
122 

9 Evaluation of the Semantic Data Quality Management 
Framework (SDQM) 

 

In this chapter, we evaluate the proposed SDQM approach. The evaluation 

methodology of SDQM is separated into three parts. The first part is concerned with 

the evaluation of precision and recall of SDQM’s data quality monitoring and 

assessment algorithms. The second part evaluates the practical applicability of SDQM 

by applying the framework to three different use cases, namely one business use case 

on material master data of a large organization, one Semantic Web use case with data 

from DBpedia68, and one use case that examines the capability of SDQM to 

automatically identify inconsistent data requirements. In the third part of the evaluation, 

SDQM is compared to a conventional data quality tool. 

 

9.1 Evaluation of Algorithms 
 

9.1.1 Algorithm Evaluation Methodology 
 

In this section, we will apply the notions of recall and precision from the field of 

Information Retrieval to data quality management and use them as indicators for the 

performance of our approach (cf. Batini & Scannapieco, 2006, pp. 125-127; Buckland 

& Gey, 1994; Raghavan et al., 1989). This is based on the idea that essentially our 

algorithms attempt to retrieve all requirement violations. Precision can be defined as 

the degree to which an information retrieval result contains relevant information (cf. 

Buckland & Gey, 1994, p. 12f.). It is measured via the ratio between true positives (TP) 

and the sum of true positives (TP) and false positives (FP) (Batini & Scannapieco, 

2006, p. 126). True positives are thereby instances that are correctly identified to be 

relevant (Batini & Scannapieco, 2006, p. 125f.). False positives are relevant instances 

that were incorrectly identified to be relevant (Batini & Scannapieco, 2006, p. 125f.). In 

our case, true positives are correctly identified data requirement violations and false 

positives are requirement violations that have not been identified. 

                                            
68 http://dbpedia.org  

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_9, © Springer Fachmedien Wiesbaden 2016



123 

Hence, precision in our case measures how many of the identified data requirement 

violations have been identified correctly, i.e. really violate a data requirement (Batini & 

Scannapieco, 2006, p. 126). 

 

Recall is a measure that represents the ratio between the retrieved relevant instances 

and all relevant instances (cf. Buckland & Gey, 1994, p. 12). In our case, the equivalent 

is the number of correctly identified requirement violations (TP) and all requirement 

violations including false negatives (FN), i.e. requirement violations that have not been 

identified by the algorithms. Recall, therefore, measures how many data requirement 

violations have been identified by the algorithm compared to the whole population of 

data requirements violations (cf. Batini & Scannapieco, 2006, pp. 125-127).  

 

Since our algorithms attempt to identify all data quality problems related to a certain 

data requirement, the scores for precision and recall should be equal to one in the ideal 

case. 

 

9.1.2 Application Procedure 
 

In order to identify the required variables correctly, we created a small test data set 

with product and location data that contains all instance-related single-source data 

quality problem types as listed in table 5 of section 3.6.1. Additionally, we created 49 

self-defined data requirements for the data, such as “Every instance of class 

Location must have a ZIP code.” The full set of rules that were used to evaluate 

SDQM’s algorithms can be found in appendix B. The full test data set including the 

reference data that was used in the evaluation can be found in appendix C. All 

requirement violations in the test data set were known, so that we were able to exactly 

identify all false positives and false negatives. In sum, we tested all 64 algorithms of 

SDQM for data quality monitoring and data quality assessment. 

 



124 

9.1.3 Results 
 

As expected all tested algorithms returned perfect results for precision and recall. 

These perfect results are necessary before we apply the algorithms to real data, in 

order to make sure that they are able to identify all types of data quality problems. It 

must be stressed that the queries related to “Functional Dependency Reference Rules” 

return instances that miss one or more dependent values or properties as requirement 

violations, i.e. true positives, although the correct value may be located in a different 

attribute. E.g. the record with LOCID equal to 3 with city value “Nantes” and state value 

“France” returned as true positive since the correct dependent value “France” was not 

located in the property country, but located in the wrong property state. A full list of the 

algorithm evaluation results of SDQM can be found in appendices D and E. In 

summary, the evaluation results show that SDQM’s algorithms are able to identify data 

requirement violations and assess the state of data quality correctly. 

 

9.2 Use Case 1: Evaluation of Material Master Data  
 

The first use case deals with a real business scenario that is concerned with the quality 

of master data of an information system. According to ISO 8000-102:2009 master data 

is defined as “data held by an organization that describes the entities that are both 

independent and fundamental for that organization and that it needs to reference in 

order to perform its transactions” (ISO, 2009). Hence, correct and complete master 

data is essential for the execution of business processes and, therefore, the 

organizational success. This first use case shall illustrate how the SDQM framework 

can be applied for master data quality management in real-world settings. We thereby 

evaluate SDQM especially regarding the following criteria: 

- Ability of SDQM to represent the organization’s data requirements 

- ability to process the organization’s data requirements to create data quality 

reports, and 

- performance of SDQM’s data quality reports 

 

  



125 

9.2.1 Scenario 
 

A large public organization uses an ERP system to support its logistic processes. The 

system contains material master data as a source for process-relevant information that 

is used for process execution. The system uses the material master data to automate 

tasks such as the placement of purchase orders, storage management, or to inform 

people, e.g. about appropriate handling of materials. In order to avoid process failures, 

it is necessary to assure that the master data provided by the ERP system is of 

sufficient quality. Therefore, the organization seeks for a system that identifies data 

quality problems, i.e. instances with data that violate the organization’s requirements, 

and that allows the quick evaluation of the overall quality state of data items. 

