HOY4V3iS3y

Christian Fiirber

Data Quality
Management with
Semantic Technologies

@ Springer Gabler

Data Quality Management with Semantic
Technologies

Christian Furber

Data Quality
Management with
Semantic Technologies

Foreword by Prof. Dr. Martin Hepp

@ Springer Gabler

Christian Fiirber
Miinchen, Germany

Dissertation Universitit der Bundeswehr Miinchen, Neubiberg, 2015

OnlinePlus material to this book can be available on
http://www.springer-gabler.de/978-3-658-12224-9

ISBN 978-3-658-12224-9 ISBN 978-3-658-12225-6 (eBook)
DOI 10.1007/978-3-658-12225-6

Library of Congress Control Number: 2015959354

Springer Gabler

© Springer Fachmedien Wiesbaden 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of illus-
trations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper
Springer Gabler is a brand of Springer Fachmedien Wiesbaden

Springer Fachmedien Wiesbaden is part of Springer Science+Business Media
(Www.springer.com)

Fur Tanja

Foreword

In contrast to physical machinery, computer-based information systems operate on the
basis of models of reality. While traditional forms of automated systems directly handle
the actual objects of a task, computers must rely on representations of the input objects
of processing, and they return representations of the results when they are done. For
the information to be processed, these representations are in the form of digital data,
and for the details of the processing, they are computer programs, i.e. executable

instructions.

By being models, both computer data and computer programs are purpose-bound
abstractions of reality, and their appropriateness can only be judged in the light of the

information processing task at hand.

Now, the overall reliability of an information system critically depends on how well the
data represents the relevant subset of reality, and on how well the computer programs
represent appropriate processing steps. This is valid for all computer-based
information processing, from the most simplistic digital weather station up to the
complex transaction support systems in entire value chains. This sounds like a triviality,
but even if it was, it is an important one, because it helps understand the origin of many

practical problems of computer information systems.

Reality shows that our ability to use computers for the automation of business
processes is severely limited by our ability (1) to represent information and processing
instructions properly in the form of data and computer programs, and (2) to keep these
artifacts in alignment with the ever-changing reality. Our customers move from one
address to another, while our customer database will typically contain at least some
outdated addresses. Product designs change, but almost every Web shop will, every
now and then, show outdated product images and product descriptions, and the picture
of me on my university Web page does obviously not match with how | really look while
writing this foreword. Data and programs are human-made artifacts, and they do not

automatically align with changes in the environment they represent.

This problem at the interface between reality and the representations of reality in the
components of computer information systems is one of the root causes whenever
computers do not behave as we expect them to do: When they make wrong decisions,

provide wrong information, or cancel business processes unexpectedly. If a customer

Vi

database contains outdated address data, a shipment to that address will fail, if the
weight of a product in data differs from the actual weight, incorrect shipping charges
will be computed; and if a part number for consumables or spare parts is missing in a
database of inventory, the automatic procurement of those items will fail. Relevant

examples can be found in every major organization.

Since the 1990s, the systematic analysis of the quality of computer data has become
an established field of research, known as “Data Quality Management” (DQM), and its
broader notion “Information Quality Management" (IQM). One of the early works on
this topic is the thesis by Mark David Hansen, entitled "Zero Defect Data"', published
in 1991. In the following years, numerous theoretical concepts, technical solutions and
practical implementations have emerged. In business practice, there is a wealth of
products and services available that promise to systematically improve the quality of

data or information in enterprises and value chains.

Sadly, though, data quality in many organizations is still insufficient. One reason for
this is that the interface between reality and representations of reality in computer
systems is itself not accessible for computer-based solutions. In essence, a computer
program cannot determine whether its components properly represent reality, because
it lacks a sufficient sensory apparatus. For instance, a Web application that supports
declaring your income tax cannot validate whether its processing matches the latest
state of the tax laws. Admittedly, computers can increasingly validate the consistency
within those representations, e.g. spot outliers in data based on statistical approaches
or compute logical contradictions within formally specified business models. Still, the
interface between reality and the models of reality itself remains inaccessible to them.

Typical approaches in data quality management therefore focus either (1) on helping
human actors to better collect and maintain data and process specifications, or (2) on
spotting and correcting problems within the model world of a computer, as in the

validation of data based on syntactic validation rules.

In computer science, the fundamental problem of the interface between reality on one
hand and models of reality inside computers on the other has been studied for about
20 years under the term "ontologies". Ontologies are specifications of models of reality

that aim at being consensual among many people and applicable to a broad range of

1 Hansen, M. (1991): Zero Defect Data. MSc thesis, Sloan School of Management, Cambridge, Mass.
(USA): MIT, http://hdl.handle.net/1721.1/13812.

VI

scenarios. They typically include at least some formal axioms and the underlying
modeling decisions are influenced by philosophical principles, e.g. regarding the
identity and unity of objects. The formal axioms enable a computer to spot
contradictions in the models, draw additional conclusions, and to automatically
translate between multiple data models of the same subject area, at least to a certain

degree. The philosophical grounding can increase the general validity of the model.

Ontologies are a promising attempt to improve the consistency and accuracy of models
of reality. While they do not take away the fundamental barrier between reality and the
model world of computers, because they are models themselves, they add a formally
specified and philosophically grounded intermediate level, which can reduce the

problem.

In 2001, Berners-Lee, Lassila and Hendler applied the idea of ontologies in computer
science to the problem of information interchange on the World Wide Web and
described the vision of a "Semantic Web", in which computers are increasingly able to

process information at the level of meaning?.

In this thesis, Christian Flrber analyzes the use of the ideas and technological
components of the Semantic Web, in particular ontologies, for better data quality

management. His approach is characterized by the following two main innovations.

(1) While traditional data quality management formulates requirements and metrics
at the very low level of system-specific database schemas, he lifts these to a
generic, business-level understanding of a domain of interest.

(2) He proposes the use of a Semantic-Web-powered Wiki for organizing the
elicitation and management of validation rules and metrics, thus increasing the

inclusion of domain experts into these processes.

In essence, this approach can increase the quality and reusability of data quality
knowledge. It will be easier for domain experts to be involved, it will be less effort to
validate the consistency of data quality rules and metrics, and the rules and metrics
can be applied to a broad set of data sources, because they abstract from the

implementation details of a particular database schema.

2 Berners-Lee T., Hendler J., Lassila O. (2001): The Semantic Web. Scientific American. 284(5): 28-37.
IX

The topic of this thesis is practically relevant to almost any organization, and the
proposed solution is a very promising application of the Semantic Web technology
stack to real-world problems. | sincerely recommend this work and am confident it can
help improve both our understanding and the state of implementations of data quality
management as a whole.

Dr. Martin Hepp

Professor of General Management and E-Business

Universitat der Bundeswehr Miinchen

Preface

As this thesis is being published, we are in the middle of the digital age in which people
utilize their mobile devices to permanently share and consume data, while society still
struggles with data protection issues and credibility of information. Moreover, we are
entering an age, in which the massive amount of data is being used to increase the
degree of automation and to precisely predict future events. Data quality issues will
more and more hinder these developments, unless suitable architectures will be

provided that help to reduce them.

This dissertation, therefore, describes an innovative way on how to manage data
quality by utilizing knowledge representation and processing technologies which have
been brought up by the Semantic Web initiative of the World Wide Web Consortium
(W3C) and the Semantic Web research community. Based on a literature analysis of
typical data quality problems and typical activities of data quality management
processes, | developed the Semantic Data Quality Management (SDQM) framework
as a major contribution of this thesis. The SDQM framework consists of three major

components:

(1) an ontology for the machine-readable representation of quality-relevant
knowledge,

(2) a semantic wiki that is connected to the ontology to facilitate structured
capturing of quality-relevant knowledge, and

(3) a Web-based reporting frontend for data quality monitoring and assessment

based on the captured knowledge.

The framework has been evaluated in three different use cases based on real-world
data. Moreover, we compared SDQM with conventional data quality software to identify
strengths and weaknesses of the approach. Besides technical results, this thesis

delivers four theoretical findings, namely

(1) a comprehensive typology of data quality problems of information systems and

Semantic Web data,

Xl

(2) ten generic data requirement types,

(3) a requirement-centric data quality management process fitted to the needs of
the SDQM framework, and

(4) an analysis of related work.

This dissertation would not have been possible without the support of my family,
colleagues, and friends. Therefore, | would like to thank my supervisors, Prof. Dr.
Martin Hepp and Prof. Dr. Michael ERig, for the precious discussions, their guidance,
and their dedication to support my thesis project.

