
56

4 Semantic Technologies

As discussed in section 2.1 of this thesis we regard semantic technologies “as technical

approaches that facilitate or make use of the interpretation of meaning by machines”.

Ontologies are one of the core elements of semantic solutions. In the following, we

review the definition of ontologies and briefly describe their general characteristics.

Moreover, we discuss important concepts for ontology and knowledge representation

within the Semantic Web. After that, we explain ways to process knowledge

representations, such as reasoning, inferencing, and querying. Due to the focus of this

thesis, we finally describe how relational databases and ontologies are related.

4.1 Characteristics of an Ontology

In section 2.1, we derived the following definition for ontologies: Ontologies are “a

formal and sharable means to explicitly model some real-world phenomenon for

machine-readable knowledge representation”. According to this definition, ontologies

have at least five important characteristics, namely “formality, explicitness, being

shared, conceptuality and domain-specificity” (Grimm et al., 2007, p. 69f.). In the

following, we will explain the term “ontology” along these five characteristics.

Formality: With ontologies, real-world phenomena and their relationships among each

other can be described in a machine-readable way by using formal elements, i.e.

concepts, relationships, instances, and axioms (cf. Grimm et al., 2007, p. 88).

Ontologies are therefore used to structure and store knowledge about a domain of

interest. The degree of formality of ontologies and their expressiveness to represent

real-world elements varies from natural language descriptions to highly formal axioms

(cf. Smith & Welty, 2001, p. 6f.; Uschold & Gruninger, 1996, p. 98). In fact, there are

several different knowledge representation languages that offer modeling constructs

to represent different levels of formality. The degree of formality thereby influences the

ability of machine-interpretation of the represented knowledge. With increasing

formality, the machine interpretation capabilities rise, but also the complexity of

ontology development and maintenance increases.

Explicitness: While much knowledge usually relies in people’s minds, the

development of a materialized ontology documents expert knowledge in an explicit

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_4, © Springer Fachmedien Wiesbaden 2016

57

way. Moreover, the design of formal ontologies for machine interpretation promotes

the rigorous explicit representation of knowledge within the ontology and the

automated identification of misconceptions, i.e. inconsistencies within the ontology /

understanding of a domain (cf. Grimm et al., 2007, p. 70; Hepp, 2008b, p. 16).

Being shared: Ontologies are usually developed for a certain community, e.g. to

capture the knowledge of domain experts. For its successful adaptation it is, therefore,

necessary to achieve agreement about the ontology among large parts of the

community (cf. Grimm et al., 2007, p. 70). Once an agreement can be established, the

chance for widespread adoption of the ontology as a standardized means to represent

knowledge rises. Thereby ontologies may help to improve communication, enable

reuse of shared knowledge, and facilitate interoperability while keeping schematic

heterogeneity at a minimal level (cf. Gasevic et al., 2006, p. 48).

Domain specificity: Due to the complexity of representing concise knowledge and

achieving agreement, ontologies are usually limited to a certain domain (cf. Grimm et

al., 2007, p. 70). Despite domain specificity, ontologies can be combined with other

ontologies to represent knowledge of multiple domains.

Conceptuality: The represented knowledge within ontologies is organized into

concepts and relationships. The concepts and relationships can also be represented

in hierarchies so that different levels of abstraction may be represented while being

connected to each other. Instead of explaining individual phenomena, ontologies

provide a framework for as many tasks as necessary within the domain of interest

(Grimm et al., 2007, p. 70).

In summary, the use of ontologies for the representation of domain knowledge

promises the following benefits (cf. Hepp, 2008b):

- Reduction of ambiguity through the formal and explicit representation of

knowledge,

- conservation of implicit knowledge through explicit representation,

- knowledge sharing and reuse through the provision of a common vocabulary /

ontology,

- reduction of manual work through the reuse of shared knowledge,

- reduction of manual work through a formal, machine-interpretable knowledge

representation,

58

- automated inference of implicit facts through the formal representation of

knowledge,

- automated identification of misconceptions through the formal, explicit

representation of knowledge, and

- improved interoperability through the use of a common vocabulary / ontology.