 

9.2.2 Setup and Application Procedure of SDQM 
 

The SDQM framework is used in the context of the above scenario to (1) represent 

data requirements, (2) identify requirement violations, and (3) evaluate the quality state 

of data items of the data source. Therefore, SDQM was set up with the data of the 

organization on a local server as explained in section 8.1. The server used is an AMD 

Athlon II X4 630 Processor 2.80 GHz with 8 GB RAM on a Windows 7 64bit operating 

system. The Fuseki server thereby received 4,600 megabyte of the RAM and the 

SDQMgr 1,536 megabyte of RAM. The capturing of data requirements and the 

execution of data quality measurement reports was performed as described in section 

8.2. The organization provided 19 data requirements for their general material master 

data. The source data was stored in single table of a relational database. We converted 

the data into an N-Triples file via D2RQ69 and imported the N-Triples file into the 

triplestore via the user interface of the Fuseki server70. In the relational database, the 

source table had 3.3 million records. Together with the data requirements the 

triplestore contained 53,077,730 triples. Before executing SDQM’s reports, the 

hardware setup was optimized by comparing the execution time of a simple SPARQL 

query that counts all triples of the Jena TDB published by the Fuseki server. In the 

mentioned configuration, the COUNT query performed best and executed within 

41,713 milliseconds. Table 20 shows the rules that have been collected from experts 

                                            
69 http://d2rq.org/ (Last accessed on 30.08.2014) 
70 http://jena.apache.org/documentation/serving_data/ (Last accessed on 30.08.2014) 



126 

of the organization and were applied on their material data to identify data quality 

problems. 

Table 20: Data requirements that were collected and applied for use case 171 

Report Rule 

Missing values and 
properties  
(5 property requirements) 

The following fields must have a value for all 
materials: 

- Lab/Office 
- Material group 
- Base unit of measure 
- Manufacturer part number 
- Material type 

Conditional missing values 
and properties  
(1 requirement) 

If the material type is set for non-valuated 
materials, then the field “Installation type” must 
always have a value. 

 

Syntax violations  
(1 property requirement) 

The field “Internal material number” must always 
have 9 digits. 

Illegal values  
(Legal value rules) 
(6 property requirements) 

The following fields can only obtain specific values: 

- Installation type 
- External material group 
- Material condition management 
- Serial number profile 
- Lab/Office 
- Material type 

Out of range values 
(1 property requirement) 

The field “Standard price” must not be lower than 
0.02 € and not higher than 999,999,999.00 €. 

Duplicate instances  
(3 equal values) 
(1 duplicate instance 
requirement) 

If the material text, the manufacturer part number 
and the standard price have the same value for 
two or more instances, then the instances are 
potential duplicates. 

Functional dependent 
value rule 
(4 requirements) 

Furniture materials must have a specific installation 
type value. 

Certain material types are always in ownership of a 
specific office. 

Materials with a specific external material group 
are always in ownership of a specific office. 

Materials with a certain installation type must 
always have a price greater than 4,999.00 €. 

                                            
71 The rules are described on an abstract level in order to assure the anonymity of the organization. 



127 

9.2.3 Results and Findings 
 

As shown in table 20, the data requirements delivered by the organization covered 

syntax rules, legal value rules, duplicate instance rules, property completeness rules, 

legal value range rules, and functional dependency rules. The standard forms of 

SDQM’s data requirements wiki were expressive enough to cover all of the 

organization’s data requirements. All data requirements were represented in the data 

requirements wiki and could be processed by the SDQMgr to generate reports about 

requirements violations and reports that reflect the overall quality state of the 

organization’s data items. Figure 47 shows the data quality monitoring report with 

instances that violate a legal value range requirement of a certain property. 

 

Figure 47: Report with legal value range violations 

Figure 48 shows the accordant data quality assessment report which contains a score 

about the overall semantic accuracy of the property. The score has been computed 

based on the legal value range requirement which contains an upper and lower legal 

value for the property. 



128 

 

Figure 48: Report with semantic accuracy score based on value range requirement 

The overall performance of the reports that were executed with the SDQMgr showed 

mostly sufficient results as shown in table 21. One exception was discovered during 

the execution of the report that indicates duplicate instances. The accordant query of 

SDQMgr was designed to compare certain property values of each instance with each 

other. In our use case, duplicate instances should be identified in a class with roughly 

3,000,000 instances. This resulted in (3,000,000 – 1)2 / 2 comparisons which was not 

processable in a sufficient time with the current setup. However, the data quality 

assessment reports showed also sufficient results regarding their performance as 

illustrated in table 22. 

