sign as the most negative cycle C∗ efficiently by computing a minimum
mean cycle in O(nm) time (cf. (Karp, 1978)). Hence, we can apply Theorem 3.10

to the budget-constrained minimum cost flow problem in order to obtain an FPTAS
running in O

(
1
ε2
·m logm ·

(
m+ (nm)2

))
time. We will study this problem in detail

in the upcoming Chapters 4 and 5 and will improve upon this FPTAS in Section 4.5.
C

3.3.3 Separation Oracles

We conclude this section by a third kind of oracle called separation oracle. Such an
oracle embodies the most natural, but also the weakest of the three considered oracles.
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Nevertheless, as it will be shown in the following, we can still obtain an FPTAS that
runs within the same time bound as the FPTAS given in the previous subsection.

Definition 3.13 (Separation Oracle):
For a given vector d ∈ Rn, a separation oracle for the set S either states that dTx(i) > 0

for all vectors x(i) ∈ S or returns a certificate x(l) ∈ S that fulfills dTx(l) < 0. C

The name “separation oracle” is based on the fact that such an oracle can in fact
be seen as a traditional separation oracle for the dual cone C∗ := {w ∈ Rn : wTx >

0 for all x ∈ C} of the cone C (cf. (Grötschel et al., 1993)).

Clearly, in comparison to the two oracles introduced before, a separation oracle is the
weakest kind of oracle. In particular, the case that dTx(i) > 0 for all vectors x(i) ∈ S
does no longer include the information whether there is a vector x(l) ∈ S with
dTx(l) = 0 (in which case we have found the desired vector in the parametric search as
described above) or if dTx(i) > 0 for all x(i) ∈ S. For example, if we come across a com-
parison of the form a0 + λ · a1 6 b0 + λ · b1 during the simulation where a1 > b1, we
are actually interested in the information whether or not the optimal value λ∗ fulfills
λ∗ 6 λ ′ := b0−a0

a1−b1
. However, if we use the separation oracle with the cost vector d(λ ′),

we only obtain the information whether λ∗ < λ ′ (in case that the oracle returns a cer-
tificate) or if λ∗ > λ ′. Hence, in the latter case, the outcome of the comparison is not
yet resolved since we need the additional information whether or not λ∗ = λ ′, so we
cannot continue the simulation without any further ado. Nevertheless, as it will be
shown in the following theorem, we can gather this additional information by a more
sophisticated approach:

Theorem 3.14:
Given a strongly combinatorial and strongly polynomial-time separation oracle A for
S, there is an FPTAS for the problem (3.3) running in O

(
1
ε2
·m logm ·

(
N+ T2A

))
time.

Proof: The claim directly follows from Theorem 3.10 if we can show that we can
extend the given separation oracle into a sign oracle for S. As in the proof of Theo-
rem 3.10, we simulate the execution of the separation oracle using the parametric cost
vector d(λ) := a− λc. Assume that the execution halts at a comparison that needs
to be resolved, resulting in a candidate value λ ′ for the desired value λ∗. We call
the separation oracle with the cost vector d := d(λ ′). Clearly, if the oracle returns a
certificate x(l) with dTx(l) < 0, we can conclude that D(λ ′) < 0 such that the value λ ′

was too large according to Lemma 3.8 and the result of the comparison is determined.
Conversely, if the oracle states that dTx(i) > 0 for all x(i) ∈ S, we can conclude that
D(λ ′) > 0. However, we may not yet be able to resolve the comparison since its result
may rely on the additional information whether D(λ ′) = 0 or D(λ ′) > 0 as shown
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above. Nevertheless, we can extract this information by one additional call to the
oracle as it will be shown in the following.

First suppose that λ ′ = λ∗. In this situation, it holds that d(λ ′)Tx(i) > 0 for all x(i) ∈ S
and there is at least one vector x(l) ∈ S that fulfills d(λ ′)Tx(l) = 0. Since all the
functions f(i)(λ) := d(λ)Tx(i) = aTx(i)− λ · cTx(i) are linear functions of λ with negative
slope (in case that cTx(i) > 0; otherwise, the function has no positive root at all),
it holds that several functions f(l) evaluate to zero at λ ′ while every other function
attains its root at a larger value for λ (cf. Figure 3.1a). Hence, for every larger value of
λ, the separation oracle changes its outcome and returns a certificate. In particular, for
a sufficiently small but positive value of δ, the separation oracle called with the cost
vector d(λ ′+ δ) returns a vector x(l) ∈ S with d(λ ′+ δ)x(l) < 0 that additionally fulfills
d(λ ′)Tx(l) = 0 (so x(l) yields the most violated constraint in the overall procedure).
Clearly, the value of δ must be small enough to guarantee that we do not reach the
root of another function f(i) (i.e., smaller than the distance between the dashed and
the dotted line in Figure 3.1a).

λ

f(i) λ ′ = λ∗

f(1)

f(2)

f(3)

f(4)

(a) λ ′ = λ∗

λ

f(i) λ ′ λ∗

f(1)

f(2)

f(3)

f(4)

(b) λ ′ < λ∗

Figure 3.1: Illustration of the two cases that may occur during the simulation of the separation
oracle in case that the separation oracle did not return a certificate when evaluated
for a candidate value λ ′.

Now suppose that λ ′ < λ∗ (cf. Figure 3.1b). In this case, for a sufficiently small but
positive value of δ, the separation oracle returns the same answer when called with
the cost vector d(λ ′ + δ) as long as λ ′ + δ 6 λ∗ (i.e., as long as δ is smaller than the
distance between the dotted and the dashed line in Figure 3.1b). Consequently, in
order to separate this case from the former case, it suffices to specify a value for δ
that is smaller than the distance between any two roots of the functions that occur
both in the instance and during the simulation of A. We can then use a second call to



3.3 A Generalized Framework 35

the decision oracle in order to decide whether a candidate value λ ′ is smaller than or
equal to the optimal value λ∗.

First note that the root of each function f(i) is given by the rational number aTx(i)

cTx(i)
.

Since the coefficients cj are part of the instance I to GPF and since the values aj =∑m
i=1 yi · Aij are generated within the framework of Garg and Koenemann (2007),

the encoding length of both values is polynomial in the problem size. Similarly, as
noted at the beginning of this section, we can assume that the encoding lengths of
the vectors x(i) returned by the oracle are polynomially bounded in n. Consequently,
there is some bound Mf with polynomial encoding length such that the root of each
function f(i) can be represented by a fraction pi

qi
with pi,qi ∈N and qi 6Mf.

Now consider the root −a0−b0
a1−b1

of some function g of the form g(λ) := (a0 − b0) +

λ · (a1 − b1) that stems from a comparison of two linear parametric values of the
forms a0+ λ ·a1 and b0+ λ · b1. Assume that we are in the k-th step of the simulation.
Since the oracle algorithm is strongly combinatorial, the values a0+ λ ·a1 and b0+ λ ·
b1 result from one or more of the input values dj := aj−λ ·cj (which are the only linear
parametric values at the beginning of the simulation) as well as a sequence of up to k
additions or subtractions with other linear parametric values and multiplications with
constants. Hence, since k ∈ O(TA) and A runs in (strongly) polynomial time, there is
a bound Mg with polynomial encoding length such that the root −a0−b0

a1−b1
of each such

function g considered up to the k-th step of the simulation can be represented by a
fraction of the form p

q with p,q ∈N and q 6Mg.

Now let µ1 = p1
q1

and µ2 = p2
q2

with µ1 6= µ2 denote the roots of two of the above
functions of the form f(i) or g. Since q1,q2 6Mf ·Mg, we get that

|µ1 − µ2| =

∣∣∣∣p1q1 − p2q2
∣∣∣∣ = ∣∣∣∣p1 · q2 − p2 · q1q1 · q2

∣∣∣∣ > 1

M2
f ·M2

g

=: µ

Hence, choosing δ := µ
2 , we are able to differentiate between the three cases D(λ) < 0,

D(λ) = 0, and D(λ) > 0. Moreover, by returning any3 vector in S in the case
of D(λ) > 0 and returning the certificate in every other case, the separation or-
acle is extended into a sign oracle and the correctness follows from the proof of
Theorem 3.10. Note that the running-time of the overall procedure remains to be
O
(
1
ε2
·m logm ·

(
N+ T2A

))
(as in the case of a sign oracle in Theorem 3.10) since the

encoding length of the number δ is polynomially bounded and since the oracle algo-
rithm is assumed to run in strongly polynomial time.

3 Actually, since we do not have direct access to the set S, we need to obtain such a vector via
an oracle access. However, by calling the oracle once more with a very large value for λ or by
returning some vector found before, we obtain a certificate in S, which we can return.
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Example 3.15:
The budget-constrained minimum cost generalized flow problem is a generalization of the
maximum generalized flow problem that was considered in Section 2.4 in which each
edge e ∈ E has integral costs ce and in which a budget-constraint

∑
e∈E be · xe 6 B is

added as above. We consider the circulation based version in which excessx(v) = 0

for each node v ∈ V . As it was shown in (Wayne, 2002), every such generalized
circulation x can be decomposed into at most m flows on unit-gain cycles and bicycles,
i.e., flows on cycles C with

∏
e∈C γe = 1 and flows on pairs of cycles (C1,C2) with∏

e∈C1 γe < 1 and
∏
e∈C2 γe > 1 that are connected by a path, respectively. Hence,

every generalized circulation lies in the cone that is generated by flows on such unit-
gain cycles and bicycles. Wayne (2002) presents a procedure that, for a given cost
vector d, either returns a negative cost unit-gain cycle or negative cost bicycle or
states that no such cycle exists in Õ(n2m) time4. Thus, by interpreting this algorithm
as a separation oracle, we obtain an FPTAS for the budget-constrained minimum
generalized flow problem running in Õ

(
1
ε2
·n4m3

)
time according to Theorem 3.14.

To the best of our knowledge, this is the first known FPTAS for this problem. C

Note that we can also directly extend the separation oracle in Example 3.15 into a sign
oracle and apply Theorem 3.10 in this special example: For the case that the algorithm
states that there are no negative cost unit-gain cycles and bicycles, Wayne (2002) shows
that there are node potentials π such that the reduced costs dπe := de+πv−γe ·πw are
non-negative for each edge e = (v,w) ∈ E with gain factor γe. Since

∑
e∈E d

π
e · xe =∑

e∈E de · xe for each feasible generalized circulation x (cf. (Wayne, 2002)), there is a
unit-gain cycle or bicycle with zero cost if and only if there is a unit-gain cycle or
bicycle in the subgraph that is induced by the edges with zero reduced costs. Hence,
since unit-gain cycles and bicycles can be detected in O(nm) time according to Wayne
(2002), we obtain a sign oracle for the set S of flows on unit-gain cycles and bicycles
running in Õ(n2m) time, which yields an FPTAS with the same running time as above
according to Theorem 3.10.

3.4 Conclusion

As it was shown in this chapter, the parametric search technique due to Megiddo
(1979, 1983) and the fractional packing framework of Garg and Koenemann (2007)
are two generic likewise powerful tools that can be used in order to derive fast algo-
rithms for parametric problems on the one side and to obtain fully polynomial-time

4 The notation Õ(·) ignores poly-logarithmic factors in m, so Õ(f(n,m)) = O(f(n,m) · logkm) for
some constant k.
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approximation schemes for packing problems on the other side. A combination of
both frameworks yields an even more powerful framework that can be used in order
to solve general packing problems over polyhedral cones. Instead of requiring the
cone to be given explicitly, we only need oracle access to the cone, which allows us
to extend our results to cones that are generated by an exponential number of vec-
tors. As it was shown, the efficiency of the procedure depends on the power of the
corresponding oracle. Moreover, it was shown (and will be shown in the following
chapters) that the framework can be applied to a large class of network flow problems.
The results of this chapter are summarized in Table 3.1.

Minimizing Oracle Sign Oracle Separation Oracle
Theorem 3.5:
FPTAS in O( 1

ε2
·m logm ·

(N+TA)) time if cTx(l) = c
for each x(l) ∈ S
Corollary 3.11:
FPTAS in O( 1

ε2
·m logm ·

(N + T2A)) time for
strongly combinatorial
and strongly polynomial-
time A

Theorem 3.10:
FPTAS in O( 1

ε2
·m logm ·

(N + T2A)) time for
strongly combinatorial
and strongly polynomial-
time A

Theorem 3.14:
FPTAS in O( 1

ε2
·m logm ·

(N + T2A)) time for
strongly combinatorial
and strongly polynomial-
time A

Table 3.1: The summarized results for the generalized packing framework in Chapter 3.



4 Budget-Constrained Minimum Cost Flows: The
Continuous Case

In this chapter, we study an extension of the well-known minimum cost flow
problem in which a second kind of costs (called usage fees) is associated with
each edge. The goal is to minimize the first kind of costs as in traditional min-
imum cost flows while the total usage fee of a flow must additionally fulfill
a budget constraint. In the first part of this chapter, we present a special-
ized network simplex algorithm for the problem. In particular, we provide
optimality criteria as well as measurements to avoid cycling. Moreover, we
prove a pseudo-polynomial running time of the algorithm using Dantzig’s piv-
oting rule (cf. (Ahuja et al., 1988)). In the second part of the chapter, we
present an interpretation of the problem as a bicriteria minimum cost flow
problem, which allows us to obtain a weakly polynomial-time combinatorial
algorithm that computes only O(logM) traditional minimum cost flows, where
M is the largest number that occurs in the problem instance. Moreover, we
present a strongly polynomial-time algorithm that computes Õ(nm) traditional
minimum cost flows and derive three fully polynomial-time approximation
schemes for the problem on general and on acyclic graphs.
This chapter is based on joint work with Sven O. Krumke and Clemens Thielen
(Holzhauser et al., 2016a, 2015a, 2016b).

4.1 Introduction

As it was motivated in Section 2.4, traditional minimum cost flows provide a useful
tool in finding the cheapest way to transport a specific amount of flow through a
given network without violating any capacity constraint. Many real-world scenarios,
however, require the incorporation of a second kind of costs connected with the usage
of the edges that is constrained by a given budget. We study an extension of the tradi-
tional minimum cost flow problem by such a second kind of linear costs, called usage
fees. We show that we obtain both specialized algorithms and efficient approximation
schemes for this problem.

The applications of the presented extension of the traditional minimum cost flow
problem are manifold. The budget-constrained minimum cost flow problem can be

© Springer Fachmedien Wiesbaden GmbH 2016
M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_4
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seen as the ε-constraint method applied to a bicriteria minimum cost flow problem
(cf., e.g., (Chankong and Haimes, 2008)). As the minimum cost flow problem con-
tains many important network flow problems as a special case such as the maximum
flow problem, the dynamic maximum flow problem, the transportation problem, and
the assignment problem (cf. (Ahuja et al., 1993)), our algorithms can be directly ap-
plied to the case of the budget-constrained variants of these problems. This in turn
yields several applications in logistics, telecommunication, and computer networks (cf.
(Çalışkan, 2009)). Moreover, our problem is strongly related to the case of the min-
imum cost flow problem with a fractional objective function of the form min cTx+c0

bTx+b0
where bTx+b0 > 0 for each feasible flow x: As it is well known, problems of this form
can be solved by applying the so-called Charnes-Cooper transformation, which basically
replaces the objective function by a linear function of the form cTx+ c0t for a new
variable t and adds a budget-constraint of the form bTx+ b0t = 1 (cf. (Charnes and
Cooper, 1962)).

In the subsequent chapter, we will investigate two discrete variants of the budget-
constrained minimum cost flow problem. Both the continuous version of the problem
considered in this chapter and the two discrete variants can be seen as a network
improvement problem if we interpret the usage fees as the costs that are necessary to
upgrade the capacity of the corresponding edges up to a sufficiently large amount.
As we will show in the next chapter, this interpretation allows to model even more
realistic applications.

4.1.1 Previous Work

The related budget-constrained maximum flow problem was first studied by Ahuja
and Orlin (1995), who present a weakly polynomial-time algorithm for the problem
that is based on a capacity scaling variant of the successive shortest path algorithm.
Çalışkan (2009) later showed that Ahuja and Orlin’s (1995) algorithm may not return
a feasible solution in a specific special case and presented a corrected version of the
algorithm. The same author also presented a double scaling algorithm, a network
simplex algorithm, and a cost scaling algorithm for the budget-constrained maximum
flow problem and evaluated their empirical performance (cf. (Çalışkan, 2008, 2011,
2012)). In particular, he could show that the cost scaling variant outperforms the
other two scaling variants (including the capacity scaling algorithm of Ahuja and
Orlin (1995)) and that the network simplex algorithm clearly outperforms all known
algorithms for the problem (including CPLEX applied to the LP formulation). Krumke
and Schwarz (1998) study the problem of finding a maximum flow in the case that
the capacity of each edge can be improved using a given budget. To do so, they
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differentiate between three variants of how to calculate the upgrade costs. One of
these variants is equivalent to the one that is used in this chapter. The other two
variants will be investigated in the subsequent chapter.

In (Demgensky et al., 2002) and (Demgensky et al., 2004), the authors deal with a
related problem in which the costs and/or the capacity of each edge can be improved
by investing money. The aim is to maximize the flow value while not exceeding the
given budget and a bound on the costs of the flow. They show that the problems are
NP-complete and provide pseudo-polynomial-time algorithms for the problems on
series-parallel graphs. Similar research was previously done by Krumke et al. (1998),
who provide several results about the complexity and approximability of models in
which either edges or nodes can be improved in order to reduce the latency of the
corresponding (incident) edges.

4.1.2 Chapter Outline

We investigate the budget-constrained minimum cost flow problem with respect to
efficient combinatorial solution methods and fast approximation schemes. After a
provision with the necessary preliminaries in Section 4.2, we concentrate on a spe-
cialized network simplex algorithm for the budget-constrained minimum cost flow
problem in Section 4.3. In particular, we show how the definition of a basis structure
and how the simplex pivot step itself need to be adopted in comparison to the net-
work simplex algorithm for the traditional minimum cost flow problem (cf. (Ahuja
et al., 1993)). Moreover, we present optimality criteria for the problem that are based
on a novel definition of the reduced costs of each edge. We combine two tools that
are used in the traditional network simplex algorithm to avoid cycling of the proce-
dure in order to obtain an equivalent result for the presented algorithm. In particular,
we show that the number of degenerate simplex pivots between two non-degenerate
pivots is pseudo-polynomially bounded, which shows that the procedure terminates
within pseudo-polynomial time. In the second part of this chapter (Section 4.4), we
present an interpretation of the budget-constrained minimum cost flow problem as
a bicriteria minimum cost flow problem and show that we can reduce the problem
to the determination of a suitable weighting of the costs and the usage fees. This
in turn allows us to obtain a weakly polynomial-time algorithm for the problem
running in O(logM ·MCF(m,n,C,U)) time, where M is the largest number in the
instance and MCF is defined as in Section 2.4. Incorporating the same observation
into Megiddo’s parametric search technique as introduced in Section 3.1, we obtain
a strongly polynomial-time algorithm that computes at most Õ(nm) traditional mini-
mum cost flows. Finally, in Section 4.5, we consider the approximability of the budget-
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constrained minimum cost flow problem and present two FPTASs for the problem on
general graphs. Moreover, we specialize one of these FPTASs to the case of acyclic
graphs, which allows us to obtain a more efficient running time. An overview of the
results of this chapter is given in Table 4.1 on page 76.

4.2 Preliminaries

We start by defining the constrained minimum cost flow problem in a directed graphG =

(V ,E) with edge capacities ue ∈ N, edge costs ce ∈ Z (i.e., we allow integral costs with
arbitrary sign), and usage fees be ∈N>0 per unit of flow on the edges e ∈ E, as well as
a budget B ∈N>0 and a distinguished source s ∈ V and sink t ∈ V .1

Definition 4.1 (Flow, flow value, constrained minimum cost flow):
A function x : E → R>0 is called a (feasible) flow if xe := x(e) 6 ue for each e ∈ E,
excessx(v) :=

∑
e∈δ−(v) xe−

∑
e∈δ+(v) xe = 0 for each v ∈ V \ {s, t} and b(x) :=

∑
e∈E be ·

xe 6 B. The flow value of a flow x is given by val(x) := excessx(t). A flow x of
minimum cost c(x) :=

∑
e∈E ce · xe is called a budget-constrained minimum cost flow or

just optimal flow. C

Note that we explicitly allow the existence of parallel edges between two nodes since
these edges may differ in their capacities, costs, and usage fees, which may be use-
ful in certain applications, e.g., in order to model piecewise linear cost functions
(cf. (Krumke and Schwarz, 1998)). In the presented continuous case of the budget-
constrained minimum cost flow problem, the total usage fee on an edge e that trans-
ports xe units of flow is given by be · xe, so the overall usage fee b(x) of a flow x

is given by bR(x) :=
∑
e∈E be · xe. This is probably the most natural formulation of

the problem and corresponds to the constraint used by Ahuja and Orlin (1995) and
Çalışkan (2008, 2011, 2012).

Definition 4.2 (Continuous Budget-constrained minimum cost flow problem (bcmcfpR)):
Instance: Directed graph G = (V ,E) with source s ∈ V , sink t ∈ V , capac-

ities ue ∈ N>0, costs ce ∈ Z, and usage fees be ∈ N>0 on the
edges e ∈ E and a budget B ∈N>0.

Task: Determine a budget-constrained minimum cost flow for b := bR.
C

1 As it is common when dealing with network flow problems, we assume throughout this chapter
that all of these values are integral, which is no restriction for most of the applications since we can
multiply all values with their least common denominator in case of rational data (cf., e.g., (Ahuja
et al., 1993)).
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Throughout this chapter, we make the following assumption on the structure of the
underlying graph:

Assumption 4.3: Every node v ∈ V is contained in some directed path from the
source s to the sink t. C

Note that Assumption 4.3 does not impose any restriction on the underlying model
since we can connect the source and the sink with every node v ∈ V by an edge with
large costs, capacity, and usage fees if necessary. As a consequence, we can assume
the underlying graph to be weakly connected, so n ∈ O(m).

In the following, when making statements about time complexities, we pinpoint that we
use the definitions C := maxe∈E |ce|, U := maxe∈E ue, and B := maxe∈E be in accordance
to common notation (cf., e.g., (Ahuja et al., 1988; Ahuja and Orlin, 1995; Çalışkan,
2008)). Moreover, we define M := max{m,C,U,B} such that the encoding length of
any instance of BCMCFPR is contained in O(m logM) (cf., e.g., (Ahuja and Orlin,
1995)). In all other cases, we usually refer to cycles by C and denote the budget itself
by B.

Using the definitions from above, we can formulate the budget-constrained minimum
cost flow problem as a linear program as follows:

min
∑
e∈E

ce · xe (4.1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}, (4.1b)

∑
e∈E

xe · be 6 B, (4.1c)

0 6 xe 6 ue for all e ∈ E. (4.1d)

Clearly, since the mathematical model (4.1a) – (4.1c) is a linear program, it can be
solved in weakly polynomial time by known techniques such as interior point meth-
ods (cf. (Schrijver, 1998)). In particular, Vaidya (1989) shows that the traditional mini-
mum cost flow problem can be solved in O(n2 ·m0.5 · logM ′) time if M ′ is the largest
number that occurs in the corresponding instance. This result relies on the fact that the
problem can be formulated as a linear program of the form max{wTx : Gx = 0,Hx > b}
for a block matrix H and a matrix G with at most a constant number of non-zero
entries per column. Any instance of BCMCFPR fulfills this property as well after in-
serting a slack variable and incorporating the budget constraint into the matrix G. For
the case of simple graphs, this leads to a running-time of O(n2 ·m0.5 · logM). Since
we can transform each simple graph into a multigraph by placing an artificial node
in the middle of each edge as described in Section 2.4, we get the following weakly
polynomial running time for BCMCFPR on the more general setting of multigraphs:
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Theorem 4.4:
BCMCFPR is solvable in weakly polynomial time O(m2.5 · logM).

However, in this thesis, we are interested in combinatorial algorithms that exploit the
discrete structure of the underlying problem. We show how we can obtain tailored
algorithms and how we can incorporate combinatorial algorithms for the traditional
minimum cost flow problem in order to solve the more general budget-constrained
minimum cost flow problem BCMCFPR.

Note that c(x∗) 6 0 for each optimal flow x∗ since we do not incorporate nontrivial
lower bounds on the flow on the edges or require some specific amount of flow to
pass the network, so the zero flow is always feasible. Nevertheless, as it was shown
in Section 2.4, we are able to model a required flow value F if we append an artificial
edge with capacity F and sufficiently small costs to the former sink t that leads to a
new sink t ′. The fact that c(x∗) 6 0 for each optimal flow x∗ has the consequence that
we need to adopt the definition of an FPTAS according to Section 2.5 appropriately.
That means, we need to handle BCMCFPR as a maximization problem rather than
a minimization problem when speaking about approximation algorithm, so a solu-
tion x returned by an FPTAS with respect to a precision parameter ε ∈ (0, 1) fulfills
(−c(x)) > (1− ε) · (−c(x∗)) or, equivalently, c(x) 6 (1− ε) · c(x∗).

Consider a traditional minimum cost flow with respect to the costs c that is computed
by some state-of-the-art algorithm, for example the enhanced capacity scaling algo-
rithm by Orlin (1993) running in O(m logm · (m+n logn)) time on multigraphs as it
will be shown in Section 4.4. If the total usage fee of this flow fulfills b(x) 6 B, we
have clearly found an optimal solution to the given instance of the budget-constrained
minimum cost flow problem and are done. In the following, we are interested in
the converse case that the budget is exceeded for this flow. Note that the usage fee
amounts to at least B+ 1 in this case since the computed traditional minimum cost
flow can be assumed to be integral without loss of generality and since the usage fees
are integral as well:

Assumption 4.5: There is a traditional minimum cost flow xwith respect to the costs c
that fulfills

∑
e∈E be · xe > B+ 1. C

4.3 Network Simplex Algorithm

Since it was published by Dantzig (1951) (originally designed for the transportation
problem), the network simplex algorithm for the traditional minimum cost flow prob-
lem has been improved progressively and is widely believed to be one of the most
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efficient solution methods for the minimum cost flow problem at present (cf. (Ahuja
et al., 1993)). Simplex-type methods usually have to cope with the risk to “get stuck”
in an infinite loop with no progress – an effect that is referred to as cycling. However,
Cunningham (1976) introduced the notion of strongly feasible bases that may be used
to prevent cycling. While the sequence of operations with no progress may still be ex-
ponentially large, several authors such as Cunningham (1979) and Ahuja et al. (2002)
provide measurements to keep the length of such sequences polynomially bounded.
At present, the network simplex algorithm with the best time complexity is due to Or-
lin (1997) in combination with Tarjan’s (1997) dynamic tree data structure and achieves
a running time of O(nm lognmin{lognC,m logn}).

In this section, we show how we can adopt several of the above ideas in order to obtain
a network simplex algorithm for the budget-constrained minimum cost flow problem
running in pseudo-polynomial time. In particular, we show how we can adapt the
mentioned measurements to avoid cycling to the more complex basis structures that
we need to cope with in the case of BCMCFPR. Independently, Çalışkan (2011) pub-
lished a network simplex algorithm for the strongly related budget-constrained maxi-
mum flow problem. He could show that his implementation clearly outperforms other
solution methods including CPLEX by a factor of 27 on average in terms of running
times. Since the constraints of the (budget-constrained) maximum and minimum-cost
flow problem are the same, his algorithm can be applied to the case of BCMCFPR

with only minor modifications. Nevertheless, the upcoming results complement the
ones of Çalışkan in several aspects: On the one hand, we provide a fully combinatorial
description of the algorithm that does not rely on any linear programming arguments.
On the other hand, in contrast to the algorithm shown in (Çalışkan, 2011), our algo-
rithm is based on two different kinds of (integral) node potentials and three kinds of
reduced costs. We provide a proof that these reduced costs may in fact be used as
optimality criteria for the procedure. Moreover, the integral node potentials enable us
to show that our procedure can be implemented to run in pseudo-polynomial time.
As it will be moreover shown, this running time can be further improved by incor-
porating Dantzig’s pivoting rule for choosing the edge that enters the basis (cf., e.g.,
(Ahuja et al., 1988)). Finally, in his measurements to avoid cycling, Çalışkan (2011)
misses to include all cases that may occur. We close this gap by introducing a novel
transformation step that allows us to avoid the corresponding case and to simplify
the proofs.
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4.3.1 Notation and Definitions

In the following, we give insights into the notion of basis structures in the context of
BCMCFPR. In contrast to the network simplex algorithm for the traditional minimum
cost flow problem (cf. (Ahuja et al., 1993)), we need to drop the assumption that the
subgraph that is induced by edges that are neither empty nor full is cycle free. Instead,
the basis contains a cycle with non-zero usage fees, as it will be shown in detail in the
following.

Consider an edge e ∈ E and a partition of the remaining edges in E \ {e} into three
sets L, T , and U. Let the edges in T form a spanning-tree of the underlying graph G.
Since there is a unique (undirected) path between any two nodes in the subgraph
induced by T , each edge e ∈ L ∪U ∪ {e} closes a unique (undirected) cycle C(e) to-
gether with the edges in T . In the following, for each e ∈ L ∪ U ∪ {e}, let C+(e)

(C−(e)) denote the set of edges that are oriented in the same (opposite) direction
as e in C(e). The costs and usage fees of this cycle are then given by c(C(e)) :=∑
e∈C+(e) ce −

∑
e∈C−(e) ce and b(C(e)) :=

∑
e∈C+(e) be −

∑
e∈C−(e) be, respectively2.

In particular, note that the subgraph induced by the edges in T ∪ {e} contains a cy-
cle C(e). We call such a tuple (L, T ,U, e) a basis structure of the budget-constrained
minimum cost flow problem if b(C(e)) 6= 0.

For a given basis structure (L, T ,U, e), let x denote a flow that fulfills xe = 0 for each
e ∈ L, xe = ue for each e ∈ U, and b(x) :=

∑
e∈E be · xe = B while maintaining flow

conservation at each node v ∈ V . We refer to x as the basic solution corresponding to
(L, T ,U, e). As shown in (Çalışkan, 2011), the basic solution of each basis structure
is uniquely defined and can be obtained in O(m) time: In a first step, we let xe = 0

and determine the values of all edges in T as it is done in the traditional network
simplex method (cf. (Ahuja et al., 1993)). In a second step, the flow on the cycle C(e)
is then increased (or decreased) until b(x) = B. In the following, we refer to a basis
structure (L, T ,U, e) as feasible if the corresponding basic solution x is a feasible flow.
In this case, we also refer to the flow x as a basic feasible flow. The described procedure
yields the following corollary:

Corollary 4.6:
For each feasible basis structure (L, T ,U, e) and its corresponding basic feasible flow x,

2 As noted above, the meaning of the variables C, U and B is ambiguous. However, in order to
comply with the common notations (cf., e.g., (Ahuja et al., 1988; Ahuja and Orlin, 1992)), we
pinpoint that we use the definitions C := maxe∈E |ce|, U := maxe∈E ue, and B := maxe∈E be when
making statements about time complexities, but refer to cycles, the set of full edges, and the budget,
respectively, in all other cases.
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it holds that x can be decomposed into two flows xI and xC such that x = xI + xC,
where xI is integral and xC is only positive on C(e).

Note that Corollary 4.6 holds independently of whether the budget B is integral or
not (this will be important in Section 4.3.4).

As it turns out, we are able to restrict our considerations to such feasible basis struc-
tures and their corresponding basic feasible flows. This is shown in the following
lemma, whose proof we include for the sake of completeness:

Theorem 4.7 (Ahuja et al. (1993)):
Each optimal solution x of BCMCFPR can be turned into an optimal basic feasible
flow x∗ in O(m2) time.

Proof: Let x be an optimal solution to the underlying instance of BCMCFPR. Further-
more, let G ′ denote the subgraph that is induced by the set of free edges e fulfilling
0 < xe < ue. Clearly, if G ′ does not contain every node v ∈ V or does not contain a
cycle, we can add further edges and the claim follows. Else, if there are at least two
cycles C1 and C2 consisting of free edges, we fix arbitrary orientations of the two cy-
cles. If one of these cycles fulfills b(Ci) = 0 for i ∈ {1, 2}, it clearly holds that c(Ci) = 0
as well (since we could otherwise improve the flow x by sending flow on Ci in some
direction without influencing the budget) and we can increase or decrease the flow on
Ci until at least one edge becomes empty or full. Similarly, if b(C1) 6= 0 6= b(C2), by
sending a sufficiently small positive or negative amount of flow δ on C1 and reducing
or increasing the flow on C2 by δ · b(C1)

b(C2)
, respectively, we maintain feasibility (since

all of the edges are free edges and the usage fee of the flow remains equal to B) and
optimality (since c(C1) + δ · c(C1)c(C2)

= 0 as in the previous case). As before, by sending
the maximum possible amount δ such that no flow bound is violated at any edge, the
flow on at least one edge e of the edges in C1 or C2 becomes zero or equal to ue, so
this edge e can be assigned to L or U, respectively. In any case, the number of free
edges in G ′ decreases by at least one. By repeating the above procedure, we end with
an optimal basic feasible flow within O(m) iterations. Note that we can determine a
pair of (not necessarily edge-disjoint) cycles in O(m) time by a single traversal of the
graph and cancel one of these cycles within the same time bound, which yields the
claim.

As in the traditional network simplex algorithm, we associate node potentials with each
node v ∈ V in order to be able to check for optimality quickly. However, since we are
dealing with two kinds of costs, we maintain two different node potentials π and µ
that are defined with respect to the edge costs ce and the usage fees be, respectively.
In particular, we define πs := 0 and µs := 0 for the source s of the network (which
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we will select as the root node of the spanning tree T in the following). We choose
the node potentials π and µ in a way such that the reduced costs cπe := ce − πv + πw

and bµe := be − µv + µw are zero for each edge e = (v,w) ∈ T . With this restriction,
the node potentials at each node v ∈ V are uniquely defined and can be computed in
O(n) time (cf. (Ahuja et al., 1993) for further details).

Note that, for any edge e /∈ T , the costs and usage fees of the cycle C(e) are given by

c(C(e)) =
∑

e ′∈C+(e)

ce ′ −
∑

e ′∈C−(e)

ce ′

=

 ∑
e ′=(v,w)∈C+(e)

ce ′ − πv + πw

−

 ∑
e ′=(v,w)∈C−(e)

ce ′ − πv + πw


=
∑

e ′∈C+(e)

cπe ′ −
∑

e ′∈C−(e)

cπe ′ = c
π
e

and

b(C(e)) =
∑

e ′∈C+(e)

b
µ
e ′ −

∑
e ′∈C−(e)

b
µ
e ′ = b

µ
e ,

respectively, since cπe ′ = b
µ
e ′ = 0 for each e ′ ∈ T and since e ∈ C+(e). Thus, both

values c(C(e)) and b(C(e)) can be computed in constant time once the node potentials
are known.

In order to be able to decide if a basic feasible flow is optimal or to detect an edge that
is able to improve the objective function, we assign a third kind of reduced costs dπ,µ

e

to each edge e ∈ E that is defined as follows:

dπ,µ
e := cπe − c

π
e ·
b
µ
e

b
µ
e

. (4.2)

Remember that bµe = b(C(e)) 6= 0 in any basis structure. Intuitively, the reduced
costs dπ,µ

e describe the effect that an increase of the flow on C(e) by one unit and a
decrease of the flow on C(e) by b

µ
e

b
µ
e

units has on the objective function value. This will

be shown in the following section. Note that dπ,µ
e = 0 for each e ∈ T ∪ {e} since cπe = 0

and bµe = 0 for each e ∈ T and dπ,µ
e = cπe − c

π
e ·

b
µ
e

b
µ
e
= 0.

4.3.2 Network Simplex Pivots

Before we describe the network simplex pivot in the case of BCMCFPR, it is useful to
recall the basic outline of the corresponding procedure in the case of the traditional
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network simplex algorithm: For a given basis structure (L, T ,U) that consists of a set
of empty edges L, a spanning tree T , and a set of full edges U, assume that there is an
edge e ∈ L with negative reduced costs. Adding this entering edge e to the spanning
tree T closes a unique cycle C(e) with negative costs. By sending flow on C(e) in
the direction of e, we can improve the objective function value until, for some flow
value δ, some leaving edge e ′ ∈ C(e) becomes empty or full. By assigning this edge e ′

to L or U, respectively, we obtain a new basis structure. This operation (adding an
edge to T , sending flow on the cycle, removing one edge from the cycle) is called a
simplex pivot. One distinguishes between a degenerate simplex pivot if δ = 0 and a non-
degenerate simplex pivot if δ > 0. Note that the objective function value never increases
during a simplex pivot, but only decreases in the case of a non-degenerate simplex
pivot.

Now, for a given instance of BCMCFPR, let (L, T ,U, e) and x denote a feasible basis
structure and its basic feasible flow, respectively, and let π and µ denote the corre-
sponding node potentials. Assume that there is an edge e ∈ L with negative reduced
costs dπ,µ

e < 0. We show that we do not increase the objective function value if we
add the then called entering edge e to T (which closes a new cycle C(e) together with
the edges in T ) and send suitable amounts of flow on both of the cycles C(e) and C(e)
until the flow value on at least one leaving edge e ′ ∈ T ∪ {e, e} becomes equal to zero or
ue ′ . In this case, we can obtain a new basis structure (L ′, T ′,U ′, e ′) and continue the
procedure.

For some value δ > 0, let x ′ be the flow defined as

x ′ := x+ δ · χ(C(e)) − δ · b
µ
e

b
µ
e

· χ(C(e)), (4.3)

where, for any cycle C with forward edges C+ and backward edges C−, the flow χ(C)

is defined as

(χ(C))e :=


1, if e ∈ C+,

−1, if e ∈ C−,

0, else.

The new flow x ′ fulfills b(x ′) = B, since

b(x ′) = b(x) + δ · b(χ(C(e))) − δ · b
µ
e

b
µ
e

· b(χ(C(e)))

= b(x) + δ · b(C(e)) − δ · b
µ
e

b
µ
e

· b(C(e))

= b(x) + δ ·
(
bµe −

b
µ
e

b
µ
e

· bµe

)
= b(x) = B.
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Moreover, it holds that

c(x ′) = c(x) + δ · c(χ(C(e))) − δ · b
µ
e

b
µ
e

· c(χ(C(e)))

= c(x) + δ · c(C(e)) − δ · b
µ
e

b
µ
e

· c(C(e))

= c(x) + δ ·
(
cπe −

b
µ
e

b
µ
e

· cπe
)

= c(x) + δ︸︷︷︸
>0

· dπ,µ
e︸︷︷︸
<0

6 c(x).

By sending a small amount of δ > 0 units of flow on C(e) and −b
µ
e

b
µ
e
· δ units of flow

on C(e), we do not increase the objective value while maintaining feasibility. In fact,
if we can choose a positive value for δ, the objective value strictly decreases. Let
θe ′ := (χ(C(e)))e ′ −

b
µ
e

b
µ
e
· (χ(C(e)))e ′ denote the effect that an augmentation of one unit

of flow on C(e) and −b
µ
e

b
µ
e

units of flow on C(e) has on edge e ′ ∈ E. Moreover, let δ be
defined as δ := mine ′∈E δe ′ with

δe ′ :=


−
xe ′
θe ′

if θe ′ < 0,

ue ′−xe ′
θe ′

if θe ′ > 0,

+∞ else.

Hence, by sending δ units of flow on C(e) and −b
µ
e

b
µ
e

units of flow on C(e), we maintain
feasibility of the flow. Moreover, by the definition of δ, there are several blocking
edges e ′ contained in C(e) or C(e) (or both) that fulfill δe ′ = δ. We choose one of these
blocking edges as the leaving edge e ′, which consequently fulfills x ′e ′ = 0 or x ′e ′ = ue ′ .
We distinguish three cases:

• If e ′ = e, we can simply remove e from L and assign it to U. The new basis
structure (L ′, T ′,U ′, e ′) := (L \ {e}, T ,U∪ {e}, e) is then feasible again.

• If e ′ = e, we obtain a new basis structure by setting (L ′, T ′,U ′, e ′) := (L ∪ {e ′} \

{e}, T ,U, e) or (L ′, T ′,U ′, e ′) := (L \ {e}, T ,U∪ {e ′}, e), depending on whether x ′e ′ =
0 or x ′e ′ = ue ′ , respectively.

• Otherwise, we remove e from L and assign it to T . Moreover, we remove e ′ from
T and assign it to L or U, depending on whether x ′e ′ = 0 or x ′e ′ = ue ′ , respec-
tively, which yields the new basis structure (L ′, T ′,U ′, e ′) := (L ∪ {e ′} \ {e}, T ∪
{e} \ {e ′},U, e) or (L ′, T ′,U ′, e ′) := (L \ {e}, T ∪ {e} \ {e ′},U ∪ {e ′}, e), respectively.
Furthermore, for the case that e is no longer contained in a cycle in T ′ ∪ {e}, we
assign e to T ′, remove e from T ′, and set e ′ := e.

In any case, we maintain a spanning tree T and ensure that e closes a cycle with the
edges in T . As in the traditional network simplex algorithm, we refer to such a step
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as a simplex pivot. This pivot step is called degenerate if δ = 0 and non-degenerate else.
In the former case, we refer to those edges with δe = 0 as degenerate edges. Note that
the objective function strictly decreases only in the case of a non-degenerate simplex
pivot.

The case that there is an edge e ∈ U with dπ,µ
e > 0 is similar to the above case. By

decreasing the flow on C(e) by δ units and increasing the flow on C(e) by b
µ
e

b
µ
e

units,
i.e., by setting

x ′ := x− δ · χ(C(e)) + δ · b
µ
e

b
µ
e

· χ(C(e)), (4.4)

we maintain feasibility and improve the objective function for the case that δ > 0.

In the above discussion, we have assumed that (L, T ,U, e) is a (feasible) basis structure,
which includes that bµe 6= 0, i.e., that the usage fee of the cycle C(e) is non-zero. As it
turns out, the usage fee of C(e) remains non-zero after a simplex pivot as long as it
was non-zero before the step, as it is shown in the following lemma:

Lemma 4.8:
Assume that (L, T ,U, e) is a feasible basis structure of the underlying instance of
BCMCFPR and let π and µ denote the corresponding node potentials. Then the tu-
ple (L ′, T ′,U ′, e ′) that results from a simplex pivot is a feasible basis structure again.

Proof: Let e denote the entering edge in the simplex pivot that leads to the new basis
structure (L ′, T ′,U ′, e ′). As it was shown above, the flow that is induced by this
new basis structure is feasible, again. Now assume for the sake of contradiction that
b
µ ′

e ′
= 0.

First, consider the case that the two cycles C(e) and C(e) are edge-disjoint. Clearly,
since either one of the edges in C(e) or one of the edges in C(e) becomes the leaving
edge, one of the two cycles remains in T ′ ∪ {e ′}. Since b(C(e)) = bµe 6= 0 by assumption,
it must hold that b(C(e)) = b

µ
e = 0. However, in this case, the flow on the cycle C(e)

does not change according to equations (4.3) and (4.4), i.e., the leaving edge must
be contained in C(e) and the cycle C(e) remains in T ′ ∪ {e ′}, which contradicts the
assumption that bµ

′

e ′
= 0.

Now assume that the two cycles C(e) and C(e) are not edge-disjoint. It is easy to see,
that there is exactly one (undirected) simple path P0 that is contained in both C(e)
and C(e) and that, consequently, contains neither e nor e (cf. (Çalışkan, 2011)). The
leaving edge e ′ must then be contained in P0, which can be seen as follows: For the
case that bµe 6= 0, none of the two cycles C(e) and C(e) can still be contained in T ′ ∪ {e ′}
(otherwise, it would again hold that bµ

′

e ′
6= 0), i.e., the leaving edge must be a common
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edge of the two cycles, which lies on P0. Else, if bµe = 0, the leaving edge e ′ must be
contained in C(e) since the flow does not change on C(e) as shown above. If e ′ was
not contained in C(e) as well, the cycle C(e) would continue to exist in T ′∪ {e ′}, which,
again, contradicts the assumption that bµ

′

e ′
= 0. Hence, we obtain that e ′ ∈ P0. Let v

and w denote the end nodes of P0 and let P(e) and P(e) denote the unique paths that
connect w with v in C(e) \ P0 and C(e) \ P0, respectively. For some fixed orientation
of P(e) and P(e), the new cycle C(e ′) is the concatenation of P(e) and the reversal of
P(e) (cf. Figure 4.1). Since bµ

′

e ′
= 0 by assumption, it holds that b(P(e)) = b(P(e)),

which implies that

bµe = b(C(e)) = b(P(e)) + b(P0) = b(P(e)) + b(P0) = b(C(e)) = b
µ
e .

However, according to equations (4.3) and (4.4), this implies that the flow on xe ′

remains unchanged, which contradicts the assumption that e ′ is the leaving edge.

v

w

P0C(e) C(e)

P(e) P(e)

Figure 4.1: The situation if the two cycles C(e) and C(e) are not edge-disjoint. Since the
leaving edge e ′ lies on the path P0, the resulting cycle (thick) is the concatenation
of P(e) and P(e).

4.3.3 Optimality Conditions

The above discussion shows that, whenever we encounter an edge e ∈ L with dπ,µ
e < 0

or an edge e ∈ U with dπ,µ
e > 0, we can perform a simplex pivot and improve the

objective function value (in the case that the pivot is non-degenerate). Conversely,
as it turns out, whenever there are no such edges in a feasible basis structure, the
corresponding feasible basic flow is an optimal solution to the underlying instance of
BCMCFPR. In order to prove this result, we need the following lemma:

Lemma 4.9:
Let (π,µ) denote the node potentials corresponding to the basis structure (L, T ,U, e).
Any flow x with b(x) = B is optimal for the underlying instance of BCMCFPR if and
only if it is optimal with respect to the objective function dπ,µ(x) :=

∑
e∈E d

π,µ
e · xe.
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Proof: Using equation (4.2) and the fact that
∑
e∈E c

π
e · xe =

∑
e∈E ce · xe and

∑
e∈E b

µ
e ·

xe =
∑
e∈E be · xe (cf., e.g., (Ahuja et al., 1993)), we get that the flow x fulfills the

following property:∑
e∈E

dπ,µ
e · xe =

∑
e∈E

(
cπe − c

π
e ·
b
µ
e

b
µ
e

)
· xe =

∑
e∈E

cπe · xe −
cπe
b
µ
e

·
∑
e∈E

bµe · xe

=
∑
e∈E

ce · xe −
cπe
b
µ
e

·
∑
e∈E

be · xe =
∑
e∈E

ce · xe −
cπe
b
µ
e

·B. (4.5)

Note that the value −
cπe
b
µ
e
· B only depends on the basis structure and is independent

from the flow x. Hence, for any feasible flow x with b(x) = B, the objective function
values dπ,µ(x) and c(x) only differ by a constant additive value, which shows the
claim.

