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4 Semantic Technologies 
 

As discussed in section 2.1 of this thesis we regard semantic technologies “as technical 

approaches that facilitate or make use of the interpretation of meaning by machines”. 

Ontologies are one of the core elements of semantic solutions. In the following, we 

review the definition of ontologies and briefly describe their general characteristics. 

Moreover, we discuss important concepts for ontology and knowledge representation 

within the Semantic Web. After that, we explain ways to process knowledge 

representations, such as reasoning, inferencing, and querying. Due to the focus of this 

thesis, we finally describe how relational databases and ontologies are related. 

 

4.1 Characteristics of an Ontology 
 

In section 2.1, we derived the following definition for ontologies: Ontologies are “a 

formal and sharable means to explicitly model some real-world phenomenon for 

machine-readable knowledge representation”. According to this definition, ontologies 

have at least five important characteristics, namely “formality, explicitness, being 

shared, conceptuality and domain-specificity” (Grimm et al., 2007, p. 69f.). In the 

following, we will explain the term “ontology” along these five characteristics. 

Formality: With ontologies, real-world phenomena and their relationships among each 

other can be described in a machine-readable way by using formal elements, i.e. 

concepts, relationships, instances, and axioms (cf. Grimm et al., 2007, p. 88). 

Ontologies are therefore used to structure and store knowledge about a domain of 

interest. The degree of formality of ontologies and their expressiveness to represent 

real-world elements varies from natural language descriptions to highly formal axioms 

(cf. Smith & Welty, 2001, p. 6f.; Uschold & Gruninger, 1996, p. 98). In fact, there are 

several different knowledge representation languages that offer modeling constructs 

to represent different levels of formality. The degree of formality thereby influences the 

ability of machine-interpretation of the represented knowledge. With increasing 

formality, the machine interpretation capabilities rise, but also the complexity of 

ontology development and maintenance increases. 

Explicitness: While much knowledge usually relies in people’s minds, the 

development of a materialized ontology documents expert knowledge in an explicit 
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way. Moreover, the design of formal ontologies for machine interpretation promotes 

the rigorous explicit representation of knowledge within the ontology and the 

automated identification of misconceptions, i.e. inconsistencies within the ontology / 

understanding of a domain (cf. Grimm et al., 2007, p. 70; Hepp, 2008b, p. 16). 

Being shared: Ontologies are usually developed for a certain community, e.g. to 

capture the knowledge of domain experts. For its successful adaptation it is, therefore, 

necessary to achieve agreement about the ontology among large parts of the 

community (cf. Grimm et al., 2007, p. 70). Once an agreement can be established, the 

chance for widespread adoption of the ontology as a standardized means to represent 

knowledge rises. Thereby ontologies may help to improve communication, enable 

reuse of shared knowledge, and facilitate interoperability while keeping schematic 

heterogeneity at a minimal level (cf. Gasevic et al., 2006, p. 48). 

Domain specificity: Due to the complexity of representing concise knowledge and 

achieving agreement, ontologies are usually limited to a certain domain  (cf. Grimm et 

al., 2007, p. 70). Despite domain specificity, ontologies can be combined with other 

ontologies to represent knowledge of multiple domains. 

Conceptuality: The represented knowledge within ontologies is organized into 

concepts and relationships. The concepts and relationships can also be represented 

in hierarchies so that different levels of abstraction may be represented while being 

connected to each other. Instead of explaining individual phenomena, ontologies 

provide a framework for as many tasks as necessary within the domain of interest 

(Grimm et al., 2007, p. 70). 

In summary, the use of ontologies for the representation of domain knowledge 

promises the following benefits (cf. Hepp, 2008b): 

- Reduction of ambiguity through the formal and explicit representation of 

knowledge, 

- conservation of implicit knowledge through explicit representation, 

- knowledge sharing and reuse through the provision of a common vocabulary / 

ontology, 

- reduction of manual work through the reuse of shared knowledge, 

- reduction of manual work through a formal, machine-interpretable knowledge 

representation, 
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- automated inference of implicit facts through the formal representation of 

knowledge, 

- automated identification of misconceptions through the formal, explicit 

representation of knowledge, and 

- improved interoperability through the use of a common vocabulary / ontology. 