  



129 

Table 21: Evaluation results of SDQMgr's data quality monitoring reports (use case 1) 

Report Result Execution Time  
(in min:sec.ms) 

Missing Values and 
Properties  

(5 requirements) 
311,821 rows 10:02.901 

Conditional Missing Values 
and Properties  

(1 requirement) 
56 rows 01:43.038 

Syntax violations  

(1 requirement) 
7 rows 03:54.431 

Illegal Values  

(Legal Value Rules) 

(6 requirements) 

23,724 rows 18:35.353 

Out of Range Values 

(1 requirement) 
414,444 rows 02:00.738 

Duplicate Instances  

(3 Equal Values) 

(1 duplicate instance 
requirement) 

Did not finish Did not finish 

Functional Dependent 
Value Rule 

(4 requirements) 

71 rows 02:02.784 

 

  



130 

Table 22: Evaluation results of SDQMgr's data quality assessment reports (use case 1) 

Report Result Execution Time  
(in min:sec.ms) 

Completeness 

(5 requirements) 

Property 1: 100 % 

Property 2: 99,05 % 

Property 3: 93,05 % 

Property 4: 97,53 % 

Property 5: 100 % 

15:59.841 

Conditional Completeness 

(1 requirement) 

Property 6: 99,93 % 01:50.137 

Syntactic Accuracy  

(Syntax Rules) 

(1 requirement) 

Property 7: 99,99 % 
02:08.727 

Syntactic Accuracy  

(Legal Value Rules) 

(6 requirements) 

Property 8: 99,95 % 

Property 9: 100 % 

Property 6: 99,99 % 

Property 4: 99,97 % 

Property 10: 99,28 % 

Property 5: 100 % 

27:18.928 

Semantic Accuracy  

(Legal Value Range Rules) 

(1 requirement) 

Property 11: 86,20 % 
03:04.716 

Semantic Accuracy FDV  

(1 Condition) 

(4 requirements) 

FDV 1: 100 % 

FDV 2: 100 % 

FDV 3: 99,96 % 

FDV 4: 99,77 % 

02:54.406 

 

In summary, the evaluation results show that SDQM is basically capable to be used 

for quality management of master data in real-world business settings. However, there 

is room for improvement in several areas. In particular, future work on SDQM should 

regard the following options to increase performance: 



131 

- Jena’s in-memory technology could be used to load the whole Jena TDB of 

SDQM into the computer’s main memory before execution of SDQMgr’s reports. 

- The execution of queries and generation of data quality reports could be 

decoupled from each other. E.g. the queries could be executed at night and the 

reports would only access a cached query result. 

- The CPU and main memory capacity could be extended to provide more 

resources for SDQM’s applications. 

- An authorization system could be added that requires user’s login before the 

execution of data quality reports to avoid inappropriate use. 

Moreover, SDQM’s mechanisms for representing and processing duplicate instance 

requirements should be optimized to be applicable to larger data sets, e.g. by adapting 

duplicate detection algorithms as proposed in (Monge & Elkan, 1997) or (Herschel et 

al., 2011). For example the performance of SDQM’s duplicate checking algorithm can 

be improved by adjusting the algorithm to search for duplicates only in a sorted 

neighborhood (Bitton & DeWitt, 1983) or by building clusters based on the transitivity 

of the “isDuplicateOf” relationship and thereby avoiding unnecessary comparisons 

(Monge & Elkan, 1997). 

Despite the successful application of SDQM in this use case, it must be stressed that 

this is only a first step to prove SDQM’s practical applicability. A longer practical 

application of SDQM in a realistic business setting would be needed to evaluate the 

strengths and weaknesses of SDQM with higher precision. For example the amount of 

data requirements will most likely increase over time and easily exceed the number of 

data requirements as applied in this use case. Furthermore, more complex functional 

dependencies may exist that may not be represented with the standard forms of 

SDQM. 

 

  



132 

9.3 Use Case 2: Evaluation of Data from DBpedia 
 

The second use case attempts to investigate the applicability of SDQM for tasks related 

to data quality in Semantic Web scenarios. As for the evaluation, we chose DBpedia 

(Bizer, Lehmann, et al., 2009), a publicly available Semantic Web data source that 

contains structured information from Wikipedia. As DBpedia data stems from the open 

environment of Wikipedia where anyone can edit content, it raises new challenges for 

a data quality management tool especially regarding the heterogeneity of data and 

data requirements. 

 

9.3.1 Scenario 
 

Wikipedia is a public encyclopedia that can be edited by anyone who has access to 

the internet (cf. Voss, 2005, p. 1). As of June 2012 the English Wikipedia contains over 

3.9 million articles about persons, locations, movies, species, and many other things72. 

The DBpedia project extracts the structured part of Wikipedia’s articles regularly and 

publishes the data in the Semantic Web (cf. Kobilarov, Bizer, et al., 2009, p. 35f.) where 

it can be used by anyone for multiple different purposes. Due to the amount of data, it 

is not feasible to identify data quality problems manually. Thus, means are required to 

efficiently identify data quality problems and to evaluate the quality state of DBpedia’s 

data items for the following purposes:  

- Administrators of DBpedia and Wikipedia may want to efficiently identify 

vandalism caused by the openness of Wikipedia. 

- Data consumers may want to evaluate the quality state of certain parts of 

DBpedia before relying on it. 

In the following, we evaluate whether SDQM may help in these tasks. 