Theorem 4.10:
For a feasible basis structure (L, T ,U, e) and the corresponding node potentials π and
µ, assume that the reduced costs dπ,µ fulfill the following conditions:

dπ,µ
e > 0 for all e ∈ L, (4.6a)

dπ,µ
e = 0 for all e ∈ T ∪ {e}, (4.6b)

dπ,µ
e 6 0 for all e ∈ U. (4.6c)

Then the corresponding basic feasible flow x∗ is optimal.

Proof: Let dπ,µ and x∗ be defined as above and let x denote some arbitrary feasible
flow. As shown in Lemma 4.9, minimizing c(x) =

∑
e∈E ce · xe is equivalent to mini-

mizing dπ,µ(x) =
∑
e∈E d

π,µ
e · xe. Since we have

dπ,µ(x) =
∑
e∈E

dπ,µ
e · xe =

∑
e∈L

dπ,µ
e · xe +

∑
e∈T∪{e}

dπ,µ
e · xe +

∑
e∈U

dπ,µ
e · xe

=
∑
e∈L

dπ,µ
e · xe +

∑
e∈U

dπ,µ
e · xe >

∑
e∈U

dπ,µ
e · ue = dπ,µ(x∗),

we get that x∗ is optimal.

4.3.4 Termination and Running Time

As shown above, we only make progress with respect to the objective function value
if the corresponding simplex pivot is non-degenerate. However, like in the case of the
traditional simplex method and the traditional network simplex algorithm (cf., e.g.,
(Ahuja et al., 1993; Dantzig, 1965)), it may be possible to end in an infinite loop of
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degenerate pivots if no further steps are undertaken. In the case of the traditional
network simplex algorithm, there are two common methods to prevent cycling of the
procedure: One can either use a perturbed problem, in which the right-hand side
vector of the LP formulation is suitably transformed, or use the concept of strongly
feasible basis structures in combination with a special leaving edge rule (cf. (Ahuja
et al., 1988; Cunningham, 1976)). In this subsection, we show that a combination of
both approaches leads to a finite network simplex algorithm with pseudo-polynomial
running time for BCMCFPR.

In the following, we consider what we call the transformed problem of the given instance
of BCMCFPR, in which we replace the (previously integral) budget B by B ′ := B+ 1

2 .
In doing so, we maintain feasibility of the problem: According to Assumption 4.5,
the minimum cost flow x obtained by some minimum cost flow algorithm fulfills
b(x) > B+ 1. However, this implies that we can scale down x to a feasible flow x ′

with b(x ′) = B ′, so we can restrict our considerations to the transformed problem.
As it turns out, each basic feasible flow of the transformed problem fulfills a useful
property that will be essential throughout this section:

Lemma 4.11:
For each basis structure (L, T ,U, e) of the transformed problem and its corresponding
basic feasible flow x, it holds that xe /∈N>0 for all e ∈ C(e).

Proof: According to Corollary 4.6, the flow x can be decomposed into an integral
flow xI and a flow xC that is positive only on C(e). Since be ∈ N>0 for each e ∈ E, it
holds that

∑
e∈E be ·xIe ∈N>0, so b(x) = B ′ = B+ 1

2 implies that
∑
e∈C(e) be ·xCe = k+ 1

2

for some integer k. Since xC is positive only on C(e), it holds that xCe = λ for each

e ∈ C+(e) and xCe = −λ for each e ∈ C−(e) with λ =
k+12
b(C(e)) /∈ N>0, which shows the

claim.

We now show that we can restrict our considerations solely to the transformed prob-
lem since an optimal basic solution that is obtained by an application of the network
simplex algorithm to the transformed problem also yields an optimal basic solution
of the original problem:

Lemma 4.12:
An optimal basic solution of the transformed problem can be turned into an optimal
basic solution of the original problem in O(n) time.

Proof: Let (L, T ,U, e) denote a basis structure that implies an optimal solution x∗ of the
transformed problem. According to Lemma 4.11, the flow x∗e on each edge e ∈ C(e)
fulfills x∗e /∈ N>0. In particular, this implies that x∗e ∈ (0,ue) for each e ∈ C(e), so we
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can increase or reduce the flow on the cycle by a small amount without violating any
flow bounds. Since x∗e ∈ N>0 for each e /∈ C(e) according to Corollary 4.6 and since
be ∈N>0 for each e ∈ E, it must hold that we can increase or reduce the flow on C(e)
by δ units such that δ · b(C(e)) = −1

2 , i.e., such that we obtain a feasible flow for the
original problem. Moreover, note that dπ,µ

e = 0 for each e ∈ C(e), i.e., the flow still
fulfills the optimality conditions from Lemma 4.9. Since the flow values on the edges
in L ∪U remain unchanged, the resulting flow is the basic solution corresponding to
the basis structure (L, T ,U, e) for the original problem, which shows the claim.

As noted above, one method to prevent cycling of the traditional network simplex
algorithm is to use the concept of strongly feasible basis structures, which are feasible
basis structures in which every empty tree edge is directed towards the root node
and every full tree edge heads away from the root node (cf. (Ahuja et al., 1993)). As
shown by Ahuja et al. (1988), an equivalent definition is that, in the corresponding
basic feasible flow, it is possible to send a positive amount of additional flow from
every node v ∈ V to the root node via tree edges. For BCMCFPR, it turns out that
a strongly feasible basis structure remains strongly feasible after a simplex pivot if
the leaving edge is chosen appropriately, just as in the case of the traditional network
simplex algorithm:

Lemma 4.13:
Let (L, T ,U, e) denote a strongly feasible basis structure of the transformed problem.
The leaving edge e ′ can be chosen such that the basis structure (L ′, T ′,U ′, e ′) that
results from a simplex pivot is again strongly feasible.

Proof: Let e = (v,w) denote the entering edge (we assume that e ∈ L; the case that
e ∈ U works analogously) and let E ′ ⊆ T ∪ {e} denote the set of blocking edges that
determine the value of δ in the simplex pivot. Note that the graph that is induced
by T ∪ {e, e} contains up to three simple cycles, one of which must carry a fractional
amount of flow after the simplex pivot according to Lemma 4.11. Hence, since the
cycle that carries a fractional amount of flow cannot contain a blocking edge, there
are three cases to distinguish: It either holds that E ′ ⊆ C(e) \ C(e) or that E ′ ⊆
C(e) \C(e) or that E ′ ⊆ C(e) ∩C(e) (cf. Figure 4.2). We distinguish these three cases
in the following. Note that, as in the proof of Lemma 4.8, we get that C(e) ∩ C(e)
corresponds to a single simple path P0 consisting of edges in T .

First assume that E ′ ⊆ C(e) \C(e). In this case, it holds that e ′ = e and the cycle C(e)
continues to exist in T ′ ∪ {e ′}. Hence, the flow on all edges in C(e) remains fractional
and we are still able to send a positive amount of flow from any node in C(e) to
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P0C(e) C(e)

E ′ ⊆ C(e) \C(e)P0C(e) C(e)

E ′ ⊆ C(e) \C(e)P0C(e) C(e)

E ′ ⊆ C(e)∩C(e)P0C(e) C(e)

Figure 4.2: The graph induced by T ∪ {e, e} (left) and the three possible cases for the set E ′ of
blocking edges (right). In each of these cases, the set E ′ is contained in the solid
black segment.

the apex3 of C(e). The rest of the proof of this case is analogous to the one for the
traditional network simplex algorithm (cf., e.g., (Ahuja et al., 1993) and Figure 4.3):
We choose the leaving edge e ′ = (v ′,w ′) to be the last edge in E ′ that occurs when
traversing the cycle C(e) in the direction of e, starting at the apex z of C(e). For the
sake of notational simplicity, assume that e ′ ∈ C+(e) (the case that e ′ ∈ C−(e) works
analogously). Clearly, if v is any node on the path from w ′ to z (in the direction of the
cycle), we can still send a positive amount of flow from v to z since there are no further
blocking edges on this path according to the choice of e ′. On the other hand, for the
case that the simplex pivot is non-degenerate, we send a positive amount of flow on
the path from z to v ′ (which may be reduced by the flow on the cycle C(e) on the edges
in C(e)∩C(e), but which will not be reduced to zero since C(e) contains no blocking
edges). Hence, we can send a positive amount of flow back from every node v on the
path from v ′ to z in T ′ ∪ {e ′} = T ∪ {e, e} \ {e ′}. For the case that the simplex pivot is
degenerate, it must hold that all blocking edges E ′ lie on the path from z to v since
(L, T ,U, e) is strongly feasible and we can, thus, send a positive amount of flow to
z on every edge on the path from w to z. However, in the degenerate case, we do
not change the flow on the edges on the path from z to v ′ and can, thus, still send
a positive amount of flow from v ′ to z. So, in any case, we can still send flow from
any node on C(e) after removing edge e ′. Note that the flow does not change on any
edge in E \ (C(e) ∪C(e)), so we can send a positive amount of flow from every node
in V to the root node r after the simplex pivot (possibly via the edges in C(e) \ {e ′}).
Hence, we maintain a strongly feasible basis structure in this case.

3 The apex of a cycle C(e) with e = (v,w) is the first common node of the two unique paths in T
from v to the root and from w to the root.



4.3 Network Simplex Algorithm 57

z

v ′

w ′

v w

e ′

e

Figure 4.3: A cycle C(e) that is induced by the entering edge e = (v,w) ∈ L with dπ,µ
e < 0.

After sending flow on C(e), the leaving edge e ′ is the last blocking edge when
traversing C(e) in the direction of e starting from the apex z.

The second case, in which E ′ ⊆ C(e) \C(e), works similar to the previous case. Note
that we now get that e ′ = e since the cycle C(e) vanishes. We choose the leaving edge
to be the last blocking edge that occurs when traversing the cycle C(e) in the direction
in that we send the flow in the simplex pivot, starting at the apex of C(e). Note that
the simplex pivot must be non-degenerate in this case since the blocking edges lie on
C(e) and every edge on C(e) carries a fractional amount of flow before the simplex
pivot.

It remains to show that we maintain a strongly feasible basis structure in the case that
E ′ ⊆ P0 = C(e)∩C(e) (cf. Figure 4.4). As in the previous case, the simplex pivot is non-
degenerate since all edges in C(e) carry a fractional amount of flow before the simplex
pivot. Thus, the algorithm sends a positive amount of flow δ along C(e) and δ :=

−
b(C(e))
b(C(e)) = −b

µ
e

b
µ
e

units of flow along C(e). Since no edge in C(e) \C(e) and C(e) \C(e)
is a blocking edge and we send flow on both cycles, neither of these edges is empty
or full after the simplex pivot (this also follows from the fact that the new cycle in
T ′ ∪ {e ′} = T ∪ {e, e} \ {e} consists of the edges in (C(e) \ C(e)) ∪ (C(e) \ C(e)) and,
thus, carries a fractional amount of flow, cf. the gray paths in Figure 4.4). Moreover,
since E ′ ⊆ P0 (and E ′ 6= ∅), we must have δ 6= δ. Thus, there is a unique direction
in which the flow is sent on P0 (from z to w in Figure 4.4). We choose the leaving
edge e ′ = (v ′,w ′) to be the last blocking edge that occurs on any of the two cycles
when traversing the corresponding cycle in the direction of this flow, starting from the
apex of the cycle. We can then send flow from w ′ to the apexes of both cycles (since
there are no further blocking edges on the corresponding subpath of P0 and since the
flow on the new cycle is fractional) and from v ′ to the apexes (since we have sent a
positive amount of flow to v ′ on the corresponding subpath of P0 and since the flow
on the new cycle is fractional). Hence, using the same arguments as in the previous
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two cases, we get that we can send a positive amount of flow from each node v ∈ V
to the root node, which concludes the proof.

z

z

vw

wv

v ′

w ′

e

e

e ′

Figure 4.4: The case that E ′ ⊆ P0 = C(e) ∩C(e). The leaving edge e ′ is chosen to be the last
edge on P0 when traversing any of the two cycles C(e) and C(e) in the direction
of the flow change on P0.

Lemma 4.13 builds the foundation for the following theorem, which shows that the
network simplex algorithm for BCMCFPR does not cycle when using strongly feasible
basis structures:

Theorem 4.14:
The network simplex algorithm applied to the transformed problem terminates within
a finite number of simplex pivots when using strongly feasible basis structures. More-
over, the number of consecutive degenerate simplex pivots is bounded by O(n3CB).

Proof: Let (L, T ,U, e) denote a basis structure and let x denote its corresponding basic
feasible flow. Consider a degenerate simplex pivot that occurs when adding the enter-
ing edge e = (v,w) to T ∪ {e} and choosing the leaving edge e ′ = (v ′,w ′) according to
the leaving edge rules given in the proof of Lemma 4.13, which leads to a new basis
structure (L ′, T ′,U ′, e ′). Since the flow on C(e) is fractional according to Lemma 4.11,
none of the edges on the cycle C(e) can be degenerate. Thus, it holds that e ′ = e

and that the cycle C(e) continues to exist in T ′ ∪ {e ′}. Moreover, as in the proof of
Lemma 4.13, the leaving edge e ′ must lie on the path in T from the apex z of C(e)
to v since the basis structure is strongly feasible (cf. Figure 4.3). As in the traditional
network simplex algorithm, after the simplex pivot, the node potentials πv and µv are
increased (decreased) by cπe and bµe , respectively, for all nodes v on the path from w ′

to v in T if e ∈ L (e ∈ U), while the remaining node potentials remain unchanged (cf.,
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e.g., (Ahuja et al., 1993)). Thus, for each v on this path, the new node potentials π ′v
and µ ′v fulfill

π ′v +
cπe
b
µ
e

· µ ′v = (πv + c
π
e ) +

cπe
b
µ
e

· (µv + bµe )

=

(
πv +

cπe
b
µ
e

· µv
)
+

(
cπe +

cπe
b
µ
e

· bµe
)

=

(
πv +

cπe
b
µ
e

· µv
)
+ dπ,µ

e < πv +
cπe
b
µ
e

· µv

for the case that e ∈ L. Otherwise, if e ∈ U, we get that

π ′v +
cπe
b
µ
e

· µ ′v = (πv − c
π
e ) +

cπe
b
µ
e

· (µv − bµe )

=

(
πv +

cπe
b
µ
e

· µv
)
−

(
cπe +

cπe
b
µ
e

· bµe
)

=

(
πv +

cπe
b
µ
e

· µv
)
− dπ,µ

e < πv +
cπe
b
µ
e

· µv.

Hence, the value
∑
v∈V πv +

cπe
b
µ
e
· µv decreases strictly after each degenerate simplex

pivot. However, the values πv are integers in {−nC, . . . ,nC}, while the values µv lie
in {−nB, . . . ,nB} for each v ∈ V (cf. (Ahuja et al., 1993)). Thus, since there are only
O(n2CB) combinations of integral values for πv and µv for each node v ∈ V and since
the fraction cπe

b
µ
e

remains unchanged during degenerate pivots, the algorithm performs

a non-degenerate pivot after at most O(n3CB) degenerate simplex pivots and the
claim follows.

While the leaving edge rules as described above guarantee finiteness of the procedure,
we can reduce the number of non-degenerate simplex pivots by applying Dantzig’s
pivoting rule (cf., e.g., (Ahuja et al., 1988)), i.e., by choosing the entering edge to be
the one with the largest violation of its optimality condition:

Lemma 4.15:
The network simplex algorithm applied to the transformed problem performs a total
number of O(nmUB log(mCUB)) non-degenerate simplex pivots when using Dantzig’s
pivoting rule.

Proof: The proof of the lemma is similar to the one for the traditional network simplex
algorithm given in (Ahuja et al., 1988). Let xk denote the basic feasible flow that is
obtained after the k-th non-degenerate step of the algorithm and let c(xk) denote
its objective function value. Moreover, let (L, T ,U, e) denote the corresponding basis
structure. According to Corollary 4.6, each flow xk can be decomposed into an integral
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flow xI and a fractional flow xC on the cycle C(e). In particular, since xk satisfies
b(xk) = B ′ = B+ 1

2 and xC is a flow on the cycle C(e), it holds that xCe = p
b(C(e)) for

p := (B+ 1
2) −

∑
e∈E be · xIe, so the flow on every edge in xk is an integral multiple of

1
2·b(C(e)) . Thus, it holds that |xke − xk+1e | is either zero or at least 1

2·b(C(e)) >
1
2nB for each

edge e ∈ E. Moreover, note that the minimum absolute value of the reduced costs of
any edge e that violates its optimality condition can be bounded as follows:

|dπ,µ
e | =

∣∣∣∣cπe − bµebµe · cπe
∣∣∣∣ = ∣∣∣∣cπe · bµe − bµe · cπeb

µ
e

∣∣∣∣ > 1

b(C(e))
>

1

nB
.

Since the objective function value of any flow is bounded from below by −mCU, we,
thus, get that the maximum number of non-degenerate simplex pivots without using
Dantzig’s pivoting rule is bounded by O(mCU · 2nB ·nB) = O(n2mCUB2).

Let ∆ := max{−mine∈L d
π,µ
e , maxe∈U d

π,µ
e } denote the maximum violation of the opti-

mality conditions of any edge in L ∪U and let e denote the corresponding edge that
is chosen based on Dantzig’s pivoting rule. Since sending one unit of flow over C(e)
reduces the objective function value by ∆, we get that

c(xk) − c(xk+1) >
∆

2nB
(4.7)

Moreover, if x∗ denotes an optimal solution to the problem, we get according to equa-
tion (4.5) in the proof of Lemma 4.9 that

c(xk) − c(x∗) = dπ,µ(xk) − dπ,µ(x∗) =
∑
e∈E

dπ,µ
e · (xke − x∗e)

=
∑
e∈L

dπ,µ
e · (−x∗e) +

∑
e∈U

dπ,µ
e · (ue − x∗e) 6 m∆U. (4.8)

Combining equations (4.7) and (4.8), we, thus, get that

c(xk) − c(xk+1) >
c(xk) − c(x∗)

2nmUB
,

i.e., after each non-degenerate simplex pivot, the gap to the optimal solution with
respect to the objective function value is reduced by a factor of at least 1

2nmUB . Ahuja
et al. (1993) show that, if H is the maximum number of improving steps of any algo-
rithm and if this algorithm reduces the gap to the optimal solution by a fraction of
at least α in each step, then the maximum number of steps is bounded by O( 1α logH).
Thus, since H ∈ O(n2mCUB2) in our case as shown above, we get that the maxi-
mum number of non-degenerate simplex pivots using Dantzig’s pivoting rule is in
O(2nmUB log(n2mCUB2)) = O(nmUB log(mCUB)).

In Lemma 4.13, it was shown that we can obtain a strongly feasible basis structure
again when performing a simplex pivot on a strongly feasible basis structure. How-
ever, as a last ingredient, it remains open how to determine an initial strongly feasible
basis structure. This will be shown in the following lemma:
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Lemma 4.16:
An initial strongly feasible basis structure (L, T ,U, e) for BCMCFPR and the corre-
sponding basic feasible solution x can be determined in O(m) time.

Proof: Similar to (Çalışkan, 2011), we insert an artificial edge e0 = (s, t) with costs
ce0 := 1, capacity ue0 := 1, and usage fees be0 := 2B + 1 = 2B ′. The initial basic
feasible solution x is defined by xe0 := 0.5 and xe := 0 for each e ∈ E. The spanning
tree T consists of e0 as well as a spanning tree of the nodes in V \ {s} that is a directed
in-tree with root t. Note that such an in-tree exists according to Assumption 4.3 and
can be found, e.g., by a depth-first search in O(m) time. Moreover, note that we
can send a positive amount of flow from every node in V to s by using the unique
path in the in-tree in combination with e0. Hence, we obtain a strongly feasible basis
structure by setting e := e for some e ∈ δ+(s) \ {e0}, choosing T as defined above, and
setting U := ∅ and L := E \ (T ∪ {e}). Note that the new edge neither influences the
bounds C, U, and B (since ce0 ∈ O(C), ue0 ∈ O(U), and be0 ∈ O(B) in any instance)
nor the optimal solution (since e0 will be empty in any optimal solution).

We are now ready to prove the main result of the section:

Theorem 4.17:
The network simplex algorithm for BCMCFPR can be implemented to run in O(n4m2 ·
CUB2 · log(mCUB)) time.

Proof: According to Lemma 4.16, we can determine an initial basis structure and the
corresponding basic feasible solution in O(m) time. It is easy to see that a single
simplex pivot as described above can be implemented to run in O(m) time, includ-
ing the overhead to determine the entering edge and the leaving edge according to
Dantzig’s pivoting rule and the above leaving edge rules. Moreover, the maximum
number of non-degenerate simplex pivots is given by O(nmUB log(mCUB)) as shown
in Lemma 4.15. In the worst case, each of these non-degenerate simplex pivots is fol-
lowed by a sequence of O(n3BC) degenerate pivots according to Theorem 4.14, which
leads to an overall running time of

O(m ·n3BC ·nmUB log(mCUB)) = O(n4m2CUB2 log(mCUB)),

which shows the claim.

As a summary, we were able to adapt the basic underlying ideas used in the traditional
network simplex algorithm to the case of BCMCFPR. In particular, we generalized the
notions of basis structures, reduced costs, and simplex pivots and managed to apply
to common techniques to avoid cycling. As a result, we obtained a fully combinatorial
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network simplex algorithm for the budget-constrained minimum cost flow problem.
The theoretical time-bound of this algorithm is worse than the one of the network
simplex algorithm for the traditional minimum cost flow problem and worse than the
one of the algorithms presented in the upcoming section. Nevertheless, as it is usual
for network simplex variants, empirical results suggest that the underlying structure
leads to a superior empirical performance in comparison to other solution methods
(cf. (Çalışkan, 2011)).

4.4 Bicriteria Interpretation

In this section, we present a very different approach to solve BCMCFPR that relies
on an interpretation of the problem as a bicriteria minimum cost flow problem. In
doing so, we obtain a weakly polynomial-time algorithm based on a binary search.
Moreover, by incorporating Megiddo’s parametric search technique as introduced in
Section 3.1, we show that the problem becomes solvable in strongly polynomial time.

4.4.1 A Weakly Polynomial-Time Algorithm

The fact that we are dealing with two kinds of costs in the case of BCMCFPR leads
to the impression that the problem may be somehow related to the bicriteria mini-
mum cost flow problem. As noted above, the problem BCMCFPR can be interpreted
as the ε-constraint method applied to the bicriteria minimum cost flow problem (cf.
(Chankong and Haimes, 2008)). This fact can be seen as follows: Since we seek to
minimize the cost function c while maintaining b(x) 6 B, each optimal solution x∗

of BCMCFPR corresponds to a point (c(x∗),b(x∗))T in the objective space that lies on
the pareto frontier and not above the line b = B. In fact, according to Assumption 4.5
and the results of the previous section, we can assume the optimal solution to ful-
fill b(x∗) = B, i.e., the desired solution lies on the line b = B in the objective space.
The situation is shown in Figure 4.5.

It is well-known that, for each point (c,b)T on the pareto frontier, there is some
value λ ∈ [0,∞) and a feasible flow x with (c(x),b(x))T = (c,b)T such that x is a mini-
mum cost flow with respect to the costs be + λ · ce for each edge e ∈ E (cf. Geoffrion
(1967); Ehrgott (2005)). Assume that there are two flows x(1) and x(2) which are both
optimal for some specific value of λ, i.e., b(x(1)) + λ · c(x(1)) = b(x(2)) + λ · c(x(2)) = α
for some value α. Then, for both of the flows x(i) with i ∈ {1, 2}, it holds that
b(x(i)) = α − λ · c(x(i)), i.e., they lie on the same efficient edge, which is a straight
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b = B
(c(x∗),b(x∗))T

c0

b

Figure 4.5: The objective space of the interpretation of BCMCFPR as a bicriteria minimum
cost flow problem. The orange area corresponds to the set of the objective values
of feasible flows. The thick orange lines correspond to efficient edges, which form
the pareto frontier.

line with slope −λ in the objective space. In other words, computing a minimum cost
flow with edge costs be + λ · ce will either provide a solution that lies on an extreme
point of the pareto frontier or some point that lies on the efficient edge with slope −λ.
Moreover, the slopes of these efficient edges differ by a minimum absolute amount,
which is shown in the following lemma:

Lemma 4.18:
The slopes of two efficient edges on the pareto frontier of any instance of BCMCFPR

differ by an absolute value of at least 1
c2

for c :=
∑
e∈E |ue · ce|.

Proof: Consider some extreme point (c,b) of the pareto frontier. The pair (c,b)T =

(c(x),b(x))T is the (bicriteria) objective value of a flow x that is a (single objective)
minimum cost flow with respect to costs be + λ · ce for some specific value of λ. Since
there is always an integral minimum cost flow if the capacities are integral (cf. Sec-
tion 2.4), we may assume that both c and b are integral as well. Therefore, the slope
of each efficient edge can be described by the fraction ∆b

∆c of two integers ∆b and ∆c.
Let λ1 :=

∆b1
∆c1

and λ2 :=
∆b2
∆c2

be the slopes of two efficient edges γ1 and γ2, respectively.
Without loss of generality, we assume that λ1 > λ2, so we obtain

λ1 > λ2 ⇐⇒
∆b1
∆c1

>
∆b2
∆c2

⇐⇒ ∆b1
∆c1

−
∆b2
∆c2

> 0

⇐⇒ ∆b1 ·∆c2 −∆b2 ·∆c1 > 0⇐⇒ ∆b1 ·∆c2 −∆b2 ·∆c1 > 1.
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Therefore, the slopes λ1 and λ2 of the two efficient edges γ1 and γ2 differ by an
absolute value of

λ1 − λ2 =
∆b1
∆c1

−
∆b2
∆c2

=
∆b1 ·∆c2 −∆b2 ·∆c1

∆c1 ·∆c2
>
1

c2

as claimed.

As explained above, each optimum solution x∗ of BCMCFPR is a minimum cost flow
with respect to the edge costs ce + λ∗ · be for at least one value λ∗ ∈ [0,+∞). In
particular, if Λ∗ denotes the set of all these values λ∗, it holds that Λ∗ is a closed
interval containing either one or infinitely many such values λ∗ depending on whether
the optimum solutions correspond to points that lie amid or at the corner of some
efficient edge in the objective space, respectively. As claimed in the following lemma
we are able to decide the membership in Λ∗ efficiently:

Lemma 4.19:
Let Λ∗ 6= ∅ denote the set of parameters λ∗ for which an optimum solution x∗ to
BCMCFPR is a minimum cost flow with respect to the edge costs ce + λ∗ · be for each
e ∈ E. For some candidate value λ, it is possible to decide whether λ < minΛ∗,
λ > maxΛ∗, or λ ∈ Λ∗ in O(MCF(m,n,C,U)) and O(MCF(m,n)) time.

Proof: Let x be the solution of a minimum cost flow computation with edge costs be+
λ · ce for each e ∈ E. Clearly, if b(x) = B, we have found an optimal solution of
BCMCFPR and are done. Now assume that b(x) < B (the case that b(x) > B is sym-
metric). Obviously, there are two possible cases: Either λ < minΛ∗ (cf. Figure 4.6a) or
λ ∈ Λ∗ but there are several minimum cost flows x ′ on the same efficient edge some
of which fulfill b(x ′) < B and some of which fulfill b(x ′) > B (cf. Figure 4.6b). We
claim that we can distinguish these two cases by computing two additional minimum
cost flows x+ and x− using the costs be + (λ+ δ) · ce and be + (λ− δ) · ce for δ := 1

2c2
,

respectively: Assume that at least two of the points (c(x+),b(x+))T , (c(x),b(x))T , and
(c(x−),b(x−))T coincide. Then x must lie on an extreme point of the efficient frontier
(cf. Figure 4.6a) and, since b(x) < B, we have that λ < minΛ∗. On the other hand, if
the three flows have distinct objective values (cf. Figure 4.6b), the point (c(x),b(x))T

must lie amid some efficient edge γ with the extreme points (c(x+),b(x+))T and
(c(x−),b(x−))T since the slope of two adjacent efficient edges differs by an absolute
value of at least 2δ as seen in Lemma 4.18. Hence, the points (c(x+),b(x+))T and
(c(x−),b(x−))T lie on the same efficient edge and we have λ < minΛ∗ as well if
b(x+) < B. Otherwise, λ ∈ Λ∗ and the minimum cost flow retrieves an optimum
solution to BCMCFPR. Note that the running time of this procedure is dominated
by the three minimum cost flow computations and, hence, lies both in O(MCF(m,n))
and O(MCF(m,n,C,U)).
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b = B

c0

b

(c(x),b(x))T
= (c(x−),b(x−))T

(c(x+),b(x+))T

(a) λ < minΛ∗

b = B

c0

b

(c(x),b(x))T

(c(x−),b(x−))T

(c(x+),b(x+))T

(b) λ ∈ Λ∗

Figure 4.6: The procedure for comparing a candidate value for λ to the set of optimal val-
ues Λ∗. In the left (right) figure, the situation for a too small (correct) value for λ
is shown.

We now show how we can use Lemma 4.19 within a binary search in order to obtain
a weakly polynomial-time algorithm that performs within a factor O(logM) of each
algorithm for the traditional minimum cost flow problem:

Theorem 4.20:
BCMCFPR is solvable in weakly polynomial time O(logM ·MCF(m,n,C,U)).

Proof: Consider the set K :=
{
k · 1

2c2
: k ∈ {0, . . . ,b · 2c2}

}
, where b :=

∑
e∈E ue · be ∈

O(mUB) and c :=
∑
e∈E |ue · ce| ∈ O(mCU) are upper bounds on the total usage

fees and total absolute value of the costs of any feasible flow, respectively. Note that
each extreme point of the pareto frontier can be obtained by a minimum cost flow
computation with edge costs ce + λ · be for some λ ∈ K since the slopes of any two
efficient edges differ by an absolute amount of at least 1

c2
according to Lemma 4.18.

Hence, by incorporating the procedure that is described in Lemma 4.19 into a binary
search on the set K, we either find some value λ ∈ Λ∗ (in which case we have also
found an optimum solution to BCMCFPR) or two “adjacent” values λ(1) := k · 1

2c2
and

λ(2) := (k + 1) · 1
2c2

for some k ∈ {0, . . . ,b · 2c2 − 1} with λ(1) < minΛ∗ and λ(2) >

maxΛ∗. These values, however, yield solutions x(1) and x(2) that correspond to the
corner points of the same efficient edge, which crosses the line b = B in the objective
space. Thus, by computing a suitable convex combination of the two solutions x(1)

and x(2), we obtain an optimum solution to BCMCFPR and are done.
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The running time of the procedure is dominated by the binary search on the set K and
the resulting O(log |K|) calls to the procedure that is described in Lemma 4.19. Hence,
the overall running time is given by

O(log |K| ·MCF(m,n,C,U)) = O(log(b · c2) ·MCF(m,n,C,U))

= O(log(m3C2U4B2) ·MCF(m,n,C,U))

= O(logmCUB ·MCF(m,n,C,U))

= O(logM ·MCF(m,n,C,U)),

which shows the claim.

4.4.2 A Strongly Polynomial-Time Algorithm

Besides an incorporation in a binary search, the result of Lemma 4.19 can also be
used in combination with Megiddo’s parametric search technique in order to deter-
mine a suitable value for the weighting parameter λ. In order to do so, we simulate
Orlin’s (1993) enhanced capacity scaling algorithm, which runs in O(m logn · (m +

n logn)) time on simple graphs. As it will be shown in the following lemma, the
running time of the algorithm worsens only slightly for the problem on multigraphs:

Lemma 4.21:
The enhanced capacity scaling algorithm can be implemented to run in O(m logm ·
(m+n logn)) time on multigraphs.

Proof: The enhanced capacity scaling algorithm as introduced in (Orlin, 1993) requires
the edges to be uncapacitated. Therefore, in a preprocessing step, a graph with ca-
pacities on each edge is transformed into an equivalent graph as follows: For each
edge e ∈ E with finite capacity ue ∈ N>0 that heads from some node u ∈ V to v ∈ V ,
we introduce an artificial node v ′ and replace e by two uncapacitated edges e ′ = (u, v ′)
with ce ′ = ce and e ′′ = (v, v ′) with ce ′′ = 0. Furthermore, we assign a demand of ue
to node v ′. We refer to Ahuja et al. (1993) for further details on the transformation.

After the transformation, the graph does not contain parallel edges any more. How-
ever, the number of edges increases from m to m ′ 6 2m while the number of nodes
increases from n to n ′ 6 m+n. By analyzing the complexity of the algorithm as done
in Ahuja et al. (1993) without using thatm ∈ O(n2) (which is clearly no longer valid for
multigraphs), we obtain a running time of O((m+ n) log(m+ n) · SP(2m,m+ n)) =

O(m logm · SP(2m,m+ n)). Recall from Section 2.4 that SP(m,n) = O(m+ n logn)
when using Dijkstra’s algorithm in combination with Fibonaccci heaps. This leads to a
running time of O(m logm · (2m+(m+n) log(m+n))) = O(m logm · (m+m logm))
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for the enhanced capacity scaling algorithm. However, we can use the following ob-
servation to improve this running time: Whenever we update the distance label of
an artificial node v ′ while exploring some adjacent node v during the execution of
Dijkstra’s algorithm, we can immediately update the label of the second node u that
is adjacent to v ′ in constant time if there is an edge with positive residual capacity
from v ′ to u. Thus, we do not need to handle node v ′ explicitly and the number of
nodes that need to be inserted and extracted from the Fibonacci heap reduces to n.
Hence, we get the claimed running time of O(m logm · (m+n logn)) for the enhanced
capacity scaling algorithm on multigraphs.

Lemma 4.21 allows us to obtain a strongly polynomial-time algorithm for the budget-
constrained minimum cost flow problem:

Theorem 4.22:
For f(n) ∈ o(n3), BCMCFPR is solvable in strongly polynomial time Õ(min{nm ·
MCF(m,n),m ·MCF(m,n) +m · f(n)}).

Proof: The idea of the algorithm is to handle BCMCFPR as a bicriteria minimum
cost flow problem and to find a flow that satisfies the budget constraint (4.1c) using
Megiddo’s parametric search technique as introduced in Section 3.1. By directing the
execution of the enhanced capacity scaling algorithm using Lemma 4.19, we finally
come up with a solution that lies on the efficient edge crossing the line b = B in the
objective space or an extreme point that lies on this line. This will be shown in the
following.

We simulate the enhanced capacity scaling algorithm with edge costs a(λ) := be+λ ·ce
for each edge e ∈ E, where λ is kept as a symbolic variable. Moreover, we maintain
an interval I, initialized by I = [0,∞), for which we know that Λ∗ ⊆ I. As it can
be easily seen, the enhanced capacity scaling algorithm is a strongly combinatorial
algorithm according to the definition given in Section 3.1, so Megiddo’s parametric
search technique can be applied. By incorporating Lemma 4.19, we can determine if
a candidate value λ ′ is smaller than minΛ∗, larger than maxΛ∗, or contained in Λ∗

in O(MCF(m,n)) time. This fact allows us to resolve each comparison that may occur
during the simulation of the algorithm and to update the interval I appropriately. At
the end of the simulation, the resulting flow x(λ) (which may still depend on λ) is
optimal for every choice of λ ∈ I, but may only fulfill b(x) = B for some specific value
in I. Nevertheless, by solving the equation b(x(λ)) = B, we finally obtain an optimal
value λ∗ ∈ Λ∗ and a solution for BCMCFPR.

Without any further parallelization techniques, the above procedure would result in a
time bound of O(m logm · (m+n logn) ·MCF(m,n)) according to Lemma 4.21 since
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we need to evaluate the callback for each of the O(m logm · (m+ n logn)) steps of
the algorithm in the worst case. We now show that the problem can be solved in
O(m logm ·min{T1(m,n), T2(m,n)}) time, where

T1(m,n) ∈ O ((n+ log logm) logm ·MCF(m,n) +m)

and, for f(n) ∈ o(n3),

T2(m,n) ∈ O
((

log2 n log logn+ logm log logm
)
·MCF(m,n) + f(n)

)
.

By ignoring poly-logarithmic factors, this leads to the claimed strongly polynomial
running time of Õ(min{nm ·MCF(m,n),m ·MCF(m,n) +m · f(n)}).

In order to do so, we first need to briefly investigate the mechanics of the enhanced
capacity scaling algorithm. The algorithm works in O(m logm) phases and performs
O(m logm) shortest path augmentations. In every phase of the algorithm, each edge
of the graph is either labeled as abundant or non-abundant. The subgraph that is in-
duced by the abundant edges is called the abundant subgraph and contains several con-
nected components, called abundant components. At the beginning of the algorithm,
each node of the graph is considered as one distinct abundant component. Moreover,
each abundant component contains one distinguished node, called root node. The im-
balance must be zero for each node except for the roots of the abundant components.

In each phase, the algorithm performs the following operations on the residual net-
work based on the current flow:

1. It checks whether there are nodes with positive imbalance.

2. If so, it checks whether the imbalance of each node is less or equal to some
constant value.

3. For each edge e, it checks if the flow value xe on e is greater or equal to some
constant value.

4. If the above is true for some edge e, the edge is marked as abundant and the two
components of the abundant subgraph that are now connected by e, say C1 with
root node v1 and C2 with root node v2, become merged into one component.
Moreover, if q is the imbalance at v2, we send q units of flow from v2 to v1 using
abundant edges only.

During the simulation of the enhanced capacity scaling algorithm, we are able to
perform each of the above steps in O(logm ·MCF(m,n) +m) time by using paral-
lelization techniques as described in Section 3.1: In each of the steps 1 – 3, we need to
perform O(m) independent comparisons4 of linear parametric values, which can be

4 Recall that the number of nodes is O(m) due to the transformation as explained in the proof of
Lemma 4.21.
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done in O(logm ·MCF(m,n) +m) time according to Lemma 3.1. Step 4 can be imple-
mented to run in O(m) time according to Ahuja et al. (1993) and does not require any
further callback evaluations. Hence, each of the O(m logm) phases of the algorithm
causes an additional overhead of O(logm ·MCF(m,n)+m). It remains to evaluate the
time needed to compute the shortest path between two nodes in the residual network.
Note that the residual network can be determined in O(logm ·MCF(m,n) +m) time
as well by using the same techniques as described above in order to check if xe > 0 for
some e ∈ E (since the capacities of the transformed network are infinite, each forward
edge will be contained in the residual network).

Bound T1: We are able to use a similar technique as for the steps 1 – 3 during the
execution of Dijkstra’s (1959) algorithm for the shortest path problem. We
first apply Lemma 3.2 in order to transform the underlying multigraph of the
residual network into a simple graph in O(log logm logm ·MCF(m,n)) time.
When exploring some node v in the course of Dijkstra’s (1959) algorithm, we
need to evaluate the callback function once for each of the |δ+(v)| outgoing
edges e = (v,w) of node v in order to update the distance label dist(w) of
node w to dist(w) := min{dist(w), dist(v) + (a(λ))e}. Since the underlying graph
is now simple, all of the resulting comparisons are independent from each other
and we only need to evaluate O(log |δ+(v)|) minimum cost flows according to
Lemma 3.1. Since Dijkstra’s (1959) algorithm explores each node only once, we
get the following number of minimum cost flow computations:

O

 ∑
v∈V :|δ+(v)|>0

(
log |δ+(v)| ·MCF(m,n) + |δ+(v)|

)
= O

(∑
v∈V

log(|δ+(v)|+ 1) ·MCF(m,n) +m

)

= O

(
log

(∏
v∈V

(|δ+(v)|+ 1)

)
·MCF(m,n) +m

)

= O

(
log
(∑

v∈V(|δ
+(v)|+ 1)

n

)n
·MCF(m,n) +m

)
= O

(
log
(
m+n

n

)n
·MCF(m,n) +m

)
= O

(
n log

(m
n

)
·MCF(m,n) +m

)
,

where the third equation follows from the inequality of arithmetic and geomet-
ric means (cf. (Cauchy, 1821)). When using the Fibonacci heap implementa-
tion of Dijkstra’s (1959) algorithm due to Fredman and Tarjan (1987), we obtain
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O(n logn) additional minimum cost flow computation in order to maintain the
Fibonacci heap. The resulting running time of

O
((
n log

(m
n

)
+n logn+ logm log logm

)
·MCF(m,n) +m

)
= O ((n+ log logm) logm ·MCF(m,n) +m)

then dominates the additional overhead of O(logm ·MCF(m,n) +m) per phase
described above, which yields the claimed time bound T1(m,n).

Bound T2: Han et al. (1992) present a parallel algorithm for the all-pairs shortest
path problem on simple graphs that runs in O(logn log logn) time on p ∈
O
(

f(n)
logn log logn

)
processors with f(n) = o(n3). We simulate the execution of

all processors sequentially until each of them either finishes its computations or
halts at a comparison of linear parametric values. According to Lemma 3.1, we
can resolve all comparisons simultaneously in O(logp ·MCF(m,n)+p) time and
continue the simulation. Since each processor performs at most O(logn log logn)
steps, we get a running time of

O (logn log logn · (logp ·MCF(m,n) + p))

= O

(
logn log logn ·

(
logn ·MCF(m,n) +

f(n)

logn log logn

))
= O

(
log2 n log logn ·MCF(m,n) + f(n)

)
.

In combination with the overhead of O(logm log logm ·MCF(m,n)) to trans-
form the underlying multigraph into a simple graph, the claimed time bound
T2(m,n) = O((log2 n log logn + logm log logm) ·MCF(m,n) + f(n)) and the
claim of the theorem follows.

Note that the running time of the above algorithms improves instantaneously on
graph classes that allow faster strongly combinatorial algorithms for the traditional
minimum cost flow problem. For example, on series-parallel graphs, a minimum cost
flow can be computed in O(m logm) time using an algorithm introduced by Booth
and Tarjan (1992). Hence, we get the following corollary, which will turn out to be
important in the subsequent chapter:

Corollary 4.23:
BCMCFPR is solvable in O(m2 log2m) time on series-parallel graphs.



4.5 Approximability 71

4.5 Approximability

The results of the previous sections have shown that the problem BCMCFPR can be
solved efficiently using a diverse set of approaches. In this section, we show that the
problem can also be approximated efficiently. First, we will concentrate our consider-
ations on the case of general graphs and present two FPTASs, one of which is based
on a generic framework by Papadimitriou (1994) and the other is based on the gen-
eralized packing framework that was introduced in Section 3.3. The latter algorithm
is then specialized to the case of acyclic graphs, on which an improved running time
can be achieved.

4.5.1 General Graphs

In (Papadimitriou and Yannakakis, 2000), the authors show that an ε-approximate
pareto frontier of a linear convex optimization problem with k objective functions can
be determined by solving O((8Lk2/ε)k) instances of the problem with only one objec-
tive function, where L denotes the encoding-length of the largest possible objective
value. Since k = 2 and L ∈ O(logmCU) = O(logM) in the case of BCMCFPR, we are,

thus, able to compute an ε-approximate pareto frontier in O
(

log2M
ε2
·MCF(m,n,C,U)

)
time. In particular, this also induces a bicriteria FPTAS for BCMCFPR since an ε-ap-
proximate pareto frontier contains a point xP with b(xP) 6 (1+ ε) · b(x∗) 6 (1+ ε) · B
and c(xP) 6 1

1+ε · c(x
∗) 6 (1− ε) · c(x∗) for an optimum solution x∗ of BCMCFPR. The

following lemma shows that this also yields a traditional FPTAS for BCMCFPR:

Lemma 4.24:
Any bicriteria FPTAS for BCMCFPR also induces a single-criterion FPTAS for the
problem.

Proof: For each instance of BCMCFPR with optimum solution x∗, the given bicriteria
FPTAS computes a solution x with c(x) 6 (1 − ε) · c(x∗) and b(x) 6 (1 + ε) · b(x∗)
in time that is polynomial in the instance size and 1

ε . Since both the costs c and
usage fees b are linear functions, it suffices to scale down the given solution to x ′ :=
x
1+ε . Clearly, x ′ is feasible since it still fulfills every flow conservation and capacity
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constraint and since b(x ′) = 1
1+ε · b(x) 6 b(x∗) 6 B. Moreover, for ε ′ := 2ε, it holds

that

c(x ′) =
1

1+ ε
· c(x) 6 1− ε

1+ ε
· c(x∗) =

1− ε ′

2

1+ ε ′
2

· c(x∗)

=
(1− ε ′

2 ) · (1−
ε ′

2 )

(1+ ε ′
2 ) · (1−

ε ′
2 )
· c(x∗) =

1− ε ′ + (ε ′)2

4

1−
(ε ′)2

4

· c(x∗)

6 (1− ε ′) · c(x∗),

where the last inequality follows from the fact that c(x∗) < 0.

The result of Lemma 4.24 in combination with the above discussion yields the follow-
ing corollary:

Corollary 4.25:

There is an FPTAS for BCMCFPR running in O
(

log2M
ε2
·MCF(m,n,C,U)

)
time.

The above FPTAS has a satisfactory theoretical running time and can also be used to
derive an ε-approximate frontier for BCMCFPR. However, the running time is only
weakly polynomial and is connected with large coefficients that are hidden by the
O-notation. We now show how we can obtain a tailored FPTAS for BCMCFPR with a
strongly polynomial running time. In order to do so, we make use of the generalized
packing framework that was introduced in Section 3.3.

Theorem 4.26:
There is an FPTAS for BCMCFPR running in Õ

(
1
ε2
· (nm2 +n3m)

)
time.

Proof: Consider an equivalent circulation based variant of BCMCFPR that can be ob-
tained by inserting an edge with infinite capacity, zero costs, and zero usage fees
between t and s. Since each circulation in this transformed instance is a traditional
network circulation and since b(C) > 0 for each cycle C, each optimal circulation can
be decomposed into at most m circulations on negative cycles according to the flow
decomposition theorem for traditional flows (cf. (Ahuja et al., 1993)). Hence, if S is
the set of all flows x(l) with unit flow value on negative cost cycles, we have that each
solution x lies in the cone that is generated by the flows in S.

As it was already noted in Example 3.12, we are able to make use of Theorem 3.10

in order to obtain a fully polynomial-time approximation scheme for BCMCFPR with
an overall running time of O

(
1
ε2
·m logm · (nm)2

)
. This running time can be signif-

icantly improved by the following observation: As it was shown in Section 3.3.2, the
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sign oracle is incorporated into Megiddo’s parametric search in order to determine a
minimizer of

min
l∈{1,...,k}
cT x(l)>0

aTx(l)

cTx(l)
. (3.6)

for a positive cost vector a and a vector c (cf. page 27). In the case of BCMCFPR, this
reduces to the determination of a minimum ratio cycle C. Megiddo (1983) derived
an algorithm that determines a minimum ratio cycle in a simple graph in O(n3 logn+

nm log2 n log logn) time by making use of a parallel algorithm for the all-pair short-
est path problem in combination with Karp’s minimum mean cycle algorithm (Karp,
1978) as a negative cycle detector in his parametric search. In order to comply with
our setting of multigraphs, we first need to apply Lemma 3.2 with the minimum mean
cycle algorithm as a callback to the underlying graph, which yields a running time of
O(nm logm log logm). In total, we get that

A(m,n) = O(nm logm log logm+n3 logn+nm log2 n log logn).