Collections of actual instances that use the elements of ontologies to represent 

knowledge are known as knowledge bases and should not be confused with ontologies 

that provide the vocabulary to express knowledge (cf. Hepp, 2008b, p. 6). In the 

following, we use the term “ontology” to name the schema of knowledge and the term 

“knowledge base” to refer to an ontology-based representation of knowledge 

instances. 

 

4.2 Knowledge Representation in the Semantic Web 
 

Ontologies and knowledge bases in Semantic Web architectures are typically 

represented by using and combining elements of the “Resource Description 

Framework” (RDF)10, “RDF Vocabulary Description Language” (which is also known 

as “RDF Schema” (RDFS)11), and the “Web Ontology Language” (OWL)12. The 

following subsections will give a brief overview about the most important language 

constructs of the Semantic Web, namely resources and Uniform Resource Identifiers 

(URI), the core RDF Syntax, and important vocabulary elements of RDF, RDFS, and 

OWL related to the topics of this thesis. 

 

4.2.1 Resources and Uniform Resource Identifiers (URIs) 
 

Semantic Web languages describe resources and relationships among resources. The 

term “resource” has thereby a very generic meaning which is not constrained to any 

subset of concepts. A resource can be a Web site, a product, a document, a service, 

a plan, a person, or anything else (cf. Berners-Lee et al., 2005). Resources are 

                                            
10 Resource Description Framework (RDF), http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/ 
11 RDF Schema (RDFS), http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ 
12 Web Ontology Language, http://www.w3.org/TR/2004/REC-owl-guide-20040210/, recently updated 
to OWL 2, http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ 
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identified by Uniform Resource Identifiers (URIs) (Sauermann & Cyganiak, 2008). Web 

addresses like “http://www.google.com” are a special kind of URI, namely a 

Uniform Resource Locator (URL) which not only identifies a resource, but also locates 

it (Berners-Lee et al., 2005). A major advantage of URIs on the World Wide Web 

(WWW) is their global uniqueness. Therefore, URIs facilitate the unambiguous 

identification of resources. However, there are several limitations on the WWW that 

may disturb the unambiguous identification of a resource via its URI. The resource 

which is identified by the URI may over time disappear or its meaning may change. 

Moreover, it is possible that the URL of one resource is redirected to the URL of 

another resource. In order to avoid changes, URIs should be designed carefully so that 

they can be held stable and lasting (cf. Berners-Lee, 1998a). 

 

4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links 
 

The core structure of RDF are so called triples. Triples allow the definition of 

statements in a subject, predicate, object format as illustrated in figure 23 (cf. Klyne & 

Carroll, 2004). With the triple structure, it is possible to draw relationships (predicates) 

between two entities or between an entity and the state of a property (subject, object). 

Therefore, the predicate position of a triple is always reserved for a property “that 

denotes a relationship” (Klyne & Carroll, 2004). Properties are always identified via 

URIs. Combinations of multiple triples form a graph (cf. Grimm et al., 2007, p. 84).  

 

Figure 23: Syntax of RDF triples (cf. Klyne & Carroll, 2004) 

We can differentiate between two different types of RDF triples, namely “Literal triples” 

and “RDF links” (Heath & Bizer, 2011). RDF links are triples with URIs in subject and 

object position (Heath & Bizer, 2011). Hence, the predicate of RDF links connects two 

resources with each other (Heath & Bizer, 2011). RDF links can, therefore, be used to 
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describe relationships between two resources (cf. Heath & Bizer, 2011). RDF links 

have so called object properties in predicate position when using OWL (cf. Hitzler et 

al., 2009). Literal triples have data values in the object position which are known as 

literals (cf. Heath & Bizer, 2011). They may be restricted to a certain datatype and 

contain a language tag indicating the language in which the literal is represented (cf. 

Heath & Bizer, 2011). Literals with datatype indication are called typed literals, literals 

without datatype indication are called plain literals (cf. Heath & Bizer, 2011). Thus, 

Literal triples can be used to assign values to properties of a resource. In other words, 

Literal triples describe the states of properties of an entity (cf. Heath & Bizer, 2011). 