 

  

                                            
72 http://en.wikipedia.org/wiki/Main_Page (Last accessed on June 10th 2012) 



133 

9.3.2 Specialties of Semantic Web Scenarios 
 

Data quality tasks in open environments such as the Semantic Web underlie different 

conditions than data quality management tasks of information systems in closed 

settings. Since data can be edited and used by anyone, the degree of heterogeneity is 

much larger in open settings than in closed settings (cf. Batini & Scannapieco, 2006, 

p. 15; Bizer, 2007, p. 44). Heterogeneity thereby does not only reflect on data, but also 

on data requirements due to different subjective preferences and different use cases, 

in which the data is used (Bizer & Cyganiak, 2009, p. 2). Hence, the definition of the 

characteristics of high quality data may be much more contrary in open settings, since 

it is more difficult to achieve agreement in a large and diverse environment such as the 

Web. In consequence, the goal of data quality management tasks is usually not 

primarily the correction of data according to specific requirements of single users. A 

consensual agreement would have to be first established about a data requirement 

before requirement violations can be corrected in the data source. Due to 

heterogeneous world views and ways of expression, it is not realistic to satisfy 

everyone’s requirements. 

 

9.3.3 Setup and Application Procedure 
 

First of all, we downloaded the DBpedia ontology, the ontology infobox types, the 

property data including the specific properties, and the titles data which are all available 

at http://dbpedia.org/Downloads37. The downloaded data sets were extracted from the 

English Wikipedia in July 22nd 2011 and contain 35,823,373 million triples in summary. 

The data was loaded into SDQM’s triplestore. We thereby used the same hardware 

configuration as in use case one. We also again used the application procedure as 

describe in figure 46 to create the requirement metadata for the data quality 

management tasks. Since (to the best of our knowledge) there is currently no 

community that establishes agreement among data requirements in Web 

environments such as DBpedia, we created our own subjective data requirements. It 

must be stressed that, therefore, the ability of SDQM to represent data requirements 

cannot be fully evaluated. However, this second use case rather focuses on collecting 

first evidence for the applicability of SDQM in Semantic Web environments. Table 23 

lists the assumed data requirements for this use case.  



134 

Table 23: Assumed data requirements of use case 2 

No. Requirement Description 

1 The property http://dbpedia.org/ontology/gender can only obtain the 

values http://dbpedia.org/resource/Female and 

http://dbpedia.org/resource/Male. 

2 The property http://dbpedia.org/ontology/populationTotal can only 

obtain values between 0 and 7,000,000,000. 

3 The property http://dbpedia.org/ontology/populationTotal can only 

obtain numeric values. 

4 The property http://dbpedia.org/ontology/populationTotal should exist 

in all instances of the class 

http://dbpedia.org/ontology/PopulatedPlace. 

5 The property http://www.w3.org/2003/01/geo/wgs84_pos#long must 

exist in all instances of class http://dbpedia.org/ontology/Place. 

6 The property http://www.w3.org/2003/01/geo/wgs84_pos#long must 

have a specific syntax (Regular expression: “^(\-?\d+(\.\d+)?)”). 

7 The property http://www.w3.org/2003/01/geo/wgs84_pos#lat must 

exist in all instances of class http://dbpedia.org/ontology/Place. 

8 The property http://www.w3.org/2003/01/geo/wgs84_pos#lat must 

have a specific syntax (Regular expression: “^(\-?\d+(\.\d+)?)”). 

9 Country – Capital combinations in DBpedia must match the country 

capital combinations of Geonames. 

 

We focused on data requirements relevant for data usage of data from the DBpedia 

classes dbo:Place73, dbo:PopulatedPlace74, dbo:Country75, and 

dbo:Person76. It must be stressed that the data requirements as listed above are the 

                                            
73 http://dbpedia.org/ontology/Place 
74 http://dbpedia.org/ontology/PopulatedPlace 
75 http://dbpedia.org/ontology/Country 
76 http://dbpedia.org/ontology/Person 



135 

subjective requirements of the author and do not necessarily represent a commonly 

accepted understanding of high-quality data in DBpedia. 

 

9.3.4 Results and Findings 
 

Our analyses identified several requirement violations. E.g. requirement no. 1 revealed 

that there are eight other values for the property http://dbpedia.org/ontology/gender in 

instances of the class http://dbpedia.org/ontology/Person besides “Male” and “Female” 

in the English Wikipedia as of July 2011, namely “Man”, “Nerd”, “Cylon (Battlestar 

Galactica)”, “Elves (Shannara)”, “Puppet”, “Sex”, and “Pantomime horse”. Figure 49 

shows the results as identified by the SDQMgr. 

 

Figure 49: Result of legal value requirement analysis in DBpedia 

An additional random check confirmed the usage of these values in the English version 

of Wikipedia. Figure 50 reveals that the Wikipedia page of the television character 

“Janet Wood” has been subject to assignment of the value “Nerd” as gender. In the 

meanwhile the value for gender has been changed by the Wikipedia community to 

“Female”. This reflects agreement to the author’s understanding of legal values for the 

properties representing the gender of a person. 



136 

 

Figure 50: Infobox source code of Wikipedia page “Janet Wood” as of June 27, 2011 

However, the analysis results contain other requirement violations that point to less 

agreement about the correct gender value. Figure 51 shows a page about the robot 

“Cy” from the television series “Galactica 1980” which indicates the Gender “Cylon” for 

“Cy” until today77. 