Thus, incorporated in the general packing framework, we obtain an overall running
time of

O

(
1

ε2
·m logm ·A(m,n)

)
= Õ

(
1

ε2
· (nm2 +n3m)

)
.

4.5.2 Acyclic Graphs

We now show how we can improve the running time of the FPTAS described in
Theorem 4.26 for the case of an acyclic graph G. Since there are no cycles in G, we
only need to repeatedly determine minimum ratio s-t-paths rather than minimum ratio
cycles. This, however, can be done more efficiently, as shown in the following lemma:

Lemma 4.27:
Let d(1) : E → R and d(2) : E → R be two cost functions with d

(1)
e := d(1)(e) and

d
(2)
e := d(2)(e) for each e ∈ E and assume that

∑
e∈P d

(2)
e > 0 for each s-t-path P. An

s-t-path P∗ that minimizes the ratio
∑
e∈P d

(1)
e∑

e∈P d
(2)
e

among all s-t-paths P can be determined

in O(m logm log logm+nm logn) time on acyclic graphs.

Proof: Let P denote the set of all s-t-paths in the underlying graph G. As it was shown
in Lemma 3.8, we can restrict our considerations to the problem minP∈P

∑
e∈P d

(λ)
e with

d
(λ)
e := d

(1)
e − λ · d(2)e for each e ∈ E and some parameter λ: For some given value of

the parameter λ, it holds that minP∈P
∑
e∈P d

(λ)
e is negative (positive) if and only if the
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value of λ is smaller (larger) than the value λ∗ that leads to an optimum solution P∗ to

minP∈P
∑
e∈P d

(1)
e∑

e∈P d
(2)
e

. Hence, by simulating the shortest path algorithm for acyclic graphs

with edge lengths d(λ) for a symbolic value of λ using Megiddo’s parametric search
technique, it is possible to determine the optimum solution P∗ in O(m2) time.

We can improve this running time by first applying Lemma 3.2 to the underlying
multigraph in order to obtain a simple graph with the same shortest paths as in G
in O(m logm log logm) time. In this simple graph, we simulate the shortest path
algorithm for acyclic graphs, which initially sets the distance label dist(v) of each
node v to infinity. The algorithm then investigates the nodes in the order of a topo-
logical sorting and, for each outgoing edge e = (v,w) of some node v ∈ V \ {t} in
this sorting, updates the distance label dist(w) of node w to min{dist(w), dist(v) + le}
where le denotes the length of edge e. Similar to the proof of Theorem 4.22, since
the edges in δ+(v) head to different nodes in the simple graph, all of these com-
parisons are independent from each other and can be simultaneously resolved in
O(log |δ+(v)| · SP(m,n) + |δ+(v)|) time according to Lemma 3.1. This results in a run-
ning time for the parametric shortest path computation of

O

 ∑
v∈V\{t}

(log |δ+(v)| · SP(m,n) + |δ+(v)|)

 = O (n logn · SP(m,n) +m)

= O (nm logn) ,

which in combination with the overhead of O(m logm log logm) for the transforma-
tion into a simple graph shows the claim.

By incorporating the results of Lemma 4.27 into the generalized packing framework
as introduced in Section 3.3, we immediately get the following corollary:

Corollary 4.28:
There is an FPTAS for BCMCFPR that runs in O( 1

ε2
·m2 logm · (logm log logm +

n logn)) time on acyclic graphs.

4.6 Conclusion

We studied a natural extension of the minimum cost flow problem by a budget con-
straint that restricts the usage of edges based on a second kind of costs. It was shown
that the problem has a wide variety of possible applications, although only a little
amount of literature is published at present. As it follows directly by Vaidya (1989),
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the problem can be solved in weakly polynomial time by the use of interior point
methods. Nevertheless, since we are interested in efficient combinatorial algorithms,
we presented three such algorithms that exploit the discrete structure of the underly-
ing problem.

On the one hand, in Section 4.3, we developed a fully combinatorial network simplex
algorithm and showed that it can be implemented to run in pseudo-polynomial time.
In doing so, we derived optimality criteria for the problem and provided rules for the
choice of both the entering and leaving edge in order to improve the running time
and to avoid cycling, respectively.

On the other hand, in Section 4.4, we presented an interpretation of the problem
as a bicriteria minimum cost flow problem, which enabled us to reduce the prob-
lem BCMCFPR to the computation of a series of traditional minimum cost flows. In
particular, we obtained a weakly polynomial-time algorithm that computes O(logM)

minimum cost flows and a strongly polynomial-time algorithm based on Megiddo’s
parametric search techniques using Õ(nm) minimum cost flow computations.

Finally, we studied the approximability of the problem in Section 4.5. As it was
shown, we can approximate the problem in weakly polynomial time by making use
of the generic approximation framework due to Papadimitriou and Yannakakis (2000).
Furthermore, we were able to provide an FPTAS with a strongly polynomial time
bound based on the generalized packing framework as introduced in Section 3.3. This
algorithm was subsequently refined for the case of acyclic graphs in order to obtain an
even faster algorithm. An overview of the results of this chapter in given in Table 4.1.

The introduced model raises several questions for future research. In particular, it
is worth investigating the empirical performance of the presented network simplex
algorithm. Using similar ideas as in (Ahuja et al., 2002; Orlin, 1997; Tarjan, 1997), it
may be possible to improve the overall running time of the procedure. Moreover, as in
the case of the network simplex algorithm, one may try to apply other combinatorial
algorithms for the traditional minimum cost flow problem to the case of BCMCFPR.
In particular, a variant of the successive shortest path algorithm for the traditional
minimum cost flow problem (cf. (Ahuja et al., 1993)) in which one packs minimum
ratio paths rather than shortest path seems promising.
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General Graphs Acyclic Graphs Series-Parallel Graphs

Theorem 4.4:
Solvable in O(m2.5 ·
logM) time (interior point)

−→ −→

Theorem 4.17:
Solvable in O(n4m2CUB2 ·
log(mCUB)) time (network
simplex)

−→ −→

Theorem 4.20:
Solvable in O(logM ·
MCF(m,n,C,U)) time
(bicriteria approach)

−→ −→

Theorem 4.22:
Solvable in Õ(min{nm ·
MCF(m,n),m ·
MCF(m,n) +m · f(n)}) time
(bicriteria approach)

−→

Corollary 4.23:
Solvable in
O(m2 log2m) time (bi-
criteria approach)

Corollary 4.25:
FPTAS in
O
(

log2M
ε2
·MCF(m,n,C,U)

)
time

(approximate pareto frontier
approach)

−→ −→

Theorem 4.26:
FPTAS in
Õ
(
1
ε2
· (nm2 +n3m)

)
time

(generalized packing frame-
work)

Corollary 4.28:
FPTAS in O( 1

ε2
· m2 logm ·

(logm log logm +

n logn)) time (generalized
packing framework)

−→

Table 4.1: The summarized results for the continuous budget-constrained minimum cost flow
problem in Chapter 4. Implied results are denoted with gray arrows.



5 Budget-Constrained Minimum Cost Flows: The
Discrete Case

We now consider two discrete variants of the budget-constrained minimum
cost flow problem that was investigated in the previous chapter. We show that
both variants may be interpreted as network improvement problems, which
yields several fields of applications. As a first variant, we prove that the prob-
lem becomes both weakly NP-hard to solve and approximate if the usage fees
are induced in integral units. For the case of series-parallel graphs, we derive
a pseudo-polynomial-time exact algorithm. Moreover, we present an interest-
ing interpretation of the problem on extension-parallel graphs as a knapsack
problem and provide both an approximation algorithm and (fully) polynomial-
time approximation schemes. Finally, as a second discrete variant, we inves-
tigate a binary case in which a fee is incurred for a positive flow on an edge,
independently of the flow’s magnitude. For this case, the problem becomes
strongly NP-hard to solve, but still solvable in pseudo-polynomial-time on
series-parallel graphs and easy to approximate under several restrictions on
extension-parallel graphs.
This chapter is based on joint work with Sven O. Krumke and Clemens Thielen
(Holzhauser et al., 2016a).

5.1 Introduction

As it was shown in the previous chapter, the budget-constrained minimum cost flow
problem embodies a natural extension of the traditional minimum cost flow problem
that allows to model a large variety of real-world problems. However, one can think of
scenarios in which the continuous connection between the flow and the induced usage
fee on an edge that was investigated in Chapter 4 may be insufficient, for example in
order to model discrete levels of usage fees or fixed installation costs that are incurred
independently from the actual amount of flow.

In this chapter, we investigate two discrete variants of the budget-constrained mini-
mum cost flow problem. In the first variant, the usage fee on each edge is charged
in integral steps based on the flow value on the edge that is rounded up to the next
integer value. In the second variant, the usage fees on the edges are fixed for posi-

© Springer Fachmedien Wiesbaden GmbH 2016
M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_5



78 Budget-Constrained Minimum Cost Flows: The Discrete Case

tive flow values, independently from the actual magnitude of the flow. Using these
assessments, the budget-constrained minimum cost flow problem can be interpreted
as a network improvement problem in which the edges need first to be upgraded to
a suitable positive value before a minimum cost flow can travel through the network.
These edge upgrades then induce costs that are bounded by a given budget.

The investigated discrete variants of the budget-constrained minimum cost flow prob-
lem are motivated by the fact that the possibility to upgrade edges subject to a maxi-
mum budget is ubiquitous in many applications of the traditional minimum cost flow
problem such as transportation problems. Moreover, as it was noted in the previous
chapter, it is well-known that the maximum dynamic flow problem can be formulated as a
minimum cost flow problem, so our model contains the budget-constrained maximum
dynamic flow problem as a special case. Among others, this problem has applications
in the planning of (discrete) pipe diameters in urban drainage systems, where pipes
need to be built or upgraded in order to guarantee that a sufficient amount of wastew-
ater can be transported to sewage plants in a given time horizon without violating the
budget of the city (cf. (Spellman, 2013)). Moreover, as the shortest path problem is a
special case of the traditional minimum cost flow problem, the discrete variant of the
budget-constrained minimum cost flow problem contains the well-known constrained
shortest path problem as a special case when sending one (integral) unit of flow from
one node to another (cf. (Garey and Johnson, 1979; Ziegelmann, 2001)).

A large part of this chapter will set the focus on the variants of the problem on
extension-parallel graphs. Note that the urban drainage systems mentioned above are
usually formed as in-trees leading to the sewage plant (cf. (Spellman, 2013)), which
are basically extension-parallel graphs if the leaves of the corresponding trees are con-
nected with the source using artificial edges. Hence, our algorithms may in particular
be used to compute exact and efficient approximate solutions to this problem.

5.1.1 Previous Work

Krumke and Schwarz (1998) study the problem of finding a maximum flow in the case
that the capacity of each edge can be improved using a given budget. To do so, they
differentiate between the same three variants of how to calculate the upgrade costs
that we use in this and the previous chapter. The authors show that the continuous
and the integral variant of the problem are easy to solve on general graphs while the
binary variant becomes strongly NP-complete to solve. The same differentiation was
later used by Krumke et al. (1999) who investigate the problem of finding a minimum
cost improvement strategy of the edge capacities in order to allow a flow of a given
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value to travel through the network. The authors show that this problem is strongly
NP-complete to solve on general graphs and easy to approximate on series-parallel
graphs for the case that the edges may only be upgraded to their maximum upgrade
value, which corresponds to our binary variant of the problem.

Problems related to the binary case of the budget-constrained minimum cost flow
problem were furthermore investigated by Hochbaum and Segev (1989) and recently
by Duque et al. (2013). In the first paper, the authors introduce a model in which the
usage of each arc induces not only costs that depend linearly on the flow but also fixed
costs. A similar problem, in which a maximum flow is computed while fixed costs
are incurred by the usage of edges that must fulfill a given budget constraint, was
introduced in (Garey and Johnson, 1979, Problem ND32). In (Duque et al., 2013), the
authors show that the problem of finding a minimum cost flow in case that the capac-
ity of each edge can be upgraded to one of several discrete levels using a given budget
is NP-complete to solve and provide heuristics along with computational results.

5.1.2 Chapter Outline

After a formal definition of the two discrete variants of the budget-constrained min-
imum cost flow problem in Section 5.2, we concentrate on the integral case in Sec-
tion 5.3 and show that the problem is weakly NP-complete to solve, even on extension-
parallel graphs and NP-hard to approximate, even on series-parallel graphs. More-
over, we present a pseudo-polynomial-time exact algorithm that solves the problem
on series-parallel graphs. In Section 5.4, we show that the problem on extension-
parallel graphs has an interpretation as a novel extension of the bounded knapsack
problem (Kellerer et al., 2004). Using this fact, we are able to adapt several results that
are valid for the traditional bounded knapsack problem. In particular, we present a
2-approximation algorithm, which is then incorporated into a PTAS and, under the re-
striction of polynomially bounded capacities, into an FPTAS. Moreover, we show that
an approximate pareto frontier can be determined efficiently and that we can use this
result in order to derive a bicriteria FPTAS. We also identify a special case of the prob-
lem that is solvable in polynomial time. Finally, in Section 5.5, we show that the binary
variant becomes strongly NP-complete to solve and weakly NP-hard to approximate.
However, as in the integral case, we are able to derive a pseudo-polynomial-time ex-
act algorithm for the problem on series-parallel graphs and an FPTAS for the problem
on extension-parallel graphs if the edge capacities are polynomially bounded. An
overview of the results of this chapter is given in Table 5.1 and Table 5.2 on page 114.
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5.2 Preliminaries

Recall that in the continuous case that was investigated in Chapter 4, the total usage
fee on an edge e that transports xe units of flow was given by be · xe. In the following,
we distinguish between two discrete variants of how the overall fee b(x) of a flow x

is calculated. On the one hand, in the integral case, the fees are calculated as in the
case of BCMCFPR but the amount of flow is rounded up to the next integer, i.e., the
overall usage fee is given by bN(x) :=

∑
e∈E be · dxee. On the other hand, in the binary

case, the fee is incurred on each edge as long as the flow on the edge is positive,
i.e., bB(x) :=

∑
e∈E be · ue · sgn(xe). These two variants give rise to the following two

definitions of the (discrete) budget-constrained minimum cost flow problem:

Definition 5.1 (Budget-constrained minimum cost flow problem (bcmcfpN, bcmcfpB)):
Instance: Directed graph G = (V ,E) with source s ∈ V , sink t ∈ V , capaci-

ties ue ∈N, costs ce ∈ Z, and usage fees be ∈N>0 on the edges e ∈ E
and a budget B ∈N>0.

Task:

BCMCFPN: Determine a budget-constrained minimum cost flow for b := bN.

BCMCFPB: Determine a budget-constrained minimum cost flow for b := bB.
C

As in the previous chapter, we use the definitions C := maxe∈E |ce|, U := maxe∈E ue,
and B := maxe∈E be when making statements about time complexities in the follow-
ing.

A more intuitive interpretation of these two discrete variants of budget-constrained
minimum cost flows can be obtained by considering the budget-constrained mini-
mum cost flow problem as a network improvement problem in the following way:
Initially, each edge e ∈ E has a capacity of zero and a maximum upgrade capacity of ue.
In order to send some specific amount of flow xe over e, it is necessary to upgrade
its capacity up to a sufficient amount ye > xe, which generates upgrade costs be · ye.
The upgrades ye will then be integral for BCMCFPN while the variant BCMCFPB can
then be seen as an “all-or-nothing” version in which each edge must either remain
at zero capacity or be upgraded to its maximum capacity. The problems BCMCFPN

and BCMCFPB then reduce to the determination of an upgrade profile, i.e., a func-
tion y : E → N>0 with 0 6 ye 6 ue and

∑
e∈E be · ye 6 B for ye := y(e). Among all

such upgrade profiles, the aim is to determine an upgrade profile for which a tradi-
tional minimum cost flow in the induced graph Gy with edge capacity ye for each
e ∈ E attains its minimum value. Since, without loss of generality, traditional mini-
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mum cost flows are integral for integral edge capacities (cf. (Ahuja et al., 1993)), this
observation yields the following corollary:

Corollary 5.2:
Without loss of generality, each optimal flow is integral in the case of BCMCFPN and
BCMCFPB.

Based on the above discussion, we will use the term upgrade costs instead of usage fees
for the values be for e ∈ E throughout this chapter. Using the definitions from above,
we can formulate the discrete budget-constrained minimum cost flow problem as an
integer linear program as follows:

min
∑
e∈E

ce · xe (5.1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}, (5.1b)

∑
e∈E

ye · be 6 B, (5.1c)

0 6 xe 6 ye for all e ∈ E, (5.1d)

0 6 ye 6 ue for all e ∈ E. (5.1e)

The variables ye for e ∈ E can be seen as the upgrades that are necessary to allow the
flow x to pass through the network. In the case of BCMCFPN, we additionally restrict
these amounts to be integral:

ye ∈N>0 for all e ∈ E. (5.1f)

Accordingly, the upgrade amounts ye are forced to be either zero or ue in the case of
BCMCFPB:

ye ∈ {0,ue} for all e ∈ E. (5.1g)

Although this linear integer program may be solved using standard techniques such
as branch-and-cut methods (Wolsey and Nemhauser, 2014), we will develop both
combinatorial exact and approximate solutions to the problems in the following. As in
the previous chapter, note that we explicitly allow negative costs but do not specify a
flow value, which does not impose any restrictions (cf. Section 4.2). As a consequence,
the problem always has a non-positive optimal solution.
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5.3 Integral Case

We begin our considerations with the case of integral capacity upgrades, i.e., we as-
sume that b(x) = bN(x) =

∑
e∈E be · dxee for each flow x. As we show in the fol-

lowing theorems, the problem turns out to be weakly NP-complete to solve and NP-
hard to approximate in this setting. Nevertheless, we are able to provide a pseudo-
polynomial-time exact algorithm for the problem on series-parallel graphs.

5.3.1 Complexity

We begin with a statement about the complexity of BCMCFPN. In contrast to the
problem BCMCFPR that was considered in Chapter 4, the problem becomes weakly
NP-complete to solve in the case of integral upgrades:

Theorem 5.3:
BCMCFPN is weakly NP-complete to solve, even when ue = 1 for each e ∈ E and the
graph consists of parallel edges only.

Proof: BCMCFPN is obviously contained in NP since we can easily check if a given
flow x (which has a polynomially bounded encoding length) is feasible and has costs
less or equal a given bound in polynomial time. We show the NP-hardness by using
a reduction from the weakly NP-complete problem SubsetSum, which can be defined
as follows (Garey and Johnson, 1979, Problem SP13):

Instance: Finite set {a1, . . . ,ak} of k positive integers and a positive integer A.

Question: Is there a subset I ⊆ {1, . . . ,k} such that
∑
i∈I ai = A?

Given an instance of SubsetSum, we construct an instance of BCMCFPN as follows:
For each i ∈ {1, . . . ,k}, we introduce an edge ei from the source s to the sink t with
cost cei := −ai, upgrade cost bei := ai, and capacity uei := 1. The budget is set to
B := A.

We now show that there exists a feasible integral flow x with c(x) 6 −A if and only if
the given instance of SubsetSum is a Yes-instance.

Let x be a feasible integral flow in the constructed network with c(x) 6 −A. Let
I := {i ∈ {1, . . . ,k} : xei = 1} be the index set of edges carrying one unit of flow. Since
b(x) 6 B, we have

∑
i∈I
ai =

k∑
i=1

bei · xei =
∑
e∈E

be · xe = b(x) 6 B = A.
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Similarly, since c(x) 6 −A, we obtain

∑
i∈I
ai =

k∑
i=1

−cei · xei =
∑
e∈E

−ce · xe = −c(x) > A.

Thus, we get that
∑
i∈I ai = A, so I is a solution of the given instance of SubsetSum.

On the other hand, for a solution I of the given instance of SubsetSum, we get a
feasible integral flow as follows: We set xei := 1 for i ∈ I and xej := 0 for j /∈ I. The
upgrade costs are then given by

∑
i∈I bei =

∑
i∈I ai = A = B and the costs evaluate to

c(x) =
∑
i∈I cei =

∑
i∈I−ai = −A, which proves the claim.

5.3.2 Approximability

Since the problem BCMCFPN is NP-complete to solve, even on extension-parallel
graphs according to Theorem 5.3, one might still hope for the existence of efficient
approximation algorithms. However, as it will be shown in the following theorem,
the problem is even NP-hard to approximate on series-parallel graphs:

Theorem 5.4:
BCMCFPN is weakly NP-hard (to solve and) to approximate within constant factors,
even on bipartite series-parallel graphs and when ue = 1 for each e ∈ E.

Proof: We show the claim by using a reduction from the problem EvenOddPartition,
which is known to be weakly NP-complete (Garey and Johnson, 1979, Problem SP12):

Instance: Finite set {a1, . . . ,a2k} of positive integers.

Question: Is there a subset I ⊆ {1, . . . , 2k} such that
∑
i∈I ai =

∑
i/∈I ai and |I ∩

{a2j−1,a2j}| = 1 for each j ∈ {1, . . . ,k} ?

We now show that an instance of EvenOddPartition can be transformed to an
equivalent instance of BCMCFPN in polynomial time. Afterwards, we show that
any approximation algorithm for BCMCFPN, when applied to the resulting instance
of BCMCFPN, can be used to decide whether the original instance of EvenOdd-
Partition is a Yes-instance, which proves the claim.

Given an instance of EvenOddPartition, we construct an instance of BCMCFPN as
follows: For j ∈ {1, . . . ,k+ 1}, we introduce a node vj. Between each pair of nodes vj
and vj+1, we introduce two parallel edges e2j−1 and e2j. The former edge has costs
ce2j−1 := a2j−1 and upgrade costs be2j−1 := a2j while the latter edge has costs ce2j := a2j
and upgrade costs be2j := a2j−1. Each of these edges ei, i ∈ {1, . . . , 2k}, has a capacity
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of uei := 1. Furthermore, we insert an edge e0 between vk+1 and the sink t with
capacity ue0 := 1, upgrade costs be0 := 0 and costs ce0 := −A − 1 where A := 1

2 ·∑2k
i=1 ai is the size of each of the two partitions in a solution of EvenOddPartition.

Moreover, we identify the source s with the node v1 and set the budget to B := A. The
constructed network is shown in Figure 5.1.

s=v1 v2 v3 vk vk+1 t

ce1 = a1

be1 = a2

ce2 = a2

be2 = a1

ce3 = a3

be3 = a4

ce4 = a4

be4 = a3

. . .

. . .

ce2k−1 = a2k−1

be2k−1 = a2k

ce2k = a2k

be2k = a2k−1

ce0 = −A− 1

be0 = 0

Figure 5.1: The constructed instance for the reduction of EvenOddPartition to BCMCFPN.

We claim that there exists a flow x with costs c(x) = −1 if the given instance of Even-
OddPartition is a Yes-instance and that c(x) = 0 for each feasible flow x else. Before
proving this result, note that the maximum flow value of a flow x in the constructed
network is at most one because of the edge with capacity one that leads to the sink
and since the budget allows only one v1-t-path to be upgraded.

First assume that the given instance of EvenOddPartition is a Yes-instance, i.e., there
is a set I ⊆ {1, . . . , 2k} such that

∑
i∈I ai = A =

∑
i/∈I ai and |I ∩ {a2j−1,a2j}| = 1 for

each j ∈ {1, . . . ,k}. By sending one unit of flow through the edges ei for i ∈ I and the
edge e0, we get an integral flow x that satisfies

c(x) =
∑
e∈E

ce · xe =
∑
i∈I
cei · xei + ce0 · xe0 =

∑
i∈I
ai −A− 1 = −1

and, since the costs and upgrade costs of two parallel edges are contrarily,

b(x) =
∑
e∈E

be · xe =
∑
i∈I
bei · xei + be0 · xe0 =

∑
i/∈I
ai + 0 = A = B.

Hence, the budget is not exceeded and the costs fulfill c(x) = −1 as claimed.

Assume conversely that the given instance of EvenOddPartition is a No-instance,
i.e.,
∑
i∈I ai 6= A for each I ⊆ {1, . . . , 2k} with |I ∩ {a2j−1,a2j}| = 1 for j ∈ {1, . . . ,k}.

We show that every feasible flow x has cost c(x) = 0. Since each such set I can be
identified with a path P from v1 to vk+1, we get that either the costs or the upgrade
costs per unit of flow on each such path P are greater or equal to A+ 1. Since we
must satisfy the budget constraint, we assume that flow is sent on a v1-vk+1-path with
upgrade costs of at most A− 1 and costs of at least A+ 1. But then the total cost per
unit of flow on P and e0 is at least (A+ 1) + (−A− 1) = 0, i.e., every feasible flow x

has cost c(x) = 0 in this case (since the zero-flow is allowed).
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Thus, the costs of a budget-constrained minimum cost flow are at most −1 if the given
instance of EvenOddPartition is a Yes-instance and zero else.

Now consider an approximation algorithm that computes a feasible flow x in the
constructed network with costs c(x) fulfilling

c(x∗) 6 c(x) 6
1

α
· c(x∗),

where x∗ is the optimal flow and α ∈ [1,∞) is the performance guarantee. If c(x) < 0,
it must hold that c(x∗) 6 −1 due to the left inequality. On the other hand, if c(x) = 0,
we get that c(x∗) = 0 because of the right inequality. Hence, we can decide if the
underlying instance of EvenOddPartition is a Yes-instance by checking the sign of
c(x), which shows the NP-hardness of approximation.

Note that the proofs of Theorem 5.3 and Theorem 5.4 both use parallel edges in the
reductions. However, both proofs would work analogously after inserting an artificial
node in the middle of each parallel edge.

5.3.3 Exact Algorithm

The results in the previous two subsections have shown that the problem BCMCFPN

is at least weakly NP-complete to solve on series-parallel graphs. In this subsection,
we show that BCMCFPN is solvable in pseudo-polynomial time on series-parallel
graphs. In particular, as it is well known, this shows that the problem is not strongly
NP-complete to solve (unless P = NP) such that the complexity of the problem on
series-parallel graphs is bounded both from above and below.

The proof of the following theorem uses a result by Bein et al. (1985), who showed
that a traditional minimum cost flow on a series-parallel graph can be constructed in
a greedy manner by repeatedly filling shortest paths with positive remaining capacity
(without considering backward edges in a residual network). In the following, we
refer to such a flow as being positive only on shortest paths.

Theorem 5.5:
BCMCFPN is solvable in pseudo-polynomial time O(nmCUB2 · (n2C+m2U)) on series-
parallel graphs.

Proof: We first show that the costs of a budget-constrained minimum cost flow can
be computed in pseudo-polynomial time before showing how the actual flow can
be computed within the same running time. Therefore, let AG ′(c,b, f) denote the
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minimum cost of a flow in a series-parallel graph G ′ with flow value exactly f, up-
grade cost at most b, and that has a flow decomposition into s-t-paths P with cost of
c(P) :=

∑
e∈P ce 6 c per unit of flow. If no such flow exists, we set AG ′(c,b, f) := +∞.

Note that, for a given integral upgrade profile y, the result of Bein et al. (1985) implies
that there always exists an optimal solution x∗ of the traditional minimum cost flow
problem in the graph Gy such that x∗ uses only shortest paths in Gy. Hence, whenever
we consider a fixed upgrade profile y for some series-parallel subgraph G ′, we may
always assume that the corresponding optimal flow in G ′ uses only paths that are
shortest paths in (G ′)y.

The proof of the theorem works by a recursive computation of the values AG ′(c,b, f)
that is based on a bottom-up traversal of a fixed decomposition tree T of the given
series-parallel graph G. According to the definition of series-parallel graphs (cf. Sec-
tion 2.3), we differentiate between the following three types of series-parallel sub-
graphs G ′ that correspond to nodes in the decomposition tree of G:

Single edge G ′ = e:

If the graph G ′ only consists of a single edge e and the cost ce exceeds the given
bound c, the only feasible flow is the zero flow. Thus, we have AG ′(c,b, f) = 0 if
f = 0 and AG ′(c,b, f) = +∞ else in this case. Otherwise, the flow value is bounded
by the capacity ue and the maximum capacity upgrade

⌊
b
be

⌋
that does not exceed the

budget b.1 The demanded flow value can be achieved if and only if this bound is at
least f. Thus, the value AG ′(c,b, f) is given by

AG ′(c,b, f) :=

f · ce, if
(
ce 6 c ∧ f 6 ue ∧ f 6

⌊
b
be

⌋)
∨ f = 0,

+∞, else.

Series composition G ′ = G1 ◦G2:

We show that the value AG ′(c,b, f) in a graph G ′ that is the series composition of two
series-parallel graphs G1 = (V1,E1) and G2 = (V2,E2) is given by

AG ′(c,b, f) := min
06b16b

max{c,0}−nC6c16min{c,0}+nC

AG1(c1,b1, f) +AG2(c− c1,b− b1, f). (5.2)

“6”: Consider some fixed values for b1 and c1. If one of the terms on the right-
hand side of equation (5.2) is infinite, the claim clearly follows. Otherwise, both
AG1(c1,b1, f) < +∞ and AG2(c − c1,b − b1, f) < +∞, so there exist feasible
flows x(1) in G1 and x(2) in G2 of flow value f that satisfy the respective bounds

1 We assume that
⌊
b
be

⌋
= +∞ if be = 0.
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on the cost and upgrade cost and have total cost AG1(c1,b1, f) and AG2(c −

c1,b− b1, f), respectively. Hence, setting xe := x
(1)
e for e ∈ E1 and xe := x

(2)
e for

e ∈ E2 yields a feasible flow x in G ′ of flow value f and upgrade cost at most
b1 + (b− b1) = b on paths with cost at most c1 + (c− c1) = c per unit of flow,
which shows that AG ′(c,b, f) 6 c(x) = AG1(c1,b1, f) +AG2(c− c1,b− b1, f).

“>”: If AG ′(c,b, f) = +∞, the claim again follows. Otherwise, consider a budget-
constrained minimum cost flow x in G ′ with upgrade cost b(x) 6 B and flow
value val(x) = f that uses only s-t-paths P with cost c(P) 6 c. Let x(1), x(2)

denote the restriction of x to the edges in E1 and E2, respectively. Furthermore,
let Pl denote the longest path that is used by x in G ′ and let P(1)l ,P(2)l be the
restriction of this path to the edges in E1 and E2, respectively. According to
the above observation, we may assume that x is positive only on shortest paths
in the graph (G ′)y for some upgrade profile y, so the cost of the paths used
by x(1) in G1 and by x(2) in G2 are bounded by c1 := c(P

(1)
l ) and c2 := c(P

(2)
l ),

respectively, with c2 6 c− c1. Furthermore, since all flow in G ′ must first pass
G1 and then G2, the flows x(1) and x(2) must have flow value f as well. Moreover,
the total upgrade costs amount to some values b1 and b2 6 b− b1 that arise in
G1 and G2, respectively. Hence, for the above values of c1, b1, and f, we have
that c(x(1)) > AG1(c1,b1, f) and c(x(2)) > AG2(c− c1,b− b1, f), so

AG ′(c,b, f) = c(x) = c(x(1)) + c(x(2))

> AG1(c1,b1, f) +AG2(c− c1,b− b1, f),

as claimed.

Note that, since both |c1| 6 nC and |c− c1| 6 nC, we get that

−nC 6 c1 6 nC and −nC 6 c− c1 6 nC

⇐⇒ −nC 6 c1 6 nC and c−nC 6 c1 6 c+nC

⇐⇒ max{0, c}−nC 6 c1 6 min{0, c}+nC

as in equation (5.2). Hence, it suffices to take the minimum in (5.2) over the
given range of c1.

Parallel composition G ′ = G1 | G2:

We show that the value AG ′(c,b, f) in a graph G ′ that is the parallel composition of
two series-parallel graphs G1 = (V1,E1) and G2 = (V2,E2) is given by

AG ′(c,b, f) := min
06b16b
06f16f

AG1(c,b1, f1) +AG2(c,b− b1, f− f1). (5.3)
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“6”: Consider some fixed values for b1 and f1. The claim clearly holds in the case
that AG1(c,b1, f1) = +∞ or AG2(c,b− b1, f− f1) = +∞. Now assume that both
terms are finite, i.e., there exist feasible flows x(1) in G1 and x(2) in G2 that
fulfill the respective bounds on the cost, upgrade cost, and flow value. Hence,
by setting xe := x

(1)
e for e ∈ E1 and xe := x

(2)
e for e ∈ E2, we get a feasible

flow x in G ′ of flow value val(x) = f1 + (f− f1) = f and upgrade cost at most
b1 + (b− b1) = b on paths with cost at most c. Thus, we have AG ′(c,b, f) 6

c(x) = AG1(c,b1, f1) +AG2(c,b− b1, f− f1), which shows the claim.

“>”: Let AG ′(c,b, f) < +∞. A budget-constrained minimum cost flow x in the graph
G ′ = G1 | G2 uses paths P, each of which is entirely contained either in G1 or G2.
The budget b is split into two parts b1 and b2 6 b− b1 that are incurred in G1
and G2, respectively. Similarly, the flow value f of x is composed of some part f1
in G1 and some part f2 = f− f1 in G2. Since the costs of the used paths are less
or equal to c if and only if they are less or equal to c in the respective component
in that they are contained, we can define x(1) and x(2) to be the restrictions of x
to the edges in E1,E2, respectively, and obtain that

AG ′(c,b, f) = c(x) = c(x(1)) + c(x(2))

> AG1(c,b1, f1) +AG2(c,b− b1, f− f1),

which shows the claim.

As it was shown in Section 2.3, a decomposition tree of a series-parallel graph G can
be computed in O(m) time and contains O(m) (O(n)) inner nodes corresponding to
parallel compositions (series compositions) and m leaves corresponding to edges in G
(cf. (Valdes et al., 1982)). For each node in the decomposition tree corresponding to
a series-parallel graph G ′, we compute the values AG ′(c,b, f) for c ∈ {−nC, . . . ,nC},
b ∈ {0, . . . ,B}, and f ∈ {0, . . . ,mU}. By computing these values in a bottom-up manner
with respect to the decomposition tree, we can assume that all the values for the
subgraphs G1 and G2 of a series or parallel composition are already known and are,
thus, able to compute each value AG ′(c,b, f) in O(1) time in the case of a single edge,
in O(nBC) time in the case of a series composition, and in O(mUB) time in the case
of a parallel composition. Since an optimal flow cannot be positive on paths with
positive cost, the optimal flow value can then be found by selecting the minimum
value AG(0,B, f) for f ∈ {0, . . . ,mU}. Thus, we get an overall running time of

O(nC ·B ·mU · (m+n ·nBC+m ·mUB)) = O(nmCUB2 · (n2C+m2U))

as claimed. By maintaining sets SG ′(c,b, f) of pairs (e, xe) that describe the flow xe

on a specific edge e ∈ E and merging these sets for those values of c1, b1, and f1

for which the minimum is found in equations (5.2) and (5.3), the optimal flow can be
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computed alongside with the computation of the values AG ′(c,b, f) within the same
running time.

In the following subsection, we concentrate on BCMCFPN on extension-parallel graphs.
This problem turns out to be strongly related to a special variant of the bounded knap-
sack problem, which will be shown subsequently. Note that, due to the structure of
extension-parallel graphs, the number of s-t-paths in such a graph is bounded by
the number m of edges. In the pseudo-polynomial-time algorithm introduced in the
proof of Theorem 5.5, we are thus able to avoid the minimization over the costs C
since we are able to remove paths that have positive costs in a preprocessing step.
Hence, we get the following corollary:

Corollary 5.6:
BCMCFPN is solvable in pseudo-polynomial time O(m3U2B2) on extension-parallel
graphs.

5.4 The Bounded Knapsack Problem with Laminar Cardinality
Constraints

While the problem BCMCFPN was shown to be NP-hard to approximate on series-
parallel graphs in Theorem 5.4, we will now consider the case of extension-parallel
graphs, for which the problem can be approximated efficiently. As noted above,
the problem BCMCFPN on extension-parallel graphs takes the form of the so called
bounded knapsack problem with laminar cardinality constraints, which is an extension of
the traditional bounded knapsack problem (cf. (Kellerer et al., 2004)) by several car-
dinality constraints of the form

∑
i∈Ij xi 6 µj for distinct non-empty subsets I1, . . . , Ih

of item types. The family I := {I1, . . . , Ih} is assumed to be laminar, i.e., for each pair
(I1, I2) ∈ I× I, it holds that either I1 ∩ I2 = ∅, I1 ⊂ I2, or I1 ⊃ I2.
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Definition 5.7 (Bounded knapsack problem with laminar cardinality constraints (LKP)):
Instance: A set of item types i ∈ K := {1, . . . ,k} together with weights wi ∈

N>0, profits pi ∈ N>0, and maximum amounts ki ∈ N>0 for each
i ∈ K as well as a maximum weight W ∈ N>0 and a laminar fam-
ily I := {I1, . . . , Ih} of distinct non-empty subsets of K with maximum
amounts µj ∈N>0 for j ∈ {1, . . . ,h}.

Task: Find amounts (xi)i∈K for each item type such that

• xi ∈ {0, . . . ,ki} (bounding constraints),

•
∑
i∈Kwi · xi 6W (knapsack constraint),

•
∑
i∈Ij xi 6 µj for j ∈ {1, . . . ,h} (cardinality constraints), and

• p(x) :=
∑
i∈K pi · xi is maximized. C

Note that the problem LKP is identical to the traditional bounded knapsack problem
if h = 0 and equal to the cardinality-constrained bounded knapsack problem if h = 1

and I1 = K (cf. (Kellerer et al., 2004) for further details on these problems). A similar
problem in which the cardinality constraints are replaced by constraints of the form∑
i∈Ij wi · xi 6 µj is known as the arborescent knapsack problem and was shown to be

easy to approximate by Gens and Levner (1980) and Safer and Orlin (1995). However,
their algorithms rely on the fact that these new constraints involve partial sums of the
sum in the knapsack constraint, which does not apply to our case.

We now show how an instance of BCMCFPN on an extension-parallel graph can
be transformed into an instance of LKP: Let P := {P1, . . . ,Pk} (with k 6 m) denote
the set of all s-t-paths in an instance of BCMCFPN. The flow on Pi is bounded
by u(Pi) := mine∈Pi ue and causes upgrade costs of b(Pi) :=

∑
e∈Pi be and costs of

c(Pi) :=
∑
e∈Pi ce per unit of flow. The amount of flow on Pi can be seen as the

number xi of items of type i that is packed into the knapsack, where item type i is
specified by a maximum amount of ki := u(Pi) and a weight of wi := b(Pi) as well
as a profit of pi := −c(Pi) per item. The knapsack constraint is then equivalent to
constraint (5.1c) when defining W := B. Furthermore, the flows on all paths that
have some edge e ∈ E in common must fulfill the capacity constraint of this edge.
This requirement is modeled by introducing a cardinality constraint

∑
i∈Ij xj 6 µj for

each edge e that is contained in multiple paths by setting µj := ue and defining Ij
to be the set of indices of all item types i that correspond to paths Pi containing e.
Note that these sets fulfill the laminarity property because of the special structure of
extension-parallel graphs.
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Note that each s-t-path P in the underlying graph of a given instance of BCMCFPN

is determined by at least one characteristic edge e = (v,w) that is only contained in
P and is, thus, reachable by exactly one path P(1) from the source s and connected
to the sink t by exactly one path P(2). Thus, for each edge e ∈ E, we can check if it
corresponds to a characteristic edge in O(n) time by checking if δ−(v) 6 1 for each
v ∈ P(1) and if δ+(v) 6 1 for each v ∈ P(2). Thus, we can determine all s-t-paths
together with their flow, capacity, costs, and upgrade costs in O(nm) time. Hence,
the above transformation and the corresponding back transformation can both be
performed in O(nm) time. An exemplary transformation of an instance of BCMCFPN

to an instance of LKP is shown in Figure 5.2.

s

v

w t

(−4, 3, 5)

(−3, 5, 6)

(−2, 3, 4)

(−1, 2, 1)
(−1, 4, 1)

B = 40

B = 40

(a) Instance of BCMCFPN

s

v

w t

(−7, 3, 10)

P1

s

v

w t(−6, 2, 7)

P2

s w t

(−4, 4, 7)

P3

(b) Path decomposition

max 7x1 + 6x2 + 4x3

s.t. 10x1 + 7x2 + 7x3 6 40

x1 + x2 6 3

x1 + x2 + x3 6 4

x1 ∈ {0, . . . , 3}, x2 ∈ {0, . . . , 2},

x3 ∈ {0, . . . , 4}

(c) Instance of LKP

Figure 5.2: An instance of BCMCFPN on an extension-parallel graph (upper left), the path
decomposition (upper right), and the corresponding instance of LKP (bottom) as
an integer linear program. The label on each edge and path denotes its cost,
capacity, and upgrade cost, respectively.

In the rest of this section, we focus on LKP, but we always state the corresponding
results for BCMCFPN on extension-parallel graphs that can be obtained by using the
above transformation explicitly.
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Without loss of generality, for each i ∈ K, we assume that the values pi are positive
(since item types with a non-positive profit can be neglected) and that the solution
that contains ki items of type i and no items of other types is feasible (since we can
otherwise reduce the value ki appropriately).

Finally, note that the laminar family I = {I1, . . . , Ih} can be represented by a forest, in
which the nodes vi correspond to the sets Ii ∈ I and in which a node vi is a successor
of node vj if and only if Ii ⊂ Ij. This implies that vi is a direct child of vj if and only
if Ii ⊂ Ij and there is no Ik ∈ I such that Ii ⊂ Ik ⊂ Ij. Moreover, by adding artificial
sets I ′ with large maximum amounts µ ′ :=

∑
i∈K ki, we can turn this forest into a

binary tree (cf. Figure 5.3). This, however, implies that the number h of cardinality
constraints (which is bounded by the number of nodes in the tree) is bounded by the
number k of item types (which bounds the number of leaves in the tree) by h 6 2k− 1.

({1, 2, 3, 4, 5, 6, 7, 8}, 5)

({1, 2}, 3) ({4, 5}, 3) ({6, 7, 8}, 4)

({9, 10}, 5)

({10}, 4)

=⇒

({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, M)

({1, 2, 3, 4, 5, 6, 7, 8}, 5)

({1, 2, 4, 5}, M)

({1, 2}, 3) ({4, 5}, 3)

({6, 7, 8}, 4)

({9, 10}, 5)

({9}, M) ({10}, 4)

Figure 5.3: A laminar family of sets and its representation as a forest (left) as well as a equiva-
lent representation as a binary tree (right). The label of each node corresponds to
the respective set Ij and the maximum amount µj. The artificial nodes are shown
in gray, where M :=

∑
i∈K ki.

5.4.1 A Polynomial-Time Approximation Scheme

In the following, let p(x) :=
∑
i∈K pi · xi and w(x) :=

∑
i∈Kwi · xi denote the profit

generated and the weight used by a solution x of LKP, respectively. Although, to
the best of our knowledge, the problem LKP has not been considered in literature so
far, we are able to adopt several results that are valid for the traditional (bounded)
knapsack problem to the case of LKP. In this subsection, we derive a 2-approximation
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algorithm for the problem that will subsequently incorporated into a polynomial-time
approximation scheme. To this end, we need three auxiliary lemmas:

Lemma 5.8:
An optimal solution of the LP-relaxation of LKP can be computed in O(k2 log2 k) time.

Proof: Clearly, the LP-relaxation of LKP can be transformed into an equivalent in-
stance of BCMCFPR and vice versa using the same procedure as above. According to
Corollary 4.23 in Section 4.4, we can solve BCMCFPR in O(m2 log2m) time on series-
parallel graphs (and, thus, on extension-parallel graphs as well). By transforming the
obtained solution of BCMCFPR to a solution of the LP-relaxation of LKP, the claim
follows.

Lemma 5.9:
Each optimal solution of the LP-relaxation of LKP can be turned into an optimal
solution with at most two fractional values in O(k2) time.

Proof: According to Theorem 4.7 on page 47, we can transform each optimal solution
of BCMCFPR into an optimal basic feasible solution in O(m2) time. According to
Corollary 4.6 on page 46, the flow on each edge is integral except for the edges on
at most one cycle C(e). Let v1 ∈ C(e) and v2 ∈ C(e) denote the nodes with the
lowest and the highest index in a topological sorting of the edge set V , respectively.
The cycle C(e) then consists of two parallel path segments between v1 and v2, which
contain the characteristic edges of two s-t-paths, that, consequently, are the only s-t-
paths with fractional flow.

Lemma 5.10:
If an optimal solution xLP of the LP-relaxation of LKP contains exactly two fractional
values xLPj and xLPl with wj 6 wl, then the vector (x1, . . . , xk) with xj :=

⌈
xLPj

⌉
, xl :=⌊

xLPl
⌋
, and xi := xLPi for i ∈ K \ {j, l} is a feasible solution of LKP.

Proof: Let qj,ql ∈ N>0 and rj, rl ∈ (0, 1) such that xLPj = qj + rj and xLPl = ql + rl.
Note that we can assume without loss of generality that rj + rl = 1: If rj + rl 6= 1,
there cannot be a cardinality constraint that contains any of the two variables and
that is fulfilled with equality since xLPj and xLPl are the only two fractional values
and the right-hand side of each cardinality constraint is integral. Note that both
wj > 0 and wl > 0 without loss of generality since we could otherwise improve the
solution xLP by increasing the corresponding variable with zero weight. Therefore, as
in the case of the traditional bounded knapsack problem, we can replace ε elements
of item type j with wj

wl
· ε elements of item type l if pj

wj
6 pl

wl
or vice versa if pj

wj
>

pl
wl

without losing profit or violating the knapsack constraint. For a suitable choice
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of ε, the resulting solution will either have at most one fractional value left or will
fulfill a cardinality constraint with equality that was fulfilled with strict inequality
before. In the latter case, the claim follows since the right-hand side of each cardinality
constraint is integral.

Hence, as xj =
⌈
xLPj

⌉
= xLPj + (1− rj) and xl =

⌊
xLPl
⌋
= xLPl − rl, we get that the new

solution x does not violate the cardinality constraints. It remains to show that the
knapsack condition is still fulfilled. But since wj 6 wl, we get that

wj · xj +wl · xl = wj ·
⌈
xLPj

⌉
+wl ·

⌊
xLPl

⌋
= wj · (xLPj + (1− rj)) +wl · (xLPl − rl)

= wj · xLPj +wl · xLPl +wj · (1− rj) −wl · rl
6 wj · xLPj +wl · xLPl +wl · (1− rj − rl)
= wj · xLPj +wl · xLPl .

Since the other values remain unchanged and xLP fulfills the knapsack condition as
well, the feasibility of x follows.

Using the results of the above lemmas, we obtain the following 2-approximation algo-
rithm for LKP.

Theorem 5.11:
There is a 2-approximation algorithm for LKP with a running time in O(k2 · log2 k).

Proof: Consider the following algorithm:

1: Compute an optimal solution xLP of the LP-relaxation in O(k2 · log2 k) time
(Lemma 5.8).