For example the triple http://example.org/JonMyer foo:hasBirthday 

“1970-01-01” is a Literal triple because the object position of the triple contains the 

literal “1970-01-01”. Literal triples can be modeled using OWL datatype properties 

in predicate position. An example for an RDF link triple would be 
http://example.org/JonMyer foo:hasMother 

http://example.org/JanetMyer, since two resources with URIs are linked to 

each other.  

 

4.2.3 Constructing an Ontology with RDF, RDFS, and OWL 
 

Main elements of ontologies in Semantic Web architectures are classes and 

properties. Properties are in predicate position of a triple and, therefore, define 

relationships between resources or describe facts about resources as explained in the 

previous section. Classes are conceptual entities that can be used to classify 

resources into categories (cf. Manola & Miller, 2004). The resources that belong to a 

class are called its instances (Manola & Miller, 2004). An ontology together with its 

instances is called a knowledge base (cf. Noy & McGuinness, 2001, p. 3). Knowledge 

bases are represented in so called RDF graphs (cf. Sirin et al., 2007, p. 12). Semantic 

Web programming languages provide several classes and properties that can be used 

to model semantic distinctions of user-defined classes and properties in a standardized 

and machine-interpretable way. In the following, core modeling constructs of RDF, 

RDFS, and OWL are explained which are important for the understanding of this thesis. 

Datatype properties: With OWL, a property can be declared as a datatype property 

meaning that the property can only have literals in the object position. The range of the 
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property may be restricted to a certain datatype either by using XML Schema 

datatypes13 or via self-defined datatypes with OWL 2 (cf. Hitzler et al., 2009). 

Language tag assignment: Language tags can be assigned at the end of literals to 

indicate the language in which the literal is written (cf. Alvestrand, 2001; Beckett, 2004). 

Domain of a property: The property rdfs:domain is a property of RDF-properties. 

It can be used to specify classes that hold individuals which can be used as a subject 

for the described property (cf. Brickley & Guha, 2004). In other words, rdfs:domain 

specifies the class of individuals which may be described by the property. E.g. the 

domain of the property foo:hasEAN is the class foo:Material. 

Range of a property: The property rdfs:range is also a property of RDF-properties. 

It is used to specify the allowed types used for the values of a property, i.e. which 

datatype the values must have or to which class the values must belong (cf. Brickley 

& Guha, 2004). E.g. the property foo:hasName has a range of datatype 

xsd:string. It is important to note that the consequences of applying a property to 

an instance of another type is that an additional class membership is inferred (cf. De 

Bruijn et al., 2005, p. 5). 

Class membership: RDF allows the definition of class memberships of entities (cf. 

Brickley & Guha, 2004). E.g. the triple Christian rdf:type PhD-Student 

expresses that the individual “Christian” belongs to the class of PhD Students.  

Class and property hierarchies: RDFS allows the expression of hierarchic 

relationships between classes and properties (cf. Brickley & Guha, 2004). For 

example, we can define that the class PhD-Students is a sub-class of the class 

Person or that the property lastName is a sub-property of the property name. 

Equivalence between classes / properties: With the OWL properties 

owl:equivalentClass and owl:equivalentProperty we can express that 

classes or properties are equivalent in terms of that equivalent properties share the 

same values and equivalent classes share the same individuals (cf. Bechhofer et al., 

2004; Hitzler et al., 2012).  

                                            
13 XML Schema datatypes, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 
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Identity between individuals: With the OWL property owl:sameAs we can express 

semantic equality between individuals, i.e. the resources connected with owl:sameAs 

represent the same real-world object (cf. Bechhofer et al., 2004). 

Disjointness of classes: The property owl:disjointWith facilitates the 

expression of disjointness between two classes, i.e. that individuals cannot be member 

of both classes at the same time (cf. Bechhofer et al., 2004). 