 

Figure 51: Wikipedia page "Cy (Cyclon)” as of June 10, 2012 

To the best of our knowledge, there is no commonly accepted truth about the real 

gender of Cy. Therefore, the gender “Cylon” may be seen as valid. However, from our 

subjective perspective it is not harmful to regard “Cylon” as invalid value for 

representation of a gender. But most likely we are not able to change the value for “Cy” 

permanently to “Male” in Wikipedia without convincing the community. This example 

                                            
77 Today in this context equals June 10th 2012. 



137 

emphasizes the special problems related to data quality management in open 

environments such as the Web. 

Moreover, we were able to detect obviously incorrect values for the property 

http://dbpedia.org/ontology/populationTotal. We found 47 instances of the class 

http://dbpedia.org/ontology/Place which contain a population value greater than 

7,000,000,000. Figure 52 shows SDQMgr’s report on out of range violations according 

to our data requirement No.2 of table 23. 

 

Figure 52: Out of range values for property “population” in DBpedia 

The highlighted row in the result table shows that “Downsville Louisiana” has a 

population value of “100,000,000,000”. The accordant Wikipedia page from June 19th 

2011 confirms this result as illustrated in figure 53. 



138 

 

Figure 53: Wikipedia page "Downsville, Louisiana" as of June 19th 2011 

In the meanwhile, the population value for Downsville (Louisiana) has been corrected 

to 141 inhabitants78. The syntactic requirements for the property 

http://www.w3.org/2003/01/geo/wgs84_pos#long and the property 

http://www.w3.org/2003/01/geo/wgs84_pos#lat did not return any violations in the 

SDQMgr.  

 

Figure 54: Data quality assessment report displaying syntactic accuracy results 

                                            
78 http://en.wikipedia.org/wiki/Downsville,_Louisiana (Last accessed on June 10th 2011) 



139 

Moreover, we generated data quality assessment reports to each of the requirements 

which are shown in table 24. 

Table 24: SDQMgr's data quality assessment results on DBpedia 

Report Result Execution Time  
(min:sec.ms) 

Completeness 

(Requirement no. 4, 

5, 7) 

Population total: 61,21 % 

Latitude: 65,79 % 

Longitude: 65,79 %  

01:27.221 

Syntactic Accuracy 

(syntax rules) 

(Requirement no. 3, 

6, 8) 

Population total: 100 % 

Latitude: 100 % 

Longitude: 100 % 
01:02.057 

Syntactic Accuracy 

(legal value rules) 

(Requirement no. 1) 

Gender: 99,99 % 

00:47.565 

Semantic Accuracy 

(out of range rules) 

(Requirement no. 2) 

Population: 99,98 %  

00:14.773 

Semantic Accuracy 

(functional 

dependency 

reference rule) 

(Requirement no. 9) 

Country Capital Combinations 

(Variant 1: Class Country): 

0,07 % 

Country Capital Combinations 

(Variant 2: Class 

CurrentCountry): 46,22 % 

00:06.100 

 

 

00:01.701 

 

It must be stressed that the interpretation of the above results must be performed very 

carefully. For example the analysis results show that DBpedia and, therefore, most 

likely also Wikipedia provides data on population, latitude, and longitude for almost two 

thirds of the documented places or populated places respectively. This does not mean 



140 

that it makes sense to provide such data for all of Wikipedia’s places and populated 

places, since these high level classes may combine different concepts. For example, 

the data quality monitoring report with missing latitude and longitude values contains 

a lot of rivers which do not have specific latitude and longitude values. Moreover, we 

identified almost perfect results regarding our syntactic requirements except for the 

gender values that were mentioned earlier. The semantic accuracy of the population 

values that were tested with help of a legal value range (requirement no. 2) is also on 

a very high level. The 0.02 % requirement violations are all caused by population 

values beyond 7,000,000,000 which have partly already been removed in Wikipedia 

as shown earlier. Finally, we tested country related data of DBpedia against 

Geonames79, a publicly available data source for geographic data. We thereby 

downloaded the country info data of Geonames80 as of June10th 2012 which contains 

information about 252 countries, such as population, capital, currency, format of postal 

codes, etc. The Geonames data was converted to be matched against data from 

DBpedia’s dbo:Country class as trusted reference to check valid combinations of 

country names and its capital cities. The first run showed insufficient results as only 

0.07 % of DBpedia’s country data matched with the data in Geonames. One of the 

major reasons for this poor result was the fact that DBpedia represents current and 

historic countries while Geonames only represents current countries. Thus, we 

adjusted our data requirement by creating a new class CurrentCountries that 

contains all instances of DBpedia without a property value for dbpedia-

owl:dissolutionDate or dbpedia-owl:dissolutionYear. In consequence, 

the semantic accuracy score raised up to 46.22 %. The remaining requirement 

violations are in majority caused by different naming, e.g. “Bogota” versus “Bogotá” or 

“China” versus “People’s Republic of China”. But besides these heterogeneities, there 

are also real errors. For example, DBpedia contains a triple that says that “La Paz” is 

the capital of “Bolivia”. In fact, “Sucre” is the constitutional capital of Bolivia, while “La 

Paz” is only the seat of government. However, in cases where the seat of government 

is also regarded as capital, the combination “La Paz” and “Bolivia” would have to be 

added to the trusted reference.  