Moreover, | would like to thank Andreas Radinger, Alex Stolz, Dr. Mouzhi Ge, Uwe
Stoll, Dr. Bene Rodriguez-Castro, Leyla Jael Garcia-Castro, Prof. Dr. Heiner
Stuckenschmidt, Dr. Holger Knublauch, and everyone else from the Semantic Web

community who supported me with valuable hints and discussions.

| would also like to thank my parents, Magrit and Claus-Dieter Firber, for encouraging
me to always follow my passion. But most of all, | have to thank my wife Tanja for her
love and support over all these years and for giving me the freedom to spend so much

time on this thesis.

Dr. Christian Fiirber

Xl

Table of Content

Table Of CONLENLccoi e s s nn s s sn e e e mnn e e mnnenan X
[o T 11 Y3 XIX
LSS 0 =1 o - R XX
List of ADDreviations..........ccceieciceiiiecceerisscere e sne e s s nnne e s XXV
PART I - Introduction, Economic Relevance, and Research Design.................... 1
BT |14 e Yo 10 T2 £) o PR 1
1.1 Initial Problem Statementc..ccoovveeeeeeeiiieeeeeee e 1
1.2 ECONOMIC REIBVANCE. ...t 3
1.3 Organization Of thiS TRESIScceeeeeeeeeieeeeee et 6
1.4 PUBISREA WOIK ...t 6
R O B =0 To) O =T o) = ¢ 7
1.4.2 Papers in Conference Proceedings............ccccoccceevcouiiiiiesciiiiiiciiceceee 7
1.4.3 Other PUDIICALIONScoeeeeee ettt 7
2 Research Design ... 8
2.1 Semantic Technologies and OntolOGIES..............ccccceereeecceeeeaiiiiaeessiiiaaeen, 8
2.2 RESEAICH GOAI ..o 9
2.3 ReSearch QUESHIONS...........cc..uueeeeeee ettt e e e aneees 11
2.4 Research Methodologyc.ccoomiiiiiiiiiiieii e 12
2.4.1 Design Science Research Methodology............c.cccccoueeeisceieeasiiaaeesen. 13
2.4.2 Ontology Development MethodolOgycccceeceeieeeeiiiesiiiicieee 18

XII

PART Il - Foundations: Data Quality, Semantic Technologies, and

the Semantic Web.........ccoovimiiiii 20
3 Data Qualitycccerceeiiiinr e —————————— 20
3.1 Data Quality DIMENSIONS............cceeieeeiiiieiiieeie et 21
3.2 Quality Influencing ArtifactS..............cueeeeueeeeeeeeeee e 24
3.3 Data Quality Problem TYPescccuuiieeciiiaieneieeie e 26
3.3.1 Quality Problems of Attribute Valuescccccevviiiiii s 28
3.3.2 Multi-Attribute Quality Problems ... 30
3.3.3 Problems of Object Instances
3.3.4 Quality Problems of Data Modelsccoceiiiiiiiiiiiiiieniee e 34
3.3.5 Common Linguistic Problemsccccireiiiieieee e 38
3.4 Data Quality in the Data LifeCYCleccouiiieiiiiiiiiieiiiiesee e 39
3.4.1 Data Acquisition Phase
3.4.2 Data Usage Phase...............
3.4.3 Data Retirement Phase
3.4.4 Data Quality Management throughout the Data Lifecycle...................... 42
3.5 Data Quality Management ACHIVIties..............ccoccueeeeieesieeiieicieeeee 43
3.5.1 Total Information Quality Management (TIQM).........c.ccocoviiriiiiiiienieenns 43
3.5.2 Total Data Quality Management (TDQM)ccociiiiiiiiiiiiiieeeeee 47

3.5.3 Comparison of Methodologies

3.6 Role of Data Requirements in DQMcccoeeeeeeeeeeeciiieeeeiiieeeeeienn 49
3.6.1 Generic Data Requirement TYPEScc.evveiiiiiiieiiiiiiie e 50
3.6.2 Challenges Related to Requirements Satisfaction.............cccccccceereennnen. 54

4 Semantic Technologiescccciiiriiiiininns s 56

4.1 Characteristics of an ONtOIOGYceeeeiiueeeeeeiiiieeesseeeeseaa e 56

4.2 Knowledge Representation in the Semantic Webcccceevveveveeannnn.

4.2.1 Resources and Uniform Resource Identifiers (URIs)
4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links....

4.2.3 Constructing an Ontology with RDF, RDFS, and OWL.........c.cccccevnnee.
4.2.4 Language Profiles of OWL and OWL 2..........cccociiiiiiiiiieieenieeeeeee 63
4.3 SPARQL Query Language for RDF...............cooccuiieeeeiieeeeiee e 64

XV

4.4 Reasoning and INfErenCingccoeuuuiueeeiiisciiiaeeeiee e 65

4.5 Ontologies and Relational Databasesccccceeeveveeessiieeeesiieeeaeenne 67

5 Data Quality in the Semantic Web...........ccoccciiinniinnnn e 69
5.1 Data Sources of the Semantic Webc..oueeeeeiiiieeeeeieeieeeeeee 69
5.2 Semantic Web-specific Quality Problems...............ccccccoceeeveescveniceiincnens 71
5.2.1 Document Content Problems.............coooiiiiiiiiiiiiieceeeeeeeeeceeeeeee e, 72
5.2.2 Data Format ProblemsS........ccoooiiiiiiiiieeeeeeeeeeeee e 72
5.2.3 Problems of Data Definitions and Semantics.........cc.c.cccooeviiiiiviiiiennnn.n. 73

5.2.4 Problems of Data Classification

5.2.5 Problems of Hyperlinkscooiuiiiiiiiiiiie e

5.3 Distinct Characteristics of Data Quality in the Semantic Web 76

PART Ill - Development and Evaluation of the Semantic Data Quality

Management FrameWOrK........ ... 78
6 Specification of Initial Requirements............ccoccniiiiiiin e 78
6.1 MOtVALING SCENAIIO.coceeeeieie et 78
6.2 Initial Requirements for SDQM..............ccccccoiiiieimiiiiiiieieeeeeeeee 79
6.2.1 Task Requirements..............
6.2.2 Functional Requirements
6.2.3 Conditional ReqUIremMentscccceviiiiiieiiiiiiee e 83
6.2.4 Research RequiremMentscoooiiiiiiiiiiiiii e 85
6.3 Summary of SDQM’S ReQUIrementscccccueeeemeeseesciesnieeaeee 86

7 Architecture of the Semantic Data Quality Management

Framework (SDQM)cccuveirmmrminiiriinsssss s s s s ssss e sssnssnesan 87
7.1 Data ACQUISIEION LAYEIccooeeeeeeeeeeee et 88
7.1.1 Reusable Artifacts for the Data Acquisition Layer...........cccccoeveeereennnen. 89
7.1.2 Data Acquisition for SDQMcociiiiiiiiiiiiiiice e 90

7.2 Data Storage Layer.............coccuiiiiiiiiiiiiii e 91
7.2.1 Reusable Artifacts for Data Storage in SDQM..........c.ccceviiiiiiiiiiiiiinees 91
7.2.2 The Data Storage Layer of SDQM..........ccccoeiiiiiiiiiiiiiice s 92

XV

7.3 Data Quality Management Vocabulary

7.3.1 Reuse of Existing Ontologies................
7.3.2 Technical Design of the DQM Vocabularycccocceiiiiiiiiiiiniicenn, 96
7.4 Data Requirements EQItOr...............cceeeemiiiieeieieeeeee e 99
7.4.1 Reusable Artifacts for SDQM’s Data Requirements Editor................... 100
7.4.2 Data Requirements WikKi...........ocoeeiiiiiiiieiiiiee e 101
7.5 REPOMING LAYETccceoiiiiiiiieieee e 104
7.5.1 Reusable Artifacts for SDQM’s Reporting Layer..........cccccceevvviiiiieennen. 105
7.5.2 Semantic Data Quality Manager.............cccoiiiiiiiiniiiicc e 105
8 Application Procedure of SDQMcccccmminimmirinnismrnnee s 110
8.1 PrereQUISIEESeeeeeeeeeeeee e 110
8.2 The Data Quality Management Process with SDQM...............ccccccceune.... 111

9 Evaluation of the Semantic Data Quality Management

Framework (SDQM)cocoeiiimiiierinsis s s s s s s nn s 122
9.1 Evaluation of AIQOItRMS.............cccuuveieeiiieeeeeee e 122
9.1.1 Algorithm Evaluation Methodologyccccooiiiiiiiiiii e, 122
9.1.2 Application ProCedUre...........ooeiiiiiiii e 123
9.1.3 RESUIS .. s 124
9.2 Use Case 1: Evaluation of Material Master Data.............c.....ccccccoueveennn 124
LS 0 B o= o - [y T SRR 125
9.2.2 Setup and Application Procedure of SDQM............ccocvvriiiiiiicinieennn. 125
9.2.3 Results and FINAINGSccooviiiiiiiiie e 127
9.3 Use Case 2: Evaluation of Data from DBpediaccccevvvcvveeenannn.. 132
.31 SCENAMO ..ttt 132
9.3.2 Specialties of Semantic Web Scenariosccccccceeeeeeeiiiiiiiiiiieiieee. 133
9.3.3 Setup and Application Procedurecccoooviieiiiiiiiiiiiiiee e 133
9.3.4 Results and FINAINGSuuiiiiiiiiiiiie e 135
9.4 Use Case 3: Consistency Checks Among Data Requirements................ 141
LS 3y B oY o - 4T S USSR 142
9.4.2 Application ProCedure...........coouiiiiiiiiiiiiec e 142
9.4.3 SUMIMANY ..eeieeiieiiee e eiete e e ettt e e et e e e et e e e nneaeeeeaannseeeeaaneeeaeeanneeaennnnes 144