Transitivity of a property: OWL supports the definition of transitive properties by 

making the properties instances of the class owl:TransitiveProperty. Transitivity 

in this context means that the property relationship will also apply for the subject of one 

triple and the object of a second triple if the object of triple one is also the subject of 

triple two, although they are not directly connected to each other. E.g. if the property 

foo:subProductOf is defined to be a transitive property and the two triples X 

foo:subProductOf Y and Y foo:subProductOf Z exist, then we can derive that 

X foo:subProductOf Z (cf. Bechhofer et al., 2004). 

Symmetry of a property: A property is symmetric if the subject and the object of the 

triple, in which the property is used, can be substituted without making an incorrect 

statement. Symmetric properties can be defined via OWL by making the property an 

instance of the class owl:SymmetricProperty (cf. Bechhofer et al., 2004). E.g. the 

property foo:marriedTo is symmetric because a marriage is always mutual. 

Inverse properties: With OWL, we can define that one property is an inverse of 

another property (cf. McGuinness & van Harmelen, 2004). E.g. the property 

foo:writtenBy is an inverse of the property foo:authorOf. 

Functional properties: Functional properties are properties “that can have only one 

(unique) value y for each instance x” (Bechhofer et al., 2004). A property is defined as 

functional by making it an instance of the class owl:FunctionalProperty. 

Functional properties are a way to express global cardinality restrictions (cf. Bechhofer 

et al., 2004). E.g. a car can only have one active license plate number. 

Inverse functional properties: Inverse functional properties uniquely identify the 

subject in a triple. In other words, a value of an inverse functional property must only 

belong to the same individual. A property is defined as inverse functional by making it 

an instance of the class owl:InverseFunctionalProperty. Inverse functional 
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properties are a way to express global cardinality restrictions (cf. Bechhofer et al., 

2004). E.g. a certain social security number can only belong to one person. 

Cardinality restrictions: OWL provides the properties owl:maxCardinality, 

owl:minCardinality, and owl:Cardinality to define cardinality restrictions on 

ranges of properties. The OWL cardinality properties hold values of datatype 

xsd:nonNegativeInteger. A restriction with owl:maxCardinality “describes a 

class of all individuals that have at most N semantically distinct values (individuals or 

data values) for the property concerned, where N is the value of the cardinality 

constraint” (Bechhofer et al., 2004). Analogous to the owl:maxCardinality, 

owl:minCardinality describes a class of individuals that must at least have N 

semantically distinct values, and owl:Cardinality describes a class that has 

exactly N semantically distinct values (cf. Bechhofer et al., 2004). Since the cardinality 

only applies to semantically distinct values and the same individuals may be 

represented by syntactically distinct values, it is possible that, although 

owl:maxCardinality has value “1”, an instance has two values for a property that 

represent the same individual. If both values represent the same individual, then the 

restriction will still be followed. 

The Semantic Web programming languages RDF, RDFS, OWL, and OWL 2 allow 

many more formal semantic expressions which are not explained in this thesis due to 

their lack of relevance for the focus of this work. 

 

4.2.4 Language Profiles of OWL and OWL 2 
 

The Web Ontology Language OWL has three common language profiles, namely OWL 

Lite, OWL Description Logic (DL), and OWL Full (Bechhofer et al., 2004). A language 

profile thereby provides a subset of language constructs of OWL and may constrain 

their usage (Bechhofer et al., 2004). In OWL Full, all elements of the language can be 

used with no restrictions as long as valid RDF documents are produced (Bechhofer et 

al., 2004). OWL DL and OWL Lite are subsets of OWL (Bechhofer et al., 2004). One 

of the major distinctions between OWL Full and OWL DL is the meta-modeling 

capability of OWL Full. In OWL Full, classes and properties can also be used as an 

individual. This is not allowed in OWL DL to provide a language profile for decidable 

reasoning, i.e. automated inferencing of implicit knowledge within finite time 
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(Bechhofer et al., 2004). OWL Lite is the simplest of all OWL profiles and provides a 

minimal subset of OWL with the most important ontological constructs to provide an 

easy way to engineer an ontology (cf. Hitzler, 2008, p. 151ff.). At present, most 

ontologies are coded in OWL DL.  