In summary, SDQM indicates that it can be used in Semantic Web environments, such 

as DBpedia, (1) to spot potential data quality problems according to one’s requirements 

                                            
79 http://www.geonames.org (Last accessed on June 2nd 2011) 
80 Available at http://download.geonames.org/export/dump/countryInfo.txt (Last accessed on June 10th 
2011) 



141 

and (2) serve data consumers to quickly analyze a Semantic Web data source 

regarding their own quality perception. Moreover, the performance of SDQM showed 

promising results. But we also discovered several problems which have to be 

considered when using SDQM in Semantic Web settings: 

- Agreement about data requirements is much harder to achieve in Web 

environments than in closed settings due to a greater heterogeneity of world 

views. 

- Heterogeneity and different world views may lead to inconsistent data 

requirements. E.g. one may define “Cylon” as valid value for gender, while 

another person defines “Cylon” as invalid value for gender. 

- Correction of an open data source, such as Wikipedia, usually requires 

agreement from the community to persist. 

- Heterogeneity makes the definition of data requirements more complicated, 

since it raises the amount of acceptable states of values.  

- The classes of the DBpedia ontology only barely distinguish between real 

entities and fictitious entities. This again complicates the definition of data 

requirements. For example the robot “Cy” from the television series “Battlestar 

Galactica” is considered as a person in DBpedia and, therefore, should have a 

gender. 

- The classes of the DBpedia ontology do not distinguish between historic and 

currently existing entities. For example the German Democratic Republic is 

member of the class “Populated Place” in DBpedia. 

As part of future work, SDQM could be deployed to the Web to generate commonly 

accepted data requirements by the Semantic Web community. Therefore, it can 

efficiently support data quality management on Web-scale and the improvement of 

Semantic Web data. 

 

9.4 Use Case 3: Consistency Checks Among Data Requirements 
 

In this use case, we intend to demonstrate how SDQM facilitates the automated 

identification of inconsistent data requirements.  

 



142 

9.4.1 Scenario 
 

A large organization that performs data quality management has many data 

requirements which are used to improve data quality. The organization uses SDQM. 

The organization’s data requirements have been previously represented via the data 

requirements wiki of SDQM. The organization seeks for an efficient automatic way to 

identify conflicting data requirements. 

 

9.4.2 Application Procedure 
 

In SDQM, all data requirements are represented in a common structure that is provided 

by the DQM vocabulary. The data requirements are themselves represented as data 

in RDF format. Therefore, we can use standard SPARQL queries to manage the quality 

of data requirements. In general, there are two different types of inconsistencies 

between data requirements, namely (1) duplicate, but consistent requirements, and (2) 

contradicting requirements (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 8). Duplicate 

requirements typically refer to the same schema elements, i.e. classes and properties, 

which are tested for requirement violations. Contradicting requirements are two or 

more requirements about the same schema elements that oppose each other and, 

therefore, cannot be applied at the same time. In the following, we will provide some 

example queries that are based on fictitious data requirements. The data requirements 

are based on the test data with information about suppliers. The examples are 

separated according to the different types of data requirements, since they require 

different application procedures. 

SDQM’s property requirements can in general not become inconsistent due to the 

enforced naming convention of wiki pages in the data requirements wiki. By convention 

the property requirement title in the wiki is concatenated from the class and property 

name. Hence, if the tested class and property is only registered under one name in the 

data requirements wiki, it will not be possible to create duplicate property requirements. 

However, the naming convention may be modified to create duplicate requirements for 

the same property if the use case required capturing heterogeneous and potentially 

inconsistent requirements. In such cases, the same property may be associated to 

multiple different requirements. Due to the annotation of each requirement with the 



143 

“testedClass” and “testedProperty” properties and their representation in RDF, 

it is possible to identify duplicate requirements and duplicate inconsistent requirements 

with standard SPARQL queries. To prove this, we created three property requirements 

for the property http://www.example.org/suppliers#supplierID. The first property 

requirement “PR Organization FOO Supplier ID” defines that unique values are 

required for this property in all instances of the class 

http://www.w3.org/2006/vcard/ns#Organization. The second property requirement “PR 

Organization EXAMPLE Supplier ID” refers to the same class and property, but does 

not define that unique values are required. Thus, the property requirement “PR 

Organization EXAMPLE Supplier ID” is not consistent with the original requirement 

“PR Organization FOO Supplier ID”. The third property requirement “PR Organization 

Supplier ID” consistently defines that unique values are required for this property in all 

instances of the class http://www.w3.org/2006/vcard/ns#Organization. All of the three 

requirements make statements about the same tested class and property, but use 

different representations of the property http://www.example.org/suppliers#supplierID, 

since the same property has been registered with three different names in the data 

requirements wiki. Figure 55 shows a generic SPARQL query that identifies duplicate 

property requirements and its result based on our test data. 

 

Figure 55: SPARQL query and result displaying duplicate property requirements 

In general, it is possible to identify only such duplicate requirements that are 

inconsistent with each other. Figure 56 shows a SPARQL query and its result that can 

be used to identify inconsistent unique value rules, in case the requirements have been 

represented in the DQM vocabulary. 