Collections of actual instances that use the elements of ontologies to represent

knowledge are known as knowledge bases and should not be confused with ontologies

that provide the vocabulary to express knowledge (cf. Hepp, 2008b, p. 6). In the

following, we use the term “ontology” to name the schema of knowledge and the term

“knowledge base” to refer to an ontology-based representation of knowledge

instances.

4.2 Knowledge Representation in the Semantic Web

Ontologies and knowledge bases in Semantic Web architectures are typically

represented by using and combining elements of the “Resource Description

Framework” (RDF)10, “RDF Vocabulary Description Language” (which is also known

as “RDF Schema” (RDFS)11), and the “Web Ontology Language” (OWL)12. The

following subsections will give a brief overview about the most important language

constructs of the Semantic Web, namely resources and Uniform Resource Identifiers

(URI), the core RDF Syntax, and important vocabulary elements of RDF, RDFS, and

OWL related to the topics of this thesis.

4.2.1 Resources and Uniform Resource Identifiers (URIs)

Semantic Web languages describe resources and relationships among resources. The

term “resource” has thereby a very generic meaning which is not constrained to any

subset of concepts. A resource can be a Web site, a product, a document, a service,

a plan, a person, or anything else (cf. Berners-Lee et al., 2005). Resources are

10 Resource Description Framework (RDF), http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/
11 RDF Schema (RDFS), http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
12 Web Ontology Language, http://www.w3.org/TR/2004/REC-owl-guide-20040210/, recently updated
to OWL 2, http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

59

identified by Uniform Resource Identifiers (URIs) (Sauermann & Cyganiak, 2008). Web

addresses like “http://www.google.com” are a special kind of URI, namely a

Uniform Resource Locator (URL) which not only identifies a resource, but also locates

it (Berners-Lee et al., 2005). A major advantage of URIs on the World Wide Web

(WWW) is their global uniqueness. Therefore, URIs facilitate the unambiguous

identification of resources. However, there are several limitations on the WWW that

may disturb the unambiguous identification of a resource via its URI. The resource

which is identified by the URI may over time disappear or its meaning may change.

Moreover, it is possible that the URL of one resource is redirected to the URL of

another resource. In order to avoid changes, URIs should be designed carefully so that

they can be held stable and lasting (cf. Berners-Lee, 1998a).

4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links

The core structure of RDF are so called triples. Triples allow the definition of

statements in a subject, predicate, object format as illustrated in figure 23 (cf. Klyne &

Carroll, 2004). With the triple structure, it is possible to draw relationships (predicates)

between two entities or between an entity and the state of a property (subject, object).

Therefore, the predicate position of a triple is always reserved for a property “that

denotes a relationship” (Klyne & Carroll, 2004). Properties are always identified via

URIs. Combinations of multiple triples form a graph (cf. Grimm et al., 2007, p. 84).

Figure 23: Syntax of RDF triples (cf. Klyne & Carroll, 2004)

We can differentiate between two different types of RDF triples, namely “Literal triples”

and “RDF links” (Heath & Bizer, 2011). RDF links are triples with URIs in subject and

object position (Heath & Bizer, 2011). Hence, the predicate of RDF links connects two

resources with each other (Heath & Bizer, 2011). RDF links can, therefore, be used to

60

describe relationships between two resources (cf. Heath & Bizer, 2011). RDF links

have so called object properties in predicate position when using OWL (cf. Hitzler et

al., 2009). Literal triples have data values in the object position which are known as

literals (cf. Heath & Bizer, 2011). They may be restricted to a certain datatype and

contain a language tag indicating the language in which the literal is represented (cf.

Heath & Bizer, 2011). Literals with datatype indication are called typed literals, literals

without datatype indication are called plain literals (cf. Heath & Bizer, 2011). Thus,

Literal triples can be used to assign values to properties of a resource. In other words,

Literal triples describe the states of properties of an entity (cf. Heath & Bizer, 2011).