9.5 Comparison with Talend OS for Data Quality..............c....c..........

9.5.1 Representation and Management of Data Requirements

9.5.2 Data Quality Monitoring and Assessment Reportingc.ccccceeeeee.
9.5.3 SUMMANY ..ot e
PART IV — Related WOrk.........cccuiiminiiinie s ssne e 153
10 Related WOrKooiiieiiiiiiis e 153

10.1 High-Level Classification SChema..............ccccoocoemiieiiiiiesieeeeeie e 163
10.2 Categorization SCREMQ@ccccueeeeeeeee e 154

10.2.1 Supported Data Lifecycle Step......cccoccvveriiiiiieeeiieee e 154
10.2.2 Supported Data Representation............ccccoecveveeiiieee e 155
10.2.3 Supported Data Quality Taskccccueieriiiiiiiiiieeeeeieee e 156
10.3 Conventional Rule-Based ApProaches.............ccceuceeeeeaeceeneeasiiaaaasnnenn 167
10.4 Ontology-based APProaches...........cccoecueeeeeeiieeeeeiee e 158
10.4.1 Information System-oriented Approaches...........cccccceevevveriinciiieennns 158

10.4.2 Web-oriented Approaches

TO.5 SUMMMAIY ..ottt e e e e 168
PART V = CONCIUSION......ooiiiiiii i s 171
11 Synopsis and Future Workcccoccmiinniinniinnisessnsnssssssssnnens 171

11.17 RESEAICH SUMIMAIY........c.cooiiiiiiie et 171

11,2 CONLIDULIONS ... 173

11.3 Conclusion and Future WOrk..............ccccccceoiiiiiiiiiiiiiiicieeceeee 174
Appendix A — Comparison of TIQM and TDQM.........cccccucvimmrinnnmrnninssnneessssneennns 177
Appendix B —Rules for the Evaluation of SDQM..........cccccccminiieinnincsenecssneenns 182
Appendix C — Test Data for SDQM’s Evaluationccccvveerrinniinniniennsinnnnnnns 187

Appendix D — Evaluation Results of SDQM’s Data Quality Monitoring
QUETIES ...eeeeeeeeieseessee s s se e e e s e s st esse e s e e s e e s e e s e e s nessesseeaneseneaeneenseannsessnnnasensnenanenan 191

XV

Appendix E — Evaluation Results of SDQM’s Data Quality Assessment

LT =Y =

LR =Y =1 =Y o o =N

XVl

List of Figures

Figure 1: Extended DIKW hierarchy

(cf. Bodendorf, 2006, p. 1; Rowley, 2007, p. 164)......cccvviiieeeeiiiiieeeeiieeeenne 2
Figure 2: Simplified illustration of the relationship between

business processes and datacooceirieiiiiiie i 4
Figure 3: Impact of poor data quality on organizational success.............ccccceeecuvrenen. 5
Figure 4: Design methodology as applied in this thesis (cf. Peffers et al., 2008)...... 13
Figure 5: Problem identification and motivation process as applied in this thesis..... 14
Figure 6: Process for the definition of solution objectives as applied in this thesis... 15
Figure 7: Design and development process as applied in this thesis 16
Figure 8: Demonstration and evaluation process as applied in this thesis 17
Figure 9: Ontology engineering methodology as applied in this thesis...................... 19
Figure 10: Layers in the perception of data consumers

(inspired by Redman, 2001, P. 72)....ueireeiiiiee e 25

Figure 11: Terminology applied to tabular datac.ccoi 27

Figure 12: Attribute value problems.............ccciiiiiii e

Figure 13: Multi-attribute quality problems............ccccveeiiiiie e

Figure 14: Instance-related quality problems

Figure 15: Quality problems of data modelscccceiiiiiiiiiii e

Figure 16: Example of a data value attribute conflict...............ccoccciis 37
Figure 17: Example of an attribute entity conflict............cc.ccccooiiiiiiiii, 38
Figure 18: Example of a data value entity conflictcccooiiiiiiiicicee e, 38
Figure 19: Data lifecycle (cf. Redman, 1996, p. 217)...ccccceeeeiiieeeeieee e 40
Figure 20: Total Information Quality Management (cf. English, 1999, p. 70)............ 44
Figure 21: Fundamental stages of the TDQM methodology by (Wang, 1998).......... 48
Figure 22: Challenges of requirement satisfaction.............c.cccocviiiiiiiiicnieicien, 55
Figure 23: Syntax of RDF triples (cf. Klyne & Carroll, 2004)............ccccveeviiiereeannnnen. 59
Figure 24: Linking Open Data (LOD) cloud diagram

(Cyganiak & Jentzsch, 20118).......coooviiiiiiiiiieeee e 70
Figure 25: Typology of requirements for artifact design..............cccccooiiiiiiiiiis 80
Figure 26: High-level architecture of the SDQM framework.............cccccvvveriieinieenne 87
Figure 27: Visualization of the DQM vocabulary (cf. Flrber & Hepp, 2011b) 98
Figure 28: Example for an inline query and its result (cf. Dauw et al., 2014).......... 102
Figure 29: Architecture of SDQM's data requirements Wikiccccocceeeiieninens 104

XIX

Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:

Figure 49:
Figure 50:

Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:

Web-based user interface of the Semantic Data Quality Manager 106

Configuration of data quality assessment reports in SDQMgr

Data quality assessment report of SDQMQFccocoeiiiiiiiiiniiiiiee
DQM process as supported by SDQM (based on Wang, 1998) 111
SDQM's form to register new tested Classescccceviviiiiiiiiienineene 112
SDQM's property requirement form..........ccoocveiiiiinieenie e 113
Code for a wiki page to maintain lists in the data requirements wiki...... 113
Example of new wiki page for the maintenance of legal value lists 114
Example of SDQM's form to add legal valuescccoceeviiiiiieenineens 114
Example of legal value list in SDQM's data requirements wiki 114
SDQM's form to define conditions 115
SDQM's conditional requirement form... . 116
SDQM's functional dependency reference rule formcccccceeeieieens 117
SDQM's form for timeliness requirementscccocceeiiiiiiiieniee s 118
SDQM's duplicate instance rule formcccccoviiiniiiiiiiieee 119
Data quality monitoring report of SDQMQF........cccciiiiiiiiiiiiiicieceeee 120
SDQM application procedure (based on Wang, 1998)cccceeveeene 121
Report with legal value range violationsccccooiiiiii, 127
Report with semantic accuracy score based on

value range reqQUIrEMENT..........oeeeiiiiiee et seeee e

Result of legal value requirement analysis in DBpedia

Infobox source code of Wikipedia page “Janet Wood”

AS OF JUNE 27, 2017 oo e e e e e aaaeees 136
Wikipedia page "Cy (Cyclon)” as of June 10, 2012ccccvvveeevrnnennn. 136
Out of range values for property “population” in DBpedia.........ccccccu..... 137
Wikipedia page "Downsville, Louisiana" as of June 19th 2011.............. 138
Data quality assessment report displaying syntactic accuracy results... 138
SPARQL query and result displaying duplicate property requirements . 143
SPARQL query for identification of inconsistent property requirements 144
SQL business rule in Talend OS for Data Quality..........cccccoevveiieiiineene
Selecting SQL business rules in Talend OS for Data Quality

Data quality assessment report in Talend OS for Data Quality 149
Data quality monitoring report of Talend OS for Data Quality................ 149

XX

Figure 61: High-level classification of DQM frameworks

Figure 62: Categorization schema for related work 154

Figure 63: Own classification of related workccociioiiiiiiiii 170

All figures can be accessed on www.springer.com under the author’'s name and the
book title.