144 

 

Figure 56: SPARQL query for identification of inconsistent property requirements 

 

9.4.3 Summary 
 

The above queries are domain independent and can be reused to identify 

inconsistencies among unique value requirements in a data quality management 

system that represents its data requirements with the DQM vocabulary. Therefore, 

data quality management with SDQM is especially useful in large environments with 

distributed knowledge where it is important to identify inconsistent data requirements 

that have been created and maintained by several different individuals. However, the 

demonstrated duplicate and consistency checks are only first steps and do not prove 

that every data requirement type can be checked for consistency. For example, 

consistency checks among conditional requirements, timeliness requirements, and 

functional dependency reference rules have not been evaluated, yet. Moreover, as 

soon as reasoning is enabled, the identification of duplicates and conflicts may become 

more complex. Further research is needed in this area, to provide reliable information 

about the scope of consistency checks that is currently possible with SDQM. But the 

current results based on this evaluation are a promising first approach that may 

probably be extendable to other data requirement types. 

 

  



145 

9.5 Comparison with Talend OS for Data Quality 
 

In this section, we compare SDQM with Talend Open Studio for Data Quality (Talend 

OS for Data Quality), a conventional data quality software tool from the software 

company Talend81. Talend OS for Data Quality can be used for analyzing the quality 

of data. It is open-source software that is freely available for download. The comparison 

is focused on the following issues: 

- Representation of data requirements 

- consistency checks among data requirements 

- data quality monitoring and assessment reporting, and 

- performance of data quality analyses 

It must be stressed that Talend OS for Data Quality offers many more features, e.g. in 

the area of data profiling, that are beyond the scope of SDQM and, therefore, not 

subject of this comparison. 

 

9.5.1 Representation and Management of Data Requirements  
 

In Talend OS for Data Quality, data requirements can be represented with so called 

“SQL business rules”. In order to represent a data requirement with Talend OS for Data 

Quality, the following three high-level steps are required (cf. Talend, 2012, p. 140ff.): 

(1) Create SQL business rule 

(2) Create new analysis 

(3) Run analysis 

As the name implies, SQL business rules are based on the relational query language 

SQL. The data requirement is thereby represented in SQL code which is later 

automatically embedded into the WHERE clause of an SQL query. Figure 57 shows 

an SQL business rule for the identification of missing values in the attribute “city”. 

                                            
81 http://www.talend.com (Last accessed on June 2nd 2012) 



146 

 

Figure 57: SQL business rule in Talend OS for Data Quality 

After the data requirements have been represented as SQL business rules, they have 

to be attached to a so called analysis. Therefore, a new business analysis object has 

to be created in Talend OS for Data Quality. The tool provides a wizard for the creation 

of the analysis object in which the relevant table and the relevant SQL business rules 

can be chosen from a list. The latter is shown in figure 58. Based on these inputs the 

analysis can be run to identify requirement violations.  



147 

 

Figure 58: Selecting SQL business rules in Talend OS for Data Quality 

In the area of data requirements management, there are three major differences 

between Talend OS for Data Quality and SDQM. The first difference lies in the way of 

representing data requirements. Talend OS for Data Quality uses plain SQL coding, 

while SDQM uses forms to capture data requirements which are automatically 

converted into RDF data. Other than the users of Talend OS for Data Quality, SDQM’s 

users do not have to know any query language to create data requirements, since they 

just have to fill in wiki-based forms. The second difference is the location in which the 

data requirements are created and maintained. In Talend OS for Data Quality data 

requirements are typically created and maintained on the client of the software 

installation. Since SDQM uses the data requirements wiki to manage data 

requirements, they can be created and maintained at Web scale by anyone who has 

sufficient access rights. Lastly, due to the representation of the data requirements in 

RDF, it is possible to check consistency among data requirements with SDQM by using 

standard SPARQL queries. To the best of our knowledge, this is not possible with the 

data requirements represented in Talend OS for Data Quality, since the requirements 

are represented in plain SQL. Finally, in Talend OS for Data Quality the data 

requirements are hard-wired to the actual schema elements of the data source, 



148 

whereas SDQM provides a level of abstraction which allows the reuse of the same 

type of algorithm for multiple different schema elements. Table 25 summarizes the 

findings of the comparison in the area of data requirements management. 

Table 25: Qualitative comparison of SDQM and Talend OS for Data Quality regarding data requirements 
management 

Criterion Talend OS for 
Data Quality 

SDQM 

Representation of data 

requirements 

SQL Forms / 

Wikipage 

Location of data requirements Local Web 

Consistency checks among data 

requirements 

No Yes 

Binding to schema of data source  Direct Abstract 

 

9.5.2 Data Quality Monitoring and Assessment Reporting 
 

In this section, we compare the data quality reporting capabilities of Talend OS for 

Data Quality and SDQM. SDQM provides separate reports for data quality monitoring, 

i.e. the identification of instances with requirements violations, and for data quality 

assessment, i.e. the computation of dimensional quality scores. In Talend OS for Data 

Quality, these reports are combined. After data requirements have been represented 

and integrated into an analysis object, the execution process of Talend OS for Data 

Quality first computes a score which indicates the percentage to which the requirement 

has been met. Figure 59 shows such a report in which the completeness scores for 

five different attributes are shown. Based on this assessment report, it is possible to 

drill down to the tuples that violate data requirements via the context menu in the red 

box as shown in figure 59.  



149 

 

Figure 59: Data quality assessment report in Talend OS for Data Quality 

When hitting the menu option “View invalid rows”, an SQL query is automatically 

executed which retrieves the tuples violating the requirements. Figure 60 shows the 

result of such a query which can be viewed as the data quality monitoring reports of 

Talend OS for Data Quality. 