OWL 2 introduces three new language profiles, namely OWL 2 EL, OWL 2 RL, and 

OWL 2 QL (W3C-OWL-Working-Group, 2012). The different language profiles of OWL 

2 have been composed for specific cases. For example, OWL 2 EL is optimized for 

very large ontologies with many classes and properties (W3C-OWL-Working-Group, 

2012). OWL 2 QL was designed to provide “sound and complete query answering” 

(Motik et al., 2009) at a reasonable time. And OWL 2 RL is optimized for reasoning 

(W3C-OWL-Working-Group, 2012). For a detailed overview about the different 

language profiles for OWL 2, please see (Motik et al., 2009).  

Thus, when designing new ontologies, it is important to consider the required level of 

expressivity and the scenarios in which the ontology shall be used, in order to identify 

a proper language profile. In the following, the acronym OWL is used to refer to both, 

OWL and OWL 2. 

 

4.3 SPARQL Query Language for RDF 
 

Query languages have been used for several decades, e.g. the Structured Query 

Language (SQL) to update and retrieve data from relational databases (Oracle, 2013). 

The Semantic Web provides its own query language, called the SPARQL query 

language for RDF (SPARQL) (Harris & Seaborne, 2010). SPARQL can be used to 

store, update, retrieve, and delete data in knowledge bases and provides several 

mechanisms, such as aggregations, subqueries, or filters, that are very similar to 

features of SQL (cf. Harris & Seaborne, 2010). Other than with SQL, SPARQL can be 

combined with reasoners to also retrieve information that is not explicitly represented14. 

E.g. a SPARQL query asking for instances of the class Person could also retrieve 

instances of subclasses of the class Person, if subclass reasoning was enabled. A lot 

                                            
14 There has been work on deductive databases that combine logic programming and database 
management systems. However, to the best of the author’s knowledge they are not widely used in 
business information systems. 
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of triplestores and Semantic Web tools, such as Virtuoso15 or TopBraid Composer16, 

provide so called SPARQL endpoints (Feigenbaum et al., 2013) with query interfaces 

to access the knowledge base or RDF files via SPARQL queries. Moreover, a lot of 

the available SPARQL query interfaces provide additional, proprietary SPARQL 

functions (also known as SPARQL extensions), that extend the SPARQL standard 

functionalities17 as specified by the World Wide Web Consortium (W3C). At time of this 

thesis, SPARQL 1.1 provides a mostly stable and expressive syntax that is already 

implemented in many commercial and non-commercial Semantic Web tools. 

 

4.4 Reasoning and Inferencing 
 

Besides the plain retrieval of Semantic Web data via SPARQL queries, it is also 

possible to employ the expressiveness of ontologies and the represented knowledge 

via so called reasoners (cf. Hebeler et al., 2009, p. 285). Reasoners are programs that 

use the represented logic of ontologies and / or user-defined rules (1) to infer implicit 

knowledge and (2) to check the logical consistency at ontology and instance level (cf. 

Antoniou & van Harmelen, 2008, pp. 97-103; Fensel & van Harmelen, 2007). 

According to Hebeler et al. (Hebeler et al., 2009, p. 285), there are two different types 

of reasoners which can also be combined in a single engine, namely inference 

reasoners and rule-based reasoners. Inference reasoners infer implicit knowledge and 

check logical consistency based on the axioms represented via RDFS and OWL (cf. 

Hepp, 2008b, p. 15f.). Rule-based reasoners process user-defined rules that are 

represented additionally to the axioms of an ontology (cf. Hebeler et al., 2009, pp. 231-

233). Similar to the axioms of RDFS and OWL, user-defined rules can also be used to 

infer new knowledge or check consistency, but provide more flexibility for the definition 

of axioms (cf. O’Connor et al., 2005, p. 975). Depending on the processing capabilities 

of the reasoner, rules can be represented in different languages, such as the Semantic 

Web Rule Language (SWRL)18 or via the vocabulary of the SPARQL Inferencing 

                                            
15 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro (Last accessed on April 10th 2012) 
16 http://www.topquadrant.com/products/TB_Composer.html (Last accessed on April 10th 2012) 
17 http://www.w3.org/TR/2010/WD-sparql11-query-20100126/ (Last accessed on April 10th 2012) 
18 http://www.w3.org/Submission/SWRL/ (Last accessed on April 11th 2012) 
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framework (SPIN)19. A popular open source reasoner that combines both, inference 

and rule-based reasoning, is Pellet20. 