XXI

List of Tables

Table 1:
Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Common data quality definitions.............cccoiiiiiiii 20
Data quality dimensions and their definitions according to

Wang and Strong (Wang & Strong, 1996)ccccvieeeiiiiiieeeiiiie e 23
First example schema "employee" ... 36
Second example schema "employee”oooviiiiiiiiiiie e 36
Generic data requirements as published in

(Flrber & Hepp, 2011a, p. 3; 2011b, P. 3) coeeeeiciiiee e 53
Simplified mapping between RDBs and ontologies (cf. Astrova, 2009) 67

Table 7: Tasks in the SDQM framework and their equivalencies in the

TDQM method (based on Wang, 1998)cccoociiiiiiiiiiiieeeeee e 81
Table 8: Summary of functional requirements including expected deliverables........ 83
Table 9: Initial requirements for the development of the SDQM framework 86
Table 10: Requirements for the data acquisition layer.............ccccoocvveiiiiiee e 88

Table 11: Analysis of existing data acquisition tools with RDF conversion support.. 89

Table 12: Requirements for the data storage layer............c.ccooiiiiiiiiii, 91
Table 13: Analysis of existing triplestores regarding their use for SDQM................. 92
Table 14: Requirements for the data quality management vocabulary

Table 15: Ontologies in the data quality space of Linked Open Vocabularies 96
Table 16: Requirements for the data requirements editorcccceeviieeiinnenn. 100
Table 17: Forms provided by SDQM'’s data requirements wiki...........c.ccocoeeiiinene 103
Table 18: Requirements of the reporting layer...........cccceveeiciiiiiiiciiiee e 105
Table 19: Reports of SDQIMGIooiiuiiiiiiieiie it 106
Table 20: Data requirements that were collected and applied for use case 1 126
Table 21: Evaluation results of SDQMgr's data quality

MONItoring reports (USE CaSe 1)cceiiuiiiiiriieiiesiee e 129

Table 22: Evaluation results of SDQMgr's data quality

assessment reports (use case 1)

Table 23: Assumed data requirements Of USE CaSE 2...........eeeviiveeeeeeeeeeiiiiiiiiiiees 134

Table 24: SDQMgr's data quality assessment results on DBpedia...........cccccecuee.... 139
Table 25: Qualitative comparison of SDQM and Talend OS for

Data Quality regarding data requirements managementcc.c..... 148

Table 26: Qualitative comparison of Talend OS for Data Quality and

SDQM regarding data quality reportingccccceeveieeeriiiiiee e 150
XX

Table 27: Results of performance analysis between Talend OS for
Data Quality and SDQM

Table 28: Comparison of TIQM and TDQM, part ONe.........cccevieeeiieeiiieeniee e 177
Table 29: Comparison of TIQM and TDQM, part tWoccceeeeeiiiieniieiiie e 178
Table 30: Comparison of TIQM and TDQM, part three............cceoeveeriiiiiiieiieee 179
Table 31: Comparison of TIQM and TDQM, part four...........ccocoveiiiieiiiiiniieiieee 180
Table 32: Comparison of TIQM and TDQM, part fivecccccceviiiiiieiiiiiieceeieeen 181
Table 33: Overview of rules used for the validation of the SDQM algorithms......... 182

Table 34: Location test data for evaluating SDQM's algorithmscccceeiieenee
Table 35: Product test data for evaluating SDQM's algorithmscccceriiieen.

Table 36: Stock quantity test data for evaluating SDQM's algorithms
Table 37: Test reference data for evaluating SDQM's

"FuncDepReferenceRules" with two propertiesccccoiiiiiieiinanns 189
Table 38: Test reference data for evaluating SDQM's

"FuncDepReferenceRules" with three properties...........ccccceeviciiieernnnnn. 189
Table 39: Test reference data for evaluating SDQM's

"FuncDepReferenceRules" with four properties............cccccceviiiiiiinnnnnn. 190
Table 40: Test reference data for evaluating SDQM's

"FuncDepReferenceRules" with five propertiesccccccveeiiiiieeennenn.

Table 41: Evaluation results of SDQM's data quality monitoring queries................

Table 42: Evaluation results of SDQM's data quality assessment queries

XXIV

List of Abbreviations

BIS
COIN
CPU
CRM
Ccsv
DIKW
DQ
DQM
DSRM
DSV
DTD
ETL
FDR
FN

FP
FuncDepReferenceRule

HTTP

ISO

JSON

KPI

Business Information Systems

Context Interchange

Central Processing Unit

Customer Relationship Management
Comma-separated Value

Data, Information, Knowledge, Wisdom
Data Quality

Data Quality Management

Design Science Research Methodology
Delimiter-separated Values

Document Type Definition

Extraction, Transformation, and Loading
Functional Dependency Rule

False Negative

False Positive

Functional Dependency Reference Rule
Hyper Text Transfer Protocol
Information Quality

Information Product

Information System

International Organization for

Standardization
JavaScript Object Notation

Key Performance Indicator

XXV

LOD
MDM
MIT
0s
oWL
oXxC
PHP
RDB
RDBMS
RDF
RDFS
RQ
SCROL

SDQM

SDQMgr
SMDM
SMW

SPARQL

SPIN

SQL

SSN

SWRL

Talend OS for DQ

TDQM

Linked Open Data

Master Data Management
Massachusetts Institute of Technology
Open Studio

Web Ontology Language
Ontology-based XML Cleaning
Hypertext Preprocessor

Relational Database

Relational Database Management System

Resource Description Framework

RDF Vocabulary Description Language
Research Question

Semantic Conflict Resolution Ontology

Semantic Data Quality Management

Framework

Semantic Data Quality Manager
Semantic Master Data Management
Semantic MediaWiki

SPARQL Protocol and RDF Query

Language

SPARQL Inferencing Notation
Structured Query Language

Social Security Number

Semantic Web Rule Language
Talend Open Studio for Data Quality

Total Data Quality Management

XXVI

TIQM
TQDM
P
TSV
UDF
URI
URL
W3C
WWwW

XML

Total Information Quality Management
Total Quality Data Management

True Positive

Tab-separated Values

User-defined Function (SPARQL)
Uniform Resource Identifier

Uniform Resource Locator

World Wide Web Consortium

World Wide Web

Extensible Markup Language

XXVII

PART | — Introduction, Economic Relevance, and Research
Design

1 Introduction

In this chapter, we will provide a brief introduction into the thesis topic, clarify our
understanding of the term “data” and its dependency to business processes and
decisions, and discuss the economic relevance of the systematic management of data

quality. Moreover, we give a short overview of the thesis structure.

1.1 Initial Problem Statement

Data has become an important resource for our business and social life. We use data
every day for transactional and decision making processes. For example, we use data
when driving to a certain place with a navigation system (e.g. Skog & Handel, 2009),
when carrying out business tasks (e.g. Otto et al., 2011), when shopping online (e.g.
Barnes & Vidgen, 2002), or when traveling from one place to another (e.g. Redman,
1996, pp. xvii-xviii). Data as society’s core information resource is in the focus of this
thesis. At present, there is no common definition of data (cf. Rowley, 2007, pp. 163,
170-172), but many definitions of data and information utilize the Data-Information-
Knowledge-Wisdom hierarchy (DIKW) as depicted in figure 1 (Fink et al., 2005, p. 66f;
Rowley, 2007, p. 163f.). The DIKW hierarchy originates from a poem by Eliot (Eliot,
1934) and an article of Ackoff (Ackoff, 1989). Bodendorf extends the DIKW hierarchy
by adding the characters layer to the bottom of the hierarchy (Bodendorf, 2006, p. 1).
Although there is no common understanding about the transformation process
between the layers of the hierarchy in detail (Rowley, 2007, pp. 163, 170-172), it
assumes that (1) information is created based on data, (2) knowledge is created based
on information, and (3) wisdom is created based on knowledge (cf. Rowley, 2007, p.
164).

1

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 1, © Springer Fachmedien Wiesbaden 2016

Wisdom

Knowledge

Figure 1: Extended DIKW hierarchy (cf. Bodendorf, 2006, p. 1; Rowley, 2007, p. 164)

Additionally, Bodendorf argues (1) that data are created from characters of a character
set based on defined syntax rules and (2) that data become information by assigning
meaning to data (Bodendorf, 2006, p. 1). Other definitions of data also regard data as
“discrete, objective facts or observations” without meaning or value on its own (Rowley,
2007, p. 170f.). However, many definitions of information consider data as the major
ingredient of information that is associated with meaning, context, relevance, and
purpose during processing (Rowley, 2007, pp. 170-172). In other words, the definitions
state that data processing makes data “meaningful, valuable, useful and relevant”
(Rowley, 2007, p. 172) and, therefore, data processing generates information.
Throughout this thesis, we regard data as “re-interpretable representation of
information in a formalized manner suitable for communication, interpretation, or
processing” (ISO/IEC, 1993, Section 01.01.02). For the remaining chapters of this
thesis, we do not clearly distinguish between data and information and, therefore, use
the terms “data” and ‘“information” interchangeably. Moreover, based on the
relationships within the hierarchy, we assume that “high-quality information can only
come from high-quality data.” (Redman, 1996, p. 11). Hence, if the consumed data is
incorrect, we may derive wrong information and, therefore, make wrong decisions or
processes that rely on wrong data may fail (cf. English, 1999, pp. 10-12; Redman,
1996, pp. 6-11).