2: Turn xLP into a solution with at most two fractional values in O(k2) time
(Lemma 5.9).

3: Let F be the the set of fractional variables in xLP.

4: if F = ∅ then
5: x := xLP.

6: else if F = {xl} then
7: xl :=

⌊
xLPl
⌋

and xi := xLPi for i ∈ K \ {l}.
8: if p(x) < pl then
9: xl := 1 and xi := 0 for i ∈ K \ {l}.

10: else if F = {xj, xl} with wj 6 wl then
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11: xj :=
⌈
xLPj

⌉
, xl :=

⌊
xLPl
⌋
, and xi := xLP for i ∈ K \ {j, l}.

12: if p(x) < pl then
13: xl := 1 and xi := 0 for i ∈ K \ {l}.

return x.

The feasibility of the constructed solution follows from Lemma 5.10. Let x∗ denote
the optimal solution of the given instance of LKP. If F = ∅, the solution x computed
by the algorithm is obviously optimal. Otherwise, if F = {xl}, we have

p(x∗) =
∑
i∈K

pi · x∗i 6
∑
i∈K

pi · xLPi 6
∑
i∈K\{l}

pi · xLPi + pl · (
⌊
xLPl

⌋
+ 1)

=

 ∑
i∈K\{l}

pi · xLPi + pl ·
⌊
xLPl

⌋+ pl (5.4)

6 2 ·
∑
i∈K

pi · xi = 2p(x).

Finally, if F = {xj, xl}, we get that

p(x∗) =
∑
i∈K

pi · x∗i 6
∑
i∈K

pi · xLPi

6
∑

i∈K\{j,l}
pi · xLPi + pj ·

⌈
xLPj

⌉
+ pl · (

⌊
xLPl

⌋
+ 1)

=

 ∑
i∈K\{j,l}

pi · xLPi + pj ·
⌈
xLPj

⌉
+ pl ·

⌊
xLPl

⌋+ pl (5.5)

6 2 ·
∑
i∈K

pi · xi = 2p(x).

Hence, the claim follows.

As motivated above, the results of Theorem 5.11 can be immediately applied to the
problem BCMCFPN. Recall that c(x∗) 6 0 for any optimal solution x∗ to BCMCFPN,
so we need to handle BCMCFPN as a maximization problem rather than a minimiza-
tion problem when speaking about approximation algorithm.

Corollary 5.12:
There is a 2-approximation algorithm for BCMCFPN on extension-parallel graphs
with a running time in O(m2 · log2m).

Similarly as in the case of the traditional bounded knapsack problem (cf. (Kellerer
et al., 2004)), we are able to use the above 2-approximation algorithm in order to
obtain a PTAS for LKP:
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Theorem 5.13:

There is a PTAS for LKP that runs in O

((
k
ε

)d1εe−2 · (kε + k2 log2 k
))

time.

Proof: As noted above, the proof of the theorem works similarly as in the case of the
traditional bounded knapsack problem. For a suitable choice of a parameter q, the
idea of the PTAS is to guess the q elements with the largest profit contained in the
knapsack and to fill the remaining capacity with items of smaller profit using the 2-
approximation algorithm. In order to do so, we extend the instance of LKP to contain
min{ki,q} copies of each item type and let K ′ := {(i, l) : i ∈ K, l ∈ {1, . . . , min{ki,q}}}
denote the extended set of item types.

1: q := min
{⌈

1
ε

⌉
− 2,
∑
i∈K ki

}
.

2: xi := 0 for i ∈ K.

3: for all L ⊂ K ′ with 0 < |L| < q do
4: if

∑
(i,l)∈Lwi 6W and |{(i, l) ∈ L : i ∈ Ij}| 6 µj for each j ∈ {1, . . . ,h} then

5: if
∑

(i,l)∈L pi > p(x) then
6: xi := |{(i, l) ∈ L}| for i ∈ K.

7: for all L ⊆ K ′ with |L| = q do
8: if

∑
(i,l)∈Lwi 6W and |{(i, l) ∈ L : i ∈ Ij}| 6 µj for each j ∈ {1, . . . ,h} then

9: S := {i ∈ K : pi 6 pi ′ for all (i ′, l) ∈ L}.
10: W ′ :=W −

∑
(i,l)∈Lwi.

11: µ ′j := µj − |{(i, l) ∈ L : i ∈ Ij}| for j ∈ {1, . . . ,h}.
12: k ′i := ki − |{(i, l) ∈ L}| for i ∈ S.
13: Let x ′ denote the result of the 2-approximation algorithm for LKP applied

to the instance with item types S, maximum weight W ′, maximum amounts k ′i for
each item type i ∈ S and maximum amounts µ ′j for each cardinality constraint j ∈
{1, . . . ,h}.

14: if
∑

(i,l)∈L pi +
∑
i∈S pi · x ′i > p(x) then

15: x ′i := 0 for i ∈ K \ S.
16: xi := x

′
i + |{(i, l) ∈ L}| for each i ∈ K.

return x.

The proof of correctness works analogously to the case of the traditional bounded
knapsack problem as shown in (Kellerer et al., 2004): First consider the case that the
optimal solution consists of less than q items. Clearly, the optimal solution will then
be found by the first loop. Otherwise, let L∗ ⊆ K ′ denote the set of those q items that
contribute the highest profit to the optimal solution x∗. Note that L∗ will be considered
during the execution of the second loop. If q =

∑
i∈K ki, we clearly obtain an optimal
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solution in this case. Else, note that the optimal solution consists of the items in L∗

and an optimal solution x∗S to the subproblem considered during the above algorithm
with the item types S := {i ∈ K : pi 6 pi ′ for all (i ′, l) ∈ L∗}. The algorithm then
computes a 2-approximation x ′S on S which consequently fulfills p(x ′S) >

1
2 · p(x

∗
S). If

x is the solution returned by the algorithm, we distinguish between the following two
cases according to (Kellerer et al., 2004):

Case 1:
∑

(i,l)∈L∗ pi >
q
q+2 · p(x

∗). In this case, we get that

p(x) =
∑

(i,l)∈L∗
pi + p(x

′
S) >

∑
(i,l)∈L∗

pi +
1

2
· p(x∗S)

=
∑

(i,l)∈L∗
pi +

1

2
·

p(x∗) − ∑
(i,l)∈L∗

pi


=
1

2
·

p(x∗) + ∑
(i,l)∈L∗

pi

 >
1

2
·
(
p(x∗) +

q

q+ 2
· p(x∗)

)

=
q+ 1

q+ 2
· p(x∗).

Case 2:
∑

(i,l)∈L∗ pi <
q
q+2 · p(x

∗). In this case, there is at least one item in L∗ with
profit less than 1

q+2 · p(x
∗), which implies that x∗S uses only items with profit less

than 1
q+2 · p(x

∗) as well. In particular, it holds that pl < 1
q+2 · p(x

∗) for the item
type l in equations (5.4) and (5.5) in the proof of Theorem 5.11, such that

p(x∗S) 6 p(x
′
S) + pl 6 p(x

′
S) +

1

q+ 2
· p(x∗),

which implies that

p(x∗) =
∑

(i,l)∈L∗
pi + p(x

∗
S) 6

∑
(i,l)∈L∗

pi + p(x
′
S) +

1

q+ 2
· p(x∗)

6 p(x) +
1

q+ 2
· p(x∗).

Hence, we get that

p(x) > p(x∗) −
1

q+ 2
· p(x∗) = q+ 1

q+ 2
· p(x∗).

Thus, in any of the two cases, it holds that p(x) > q+1
q+2 · p(x

∗). Moreover, since q+1
q+2 is

increasing with q, we further get that

p(x) >
q+ 1

q+ 2
· p(x∗) =

⌈
1
ε

⌉
− 1⌈
1
ε

⌉ · p(x∗) >
1
ε − 1
1
ε

· p(x∗) = (1− ε) · p(x∗),
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which shows the correctness of the algorithm.

The running time of the algorithm is dominated by the determination of the subsets L
of K ′, whose number is given by

∑q
i=1

(
k·q
i

)
∈ O((k · q)q). For each such subset with

cardinality q, we need to check if it allows a feasible solution and, if so, construct the
corresponding subproblem in O(h · q+ k) = O(k · q) time (recall that h ∈ O(k)). The
algorithm then computes a 2-approximation for this subproblem in O(k2 log2 k) time,
which results in a total running time of

O
(
(k · q)q ·

(
k · q+ k2 log2 k

))
= O

((
k

ε

)d1εe−2
·
(
k

ε
+ k2 log2 k

))
,

which completes the proof.

Corollary 5.14:
There is a PTAS for BCMCFPN on extension-parallel graphs with a running time in

O

((
m
ε

)d1εe−2 · (mε +m2 log2m
))

.

5.4.2 Fully Polynomial-Time Approximation Schemes

Note that the algorithm in Theorem 5.13 yields no FPTAS since its running time is not
polynomial in 1

ε . In this subsection, we develop two FPTASs for the problem under
several restrictions that are based on different approaches. We first show that there is
an FPTAS if the maximum amounts ki are polynomially bounded. We then show that
there is a bicriteria FPTAS for LKP and BCMCFPN on extension-parallel graphs that
computes a solution x which fulfills p(x) > (1− ε) · p(x∗) and w(x) 6 (1+ ε) ·w(x∗)
with respect to the optimal solution x∗. As a by-product, we also show that an ε-
approximate pareto frontier of LKP and BCMCFPN on extension-parallel graphs can
be computed efficiently.

Theorem 5.15:
There is an FPTAS for LKP that runs in O

(
k · µ4 · 1

ε2

)
time if the maximum number µ

of items in an optimal solution is polynomially bounded.

Proof: Similar to Theorem 5.5, we develop an exact pseudo-polynomial-time algo-
rithm. Afterwards, we show that we can scale the profits pi for i ∈ K such that the
algorithm becomes an FPTAS.

In the following, let µ :=
∑
i∈K ki denote an upper bound on the maximum number

of items in the knapsack. Similarly, let P := µ ·maxi∈K pi denote an upper bound on
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the maximum profit of a feasible solution. As we have shown on page 92, we can
represent the laminar family I as a binary tree (cf. Figure 5.3). Furthermore, we may
assume that there are no sets in I with cardinality one since a cardinality constraint
of the form xi 6 µj can be modeled by updating ki to min{ki,µj}. Thus, considering
the item types as leaves and the sets as inner nodes, we obtain a binary tree T with k
leaves and k− 1 inner nodes.

Let AT ′(µ,p) denote the minimum weight that is needed in order to create a total
profit of at least p with the item types that are contained in the subtree T ′ of T while
using at most µ such items. For the case that T ′ is a leaf of T , i.e., T ′ corresponds to a
single item type i ∈ K, we have

AT ′(µ,p) :=

wi ·
⌈
p
pi

⌉
, if

⌈
p
pi

⌉
6 min{µ,ki},

∞, else,

since we need at least
⌈
p
pi

⌉
items of type i in order to create a profit of p or more,

which is only possible if the bounds µ and ki allow it. Similarly, for some subtree T ′

of T whose root is some inner node of T that corresponds to a set Ij and whose two
children are the roots of the subtrees T1 and T2, we get that

AT ′(µ,p) :=


min06µ16µ

06p16p
AT1(µ1,p1) +AT2(µ− µ1,p− p1), if µ 6 µj

∞, else,

following similar arguments as used in the proof of Theorem 5.5. Since T contains
2k − 1 nodes and there are µ and P possible values for µ and p, respectively, each
value AT ′(µ,p) can be computed in O(µ · P) time, so we get a total running time of
O(k · (µ · P) · (µ · P)) = O

(
k · µ2 · P2

)
for computing all values AT ′(µ,p) with 0 6 µ 6 µ

and 0 6 p 6 P.

We now show how we can use this procedure in order to obtain an FPTAS for LKP.
Therefore, let ε ∈ (0, 1) be a value determining the quality of the approximation.
Furthermore, let x∗ denote an optimal solution and let xA be the solution obtained
by the 2-approximation algorithm introduced in Theorem 5.11 such that p(xA) >
1
2 · p(x

∗).

Suppose that x is the solution obtained by the above procedure using the profits

p̃i :=
⌊pi
M

⌋
for i ∈ K with M :=

ε·p(xA)
µ . Using the results and definitions so far, we get

that

p(x) =
∑
i∈K

pi · xi >
∑
i∈K

M ·
⌊pi
M

⌋
· xi >

∑
i∈K

M ·
⌊pi
M

⌋
· x∗i
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>
∑
i∈K

M ·
(pi
M

− 1
)
· x∗i =

∑
i∈K

(pi −M) · x∗i = p(x∗) −M ·
∑
i∈K

x∗i

> p(x∗) −M · µ = p(x∗) − ε · p(xA)
> p(x∗) − ε · p(x∗) = (1− ε) · p(x∗).

Hence, the procedure computes a solution with profit at least (1− ε) · p(x∗). Further-
more, each solution x̃ of an instance of LKP with the profits p̃i satisfies

p̃(x̃) :=
∑
i∈K

p̃i · x̃i =
∑
i∈K

⌊pi
M

⌋
· x̃i 6

1

M
·
∑
i∈K

pi · x̃i 6
1

M
· p(x∗)

6
1

M
· 2p(xA) = 2µ

ε
,

so the maximum possible total profit P̃ using the item profits p̃i is polynomially
bounded by 2µ

ε . Using this bound in the algorithm, we, thus, obtain a total run-

ning time of O
(
k · µ4 · 1

ε2

)
, which is polynomial in the encoding size of the instance

and 1
ε , so the algorithm is in fact an FPTAS.

Corollary 5.16:
There is an FPTAS for BCMCFPN on extension-parallel graphs with a running time
in O

(
m · F4 · 1

ε2

)
if the maximum flow value F is polynomially bounded.

We now show that we can compute an ε-approximate pareto frontier for LKP effi-
ciently by using an approach based on a framework which was introduced by Pa-
padimitriou and Yannakakis (2000) and later extended to the case of minimization
objectives by Mittal and Schulz (2013). This in turn yields a bricriteria FPTAS for LKP
and BCMCFPN on extension-parallel graphs, as it will be shown in the following.
Although the running time of the following algorithms are far away from practical
importance, the results show that there is a bicriteria fully polynomial-time approx-
imation scheme when considering BCMCFPN on extension-parallel graphs. This is
contrary to the case of series-parallel graphs in general, for which BCMCFPN is NP-
hard to approximate according to Theorem 5.4.

In the following, for some instance of LKP, let X denote the set of all integral solutions
that satisfy both the cardinality and the bounding constraints (but not necessarily the
knapsack constraint). We repeat the definition of an ε-approximate pareto frontier,
tailored to the case of LKP:

Definition 5.17 (ε-Approximate Pareto Frontier for LKP):
For an instance of LKP and some value ε ∈ (0, 1), a subset P(ε) ⊆ X is called an
ε-approximate pareto frontier (for LKP) if, for all x ∈ X, there is a point xP ∈ P(ε) with

(1+ ε) · p(xP) > p(x) and w(xP) 6 (1+ ε) ·w(x). C



5.4 The Bounded Knapsack Problem with Laminar Cardinality Constraints 101

Intuitively, an ε-approximate pareto frontier contains a “sufficiently good” approxi-
mation of the real pareto frontier with respect to the precision parameter ε. Since
we are ultimately interested in a bicriteria FPTAS for LKP, we assume that ε ∈ (0, 1),
which also simplifies some of the upcoming results. As shown by Papadimitriou and
Yannakakis (2000), for each multi-objective optimization problem, there always exists
an ε-approximate pareto frontier of polynomial size if each of the objective functions
can be evaluated in polynomial time (which is clearly true in our linear setting). More-
over, for a large class of such problems, such an ε-approximate pareto frontier can also
be determined in polynomial time. As it will be shown in the following, the problem
LKP is contained in this class, which both yields an efficient algorithm for the creation
of P(ε) and a bicriteria FPTAS for LKP.

In the following, let ε ′ := 1− 1√
1+ε

and ε ′′ :=
√
1+ ε− 1 be two adjusted precision

parameters with (1− ε ′)2 = 1
1+ε and (1+ ε ′′)2 = (1+ ε). Note that 1

ε ′ 6
2+
√
2

ε and
1
ε ′′ 6

1+
√
2

ε for ε ∈ (0, 1), so we get that both 1
ε ′ ∈ O

(
1
ε

)
and 1

ε ′′ ∈ O
(
1
ε

)
. One essential

ingredient for the creation of the ε-approximate pareto frontier is the so called gap
problem, which can be defined as follows:

Definition 5.18 (Gap-Problem for LKP):
Instance: A pair (ρ,ω) and a value ε ∈ (0, 1).

Question: Either return a solution x ∈ X with p(x) > ρ and w(x) 6 ω or state that
there is no x ∈ X with p(x) > (1+ ε ′′) · ρ and w(x) 6 (1− ε ′) ·ω for
ε ′′ =

√
1+ ε− 1 and ε ′ = 1− 1√

1+ε
. C

In particular, note that the gap-problem may behave nondeterministically in case that
both there is a solution x ∈ X with p(x) > ρ and w(x) 6 ω, and there is no solution x ′

with p(x ′) > (1+ ε ′′) · ρ and w(x ′) 6 (1− ε ′) ·ω. The following lemma shows that the
gap-problem can be solved in polynomial time in the case of LKP:

Lemma 5.19:
For a given pair (ρ,ω) and a value ε ∈ (0, 1), the gap-problem for LKP can be solved
in O

(
k5

ε4
· log5 k

)
time, where k := maxi∈K ki.

Proof: The proof of the lemma is established in three steps: First, we show that we
can transform each instance I of LKP into an equivalent instance I ′ that uses binary
variables only and that this transformation increases the number of variables only by
a factor of O(logk). Second, we will use this transformed instance I ′ in order to derive
conditions that reduce the gap-problem to an instance I ′′ in which the parameters are
scaled to polynomial size. Finally, we show that a solution to this scaled instance I ′′

can be found in polynomial time.
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Consider an instance I of LKP and let li :=
⌊
log2(ki)

⌋
for each i ∈ K. We replace each

variable xi by li + 1 variables xi,l ∈ {0, 1} for l ∈ {0, . . . , li} with the following meaning:
For each l ∈ {0, . . . , li − 1}, variable xi,l = 1 if and only if ηi,l := 2l items of type i
are packed into the knapsack while variable xi,li = 1 if and only if the remaining

ηi,li
:= ki −

∑
l∈{0,...,li−1} 2

l = ki − 2
li + 1 items of type i are used. Consequently, the

profit pi,l and weight wi,l of item xi,l is ηi,l times the profit and weight of item type i,
respectively. Analogously, each cardinality constraint of the form

∑
i∈Ij xi 6 µj is

replaced by a new constraint of the form
∑
i∈Ij
∑
l∈{0,...,li} ηi,l · xi,l 6 µj. Clearly, each

amount xi of the original instance of LKP can be represented by suitable choices of the
values xi,l, l ∈ {0, . . . , li}, and vice versa. Note that the number k ′ of items K ′ = {(i, l) :
i ∈ K, l ∈ {0, . . . , li}} increases by a logarithmic factor of O(logk). In the following,
we can, thus, assume that the underlying problem uses binary variables only without
loss of generality.

Suppose that the gap-problem is called for some pair (ρ,ω). Let Mp :=
⌈
k ′

ε ′′

⌉
and

Mw :=
⌈
k ′

ε ′

⌉
, where ε ′′ and ε ′ are given as in Definition 5.18. Furthermore, let pi,l :=

min
{⌊

pi,l·Mp
ρ

⌋
,Mp

}
and wi,l :=

⌈
wi,l·Mw

ω

⌉
for (i, l) ∈ K ′ denote scaled profits and

weights. Accordingly, we define the scaled profit- and weight-functions as p(x) =∑
(i,l)∈K ′ pi,l · xi,l and w(x) =

∑
(i,l)∈K ′ wi,l · xi,l, respectively. In the following two

claims, we show that we can solve the gap-problem by investigating the value of the
scaled functions:

Claim: If p(x) > Mp, it holds that p(x) > ρ. Moreover, if p(x) > ρ · (1+ ε ′′), we
get that p(x) >Mp.

Proof: Suppose that p(x) >Mp. For the profit p(x), we get that

p(x) =
∑

(i,l)∈K ′
pi,l · xi,l =

ρ

Mp
·
∑

(i,l)∈K ′

pi,l ·Mp

ρ
· xi,l

>
ρ

Mp
·
∑

(i,l)∈K ′
pi,l · xi,l =

ρ

Mp
· p(x) > ρ

Mp
·Mp = ρ.

Now suppose that p(x) > ρ · (1+ ε ′′). Let J ⊆ K ′ be the set of all (i, l) ∈ K ′ with
xi,l = 1. If there is some (i, l) ∈ J with pi,l = Mp, the claim obviously follows.
Otherwise, if pi,l < Mp for all (i, l) ∈ J, we get the following lower bound for
p(x):

p(x) =
∑

(i,l)∈K ′
pi,l · xi,l =

∑
(i,l)∈J

⌊
pi,l ·Mp

ρ

⌋
· xi,l

>
∑
(i,l)∈J

pi,l ·Mp

ρ
· xi,l − |J| >

Mp

ρ
· p(x) − k ′
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>
Mp

ρ
· ρ · (1+ ε ′′) − k ′ =Mp +Mp · ε ′′ − k ′

=Mp +

⌈
k ′

ε ′′

⌉
· ε ′′ − k ′ >Mp.

Claim: If w(x) 6Mw, it holds that w(x) 6 ω. Moreover, if w(x) 6 ρ · (1− ε ′), we
get that w(x) 6Mw.

Proof: Analogously to the previous claim, suppose that w(x) 6 Mw. For the
weight w(x), we get that

w(x) =
∑

(i,l)∈K ′
wi,l · xi,l =

ω

Mw
·
∑

(i,l)∈K ′

wi,l ·Mw

ω
· xi,l

6
ω

Mw
·
∑

(i,l)∈K ′
wi,l · xi,l =

ω

Mw
·w(x) 6 ω

Mw
·Mw = ω.

Now suppose thatw(x) 6 ω · (1− ε ′). Again, let J ⊆ K ′ be the set of all (i, l) ∈ K ′

with xi,l = 1. We then get the following upper bound on w(x):

w(x) =
∑

(i,l)∈K ′
wi,l · xi,l =

∑
(i,l)∈J

⌈
wi,l ·Mw

ω

⌉
· xi,l

6
∑
(i,l)∈J

wi,l ·Mw

ω
· xi,l + |J| 6

Mw

ω
·w(x) + k ′

6
Mw

ω
·ω · (1− ε ′) + k ′ =Mw −Mw · ε ′ + k ′

=Mw −

⌈
k ′

ε ′

⌉
· ε ′ + k ′ 6Mw.

The above two claims show that it is possible to solve the gap-problem by checking if
there is a solution x ∈ X for the scaled instance I ′′ with p(x) >Mp and w(x) 6Mw. It
remains to show that such a solution can be computed in polynomial time.

Consider the binary tree structure T representing the laminar cardinality constraints
of I ′ (or, equivalently, I ′′) as introduced in the proof of Theorem 5.15 and let AT ′(ρ,ω)

denote the minimum number of items in the subtree T ′ of T that are needed in order
to achieve a profit of at least ρ with a weight of at most ω. For a leaf T ′ of the tree
representing some item (i, l) ∈ K ′, we get that

AT ′(ρ,ω) =

ηi,l, if pi,l > ρ and wi,l 6 ω,

+∞, else.
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Similarly, for some subtree T ′ of T whose root node represents some cardinality con-
straint

∑
i∈Ij
∑
l∈{0,...,li} ηi,l · xi,l 6 µj and that has two children in the subtrees T1 and

T2, we get the following formulation for AT ′(ρ,ω):

AT ′(ρ,ω) =

µT ′(ρ,ω), if µT ′(ρ,ω) 6 µj,

+∞, else,

with

µT ′(ρ,ω) := min
06ρ16ρ

min
06ω16ω

AT1(ρ1,ω1) +AT2(ρ− ρ1,ω−ω1).

Hence, by computing the values AT ′(ρ,ω) for ρ ∈ {0, . . . ,Mp}, ω ∈ {0, . . . ,Mw}, and
for each subtree T ′ of T in a bottom-up manner and checking if AT (Mp,Mw) < +∞,
we can decide if there is a x ∈ X with p(x) > Mp and w(x) 6 Mw, which allows us
to solve the gap-problem using the above two claims. Hence, the running time of the
procedure is bounded by

O
(
M2
p ·M2

w · k ′
)
= O

((
k ′

ε ′′

)2
·
(
k ′

ε ′

)2
· k ′
)

= O

(
k5

ε4
· log5 k

)
since there are O(Mp ·Mw) table entries for each of the O(k ′) subtrees T ′ of T and
it takes O(Mp ·Mw) time to compute each entry in the worst case. Note that the
solution x ∈ X can be computed alongside with the above dynamic programming
scheme by keeping track of the variables that led to the minimum in each step.

Theorem 5.20:
An ε-approximate pareto frontier P(ε) for a given instance of LKP can be computed
in O

(
k5

ε5
· log5 k · (logP+ logW)

)
time, where P and W denote the maximum profit

and weight of a feasible solution, respectively.

Proof: Consider the objective space {0, . . . ,P}× {0, . . . ,W} that represents a superset
of all possible combinations of profits and weights of feasible solutions x ∈ X, where
P and W are the maximum profit and weight of a feasible solution, respectively. For
ε ′′ :=

√
1+ ε− 1 as above, we divide this space into rectangles in a way such that,

in each dimension, the ratio between the two endpoints of each rectangle is 1+ ε ′′.
Obviously, the total number of such rectangles is given by

O
(
log1+ε ′′(P) · log1+ε ′′(W)

)
= O

(
logP · logW
(log(1+ ε ′′))2

)
= O

(
logP · logW

(ε ′′)2

)
= O

(
logP · logW

ε2

)
,
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where the second equality follows from the fact that 1
loga(1+z)

6 1
loga(2)·z

for z ∈
(0, 1). For each corner point (ρ,ω) of these rectangles, we solve the gap-problem
in O

(
k5

ε4
· log5 k

)
time according to Lemma 5.19. If the gap-problem returns some so-

lution x ∈ X, we add the point x to P(ε). After each point is considered, the algorithm
removes each point in P(ε) that is dominated2 by another point in P(ε) within the
same time-bound.

It remains to show that the set of points returned by the algorithm forms an ε-
approximate pareto frontier. Consider some point x ∈ X and assume that there
was no point xP ∈ P(ε) with (1 + ε) · p(xP) > p(x) and w(xP) 6 (1 + ε) · w(x).
Let (ρ0,ω0) be the (unique) corner point considered by the algorithm that fulfills
ρ0 6 p(x) < ρ0 · (1 + ε ′′) and ω0 > w(x) > ω0

1+ε ′′ . Furthermore, let (ρ,ω) be the
point that is defined as ρ := ρ0

1+ε ′′ and ω := ω0 · (1+ ε ′′). The situation is depicted in
Figure 5.4.

p(x)

w(x)

x

(ρ0,ω0)

(ρ,ω)

Figure 5.4: The point x that is assumed to be too far away from the ε-approximate pareto
frontier and the two pairs (ρ,ω) and (ρ0,ω0) considered by the algorithm.

When the gap-problem is called for the point (ρ,ω), it will behave deterministically
and return some solution xP with p(xP) > ρ and w(xP) 6 ω since the point x satisfies

p(x) > ρ0 = ρ · (1+ ε ′′) and

w(x) 6 ω0 =
ω

1+ ε ′′
=

ω√
1+ ε

= (1− ε ′) ·ω.

But the returned point xP furthermore satisfies

p(xP) > ρ =
ρ0

1+ ε ′′
>

p(x)

(1+ ε ′′)2
=
p(x)

1+ ε
and

2 A point x ∈ X is called dominated by a point x ′ ∈ X if p(x ′) > p(x), w(x ′) 6 w(x) and (p(x),w(x)) 6=
(p(x ′),w(x ′)).
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w(xP) 6 ω = (1+ ε ′′) ·ω0 < (1+ ε ′′)2 ·w(x) = (1+ ε) ·w(x).

Thus, the point xP (or some other point in P(ε) that dominates xP) fulfills the prop-
erty stated in Definition 5.17, which contradicts the assumption. Hence, the set P(ε)
computed by the above algorithm is in fact an ε-approximate pareto frontier.

The number of corner points that need to be considered by the above algorithm can be
reduced from O

(
logP·logW

ε2

)
to O

(
logP+logW

ε

)
by a more sophisticated approach: Let j

be an integer that is initially set to zero. Starting with i := 0 and increasing i by one in
each iteration, we consider the pairs ((1+ε ′′)i, (1+ε ′′)j) and add the solution returned
by the gap-problem to P(ε) until we reach a point ((1+ ε ′′)i, (1+ ε ′′)j) for which the
gap-problem does not return a solution. We differentiate between the following two
cases:

Case 1: There is a solution x ∈ X that is contained in the rectangle with the upper
left corner ((1+ ε ′′)i, (1+ ε ′′)j), but the gap-problem is indifferent between its
two possible answers. In this case, evaluating the gap-problem at the point ((1+
ε ′′)i−1, (1+ ε ′′)j+1) will result in a solution that is close enough to the point x
(this is equivalent to the situation above, as shown in Figure 5.4).

Case 2: There is no solution in the rectangle with the upper left corner ((1+ ε ′′)i, (1+
ε ′′)j). In this case, however, there may be a solution x ∈ X in the rectangle
with the upper left corner ((1+ ε ′′)i−1, (1+ ε ′′)j+1). Note that there is a point x ′

with p(x ′) > (1 + ε ′′)i−1 and w(x ′) 6 (1 + ε ′′)j since ((1 + ε ′′)i, (1 + ε ′′)j) was
the first pair for which the gap-problem did not return a solution. Following
the same arguments as above, we get that an evaluation of the gap-problem at
((1+ ε ′′)i−2, (1+ ε ′′)j+1) will return a solution that is close enough to x.

The above arguments show that we can proceed by setting j := j+ 1 and i := i− 2

without “missing” a point that needs to be added to P(ε). Note that this procedure
only considers a linear number O

(
logP+logW

ε

)
of points, which results in an improved

running time.

Corollary 5.21:
An ε-approximate pareto frontier P(ε) for BCMCFPN on extension-parallel graphs
can be computed in O

(
m5

ε5
· log5U · (logmCU+ logB)

)
= O

(
m5

ε5
· log6M

)
time.

Theorem 5.20 also yields a bicriteria FPTAS for LKP, which can be seen as follows:
Let x∗ denote an optimal solution to LKP, which consequently fulfills w(x∗) 6 W.
According to the definition of P(ε), there is a point xP ∈ P(ε) such that

p(xP) >
1

1+ ε
· p(x∗) > (1− ε) · p(x∗) and

w(xP) 6 (1+ ε) ·w(x∗).
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By computing an ε-approximate pareto frontier of LKP and searching for the point xP
with the largest profit p(xP) fulfilling w(xP) 6 (1+ ε) ·W among all points in P(ε), we
obtain a solution of LKP that fulfills the above properties. This yields the following
corollary:

Corollary 5.22:
There is a bicriteria FPTAS for LKP running in O

(
k5

ε5
· log5 k · (logP+ logW)

)
time.

Corollary 5.23:
There is a bicriteria FTPAS for BCMCFPN on extension-parallel graphs running in
O
(
m5

ε5
· log5U · (logmCU+ logB)

)
= O

(
m5

ε5
· log6M

)
time.

5.4.3 A Polynomial-Time Solvable Special Case

For the case that we are dealing with the traditional bounded knapsack problem, we
are able to solve the problem for bounded weights optimally in polynomial time. Note
that this is trivial for the traditional 0-1-knapsack problem, but not for the bounded
knapsack problem.

Theorem 5.24:
LKP is solvable in polynomial time O(k3 ·w3) if the weights wi for i ∈ K are polyno-
mially bounded by some value w and if h = 0.

Proof: Let x∗ be an optimal solution of the problem and let w := maxi∈Kwi. Clearly,
we may assume that wi > 0 for each i ∈ K since we may else set xi := ki in any
solution x and remove the item type from the instance. Furthermore, we assume that
the item types are sorted in non-increasing order by their profit-per-weight ratio, i.e.,
pi
wi

>
pj
wj

for i < j, which can be established in O(k logk) time.

Now suppose that there are indices i, j ∈ K with i < j such that x∗i 6 ki −w and
x∗j > w. By replacing wi items of type j with wj items of type i, the total weight of the
knapsack clearly does not change. The total profit changes by pi ·wj − pj ·wi. Due to
the ordering of the item types, we have

pi
wi

>
pj

wj
⇐⇒ pi ·wj > pj ·wi,

so the new solution is optimal, again.

Hence, we may assume without loss of generality that x∗i > ki −w or x∗j < w for each
i, j ∈ K with i < j. In the following, we differentiate between the following two cases:
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Case 1: x∗j < w for all j ∈ K: In this case, each item type is packed at mostw−1 times
in x∗, which is a polynomially bounded number. We are thus able to transform
the bounded knapsack problem into a traditional 0-1-knapsack problem in poly-
nomial time by introducingw−1 copies of each item type. Furthermore, we may
restrict the maximum weight to W ′ := min{W,

∑
i∈K(w− 1) ·wi} = O(k ·w2). By

using the dynamic programming approach as described in (Kellerer et al., 2004),
which solves the traditional knapsack problem with k̂ items and a knapsack
capacity of Ŵ in O(k̂ · Ŵ) time, we can solve this special case in polynomial
time O((k · (w− 1)) · (k ·w2)) = O(k2 ·w3).

Case 2: x∗h > w for some h ∈ K: Let h be the largest index with x∗h > w. Note that
x∗i > ki −w for all i < h without loss of generality since we can otherwise
replace wi items of type h with wh items of type i as above. Thus, we get that
x∗i > ki −w for all i < h and, by the definition of h, that x∗j < w for all j > h.
Hence, except for item type h, we must only check a polynomially bounded
number of possibilities of how to pack each item type. Note that we can discard
the current distribution scheme if W0 := W −

∑
i<h(ki −w+ 1) ·wi < 0 since

it will not be possible to fulfill x∗i > ki −w for i < h without exceeding the
knapsack capacity. Else, we set W ′ := min{W0,

∑
i∈K\{h}(w− 1) ·wi} and use the

dynamic programming scheme as described in the first case but without item
type h, which can be done in O(k2 ·w3) time. Since we only packed item types
in K \ {h} so far, we afterwards need to try out each combination of a packing
of the item types in K \ {h} with some maximum weight W1 6 W ′ and the
maximum amount of item type h that neither exceeds the knapsack capacity W
nor kh. This can be done in O(W ′) = O(k ·w2) time using the table created in
the dynamic programming scheme before.

Hence, for each possible position for h and the case that such an index h does not
exist, we are able to solve the problem in polynomial time O(k2 ·w3). Since we do not
know h in advance, we need to try out each of the k+ 1 possible cases and maximize
over the resulting total profit. This yields a total running time of O(k3 ·w3), which
shows the claim.

We are now able to apply the result from Theorem 5.24 to the case of BCMCFPN

with upgrade costs that are polynomially bounded by some value b since the total
upgrade cost per unit of flow of each s-t-path is then bounded by n ·b. The restriction
that there is no cardinality constraint corresponds to the restriction that the paths
in the corresponding instance of BCMCFPN have no edge in common. Hence, we
immediately get the following result:
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Corollary 5.25:
BCMCFPN is solvable on edge-disjoint s-t-paths in polynomial time O(n3 ·m3 · b3) if
the upgrade cost be for e ∈ E are polynomially bounded by some value b.

Note that the above argumentation yields a pseudo-polynomial-time algorithm for
BCMCFPN on such graphs in case that the upgrade costs are not polynomially boun-
ded. In contrast to the algorithm obtained in Theorem 5.5, the running time of this
algorithm only depends on the maximum upgrade costs and the number of edges
and nodes and may be useful in case that the edge capacities are large.

Moreover, note that the situation of parallel s-t-paths, for which Corollary 5.25 is
applicable, includes the graph that was used at the beginning of this chapter in the
proof of Theorem 5.3, in which weak NP-completeness of the problem was shown. In
fact, the reduction from SubsetSum that was used in the corresponding proof relies
on the fact that the upgrade costs are not polynomially bounded. This closes the
discussion of the problem BCMCFPN.

5.5 Binary Case

We conclude our considerations with the second variant of how to calculate the up-
grade costs, i.e., we assume that b(x) = bB(x) =

∑
e∈E be ·ue · sgn(xe). Whenever flow

is sent through some edge e ∈ E, it must be upgraded to its maximum capacity ue,
which yields upgrade costs of be ·ue. This problem can be seen as a generalization of
the MaxFixedCostFlow-problem, in which the aim is to determine a maximum flow
while fixed costs are incurred by the usage of edges that must fulfill a given budget
constraint (cf. (Garey and Johnson, 1979, Problem ND32) and (Krumke and Schwarz,
1998)). As we will see, we are able to adapt several results from the previous sections
to the case of BCMCFPB.

Obviously, the problem BCMCFPB coincides with BCMCFPN in case that the capac-
ities are zero or one. Nevertheless, in contrast to the case of BCMCFPN, the prob-
lem BCMCFPB turns out to be strongly NP-complete to solve if we allow larger ca-
pacities, as we will see in the following theorem:

Theorem 5.26:
BCMCFPB is strongly NP-complete to solve even on bipartite graphs.

Proof: Clearly, the decision version of BCMCFPB lies in the class NP since we can
verify any solution (which has a polynomially bounded encoding length) in polyno-
mial time. For the reduction to prove NP-hardness, we use the ExactCoverBy3Sets-
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problem, which is known to be strongly NP-complete to solve (Garey and Johnson,
1979, Problem SP2):

Instance: Set X with 3q elements and a collection C = {C1, . . . ,Ck} of 3-element
subsets of X.

Question: Does there exist a subcollection C ′ ⊆ C such that every element j ∈ X is
contained in exactly one of the subsets in C ′?

Given an instance of ExactCoverBy3Sets, we construct an instance of BCMCFPB as
follows:

We introduce a source s and a sink t as well as a node vi for each Ci ∈ C and a
node v ′j for each j ∈ X. For each subset Ci ∈ C, we insert an edge with cost 0,
upgrade cost 1, and capacity 3 that connects s to vi. Furthermore, we introduce an
edge with cost 0, upgrade cost 0, and capacity 1 between vi and v ′j , if j ∈ Ci, and
an edge between each node v ′j and the sink t with cost −1, upgrade cost 0, and
capacity 1. The budget is set to B := 3q. The resulting network for X = {1, . . . , 9} and
C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}} is shown in Figure 5.5.

ue = 3

ce = 0

be = 1

ue = 1

ce = 0

be = 0

ue = 1

ce = −1

be = 0

s

t

v1 v2 v3 v4 v5

v ′1 v ′2 v ′3 v ′4 v ′5 v ′6 v ′7 v ′8 v ′9

Figure 5.5: The resulting network for a given instance of ExactCoverBy3Sets with X =

{1, . . . , 9} and C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}}. On the right hand side,
the capacities, costs, and upgrade costs of the edges in each level of the graph are
depicted.

We claim that there is a flow x with costs c(x) 6 −3q if and only if the given instance
of ExactCoverBy3Sets is a Yes-instance.

Assume that there is a flow x with c(x) 6 −3q. Since the capacity of each edge that
leads to the sink is 1, the costs are −1, and there are 3q such edges in total, each of
these edges must carry exactly one unit of flow. Furthermore, since the budget is set
to 3q, only q of the k edges leaving the source can be upgraded and must carry 3 units
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of flow each. This flow, which arrives at some of the nodes vi, must be distributed to
each of the nodes v ′j in a way such that every v ′j receives one unit of flow from exactly
one of the used nodes vi. By identifying each node vi with positive inflow (and
outflow) with its corresponding set Ci, we thus get a solution of ExactCoverBy3Sets.

Conversely, assume that there is a solution C ′ ⊆ C of ExactCoverBy3Sets. We identify
each set Ci ∈ C ′ with its corresponding node vi in the same way as before and upgrade
the edge leading to vi at a total upgrade costs of 3q = B. Since the sets C ∈ C ′ are
disjoint and their union is X, we can send one unit of flow to each v ′j by sending 3
units of flow to each node vi and distributing this flow to its three adjacent nodes v ′j .
This way, we achieve a feasible flow with cost −3q, which proves the claim.

In addition to the result obtained in the previous theorem, we can immediately con-
clude from Theorem 5.4 that BCMCFPB is weakly NP-hard to solve and to approxi-
mate on bipartite series-parallel graphs since we used capacities ue = 1 for each edge
e ∈ E in the proof of Theorem 5.4 for which case BCMCFPB and BCMCFPN obviously
coincide.

Corollary 5.27:
BCMCFPB is weakly NP-hard (to solve and) to approximate, even on bipartite series-
parallel graphs.

Similarly, we immediately get that BCMCFPB is weakly NP-complete to solve on
parallel edges:

Corollary 5.28:
BCMCFPB is weakly NP-complete to solve, even when ue = 1 for each e ∈ E and the
graph consists of parallel edges only.

Moreover, it can be easily seen that the pseudo-polynomial-time algorithm for the
problem BCMCFPN as introduced in Theorem 5.5 can be modified easily for the case
of BCMCFPB:

Theorem 5.29:
BCMCFPB can be solved in pseudo-polynomial time O(nmCUB2(n2C +m2U)) on
series-parallel graphs.

Proof: The algorithm works analogously to the one introduced in Theorem 5.5. Solely
the case that a considered subgraph G ′ that corresponds to a node in the decompo-
sition tree of G consists of a single edge e must now incorporate the “all-or-nothing”
aspect of BCMCFPB. As in Theorem 5.5, we set AG ′(c,b, f) :=∞ if the flow value f is
demanded to be positive and larger than ue, the costs ce exceed the bound c, or the
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upgrade of the edge would exceed the budget b. The minimum costs are, thus, given
by the following expression:

AG ′(c,b, f) :=

f · ce, if (ce 6 c ∧ f 6 ue ∧ ue · be 6 b) ∨ f = 0,

+∞, else.
(5.6)

Hence, equation (5.6) together with equations (5.2) and (5.3) from Theorem 5.5 can be
used to compute the costs of a minimum cost flow for the given instance of BCMCFPB.
By proceeding as in the proof of Theorem 5.5, we are then able to compute a budget-
constrained minimum cost flow within the claimed running time.

Corollary 5.30:
BCMCFPB can be solved in pseudo-polynomial time O(m3U2B2) time on extension-
parallel graphs.

Consider the binary bounded knapsack problem with laminar cardinality constraints (BLKP)
that is the variant of LKP in which the weight of an item type i is no longer propor-
tional to the number of packed items of this type but is wi · ki if at least one item of
type i is packed into the knapsack and zero else. It is easy to see that, on extension-
parallel graphs, there is the same analogy between BCMCFPB and BLKP as between
BCMCFPN and LKP.

Theorem 5.31:
There is an FPTAS for BLKP that runs in O

(
k · µ6 · 1

ε2

)
time if the maximum number µ

of items in an optimal solution is polynomially bounded.

Proof: The proof is similar to the one of Theorem 5.15. Again consider the binary
tree T that represents the subset relation between the sets Ij for j ∈ {1, . . . ,h}. Let
AT ′(µ,p) now denote the minimum weight that is needed in order to create a total
profit of at least pwith item types that are contained in the subtree T ′ of T while using
exactly µ such items. For the case that T ′ is a leaf of T , i.e., T ′ corresponds to a single
item type i ∈ K, we now have

AT ′(µ,p) :=


0, if µ = 0∧ p = 0,

wi · ki, if
⌈
p
pi

⌉
6 µ 6 ki

∞, else.

The rest of the proof remains analogously to the case of LKP. However, since a 2-
approximation algorithm for BLKP is not known, the value of M in the proof of
Theorem 5.15 is changed to M := ε·pmax

µ , where pmax := max{pi : i ∈ K} and µ :=
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∑
i∈K ki as before. The solution that is obtained by the described algorithm using the

profits p̃i :=
⌊pi
M

⌋
for i ∈ K then fulfills

p(x) =
∑
i∈K

pi · xi >
∑
i∈K

M ·
⌊pi
M

⌋
· xi >

∑
i∈K

M ·
⌊pi
M

⌋
· x∗i

>
∑
i∈K

M ·
(pi
M

− 1
)
· x∗i =

∑
i∈K

(pi −M) · x∗i = p(x∗) −M ·
∑
i∈K

x∗i

> p(x∗) −M · µ = p(x∗) − ε · pmax
> p(x∗) − ε · p(x∗) = (1− ε) · p(x∗).

Moreover, each solution x̃ of an instance of LKP with the profits p̃i satisfies

p̃(x̃) :=
∑
i∈K

p̃i · x̃i =
∑
i∈K

⌊pi
M

⌋
· x̃i 6

1

M
·
∑
i∈K

pi · x̃i 6
1

M
· p(x∗)

6
1

M
· pmax · µ =

µ2

ε
,

so the maximum possible total profit P̃ is bounded by µ2

ε . Since the algorithm that

was described in Theorem 5.15 runs in O
(
k · µ2 · P̃2

)
time, this yields a running time

of O
(
k · µ6 · 1

ε2

)
for the overall procedure.

Corollary 5.32:
There is an FPTAS for BCMCFPB on extension-parallel graphs with a running time of
O
(
m · F6 · 1

ε2

)
if the maximum flow value F is polynomially bounded.

5.6 Conclusion

We studied two discrete natural extensions of the budget-constrained minimum cost
flow problem that extend the possible applications of the continuous case considered
in Chapter 4. We saw that these problems are equivalent to a minimum cost flow
problem in which the capacities of the edges must be upgraded by a sufficiently large
amount in order to send flow through them. For the first variant BCMCFPN, which
requires integral upgrades, we showed NP-hardness of solving and approximating
the problem on restricted graph classes. However, we found a pseudo-polynomial-
time algorithm for the problem on series-parallel graphs and observed an analogy
between the budget-constrained minimum cost flow problem on extension-parallel
graphs and an extension of the bounded knapsack problem by cardinality constraints
that fulfill a special laminarity property. This observation allowed us to derive a
PTAS for the general case and an FPTAS for the case of bounded edge capacities as
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well as a polynomial-time algorithm to determine an ε-approximate pareto frontier,
which in turn implied a bicriteria FPTAS for the problem. Moreover, we identified a
polynomial-time solvable special case for the problem on edge-disjoint s-t-paths with
bounded upgrade costs. Finally, we studied the case that edges must be upgraded
up to their full capacity (BCMCFPB), showed strong NP-completeness, and adapted
the pseudo-polynomial-time algorithm and the FPTAS for BCMCFPN variant to this
binary variant. A complete overview of the results is given in Table 5.1 and Table 5.2.