The inferable knowledge via inference reasoning depends on the formal elements that 

are used within the ontology. In the following, we provide some examples of potential 

inferences that can be made when reasoning knowledge provided by an OWL DL 

ontology (cf. Hitzler, 2008, p. 176f.). 

Class equivalency: Based on equivalency relationships, it can be inferred which 

classes belong to a specific domain concept. E.g. by specifying that class Person and 

class HumanBeing are equivalent, a reasoner can process this information to 

automatically infer the members of both classes. 

Subclass relationships: Based on the definition of subclass relationships, a reasoner 

can derive all members of a superclass including members that are not explicit 

members of the superclass. E.g. a reasoner could infer that the individual Christian 

not only belongs to the class PhD-Student, but also belongs to the class Person, 

since the class PhD-Student is a subclass of the class Person. In the following, we 

will use the term “subclass reasoning” to refer to this kind of inferencing. 

Disjunctive classes: With OWL, classes can be defined as disjunctive, i.e. that 

members of class A cannot also be members of class B at the same time, if class A 

and class B are disjunctive. Based on this knowledge representation, reasoners can 

identify individuals that are members of disjunctive classes and, thus, identify and 

report inconsistent class memberships. 

Additional inferencing capabilities for knowledge represented in ontologies based on 

RDFS and OWL can be found in (Hitzler, 2008). As mentioned in the previous section, 

the more formal elements and axioms are used within an ontology, the more resources 

are needed for the reasoning based on the ontology (cf. Antoniou & van Harmelen, 

2008, p. 158; Fensel & van Harmelen, 2007; Gómez-Pérez et al., 2004, p. 204). Hence, 

for efficient reasoning it is important to pay attention to the design of an ontology, 

especially regarding the chosen language profile. 

 

  

                                            
19 http://spinrdf.org/ (Last accessed on April 11th 2012) 
20 http://clarkparsia.com/pellet/features (Last accessed on April 11th 2012) 
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4.5 Ontologies and Relational Databases 
 

Ontologies and relational databases (RDB) are related to each other in at least two 

aspects. First, a lot of data that is currently available on the Semantic Web has been 

published via mapping technologies between RDB and ontologies (cf. Bizer, Heath, et 

al., 2009). Secondly, some triplestores use the efficient and mature technologies of 

RDB management systems (RDBMS) to store RDF triples (Heymans et al., 2008, p. 

92). In this section, we examine how data from relational databases can be linked to 

conceptual elements from ontologies and exposed as RDF data. Relational data can 

be lifted into the Semantic Web space, namely (1) virtually without a persistent 

representation of the data in RDF or (2) persistently with a persistent conversion of the 

data into RDF (Sahoo et al., 2009). In both cases, the elements of the relational 

schema have to be mapped to the target ontology. Table 6 shows how the different 

elements of an RDB schema can be mapped to the elements of an ontology based on 

findings from Astrova (Astrova, 2009). 

Table 6: Simplified mapping between RDBs and ontologies (cf. Astrova, 2009) 

RDB Element Ontology Element 

Table21 / View Class 

Table with only two 
foreign key columns 

Object property 

Column containing 
datatype values 

Datatype property 

Column containing 
foreign keys 

Object property 

Primary keys Individuals / URIs 

Row Instance 

 

It must be stressed that there may also be much more individual mappings between 

elements of an RDB to elements of an ontology. E.g. one might want to populate tuples 

of a specific table to multiple different classes based on filters on certain column values. 

However, there are many ways to easily expose relational sources to the Semantic 

Web spaces, such as D2RQ or Virtuoso RDF-Views (please see (Sahoo et al., 2009) 

                                            
21 Tables that only contain two columns with foreign keys are mapped to object properties 
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for a survey about RDB2RDF mapping technologies). In summary, we can conclude 

that relational data can be used in Semantic Web architectures via mappings to 

ontology elements. This facilitates the use of Semantic Web technologies to process 

data of RDB. 
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