For example the triple http://example.org/JonMyer foo:hasBirthday

“1970-01-01” is a Literal triple because the object position of the triple contains the

literal “1970-01-01”. Literal triples can be modeled using OWL datatype properties

in predicate position. An example for an RDF link triple would be
http://example.org/JonMyer foo:hasMother

http://example.org/JanetMyer, since two resources with URIs are linked to

each other.

4.2.3 Constructing an Ontology with RDF, RDFS, and OWL

Main elements of ontologies in Semantic Web architectures are classes and

properties. Properties are in predicate position of a triple and, therefore, define

relationships between resources or describe facts about resources as explained in the

previous section. Classes are conceptual entities that can be used to classify

resources into categories (cf. Manola & Miller, 2004). The resources that belong to a

class are called its instances (Manola & Miller, 2004). An ontology together with its

instances is called a knowledge base (cf. Noy & McGuinness, 2001, p. 3). Knowledge

bases are represented in so called RDF graphs (cf. Sirin et al., 2007, p. 12). Semantic

Web programming languages provide several classes and properties that can be used

to model semantic distinctions of user-defined classes and properties in a standardized

and machine-interpretable way. In the following, core modeling constructs of RDF,

RDFS, and OWL are explained which are important for the understanding of this thesis.

Datatype properties: With OWL, a property can be declared as a datatype property

meaning that the property can only have literals in the object position. The range of the

61

property may be restricted to a certain datatype either by using XML Schema

datatypes13 or via self-defined datatypes with OWL 2 (cf. Hitzler et al., 2009).

Language tag assignment: Language tags can be assigned at the end of literals to

indicate the language in which the literal is written (cf. Alvestrand, 2001; Beckett, 2004).

Domain of a property: The property rdfs:domain is a property of RDF-properties.

It can be used to specify classes that hold individuals which can be used as a subject

for the described property (cf. Brickley & Guha, 2004). In other words, rdfs:domain

specifies the class of individuals which may be described by the property. E.g. the

domain of the property foo:hasEAN is the class foo:Material.

Range of a property: The property rdfs:range is also a property of RDF-properties.

It is used to specify the allowed types used for the values of a property, i.e. which

datatype the values must have or to which class the values must belong (cf. Brickley

& Guha, 2004). E.g. the property foo:hasName has a range of datatype

xsd:string. It is important to note that the consequences of applying a property to

an instance of another type is that an additional class membership is inferred (cf. De

Bruijn et al., 2005, p. 5).

Class membership: RDF allows the definition of class memberships of entities (cf.

Brickley & Guha, 2004). E.g. the triple Christian rdf:type PhD-Student

expresses that the individual “Christian” belongs to the class of PhD Students.

Class and property hierarchies: RDFS allows the expression of hierarchic

relationships between classes and properties (cf. Brickley & Guha, 2004). For

example, we can define that the class PhD-Students is a sub-class of the class

Person or that the property lastName is a sub-property of the property name.

Equivalence between classes / properties: With the OWL properties

owl:equivalentClass and owl:equivalentProperty we can express that

classes or properties are equivalent in terms of that equivalent properties share the

same values and equivalent classes share the same individuals (cf. Bechhofer et al.,

2004; Hitzler et al., 2012).

13 XML Schema datatypes, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

62

Identity between individuals: With the OWL property owl:sameAs we can express

semantic equality between individuals, i.e. the resources connected with owl:sameAs

represent the same real-world object (cf. Bechhofer et al., 2004).

Disjointness of classes: The property owl:disjointWith facilitates the

expression of disjointness between two classes, i.e. that individuals cannot be member

of both classes at the same time (cf. Bechhofer et al., 2004).

Transitivity of a property: OWL supports the definition of transitive properties by

making the properties instances of the class owl:TransitiveProperty. Transitivity

in this context means that the property relationship will also apply for the subject of one

triple and the object of a second triple if the object of triple one is also the subject of

triple two, although they are not directly connected to each other. E.g. if the property

foo:subProductOf is defined to be a transitive property and the two triples X

foo:subProductOf Y and Y foo:subProductOf Z exist, then we can derive that

X foo:subProductOf Z (cf. Bechhofer et al., 2004).