Acyclic Graphs Series-Parallel Graphs Extension-Parallel Graphs

Theorem 5.5:
Solvable in O(nmCUB2 ·
(n2C+m2U)) time

Corollary 5.6:
Solvable in O(m3U2B2) time

←− ←−
Theorem 5.3:
weakly NP-complete to
solve

←−
Theorem 5.4:
NP-hard to approximate

Corollary 5.12:
2-approximation in
O(m2 log2m) time

Corollary 5.14:
PTAS in O((mε )

d 1εe−2 · (mε +

m2 log2m)) time

Corollary 5.16:
FPTAS in O

(
m · F4 · 1

ε2

)
time

Corollary 5.23:
Bicriteria FPTAS in
O
(
m5

ε5
· log6M

)
time

Corollary 5.25:
Solvable in O(n3 · m3 ·
b
3
) time on node-disjoint

s-t-paths

Table 5.1: The summarized results for BCMCFPN in Chapter 5. Implied results are denotes
with gray arrows.

The introduced models raise several questions for future research. Especially for the
case of BCMCFPN, it is unclear if there is a pseudo-polynomial-time algorithm for
general graphs or if the problem becomes strongly NP-complete to solve in this setting.
Furthermore, approximation algorithms for more general cases would be interesting
to investigate. Finally, an extension by the possibility to upgrade costs and/or to
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Acyclic Graphs Series-Parallel Graphs Extension-Parallel Graphs

Theorem 5.29:
Solvable in O(nmCUB2 ·
(n2C+m2U)) time

Corollary 5.30:
Solvable in O(m3U2B2) time

Theorem 5.26:
Strongly NP-complete to
solve

←−
Corollary 5.28:
Weakly NP-complete to
solve

←−
Corollary 5.27:
NP-hard to approximate

Corollary 5.32:
FPTAS in O

(
m · F6 · 1

ε2

)
time

Table 5.2: The summarized results for BCMCFPB in Chapter 5. Implied results are denoted
with gray arrows.

upgrade all the edges that are incident to the same node at once are interesting topics
for further research.



6 Generalized Processing Networks

We turn our considerations to a generalization of the maximum flow prob-
lem in which each edge e = (v,w) ∈ E is assigned with a so called flow ra-
tio αe ∈ [0, 1] that imposes an upper bound on the fraction of the total outgo-
ing flow at v that may be routed through the edge e. This model embodies
a generalization of the maximum flow problem in processing networks (Koene,
1982), in which the corresponding flow ratios specify the exact fraction of flow
rather than only an upper bound. We show that a flow decomposition similar
to the one for traditional network flows is possible and can be computed in
strongly polynomial time. Moreover, we prove that the problem is at least as
hard to solve as any packing LP but that there also exists a fully polynomial-
time approximation scheme for the maximum flow problem in these general-
ized processing networks if the underlying graph is acyclic. For the case of
series-parallel graphs, we provide two exact algorithms with strongly polyno-
mial running time. Finally, we study the case of integral flows and show that
the problem becomes NP-hard to solve and approximate in this case.
This chapter is based on joint work with Sven O. Krumke and Clemens Thielen
(Holzhauser et al., 2016c).

6.1 Introduction

Traditional flows in networks that were introduced in Section 2.4 and extended in the
previous chapters embody a useful tool to model the transshipment of commodities
from nodes with supply to nodes with demand. However, in order to model advanced
issues such as the production of goods in a manufacturing process, the considered
network flow problems are not powerful enough since they lack the possibility to
model the splitting of flow at nodes by specific ratios. Processing networks (cf. (Koene,
1982)) generalize traditional flow problems by the introduction of processing nodes that
involve additional flow ratios αe ∈ [0, 1] for their outgoing edges e. The flow on such
an outgoing edge e is required to equal a fraction αe of the total flow on the outgoing
edges of the processing node. In order to maintain flow conservation, these flow ratios
of all outgoing edges of each processing node are required to sum up to one.

© Springer Fachmedien Wiesbaden GmbH 2016
M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_6
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In this chapter, we investigate a generalization of processing networks in which a flow
ratio αe ∈ [0, 1] is assigned to every edge e. The flow ratios are required to sum up
to at least one at every node with outgoing edges and only impose an upper bound on
the ratio of flow on the corresponding edges. Clearly, this extended model subsumes
both the maximum flow problem in processing networks and the maximum flow
problem in traditional networks but also allows to model more advanced situations.
We provide several structural results about flows in such networks and present both
approximation and exact algorithms for the maximum flow problem in several special
cases of these networks.

The possible applications of our model are manifold. The most natural one is the mod-
eling of distillation processes (e.g., in refineries), in which raw materials are split into
intermediate and end products in specific ratios. However, in contrast to traditional
processing networks, we are now able to model possible variations in these ratios
that are only bounded by specific technical limitations. Similarly, by inverting the
direction of each edge, we can model manufacturing processes of goods in which the
composition ratios of the basic commodities may vary up to specific upper bounds.

6.1.1 Previous Work

Research on the topic of processing networks has a long history under several dif-
ferent names. To the best of our knowledge, first work was done by Schaefer (1978)
who introduced the maximum flow problem in processing networks and a first al-
gorithm for the problem. In particular, he considered the case that there are two
kind of nodes: ordinary nodes as in traditional network flow problems and special
nodes for which each of the outgoing edges has an assigned value αe ∈ (0, 1) that
determines the fraction of flow that is routed through the corresponding edge e. In
order to maintain flow conservation, these values are required to sum up to one at
each special node. Schaefer presented a (super-polynomial-time) algorithm that gen-
eralizes the augmenting path algorithm for the traditional maximum flow problem
(cf. (Ahuja et al., 1993)). However, the author refrained from giving an exact running
time analysis and a complete description on how to handle several special cases that
might occur in the course of his algorithm. In the 1980s, Koene (1980) considered the
maximum flow problem in a processing network where the only special node (called
processing node) coincides with the source node s of the network. For this special case,
he presented a polynomial-time exact algorithm.

In his PhD-thesis, Koene (1982) later generalized the problem in three ways: Besides
the introduction of a third kind of nodes (representing so called blending processes that
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assign proportionality values to the incoming edges of a node) and the introduction
of gains on edges similar to the generalized flow problem (cf. Section 2.4), he con-
sidered the more general minimum cost flow variant of the problem. He showed that
every linear program can be transformed into an instance of this minimum cost flow
problem and developed a customized variant of the simplex method in order to solve
the problem. This simplex method was later improved by Chen and Engquist (1986)
and Chang et al. (1989).

Many years later, in 2003, research on processing networks was revived by Fang and
Qi (2003) under the name manufacturing network flows in which they derived the al-
gebraic foundations for a network simplex method. In the following years, Lu et al.
(2006), Lu et al. (2009), Venkateshan et al. (2008), and Wang and Lin (2009) extended
this foundation, partially under the name minimum distribution cost flow problem, with
the introduction of explicit graph operations that are used in a network simplex algo-
rithm. Moreover, Wang and Lin (2009) showed that the maximum flow problem in a
processing network with both processing and blending nodes is at least as hard as the
maximum generalized flow problem as introduced in Section 2.4.

The maximum flow variant of the problem was again investigated by Sheu et al. (2006)
and Huang (2011). In the former paper, the authors provide a similar algorithm
to the very early procedure introduced by Schaefer (1978) with super-exponential
running time but neither give a proof of correctness nor handle every special case
that may occur. In Huang (2011), the author presents a network simplex method for
the problem without processing nodes in combination with computational results.

The case that the corresponding factors do not sum up to one at some nodes was
considered in Lu et al. (2006). However, the authors do not assume flow conservation
to hold at these nodes and are, thus, able to define preprocessing procedures in order
to remove such nodes. To the best of our knowledge, the more general case that is
considered in this chapter, in which these factors only provide upper bounds on the
flow while flow conservation is maintained at each node has not been investigated so
far.

6.1.2 Chapter Outline

After defining the maximum flow problem in generalized processing networks and the neces-
sary notation in Section 6.2, we show in Section 6.3 that there is a flow decomposition
theorem similar to the one for traditional flows (cf. (Ahuja et al., 1993)) and that such
a flow decomposition can be computed more efficiently in the case of acyclic graphs.
In Section 6.4, we consider the complexity and approximability of the problem. In
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particular, we show that the problem of finding a maximum flow in a generalized
processing network is solvable in weakly polynomial-time on the one hand, but at
least as hard to solve as any packing LP on the other hand. Moreover, we present
an FPTAS for the problem on acyclic graphs that is based on the generalized packing
framework introduced in Section 3.3. To the best of our knowledge, this comprises the
first approximation algorithm for the maximum flow problem in processing networks.
In Section 6.5, we turn our focus to the case of series-parallel graphs and present two
different approaches on how to solve the problem exactly in strongly polynomial time.
The first of these approaches is an analogue to the augmenting path algorithm for the
traditional maximum flow problem (cf. (Ahuja et al., 1993)) and achieves a running
time of O(m2) while the second approach exhaustedly uses the inherent structure
of series-parallel graphs in order to repeatedly shrink series-parallel subcomponents
into single edges, which results in an algorithm with an improved running time of
O(m · (n+ logm)). Finally, in Section 6.6, we briefly investigate the case of flows that
are required to be integral on every edge. As it turns out, the problem with integral
flows becomes strongly NP-complete to solve and to approximate even on bipartite
acyclic graphs and weakly NP-complete to solve and to approximate on series-parallel
graphs. An overview of the results of this chapter is given in Table 6.1 and Table 6.2
on page 152.

6.2 Preliminaries

We start by defining the maximum flow problem in a directed graph G = (V ,E) with
edge capacities ue ∈ N and flow ratios αe ∈ (0, 1] on the edges e ∈ E. Let s ∈ V and
t ∈ V denote a distinguished source and sink of the network, respectively.

Definition 6.1 (Flow, flow value, maximum flow, static/dynamic capacity constraint):
A function x : E → R>0 is called a feasible flow in a generalized processing network or
just flow if excessx(v) :=

∑
e∈δ−(v) xe −

∑
e∈δ+(v) xe = 0 for each v ∈ V \ {s, t} and both

xe := x(e) 6 ue (called the static capacity constraint for e) and xe 6 αe ·
∑
e ′∈δ+(v) xe ′

(called the dynamic capacity constraint for e) for each e = (v,w) ∈ E. The flow value of
a flow x is given by val(x) := excessx(t). A flow x of maximum flow value is called a
maximum flow in a generalized processing network or just maximum flow. C

The above definition allows us to define the maximum flow problem in a generalized
processing network:
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Definition 6.2 (Maximum flow problem in a generalized processing network (MFGPN)):
Instance: A directed graph G = (V ,E) with source s ∈ V , sink t ∈ V , capaci-

ties ue ∈ N, and flow ratios αe ∈ (0, 1] on the edges e ∈ E such that∑
e∈δ+(v) αe > 1 for each v ∈ V with δ+(v) 6= ∅.

Task: Determine a maximum flow in G. C

Note that we have required that
∑
e∈δ+(v) αe > 1 for each v ∈ V with δ+(v) 6= ∅ in

Definition 6.2. However, this does not yield any restriction since flow conservation
holds at nodes with

∑
e∈δ+(v) αe ∈ (0, 1) only if the flow on the outgoing edges is

zero. Consequently, we can find and remove such nodes in a preprocessing step in
O(n+m) time. This fact is held down in the following assumption:

Assumption 6.3: For every node v ∈ V with δ+(v) 6= ∅, the flow ratios of its outgoing
edges fulfill

∑
e∈δ+(v) αe > 1. C

In addition to Assumption 6.3, we make the following assumptions on the structure
of the underlying graph:

Assumption 6.4: For every node v ∈ V \ {s, t}, it holds that δ+(v) 6= ∅ and δ−(v) 6= ∅.
C

Assumption 6.5: For every node v ∈ V \ {s, t}, there is at least one directed path from
s to v or from v to t. C

Assumption 6.4 does not impose any restriction on the underlying model since the
inflow and outflow of every node v ∈ V \ {s, t} with δ+(v) = ∅ or δ−(v) = ∅ must
equal zero due to flow conservation at v, which implies that the incident edges can
be deleted in a preprocessing step. Similarly, Assumption 6.5 yields no restriction
since the corresponding connected components do not contribute to the flow value
in any flow and can be deleted as well. Note that, for any instance of MFGPN, both
assumptions can be established in O(n+m) time by performing a depth-first search
and repeatedly deleting single nodes and edges. The resulting graph is connected,
such that we can assume that n ∈ O(m) in the following.

Using the above definitions, we can formulate the maximum flow problem in a gener-
alized processing network as a linear program as follows:

max
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe (6.1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}, (6.1b)
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xe 6 αe ·
∑

e ′∈δ+(v)

xe ′ for all e = (v,w) ∈ E, (6.1c)

0 6 xe 6 ue for all e ∈ E. (6.1d)

Note that this formulation as a linear program only differs in equation (6.1c) from
the linear programming formulation of the traditional maximum flow problem given
in equations (2.1) on page 14. However, the known combinatorial algorithms for the
traditional maximum flow problem cannot be applied directly to MFGPN. Instead,
we need to make use of new approaches and generalizations of existing results. The
following definitions build the basis for the theoretical framework that will be used
in the remainder of this chapter.

Definition 6.6 (Types of edges):
Let x be a feasible flow in a generalized processing network. An edge e = (v,w) ∈ E
is said to be of type u if xe = ue. Similarly, if xe < ue and xe = αe ·

∑
e ′∈δ+(v) xe ′ , the

edge is said to be of type α. C

Definition 6.7 ((Basic) Flow distribution scheme):
A function β : E→ [0, 1] with βe := β(e) 6 αe for each e ∈ E is called a flow distribution
scheme if, for each v ∈ V \ {t}, it holds that

∑
e∈δ+(v) βe = 1. Furthermore, if there is

at most one edge e ∈ δ+(v) with βe /∈ {0,αe} at each node v ∈ V \ {t}, the function is
called a basic flow distribution scheme. C

Intuitively, each flow distribution scheme determines how flow that arrives at some
node v ∈ V is sent through the outgoing edges without violating the dynamic capacity
constraints or the flow conservation constraints. Thus, each flow distribution scheme
together with a sufficiently small flow value val(x) determines a feasible flow x. Note
that the concept of basic flow distribution schemes is a generalization of the notion
of s-t-paths in traditional network flow problems since we obtain such a path for the
case that αe = 1 for each e ∈ E. Moreover, note that the fraction xe

val(x) is constant for
each edge e ∈ E and every flow x determined by a given flow distribution scheme β,
which leads to the following definition:

Definition 6.8 (Flow on flow distribution scheme, weight of edge in flow distribution
scheme):
Let β be a flow distribution scheme. A flow x that fulfills xe = βe ·

∑
e ′∈δ+(v) xe ′

for each e = (v,w) ∈ E is called a flow on β. For a flow x on β with positive flow
value val(x), the fraction wβ(e) := xe

val(x) ∈ [0, 1] (which is independent of the choice of
x) is called the weight of e in β. C



6.3 Structural Results 123

In particular, note that the weight function wβ also embodies a flow with unit flow
value for each flow distribution scheme β.

The notion of flow distribution schemes shows the main difference between our model
and traditional processing networks: In the latter model, for each flow distribution
scheme β, it always holds that βe = αe for each edge e = (v,w) that leaves a special
node v. This implies that the flow on each edge in δ+(v) is determined by the flow
on e. In our generalized model, however, there are multiple possible (basic) flow
distribution schemes at each such node, which prevents us from directly applying the
known algorithms for traditional processing networks to the generalized model.

6.3 Structural Results

We start by generalizing existing results for traditional flows to the case of MFGPN.
As it turns out, a flow decomposition that is similar to the well-known flow decompo-
sition of traditional flows is possible in the case of MFGPN as well (cf. (Ahuja et al.,
1993)). To obtain this result, we need the following lemma:

Lemma 6.9:
A feasible flow on a given flow distribution scheme β that is positive on at least one
edge can be determined in O(m3) time.

Proof: Let E0 := E ∪ {e0} with e0 = (t, s) and βe0 := 1. We show that we can find a
non-zero feasible circulation1 x on β (extended to e0) in G0 = (V ,E0) within the given
time bound, which clearly shows the claim.

Consider some edge e = (v,w) ∈ E0. For every feasible circulation x on β, it must
hold that xe − βe ·

∑
e ′∈δ−(v) xe ′ = 0 in order to be feasible on β and to fulfill flow

conservation. The set of these constraints for each e ∈ E builds a homogeneous linear
equation system of the form A · x = 0 over m+ 1 variables with m+ 1 constraints.
Note that the sum of the coefficients amounts to zero in each row and column. Hence,
the rank of the matrix A is at most m and, thus, the dimension of the kernel is at least
one. Consequently, there is a non-zero vector x that solves the linear equation system.
Without loss of generality, there is at least one edge e = (v,w) with xe > 0 in this
vector. Since xe − βe ·

∑
e ′∈δ−(v) xe ′ = 0, it both holds that

∑
e ′∈δ−(v) xe ′ > 0 (i.e. there

is at least one edge e ′ ∈ δ−(v) with xe ′ > 0) and that xe ′′ > 0 for each e ′′ ∈ δ+(v) (since
xe ′′ − βe ′′ ·

∑
e ′∈δ−(v) xe ′ = 0 as well and βe ′′ > 0). Since the underlying graph G0

is strongly connected according to Assumption 6.4, Assumption 6.5, and due to the

1 A feasible circulation x is a feasible flow that fulfills excessx(v) = 0 for each node v ∈ V .
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additional edge e0, an inductive argument yields that xe > 0 for each e ∈ E0. Hence,
a suitable multiple of x yields a feasible flow in the underlying network. Since such a
vector x can, e.g., be found by the Gaussian elimination procedure in O(m3) time, the
claim follows.

Theorem 6.10:
Each flow x can be decomposed into κ 6 2m flows x(i) on basic flow distribution
schemes β(i) for i ∈ {1, . . . , κ}. Such a decomposition can be found in O(m4) time.

Proof: Let x be a feasible flow in G = (V ,E) with flow value val(x) > 0. Without loss
of generality, we can ignore edges carrying zero flow. For each v ∈ V with positive
outflow, let (e1, . . . , ek) denote an ordering of the edges in δ+(v) such that

xei
αei

>
xej
αej

for i < j (in particular, edges of type α are located at the front of the ordering). If∑k
i=1 αei = 1, we set βei := αei for each i ∈ {1, . . . ,k}. Else, if

∑k
i=1 αei > 1, there

is some index h 6 k with
∑h−1
i=1 αei 6 1 and

∑h
i=1 αei > 1. By setting βei := αei for

i ∈ {1, . . . ,h− 1}, βeh := 1−
∑h
i=1 βei , and βej := 0 for j ∈ {h+ 1, . . . ,k} for each such

node v ∈ V , we, thus, obtain a basic flow distribution scheme. Note that, for each
e ∈ E, it holds that βe > 0 only if xe > 0 and that βe = αe whenever e is of type α.

Let x denote a feasible flow on β, which can be found in O(m3) time according to
Lemma 6.9. We claim that, for a suitable choice of δ > 0, the flow x(δ) := x− δ · x
remains feasible. Obviously, for each choice of δ, flow conservation remains fulfilled
at each node v ∈ V since∑

e∈δ−(v)

(x(δ))e −
∑

e∈δ+(v)

(x(δ))e =
∑

e∈δ−(v)

(xe − δ · xe) −
∑

e∈δ+(v)

(xe − δ · xe)

=

 ∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe

− δ ·

 ∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe

 = 0− 0 = 0.

For the flow on each edge e ∈ E to remain non-negative, it must hold that x((δ))e =
xe − δ · xe > 0, i.e., δ 6 xe

xe
for each e ∈ E with xe > 0. Moreover, in order to fulfill the

dynamic capacity of each edge e = (v,w) ∈ E, the value δ must fulfill the following
constraint:

(x(δ))e 6 αe ·
∑

e ′∈δ+(v)

(x(δ))e ′

⇐⇒ (xe − δ · xe) 6 αe ·
∑

e ′∈δ+(v)

(xe ′ − δ · xe ′)

⇐⇒ δ ·

αe ·
 ∑
e ′∈δ+(v)

xe ′

− xe

 6 αe ·

 ∑
e ′∈δ+(v)

xe ′

− xe. (6.2)
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Note that both sides of inequality (6.2) are non-negative since x and x fulfill the dy-
namic capacity constraints. For the case that e is of type α in x (which is, e.g., true if
e is also of type α in x according to the construction of β), inequality (6.2) is fulfilled
for every choice of δ since αe · (

∑
e ′∈δ+(v) xe ′) − xe = 0. Otherwise, (6.2) is equivalent

to

δ 6
αe ·

(∑
e ′∈δ+(v) xe ′

)
− xe

αe ·
(∑

e ′∈δ+(v) xe ′
)
− xe

. (6.3)

Let δ be the maximum value that fulfills both δ 6 xe
xe

for each e with xe > 0 and
inequality (6.3) for each e ∈ E that is not of type α in x. By the above arguments, it
follows that δ · x is a feasible flow on β and that the remaining flow x(δ) is feasible
as well. Moreover, note that the flow on at least one edge in x(δ) becomes zero (for
the case that δ = xe

xe
for some edge e ∈ E), or at least one edge e ∈ E that was not of

type α in x is of type α in x(δ). In the latter case, edge e will remain of type α after
each of the following iterations of the algorithm according to the definition of β.

Hence, the above procedure executes at most 2m iterations while each of these itera-
tions runs in O(m3) time according to Lemma 6.9, which shows the claim.

Note that, on a graph without dynamic capacities (i.e., with αe = 1 for each e ∈ E),
each flow on a basic flow distribution scheme β either corresponds to a flow on an s-t-
path or on a cycle. Thus, Theorem 6.10 is a generalization of the flow decomposition
theorem for traditional flows (cf. (Ahuja et al., 1993)).

We now restrict our considerations to the case of acyclic graphs. In this case, the run-
ning time of finding a flow decomposition can be significantly improved compared
to Theorem 6.10. Recall that the weight wβ(e) of an edge e ∈ E in a flow distribu-
tion scheme β is independent of the choice of the underlying flow x according to
Definition 6.8.

Lemma 6.11:
The weights wβ(e) of all edges e ∈ E in a given flow distribution scheme β can be
determined in O(m) time on acyclic graphs.

Proof: Let (v1 = s, v2, . . . , vn−1, vn = t) denote a topological sorting of the nodes,
which can be determined in O(m) time (cf., e.g., Cormen et al. (2009)). For i = 1, the
weight of each edge e ∈ δ+(vi) is directly given by β, i.e., we get that wβ(e) := βe.
Now assume that we know the weights for all edges in δ+(vj) for j ∈ {1, . . . , i} and
consider the subsequent node vi+1 in the ordering. In each flow x on β with flow
value val(x), the amount of flow that reaches vi+1 is given by F :=

∑
e∈δ−(vi+1)

xe =
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∑
e∈δ−(vi+1)

val(x) ·wβ(e). For each e ∈ δ+(vi+1), the flow on xe is then given by
xe = βe · F, i.e., the weight of e amounts to

wβ(e) =
xe

val(x)
=
βe · F
val(x)

= βe ·
∑

e ′∈δ−(vi+1)

wβ(e
′).

Repeating the above procedure for each node vi ∈ V , the weight of each edge in β can
be determined in O(m) time, which shows the claim.

Corollary 6.12:
A feasible flow on a given flow distribution scheme β that is positive on at least one
edge can be determined in O(m) time on acyclic graphs.

Proof: According to Lemma 6.11, we can determine the weights wβ(e) in β of all
edges e ∈ E in O(m) time. Note that a flow of value F on β results in a flow of
value wβ(e) · F on each edge e ∈ E. Hence, for any F with 0 < F 6 min{ ue

wβ(e)
: e ∈

E and wβ(e) > 0}, the flow x with xe := F ·wβ(e) for each e ∈ E is a feasible flow with
positive flow value F, which shows the claim.

Using the result of Corollary 6.12 in the proof of Theorem 6.10, we immediately get
the following result:

Theorem 6.13:
On acyclic graphs, each flow x can be decomposed into at most 2m flows on basic
flow distribution schemes in O(m2) time.

6.4 Complexity and Approximability

In this section, we consider the complexity and approximability of the maximum
flow problem in generalized processing networks. Although MFGPN is solvable in
polynomial time, it turns out to be much harder to solve than the maximum flow
problem in traditional networks. Nevertheless, for the case of acyclic graphs, we will
be able to derive an FPTAS for the problem that runs in strongly polynomial time.

6.4.1 Complexity

Note that the linear program (6.1a) – (6.1d) can be solved in (weakly) polynomial
time by known techniques such as interior point methods (cf. (Schrijver, 1998)). In
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particular, using the procedure by Vaidya (1989) that was described in Section 4.2, we
get the following weakly polynomial running time for MFGPN:

Theorem 6.14:
MFGPN is solvable in weakly polynomial time O

(
m3.5 logM

)
if M > maxe∈E ue and

each flow ratio is a rational number with numerator and denominator at most M.

However, as in the previous chapters of this thesis, we are in particular interested in
combinatorial algorithms for the treated problems that exploit the discrete structure
of the underlying network. As for the case of traditional flows, the flow decompo-
sition theorem that was derived in Section 6.3 is only a structural result and does
not immediately yield an algorithm that solves the problem of finding an optimal
solution. In fact, it turns out that the problem MFGPN seems to be much more com-
plicated than the traditional maximum flow problem since every packing LP of the
form max

{
cTx : Ax 6 b, x > 0

}
for positive rational vectors c and b and a matrix A

with non-negative entries can be reduced to MFGPN in linear time. This result was
first published by Schaefer (1978). Since it seems to be widely unnoticed in present
literature, we present a short proof in the following.

Theorem 6.15 (Schaefer (1978)):
Every packing LP can be solved by computing a maximum flow in a generalized
processing network. This network can be constructed from the given packing LP in
linear time.

Proof: Let max
{
cTx : ATx 6 b, x > 0

}
be a packing LP with c ∈ Qn, b ∈ Qm, A ∈

Qm×n, cj > 0 for j ∈ {1, . . . ,n}, bi > 0 for i ∈ {1, . . . ,m}, and aij > 0 for j ∈
{1, . . . ,n}, i ∈ {1, . . . ,m}.

Without loss of generality, we may assume that bi = 1 for each i ∈ {1, . . . ,m} and
that cj > 1 for each j ∈ {1, . . . ,n} since we can otherwise scale the corresponding
row or the objective function, respectively, by appropriate factors. Similarly, we
may assume that

∑m
i=1 aij 6 1 for each j ∈ {1, . . . ,n}: Otherwise, for 1 < q :=

max
{∑m

i=1 aij : j ∈ {1, . . . ,n}
}

, we could use the equivalent LP formulation max{ 1qc
Tx ′ :

1
qA

Tx ′ 6 1, x ′ > 0} and afterwards substitute x := 1
q · x

′.

We construct an instance of MFGPN as follows: Aside from a source s and sink t, we
insert two nodes vj and v ′j for each j ∈ {1, . . . ,n} and a node wi for each i ∈ {1, . . . ,m}.
We connect s with each node vj and insert an edge with capacity 1 between each
node wi and the sink t. Moreover, we insert an edge between vj and v ′j with flow
ratio 1

cj
and an edge that heads from vj to t with flow ratio 1− 1

cj
. Finally, we add

an edge between each v ′j and each wi with flow ratio aij and one edge between each
v ′j and t with flow ratio 1 −

∑m
i=1 aij. If not mentioned explicitly, the flow ratio of
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each edge is 1 and the capacity is infinite. An example of a packing LP and the
corresponding network is depicted in Figure 6.1.

max 4x1 + 5x2

s.t. 0.2x1 + 0.7x2 6 1

0.3x1 + 0.2x2 6 1

x1, x2 > 0

(a) Packing LP

s

v1

v2

v ′1

v ′2

w1

w2

t

α = 1
4

α = 3
4

α = 1
5

α = 4
5

α = 0.2

α = 0.3 α = 0.5

α = 0.7

α = 0.2

α = 0.1

u = 1

u = 1

(b) Instance of MFGPN

Figure 6.1: An example packing LP (left) and the corresponding instance of MFGPN (right).
If not depicted, the flow ratio of each edge is 1 and the capacity is infinite.

It is now easy to see that the flow value of a maximum flow in the constructed net-
work equals the optimum value of the given (transformed) packing LP instance: For
j ∈ {1, . . . ,n}, the flow on the edge between vj and v ′j can be interpreted as the value
of variable xj. Since this edge has a flow ratio of 1

cj
, it is necessary to send cj · xj units

of flow from s to vj in order to obtain a flow of value xj between vj and v ′j , which cor-
responds to the contribution of xj to the objective function value of the LP. Moreover,
for i ∈ {1, . . . ,m}, the flow on the edge between wi and t can be interpreted as the left-
hand side of the constraint

∑n
j=1 aij · xj 6 1 and the capacity of the edge enforces the

constraint to be fulfilled. Finally, the interconnections between the nodes v ′j and wi
model the effect that the corresponding variables xj have on the value of the left-hand
side of each constraint i.

Hence, by solving the constructed instance of MFGPN and interpreting the flow val-
ues on each edge between vj and v ′j as the value of variable xj, we obtain an optimal
solution of the given packing LP. Since the above transformations and construction of
the network work in linear time, the claim follows.

6.4.2 Approximability

The results of the previous subsection imply that, even on acyclic graphs, the max-
imum flow problem in generalized processing networks is much more complicated
than the maximum flow problem in traditional networks, so strongly polynomial-
time combinatorial algorithms may not necessarily exist for MFGPN. Nevertheless, as
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it will be shown in the following, we can use the special structure of acyclic graphs
in order to obtain an FPTAS for finding a maximum flow in an acyclic generalized
processing network by incorporating the generalized packing framework that was in-
troduced in Section 3.3. Even more, this FPTAS can be implemented to run in strongly
polynomial time, in contrast to interior point methods. To this end, we need the fol-
lowing result:

Lemma 6.16:
Let y denote a function that assigns a positive weight ye := y(e) > 0 to each edge e ∈ E.
A basic flow distribution scheme β that minimizes the total weight

∑
e∈Ewβ(e) · ye

can be found in O(m) time on acyclic graphs.

Proof: Let (v1, . . . , vn) denote a topological sorting of the node set V , which can be
found in O(m) time. For each i ∈ {1, . . . ,n}, let G(i) := (V(i),E(i)) with V(i) :=

{vi, . . . , vn} and E(i) := {e = (vj, vl) ∈ E : j, l > i} denote the subgraph induced
by {vi, . . . , vn}. Moreover, let w(i) denote the minimum total weight of a basic flow
distribution scheme in G(i) with respect to y.

Clearly, since G(n) contains no edge at all, it holds that w(n) = 0. Now assume that
we want to determine the value of w(i) for some i ∈ {1, . . . ,n− 1} and that the values
w(i+ 1), . . . ,w(n) are already known. In order to find a (not necessarily basic) flow
distribution scheme β, we need to assign values βe ∈ [0, 1] to each e ∈ δ+(vi) such
that

∑
e∈δ+(vi)

βe = 1. A value of βe for some edge e = (vi, vl) ∈ δ+(vi) increases the
total weight w(i) by βe · ye +βe ·w(l) since wβ(e) = βe in G(i) and since a fraction βe
of the total flow must be sent through G(l). Thus, the minimum total weight in G(i) is
given by the following linear program:

w(i) = min
∑

e=(vi,vl)∈δ+(vi)

βe · (ye +w(l))

s.t.
∑

e∈δ+(vi)

βe = 1,

0 6 βe 6 αe for all e ∈ E.

Similarly to the fractional knapsack problem (cf. Kellerer et al. (2004)), it is easy to see
that an optimal solution to this fractional packing problem can be determined by the
following procedure: If

∑
e∈δ+(vi)

αe = 1, the only feasible solution is given by βe = αe
for each e ∈ δ+(vi). Otherwise, if

∑
e∈δ+(vi)

αe > 1, let (e1, . . . , ek) denote a sorting of
the outgoing edges of vi in non-decreasing order of their coefficients ye +w(l). Let l
be the unique index such that

∑l−1
j=1 αe 6 1 and

∑l
j=1 αe > 1. By setting βej := αej for

j ∈ {1, . . . , l− 1}, βel = 1−
∑l−1
j=1 βej , and βej = 0 for j ∈ {l+ 1, . . . ,k}, we then get an

optimal solution. Similar to the fractional knapsack problem, we can find this index l
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in O(k) time by using weighted medians (cf. (Korte and Vygen, 2002)). Note that, in
this solution, it holds that βe /∈ {0,αe} for at most one edge, i.e., the optimal solution
is a basic flow distribution scheme.

Note that the above algorithm is strongly combinatorial according to the definition
that was given in Section 3.1. This leads to the following theorem:

Theorem 6.17:
There is an FPTAS for the maximum flow problem in acyclic generalized processing
networks that runs in O

(
1
ε2
·m2 logm

)
time.

Proof: The proof is composed of three results that have already been shown before:
According to Theorem 6.10 (and Theorem 6.13), each flow x in a generalized pro-
cessing network can be decomposed into at most 2m flows on basic flow distribu-
tion schemes, i.e., each flow x lies in the cone C that is generated by the (possibly
exponential-size, but finite) set S := {wβ : β is a flow distribution scheme} of flows
with unit flow value on basic flow distribution schemes. Moreover, since we can
rewrite the objective function of the maximum flow problem in generalized process-
ing networks as max

∑
e∈E ce ·xe with ce := 1 for e ∈ δ−(t) and ce := 0 for e ∈ E \ δ−(t),

it holds that
∑
e∈E ce ·wβ(e) = 1 for all flows wβ ∈ S. Hence, we obtain the following

equivalent formulation of MFGPN:

max
∑
e∈E

ce · xe

s.t. xe 6 ue for all e ∈ E,

x ∈ C.

The constraint matrix of this formulation only contains N = m non-zero entries since
both the flow conservation constraints and the dynamic capacity constraints are mod-
eled by the containment in the cone C. Since, for a given cost vector y, we can deter-
mine a flow distribution scheme β that minimizes the total weight

∑
e∈Ewβ(e) · ye

in O(m) time according to Lemma 6.16, the claim immediately follows by Theo-
rem 3.5.

Note that Theorem 6.17 can be easily generalized to the minimum-cost flow problem in a
generalized processing network, in which the objective function is replaced by a general
linear cost function of the form min

∑
e∈E ce · xe. By the same arguments that were

used in the proof of Theorem 6.17, we get an FPTAS for this much more general prob-
lem running in O

(
1
ε2
·m3 logm

)
time by using Theorem 3.10. Moreover, note that we

can solve budget-constrained versions of both the maximum and the minimum cost
flow problem in a generalized processing network within the same running times as
the unconstrained versions according to Theorem 3.5 and Theorem 3.10, respectively.
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6.5 Series-Parallel Graphs

In this section, we investigate the maximum flow problem for generalized process-
ing networks on series-parallel graphs. Since each series-parallel graph is acyclic, in
particular, the positive results from Section 6.4 apply here as well. However, we are
now able to derive two algorithms that compute a maximum flow in a series-parallel
generalized processing network in (strongly) polynomial time. In the following three
results, we investigate a special case of the problem which will be used as a building
block for the two upcoming polynomial-time procedures in Section 6.5.1 and Sec-
tion 6.5.2. To this end, let E(v,w) := δ+(v)∩ δ−(w) denote the set of all edges between
the two nodes v,w ∈ V .

Lemma 6.18:
Let v and w be two nodes such that all edges {e1, . . . , ek} that leave v are parallel edges
heading to w, i.e., δ+(v) = E(v,w), and assume that the edges are ordered such that
uei
αei

6
uej
αej

for i < j. Then the maximum flow between v and w fulfills the property that

there exists an index h ∈ {1, . . . ,k} such that all edges ei with 1 6 i 6 h are of type u
and all edges ej with h+ 1 6 j 6 k are of type α. This index h can be computed in
O(k) time.

Proof: Let x be any maximum flow between v and w. Clearly, we may assume that
each edge is either of type u or of type α in x since the total flow value could else
be further improved. In the following, we show that we can label several edges with
type α in an iterative process from right to left (i.e., from higher indices to lower
indices) until we find the desired index h, which allows us to assign the remaining
edges to type u and stop the procedure.

Let ei be some edge that has not yet been labeled such that all edges ej with i+ 1 6

j 6 k are of type α (initially, choose i := k). Since these edges ej are of type α, a
fixed fraction α(i) :=

∑k
j=i+1 αej of the total outflow of v flows through the edges ej,

i+ 1 6 j 6 k. Thus, the maximum flow value F := val(x) =
∑k
j=1 xej is determined by

the flow values on the edges e1, . . . , ei as

F =

k∑
j=1

xej =

i∑
j=1

xej +

k∑
j=i+1

xej =

i∑
j=1

xej +α
(i) · F

⇐⇒ F =
1

1−α(i)
·
i∑
j=1

xej .
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First consider the case that αei < (1−α(i)) · uei∑i
j=1 uej

. In this case, edge ei cannot be of

type u since this would imply that

αei · F = αei ·
1

1−α(i)
·
i∑
j=1

xej 6 αei ·
1

1−α(i)
·
i∑
j=1

uej < uei = xei ,

so the dynamic capacity of edge ei would be violated. Thus, edge ei and, hence, all
edges ej with j ∈ {i, . . . ,k} are of type α.

Now consider the case that αei > (1− α(i)) · uei∑i
j=1 uej

. By setting x ′ej := uej for j ∈

{1, . . . , i} and x ′el := xel for l ∈ {i+ 1, . . . ,k}, the dynamic capacity constraint of each
edge ej is fulfilled for x ′ since

αej · F = αej ·
1

1−α(i)
·
i∑
l=1

xel =
αej
uej
· uej ·

1

1−α(i)
·
i∑
l=1

uel

>
αei
uei
· uej ·

1

1−α(i)
·
i∑
l=1

uel > uej = x
′
ej

.

Thus, by maximality of x, we must have xej = uej for j ∈ {1, . . . , i}. In total, by setting
h := i, we can label each edge ej with j ∈ {1, . . . ,h} with type u and each edge el for
l ∈ {h+ 1, . . . ,k} with type α, which shows the claim.

Corollary 6.19:
Let v and w be two nodes such that all edges {e1, . . . , ek} that leave v are parallel edges
heading to w, i.e., δ+(v) = E(v,w), and assume that the edges are ordered such that
uei
αei

6
uej
αej

for i < j. The maximum flow between v and w can be found in O(k) time.

Proof: According to Lemma 6.18, there exists a maximum flow x and an index h such
that each edge ei with 1 6 i 6 h is of type u and each edge ej with h+ 1 6 j 6 k

is of type α in x and this index h can be computed in O(k) time. The flow xei
on the edges ei is consequently given by xei := uei for 1 6 i 6 h. Since a fixed
fraction α(h) =

∑k
j=h+1 αej of the total flow is sent along the edges ej for h+ 1 6 j 6 k,

the total flow value is given by F := 1
1−α(h)

·
∑h
i=1 uei and the flow on each edge ej

amounts to xej := αej · F.

As seen in Lemma 6.18, there is some index h such that all edges ei with 1 6 i 6 h are
of type u and the remaining edges are of type α in a maximum flow. In the following
lemma, we show that the converse is true as well. In particular, this shows that the
maximum flow is unique. Note that this lemma considers the more general case, in
which the edges in δ+(v) are not assumed to be necessarily parallel:
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Lemma 6.20:
Let v be a node such that, for some given feasible flow x, at least one of the outgoing
edges δ+(v) of v is of type u while the rest of the edges is of type α. Then the flow on
the edges in δ+(v) is unique and maximum.

Proof: As in Lemma 6.18, assume that the edges {e1, . . . , ek} are ordered such that
uei
αei

6
uej
αej

for i < j. Since all edges in δ+(v) are either of type u or of type α in the

flow x, the same arguments that were used in the proof of Lemma 6.18 show that
there is some index h ∈ {1, . . . ,k} with αeh > (1−α(h)) · ueh∑h

l=1 uel
such that none of the

edges ej for j ∈ {h+ 1, . . . ,k} can be of type u and is, thus, of type α. Furthermore,
since

uei
αei

6
ueh
αeh

for each i ∈ {1, . . . ,h}, we get that

αei >
uei
ueh
·αeh >

uei
ueh
· (1−α(h)) ·

ueh∑h
l=1 uel

= (1−α(h)) ·
uei∑h
l=1 uel

.

Let Iα := {i ∈ {1, . . . ,h} : ei is of type α} and Iu := {i ∈ {1, . . . ,h} : ei is of type u},
where Iu 6= ∅ by assumption. The flow value F out of node v is then given by

F =

k∑
i=1

xei =

k∑
j=h+1

αej · F+
∑
i∈Iα

αei · F+
∑
i∈Iu

uei ,

which is equivalent to

F =
1

1−α(h) −
∑
i∈Iα αei

·
∑
i∈Iu

uei

>
1

1−α(h) −
∑
i∈Iα(1−α

(h)) · uei∑h
l=1 uel

·
∑
i∈Iu

uei

=
1

(1−α(h)) ·
(
1−

∑
i∈Iα uei∑h
l=1 uel

) ·∑
i∈Iu

uei

=
1

(1−α(h)) ·
∑
i∈Iu uei∑h
l=1 uel

·
∑
i∈Iu

uei =
1

1−α(h)
·
h∑
l=1

uel .

Note that this lower bound on the flow value equals the flow value that is given by
setting xei := uei for each i ∈ {1, . . . ,h}. Thus, since the given flow is feasible, each
of the edges ei for i ∈ {1, . . . ,h} must be of type u, which is clearly maximum and
shows the claim.
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6.5.1 Augmenting on Flow Distribution Schemes

In this subsection, we describe an algorithm that repeatedly sends flow on flow dis-
tribution schemes with positive residual capacity, i.e., on which a given flow can be
increased without violating any capacity constraint. This algorithm is similar to the
well-known augmenting path algorithm for the traditional maximum flow problem,
but generalizes the procedure from augmentations on single paths to augmentations
on (basic) flow distribution schemes. As it turns out, it is possible to augment flow
in a greedy manner without the need to use some form of residual network in order
to revert prior decisions, which allows us to obtain a strongly polynomial-time algo-
rithm for the problem on series-parallel graphs that runs in O(m2) time. Note that
a similar result is known for the traditional maximum flow and minimum cost flow
problem in series-parallel graphs (Bein et al., 1985).

The result will be established in four steps: We first show that we can find a suit-
able starting solution efficiently (Lemma 6.21). We then define a measurement αx
that allows us to evaluate easily if or if not there is an augmenting flow distribution
scheme (Lemma 6.22). In a next step, we prove that the procedure terminates within
2m augmentations (Corollary 6.28). Finally, we show that the resulting flow is in fact
maximal (Theorem 6.31).

As a starting flow for our algorithm, we use a flow that is positive on each edge. Such
a flow can be found in linear time even on general acyclic graphs, as the following
lemma shows:

Lemma 6.21:
Let G be an acyclic graph. In O(m) time, we can compute a feasible flow x that is
positive on each edge and that fulfills the property that, for each v ∈ V \ {t}, either all
or no edges in δ+(v) are of type α and no edge is of type u.

Proof: For each e = (v,w) ∈ E, let βe := αe∑
e ′∈δ+(v) αe ′

. Clearly, β is a feasible flow

distribution scheme that assigns a positive value βe to each edge. Moreover, for each
v ∈ V \ {t}, if

∑
e ′∈δ+(v) αe ′ = 1, then βe = αe for all e ∈ δ+(v) (so all edges in δ+(v) are

of type α in any flow on β). Otherwise,
∑
e ′∈δ+(v) αe ′ > 1 and we obtain that βe < αe

for each e ∈ δ+(v) (so no edge in δ+(v) is of type α in any flow on β). According
to Lemma 6.11, we can compute the corresponding (positive) weights wβ(e) of all
edges in O(m) time. Using these weights, we obtain a feasible flow x with the desired
properties by setting xe := wβ(e) · F for 0 < F < min

{
ue

wβ(e)
: e ∈ E

}
.

After sending a small amount of flow that is positive on each edge as described in
Lemma 6.21, we may assume in the following that the values αe of all outgoing edges
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of type α sum up to at most one at each node, which may not be true for the zero-
flow2.

In the following, for a given series-parallel graph G and a feasible flow x in G, we call
a flow distribution scheme β augmenting if we can increase x by adding some flow x ′

on β of positive flow value without violating any static or dynamic capacity constraint.
Clearly, if we can find an augmenting flow distribution scheme β, the flow x cannot
be optimal since we are able to increase the flow value by sending flow on β. As we
will see in the following, the reverse is true as well, i.e., as soon as there is no further
augmenting flow distribution scheme, the flow is maximum.

Given a flow x, we start by defining a function αx(G ′) that measures the maximum
fraction of augmenting flow that can be sent through each subgraph G ′ corresponding
to a node in the decomposition tree of the given series-parallel network G:

αx(G
′ = e) =


0, if e is of type u in x,

αe, if e is of type α in x,

1, else.

(6.4a)

αx(G
′ = G1 | G2) = min {1,αx(G1) +αx(G2)} . (6.4b)

αx(G
′ = G1 ◦G2) =

αx(G1), if αx(G2) = 1,

0, else.
(6.4c)

Clearly, all values αx(G ′) can be computed in O(m) time using a dynamic program-
ming scheme on the decomposition tree of G. The following lemma and the resulting
corollary show that we can use αx(G) in order to decide whether an augmenting flow
distribution scheme exists:

Lemma 6.22:
For a given flow x in a series-parallel graph G, it holds that αx(G ′) = q for a given
subgraph G ′ corresponding to a node in the composition tree of G and for some
q ∈ [0, 1] if and only if q is the maximum value in [0, 1] such that a fraction q of a
sufficiently small amount of additional flow that arrives at the source node of G ′ can
be sent through G ′.

Proof: We show the claim in a bottom-up manner by induction on the decomposition
tree of G. Consider a leaf of the tree that corresponds to an edge e = (v,w). Obviously,
if e is of type u, the flow on e cannot be increased. If the edge is of type α, at most a

2 Clearly, this does not imply that the values αe of all outgoing edges of some node v sum up to at
most one, in contrast to the case of traditional processing networks.
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fraction αe of additional flow that arrives at v can be sent through e without violating
the dynamic capacity constraint of the edge. Otherwise, if neither of the two capacities
of e is reached, we can send all of the additional flow that arrives at v tow using edge e
until e becomes of type u or type α. This behavior is modeled by equation (6.4a).

Now assume that G ′ with source s ′ is the parallel composition of the two series-
parallel components G1 and G2, which can carry at most a fraction αx(G1) =: q1 and
αx(G2) =: q2 of additional flow at s ′ by the induction hypothesis, respectively. Since
flow that it sent through G ′ splits into two fractions that pass G1 and G2, respectively,
the fraction of additional flow that can flow throughG ′ amounts to at most min{1,q1+
q2}, as given by equation (6.4b).

Finally, let G ′ with source s ′ be the series composition of two components G1 and
G2 with common node v. Assume that G ′ can carry a positive fraction q > 0 of
additional flow that arrives at s ′. This is possible if and only if G1 can carry a fraction
of q (i.e., if αx(G1) > q) and, since all the edges in δ+(v) are already contained in G2,
the component G2 can carry all the flow that arrives at v (i.e., if αx(G2) = 1). Thus,
according to equation (6.4c), αx(G ′) = q in this case. Similarly, it holds that αx(G ′) = 0
if and only if αx(G1) = 0 or αx(G2) < 1, which is true if and only if G1 cannot carry
flow at all or G2 cannot carry all of the flow that arrives at v, i.e., we cannot send a
fraction of additional flow that arrives at s ′ through G ′.