Researchers and practitioners have addressed the issues of data quality for over two
decades (cf. Ge & Helfert, 2007; Madnick et al., 2009, pp. 2-4), yet many people within

organizations still do not fully trust their own data (Grosser & Bange, 2009, p. 10).
According to studies by Madnick and Zhu, many data quality problems may be drawn
back to misinterpretations of data due to heterogeneous semantics (Madnick & Zhu,
2006). Semantic technologies, such as the representation of knowledge in
ontologically grounded structures (cf. Gruber, 1993, pp. 200-203), may help to improve
data quality since they provide means for the concise semantic interpretation of data
and its intended uses by machines (cf. Hepp, 2008b, pp. 13-15). Recently, a wide
range of semantic technologies predominantly originating from artificial intelligence
and knowledge management have been used in line with the Semantic Web initiative
led by the World Wide Web Consortium (W3C) to publish, share, integrate, link, and
consume data on web-scale (cf. Berners-Lee et al., 2001; Bizer, Heath, et al., 2009).
Thereby, many technologies have evolved which may also be applied in the field of
data quality management. Moreover, the availability of data on web-scale and its reuse

for data quality management may significantly reduce the manual effort.

This thesis examines how we can use semantic technologies and data published on
the Semantic Web for data quality management. The examination thereby focuses on
data quality problems in relational databases as used by many information systems,

but also addresses quality management of heterogeneous data for the Semantic Web.

1.2 Economic Relevance

Many researchers and practitioners of the data quality community agree that the level
of data quality influences the economic success of an organization (e.g. Batini &
Scannapieco, 2006, p. 1f.; Eckerson, 2002; English, 1999, pp. 6-13; Loshin, 2001, p.
10; Olson, 2003, pp. 12-14; Redman, 1998). However, there is only little evidence that
the economic success of an organization is indeed influenced by data quality (cf. Ge
& Helfert, 2013, p. 75). Today, it is widely known that the execution of business
processes relies on information technology that facilitates the creation, maintenance
and retrieval of data about entities and events (cf. Porter & Millar, 1985). People and
machines that interact within these processes create or retrieve information to perform
tasks. Information is thereby represented as data. The information system acts as an
intermediary between actors of processes and data itself. Therefore, the information

system provides functions and access facilities for information creation, maintenance

and retrieval (cf. Redman, 2001, pp. 43-45). Figure 2 illustrates this relationship

between business processes, information systems, and data.

Figure 2: Simplified illustration of the relationship between business processes and data

Due to this dependency between business processes and data, we assume that
incorrect data can negatively influence the execution of an organization’s processes
and tasks. Our assumption is supported by a study that discovered that 83 % of the
participants believe that poor data quality influences the potential of creating business
value (Grosser & Bange, 2009, p. 11). Redman states that data quality affects an
organization on all levels, i.e. on operations, tactical and strategic level (Redman,
1998, p. 80f.). He defines the activities that are performed on the operations level as
“day-to-day tasks such as order entry, customer support, and billing” (Redman, 1998,
p. 80), the activities performed on the tactics level as “decisions made by (usually) mid-
level managers that have consequences in the short-term to mid-term” (Redman,
1998, p. 80) and the activities performed on the strategic level as “long-term business
directions” (Redman, 1998, p. 80). Based on these definitions, we categorize business
processes into operational processes and decision-making processes. We thereby
understand a business process as “a collection of activities that takes one or more

kinds of input and creates an output [...]” (Hammer & Champy, 2002, p. 35).

In operational processes, incorrect data may lead to the incorrect execution of a task
(cf. Redman, 1996, p. 4f.). For example, if the bank account details of a customer are
incorrect, payments cannot be made and, therefore, revenue will not be achieved or a
wrong account will be charged. Moreover, wrong address data in the customer

database can lead to wrong or delayed delivery of an ordered product which may cause
a decrease in customer satisfaction and, therefore, reduce the probability for future
revenues from that customer (Redman, 1998, p. 80). In decision-making processes,
incorrect data raises the risks to make incorrect decisions (Redman, 1996, p. 9f.). For
example when performing make-or-buy decisions based on aggregated cost values,
unawareness about missing cost figures within the aggregated results may lead to
wrong assumptions about the real costs. Thus, the risk for an incorrect make-or-buy

decision is much higher with poor data.

Higher Costs

issed Revenues

[Poor Decisions]

Poor Data : N Wb
Quality [Failed Business Processes] .

£/ ; . = | Lower Stakeholder
[Falled Projects] / Satisfaction

Fatal Disasters

Figure 3: Impact of poor data quality on organizational success®
In consequence, poor data quality may impact the satisfaction of stakeholders (e.g.
customers and employees), cause unnecessary costs (e.g. data correction costs or
costs of failure), reduce product and service quality, reduce revenues, and even cause
fatal disasters (Fisher & Kingma, 2001; Redman, 1996, pp. 6-14, 39). Figure 3

summarizes the impact of poor data quality on organizational and economic success.

However, the quantification of the economic impact of data quality is difficult (Ge &
Helfert, 2013, p. 75). According to findings by Redman, we can estimate the average
total costs of poor data quality in businesses as high as 8-12 % of a company’s
revenues (Redman, 1998, p. 80). The Data Warehousing Institute even estimates that
poor customer data quality costs U.S. companies more than 600 billion US Dollar per
year (Eckerson, 2002, p. 5).4

Without the systematic management of data quality, business processes and decisions

are at risk to be affected by data quality issues, especially in systems that automatically

3 Summary based on (Eckerson, 2002; English, 1999, pp. 3-13,209-212; Redman, 1998)
4 It must be stressed that the authors do not provide many details about how these estimates have been
generated.

5

perform actions based on data (cf. Loshin, 2001, p. 171). Thus, with the growing use
of information systems and the reduction of human intervention and supervision, data
quality management becomes critical for the economic success of businesses and
organizations in general (cf. English, 1999, p. 13; Ge & Helfert, 2013, p. 75; Redman,
1996, p. 12).

1.3 Organization of this Thesis

This thesis is separated into the following five parts:

- Part | - Introduction: Economic Relevance, and Research Design

- Part Il - Foundations: Data Quality, Semantic Technologies, and the Semantic
Web

- Part lll - Development and Evaluation of the Semantic Data Quality
Management Framework

- Part IV - Related Work

- Part V - Conclusion

Part | outlines the initial problem, sketches its economic relevance and describes the
research methodology for this thesis. Part Il provides the theoretical foundations and
defines terminology required for the understanding of the thesis. Part 11l describes the
design process, solution architecture, application process, and evaluation results of
the Semantic Data Quality Management Framework (SDQM) which has been
developed as part of this thesis project. Part IV discusses related work in the area of
data quality management with Semantic Web technologies. Part V summarizes the
results of the research project, derives conclusions from the findings, and outlines

future work.

1.4 Published Work

With permission by the PhD committee and in accordance with the regulations at the
Universitat der Bundeswehr Miinchen, parts of the work presented in this thesis have
been published at peer-reviewed conferences or in other venues. The following is a

complete list of such publications.

1.4.1 Book Chapters

Firber, C., and Hepp, M. (2013). Using Semantic Web Technologies for Data Quality
Management. In: Handbook of Data Quality: Research and Practice, (pp. 141-161),
Editor: Sadiq, S., Springer, Berlin Heidelberg.

1.4.2 Papers in Conference Proceedings

Farber, C. and Hepp, M.: SWIQA — A Semantic Web Information Quality Assessment
Framework, in: Proceedings of the 19th European Conference on Information Systems
(ECIS 2011), June 9th — 11th, 2011, Helsinki, Finland.

Firber, C. and Hepp, M.: Towards a Vocabulary for Data Quality Management in
Semantic Web Architectures, in: Proceedings of the 1st International Workshop on
Linked Web Data Management (pp. 1-8), March 25th, 2011, Uppsala, Sweden.

Flrber, C. and Hepp, M.: Using Semantic Web Resources for Data Quality
Management, in: Proceedings of the 17th International Conference on Knowledge
Engineering and Knowledge Management (pp. 211-225), 2010, Lisbon, Portugal,
Springer LNCS Vol. 6317.

Farber, C. and Hepp, M.: Using SPARQL and SPIN for Data Quality Management on
the Semantic Web, in: Proceedings of the 13th International Conference on Business

Information Systems (pp. 35-46), 2010, Berlin, Germany, Springer LNBIP Vol. 47.

1.4.3 Other Publications

Firber, C. and Hepp, M.: Ontology-Based Data Quality Management — Methodology,
Cost, and Benefits, Poster at the 6th Annual European Semantic Web Conference,
2009, Heraklion, Greece.