Symmetry of a property: A property is symmetric if the subject and the object of the

triple, in which the property is used, can be substituted without making an incorrect

statement. Symmetric properties can be defined via OWL by making the property an

instance of the class owl:SymmetricProperty (cf. Bechhofer et al., 2004). E.g. the

property foo:marriedTo is symmetric because a marriage is always mutual.

Inverse properties: With OWL, we can define that one property is an inverse of

another property (cf. McGuinness & van Harmelen, 2004). E.g. the property

foo:writtenBy is an inverse of the property foo:authorOf.

Functional properties: Functional properties are properties “that can have only one

(unique) value y for each instance x” (Bechhofer et al., 2004). A property is defined as

functional by making it an instance of the class owl:FunctionalProperty.

Functional properties are a way to express global cardinality restrictions (cf. Bechhofer

et al., 2004). E.g. a car can only have one active license plate number.

Inverse functional properties: Inverse functional properties uniquely identify the

subject in a triple. In other words, a value of an inverse functional property must only

belong to the same individual. A property is defined as inverse functional by making it

an instance of the class owl:InverseFunctionalProperty. Inverse functional

63

properties are a way to express global cardinality restrictions (cf. Bechhofer et al.,

2004). E.g. a certain social security number can only belong to one person.

Cardinality restrictions: OWL provides the properties owl:maxCardinality,

owl:minCardinality, and owl:Cardinality to define cardinality restrictions on

ranges of properties. The OWL cardinality properties hold values of datatype

xsd:nonNegativeInteger. A restriction with owl:maxCardinality “describes a

class of all individuals that have at most N semantically distinct values (individuals or

data values) for the property concerned, where N is the value of the cardinality

constraint” (Bechhofer et al., 2004). Analogous to the owl:maxCardinality,

owl:minCardinality describes a class of individuals that must at least have N

semantically distinct values, and owl:Cardinality describes a class that has

exactly N semantically distinct values (cf. Bechhofer et al., 2004). Since the cardinality

only applies to semantically distinct values and the same individuals may be

represented by syntactically distinct values, it is possible that, although

owl:maxCardinality has value “1”, an instance has two values for a property that

represent the same individual. If both values represent the same individual, then the

restriction will still be followed.

The Semantic Web programming languages RDF, RDFS, OWL, and OWL 2 allow

many more formal semantic expressions which are not explained in this thesis due to

their lack of relevance for the focus of this work.

4.2.4 Language Profiles of OWL and OWL 2

The Web Ontology Language OWL has three common language profiles, namely OWL

Lite, OWL Description Logic (DL), and OWL Full (Bechhofer et al., 2004). A language

profile thereby provides a subset of language constructs of OWL and may constrain

their usage (Bechhofer et al., 2004). In OWL Full, all elements of the language can be

used with no restrictions as long as valid RDF documents are produced (Bechhofer et

al., 2004). OWL DL and OWL Lite are subsets of OWL (Bechhofer et al., 2004). One

of the major distinctions between OWL Full and OWL DL is the meta-modeling

capability of OWL Full. In OWL Full, classes and properties can also be used as an

individual. This is not allowed in OWL DL to provide a language profile for decidable

reasoning, i.e. automated inferencing of implicit knowledge within finite time

64

(Bechhofer et al., 2004). OWL Lite is the simplest of all OWL profiles and provides a

minimal subset of OWL with the most important ontological constructs to provide an

easy way to engineer an ontology (cf. Hitzler, 2008, p. 151ff.). At present, most

ontologies are coded in OWL DL.

OWL 2 introduces three new language profiles, namely OWL 2 EL, OWL 2 RL, and

OWL 2 QL (W3C-OWL-Working-Group, 2012). The different language profiles of OWL

2 have been composed for specific cases. For example, OWL 2 EL is optimized for

very large ontologies with many classes and properties (W3C-OWL-Working-Group,

2012). OWL 2 QL was designed to provide “sound and complete query answering”

(Motik et al., 2009) at a reasonable time. And OWL 2 RL is optimized for reasoning

(W3C-OWL-Working-Group, 2012). For a detailed overview about the different

language profiles for OWL 2, please see (Motik et al., 2009).