Corollary 6.23:
There exists an augmenting flow distribution scheme in a series-parallel graph G with
a given flow x if and only if αx(G) = 1.

In the following, for a fixed decomposition tree of the series-parallel graph G, we
define a total order ≺ on the edges with e ≺ e ′ if and only if there is an inner node
in the decomposition tree such that e is reachable via the left and e ′ is reachable via
the right child of the inner node. For example, in Figure 2.1 on page 11, it holds that
e1 ≺ e3 and that e4 ≺ e6, but not that e4 ≺ e2.

Lemma 6.24:
For a given flow x in a series-parallel graph G satisfying αx(G) = 1, it is possible to
find an augmenting (basic) flow distribution scheme in O(m) time.

Proof: We show that we can recursively compute a partial augmenting basic flow dis-
tribution scheme β(G ′,q) for each series-parallel graph G ′ corresponding to a node
in the decomposition tree of G with source s ′ in O(m) time. This flow distribution
scheme describes how a fraction q with 0 6 q 6 αx(G

′) of the flow that leaves s ′ is
routed through G ′. Evaluating β(G, 1) then gives the desired flow distribution scheme
in O(m) time.
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For a component consisting of a single edge e = (s ′, t ′), the only possible partial flow
distribution scheme that fulfills the required properties is given by βe := q. Now let
G ′ be the series composition of two series-parallel graphs G1 and G2. Similar to the
definition of αx in equation (6.4c), we need to evaluate both β(G1,q) and β(G2, 1) in
order to distribute a fraction of q of the flow arriving at s ′ through G1 and G2. Finally,
let G ′ be the parallel composition of the two series-parallel graphs G1 and G2 where
G1 is the left child of the inner node that corresponds to G ′ in the decomposition
tree of G. We distribute the fraction q to both components by evaluating β(G1,q1)
and β(G2,q2) with q1 := min{q,αx(G1)} and q2 := q− q1. It is now easy to see that
starting the recursive procedure from the root of the decomposition tree by evaluating
β(G, 1) yields the desired augmenting flow distribution scheme in O(m) time.

In summary, for a given flow x in a series-parallel graph G, we are able to determine
in O(m) time if the flow x can be improved by sending additional flow on some flow
distribution scheme. If so, we can obtain such a flow distribution scheme within the
same running-time. It remains to show that we can incorporate these results into a
general procedure that yields a maximum flow within O(m) iterations.

In the following, for a feasible flow x, we refer to an edge e as dead if e is of type u
or if there is a series-parallel subgraph G ′ that corresponds to an inner node in the
decomposition tree, contains edge e, and satisfies αx(G ′) = 0. Note that a dead edge
remains dead after an augmentation over any flow distribution scheme as described
in the proof of Lemma 6.24.

Lemma 6.25:
For a flow x in a series-parallel graph G ′ with source s ′ that satisfies αx(G ′) < 1, let
β denote the flow distribution scheme that is obtained by evaluating β(G ′,αx(G ′)),
where the function β(·, ·) is defined as in the proof of Lemma 6.24. It then holds
that βe = αe for each e ∈ δ+(s ′) that is of type α, and that βe = 0 for each dead
edge e ∈ δ+(s ′). Moreover, there is no e ∈ δ+(s ′) that is neither of type α nor dead.

Proof: If G ′ consists of a single edge e = (s ′, t ′), the claim clearly follows according
to the definition of β. Now let G ′ denote a series composition of two series-parallel
subgraphs G1 and G2. If αx(G ′) = 0, it holds that all edges in G1 and, thus, all edges
in δ+(s ′) are dead by definition. Since we obtain βe for each e ∈ δ+(s ′) by evaluating
β(G1,αx(G ′)) = β(G1, 0), the claim then follows. Otherwise, if αx(G ′) ∈ (0, 1), it
holds that αx(G1) = αx(G ′) by equation (6.4c) such that the values βe for all edges in
δ+(s ′) are obtained by evaluating β(G1,αx(G1)) and the claim follows by induction.
Finally, if G ′ is the parallel composition of two series-parallel subgraphs G1 and G2, it
must hold that αx(G1) + αx(G2) < 1 and, thus, that αx(G1) < 1 and αx(G2) < 1. The
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claim then follows by induction since the values βe for all e ∈ δ+(s ′) are obtained by
evaluating β(G1,αx(G1)) and β(G2,αx(G2)).

Lemma 6.26:
Let x denote a flow in a series-parallel graph G ′ that satisfies αx(G ′) = 1 and let
β be an augmenting basic flow distribution scheme as described in the proof of
Lemma 6.24. If βe > 0 for some edge e = (v,w), then, for each e ′ ∈ δ+(v) with
e ′ ≺ e, it either holds that e ′ is dead and βe ′ = 0 or that e ′ is of type α and βe ′ = αe ′ .

Proof: Let e ′ and e with e ′ ≺ e be defined as above. Clearly, there is an inner node
in the decomposition tree that corresponds to a parallel composition of two series-
parallel subgraphs G1 and G2 with e ′ in G1 and e in G2. Let 0 < q 6 1 denote the
fraction of additional flow that was distributed in two quantities q1 := min{q,αx(G1)}
and q2 := q− q1 among G1 and G2, respectively, in the construction process of β as
described in the proof of Lemma 6.24. Since βe > 0, it holds that q2 > 0 and, hence,
that αx(G1) = q1 < 1. The claim then follows by Lemma 6.25.

Our augmenting flow distribution scheme algorithm for computing a maximum flow
in a series-parallel generalized processing network works as follows: After computing
the initial flow x as described in the proof of Lemma 6.21, we compute the value αx(G)
at the beginning of each iteration in O(m) time. If this value is less than one, we
terminate and return the current flow x (we will show later that the flow is then
optimum). Otherwise, we compute an augmenting basic flow distribution scheme β
as described in the proof of Lemma 6.24. According to Lemma 6.11, we can determine
the weight wβ(e) of each edge e ∈ E in O(m) time. The maximum amount of flow
that can be sent on β is then given by the largest value δ > 0 such that the flow x(δ)

with (x(δ))e := xe + δ ·wβ(e) is feasible. To be more precise, the value of δ is given by
δ := min{δ1, δ2} with

δ1 := max {δ : (x(δ))e 6 ue ∀e ∈ E}

= min
{
ue − xe
wβ(e)

: e ∈ E with wβ(e) > 0
}

and

δ2 := max

δ : (x(δ))e 6 αe · ∑
e ′∈δ+(v)

(x(δ))e ′ ∀e = (v,w) ∈ E


= max

δ : xe + δ ·wβ(e) 6 αe · ∑
e ′∈δ+(v)

(xe ′ + δ ·wβ(e ′)) ∀e = (v,w)


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= max

δ : δ ·
wβ(e) −αe · ∑

e ′∈δ+(v)

wβ(e
′)

 6

αe · ∑
e ′∈δ+(v)

xe ′

− xe ∀e = (v,w) ∈ E


= min


(
αe ·
∑
e ′∈δ+(v) xe ′

)
− xe

wβ(e) −αe ·
∑
e ′∈δ+(v)wβ(e

′)
: e = (v,w) ∈ E with βe > αe

 ,

where the last equality follows from the fact that only those edges e = (v,w) ∈ E
restrict δ for which wβ(e) − αe ·

∑
e ′∈δ+(v)wβ(e

′) > 0, which is true if and only if
βe > αe since wβ(e) is proportional to βe and

∑
e ′∈δ+(v) βe ′ = 1.

Note that, for the value of δ determined above, at least one edge becomes of type α
or of type u that was not of this type in x. We show in the following that at the
same time it cannot happen that an edge that was dead or of type α before will be
neither dead nor of type α after the augmentation. If we were not able to guarantee
this, our procedure would not be guaranteed to terminate within a finite number of
augmentations.

Lemma 6.27:
Let x ′ denote the flow that is obtained after augmenting a flow x with αx(G) = 1 over
a flow distribution scheme β as described above and let D(x) (D(x ′)) and A(x) (A(x ′))
denote the set of dead edges and α-edges in x (x ′), respectively. It then holds that
D(x ′)∪A(x ′) ) D(x)∪A(x) or that D(x ′)∪A(x ′) = D(x)∪A(x) and D(x ′) ) D(x).

Proof: First, consider some node v ∈ V \ {t} and let e ∈ δ+(v) denote the unique
edge with βe > 0 and e ′ ≺ e for each e ′ ∈ δ+(v) \ {e} with βe ′ > 0. According
to Lemma 6.26, it holds that every such edge e ′ is either dead or of type α and
remains so after an augmentation of value δ ′ < δ, where δ := min{δ1, δ2} is defined
as above. Moreover, if edge e was of type α as well before the augmentation, it holds
that βe = 1−

∑
e ′∈δ+(v):e ′≺e βe ′ = 1−

∑
e ′∈δ+(v):e ′≺e,e ′∈A(x) αe ′ = αe and e remains of

type α. So, as long as we send less than δ units of flow on β, each edge remains its
type.

By sending δ units of flow over β as described above, one of the following cases
applies: If δ = δ1, some edge becomes of type u in x ′ that was either of type α
or of no type in x. In the first case, it holds that D(x ′) ∪A(x ′) = D(x) ∪A(x) and
D(x ′) ) D(x), while in the second case we get that D(x ′) ∪A(x ′) ) D(x) ∪A(x). On
the other side, if δ = δ2, some edge that was of no type in x becomes of type α in x ′,
which implies that D(x ′)∪A(x ′) ) D(x)∪A(x). This shows the claim.
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Corollary 6.28:
The augmenting flow distribution scheme algorithm terminates after O(m) augmen-
tations and runs in O(m2) time.

Proof: The claim directly follows from the discussion before and from the combina-
tion of Lemma 6.27 and the fact that |D(x)| 6 m and |A(x)| 6 m for any flow x.

It remains to show that the computed flow is maximum. To this end, we need the
following lemma:

Lemma 6.29:
Let G be a series-parallel graph and x be a flow in G that is positive on each edge e ∈ E.
Moreover, assume that αx(G) < 1. Then there is an s-t-cut (S, T) such that

1. each edge in δ+(S) is either of type α or of type u,

2. for each node v ∈ V with ∅ 6= δ+(v) ⊆ δ+(S), it holds that at least one edge in
δ+(v) is of type u, and

3. δ−(S) = ∅.

Proof: Let x be a flow in a series-parallel graph G that fulfills αx(G) < 1. Consider the
following function cx defined on series-parallel subgraphs G ′ corresponding to nodes
in the decomposition tree of G:

cx(G
′ = e) = {e},

cx(G
′ = G1 | G2) = cx(G1)∪ cx(G2),

cx(G
′ = G1 ◦G2) =

cx(G2) if αx(G2) < 1,

cx(G1) else.

We now show that the set cx(G) contains exactly the edges in an s-t-cut that fulfills
the required properties. First, suppose that G consists of a single edge e. Since
we are looking for an s-t-cut of G, the only possible cut is given by {e} = cx(G).
Note that, since αx(G) < 1, edge e must be either of type u or of type α. Now
assume that G is the series composition of two series-parallel graphs G1 and G2. Since
αx(G) < 1, it holds that either αx(G2) < 1 or that αx(G2) = 1 but αx(G1) < 1 (cf.
equation (6.4c)). In the first (second) case, we set cx(G) := cx(G2) (cx(G) := cx(G1))
and proceed recursively. Finally, suppose that G is the parallel composition of the two
series-parallel graphs G1 and G2. Since each s-t-cut of G must pass both G1 and G2,
we set cx(G) := cx(G1)∪ cx(G2).
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Note that all the series-parallel subgraphs G ′ in the decomposition tree of G that con-
tain edges in cx(G) fulfill αx(G ′) < 1. Hence, by evaluating cx(G) as described above,
we obtain an s-t-cut (S, T) that only consists of edges of type α and type u, which
shows claim (1). Now suppose that there is a node v ∈ V with δ+(v) ⊆ δ+(S) such
that each edge in δ+(v) is of type α. Since xe > 0 for each e ∈ E, this implies that∑
e∈δ+(v) αe = 1. Let G ′ denote the inclusionwise minimal series-parallel subgraph

of G that contains all edges in δ+(v) and corresponds to an inner node in the decom-
position tree of G. For every series composition G ′′ = G1 ◦G2 that is contained in
the decomposition tree of G ′, since δ+(v) ⊆ δ+(S), it must hold that αx(G2) = 1 and
αx(G1) < 1 and, thus, that αx(G ′′) = αx(G1). But then, according to the definition of
cx and αx, it finally holds that αx(G ′) =

∑
e∈δ+(v) αe = 1, which contradicts the fact

that αx(G ′) < 1 for all series-parallel subgraphs G ′ corresponding to an inner node in
the decomposition tree of G.

Finally, the third claim follows from the fact that the graph G is acyclic and that, for
each s-t-path P in G, the set cx(G) only contains one edge in P by construction. Hence,
the cut that is implied by cx(G) fulfills all of the required properties and the claim of
the lemma follows.

Lemma 6.30:
Let G be a series-parallel graph and let (S, T) denote an s-t-cut in G. Then there exists
a node v ∈ S with δ+(v) ⊆ δ+(S).

Proof: Let S ′ ⊆ S denote the set of all nodes in S that are reachable from s via a
(possibly empty) directed path using nodes in S only. Since s ∈ S ′, the set is non-
empty. For a given topological sorting of the nodes in G, let v ∈ S ′ denote the node in
S ′ with the highest index in the topological sorting. Since v 6= t, it holds that δ+(v) 6= ∅.
However, for each e = (v,w) ∈ δ+(v), if e was not contained in δ+(S), it would hold
that w ∈ S and, thus, that w ∈ S ′. However, this would contradict the definition of v,
which shows the claim.

We are now ready to prove the main theorem of this subsection:

Theorem 6.31:
The augmenting flow distribution scheme algorithm computes a maximum flow in a
series-parallel generalized processing network in O(m2) time.

Proof: The claimed running time follows from the above arguments. It remains to
show that the computed flow x is maximum.
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First, consider some arbitrary flow x ′ and the s-t-cut (S, T) obtained from applying
Lemma 6.29 to the flow x computed by the algorithm. Using that excessx ′(v) = 0 for
each v ∈ V \ {s, t} according to equation (6.1b), we get that

val(x ′) = excessx(t) =
∑
v∈T

excessx ′(v) =
∑
v∈T

 ∑
e∈δ−(v)

x ′e −
∑

e∈δ+(v)

x ′e


=
∑

v∈δ−(T)

x ′e −
∑

v∈δ+(T)

x ′e =
∑

v∈δ+(S)

x ′e −
∑

v∈δ−(S)

x ′e 6
∑

v∈δ+(S)

x ′e,

i.e., the flow value of each flow x ′ is bounded by the total flow value on edges that
head from S to T . We now show that the flow x that is computed by the augmenting
flow distribution scheme algorithm fulfills val(x) =

∑
v∈δ+(S) xe and maximizes this

value among all feasible flows, which shows the claim.

The first claim follows directly from the construction of the cut since there are no
edges in δ−(S). Now assume that there is a feasible flow x ′ with val(x ′) > val(x).
Clearly, there must be at least one edge in δ+(S) for which x ′e > xe. According to
Lemma 6.30, there is at least one node v ∈ S with δ+(v) ⊆ δ+(S). Moreover, according
to Lemma 6.29, it holds that each of the edges in δ+(v) is of type α or of type u in
x and that at least one of these edges is of type u, which, according to Lemma 6.20,
implies that the flow leaving v is maximum and unique and, thus, the flow on each
of the edges in δ+(v) is maximum. Thus, it holds that x ′e 6 xe for each e ∈ δ+(v). If
v = s, it additionally holds that val(x ′) =

∑
e∈δ+(s) x

′
e 6
∑
e∈δ+(s) xe = val(x) and the

claim of the theorem follows. Otherwise, v results from merging the sink of G1 with
the source of G2 in a series composition of two series-parallel subgraphs G1 and G2.
Let G denote the graph that results from G by replacing G1 ◦G2 with a single edge e
with capacity ue :=

∑
e∈δ+(v) xe. Clearly, the flow x with xe := ue and xe := xe for

each e ∈ E(G) \ {e} is feasible in G. Since there is a flow x ′ in G with val(x ′) > val(x)
and x ′e 6 xe for each e ∈ δ+(v), there must be a flow x ′ with val(x ′) > val(x) in G.
However, since the new edge e is of type u in x and is contained in the cut (S, T) with
S := S ∩ V(G) and T := T ∩ V(G), we can repeat the above arguments until S = {s}

and δ+(s) = δ+(S). Thus, there is no flow x ′ in G with val(x ′) > val(x) and the claim
follows.

6.5.2 A Faster Approach

Lemma 6.18 and Corollary 6.19 already give insights about the behavior of a special
case of series-parallel graphs, namely the case of parallel edges between two nodes v
and w. We now show how to incorporate the behavior of other edges in δ+(v) that do
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not reach w into the above algorithm. Until the end of the following discussion, we
again assume that the edges in E(v,w) = {e1, . . . , ek} are ordered such that

uei
αei

6
uej
αej

for i < j.

Consider the set E(v,w) := {e1, . . . , ek} of parallel edges between two nodes v and w
and assume that the total flow on the remaining edges e ∈ δ+(v) \ E(v,w) that leave v
is given by x0. For a fixed value of x0, we can find the maximum flow on the edges in
E(v,w) by using the algorithm described in the proof of Corollary 6.19 as follows: By
introducing an artificial edge e0 between v and w with capacity ue0 := x0 and αe0 := 1
and evaluating the algorithm on the graph G ′ := ({v,w},E(v,w) ∪ {e0}), edge e0 will
eventually be labeled as type u since αe0 = 1 (so the second case must hold in the
proof of Lemma 6.18 when we reach edge e0) and will, thus, carry the desired amount
of flow x0 while

∑
e∈E(v,w) xe is maximum according to Corollary 6.19.

Now let x0 be of variable value. Note that, for each ei ∈ E(v,w), there is some
(not necessarily positive) value b(ei) such that edge ei is declared to be of type α
for x0 < b(ei) and is labeled as type u for x0 > b(ei). We call this value b(ei) the
breakpoint of edge ei in the following. Clearly, according to the proof of Lemma 6.18, it
holds that

x0 = b(ei) ⇐⇒ αei =
(
1−α(i)

)
·

uei

x0 +
∑i
j=1 uej

⇐⇒ x0 =
(
1−α(i)

)
·
uei
αei

−

i∑
j=1

uej (6.5)

with α(i) =
∑k
j=i+1 αej as before. Using the sorting of the edges in E(v,w), we get the

following result:

Lemma 6.32:
Consider a set of edges E(v,w) = {e1, . . . , ek} with

uei
αei

6
uej
αej

for i < j between two

nodes v,w ∈ V . For i ∈ {1, . . . ,k− 1}, it holds that b(ei) 6 b(ei+1).

Proof: Using the definitions of b(ei) and b(ei+1) and the ordering of the edges in
E(v,w), we get that

b(ei) =
(
1−α(i)

)
·
uei
αei

−

i∑
j=1

uej 6
(
1−α(i)

)
·
uei+1
αei+1

−

i∑
j=1

uej

=
(
1−αei+1 −α

(i+1)
)
·
uei+1
αei+1

−

i∑
j=1

uej

=
(
1−α(i+1)

)
·
uei+1
αei+1

− uei+1 −

i∑
j=1

uej
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=
(
1−α(i+1)

)
·
uei+1
αei+1

−

i+1∑
j=1

uej = b(ei+1),

which shows the claim.

Lemma 6.33:
Let f(v,w)(x0) denote the maximum flow that can be sent through the parallel edges
E(v,w) = {e1, . . . , ek} depending on the total flow x0 on the remaining edges in δ+(v) \
E(v,w). The function f(v,w) is continuous, non-decreasing, concave, and piecewise
linear with breakpoints contained in {b(ei) : i ∈ {1, . . . ,k}} and non-negative slopes
between two adjacent breakpoints. Moreover, it holds that f(v,w)(x0) > 0 for each
x0 > 0. The function can be determined in O(k) time.

Proof: First consider the case that x0 = 0. According to Lemma 6.18 and 6.20, there is
some index h such that, in every maximum flow x between v andw, we have xei = uei
for 1 6 i 6 h and xej = αej · F for h+ 1 6 j 6 k, where F = x0 +

∑k
i=1 xei is the total

outflow of node v. If h = k, the claim clearly follows since, in this case, f(v,w) is a
constant function. Else, the partitioning of the edges into the types u and α remains
valid until the first breakpoint is reached. According to Lemma 6.32, this breakpoint
is given by b(eh+1). Note that, for x0 ∈ [0,b(eh+1)), the maximum flow through the
edges in E(v,w) is given by

f(v,w)(x0) =

k∑
i=1

xei =

h∑
i=1

uei +

k∑
j=h+1

αej · F

=

h∑
i=1

uei +
(
f(v,w)(x0) + x0

)
·α(h),

so

f(v,w)(x0) =
1

1−α(h)
·

(
h∑
i=1

uei + x0 ·α
(h)

)
> 0, (6.6)

which is an increasing linear function of x0 with slope α(h)

1−α(h)
> 0. Again, if h+ 1 = k,

the claim follows.

Else, as x0 reaches the value b(eh+1), edge eh+1 turns from type α to type u and,
accordingly, the function f(v,w)(x0) behaves as a linear function of x0 until the next
breakpoint b(eh+2) is reached and so on. The slope of f(v,w) on [b(eh+1),b(eh+2))

evaluates to α(h+1)

1−α(h+1)
6 α(h)

1−α(h)
, so the slopes of the linear segments do not increase

with x0.
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It remains to show the continuity of f(v,w), which – in combination with the above
arguments – in turn yields that the function is concave and non-decreasing. Consider
the intersection of the above two adjacent linear segments of f(v,w):

1

1−α(h)
·

(
h∑
i=1

uei + x0 ·α
(h)

)
=

1

1−α(h+1)
·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
.

Multiplying by (1−α(h)) and (1−α(h+1)), we get that

(
1−α(h+1)

)
·

(
h∑
i=1

uei + x0 ·α
(h)

)
=
(
1−α(h)

)
·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
. (6.7)

The left-hand side of equation (6.7) evaluates to

(
1−α(h+1)

)
·

(
h∑
i=1

uei + x0 ·α
(h+1)

)
+
(
1−α(h+1)

)
· x0 ·αeh+1 ,

while the right-hand side of equation (6.7) can be rearranged into

(
1−α(h+1)

)
·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
−αeh+1 ·

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)
.

Hence, subtracting
(
1−α(h+1)

)
·
(∑h

i=1 uei + x0 ·α(h+1)
)

from both sides of equa-
tion (6.7) and dividing by αeh+1 yields

(
1−α(h+1)

)
· x0 =

(
1−α(h+1)

)
·
ueh+1
αeh+1

−

(
h+1∑
i=1

uei + x0 ·α
(h+1)

)

⇐⇒ x0 =
(
1−α(h+1)

)
·
ueh+1
αe(h+1)

−

h+1∑
i=1

uei ,

i.e., both line segments intersect at x0 = b(eh+1). Repeating the above arguments until
the last breakpoint is reached then yields the claim.

Lemma 6.34:
Consider three nodes v,w, z ∈ V with parallel edges E(v,w) = {e1, . . . , ek} between v
and w and δ+(w) = {e}, where e is heading to z. The set of edges E(v,w) ∪ {e} can
be replaced by i 6 k parallel edges {e ′1, . . . , e

′
i} from v to z such that, for each flow

value x0 on the edges in δ+(v) \ E(v,w), the maximum amount of flow that can arrive
at z through the edges {e ′1, . . . , e

′
i} equals the maximum amount of flow that can reach

z through E(v,w) and e. This transformation can be performed in O(k) time.

Proof: Let g(v,z)(x0) denote the maximum amount of flow that can be sent from v to
z using the edges in E(v,w) and the edge e depending on the total flow value x0
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on the edges in δ+(v) \ E(v,w). Clearly, due to the structure of the subgraph that is
considered, g(v,z)(x0) = min{ue, f(v,w)(x0)}, where f(v,w) is defined as in Lemma 6.33.
If ue > maxx0>0 f(v,w)(x0), the claim follows by deleting the edge e and merging the
nodes w and z.

Else, if ue < maxx0>0 f(v,w)(x0), it either holds that ue < f(v,w)(0) or there must be
two adjacent breakpoints b(ei−1) and b(ei) with f(v,w)(b(ei−1)) 6 ue < f(v,w)(b(ei))

(which are uniquely defined since f(v,w) is non-decreasing and continuous according
to Lemma 6.33). In the first case, it clearly holds that g(v,z)(x0) = ue and the claim
follows by deleting the edges in E(v,w) and merging the nodes v and w.

Now assume that f(v,w)(b(ei−1)) 6 ue < f(v,w)(b(ei)) for some i ∈ {2, . . . ,k} and let
x denote the (uniquely defined) flow value such that f(v,w)(x) = ue. Note that all
of the edges ej with i 6 j 6 k remain of type α within the interval [0, x] since the
respective breakpoints are not yet reached, i.e., a constant fraction α(i−1) =

∑k
j=i αej

of f(v,w)(x0) = g(v,z)(x0) flows through the edges ei, . . . , ek as long as x0 ∈ [0, x]. Hence,
we can replace the edges ei, . . . , ek by a single edge e ′i with αe ′i

:= α(i−1) without
changing the behavior of f(v,w) and g(v,z) in [0, x]. Since e ′i is the only edge of type α
within the interval [b(ei−1), x], we achieve that f(v,w)(x0) = ue = g(v,z)(x0) for x0 > x

by setting ue ′i := ue −
∑i−1
j=1 uej .

Thus, after the transformation, it holds that f(v,w)(x0) = g(v,z)(x0) for each x0 > 0,
i.e., edge e does not influence the flow value anymore. By deleting the edge e and
merging the nodes w and z, the claim then follows.

Note that the edges in E ′(v,w) := {e ′1, . . . , e
′
i} remain ordered by

ue ′
j

αe ′
j

after the trans-

formation performed in the proof of Lemma 6.34: For the case that i = 1, the claim
clearly holds. Otherwise, by construction, it holds that ue > f(v,w)(b(ei−1)), so

ue ′i
αe ′i

=
ue −

∑i−1
j=1 uej

α(i−1)
>
f(v,w)(b(ei−1)) −

∑i−1
j=1 uej

α(i−1)

(6.6)
=

1
1−α(i−1)

·
(∑i−1

j=1 uej + b(ei−1) ·α(i−1)
)
−
∑i−1
j=1 uej

α(i−1)

=

(
1

1−α(i−1)
− 1
)
·
∑i−1
j=1 uej + b(ei−1) ·

α(i−1)

1−α(i−1)

α(i−1)

=

α(i−1)

1−α(i−1)
·
∑i−1
j=1 uej + b(ei−1) ·

α(i−1)

1−α(i−1)

α(i−1)
=

∑i−1
j=1 uej + b(ei−1)

1−α(i−1)

(6.5)
=

∑i−1
j=1 uej +

(
1−α(i−1)

)
· uei−1αei−1

−
∑i−1
j=1 uej

1−α(i−1)
=
uei−1
αei−1

,
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where the last inequality follows from Lemma 6.32. Since the transformation assures
that e ′j = ej for j ∈ {1, . . . , i− 1}, we get the following observation:

Observation 6.35:
After applying the procedure described in Lemma 6.34 to a set of edges E(v,w) =

{e1, . . . , ek} and e = (w, z), the resulting edge set {e ′1, . . . , e
′
i} is ordered by the val-

ues
ue ′
j

αe ′
j

again. C

Lemma 6.36:
Let v and w be two nodes such that all edges {e1, . . . , ek} that leave v are parallel edges
heading to w and let F denote the maximum flow that can be sent from v to w. Then
each flow value F ′ with 0 6 F ′ 6 F can be achieved as well.

Proof: The claim follows by a simple scaling argument: Consider the maximum flow x

on the edges e1, . . . , ek with flow value F that is, e.g., determined using the algorithm
described in the proof of Corollary 6.19. It is easy to see that the flow x ′ with x ′ei :=
F ′

F · xei for each i ∈ {1, . . . ,k} is feasible as well and achieves a flow value of F ′.

Theorem 6.37:
A maximum flow in a series-parallel graph G = (V ,E) can be computed in O(m · (n+

logm)) time.

Proof: Consider a decomposition tree T of G. By sorting the leaves of T in O(m ·
logm) time, we can assure that

uei
αei

6
uej
αej

for i < j in each set of edges {e1, . . . , ek}.

In a second step, we use a breadth-first-search in the decomposition tree starting at
the root in order to get a list S of all nodes that correspond to series compositions in
O(m) time. Note that this list is inherently sorted by the depth of the respective nodes
in the tree.

Let v ∈ T denote a node in T of maximum depth that corresponds to a series-parallel
graph G ′ that is the series composition of two series-parallel graphs G1 and G2 (note
that v can be found in O(1) time by looking at the tail of S). Due to the maximum
depth of v, neither G1 nor G2 can contain series compositions, i.e., each of the graphs
either consists of a single edge or of parallel edges.

Let k1 and k2 denote the number of edges contained in G1 and G2, respectively. First,
consider the case that G2 consists of parallel-edges e1, . . . , ek2 with k2 > 2. Due to the
structure of series-parallel graphs, there are no other edges leaving the source node
of G2, so we can find the maximum amount of flow F2 that can be sent through G2 in
O(k2) time according to Corollary 6.19. Consequently, we can replace the edges in G2
by a single edge with capacity F2. This in turn enables us to replace the edges in G1
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and G2 by at most k1 edges E ′ in O(k1) time using Lemma 6.34. Note that these edges
are ordered according to Observation 6.35, but the set δ+(sG ′), where sG ′ is the source
of G ′, may not be ordered anymore. However, since both the edges in E ′ and the
edges in δ+(sG ′) \ E ′ are sorted, we can regain the ordering of δ+(sG ′) in O(m) time.

The algorithm stops when no series composition is left, i.e., the remaining graph con-
sists of parallel edges only. The maximum flow value can then be determined using
the procedure described in the proof of Corollary 6.19. Since the maximum flow
in each series composition can be computed in O(m) time as described above, the
claimed running time follows. Note that the procedure only describes the computa-
tion of the maximum flow value in G. However, using the procedures described in
the proofs of Corollary 6.19, Lemma 6.34, and Lemma 6.36, the flow on each edge can
be determined as well within the same running time.

6.6 Integral Flows

In the traditional maximum flow problem, there always exists an integral optimal
solution if the capacities are integral (cf. Section 2.4). It is easy to see that this is
no longer valid for the case of flows in processing networks. In particular, if we add
the requirement that the flow on each edge needs to be integral, the maximum flow
problem in a generalized processing network becomes both NP-hard to solve and to
approximate as we will see in the following two theorems.

Theorem 6.38:
The problem of finding a maximum integral flow in a generalized processing network
is strongly NP-complete to solve and NP-hard to approximate within constant factors,
even if the graph is acyclic and bipartite.

Proof: We first show the NP-completeness of the problem. Clearly, the problem is
contained in NP since we can check if a given solution candidate (which has a poly-
nomially bounded encoding length) is feasible and has a specific flow value in poly-
nomial time. In order to show NP-hardness, we use a reduction from the Exact-
CoverBy3Sets-problem, which is known to be strongly NP-complete (cf. (Garey and
Johnson, 1979, Problem SP2)):

Instance: A set X with 3q elements and a collection C = {C1, . . . ,Ck} of 3-element
subsets of X.

Question: Does there exist a subcollection C ′ ⊆ C such that every element j ∈ X is
contained in exactly one of the subsets in C ′?
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Given an instance of ExactCoverBy3Sets, we construct a generalized processing net-
work as follows:

We introduce a source s and a sink t as well as nodes vi and v ′i for each Ci ∈ C

and a node wj for each j ∈ X. For each subset Ci ∈ C, we insert an edge with
capacity 3 between s and vi and three edges, each with flow ratio of 1

3 between vi
and v ′i. Furthermore, we introduce an edge between v ′i and wj if j ∈ Ci and an edge
between each node wj and the sink t. If not mentioned explicitly, we set αe = 1 and
ue = 1 for every other edge e ∈ E. The resulting network for X = {1, . . . , 9} and
C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}} is shown in Figure 6.2. It is easy to see
that the constructed network is always acyclic and bipartite, as claimed.

ue = 3

αe = 1

ue = 1

αe =
1
3

ue = 1

αe = 1

ue = 1

αe = 1

s

t

v1

v ′1

v2

v ′2

v3

v ′3

v4

v ′4

v5

v ′5

w1 w2 w3 w4 w5 w6 w7 w8 w9

Figure 6.2: The resulting network for a given instance of ExactCoverBy3Sets with X =

{1, . . . , 9} and C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}}. On the right hand side,
the capacities and flow ratios of the edges in each level of the graph are depicted.

We now show that there exists an integral flow x with flow value val(x) > 3q if and
only if the underlying instance of ExactCoverBy3Sets is a Yes-instance. First assume
that there is an integral flow x with flow value val(x) > 3q. In fact, since there are
3q edges leading to the sink, each with a capacity of one, it must hold that val(x) = 3q.
Thus, each of these edges must carry one unit of flow. Moreover, note that each of the
edges between s and vi for i ∈ {1, . . . ,k} may either carry zero or three units of flow
since there are three edges between each vi and v ′i that are linked such that they can
only carry the same (integral) amount of flow at the same time. Hence, the amount
of flow that arrives at the nodes v ′1, . . . , v

′
k equals three units for exactly q of these
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nodes and zero for the remaining k− q nodes. Let K ⊆ {1, . . . ,k} denote the set of the
indices of those nodes v ′i for which three units of flow arrive. Since each of the 3q
edges between wj and t, for j ∈ {1, . . . , 3q}, carries one unit of flow as described above,
it, thus, follows that the adjacent nodes to the nodes v ′i for i ∈ K are disjoint, which in
turn implies that the corresponding sets Ci are mutually disjoint and cover X. Hence,
C ′ := {Ci : i ∈ K} is a solution to the underlying instance of ExactCoverBy3Sets.

Now suppose that C ′ is a solution to a given instance of ExactCoverBy3Sets. For
each Ci ∈ C ′, we send three units of flow from s to vi and one unit on each of the
three edges between vi and v ′i. Since the sets in C ′ do not intersect, we can send one
unit of flow to each of the nodes wj for j ∈ {1, . . . , 3q} and finally to the sink. The
resulting flow is feasible, integral, and has a flow value of val(x) = 3q, which shows
the claim.

In order to show the NP-hardness of approximation, we add an artificial sink t ′ to
the above network and connect t and t ′ by 3q parallel edges with capacity 1 and flow
ratio 1

3q each. By similar arguments as above, all of these edges carry the same amount
of flow in each feasible flow x such that, due to integrality, the amount of flow that
can reach the new sink t ′ is either zero or 3q. Thus, if there was an α-approximation
algorithm for α ∈ (1,∞) that computes a solution x ′ with 1

α · val(x∗) 6 val(x ′) 6

val(x∗) where x∗ denotes an optimal solution, we can decide whether the underlying
instance of ExactCoverBy3Sets is a Yes-instance by checking if val(x ′) > 0, which
concludes the proof.

Theorem 6.39:
The problem of finding a maximum integral flow in a generalized processing network
is weakly NP-complete to solve and NP-hard to approximate within constant factors
on series-parallel graphs.

Proof: For the reduction, we use the SubsetSum-problem, which is defined as follows
(cf. (Garey and Johnson, 1979, Problem SP13)):

Instance: Finite set {a1, . . . ,ak} of k positive integers and a positive integer A.

Question: Is there a subset I ⊆ {1, . . . ,k} such that
∑
i∈I ai = A?

Given an instance of SubsetSum, we construct a series-parallel generalized processing
network as follows:

We insert three nodes s, v0, and t. Between v0 and t, we introduce two parallel edges,
one of them with capacity 1 and flow ratio 1

A and the other one with capacity A− 1

and flow ratio A−1
A . Moreover, for each i ∈ {1, . . . ,k}, we insert an additional node vi,

an edge between s and vi with capacity ai and flow ratio 1, and two parallel edges
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between vi and v0, one of them with capacity 1 and flow ratio 1
ai

and the other one

with capacity ai− 1 and flow ratio ai−1
ai

. The resulting graph is depicted in Figure 6.3.

s v0 t

v1

vk

...

1

a1

1
a1

1
a1−1
a1

a1 − 1

1

ak

1
ak

1

ak−1
ak

ak − 1

1
A

1

A−1
A

A− 1

Figure 6.3: The resulting network for a given instance of SubsetSum. The edges are labeled
with the corresponding capacities while the edge tails are labeled with the flow
ratios.

Note that, due to integrality, the flow that reaches the sink is either zero or A, since
the flow on the edge with capacity 1, which amounts to either zero or one, only makes
up a fraction 1

A of the flow that reaches t. Accordingly, for i ∈ {1, . . . ,k}, the amount
of flow that reaches v0 via vi may either be zero or ai. By identifying those nodes vi
that receive ai units of flow from s with those elements that are contained in I, the
claims follow by similar arguments as in the proof of Theorem 6.38.

6.7 Conclusion

In this chapter, we generalized the well-known maximum flow problem in processing
networks from flow ratios that determine the exact fraction of flow routed through
an edge to flow ratios that determine an upper bound on this fraction. We were able
to generalize the notion of paths as a central unit in traditional network flows to
the concept of flow distribution schemes and could show that a flow decomposition
similar to the one for traditional network flows is possible on general graphs. Al-
though it was easy to see that the problem is solvable in weakly polynomial time, we
could show that the problem is at least as hard to solve as any packing LP. Never-
theless, for acyclic graphs, we presented a (strongly polynomial-time) FPTAS with a
running time of O

(
1
ε2
·m2 logm

)
that also embodies the first approximation scheme

for the maximum flow problem in processing networks. Moreover, for the case of
series-parallel graphs, we presented two very different approaches on how to solve
the problem exactly. The first of these approaches generalizes the idea of the aug-
menting path algorithm for the traditional maximum flow problem and resulted in
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an algorithm with a running time of O(m2). The second approach used the structure
of series-parallel graphs in a more sophisticated way in order to improve this running
time based on a successive shrinking of subgraphs to O(m · (n+ logm)). Finally, we
investigated the case of integral flows and showed that the problem becomes strongly
NP-hard to solve and approximate on bipartite acyclic graphs and weakly NP-hard to
solve and approximate on series-parallel graphs. A complete overview of the results
for the continuous and the integral version of MFGPN is given in Table 6.1 and 6.2,
respectively.

General Graphs Acyclic Graphs Series-Parallel Graphs

Theorem 6.10:
Decomposable in
O(m4) time

Theorem 6.13:
Decomposable in
O(m2) time

−→

←−
Theorem 6.15:
At least as hard to solve as
any packing LP

Theorem 6.14:
Solvable in
O(m3.5 logM) time

−→

Theorem 6.31:
Solvable in O(m2) time
Theorem 6.37:
Solvable in O(m · (n +

logm)) time

Theorem 6.17:
FPTAS in
O
(
1
ε2
m2 logm

)
time

−→

Table 6.1: The summarized results for the continuous maximum flow problem in generalized
processing networks in Chapter 6. Implied results are denotes with gray arrows.

General Graphs Acyclic Graphs Series-Parallel Graphs

←−
Theorem 6.38:
Strongly NP-complete to
solve

Theorem 6.39:
Weakly NP-complete to
solve

←−
Theorem 6.38:
NP-hard to approximate

Theorem 6.39:
NP-hard to approximate

Table 6.2: The summarized results for the integral maximum flow problem in generalized
processing networks in Chapter 6. Implied results are denoted with gray arrows.

The introduced generalized model provides many topics for future research. On the
one hand, it would be worth investigating if a network simplex algorithm as described
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in (Wang and Lin, 2009) could be adopted to the extended model. Although the prob-
lem lies in P, there are no polynomial-time combinatorial algorithms for the maxi-
mum flow problem both in the traditional and the generalized model yet. On the
other hand, the introduced model could be further extended to the case of minimum
cost flows. It remains open if some of the algorithms introduced in this chapter can
be generalized in order to compute a minimum cost flow in a given acyclic or series-
parallel network.



7 Convex Generalized Flows

In this chapter, we give insights into the structural properties and the complex-
ity of an extension of the generalized maximum flow problem in which the
outflow of an edge is a strictly increasing convex function of its inflow. In con-
trast to the traditional generalized maximum flow problem, which is solvable
in polynomial time as shown in Section 2.4, we show that the problem becomes
NP-hard to solve and approximate in this novel setting. Nevertheless, we show
that a flow decomposition similar to the one for traditional generalized flows
is possible and present (exponential-time) exact algorithms for computing op-
timal flows on acyclic, series-parallel, and extension-parallel graphs as well as
optimal preflows on general graphs. We also identify a polynomially solvable
special case and show that the problem is solvable in pseudo-polynomial time
when restricting to integral flows on series-parallel graphs.
This chapter is based on joint work with Sven O. Krumke and Clemens Thielen
(Holzhauser et al., 2015b).

7.1 Introduction

As it was shown in Section 2.4, the traditional generalized flow problem may be used
in order to model real world scenarios such as the loss of water in a broken pipe
or the conversion of money between currencies. However, the fixed ratio between
the outflow and the inflow of an edge that comes with traditional generalized flows
may be insufficient in several applications. In this chapter, we investigate an exten-
sion of generalized flows from linear outflow functions ge(xe) = γe · xe to general
strictly increasing continuous convex outflow functions ge. These more general out-
flow functions enable us to model processes in which the effectiveness increases with
the load. This happens, e.g., in various trading applications where better rates are
obtained if larger amounts are traded. By identifying the possible goods with nodes
and introducing edges to represent trading options, this effect can be modeled more
realistically with the help of convex outflow functions. For two nodes representing
the goods A and B, a flow of maximum flow value between these two nodes then
yields a strategy for obtaining the maximum amount of good B out of a existing stock
of goods of type A.

© Springer Fachmedien Wiesbaden GmbH 2016
M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_7
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7.1.1 Previous Work

The traditional generalized maximum flow problem with linear outflow functions has
been studied extensively in the past fifty years and is still a topic of active research.
In 1977, Truemper (1977) discovered an analogy between generalized maximum flows
and traditional minimum cost flows and noted that many of the combinatorial algo-
rithms for the generalized maximum flow problem known at this time were in fact
pseudo-polynomial time variations of well-known algorithms for standard minimum
cost flow problems. Although the generalized maximum flow problem can be ex-
pressed as a linear program and solved in polynomial time, e.g., by interior point
methods, it took until 1991 that Goldberg et al. (1991) developed the first (weakly)
polynomial-time combinatorial algorithm for the generalized maximum flow prob-
lem. For series-parallel graphs, a strongly polynomial-time algorithm was presented
by Krumke and Zeck (2013). The first strongly polynomial-time algorithm for general
graphs was recently given by Végh (2013).

Ahlfeld et al. (1987) and Tseng and Bertsekas (2000) studied extensions of generalized
flows in which the objective function is replaced by a nonlinear function and a mini-
mum cost flow is sought. Nevertheless, the outflow functions are assumed to be linear
in both papers. Nonlinear outflow functions in the generalized maximum flow prob-
lem have first been studied by Truemper (1978) and later by Shigeno (2006). In both
papers, a generalization to (increasing and continuous) concave outflow functions is
suggested and optimality criteria are presented. By exploiting several analogies to the
case of linear outflow functions, Végh (2012) obtained an efficient combinatorial algo-
rithm for this problem. This algorithm, however, makes heavy use of the concavity of
the outflow functions, so it cannot be used for the case of convex outflow functions
studied here. To the best of our knowledge, (general) convex outflow functions in the
generalized maximum flow problem have not been studied so far.

7.1.2 Chapter Outline

After the introduction of the necessary assumptions and definitions in Section 7.2,
we derive useful lemmas in Section 7.3 and show that a flow decomposition simi-
lar to the one for the traditional generalized flow problem is possible in the case of
convex generalized flows as well. In Section 7.4, we consider the complexity and ap-
proximability of the convex generalized flow problem and show that the problem is
both NP-hard to solve and approximate. Afterwards, in Section 7.5, we present algo-
rithms for the problem on graph classes with decreasing complexity. We present an
algorithm that computes a maximum convex generalized preflow on general graphs
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in O(3m ·m) time. Although such a maximum convex generalized preflow cannot
be turned into a feasible flow on general graphs without further assumptions, it
will be possible to derive a maximum convex generalized flow within the same time
bound when restricting to acyclic graphs. Moreover, we show that we can improve
this running time to O(2.707m · (m + n2)) in the case of series-parallel graphs and
to O(2.404m · (m+ n2)) time on extension-parallel graphs. Furthermore, we identify
a special case of extension-parallel graphs for which the problem becomes solvable
in polynomial time. Finally, in Section 7.6, we consider a variant of the problem in
which the flows are restricted to be integral and present a pseudo-polynomial time
algorithm for the problem on series-parallel graphs. An overview of the results of this
chapter is given in Table 7.1 on page 191.

7.2 Preliminaries

We start by defining the convex generalized maximum flow problem in a directed
graph G = (V ,E) with positive edge capacities ue > 0 and outflow functions ge : [0,ue]→
R>0 on the edges e ∈ E, and distinguished source s ∈ V and sink t ∈ V . We assume
that the outflow functions ge fulfill the following property:

Assumption 7.1: The outflow functions ge are strictly increasing continuous convex
functions fulfilling ge(0) = 0 for all e ∈ E. C

Note that, by standard results from analysis, Assumption 7.1 implies that the inverse
functions g−1e are well-defined and continuous as well (cf., e.g., (Rudin, 1964)).

Definition 7.2 (Inflow, outflow, excess):
For any function x : E → R>0, the inflow of an edge e ∈ E is given by xe := x(e) and
the outflow of edge e is given by ge(xe). Similarly, the inflow (outflow) of a path P equals
the inflow (outflow) of the first (last) edge on P. For a node v ∈ V , the inflow of v is
defined as

∑
e∈δ−(v) ge(xe) and the outflow of v is given by

∑
e∈δ+(v) xe. The excess of a

node v ∈ V with respect to x is given as excessx(v) :=
∑
e∈δ−(v) ge(xe) −

∑
e∈δ+(v) xe. C

As in a traditional generalized flow, the outflow of an edge may differ from its in-
flow. Whereas the ratio between the outflow and the inflow of an edge is constant in
traditional generalized flows, this ratio is now a non-decreasing function of the inflow.