 

Figure 60: Data quality monitoring report of Talend OS for Data Quality 

  



150 

Hence, in summary we can say that Talend OS for Data Quality and SDQM almost 

provide the same reports for data quality monitoring and assessment. However, both 

differ in two issues:  

(1) In opposite to the current version of SDQM, Talend OS for Data Quality also 

visualizes the data quality assessment reporting by providing bar charts.  

(2) The reports of SDQM can be made available on the Web, while the reports of 

Talend OS for Data Quality are only available locally. 

Table 26 summarizes the qualitative comparison of Talend OS for Data Quality and 

SDQM. 

Table 26: Qualitative comparison of Talend OS for Data Quality and SDQM regarding data quality reporting 

Criterion Talend OS for 
Data Quality 

SDQM 

Identification of requirement 

violations 

Yes Yes 

Automated computation of data 

quality scores 

Yes Yes 

Graphical visualization of data 

quality scores 

Yes No 

Availability of reports Local Web-scale 

 

Moreover, we compared the performance of a DQM architecture with Talend OS for 

Data Quality and our SDQM architecture. The Talend OS for Data Quality architecture 

uses a 64bit MySQL database and 4,600 megabytes buffer size. Moreover, we 

assigned 1,536 megabytes of main memory to Talend OS for Data Quality. This shall 

represent a similar configuration as used in use case one for the SDQM architecture. 

For the evaluation of the performance we used the same data corpus for both 

architectures with one exception: the Talend architecture processed the data in 

relational format, while SDQM processed it in the triple structure. We executed the 

same data requirements and created data quality assessment reports in both cases. 

The results of the performance analysis are listed in table 27. 



151 

The performance analysis shows that SDQM still has a significant performance 

drawback compared to conventional DQM architectures. But it must be stressed that 

SDQM is an early prototype, while the conventional DQM architecture with Talend OS 

for Data Quality and MySQL has already matured through practical experience over 

several years. However, we expect that with the optimization of SDQMgr’s queries and 

with increasing maturity of triplestores the performance gap between both 

architectures will decrease. 

Table 27: Results of performance analysis between Talend OS for Data Quality and SDQM 

Report Talend OS for 
Data Quality 

SDQM 
(in mm:ss.ms) 

Completeness 

(5 requirements) 
00:23.790 15:59.841  

Conditional Completeness 

(1 requirement) 
00:07.800  01:50.137  

Syntactic Accuracy (Syntax Rules) 

(1 requirement) 
00:09.937  02:08.727  

Syntactic Accuracy (Legal Value 

Rules) 

(6 requirements) 

00:29.937  27:18.928  

Semantic Accuracy (Legal Value 

Range Rules) 

(1 requirement) 

00:07.504  03:04.716  

Semantic Accuracy FDV (1 

Condition) 

(4 requirements) 

00:32.402  02:14.406  

 

9.5.3 Summary 
 



152 

In summary, we can say that both architectures, the SDQM architecture and the 

conventional DQM architecture, have strengths and weaknesses and none of the 

architectures is superior in general. The strengths of SDQM lie in data requirements 

management. While Talend OS for Data Quality requires SQL knowledge to create 

data requirements, SDQM only requires users to fill in wiki-based forms which is much 

less time consuming and more convenient for business experts who often do not have 

programming skills. Also, in contrast to DQM tools based on the state-of-the-art, SDQM 

can identify inconsistencies among data requirements automatically. Moreover, SDQM 

provides a Web-based user interface for the management of data requirements which 

facilitates collaboration and the generation of agreement. A shared understanding of 

data requirements promises a more sustainable and effective improvement of data 

quality. A local data quality tool, such as Talend OS for Data Quality, hides data 

requirements in SQL code of client software which hinders the generation of a common 

understanding about data requirements. SDQM’s data requirements are audit-proof 

due to its version-based storage in Semantic MediaWiki and they can be combined 

with other information due to the wiki architecture. A major weakness of SDQM 

compared to the conventional DQM architecture is currently the comparatively slow 

speed of execution. The current performance of SDQM is acceptable, but far away 

from the performance of a conventional DQM architecture. As mentioned earlier, the 

growing use of SDQM and the increasing maturity of triplestore technology will 

decrease this gap over time. Moreover, the use of Jena’s in-memory features may 

close this gap in the future. 

  


	9 Evaluation of the Semantic Data Quality Management Framework (SDQM)
	9.1 Evaluation of Algorithms
	9.1.1 Algorithm Evaluation Methodology
	9.1.2 Application Procedure
	9.1.3 Results

	9.2 Use Case 1: Evaluation of Material Master Data
	9.2.1 Scenario
	9.2.2 Setup and Application Procedure of SDQM
	9.2.3 Results and Findings

	9.3 Use Case 2: Evaluation of Data from DBpedia
	9.3.1 Scenario
	9.3.2 Specialties of Semantic Web Scenarios
	9.3.3 Setup and Application Procedure
	9.3.4 Results and Findings

	9.4 Use Case 3: Consistency Checks Among Data Requirements
	9.4.1 Scenario
	9.4.2 Application Procedure
	9.4.3 Summary

	9.5 Comparison with Talend OS for Data Quality
	9.5.1 Representation and Management of Data Requirements
	9.5.2 Data Quality Monitoring and Assessment Reporting
	9.5.3 Summary