2 Research Design

In this chapter, we first provide a definition for the terms “semantic technologies” and
“ontologies” to provide a basic understanding for the following chapters. After that, we
define the research goals and research questions. This chapter concludes with the
research methodology that has been applied to generate the answers to the research

questions and achieve the research goals.

2.1 Semantic Technologies and Ontologies

Originally, the use of the term "semantics" as a noun or "semantic" as an attribute was

limited to the academic fields of

(1) semiotics, i.e. “the study of signs and symbols” (McComb, 2004, p. 9),
(2) linguistics i.e. “the study of language” (McComb, 2004, p. 8).

In semiotics, semantics is the name for studying the relationships between signs and
meaning (cf. Hoyningen-Huene, 1998, p. 251). In linguistics, it is "the study of meaning
in language" (Riemer, 2010, p. i). In computer science, the term "semantics" has been
used in the context of programming languages since the 1960s, with work by Floyd
(Floyd, 1967) being the most prominent initial reference. In this context, "semantics"
stood for the formal analysis of the execution of programs. With the advent of artificial
intelligence as a field, the notion of "semantics" in computer science got broader,
including the representation of terminological and factual knowledge by data structures
(cf. Sowa, 2014).

In 2001, Berners-Lee et al. described the vision of a "Semantic Web" as an evolution
of the World Wide Web into an ecosystem in which information would be represented
and interlinked in ways accessible to computers and not just human consumers of a
visual rendering (cf. Berners-Lee et al., 2001). This contribution has triggered a broad
usage of the term "semantics" as study of representation, sharing, and processing of
meaning in computer systems (cf. Hitzler, 2008, p. 13). Semantic technology is then
the broad range of approaches for contributing to that end. Therefore, this thesis sees
“semantic technologies” as technical approaches that facilitate or make use of the

interpretation of meaning by machines. A prerequisite for machine interpretation of

8

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 2, © Springer Fachmedien Wiesbaden 2016

knowledge is the collection and storage of relevant knowledge in a way that machines
can understand. This can be achieved via knowledge representation languages such
as the Resource Description Framework (RDF) (Manola & Miller, 2004) and the Web
Ontology Language (OWL) (Bechhofer et al., 2004).

The term "ontology" is frequently used in the context of semantic technology, and there
are many different options to define it (cf. Hepp, 2008b, pp. 3-6). It originates from
philosophy and expresses the study of existence (cf. Gasevic et al., 2006, p. 45). In
computer science, we can understand an ontology as “an explicit specification of a
conceptualization” (Gruber, 1993, p. 199). “Conceptualization” can be seen as “an
abstract model of some phenomenon in the world which identifies the relevant
concepts of that phenomenon” (Alexiev et al., 2005, p. 16). “Explicit” means that these
concepts and their restrictions are explicitly represented within an ontology (Alexiev et
al., 2005, p. 16). Grimm et al. extend this definition by additional characteristics of
ontologies in the context of knowledge representation and define it as “a formal explicit
specification of a shared conceptualization of a domain of interest” (Grimm et al., 2007,
p. 69). Based on these definitions, we understand ontologies as a formal and sharable
means to explicity model some real-world phenomenon for machine-readable
knowledge representation. A detailed discussion about the characteristics of

ontologies will be provided in section 4.1.

2.2 Research Goal

This thesis aims to investigate the usefulness of ontologies to support data quality
management activities. Ontologies promise the concise representation of domain
knowledge with its entities and relationships in a machine-readable way (cf. Grimm et
al., 2007). In the context of data quality management, ontologies could provide the

following benefits:

Knowledge reuse: The management of data quality requires capturing business
knowledge in the form of logical rules that define the characteristics how to recognize
incorrect data (cf. Loshin, 2001, p. 179). According to Loshin this knowledge “reflects
the ongoing operations of a business” (Loshin, 2001, p. 185) and the same knowledge
may also be relevant for other business areas (cf. Loshin, 2001, p. 286). For example,
data requirements, such as the definition of credible values for a certain data element,

could not only be used for data quality measurement, but also for the verification of

9

new data entries or imported data (cf. Loshin, 2001, p. 9). In many systems, such
knowledge is often hidden within application logic. In order to make such knowledge
reusable and transparent to business users, it is necessary to move it out of the
application logic into an explicit representation (cf. Loshin, 2001, p. 279). One possible
solution to preserve and publish data knowledge in a reusable way could be the
structured representation of that knowledge via ontologies. E.g. data requirements
could be represented with help of an ontology and linked to the accordant data
element. Moreover, the data element could be linked to the data owner and the
business tasks in which the data is being processed to support organizational tasks of

data quality management.

Semantic reconciliation: Due to the expressivity of ontologies, it is possible to
precisely define the semantics of data. When requesting information, we often ask
ambiguous questions that may lead to completely different answers depending on the
interpretation of an individual. With the use of ontologies, we are able to explicitly
represent the concise semantics of data and annotate formal and informal definitions.
This may lead to a reduction of misunderstandings and misinterpretations (cf. Madnick
& Zhu, 2006).

Creation of a shared understanding: Explicit knowledge representation of a domain
in form of an ontology facilitates communication about different viewpoints and thereby
supports the creation of a shared understanding about a domain (cf. Fensel, 2001, p.
2; Hepp, 2008b, p. 5; Uschold & Gruninger, 1996, p. 8f.) Moreover, it is possible to
enrich the elements of an ontology by textual definitions. If maintained precisely, such
human-readable definitions may additionally reduce ambiguity and, therefore, support
a common understanding (cf. Hepp, 2008b, p. 13).

Content integration: Several research approaches discuss the usefulness of
ontologies for data and content integration within and across enterprises (cf. Alexiev
et al., 2005; Fensel, 2002; Kokar et al., 2004; Niemi et al., 2007; Perez-Rey et al.,
2006; Skoutas & Simitsis, 2007; Souza et al., 2008; Wache et al., 2001). The
distribution of data and quality-relevant knowledge requires superior integration
capabilities when managing data quality. Data quality management may, therefore,

benefit from the integration capabilities of ontologies.

Deduction of implicit knowledge: Due to the explicit representation of concepts and

relationships including their semantics within ontologies, it is possible to infer implicit

10

knowledge, e.g. through reasoning engines (Hepp, 2008b, p. 15). This novel feature
of ontology-based information systems may open up additional capabilities for

business cases, such as data quality management.

2.3 Research Questions

In order to evaluate the potential benefits of semantic technologies, we develop a
prototype that utilizes ontologies to support data quality management tasks. We

address the following research questions (RQ).
RQ1: What kind of data quality problems exist?

Data quality management aims to improve data quality. In order to investigate the
usefulness of ontologies in this domain, we first need to know the types and causes of
data quality problems that may occur in information systems. Hence, we initially

examine the characteristics of data quality problems.
RQ2: Which activities have to be performed during data quality management?

In order to identify the required capabilities which may be supported by semantic
technologies, we have to analyze the data quality management process for the tasks

that have to be performed to manage data quality.
RQ3: Which knowledge has to be represented to support data quality management?

Based on the identification of activities which are part of data quality management and
the types of data quality problems, we need to identify the knowledge required to

perform these tasks.

RQ4: How can we represent knowledge relevant for data quality management to

reduce manual work?

The identified knowledge shall be represented with modeling elements of an ontology
language. The ontology shall thereby be processable by both humans and machines
to reduce manual efforts for data quality management.

RQ5: How can we utilize knowledge for data quality management represented within

ontological structures?

11

Once the data quality management knowledge is captured and represented in
ontological structures, we need to find ways to use this knowledge for performing data
quality management tasks. Thus, artifacts are needed to process the represented
knowledge to serve data quality management tasks.

In order to satisfy the reusability of the findings, this thesis aims to provide domain

independent solutions to the above research questions.

2.4 Research Methodology

According to Hevner et al. the information systems discipline is dominated by two
research paradigms: behavioral science and design science. “The behavioral-science
paradigm seeks to develop and verify theories that explain or predict human or
organizational behavior. The design-science paradigm seeks to extend the boundaries
of human and organizational capabilities by creating new and innovative artifacts”
(Hevner et al., 2004, p. 75). This thesis focuses on the design science paradigm to
develop an innovative framework based on semantic technologies, called the Semantic
Data Quality Management framework (SDQM), which aims to improve and extend the
capabilities required for data quality management by providing efficient mechanisms
to store and retrieve quality-relevant knowledge. Part of the framework is an ontology
for sharing and utilizing quality-relevant knowledge, which we will refer to as the DQM
Vocabulary in the following. The development procedure of SDQM is, therefore, based
on two development methodologies: (1) the design science research methodology
(DSRM) process by Peffers et al. (Peffers et al., 2008, p. 52ff.) for the development of
the general framework of SDQM, and (2) the ontology engineering methodology by
Uschold and Gruninger (Uschold & Gruninger, 1996) for the development of the DQM

Vocabulary. Both methodologies will be explained in the following sections.