Definition 7.3 (Pseudoflow, preflow, flow, flow value, maximum flow):
A function x : E → R>0 is called a (feasible) convex generalized pseudoflow (or just
pseudoflow) if xe 6 ue for all e ∈ E. If, in addition, excessx(v) > 0 for all v ∈ V \ {s, t}, it
is called a (feasible) preflow. If excessx(v) = 0 for all v ∈ V \ {s, t}, the function is called
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a (feasible) convex generalized flow (or just flow). The flow value of a (pre-)flow x is given
by val(x) := excessx(t). A (pre-)flow of maximum flow value is called a maximum
(pre-)flow. C

Note that a preflow is basically a flow that may send “too much” flow to some nodes
such that flow conservation is not fulfilled. In some situations, such a relaxed flow
may be much easier to compute than a feasible flow. In fact, while any preflow can be
turned into a flow within polynomial time on acyclic graphs, such a transformation is
uncomputable on general graphs as it will be shown in Section 7.5.1 and Section 7.5.2.

Using the above definitions, the convex generalized maximum flow problem is de-
fined as follows:

Definition 7.4 (Convex Generalized Maximum Flow Problem (CGMFP)):
Instance: Directed graph G = (V ,E) with source s ∈ V , sink t ∈ V , and non-

negative capacities ue and outflow functions ge on the edges e ∈ E.

Task: Determine a maximum flow.
C

In addition to Assumption 7.1, we make the following assumptions on the structure
of the underlying graph:

Assumption 7.5: For every node v ∈ V \ {s, t}, it holds that δ+(v) 6= ∅ and δ−(v) 6= ∅.
C

Assumption 7.6: For every node v ∈ V \ {s, t}, there is at least one directed path from
s to v or from v to t. C

Assumption 7.5 does not impose any restriction on the underlying model since the
inflow and outflow of every node v ∈ V \ {s, t} with δ+(v) = ∅ or δ−(v) = ∅ must
equal zero due to flow conservation at v, which implies that the incident edges can
be deleted in a preprocessing step. Similarly, Assumption 7.6 yields no restriction
since the corresponding connected components that do not contain the sink t do not
contribute to the flow value and can be deleted as well. Note that, for any instance
of CGMFP, both assumptions can be established in O(n +m) time by performing
a depth-first search and repeatedly deleting single nodes and edges. The resulting
graph is connected, such that we can assume that n ∈ O(m) in the following.

An important special case of CGMFP considered throughout this chapter is the case
of quadratic outflow functions of the form ge(xe) = αe · x2e for some positive constants
αe > 0.
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The problem CGMFP can be formulated as the following nonlinear program:

max
∑

e∈δ−(t)

ge(xe) −
∑

e∈δ+(t)

xe

s.t.
∑

e∈δ−(v)

ge(xe) −
∑

e∈δ+(v)

xe = 0, for all v ∈ V \ {s, t},

0 6 xe 6 ue, for all e ∈ E.

Note that this model is not solvable (in polynomial time) by standard solution meth-
ods for convex programs since a convex function is maximized (instead of minimized)
over a set defined by convex and non-affine equality constraints (so the set of feasible
solutions is non-convex in general). In the rest of this chapter, we will concentrate on
combinatorial algorithms for the problem.

Moreover, note that, since we allow arbitrary strictly increasing continuous convex
outflow functions ge, it is not canonically clear how the functions are given in the in-
put. In addition, neither the inflow nor the outflow of an edge in a maximum convex
generalized flow can be assumed to be rational even if all capacities are integral: Con-
sider, e.g., the instance that is depicted in Figure 7.1, in which the unique maximum
generalized flow leads to an irrational inflow of 4

√
2 and outflow of

√
2 on the first

edge. Therefore, similar to the computational model used by Végh (2012) for the case

s v1 v2 t
2 2 2

Figure 7.1: An example of a network with integral capacities where the first edge has an
irrational inflow and outflow in the unique maximum flow. The labels on the
edges represent the capacities. The outflow function of each edge is set to ge(xe) =
x2e.

of concave generalized flows, we assume oracle access to the functions ge and their
inverses g−1e and the running time estimations for our algorithms provide bounds on
the number of elementary arithmetic operations and oracle calls. We assume through-
out this chapter that we can perform oracle calls returning the value ge(xe) for some
xe ∈ [0,ue] and the value g−1e (ye) for some ye ∈ [0,ge(ue)] as well as elementary
arithmetic operations on real numbers within infinite precision in constant time O(1).
This is similar to standard assumptions in convex and semi-definite programming
(cf. (Nesterov and Nemirovskii, 1994; Blum, 1998; Blum et al., 1989; Grötschel et al.,
1993)).
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7.3 Structural Results

In this section, we give insights into structural properties of convex generalized flows.
On the one hand, we show that a flow decomposition theorem similar to the well-
known flow decomposition theorem for traditional generalized flows is possible in
the case of CGMFP as well. On the other hand, we derive a set of useful lemmas that
will be used throughout the rest of this chapter.

The following result allows us to handle paths in the underlying network similarly as
single edges:

Lemma 7.7:
Let P = (e1, . . . , ek) with ei = (vi, vi+1), i ∈ {1, . . . ,k}, be a simple path and x a convex
generalized pseudoflow in an acyclic graph G = (V ,E). When restricting the flow on
each edge e /∈ P and the excess at each node v /∈ {v1, vk+1} to remain unchanged, the
outflow of ek can be described by a function g of the inflow of e1. This function g is
continuous, convex, and strictly increasing on the set of feasible inflows [Lx(P),Ux(P)]
of P, i.e., the set of all inflows y1 > 0 of e1 such that there exist values y2, . . . ,yk > 0

for which the function x ′ with x ′ei := yi for i ∈ {1, . . . ,k} and x ′e := xe for e /∈ P is a
feasible pseudoflow with excessx ′(vi) = excessx(vi) for all i ∈ {2, . . . ,k}.

Proof: Consider the first two edges e1 = (v1, v2) ∈ P and e2 = (v2, v3) ∈ P. Let δ be
the excess that needs to be generated by the flows on e1 and e2 in order to maintain a
total excess of excessx(v2) at v2:

δ := excessx(v2) −

 ∑
e∈δ−(v2)\{e1}

ge(xe) −
∑

e∈δ+(v2)\{e2}

xe


= ge1(xe1) − xe2 . (7.1)

Furthermore, let [Lei ,Uei ] := [0,uei ] be the interval of feasible inflows of each edge ei
for i ∈ {1, . . . ,k}. When requiring the excess δ to remain constant, we can describe
the outflow of e2 depending on the inflow of e1 by a strictly convex and increasing
function g as well as the set of feasible inflows [L,U] of the path (e1, e2) as follows:

According to equation (7.1), we get that it must hold that xe2 = ge1(xe1) − δ. As
defined above, the inflow xe2 of edge e2 must both fulfill xe2 > Le2 and xe2 6 Ue2 .
Consequently, this is equivalent to the requirement that xe1 > g−1e1 (Le2 + δ) and that
xe1 6 g−1e1 (Ue2 + δ). Since, furthermore, it must hold that xe1 ∈ [Le1 ,Ue1 ], we get
that L = max{Le1 ,g−1e1 (Le2 + δ)} and U = min{Ue1 ,g−1e1 (Ue2 + δ)}. For each valid inflow
x ∈ [L,U], we can then express the outflow of ge2 by g(x) = ge2(ge1(x)− δ). Obviously,
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[L,U] ⊆ [Le1 ,Ue1 ] and [ge1(L) − δ,ge1(U) − δ] ⊆ [Le2 ,Ue2 ]. Thus, both ge1 and ge2
behave strictly convex and increasing for inflows in [L,U]. So, g is strictly convex and
increasing as well.

By the above procedure, we are able to virtually join the first two edges of the path and
to describe the outflow of the new edge by a strictly convex and increasing function.
By induction, the claim follows.

Using the results of Lemma 7.7, we are able to differentiate between full and empty
paths – analogously to full and empty single edges:

Definition 7.8 (Full path, empty path):
Let P = (e1, . . . , ek) be a simple path and x a convex generalized pseudoflow in G =

(V ,E). The path P is called full (with respect to x) if xe1 = Ux(P) and empty (with respect
to x) if xe1 = Lx(P). C

Note that a path P is full if and only if there is at least one edge e ∈ P with xe = ue.
Analogously, we have that xe = 0 for at least one edge e ∈ P if and only if P is an
empty path.

Example 7.9:
Consider the instance of CGMFP that is depicted in Figure 7.2, in which the outflow
function and the capacity of each edge e ∈ E is assumed to be ge(xe) := x2e and
ue := 15, respectively. According to equation (7.1) in the proof of Lemma 7.7, we get
that δ = 0 − (4 − 5) = 9 − 8 = 1. It then follows that we can express the outflow
of edge e3 depending on the inflow of edge e1 by the function g(x) = (x2 − 1)2 =

x4 − 2x2 + 1, which is convex, continuous, and increasing on the interval [L,U] with
L := max

{
0,
√
0+ 1

}
= 1 and U := min

{
15,
√
15+ 1

}
= 4. Note that for xe1 := L = 1

the path P is empty and the inflow of edge e3 is zero. Conversely, for xe1 := U = 4 the
inflow of edge e3 equals 15 such that the path P is full. C

As it turns out, there is a flow decomposition that is similar to the one for traditional
generalized flows, which will be shown in the following. To do so, we adapt the
corresponding proof for traditional generalized flows with linear outflow functions
from Goldberg et al. (1991).

One essential ingredient for the following results is the definition of a subtraction
of flow. In the case of linear outflow functions (or traditional network flows), it is
possible to subtract flow on some path P in the given graph (i.e., to reduce the flow
on the edges of P) without influencing the flow on other paths P ′ 6= P. For general
convex outflow functions, however, the subtraction becomes more complicated since
the removal of flow on some edge e on a path P may reduce the flow value on other
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Figure 7.2: An example application of Lemma 7.7 on an instance of CGMFP with outflow
functions ge := x2e and capacities ue := 15 for each e ∈ E (left). The situation for
xe1 = L = 1 (xe1 = U = 4) is depicted on the upper (lower) right figure. The
label on the tail (head) of each edge corresponds to the inflow (outflow) of the
corresponding edge.

paths P ′ with e ∈ P ′ as well. Nevertheless, we show that a subtraction similar to the
traditional one is possible in our setting as well.

Definition 7.10 (Feasible subtraction):
Let x be a convex generalized pseudoflow in some graph G = (V ,E) and let P =

(e1, . . . , el) with ei = (vi, vi+1), i ∈ {1, . . . , l}, denote a (not necessarily simple) path
in G. A function x : E → R>0 with xei > 0 for each i ∈ {1, . . . , l} and xe = 0 for
e /∈ P is called a feasible subtraction on P if xei − xei > 0 for each i ∈ {1, . . . , l} and
excessx−x(vi) = excessx(vi) for each i ∈ {2, . . . , l}. C

Note that, while the excess at the nodes v2, . . . , vl is required to remain unchanged
when reducing the flow on P by a feasible subtraction, the excess at the starting
node v1 and the end node vl+1 of the path may change during this procedure in case
that v1, vl+1 /∈ {v2, . . . , vl}.

Now consider a pseudoflow x and a simple path P = (e1, . . . , el) with ei = (vi, vi+1)
and xei > 0 for each i ∈ {1, . . . , l}. According to Lemma 7.7, there is a flow x ′ with
x ′e = xe for each e /∈ P and with x ′e1 = Lx(P) as well as excessx ′(vi) = excessx(vi) for
each i ∈ {2, . . . , l} such that the path P is empty. Clearly, the function x := x− x ′ is then
a feasible subtraction on P fulfilling xe = 0 for e /∈ P and xei > 0 for each i ∈ {1, . . . , l}.
We call this subtraction x the largest subtraction on P in the following. Moreover, for
a cycle C, we can consider C as a simple path with starting node and end node v for
some node v ∈ C and apply the above definition of a largest subtraction. However, the
largest subtraction on C as well as the excess that is generated at the starting node v
when reducing the flow on P by the largest subtraction may depend on the choice of
the starting node.

Similar to traditional flows and generalized flows with linear outflow functions, a
convex generalized pseudoflow x does not only decompose into s-t-paths, but also
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into cycles. As in the case of generalized flows with linear outflow functions, we
distinguish three classes of cycles: flow generating cycles, flow absorbing cycles, and
flow conserving cycles. The intuition is that a cycle is flow generating (flow absorbing)
if removing the flow on the cycle yields a negative (positive) excess at some node on
the cycle. If no excess is generated, the cycle is flow conserving.

Definition 7.11 (Flow generating cycle, flow absorbing cycle, flow conserving cycle):
Let C be a simple cycle in G, v ∈ C a node on C, and x a convex generalized pseud-
oflow in G. The pair (C, v) is called a flow generating cycle (flow absorbing cycle) with
respect to x if excessx−x(v) < excessx(v) (excessx−x(v) > excessx(v)), where x denotes
the largest subtraction on C when C is considered as a path with starting node (and
end node) v. If excessx−x(v) = excessx(v), the pair (C, v) is called a flow conserving
cycle. C

Note that, for generalized flows with linear outflow functions, Definition 7.11 can
easily be seen to coincide with the standard definitions of flow generating and flow
absorbing cycles independent of the choice of the starting node.

In the following, for some convex generalized pseudoflow x, let D(x) denote the set of
nodes with demand, i.e., negative excess, and S(x) denote the set of nodes with supply,
i.e., positive excess. Analogously to the elementary pseudoflows studied by Gondran
and Minoux (1984) and Goldberg et al. (1991), we distinguish five types of elementary
subtractions, where the type is determined by the graph induced by the set of edges
on which the elementary subtraction is positive:

Definition 7.12 (Types of elementary subtractions):
Type I The largest subtraction on a simple path from a node in D(x) to a node

in S(x).

Type II The largest subtraction on a simple path composed of a flow generating
cycle (C, v) and a simple path from v to a node w ∈ S(x).

Type III The largest subtraction on a simple path composed of a flow absorbing
cycle (C, v) and a simple path from a node w ∈ D(x) to v.

Type IV The largest subtraction on a flow conserving cycle (C, v).

Type V The largest subtraction on a simple path composed of a flow generating
cycle (C1, v1) and a flow absorbing cycle (C2, v2) that are connected by a
simple path from v1 to v2.

C

Note that, by definition of feasible subtractions and flow conserving cycles, the ex-
cess may only change at the mentioned nodes in D(x) and S(x) when subtracting an
elementary subtraction from the current pseudoflow x.
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We are now ready to adopt the decomposition theorem for linear outflow functions
from Goldberg et al. (1991) to the case of convex outflow functions.

Theorem 7.13 (Decomposition theorem for convex generalized pseudoflows):
A convex generalized pseudoflow x in a graph G can be decomposed into a sequence
(x(1), . . . , x(k)) of k 6 m elementary subtractions x(j) such that xe =

∑k
j=1 x

(j)
e for each

e ∈ E.

Proof: We prove the claim by induction on the number p of edges with positive flow.
If p = 0, then x = 0 and the claim trivially holds. Otherwise, let G ′ be the graph
obtained from G by removing all edges with zero flow.

If G ′ is acyclic, we can find a simple path P from some node v ∈ D(x) to some
node w ∈ S(x) with positive flow on each edge and the largest subtraction x on P
is an elementary subtraction of Type I. Furthermore, as described above, x− x is a
feasible convex generalized pseudoflow with at most p− 1 edges with positive flow.
Thus, the claim follows by induction.

If G ′ is not acyclic, let C = (v1, . . . , vl+1 = v1) be a simple cycle in G ′. We consider C
as a simple path with starting node and end node v1. As above, if we consider the
largest subtraction x on C, then x− x is a feasible generalized pseudoflow that is zero
on at least one edge in C. While the excess is maintained at each node vi, i ∈ {2, . . . , l},
the excess at v1 may change by some amount δ ∈ R. If δ = 0, the removal of flow on
the cycle did not affect the remaining pseudoflow and x is an elementary subtraction
of Type IV.

If δ < 0, the pair (C, v1) was a flow generating cycle. Since x− x is a valid general-
ized pseudoflow and has at most p− 1 edges with positive flow, we can apply the
induction hypothesis and decompose x− x. Since there was a demand at v1, there
are elementary subtractions of Type I and III in the decomposition of x− x that are
responsible for the demand. These subtractions together with some appropriate frac-
tions of x consequently correspond to elementary subtractions of Type II and Type V
in G ′. If δ > 0, the pair (C, v1) was a flow absorbing cycle and, by the same arguments
as before, we obtain elementary subtractions of Type III and Type V.

In all three cases, the remaining pseudoflow is feasible again and contains at most
p− 1 edges with positive flow. Hence, the claim follows by induction.

Note that, since the largest subtraction on a path or cycle depends on the current
pseudoflow x, each elementary subtraction x(j) will only be an elementary subtrac-
tion with respect to the pseudoflow obtained after all previous elementary subtrac-
tions x(1), . . . , x(j−1) have already been subtracted from x. In particular, the order of
the elementary subtractions within the sequence (x(1), . . . , x(k)) is important.
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Also note that, in case that the pseudoflow x itself is a flow, the components in the
decomposition for generalized pseudoflows with linear outflow functions obtained in
Goldberg et al. (1991) are generalized flows again. Even if the pseudoflow x itself is
a flow, however, each elementary subtraction in Theorem 7.13 will only be a feasible
convex generalized flow with respect to different (strictly increasing, continuous, and
convex) outflow functions given by ge(xe) := ge(ce+ xe) − ge(ce) with ce denoting the
remaining flow on edge e after the subtraction.

Finally, note that the computation of a flow decomposition using the recursive proce-
dure presented in the proof of Theorem 7.13 is computationally intractable in general:
For example, assume that a largest feasible subtraction x on a flow generating cycle
(C, v1) is being removed from the current pseudoflow x in some iteration of the pro-
cedure, which changes the excess at node v1 by δ < 0. A recursive application of the
procedure to x− x yields elementary subtractions x(1), . . . , x(h) of Type I or III that are
responsible for the demand at v1. However, for each such elementary subtraction x(j)

that generates an excess of δ(j) < 0 at v1, we then need to determine the appropriate
fraction of x that generates an excess of exactly −δ(j) at v1, i.e., we need to create a
specific amount of flow on the cycle C. This is computationally intractable as we will
see in the following section.

Example 7.14:
Figure 7.3 shows an exemplary flow and a possible decomposition into a sequence
(x(1), x(2)) of two elementary subtractions according to Theorem 7.13. In this example,
all outflow functions are quadratic functions of the form ge(xe) = αe · x2e with positive
constants αe > 0. Besides the source, which provides one unit of flow, the left-hand
cycle is flow generating and creates two units of flow and the right-hand cycle is flow
absorbing and consumes two units of flow (independently of the choice of the starting
node). The rest of the flow is delivered to the sink.

In the example, there are several ways how to start the decomposition. Assume that
we start by extracting an elementary subtraction x(1) of Type I that is depicted on
the lower left of Figure 7.3. While the inflow at node v1 is reduced by one unit, the
inflow at v2 sinks by 9 units. The elementary subtraction x(1) is a feasible convex
generalized flow when changing the outflow function of the edge e = (v1, v2) to
ge(xe) = ge(4+ xe) − ge(4) = (4+ xe)

2 − 16 = x2e + 8 · xe. In this case, we are done
since the remaining flow is an elementary subtraction x(2) of Type V (shown on the
right side of Figure 7.3). C

We end this section with a useful property of paths in acyclic graphs:

Lemma 7.15:
Let x be a convex generalized flow in an acyclic graph G = (V ,E) and let P1,P2 be two



166 Convex Generalized Flows

Feasible flow x:
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Figure 7.3: A sample flow and a possible decomposition. In the upper figure, the tail (head) of
each edge is labeled with the corresponding inflow (outflow). The constant αe in
the outflow function ge(xe) = αe · x2e is equal to one if not given explicitly. In the
lower figures, each edge is labeled with the amount of flow subtracted. The given
flow can be decomposed into an elementary subtraction x(1) of Type I (bottom
left) and an elementary subtraction x(2) of Type V (bottom right).

edge-disjoint v1-v2-paths for some nodes v1, v2 ∈ V . If both paths are neither full nor
empty, then there exists a convex generalized flow x ′ with val(x ′) = val(x) for which
at least one of the paths P1 and P2 is full or empty.

Proof: By Lemma 7.7, we can describe the outflow of each Pi, i ∈ {1, 2}, by a convex
function gi of its inflow xi. Writing ε := x1 + x2, the total amount of flow arriving at
v2 via P1 and P2 is then given as

f(x1) := g1(x1) + g2(ε− x1)
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for

x1 ∈ [L,U] := [Lx(P1),Ux(P1)]∩ [ε−Ux(P2), ε− Lx(P2)].

Since both g1 and g2 are convex and increasing, so is f. Thus, the maximum of f on
[L,U] is obtained at either L or U and, hence, at a boundary of [Lx(P1),Ux(P1)] or [ε−
Ux(P2), ε− Lx(P2)], which means that we can obtain an excess of at least excessx(v2)
at v2 by choosing x1 = L or x1 = U. By definition of L, U, and ε, this corresponds to
turning P1 or P2 into a full or empty path.

In case that the excess of v2 was increased by the above procedure, we can regain the
old excess at v2 by reducing x1 or x2 appropriately: If Lx ′(Pi) < x ′i < Ux ′(Pi) for the
new pseudoflow x ′ and some i ∈ {1, 2}, we can reduce x ′i until either x ′i = Lx ′(Pi) or
the excess at v2 attains its old value. In the former case, the path Pi becomes empty
and we can reduce the flow on the other path until the excess at v2 attains its old
value. If one path Pi is full and the other path is empty, we can simply reduce x ′i until
the excess at v2 attains its old value.

Note that this procedure for regaining the old excess at v2 may create a positive excess
at v1. This excess can be eliminated by reducing the flow on some of the paths that
transport flow from the source s to v1 in a similar way as above. Hence, only the
excess of the source s is changed in the overall procedure. In particular, we obtain a
feasible flow with the same flow value as x, which proves the claim.

Example 7.16:
Figure 7.4 shows an application of Lemma 7.15 on a small acyclic graph. None of the
two paths (edges) between v1 and v2 is full or empty, but the flow is optimal since
the single edge leading to the sink t is filled to its capacity. According to the proof of
Lemma 7.15, we can redistribute the flow on the lower path to the upper path, which
creates an outflow of value 16 and, thus, an excess of 8 at v2. We then reduce the
inflow of the upper path to

√
8 in order to regain flow conservation at v2. This, in

turn, leads to an excess of 4−
√
8 > 0 at v1, which can be resolved by reducing the

inflow of the edge (s, v1) from 2 to 4
√
8 < 2. C

7.4 Complexity and Approximability

In this section, we consider the complexity and approximability of the convex gen-
eralized flow problem. As it turns out – in contrast to traditional generalized flows
and generalized flows with concave outflow functions – the problem is NP-hard to
solve and approximate in general, which will be shown in Section 7.4.1 and 7.4.2,
respectively.
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Figure 7.4: A sample application of Lemma 7.15. The number above each edge denotes the
capacity of the corresponding edge. The outflow function of every edge e is
ge(xe) = x2e. The upper scenario shows an optimal solution in which none of
the two paths (edges) from v1 to v2 is full or empty. By applying the steps from
the proof of Lemma 7.15, we obtain another optimal solution in which the lower
path between v1 and v2 is empty.

As noted above, we assume the underlying computational model to cohere with the
Blum-Shub-Smale model in which we can perform arithmetic operations on irrational
numbers within infinite precision in constant time. For this model, an independent
theory of NP-completeness has been developed and the connection between this the-
ory and the traditional theory based on the RAM model is unclear. For example, the
well-known traveling salesman problem, which is NP-complete in the standard RAM
model, is not known to be NP-complete in the BSS model. Nevertheless, we want to
stress that we use the BSS model only for the sake of simplicity. It can be easily seen
that the upcoming algorithms and complexity results are also valid when restricting
our considerations to outflow functions that map rational numbers to rational num-
bers. Hence, the complexity results presented in this section will be based on the
traditional theory of NP-completeness in the RAM model. We refer the reader to
(Blum, 1998) for further details on the BSS model and the connection to the RAM
model.

7.4.1 Complexity

We start by proving that the convex generalized maximum flow problem is strongly
NP-hard to solve on general graphs.

Theorem 7.17:
CGMFP is strongly NP-hard to solve, even if all outflow functions are quadratic out-
flow functions of the form ge(xe) = x2e, the capacities are integral, and the graph is
bipartite and acyclic.
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Proof: We use a reduction from the ExactCoverBy3Sets problem, which is known to
be strongly NP-complete (cf. (Garey and Johnson, 1979, Problem SP2)):

Instance: Set X with 3q elements and a collection C = {C1, . . . ,Ck} of 3-element
subsets of X.

Question: Does there exist a subcollection C ′ ⊆ C such that every element j ∈ X is
contained in exactly one of the subsets in C ′?

Given an instance of ExactCoverBy3Sets, we construct a network for CGMFP as
follows:

We introduce a single source s and sink t as well as a node s ′, which is reachable
from s via a single edge with capacity 3q. For each subset Ci ∈ C, i ∈ {1, . . . ,k}, we
insert a node vi and an edge between s ′ and vi with capacity 32q. Furthermore, we
introduce a node v ′j for each j ∈ X, which is reachable from every vi with j ∈ Ci via
an edge with capacity 33q2. Finally, we connect each v ′j to the sink t by an edge with
capacity 36q4. All outflow functions are set to ge(xe) := x2e. The resulting network for
the set X = {1, . . . , 9} and the collection C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}} is
shown in Figure 7.5.

u = 3q

u = 32q

u = 33q2

u = 36q4

s

s ′

t

v1 v2 v3 v4 v5

v ′1 v ′2 v ′3 v ′4 v ′5 v ′6 v ′7 v ′8 v ′9

Figure 7.5: The resulting network for a given instance of ExactCoverBy3Sets with q = 3,
X = {1, . . . , 9} and C = {{1, 2, 4}, {2, 3, 4}, {3, 5, 8}, {4, 6, 7}, {6, 7, 9}}. On the right hand
side, the capacities of the edges in each level of the graph are depicted. The
outflow function of every edge is given by ge(xe) := x2e.
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We now show that there exists a convex generalized flow of value at least 313q9 if and
only if the given instance of ExactCoverBy3Sets is a Yes-instance.

Suppose that there is a convex generalized flow x in the constructed network with
flow value val(x) > 313q9. The maximum amount of flow that may arrive at s ′ is
32q2 since the capacity of the edge between s and s ′ is 3q and the outflow function
is given as g(xe) = x2e. Furthermore, we claim that the total amount of flow arriving
at the nodes vi, i ∈ {1, . . . ,k}, is at most 34q3 and this value is achieved if and only
if the inflow of 32q2 at s ′ is distributed equally on exactly q of the edges (s ′, vi). To
see this, consider a set I ⊆ {1, . . . ,k} with |I| = q. By sending xi := 32q units of flow
to vi, i ∈ I, and xi := 0 units to the remaining vi, i ∈ {1, . . . ,k} \ I, flow conservation
at node s ′ is fulfilled and, in total,

∑
i∈I g(xi) = q · (32q)2 = 34q3 units of flow reach

the nodes vi. Conversely, consider a flow x ′ that uses more than q of the edges (s ′, vi).
Then, there are at least two nodes vi1 and vi2 such that x ′i1 , x ′i2 ∈ (0, 32q). Without
loss of generality, we can assume that x ′i1 > x ′i2 . This flow cannot yield the highest
possible amount of flow arriving at the nodes vi since increasing x ′i1 and decreasing
x ′i2 by some positive amount ε 6 min{32q− x ′i1 , x ′i2} leads to a strictly higher amount
of flow arriving at the nodes vi1 , vi2 :

(x ′i1 + ε)
2 + (x ′i2 − ε)

2 = (x ′i1)
2 + (x ′i2)

2 + 2ε(x ′i1 − x
′
i2
)︸ ︷︷ ︸

>0

+ 2ε2︸︷︷︸
>0

> (x ′i1)
2 + (x ′i2)

2.

Hence, the total amount of flow arriving at each of the nodes vi, i ∈ {1, . . . ,k}, is at
most 34q3. Additionally, this is only the case if exactly q out of k nodes vi are used
which in turn produce outflows of value 34q2 each. Since the sum of the capacities of
the three edges leaving each vi is 3 · 33q2 = 34q2, every such edge must have an inflow
of value 33q2 and produce an outflow of value 36q4 in this situation. On the other
hand, note that each of the 3q edges leading to the sink must receive the maximum
inflow of value 36q4 since this is the only possibility how to obtain the claimed flow
value of 313q9 = 3q · (36q4)2.

In summary, the total flow arriving at the nodes v ′j , j ∈ X, is at most 3q · 36q4 = 37q5

which, in turn, is the minimum flow needed to achieve the flow value val(x) at t.
Since this flow can only be achieved by selecting q out of the k nodes vi whose sets of
adjacent nodes v ′j are pairwise disjoint and cover all nodes v ′j , we obtain a solution to
ExactCoverBy3Sets by identifying the used nodes vi with the given sets Ci ∈ C.

Conversely assume that there exists a solution C ′ ⊆ C for the given instance of
ExactCoverBy3Sets. By sending 3q units of flow to s ′ and 32q units of flow to
each of the nodes vi corresponding to the subsets Ci ∈ C ′, we achieve q inflows
of value (32q)2 = 34q2 each at the nodes vi. The flow can further be distributed
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to the nodes v ′j , j ∈ X, in packages of 33q2 each. Thus, we get an inflow of value
(33q2)2 = 36q4 at every node v ′j . Since each element j ∈ X is contained in exactly one
of the sets Ci ∈ C ′, each of these packages can further be sent to t producing outflows
of (36q4)2 = 312q8 each. Consequently, since there are 3q edges leading to the sink,
we achieve a flow value of 3q · 312q8 = 313q9.

Theorem 7.17 shows that, unless P = NP, one cannot expect to find an algorithm that
solves the problem exactly and runs in polynomial time. The reason why the the-
orem only claims NP-hardness instead of NP-completeness (in the standard Turing
machine model) is that the problem CGMFP need not always have rational solutions
(of polynomial size). In the Blum-Shub-Smale model (Blum et al., 1989), however,
CGMFP is readily seen to be in NP since the feasibility and the flow value of a given
convex generalized flow can then be checked easily in (oracle) polynomial time. Nev-
ertheless, we want to stress that, in the presented reduction, a Yes-instance of CGMFP
contains only integral numbers and can, thus, be verified in polynomial time using
the standard Turing machine model.

Theorem 7.18:
CGMFP on extension-parallel graphs is weakly NP-hard to solve, even if all out-
flow functions are quadratic functions of the form ge(xe) = αe · x2e with integral con-
stants αe > 0 and all capacities are integral.

Proof: We use a reduction from the weakly NP-complete SubsetSum problem, which
is defined as follows (cf. (Garey and Johnson, 1979, Problem SP13)):

Instance: Finite set A = {a1, . . . ,ak} of k positive integers and a positive integer B.

Question: Is there a subset I ⊆ {1, . . . ,k} such that
∑
i∈I ai = B?

Given an instance of SubsetSum, we construct a network for CGMFP by introducing
three nodes s, v, and t. Between s and v, we insert an edge e0 with capacity 1 and
outflow function ge0(xe0) := B · x2e0 . Additionally, we introduce an edge ei between v
and t with capacity ai and outflow function gei(xei) :=

π
ai
· x2ei for each i ∈ {1, . . . ,k},

where π :=
∏k
j=1 aj. Note that the factors αei := π

ai
=
∏
j 6=i aj are integral and the

resulting graph is extension-parallel. The constructed network is shown in Figure 7.6.

We now show that there exists a convex generalized flow of value at least B · π if and
only if the given instance of SubsetSum is a Yes-instance.

Suppose that there is a convex generalized flow x of value val(x) > B · π in the con-
structed network. Note that, for each edge ei between v and t with capacity ai and
inflow xei , the outflow is given by π

ai
· x2ei , which evaluates to π · xei if xei = ai and to

some smaller multiple of xei if xei < ai. Hence, since the maximum possible outflow
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s v t
e0

(1,B)

e1

(
a1, πa1

)

e2

(
a2, πa2

)

ek−1
(
ak−1, π

ak−1

)
ek (

ak, πak

)
...

Figure 7.6: The constructed network for the given instance of SubsetSum. The label on each
edge e denotes the capacity ue and the factor αe, respectively.

of e0 is B, the flow value of val(x) > B · π implies that B units of flow must arrive at
v and each edge among e1, . . . , ek that has positive inflow satisfies xei = ai. Hence,
the B units of flow arriving at v are distributed to some edges ei, i ∈ I, for some
subset I ⊆ {1, . . . ,k} that satisfies

∑
i∈I ai = B, i.e, the given instance of SubsetSum is

a Yes-instance.

Conversely assume that there exists a solution I ⊆ {1, . . . ,k} of the given instance
of SubsetSum, i.e.,

∑
i∈I ai = B. By sending xe0 := 1 units of flow along e0 (which

amounts to an inflow of value B at v), xei := ai units of flow over the edges ei for i ∈ I,
and xej := 0 units along the edges ej for j ∈ {1, . . . ,k} \ I, we obtain flow conservation
at v and get a feasible convex generalized flow x of value

val(x) =
∑

i∈{1,...,k}
gei(xei) =

∑
i∈I
gei(ai) =

∑
i∈I

π

ai
· a2i =

∑
i∈I
π · ai

= B · π.

7.4.2 Approximability

Since the convex generalized flow problem is strongly NP-hard to solve on general
graphs, as it was shown in the preceding section, one might still hope for efficient
approximation algorithms for the problem. However, as it turns out, the problem is
NP-hard to approximate as well, even on simple graph classes:

Theorem 7.19:
CGMFP is NP-hard to approximate within constant factors, even on extension-parallel
graphs.

Proof: For ε ∈ (0, 1), suppose that there was an (1− ε)-approximation algorithm for
CGMFP that computes a feasible flow x with (1− ε) · val(x∗) 6 val(x) 6 val(x∗) in
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polynomial time, where x∗ is a maximum convex generalized flow. We show that this
(1− ε)-approximation algorithm allows us to decide if any instance of SubsetSum is
a Yes-instance, which is a contradiction unless P = NP.

Let ({a1, . . . ,ak},B) denote an instance of SubsetSum. Without loss of generality, we
may assume that ai > 2 for each i ∈ {1, . . . ,k} since we can otherwise multiply each
of the values ai and B by two. Similar to the proof of Theorem 7.18, we construct a
network for CGMFP by introducing four nodes s, v, w, and t. Between s and v, we
insert an edge e0 with capacity 1 and outflow function ge0(xe0) := B · xe0 . For each
i ∈ {1, . . . ,k}, we introduce an edge ei between v and w with capacity ai and outflow
function

gei(xei) :=


xei
ai−1

· 12 , if xei 6 ai − 1,

(xei − (ai − 1)) · (ai − 1
2) +

1
2 , else.

Note that the functions gei are continuous, increasing, and convex for each i ∈
{1, . . . ,k}: Let g(1)ei (xei) :=

xei
ai−1

· 12 and g
(2)
ei (xei) := (xei − (ai − 1)) · (ai − 1

2) +
1
2 de-

note the two linear segments of gei . It holds that g(1)ei (ai− 1) =
1
2 = g

(2)
ei (ai− 1), which

shows continuity of gei . Moreover, it holds that

0 <
d

dxei
g
(1)
ei (xei) =

1

2(ai − 1)
< 1 < ai −

1

2
=

d

dxei
g
(2)
ei (xei),

which shows both convexity and monotonicity of gei .

Moreover, we insert an edge e between w and t with capacity B and outflow function

ge(xe) :=


xe
B−12
· (1− ε)B4 , if xe 6 B− 1

2 ,

(xe − (B− 1
2)) · (1+ ε)

B
2 + (1− ε)B4 , else.

Similar to the functions gei , the function ge is continuous, increasing, and convex as
well: For g(1)e (xe) :=

xe
B−12
· (1− ε)B4 and g(2)e (xe) := (xe − (B− 1

2)) · (1+ ε)
B
2 + (1− ε)B4 ,

it holds that g(1)e (B − 1
2) = (1 − ε)B4 = g

(2)
e (B − 1

2), which shows continuity of ge.
Furthermore, since

0 <
d

dxe
g
(1)
e (xe) =

(1− ε) · B4
B− 1

2

=
(1− ε)

2B− 1
· B
2
<
B

2
< (1+ ε)

B

2
=

d

dxe
g
(2)
e (xe),

the function ge is increasing and convex as well.
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...
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Figure 7.7: The constructed network for the given instance of SubsetSum. The label on each
edge e denotes the capacity ue and the outflow function ge, respectively.

The resulting network is depicted in Figure 7.7. We now show that the flow value of a
maximum convex generalized flow equals B if there is a solution to the given instance
of SubsetSum and less than (1− ε) ·B else.

Let I ⊆ {1, . . . ,k} be a solution to the given instance of SubsetSum, i.e.,
∑
i∈I ai = B.

By sending xe0 := 1 unit of flow through e0, xei := ai units of flow through edge ei for
i ∈ I, xej := 0 units of flow through edge ej, j ∈ {1, . . . ,k} \ I, and xe := B units of flow
through e, we get a feasible convex generalized flow x with flow value val(x) = B,
which is clearly maximum.

Now suppose that there is no solution to the given instance of SubsetSum and let
I := {i ∈ {1, . . . ,k} : x∗ei > 0}, where x∗ is a maximum convex generalized flow in
the constructed instance of CGMFP. Clearly, if

∑
i∈I ai 6 B− 1, the flow arriving at

node w amounts to at most
∑
i∈I gei(ai) =

∑
i∈I ai 6 B− 1, which causes a flow value

of less than (1− ε) · B4 < (1− ε) · B after passing edge e due to the definition of ge. If∑
i∈I ai > B+ 1, there is exactly one i ∈ I with 0 < x∗ei < ai without loss of generality

according to Lemma 7.15 since there are only at most B units of flow arriving at
node v. Moreover, since all of the values ai are integral, it holds that x∗ei 6 ai− 1 such
that gi(x∗ei) 6

1
2 . Then, however, the amount of flow that arrives at node w is given by∑

j∈I x
∗
j 6
∑
j∈I\{i} aj +

1
2 6 B− 1

2 , which implies that the maximum flow value val(x∗)
is less than (1− ε) · B4 < (1− ε) ·B.

Hence, the flow value of a maximum convex generalized flow in the constructed
network is B if there is a solution to the given instance of SubsetSum and less than
(1− ε) · B else. Thus, any (1− ε)-approximation algorithm returns a solution x with
flow value val(x) > (1− ε) · B if and only if the underlying instance of SubsetSum is
a Yes-instance, which proves the theorem.
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7.5 Exact Algorithms

As it was shown in the preceding section, the problem CGMFP is both NP-hard to
solve and to approximate. Thus, unless P = NP, we will not be able to solve the
problem in polynomial time. However, we are able to derive exponential-time exact
algorithms that compute maximal generalized (pre-)flows. In this section, we consider
different graph classes with decreasing structural complexity. We will be able to
derive more efficient algorithms with decreasing complexity of the underlying graph.
Moreover, in Section 7.5.5, we introduce a special case of extension-parallel graphs for
which a maximum convex generalized flow can be computed in polynomial time.

7.5.1 General Graphs

In this section, we present an exponential-time algorithm that computes a maximum
preflow on general graphs in O(3m ·m) time. We start by proving several auxiliary
results.

The proof of the following well-known fact is provided for the sake of completeness:

Lemma 7.20:
A full-dimensional polytope in Rn has at least n+ 1 facets.

Proof: Let {x ∈ Rn : Ax 6 b} be an non-redundant formulation of a full-dimensional
polytope P ⊆ Rn, A ∈ Rm×n, b ∈ Rm. Since P is full-dimensional and bounded,
it contains at least two distinct extreme points x(1) and x(2). Each of these extreme
points can be determined by setting a set of n inequalities to equality. Thus, since
x(1) 6= x(2), the formulation has at least n+ 1 inequalities. It is well known that, in
such a non-redundant formulation, there is a one-to-one correspondence between the
inequalities and the facets of P, see e.g. (Schrijver, 1998).

Consider a partition (L, T ,U) of the edge set E into three sets L, T , and U, where T
forms a spanning tree of the graph G. Similar to the network simplex algorithm for
the traditional minimum cost flow problem (cf. Section 4.3), we refer to this parti-
tion (L, T ,U) as a basis structure in the following. We refer to any convex generalized
preflow x fulfilling xe = 0 for each e ∈ L and xe = ue for each e ∈ U as a preflow cor-
responding to the basis structure. As in the case of traditional and budget-constrained
minimum cost flows, we can restrict our considerations to such preflows:

Proposition 7.21:
Let x be a convex generalized preflow in a graph G = (V ,E). Then there exists
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a convex generalized preflow x ′ corresponding to a basis structure (L, T ,U) with
val(x ′) > val(x).

Proof: For the given convex generalized preflow x, consider the partition of the edge
set given as L := {e ∈ E : xe = 0}, U := {e ∈ E : xe = ue}, and T := {e ∈ E : xe ∈ (0,ue)}.
If the subgraph that is induced by the edges in T does not contain any cycle, the claim
clearly follows since we can add edges from L or U to T until the edges in T form a
spanning tree of G.

Now let C = (e1, . . . , ek) be a (possibly undirected) cycle in G such that ei ∈ T and
xei ∈ (0,uei) for each i ∈ {1, . . . ,k}. In the following, we refer to such a cycle as a
T -cycle. We show that there also exists a preflow x ′ with val(x ′) > val(x) in which the
flow on C is rerouted in a way such that at least one edge on C belongs to L or U. By
a repeated application of these arguments, the claim then follows.

Let (P1, . . . ,Pκ) denote the partition of C into maximal directed subpaths. We replace
each of the subpaths Pi by a single edge ei. The outflow of each such edge ei can then
be described by a convex function gi of its inflow according to Lemma 7.7. If κ = 1,
i.e., C is a directed cycle, we can set the flow entering the cycle at the starting node v
of P1 to Ux(P1) or Lx(P1) depending on whether (C, v) is a flow generating cycle or a
flow absorbing cycle for x. Since the excess then increases at v and remains constant
at every other node, the claim follows.

Now let C be an undirected cycle. By construction, in the resulting (undirected) cy-
cle C = (e1, . . . , eκ), the directions of the edges alternate. The situation before and
after this procedure is depicted in Figure 7.8.

Note that the number κ of nodes and edges on C is even since the direction of the
edges changes at each node. Moreover, we may assume without loss of generality
that κ > 4 since, for the case κ = 2, the cycle consists of two parallel paths and
we can proceed as in the proof of Lemma 7.15 in order to make one of the paths
full or empty while only generating positive excess at the end node. Furthermore,
each node on C has either two incoming edges or two outgoing edges in C and we
assume that the edges and nodes are labeled as in Figure 7.8, i.e., nodes with odd
index have two outgoing edges and nodes with even index have two incoming edges.
Furthermore, edges with odd index j start from vj and head to vj+1, while edges with
even index l head from vl+1 to vl. Let gi be the function describing the outflow of ei
for i ∈ {1, . . . , κ}, which is convex according to the above explanations. Furthermore,
let sj denote the sum of the inflows of the edges ej−1 and ej in the given preflow x

for j ∈ {1, 3, 5, . . . , κ− 1}, i.e., the flow leaving node vj along the edges of the cycle C.
Similarly, let dl denote the flow arriving at vl via el−1 and el in x, l ∈ {2, 4, . . . , κ}. Note
that, due to notational convenience, we avoid using modulo-functions, i.e., whenever
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Figure 7.8: Replacing each maximal directed subpath of a cycle by a single edge yields a cycle
in which the directions of the edges alternate. The left figure shows the situation
before, the right figure after the procedure. The new outflow functions gi are
convex on the set of feasible inflows.

an index evaluates to 0 or κ+ 1, it should be κ or 1, respectively. Moreover, we will
always denote odd indices by j and even indices by l.

Our aim is to distribute the flows sj leaving the odd nodes vj onto ej−1 and ej in
a way such that the inflow of each even node vl is at least dl, while the flow on at
least one edge ei lies in {Lx(Pi),Ux(Pi)} (which means that at least one edge e ∈ Pi
will have x ′e = 0 or x ′e = ue as remarked above after Definition 7.8). To do so, we
formulate a system of nonlinear inequalities in the inflows yj of the odd edges ej. The
inflow yl of each even edge el can then be expressed as yl = sl+1 − yl+1. We then
have the boundary conditions yj ∈ [Lx(Pj),Ux(Pj)] and sj− yj ∈ [Lx(Pj−1),Ux(Pj−1)] or,
equivalently,

yj ∈ [Lj,Uj] := [Lx(Pj),Ux(Pj)]∩ [sj −Ux(Pj−1), sj − Lx(Pj−1)].

Hence, we want to find a solution to the following system of nonlinear inequalities
for which yj ∈ {Lj,Uj} for at least one j ∈ {1, 3, . . . , κ− 1}:

g1(y1) + g2(s3 − y3) > d2,

g3(y3) + g4(s5 − y5) > d4,
...

gκ−1(yκ−1) + gκ(s1 − y1) > dκ,

yj ∈ [Lj,Uj], j ∈ {1, 3, . . . , κ− 1}.
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According to the definitions of sj and dj, choosing yj to be the inflow of the path Pj
in the original preflow x yields a solution y of the system that fulfills all inequalities
with equality. In the following, let S := {(y1,y3, . . . ,yκ−1) : gj(yj) + gj+1(sj+2 − yj+2) >
dj+1 for j = 1, 3, . . . , κ− 1} be the set of vectors satisfying the inequalities and D :=

[L1,U1]× [L3,U3]× . . .× [Lκ−1,Uκ−1] the set of vectors of allowed inflows. Since C was
a T -cycle, the solution y mentioned above lies in S ∩D◦ and we are done if we can
show that there also exists a solution in S∩ ∂D.1

For the sake of a contradiction, assume that there is no solution in S ∩ ∂D and, for
j ∈ {1, 3, . . . , κ− 1}, let

Cj := {(y1,y3, . . . ,yκ−1) : gj(yj) + gj+1(sj+2 − yj+2) < dj+1}

denote the set of points violating inequality j. Since S = Rκ/2 \
⋃
j∈{1,3,...,κ−1}Cj and

we assumed that there is no solution in S ∩ ∂D, the boundary ∂D must be contained
in
⋃
j∈{1,3,...,κ−1}Cj. Since the functions gi are convex, the sets D ∩ Cj are convex as

well and we can find a hyperplane Hj := {y = (y1,y3, . . . ,yκ−1) : ωj · y = bj} with
ωj · y < bj that separates D ∩ Cj from y for each j ∈ {1, 3, . . . , κ− 1}. Thus, the set
P := {y = (y1,y3, . . . ,yκ−1) : ωj · y 6 bj for j = 1, 3, . . . , κ− 1} is a polyhedron with
y ∈ P. In fact, since y ∈ P ∩ (S ∩D), the polyhedron P must be a polytope enclosing
y (otherwise, it would be possible to pass S ∩ ∂D following an extreme ray of P).
Moreover, since y lies in the topological interior of P, we have P◦ 6= ∅, which shows
that P is a full-dimensional polytope in Rκ/2. According to Lemma 7.20, a polytope
of dimension κ

2 must have at least κ
2 + 1 facets, whereas P was defined by only κ

2

inequalities, which yields a contradiction. Thus, there exists a solution in S∩ ∂D.