Thus, when designing new ontologies, it is important to consider the required level of

expressivity and the scenarios in which the ontology shall be used, in order to identify

a proper language profile. In the following, the acronym OWL is used to refer to both,

OWL and OWL 2.

4.3 SPARQL Query Language for RDF

Query languages have been used for several decades, e.g. the Structured Query

Language (SQL) to update and retrieve data from relational databases (Oracle, 2013).

The Semantic Web provides its own query language, called the SPARQL query

language for RDF (SPARQL) (Harris & Seaborne, 2010). SPARQL can be used to

store, update, retrieve, and delete data in knowledge bases and provides several

mechanisms, such as aggregations, subqueries, or filters, that are very similar to

features of SQL (cf. Harris & Seaborne, 2010). Other than with SQL, SPARQL can be

combined with reasoners to also retrieve information that is not explicitly represented14.

E.g. a SPARQL query asking for instances of the class Person could also retrieve

instances of subclasses of the class Person, if subclass reasoning was enabled. A lot

14 There has been work on deductive databases that combine logic programming and database
management systems. However, to the best of the author’s knowledge they are not widely used in
business information systems.

65

of triplestores and Semantic Web tools, such as Virtuoso15 or TopBraid Composer16,

provide so called SPARQL endpoints (Feigenbaum et al., 2013) with query interfaces

to access the knowledge base or RDF files via SPARQL queries. Moreover, a lot of

the available SPARQL query interfaces provide additional, proprietary SPARQL

functions (also known as SPARQL extensions), that extend the SPARQL standard

functionalities17 as specified by the World Wide Web Consortium (W3C). At time of this

thesis, SPARQL 1.1 provides a mostly stable and expressive syntax that is already

implemented in many commercial and non-commercial Semantic Web tools.

4.4 Reasoning and Inferencing

Besides the plain retrieval of Semantic Web data via SPARQL queries, it is also

possible to employ the expressiveness of ontologies and the represented knowledge

via so called reasoners (cf. Hebeler et al., 2009, p. 285). Reasoners are programs that

use the represented logic of ontologies and / or user-defined rules (1) to infer implicit

knowledge and (2) to check the logical consistency at ontology and instance level (cf.

Antoniou & van Harmelen, 2008, pp. 97-103; Fensel & van Harmelen, 2007).

According to Hebeler et al. (Hebeler et al., 2009, p. 285), there are two different types

of reasoners which can also be combined in a single engine, namely inference

reasoners and rule-based reasoners. Inference reasoners infer implicit knowledge and

check logical consistency based on the axioms represented via RDFS and OWL (cf.

Hepp, 2008b, p. 15f.). Rule-based reasoners process user-defined rules that are

represented additionally to the axioms of an ontology (cf. Hebeler et al., 2009, pp. 231-

233). Similar to the axioms of RDFS and OWL, user-defined rules can also be used to

infer new knowledge or check consistency, but provide more flexibility for the definition

of axioms (cf. O’Connor et al., 2005, p. 975). Depending on the processing capabilities

of the reasoner, rules can be represented in different languages, such as the Semantic

Web Rule Language (SWRL)18 or via the vocabulary of the SPARQL Inferencing

15 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro (Last accessed on April 10th 2012)
16 http://www.topquadrant.com/products/TB_Composer.html (Last accessed on April 10th 2012)
17 http://www.w3.org/TR/2010/WD-sparql11-query-20100126/ (Last accessed on April 10th 2012)
18 http://www.w3.org/Submission/SWRL/ (Last accessed on April 11th 2012)

66

framework (SPIN)19. A popular open source reasoner that combines both, inference

and rule-based reasoning, is Pellet20.

The inferable knowledge via inference reasoning depends on the formal elements that

are used within the ontology. In the following, we provide some examples of potential

inferences that can be made when reasoning knowledge provided by an OWL DL

ontology (cf. Hitzler, 2008, p. 176f.).