12

2.4.1 Design Science Research Methodology

The design science research methodology (DSRM) is based on an analysis of
similarities between several different design methodologies to identify a consensual
way to perform design science research (cf. Peffers et al., 2008, p. 52). In detail, DSRM

has the following six processes (Peffers et al., 2008):

1
2
3
4
5
6

Problem identification and motivation
Define the objectives for a solution
Design and development
Demonstration

Evaluation

P ey
= O D= —

Communication

We chose to adjust the original DSRM by procedures and tools that have been proven
to be pragmatic means during the development of the framework. For instance, we use
a motivating scenario to illustrate the problem domain (cf. Uschold & Gruninger, 1996)
and a requirements register to keep track of SDQM'’s requirements throughout its
development. Figure 4 shows an adjusted version of the DSRM as chosen for this

thesis including the generated outputs of the process steps.

Design Process Output

Problem Identification and | | « MotivatingScenario
Motivation + Initial Requirements
Definition of Solution Objectives : ':m.ﬁ'::m" e

... B

Design and Development

* New, extended, or
configured Artifacts

= Evaluated Artifact

Demonstration and Evaluation * Application Procedure
+ Detailed Architecture
S
* Presentation

Figure 4: Design methodology as applied in this thesis (cf. Peffers et al., 2008)

13

The pure sequential execution of DSRM may not be possible in many cases due to
incomplete knowledge (cf. Peffers et al., 2008, p. 56). For example, important technical
requirements or defects in the developed artifacts may be initially discovered during
the evaluation phase and, therefore, require to change the requirements register as
part of the “Definition of solution objectives” phase and cause a change of the artifact
in the development phase. Therefore, we added iteration paths that have occasionally
been used during this thesis project to return to previous process steps. In the

following, we will describe each process of the adjusted DSRM as applied in this thesis.

Problem identification and motivation: The design science research process
typically starts with the identification of the research problem and the justification of its
relevance (cf. Peffers et al., 2008, p. 52f.). In this thesis, we initially describe the
general problem and its economic relevance in chapter 1. We further specify the
problem by defining and motivating the research goals in section 2.2 and research
questions in section 2.3. Since the research goals and research questions by
themselves are not sufficient for the development of an artifact that shall be used in
practical settings, we further specify the problem definition by deriving initial
requirements from a motivating scenario in chapter 6. The motivating scenario is based
on a practical problem setting in which the artifact shall be used (cf. Uschold &
Gruninger, 1996, p. 29f.). Besides the practice-oriented requirements from the
motivating scenario, the initial requirements also encompass research requirements

derived from the research goals of this thesis.

Initial problem
statement and
economic
relevance

v

Define and
motivate research
goal

v

Define motivating
scenario
(practical setting)

v

Derive initial
requirements

v

Definition of the objectives of
the solution

Figure 5: Problem identification and motivation process as applied in this thesis

14

Definition of solution objectives: Solution objectives are the objectives that the
developed solution shall fulfill. Based on the initial requirements, we design a high level
architecture with components that shall meet the requirements that were defined in the
previous process. We then describe the purpose of each component and map the initial
requirements to the accordant components of the solution architecture. At this point,
new requirements may arise due to increasing knowledge about the problem domain.
The new requirements should, therefore, be added to the initial requirements during
the “review initial requirements” process step. The execution of this process differs
from the original process as described in (Peffers et al., 2008, p. 55) as we already
start to sketch a solution architecture and map requirements to define the objectives
of the solution components. We argue that our procedure is more pragmatic and
reduces complexity, since our objectives are defined as concrete deliverables based
on the initial requirements which encompass the research requirements. Finally, we

already start to analyze and collect related work to identify reusable artifacts.

Problem identification and
motivation

'

Design high level
architecture

v

Describe purpose
of each
component

v

Map initial
requirements to
components

v

Review intial
requirements

v

Start analyzing
and collecting
related work

Figure 6: Process for the definition of solution objectives as applied in this thesis

15

Design and development: Before we start to actually develop the artifact, we first
analyze whether existing artifacts can be reused for the components of our framework.
The analysis is based on the description of components and its accordant
requirements from the previous process. In cases of more than one reusable artifact
for one component, the most appropriate artifact has to be chosen. In cases where an
existing artifact only partially fulfills the requirements, the artifact may be extended
before its reuse. In cases where no suitable existing artifact can be found, a new artifact
has to be developed from scratch according to the component’'s requirements.
Moreover, the components of the architecture usually have to be integrated into a
single framework and initially configured as part of the development process. Figure 7

illustrates the “Design and development” process as applied in this thesis.

Definition of the objectives of
the solution

Demonstration and
evaluation

Figure 7: Design and development process as applied in this thesis

16

Demonstration and evaluation: We combined the activities “demonstration” and
“evaluation” (which are originally separated in DSRM) to one process due to the tight
interaction of demonstration and evaluation. Demonstration is the application of the
developed artifact to the problem domain (cf. Peffers et al., 2008, p. 55). Evaluation
identifies how well the developed artifact fulfills its intended use (cf. Peffers et al., 2008,
p. 56). Therefore, it is typically performed based on information that has been collected
during the demonstration (cf. Peffers et al., 2008, p. 56). In this thesis project, we
perform the demonstration and evaluation process in two stages. After the
development of the artifact has been finished, we initially demonstrate and evaluate
the artifact as a prototype in a controlled environment. After the prototype has been
evaluated successfully, we continue the demonstration and evaluation in a real-world
environment as a practical use case. In cases where the evaluation identifies
unacceptable limitations, we may need to return to the design and development
process to enhance the artifact. For this project, we chose two major use cases: (1)
data quality management of material master data (section 9.2) and (2) data quality

management of Semantic Web data (section 9.3) to investigate the applicability of the

—

Demonstrate
prototype

¥

Evaluate
prototype

¥

Demonstrate
real-world
use case

¥

Evaluate
real-world
use case

artifact in both environments.

Figure 8: Demonstration and evaluation process as applied in this thesis

Communication: The DSRM ends with the communication of the research project

which is performed by this thesis. Additionally, parts of this project have been published

17

at scientific conferences. A list of conference papers that are related to this research

project can be found in section 1.4.

2.4.2 Ontology Development Methodology

The development of the DQM Vocabulary is based on the ontology engineering
method by Uschold and Gruninger (Uschold & Gruninger, 1996). Similar to the
development of SDQM, we start with motivating scenarios for the use of the DQM
Vocabulary to illustrate the problem domain and justify its relevance (cf. Uschold &
Gruninger, 1996, pp. 103, 112f.). From the scenarios, we derive stratified competency
questions that shall be answerable by queries that will be asked against the DQM
Vocabulary (cf. Uschold & Gruninger, 1996, pp. 113-117). The competency questions
serve as the requirements for the ontology. In fact, the terms used in the competency
questions are extracted and informally defined as foundation for the definition of the
ontology elements. Therefore, these terms are first classified into objects, properties
of objects, and relationships between objects. Based on this classification and the
terms derived from the competency questions, a basic ontology can be coded (cf.
Uschold & Gruninger, 1996, p. 114). To reduce ambiguity, definitions are added to the
elements of the ontology (cf. Uschold & Gruninger, 1996, p. 114). The evaluation is
done by storing instances based on the ontology and executing queries against the
ontology that attempt to retrieve answers for the previously defined competency
questions (cf. Uschold & Gruninger, 1996, p. 113f.).

18

Ontology Engineering Steps Output
I Define Motivating Scenarios

G—

l Derive Competency Questions

-E?-

l Extract Informal Terminology

—
[Classify Terminology

Evaluation

Figure 9: Ontology engineering methodology as applied in this thesis

19

PART Il - Foundations: Data Quality, Semantic
Technologies, and the Semantic Web

3 Data Quality

Data quality is a multidimensional concept (Batini & Scannapieco, 2006, p. 19ff;
Eppler, 2006; Redman, 1996, p. 245ff.; Wand & Wang, 1996, p. 87; Wang & Strong,
1996, p. 22f.) that can be defined from several different perspectives (cf. Ge & Helfert,
2007, p. 1; Kahn et al., 2002, p. 185). For example, data consumers, data producers,
data providers, and data custodians may all have different perspectives on the
definition of data quality (cf. Kahn et al., 2002, p. 184). From the consumer viewpoint,
data quality can be defined as “data that are fit for use by data consumers” (Wang &
Strong, 1996, p. 6) in analogy to the popular quality definition related to products and
services by Juran (Juran, 1988, p. 2.2).