Hence, in terms of the original problem, we have now shown that there exists a feasi-
ble generalized preflow on G with flow value at least val(x) for which the flow on at
least one edge e ∈ C is contained in {0,ue} (the flow value can have increased in case
that the sink t is one of the nodes vl). Note that we only changed the flow on edges
on C. Hence, by a repeated application of the above arguments, we finally obtain that
there are no T -cycles left, which proves the claim.

Proposition 7.21 builds the foundation of the following main result of this subsection:

Theorem 7.22:
A maximum convex generalized preflow can be computed in O(3m ·m) time.

Proof: Since we can restrict our considerations to preflows corresponding to basis
structures as shown in Proposition 7.21, the theorem follows if we can show that,

1 Here, D◦ denotes the topological interior of D and ∂D := D̄ \D◦ the boundary.
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given such a basis structure, we can compute feasible flow values on the edges in T
that yield a maximum convex generalized preflow (or decide that the partition does
not allow a feasible preflow) in O(m) time. We show that we can proceed similarly
as in the traditional network simplex algorithm in order to reconstruct the flow that
corresponds to a partition of the edge set. In doing so, we may discard partitions that
may lead to feasible preflows. Nevertheless, we never discard partitions that lead to
a maximum convex generalized preflow.

Clearly, we can discard partitions in which some node v ∈ V that is incident only to
L-edges and U-edges has a negative excess. Moreover, by Proposition 7.21, we can
discard partitions that contain T -cycles and restrict our considerations to partitions in
which the edges in T form a spanning tree of G.2 Since T is a spanning tree, it contains
the sink t. We designate t as the root of the tree T and seek to move the excess from
each leaf of the tree towards the root in the following.

Each leaf v of the tree T is incident to exactly one edge e ∈ T . Let δv denote the excess
at v generated by the L- and U-edges incident to v. We try to specify the flow on
e in a way such that the excess at v becomes zero and will get transported towards
the root node: If e is heading from v to some node w and δv < 0, we discard the
current partition since it does not allow a feasible preflow (since xe is required to be
non-negative, a negative excess will remain at v). If δv > 0, we set xe := min{ue, δv} in
order to move the excess at v towards the root. Similarly, if e is heading from some
node w to v, we set xe := min{ue,g−1e (−δv)} if δv 6 0 in order to satisfy the demand
at v and discard the partition if δv > 0. In any case, since we have specified the flow
on e, we can delete the edge from the tree and continue with the next leaf and so on.
Note that this procedure maintains a non-negative excess at each leaf while creating
the maximum possible excess at the corresponding adjacent inner node of the tree.
Eventually, the flow on each edge e ∈ T is determined (if possible) while creating the
maximum possible excess at the root of the tree.

For each of the 3m possible partitions (L, T ,U) of E, we are able to find a node that
is incident to exactly one edge in T efficiently by maintaining values b(v) that corre-
spond to the number of incident T -edges of a node v ∈ V for which the flow value
has not yet been fixed and a queue Q of nodes v with b(v) = 1. Whenever the flow
value xe of an edge e ∈ T with end nodes v and w is fixed, we are able to decrease
b(v) and b(w) and update Q in constant time O(1). Consequently, the reconstruction
needs O(m) time, which proves the claimed total running time of O(3m ·m).

2 Note that one can check in O(m) time whether a given graph contains an undirected cycle by using
a depth-first search in the corresponding undirected graph.
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Note that the maximum convex generalized preflow that is obtained by the above
algorithm cannot be transformed into a maximum convex generalized flow without
further assumptions: Suppose that there is a flow generating cycle (C, v) for some
preflow x that creates sv units of flow at v resulting in an excess of δv ∈ (0, sv) at v.
According to Lemma 7.7, we can describe the outflow of C at v by a convex function g
of the inflow xC of C at v that fulfills g(xC) − xC = sv. In order to get rid of the
positive excess at v, we need to solve the equation g(xC) − xC = sv− δv in xC, which is
uncomputable in general even for a strictly increasing continuous convex function g
since we do not have oracle access for the function g(xC) − xC.

However, if we suppose that there is an oracle A that solves the above kind of equa-
tions in O(TA) time, it is possible to find a maximum convex generalized flow on
general graphs in O(3m · nmTA) time as follows: For some partition (L, T ,U) of the
edge set E that implies a feasible preflow, consider a node v ∈ V \ {s, t} with positive
excess. Starting at z := v, we recursively follow some edge e = (w, z) ∈ Ewith positive
flow xe and set z := w. Eventually, we either reach the source s or some node v ′ con-
sidered before, i.e., we obtain a cycle. In the first case, we find a feasible subtraction
of Type I that either removes the excess at v or removes all flow on some edge on the
underlying s-v-path. Note that this case may occur up to O(m+n) = O(m) times and
causes an overhead of O(n). In the second case, there is a minimum inflow xP into the
path P between v ′ and v such that the excess at node v and the flow on each edge on
the path between v ′ and v remains non-negative. By incorporating the oracle A, we
can then either find a flow on the cycle such that the inflow into the path equals xP
while the excess at v ′ remains constant or we can reduce the flow on the cycle com-
pletely. Again, this case can occur up to O(m+ n) times and causes an overhead of
O(n · TA). This yields a total time requirement of O(nm · TA) per partition for convert-
ing the maximum preflow corresponding to the partition into a flow with the same
flow value.

7.5.2 Acyclic Graphs

As shown above, according to Theorem 7.22, we can obtain a maximum convex gener-
alized preflow on general graphs in O(3m ·m) time. When restricting to acyclic graphs,
we are able to turn preflows into flows efficiently, which can be incorporated into the
proof of Theorem 7.22 in order to obtain a maximum convex generalized flow within
the same time bound. This will be shown in the following corollary:
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Corollary 7.23:
A maximum convex generalized flow in an acyclic graph can be computed in O(3m ·
m) time.

Proof: The algorithm used in the proof of Theorem 7.22 considers each possible parti-
tion of E into L, T , and U and computes a feasible preflow for this partition if possible.
In acyclic graphs, the positive excess that might occur at any node v ∈ V \ {s, t} stems
from flows on s-v-paths according to Theorem 6.10. Thus, each of the computed pre-
flows can afterwards be turned into a feasible flow by computing feasible subtractions
of Type I on those paths that create the excess at the nodes v ∈ V \ {s, t} with positive
excess. This can be done in linear time O(m) as follows: Let (v1, . . . , vn) with v1 = s

and vn = t denote a topological sorting of the nodes in V and let δv denote the excess
of each node v ∈ V , which is non-negative for each v ∈ V \ {s, t}. Let i denote the
maximum index with i < n such that δvi > 0. Note that the positive excess at vi stems
from the ingoing edges e ∈ δ−(vi) only. Hence, as long as δvi > 0, we can reduce
the inflow of some e = (vj, vi) ∈ δ−(vi) with xe > 0, decrease δvi , and increase δvj
appropriately until either xe = 0 or δvi = 0. In the first case, we proceed with another
edge in δ−(vi) with positive flow. In the second case, we again consider the maximum
index i < n with δvi > 0 until no such index exists. Eventually, we get rid of the
positive excess at each v ∈ V \ {s, t} by considering each edge at most once, which
shows the claim.

7.5.3 Series-Parallel Graphs

We now restrict our considerations to the case of series-parallel graphs. Although
Corollary 7.23 already provides an algorithm that solves CGMFP on series-parallel
graphs exactly, it is possible to obtain a better running time by exploiting the inherent
structure of the underlying graph. As it was shown in (Holzhauser et al., 2015b), the
problem becomes solvable in O(2.83m · (m+ n2)) time when using a more sophisti-
cated approach of creating the basis structures. We present a revised approach that
comes with an improved running-time of O(2.707m · (m+ n2)) time and a simplified
proof:

Theorem 7.24:
A maximum convex generalized flow in a series-parallel graph can be computed in
O(2.707m · (m+n2)) time.

Proof: The idea of the algorithm is similar to the one presented in the proof of The-
orem 7.22: For a given basis structure (L, T ,U), we try to reconstruct the flow on the
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edges such that flow conservation is fulfilled at each node v ∈ V if possible. Although
the reconstruction procedure used in this proof has an increased running time of
O(m+ n2) compared to the procedure used in the proof of Theorem 7.22, it yields a
better overall running time since it can be interleaved with a traversal of a decomposi-
tion tree of the series-parallel graph in order to reduce the number of partitions that
need to be considered within the algorithm.

Contraction Procedure:

We start by describing the new procedure for reconstructing the flow from a given
partition of E into L, T , and U (or deciding that the partition does not correspond to
a feasible flow). As a fourth kind of node, we introduce unspecified edges e ∈ X for
which the type will be determined in a later step of the algorithm. For each edge e ∈ E,
we store two attributes: the interval ine of potential inflows and the interval oute of
potential outflows. Obviously, for each e ∈ L, we get ine = oute = [0, 0] and, for each
edge e ∈ U, we get ine = [ue,ue] and oute = [ge(ue),ge(ue)]. Analogously, for e ∈ T
or e ∈ X, we have ine = [0,ue] and oute = [0,ge(ue)] initially.

The algorithm is based on a fixed decomposition tree of the underlying series-parallel
graph G. It repeatedly identifies series trees (maximal subtrees in which all inner nodes
correspond to series compositions, cf. Figures 7.9a and 7.9c) or parallel trees (maximal
subtrees in which all inner nodes correspond to parallel compositions, cf. Figure 7.9b)
of the decomposition tree and contracts them into single edges. As an invariant that
will be established in the creation process of the partitions below, we assume that
every edge that corresponds to a leaf in a series tree is contained in X. Similarly, we
assume that exactly one edge corresponding to a leaf in a parallel tree is in X while
every other edge is contained in L∪U.

Contraction of a series trees: Consider a series tree T with kT > 2 leaves correspond-
ing to edges e1, . . . , ekT in the underlying series-parallel graph. As noted above,
we can assume that the type of all of these edges is unspecified, so inei = [ai,bi]
and outei = [ci,di] for some values ai,bi, ci,di > 0. In the original graph, the
sequence (e1, . . . , ekT ) corresponds to a path P of length kT . Note that the flow
on P is determined by the flow on one single edge on P. Similar as in the proof
of Lemma 7.2, we can find a maximal interval of the form [a,b] such that, for
each y ∈ [a,b], it holds that xei ∈ [ai,bi] for each i ∈ {2, . . . ,kT } in a flow x on P
with xe1 = y. We can, thus, replace the path P by a single unspecified edge e ∈ X
with ine = [a,b] and oute = [gekT (. . . (ge1(a)) . . .),gekT (. . . (ge1(b)) . . .)]. In the
decomposition tree, we similarly replace the series tree T by a new leaf corre-
sponding to the edge e. Note that, if ine = ∅, we can skip the given partition
since it does not allow a feasible flow.
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Contraction of parallel trees: Now consider a parallel tree T with kT > 2 leaves cor-
responding to edges e1, . . . , ekT in the underlying series-parallel graph. Accord-
ing to the above invariant, we can assume that there is exactly one index j ∈
{1, . . . ,kT } such that ej ∈ X and that there are two disjoint index sets IL and IU
denoting empty and full edges, respectively, such that IL ∪ IU = {1, . . . ,kT } \ {j}.
Note that the intervals inej and outej are of the form inej = [aj,bj] and outej =
[cj,dj] while the intervals of every other edge ei are of the form inei = [ai,ai]
and outei = [ci, ci]. Hence, the flow in the series-parallel subgraph G ′ that corre-
sponds to the parallel tree T only depends on the flow on ej, so we can replace
T by a single leaf corresponding to an edge e with the intervals

ine :=

aj + ∑
i∈IL∪IU

ai,bj +
∑

i∈IL∪UL

ai


and

oute :=

cj + ∑
i∈IL∪IU

ci,dj +
∑

i∈IL∪UL

ci

 .

Virtually, we replace the parallel edges e1, . . . , ekT in G by the single edge e.

Before we derive the running time of the above contraction procedure, first note that
each parallel tree and series tree can be determined by a single traversal of the de-
composition tree in O(m) time in a preprocessing step. For each of the O(n) series
trees, we need to compute the new intervals ine and oute, which results in an evalu-
ation of O(kT ) outflow functions. Since each of these functions may result from the
decomposition of other outflow functions from prior contraction steps, we obtain an
overhead of O(n) per series tree. Similarly, each parallel tree T with kT leaves causes
an overhead of O(kT ). Since there are at most O(n) parallel trees (since the root of
each parallel tree is either the root of the decomposition tree or a child of a series
composition) and since each leaf in a parallel tree either corresponds to an edge in
the original graph G or a series tree, the contraction steps of all parallel trees cause a
total overhead of O(m+n). Hence, we obtain a total running-time of O(m+n2) time
for the reconstruction of the flow in each considered partition.

Partitioning procedure:

We now show how we can interleave the generation of the partitions into the con-
traction procedure described above while maintaining the claimed invariants. In par-
ticular, we are able to save some of the 3m possible combinations by generating the
partitions “just in time”, i.e., prior to each contraction step.
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Initially, we assume each edge to be unspecified. Suppose that the algorithm starts
with the contraction of a series tree T with kT leaves corresponding to the edges
e1, . . . , ekT . As described above, we do not need to consider any partition of these
edges but can replace them by a new unspecified edge. At some point in time (if the
graph does not consist of a single path), we come across a parallel tree T with kT leaves
corresponding to the edges e1, . . . , ekT . At that time, all of these edges are unspecified.
In order to fulfill the invariant required above, we need to consider different partitions
of these edges into L, T , and U before the subsequent contraction step. According to
Proposition 7.21, we can assume that at most one of these edges is of type T in a basis
structure while the remaining edges are either empty or full. Equivalently, we can
assess that exactly one edge remains unspecified while the remaining edges must be
of type L or U. In total, we need to consider each of the kT possible positions of the
unspecified edge and, for every such position, each of the 2kT−1 possible assignments
of the remaining edges into L and U. We then contract the parallel tree into a single
leaf, which is again unspecified as described above, and continue the procedure. An
exemplary course of the overall procedure is depicted in Figure 7.9.
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X
X

X
X
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P X

S X

X S

X X

(a) Series tree

L

X
X

S

P X

X L

(b) Parallel tree

X X

X

S

X X

(c) Series tree

X

X

X

(d) Result

Figure 7.9: Iterative contraction of series and parallel trees in the algorithm. For each iteration,
the upper figure shows the current graph and the lower one the current decompo-
sition tree. The series tree in (a) can be contracted to a single edge without con-
sidering any further partitions, which yields the graph shown in (b). Afterwards,
the two leaves of the parallel tree need to be assigned to L, U, or X such that the
tree can be contracted. This yields the tree shown in (c), which can immediately
be contracted into the single leaf shown in (d).
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Complexity of the overall algorithm:

The bound on the time needed for the contraction steps has already been derived
above. It remains to prove that the number of partitions that need to be considered
can be bounded by 2.707m. To this end, note that the number of partitions only
increases when contracting a parallel tree.

Now consider a series tree T with k := kT leaves e1, . . . , ek prior to its contraction.
Several contraction steps before, each ei either corresponded to a parallel tree Ti with
ki leaves or to a tree Ti with only ki = 1 leaf ei that corresponds to an edge in the
original graph (cf. Figure 7.10).

S

S

P

P P

e1 e2 e3 e4

e5 P

Pe6

e7 e8

Figure 7.10: A series tree with k = 3 leaves and two parallel trees with k1 = 4 and k3 = 3

leaves. Before the algorithm contracts the series tree, it considers partitions for
the two parallel trees and contracts these trees into single edges. It then contracts
the series tree into a single edge.

Let M(T) denote the number of partitions that need to be considered in order to
process all of these trees Ti and the series tree T . As shown above, we get that

M(T) =

k∏

i=1

ki · 2ki−1. (7.2)

Since each of the considered trees is binary, it holds that the number ni of nodes in
each tree Ti is given by 2ki − 1 and that the number nS of nodes in the series tree
together with the nodes in the trees Ti is given by nS =

(∑k
i=1 ni

)
+ k− 1. Note that,

after the contraction steps of the trees Ti and the series tree T , the number of nodes in
the decomposition tree is reduced by an absolute amount of nS − 1. By substituting
ki =

ni+1
2 in (7.2), we can bound the number M(T) of partitions as follows:

M(T) =

k∏

i=1

ni + 1

2
· 2ni−1

2 =

k∏

i=1

ni + 1

2
√
2

· 2ni
2 = 2

∑k
i=1

ni
2 ·

k∏

i=1

ni + 1

2
√
2

.
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By using the inequality of arithmetic and geometric means (cf. Cauchy (1821)), we get
that

M(T) 6
(√
2
)∑k

i=1 ni ·

(∑k
i=1(ni + 1)

2
√
2 · k

)k

=
(√
2
)∑k

i=1 ni ·

(
1

2
√
2
·

(∑k
i=1 ni
k

+ 1

))k
.

For z :=
∑k
i=1 ni
k > 1, we further obtain that

M(T) =
(√
2
)∑k

i=1 ni ·
(
1

2
√
2
· (z+ 1)

)∑ki=1 ni
z

=

(
√
2 ·
(
1

2
√
2
· (z+ 1)

)1
z

)∑k
i=1 ni

.

It can be seen that the term
√
2 ·
(
1

2
√
2
· (z+ 1)

)1
z

has a maximum value of

−4eW

(
−
(
2
√
2e
)−1)

≈ 1.64524

for z > 1, where e is Euler’s number and W denotes the Lambert W function. Hence,
since k > 2, we get that

M(T) 6 1.64524
∑k
i=1 ni = 1.64524nS−k+1 6 1.64524nS−1.

Thus, in total, we only need to evaluate 1.64524nS−1 partitions in order to remove
nS − 1 nodes from the decomposition tree. After contracting the series tree, we can
repeat this procedure until the decomposition tree only consists of a single edge or
of a single parallel tree. In any case, since we are interested in a maximum convex
generalized flow, we do not need to consider any further partitions since it is clearly
optimal to assign the remaining edges to U. Hence, since there are 2m− 1 nodes in the
decomposition tree, we get the following bound on the total number M of partitions
that need to be considered:

M 6
∏

series tree

1.64524nS−1 = 1.64524
∑

series tree(nS−1) 6 1.645242m−1

6 1.645242m 6 2.707m,

which shows the claim.
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7.5.4 Extension-Parallel Graphs

As it was shown in Theorem 7.24, we can reduce the number of partitions that need to
be considered from 3m to 2.707m by using a more sophisticated generation procedure
for the problem of series-parallel graphs. When applying this algorithm to the con-
vex generalized maximum flow problem on extension-parallel graphs, the number of
partitions that need to be considered can be further reduced to 2.404m as it is shown
in the following corollary:

Corollary 7.25:
A maximum convex generalized flow can be computed in O(2.404m ·m) time on
extension-parallel graphs.

Proof: Assume that we apply the algorithm that was described in the proof of Theo-
rem 7.24 to an instance of CGMFP on an extension-parallel graph G. Again, in order
to bound the number of partitions that need to be evaluated, consider a series tree T
with k leaves corresponding to the edges e1, . . . , ek. According to the structure of
extension-parallel graphs, it holds that at most one edge ej among these edges results
from a prior contraction of a parallel tree Tj with kj leaves into a single edge. Again,
since all of the considered trees are binary, it holds that the number nj of nodes in Tj
is given by nj = 2kj − 1 and that the number of nodes nS in the series tree T together
with the nodes in Tj is given by nS = 2k − 1 + (nj − 1). Since k > 2, we get that
nj = nS + 2− 2k 6 nS − 2. The number M(T) of partitions that need to be considered
in order to process the parallel tree (together with the series tree) is then given by

M(T) 6 kj · 2kj−1 =
nj + 1

2
· 2

nj−1

2 6
nS − 1

2
· 2

nS−3
2 =

nS − 1

4
·
(√
2
)nS−1

.

For z := nS − 1, we then get that

M(T) 6
z

4
·
(√
2
)nS−1

=

((z
4

)1
z

)nS−1
·
(√
2
)nS−1

=

(√
2 ·
(z
4

)1
z

)nS−1
.

The maximum of
√
2 ·
(
z
4

)1
z is given by

√
2e

1
4e ≈ 1.55045. As in the proof of Theo-

rem 7.24, we finally get that the number M of partitions that need to be considered is
bounded by

M 6
∏

series tree

1.55045nS−1 = 1.55045
∑

series tree(nS−1) 6 1.550452m−1

6 1.550452m 6 2.404m,

which shows the claim.
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7.5.5 Restricted Extension-Parallel Graphs

We close the study of graph classes with a special case of extension-parallel graphs
that is solvable in polynomial time. As it was shown in Theorem 7.18, the prob-
lem CGMFP is NP-hard to solve even if the underlying graph is restricted to be
extension-parallel, i.e., if it is series-parallel but series compositions are only allowed
in case that one of the two graphs consists of a single edge. We now show that CGMFP
can be solved in linear time if we require that the right hand side graph (i.e., the graph
whose source is identified with the sink of the other graph) in every series composi-
tion consists of a single edge. In the following, we refer to extension-parallel graphs
with this additional restriction as restricted extension-parallel graphs.

Theorem 7.26:
A maximum convex generalized flow in a restricted extension-parallel graph can be
computed in O(m) time.

Proof: Let G = (V ,E) be a restricted extension-parallel graph. The idea of the al-
gorithm is to “pump” as much flow as possible into the graph in order to obtain a
maximum preflow and to subsequently turn this preflow into a flow. For any series-
parallel subgraph G ′ of G that corresponds to a node in the decomposition tree of G,
we let F(G ′) denote the maximum value of a convex generalized flow in G ′. Starting
from the leaves of the decomposition tree of G, these values F(G ′) can be computed
recursively as follows:

• If G ′ is a leaf of the decomposition tree corresponding to a single edge e ∈ E, we
set F(G ′) := ge(ue).

• If G ′ is the parallel composition of G1 and G2, we set F(G ′) := F(G1) + F(G2).

• If G ′ is the series composition of G1 and G2, the right hand side graph G2 must
be a single edge e and we set F(G ′) := ge(min{F(G1),ue}).

Since each of the above steps requires only constant time O(1) and the decomposition
tree contains O(m) nodes, this shows that we can compute the flow value F(G) of a
maximum convex generalized flow in G in O(m) time.

In order to compute the flow xe on the edges of G in a maximum convex generalized
flow x, we let outx(G ′) denote the outflow of each graph G ′ in the decomposition of
G under x. Starting from the root of the decomposition tree, where we set outx(G) :=
F(G), each of these values outx(G ′) can be computed recursively as follows:

• If G ′ is the parallel composition of G1 and G2, we split the value outx(G ′)
arbitrarily such that outx(G ′) = outx(G1) + outx(G2) and outx(G1) 6 F(G1),
outx(G2) 6 F(G2).
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• If G ′ is the series composition of G1 and G2, the right hand side graph G2

must be a single edge e and we set outx(G2) := outx(G ′) and outx(G1) :=

g−1e (outx(G ′)).

Note that we always have that outx(G ′) 6 F(G ′) during the above procedure, so
the splitting of outx(G ′) in case of a parallel composition is always possible and the
procedure computes all values outx(G ′) in O(m) time. Afterwards, the flow xe on
each edge e can be computed from the value outx(e) obtained for the corresponding
leaf of the decomposition tree as xe := g−1e (outx(e)).

7.6 Integral Flows

We finally consider integral flows (i.e., feasible flows with integral in- and outflows for
all edges) and assume that the outflow functions map integers to integers. Note that
the NP-completeness results from Theorem 7.17 and Theorem 7.18 remain valid for
the case of integral flows. However, we are now able to derive a pseudo-polynomial-
time algorithm for the problem on series-parallel graphs. In the following, let U :=

maxe∈E ue and U := maxe∈E ge(ue) denote the maximum possible inflow and outflow
of an edge, respectively, which can be assumed to be integral as well without loss of
generality.

Theorem 7.27:
A maximum integral convex generalized flow in a series-parallel graph can be com-
puted in O(m5 ·U2 ·U2) time.

Proof: Consider a decomposition tree of G. For each component G ′ of this decompo-
sition tree and for each value x ∈ {0, . . . ,m ·U} and y ∈ {0, . . . ,m ·U}, we compute
the boolean function AG ′(x,y), which is true if and only if an inflow of value x can
produce an outflow of value y in G ′.

Consider a leaf G ′ of the decomposition tree that corresponds to some edge e of the
original graph G. For each x ∈ {0, . . . ,m ·U} and y ∈ {0, . . . ,m ·U}, we set AG ′(x,y) :=
True if and only if x 6 ue and ge(x) = y. If G ′ is the series composition of the two
series-parallel graphs G1 and G2, we are able to achieve an outflow y with an inflow
of x in G ′ if and only if there is some value x ′ ∈ {0, . . . ,m ·U} that is both an outflow
of G1 and an inflow of G2, i.e.,

AG ′(x,y) =
∨

x ′∈{0,...,m·U}
AG1(x, x ′)∧AG2(x

′,y).
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Similarly, if G ′ is the parallel composition of the two series-parallel graphs G1 and G2,
an outflow of y can be achieved with an inflow of x if and only if some amount y1 of
the outflow can be created with an inflow of x1 in G1 and the remaining outflow y−y1

can be created with the remaining inflow x− x1 in G2. Hence, we get

AG ′(x,y) =
∨

x1∈{0,...,x}

∨
y1∈{0,...,y}

AG1(x1,y1)∧AG2(x− x1,y− y1).

Note that there are O(m) nodes in the decomposition tree of G and we need to eval-
uate O((m ·U) · (m ·U)) entries for each node. Clearly, for a single edge, each entry
can be computed in constant time O(1). For the case of a series composition, we need
to iterate over all possible values of x1, which yields a complexity of O(m ·U) per
entry. Finally, the evaluation of an entry for a node G ′ of the decomposition tree that
corresponds to a parallel composition takes O((m ·U) · (m ·U)) time. This yields the
claimed running time of O

(
m · (m ·U)2 · (m ·U)2

)
= O

(
m5 ·U2 ·U2

)
.

7.7 Conclusion

We studied an extension of the generalized maximum flow problem in which the out-
flow of an edge is a strictly increasing convex function of its inflow. It turned out that
the problem of computing a maximum convex generalized flow is strongly NP-hard
to solve even on bipartite acyclic graphs and weakly NP-hard on extension-parallel
graphs. For both cases and the case of preflows on general graphs, we presented
exponential-time exact algorithms. Moreover, we showed that a flow decomposition
similar to the case of traditional generalized flows is still possible and showed that
the problem can be solved in pseudo-polynomial-time on series-parallel graphs for the
case of integral flows. An overview of the results of this chapter is given in Table 7.1.

The model introduced in this chapter raises several interesting questions for future
research. Since CGMFP was only shown to be weakly NP-hard to solve on series-
parallel graphs, it remains an open question whether a pseudo-polynomial-time algo-
rithm exists also for the general case in which the flow is not restricted to be integral
or whether the problem is actually strongly NP-hard in this case. Furthermore, al-
though the problem was shown to be NP-hard to approximate, it remains open if and
how approximate oracles could be used in order to obtain “almost feasible” solutions.
Finally, although the running-time of the presented algorithms could be improved for
the case of more simple graph classes, it may be possible to obtain faster algorithms
by making even more use of the structure of such graph classes.
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General Graphs Acyclic Graphs SP Graphs EP Graphs

Theorem 7.13:
Decomposable into
m elementary sub-
tractions

−→ −→ −→

←−
Theorem 7.17:
strongly NP-
complete to solve

←−
Theorem 7.18:
weakly NP-complete
to solve

←− ←− ←−
Theorem 7.19:
NP-hard to approxi-
mate

Theorem 7.22:
maximum preflow
in O(3m ·m) time

Corollary 7.23:
maximum flow in
O(3m ·m) time

Theorem 7.24:
maximum flow in
O(2.707m · (m +

n2)) time

Corollary 7.25:
maximum flow in
O(2.404m · (m +

n2)) time

Theorem 7.26:
maximum flow
in O(m) time on
restricted extension-
parallel graphs

Theorem 7.27:
maximum in-
tegral flow in
O(m5 ·U2 ·U2) time

−→

Table 7.1: The summarized results for the convex generalized maximum flow problem in
Chapter 7. Implied results are denoted with gray arrows.



8 Conclusion

In this thesis, we investigated the complexity and approximability of generalized net-
work improvement and packing problems. In detail, we studied three extensions of
the traditional maximum flow and minimum cost flow problem and revealed a strong
connection to a novel variant of the bounded knapsack problem. For all of these
problems, we both presented exact algorithms and investigated their approximability
under involvement of a diverse set of graph classes.

As it became evident, extensions to the formulation of the traditional maximum flow
or minimum cost flow problem that seem to be minor at the first glance turn out to
have a significant impact on the complexity and approximability of the corresponding
problems. Established combinatorial algorithms for well-known network flow prob-
lems turn out to be highly specialized to the inherent structure of these problems and
cannot be directly applied to more general variants. The integrality assumption as a
fundamental property of minimum cost flows could not be applied to any of the con-
sidered problems. When it was enforced to hold, it even made the budget-constrained
minimum cost flow problem and the maximum flow problem in generalized process-
ing networks NP-hard to solve and approximate. Moreover, while efficient strongly
polynomial-time algorithms are known both for the minimum cost and the maxi-
mum flow problem, the maximum flow problem in generalized processing networks
turned out to be at least as hard to solve as any packing LP, which makes a strongly
polynomial-time algorithm unlikely to exist. Finally, although the traditional maxi-
mum generalized flow problem can be solved efficiently, the counterpart considered
in this thesis becomes strongly NP-hard to solve and approximate.

Nevertheless, using more sophisticated approaches, we were able to adapt several re-
sults that are valid for the most fundamental network flow problems. In Chapter 4,
we were able to extend the network simplex algorithm for the minimum cost flow
problem to the more general case with an additional budget constraint. In addition,
we were able to reduce the problem BCMCFPR to a sequence of Õ(min{logM,nm})

traditional minimum cost flow computations, so our algorithms benefit from the sig-
nificant amount of research that lead to more and more advanced algorithms for the
minimum cost flow problem in the past decades. Similarly, although the maximum
flow problem becomes much harder to solve in the case of generalized processing net-
works as shown in Chapter 6, we were able to adapt a well-known result for the min-
imum cost flow problem to the case of our problem on series-parallel graphs. For the
discrete versions of the budget-constrained minimum cost flow problem considered in
Chapter 5, we observed an interesting connection of the problem on extension-parallel
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graphs to a novel variant of the bounded knapsack problem. This connection made it
possible to derive efficient approximation algorithms for the budget-constrained min-
imum cost flow problem on extension-parallel graphs although the problem turned
out to be NP-hard to approximate on series-parallel graphs. This observation made
once more obvious that network flow problems — just as knapsack type problems —
are packing problems in their core.

In addition to the above results, we were able to show that one of the most fun-
damental theorems for network flow problems — namely the flow decomposition
theorem — remains its validity for each of the considered problems (although the no-
tion of “basic components” each flow decomposes into needs to be adapted). Hence,
all of the considered problems can be seen as packing problems in which flows on
such basic components are packed subject to a set of capacity constraints. This ob-
servation inspired the development of the generalized fractional packing framework
in Chapter 3 as an integration of Megiddo’s (1979) parametric search technique into
the fractional packing framework of Garg and Koenemann (2007). This generalized
framework leads to fully polynomial-time approximation schemes for a large class of
network flow problems for which the flow decomposition theorem translates into the
containment of each flow in a polyhedral cone, whose dual cone can be separated
efficiently.

As already mentioned in the corresponding chapters, all of the investigated problems
raise several questions for future research. It seems worthwhile to put more effort into
further research on exact and approximation algorithms for the two continuous prob-
lems BCMCFPR and MFGPN. In particular, one might hope to be able to derive new
solution methods for these two problems by adapting algorithms for the traditional
minimum cost and maximum flow problem (as it was done with the network simplex
algorithm for the problem BCMCFPR) and applying more advanced speed-up tech-
niques such as parameter scaling or the usage of sophisticated data structures like
dynamic trees. For both problem, it would be fruitful to compare the empirical per-
formance of the presented combinatorial algorithms to their non-combinatorial coun-
terpart. For the three NP-complete problems BCMCFPN, BCMCFPB, and CGMFP, it
may be reasonable to develop more advanced approaches in order to speed up the
existing algorithms and to identify efficiently solvable and approximable special cases
that are of importance in practice.
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Glossary

Notation

R set of real numbers

R>0 set of non-negative real numbers

R>0 set of positive real numbers

Q set of rational numbers

Q>0 set of non-negative rational numbers

Q>0 set of positive rational numbers

Z set of integral numbers

N set of natural numbers (without zero)

N>0 set of natural numbers (including zero)

∅ empty set

A ⊂ B A is a proper subset of B

A ⊆ B A is a subset of B (so A ⊂ B or A = B)

A∩B intersection of A and B

A∪B union of A and B

|A| cardinality of A

g(n) ∈ O(f(n)) g grows at most as fast as f

g(n) ∈ Õ(f(n)) g grows at most as fast as f (up to poly-logarithmic factors)

g(n) ∈ o(f(n)) g grows slower than f

g(n) ∈ Ω(f(n)) g grows at least as fast as f

g(n) ∈ Θ(f(n)) g grows exactly as fast as f

logb logarithm to the base b

ln natural logarithm (base e)

sgn sign function

Aij entry in i-th row and j-th column of matrix A

Ai· i-th row vector of matrix A

A·j j-th column vector of matrix A
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xe flow on edge e ∈ E
δ+(v) set of outgoing edges of node v ∈ V
δ−(v) set of ingoing edges of node v ∈ V
E(v,w) set of edges between nodes v,w ∈ V
val(x) flow value of flow x

excessx(v) excess at node v ∈ V in flow x

ce cost of edge e ∈ E
ue upper capacity of edge e ∈ E
be usage fee/upgrade cost of edge e ∈ E
γe gain factor of edge e ∈ E
αe flow ratio of edge e ∈ E
ge(·) outflow function of edge e ∈ E

C largest absolute value of an edge cost (in statements about time com-
plexities)

U largest capacity of an edge (in statements about time complexities)

B largest usage fee/upgrade cost of an edge (in statements about time
complexities)

M maximum of C, U, B, and m

SP(m,n,C) running time of the fastest shortest path algorithm

SP(m,n) running time of the fastest strongly polynomial-time shortest path
algorithm

MF(m,n,U) running time of the fastest maximum flow algorithm

MF(m,n) running time of the fastest strongly polynomial-time maximum flow
algorithm

MCF(m,n,C,U) running time of the fastest minimum cost flow algorithm

MCF(m,n) running time of the fastest strongly polynomial-time maximum flow
algorithm
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Acronyms

GPF generalized packing framework p. 26

BCMCFPR continuous budget-constrained minimum cost flow problem p. 42

BCMCFPN integral budget-constrained minimum cost flow problem p. 80

BCMCFPB binary budget-constrained minimum cost flow problem p. 80

MFGPN maximum flow problem in generalized processing networks p. 121

CGMFP convex generalized maximum flow problem p. 158



Index

abundant
∼ component, 68

∼ edge, 68

∼ subgraph, 68

acyclic graph, 10

adjacency-list representation, 12

adjacent edge, 9

adjacent node, 9

all-pairs shortest path problem, 13

ancestor, 10

apex, 56

approximation algorithm, 17

approximation scheme
fully polynomial-time ∼, 17

k-criteria ∼, 17

polynomial-time ∼, 17

augmenting flow distribution scheme, 135

backward edge, 10, 13

basic
∼ feasible flow, 46

∼ flow distribution scheme, 122

partial augmenting ∼, 136

∼ solution, 46

basis
∼ structure, 46, 175

strongly feasible ∼, 54

basis structure
feasible ∼, 46

strongly feasible ∼, 55

binary
∼ bounded knapsack problem with

laminar cardinality constraints,
112

∼ encoding, 6

∼ tree, 10

bipartite graph, 10

blocking edge, 50

Blum-Shub-Smale model, 7

bounded knapsack problem with lami-
nar cardinality constraints, 89

binary ∼, 112

bounding constraint, 90

breakpoint of edge, 143

BSS model, 7

budget, 42

budget-constrained minimum cost flow,
42

callback function, 20

capacity, 12

edge ∼, 42, 120, 157

lower ∼, 12

upgrade ∼, 80

upper ∼, 12

capacity constraint
dynamic ∼, 120

static ∼, 120

cardinality constraint, 90

certificate, 8, 33

characteristic edge, 91

Charnes-Cooper transformation, 40

child node, 10

circuit, 10

∼ length, 10

undirected ∼, 10

circulation, minimum cost ∼, 15

component
abundant ∼, 68

connected ∼, 10

strongly connected ∼, 10

composition
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parallel ∼, 11

series ∼, 11

connected
∼ component, 10

∼ graph, 10

constraint
bounding ∼, 90

cardinality ∼, 90

knapsack ∼, 90

convex generalized
∼ flow, 158

∼ preflow, 157

∼ pseudoflow, 157

cost
edge ∼, 15, 42

flow ∼, 15

reduced ∼, 48

upgrade ∼, 80

cut, 10

cycle, 10

flow absorbing ∼, 163

flow conserving ∼, 163

flow generating ∼, 163

simple ∼, 10

undirected ∼, 10

cycling, 45

dead edge, 137

decision oracle, 20

decision problem, 7

NP-complete ∼, 8

strongly ∼, 8

weakly ∼, 8

NP-hard ∼, 8

time complexity of ∼, 7

decomposition tree, 11

degenerate
∼ edge, 51

∼ simplex pivot, 49, 51

deterministic Turing machine, 8

dominated point, 105

dynamic capacity constraint, 120

ε-approximate pareto frontier, 17, 100

edge, 9

abundant ∼, 68

adjacent ∼, 9

backward ∼, 10, 13

blocking ∼, 50

breakpoint of ∼, 143

∼ capacity, 42, 120, 157

characteristic ∼, 91

∼ cost, 15, 42

dead ∼, 137

degenerate ∼, 51

efficient ∼, 62

entering ∼, 49

forward ∼, 10, 13

free ∼, 47

∼ inflow, 157

ingoing ∼, 9

leaving ∼, 49

non-abundant ∼, 68

∼ of type α, 122

∼ of type u, 122

∼ outflow, 157

outgoing ∼, 9

∼ set, 9

efficient
∼ edge, 62

∼ solution, 8

elementary subtraction, 163

empty path, 161

encoding
binary ∼, 6

∼ length, 6

∼ scheme, 6

end node, 9
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entering edge, 49

excess of node, 12, 157

extension-parallel graph, 11

feasible
∼ basis structure, 46

∼ flow, 12

∼ solution set, 8

∼ subtraction, 162

fee, usage ∼, 42

flow, 12, 42, 120, 158

∼ absorbing cycle, 163

basic feasible ∼, 46

∼ conserving cycle, 163

convex generalized ∼, 158

∼ cost, 15

feasible ∼, 12

∼ generating cycle, 163

maximum ∼, 120, 158

∼ on flow distribution scheme, 122

optimal ∼, 42

∼ ratio, 120

∼ value, 12, 42, 120, 158

flow conservation constraint, 12

flow distribution scheme, 122

augmenting ∼, 135

basic ∼, 122

flow on ∼, 122

weight of edge in ∼, 122

forest, 10

forward edge, 10, 13

FPTAS, 17

k-criteria ∼, 17

free edge, 47

full path, 161

fully polynomial-time approximation scheme,
17

k-criteria ∼, 17

function

callback ∼, 20

objective ∼, 8

outflow ∼, 157

quadratic outflow ∼, 158

sign ∼, 6

gain factor, 16

gap problem, 101

graph, 9

acyclic ∼, 10

bipartite ∼, 10

connected ∼, 10

extension-parallel ∼, 11

restricted extension parallel ∼, 188

series-parallel ∼, 11

simple ∼, 9

strongly connected ∼, 10

undirected ∼, 9

imbalance of node, 12

in-degree, 9

in-tree, 10

incident edge and node, 9

inflow
∼ of edge, 157

∼ of node, 157

∼ of path, 157

inflows, set of feasible ∼, 160

ingoing edge, 9

ingoing edges set, 9

inner node, 10

item type, 89

k-criteria
∼ FPTAS, 17

∼ fully polynomial-time approxima-
tion scheme, 17

∼ optimization problem, 8

knapsack constraint, 90

laminar family, 89
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largest subtraction, 162

leaf node, 10

leaving edge, 49

length
∼ of circuit, 10

∼ of cycle, 10

∼ of path, 9, 13

linear parametric value, 19

log-cost RAM, 6

logarithm, 5

lower capacity, 12

machine, Turing ∼, 6

maximization problem, 8

maximum
∼ flow, 120, 158

∼ preflow, 158

maximum flow problem, 12, 13

maximum flow problem in a general-
ized processing network, 120

maximum generalized flow problem, 12,
16

Megiddo’s parametric search technique,
19

minimization problem, 8

minimizing oracle, 27

minimum cost circulation, 15

minimum cost flow problem, 12, 15

minimum ratio
∼ cycle problem, 20

∼ s-t-path, 73

most violated dual constraint, 23

multigraph, 9

network flow problem, 12

network, residual ∼, 12

node, 9

adjacent ∼, 9

child ∼, 10

end ∼, 9

∼ excess, 12, 157

∼ imbalance, 12

∼ inflow, 157

inner ∼, 10

leaf ∼, 10

∼ outflow, 157

parent ∼, 10

∼ potential, 47

root ∼, 10

∼ set, 9

starting ∼, 9

non-abundant edge, 68

non-degenerate
∼ simplex pivot, 51

non-degenerate simplex pivot, 49

non-deterministic Turing machine, 8

NP, 7

NP-complete
∼ decision problem, 8

strongly ∼, 8

weakly ∼, 8

NP-hard
∼ decision problem, 8

∼ optimization problem, 8

strongly ∼, 8

∼ to approximate, 18

weakly ∼, 8

objective
∼ function, 8

∼ space, 8

optimal
∼ flow, 42

∼ solution, 8

optimization problem, 8

k-criteria ∼, 8

NP-hard ∼, 8

strongly ∼, 8

weakly ∼, 8
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time complexity of ∼, 8

oracle, 25

decision ∼, 20

minimizing ∼, 27

separation ∼, 33

sign ∼, 29

out-degree, 9

out-tree, 10

outflow
∼ function, 157

∼ of edge, 157

∼ of node, 157

∼ of path, 157

outflow function
quadratic ∼, 158

outgoing edge, 9

outgoing edges set, 9

P, 7

packing LP, 19

parallel
∼ composition, 11

∼ tree, 182

parametric search technique, 19

parent node, 10

pareto frontier, 9

ε-approximate ∼, 17, 100

partial augmenting basic flow distribu-
tion scheme, 136

path, 9

empty ∼, 161

full ∼, 161

∼ inflow, 157

∼ length, 9, 13

∼ outflow, 157

simple ∼, 9

undirected ∼, 10

path-based formulation, 23

performance guarantee

∼ of approximation algorithm, 17

pivot
degenerate simplex ∼, 51

non-degenerate simplex ∼, 51

simplex ∼, 51

point, dominated ∼, 105

polynomial time
pseudo- , 7

strongly ∼, 7

weakly ∼, 7

polynomial-time
∼ approximation scheme, 17

∼ reducible, 8

∼ reduction, 8

∼ solvability, 7

potential, node ∼, 47

preflow, 12

convex generalized ∼, 157

maximum ∼, 158

preflow corresponding to the basis struc-
ture, 175

problem
decision ∼, 7

gap ∼, 101

maximization ∼, 8

maximum flow ∼, 12, 13

maximum generalized flow ∼, 12, 16

minimization ∼, 8

minimum cost flow ∼, 12, 15

network flow ∼, 12

optimization ∼, 8

shortest path ∼, 12, 13

all-pairs ∼, 13

single-source ∼, 13

transformed ∼, 54

traveling salesman ∼, 168

problem instance, 6

∼ size, 6

profile, upgrade ∼, 80
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pseudo-polynomial time, 7

pseudoflow, 12

convex generalized ∼, 157

PTAS, 17

quadratic outflow function, 158

RAM, 6

log-cost ∼, 6

unit-cost ∼, 6

random access machine model, 6

ratio, flow ∼, 120

reduced cost, 48

reducible, polynomial-time ∼, 8

reduction, polynomial-time ∼, 8

residual network, 12

restricted extension parallel graph, 188

root node, 10

rooted tree, 10

running time, worst case ∼, 7

s-t-cut, 10

separation oracle, 33

series
∼ composition, 11

∼ tree, 182

series-parallel graph, 11

set
edge ∼, 9

feasible solution ∼, 8

node ∼, 9

∼ of feasible inflows, 160

∼ of ingoing edges, 9

∼ of outgoing edges, 9

shortest path problem, 12, 13

all-pairs ∼, 13

single-source ∼, 13

sign
∼ function, 6

∼ oracle, 29

simple
∼ cycle, 10

∼ graph, 9

∼ path, 9

simplex pivot, 49, 51

degenerate ∼, 49

non-degenerate ∼, 49

single-source shortest path problem, 13

sink, 12, 42, 120, 157

size, problem instance ∼, 6

solution
basic ∼, 46

efficient ∼, 8

optimal ∼, 8

solvability, polynomial-time ∼, 7

source, 12, 42, 120, 157

spanning tree, 10

starting node, 9

static capacity constraint, 120

strongly combinatorial algorithm, 20

strongly connected
∼ component, 10

∼ graph, 10

strongly feasible basis structure, 54, 55

strongly NP-complete decision problem,
8

strongly NP-hard optimization problem,
8

strongly polynomial time, 7

structure, basis ∼, 175

subgraph, 9

abundant ∼, 68

∼ induced by edges, 9

∼ induced by nodes, 9

subtraction
elementary ∼, 163

feasible ∼, 162

largest ∼, 162

subtree, 10
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successor, 10

supply of a node, 12

T -cycle, 176

time complexity
∼ of decision problem, 7

∼ of optimization problem, 8

worst case ∼, 7

topological sorting, 10

transformed problem, 54

traveling salesman problem, 168

tree, 10

binary ∼, 10

decomposition ∼, 11

in- ∼, 10

out- ∼, 10

parallel ∼, 182

rooted ∼, 10

series ∼, 182

spanning ∼, 10

Turing machine, 6

deterministic ∼, 8

non-deterministic ∼, 8

type, item ∼, 89

type α edge, 122

type u edge, 122

undirected
∼ circuit, 10

∼ cycle, 10

∼ graph, 9

∼ path, 10

unit-cost
∼ RAM, 6

upgrade
∼ capacity, 80

∼ cost, 80

∼ profile, 80

upper capacity, 12

usage fee, 42

value, flow ∼, 120, 158

weakly NP-complete decision problem,
8

weakly NP-hard optimization problem,
8

weakly polynomial time, 7

weight of edge in flow distribution scheme,
122

worst case
∼ running time, 7

∼ time complexity, 7
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