Class equivalency: Based on equivalency relationships, it can be inferred which

classes belong to a specific domain concept. E.g. by specifying that class Person and

class HumanBeing are equivalent, a reasoner can process this information to

automatically infer the members of both classes.

Subclass relationships: Based on the definition of subclass relationships, a reasoner

can derive all members of a superclass including members that are not explicit

members of the superclass. E.g. a reasoner could infer that the individual Christian

not only belongs to the class PhD-Student, but also belongs to the class Person,

since the class PhD-Student is a subclass of the class Person. In the following, we

will use the term “subclass reasoning” to refer to this kind of inferencing.

Disjunctive classes: With OWL, classes can be defined as disjunctive, i.e. that

members of class A cannot also be members of class B at the same time, if class A

and class B are disjunctive. Based on this knowledge representation, reasoners can

identify individuals that are members of disjunctive classes and, thus, identify and

report inconsistent class memberships.

Additional inferencing capabilities for knowledge represented in ontologies based on

RDFS and OWL can be found in (Hitzler, 2008). As mentioned in the previous section,

the more formal elements and axioms are used within an ontology, the more resources

are needed for the reasoning based on the ontology (cf. Antoniou & van Harmelen,

2008, p. 158; Fensel & van Harmelen, 2007; Gómez-Pérez et al., 2004, p. 204). Hence,

for efficient reasoning it is important to pay attention to the design of an ontology,

especially regarding the chosen language profile.

19 http://spinrdf.org/ (Last accessed on April 11th 2012)
20 http://clarkparsia.com/pellet/features (Last accessed on April 11th 2012)

67

4.5 Ontologies and Relational Databases

Ontologies and relational databases (RDB) are related to each other in at least two

aspects. First, a lot of data that is currently available on the Semantic Web has been

published via mapping technologies between RDB and ontologies (cf. Bizer, Heath, et

al., 2009). Secondly, some triplestores use the efficient and mature technologies of

RDB management systems (RDBMS) to store RDF triples (Heymans et al., 2008, p.

92). In this section, we examine how data from relational databases can be linked to

conceptual elements from ontologies and exposed as RDF data. Relational data can

be lifted into the Semantic Web space, namely (1) virtually without a persistent

representation of the data in RDF or (2) persistently with a persistent conversion of the

data into RDF (Sahoo et al., 2009). In both cases, the elements of the relational

schema have to be mapped to the target ontology. Table 6 shows how the different

elements of an RDB schema can be mapped to the elements of an ontology based on

findings from Astrova (Astrova, 2009).

Table 6: Simplified mapping between RDBs and ontologies (cf. Astrova, 2009)

RDB Element Ontology Element

Table21 / View Class

Table with only two
foreign key columns

Object property

Column containing
datatype values

Datatype property

Column containing
foreign keys

Object property

Primary keys Individuals / URIs

Row Instance

It must be stressed that there may also be much more individual mappings between

elements of an RDB to elements of an ontology. E.g. one might want to populate tuples

of a specific table to multiple different classes based on filters on certain column values.

However, there are many ways to easily expose relational sources to the Semantic

Web spaces, such as D2RQ or Virtuoso RDF-Views (please see (Sahoo et al., 2009)

21 Tables that only contain two columns with foreign keys are mapped to object properties

68

for a survey about RDB2RDF mapping technologies). In summary, we can conclude

that relational data can be used in Semantic Web architectures via mappings to

ontology elements. This facilitates the use of Semantic Web technologies to process

data of RDB.

	4 Semantic Technologies
	4.1 Characteristics of an Ontology
	4.2 Knowledge Representation in the Semantic Web
	4.2.1 Resources and Uniform Resource Identifiers (URIs)
	4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links
	4.2.3 Constructing an Ontology with RDF, RDFS, and OWL
	4.2.4 Language Profiles of OWL and OWL 2

	4.3 SPARQL Query Language for RDF
	4.4 Reasoning and Inferencing
	4.5 Ontologies and Relational Databases