Table 1: Common data quality definitions

Authors Year | Data Quality Definition

Wang and 1996 | “data that are fit for use by data consumers.”
Strong (Wang & Strong, 1996, p. 6)

Redman 2001 | “Data are of high quality if they are fit for their

intended uses in operations, decision making,
and planning. Data are fit for use if they are free
of defects and possess desired features.”
(Redman, 2001, p. 74)

Kahn, Strong, | 2002 | “conformance to specifications” and “meeting or

and Wang exceeding consumer expectations”
(Kahn et al., 2002, p. 185)
Olson 2003 | “[...] data has quality if it satisfies the

requirements of its intended use.”
(Qlson, 2003, p. 24)

From a more technical perspective, data is of high quality when it is “free of defects”
and “conforms to specifications” (cf. Kahn et al., 2002; Redman, 2001, p. 71ff.). Table

1 summarizes common data quality definitions from data quality research. All of the

20

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 3, © Springer Fachmedien Wiesbaden 2016

above definitions of data quality share the assumption that data quality is relative to
formally or informally defined quality expectations, such as (1) consumer expectations
and intentions, (2) specifications, or (3) requirements imposed by the usage of data,
e.g. to execute certain tasks. According to these definitions, the level of data quality is
determined by comparison of the actual state of the data (status quo) to a desired
state. The desired state is named “fitness for use”, “specification”, “consumer
expectations”, “defect-free” “desired features”, or simply “requirements” in the above
definitions. According to ISO 9000:2005, quality is defined as the "degree to which a
set of inherent characteristics fulfils requirements" (ISO, 2005, p. 18). Therefore, we
define data quality as the degree to which data fulfils requirements. The requirements
can thereby be defined (1) by quality requirements of several different individuals or
groups of individuals, (2) by standards, by (3) laws and other regulatory requirements,
(4) by business policies, or (5) even by expectations of data processing applications,

e.g. when they only process certain values or structures.

In the following, we describe relevant aspects of data quality which are important for
the understanding of this thesis. In sections 3.1 and 3.2, we describe facets of the user
perspective, namely data quality dimensions and quality influencing artifacts. In section
3.3, we describe the technical perspective of data quality, namely data quality problem
types. In section 3.4, we briefly explain the data lifecycle with regard to data quality. In
section 3.5, we provide an overview of common management methodologies for data
quality management. Finally, we explain the role of data requirements for data quality

management and define generic data requirement types in section 3.6.

3.1 Data Quality Dimensions

From a consumer perspective, data quality can be judged by multiple different data
quality dimensions, i.e. “attributes that represent a single aspect or construct of data
quality” (Wang & Strong, 1996, p. 6). Wang and Strong (1996) conducted an empirical
study to identify important quality dimensions from the perspective of data consumers
(Wang & Strong, 1996). Based on a set of over 100 data quality dimensions, they
identified fifteen most important dimensions as perceived by data consumers when
judging data quality. The dimensions can be classified into intrinsic, contextual,

representational, and accessibility dimensions (Wang & Strong, 1996, p. 18f.). Intrinsic

21

quality dimensions contain attributes of data quality “that data has on its own” (Batini
& Scannapieco, 2006, p. 39). Contextual dimensions encompass quality attributes that
can only be perceived when using data in task contexts (cf. Wang & Strong, 1996, p.
20f.). For example, completeness can only be judged together with completeness
requirements for the task at hand. The representational category includes dimensions
related to format and meaning of data such as the consistent representation of data or
the ease to understand the data at hand (cf. Wang & Strong, 1996, p. 21). The
accessibility category considers quality attributes regarding the access to data and
data access security (cf. Wang & Strong, 1996, p. 21). Table 2 provides an overview

of all fifteen dimensions including their definitions.

22

Table 2: Data quality dimensions and their definitions according to Wang and Strong (Wang & Strong, 1996)

Category Dimension Definition

Intrinsic Believability “The extent to which data are accepted or

regarded as true, real and credible.” (p. 31)

Accuracy “The extent to which data are correct, reliable
and certified free of error.” (p. 31)

Objectivity “The extent to which data are unbiased
(unprejudiced) and impartial.” (p. 32)

Reputation “The extent to which data are trusted or highly
regarded in terms of their source or content.”
(p-32)

Contextual Value-added “The extent to which data are beneficial and

provide advantages from their use.” (p. 31)

Relevancy “The extent to which data are applicable and
helpful for the task at hand.” (p. 31)

Timeliness “The extent to which the age of the data is

appropriate for the task at hand.” (p. 32)

Completeness “The extent to which data are of sufficient

depth, breadth, and scope for the task at hand.”

(p. 32)
Appropriate “The extent to which the quantity and volume of
amount of data available data is appropriate.” (p. 32)
Representational | Interpretability “The extent to which data are in appropriate

language and units and the data definitions are

clear.” (p. 31)
Ease of “The extent to which data are clear without
understanding ambiguity and easily comprehended.” (p. 32)
Representational “The extent to which data are always presented
consistency in the same format and are compatible with

previous data.” (p. 32)

Concise “The extent to which data are compactly
representation represented without being overwhelming (i.e.,
brief in presentation, yet complete and to the
point).” (p. 32)

Accessibility Accessibility “The extent to which data are available or easily

and quickly retrievable.” (p. 32)

Access security “The extent to which access to data can be

restricted and hence kept secure.” (p. 32)

23

Although it is often ultimately the data consumer who judges data quality (Wang &
Strong, 1996, p. 6), a plain adaption of consumer dimensions for data quality

management in practical settings is not constructive for several reasons:

- Data consumers usually do not to distinguish between data, application, and
hardware when judging data quality (cf. Kahn et al., 2002, p. 186). E.g. poor
hardware performance during data consumption may result in low data quality
perception by data consumers although the quality of data may be perfect.

- Many data quality dimensions from table 2 are difficult to measure, since they
rely on very user- and context-specific preconditions and requirements that
partially depend on the individual experience, background, and intentions of
data consumers (cf. Kahn et al., 2002, p. 185).

- Data consumers are not the only stakeholders who have data requirements as
stated in the previous section. For example, data producers, data custodians,
and data providers may also have data requirements that may be different from
the consumer requirements (cf. Kahn et al., 2002, p. 184).

- The description of data quality dimensions from a consumer perspective may
neglect potential quality problems in data.

- The single view on data quality from a consumer perspective may miss

important quality dimensions, such as data redundancy.

Solely considering the perspective of data consumers is not enough, when aiming to
develop artifacts for practical data quality management settings. However, the above

dimensions may serve as a starting point for structuring data quality evaluation reports.

3.2 Quality Influencing Artifacts

Data consumers usually do not access plain data directly. They rather use query
interfaces or information systems to consume data. So the data quality perception may
be influenced by several other artifacts than just data values when using intermediaries
to access the data. We can categorize the data quality influencing artifacts into the
data layer, the data model layer, the presentation layer, and the access layer (cf.
Redman, 2001, p. 72).

24

Figure 10: Layers in the perception of data consumers (inspired by Redman, 2001, p. 72)

The data layer consists of plain data, i.e. values composed by characters according to
certain syntactical rules (Bodendorf, 2006, p. 1). The data model layer represents the
contextual information of data. It contains a schema, i.e. a formally described data
structure, integrity constraints, operators, and inferencing rules (cf. Codd, 1980, p.
112). In the understanding of this thesis, it may additionally contain classifications,
restrictions, and metadata, i.e. data about data. The presentation layer is usually the
first visible presentation of data to data consumers. The data may be represented in
separately designed user interfaces. The presentation layer may itself contain
transformations of data at run-time (e.g. aggregations) and separate labels of schema
objects (cf. Goeken, 2006, p. 42f.). Finally, the access layer contains all artifacts that
facilitate a user’s access to data. Authorizations, i.e. user access rights to view, modify,
create, or delete certain data, are the central artifact in the access layer (cf. Codd,
1990, p. 325f.). Moreover, hardware and network infrastructure may influence the
ability of a user to access data at the right speed.

In general, all components of these layers may be a source of own quality problems.

In fact, the quality of data may be perfectly flawless, while the perception of data quality

may be poor in the eyes of a data consumer, e.g. because he or she lacks access
25

rights to view certain data. Thus, when we assess data quality, we must clearly define
to which of these layers we refer to, in order to facilitate a correct interpretation of the
assessment results and for the identification of appropriate improvement objectives.
Unless specified otherwise, we use the terms data quality and information quality

synonymously for the rest of this thesis to refer to the quality of data.

3.3 Data Quality Problem Types

Data quality problems are an important source to understand the typology of data
requirements. Earlier in this chapter, we defined data quality as “the degree to which
data fulfils requirements”. Based on this definition, we can say that data quality
problems typically occur, if requirements are not met. In other words, data quality
problems are the direct result of violated data requirements. In order to identify different
types of data requirements, we, therefore, develop a generic data quality problem
typology by summarizing problem types found in the literature, in particular in (Kashyap
& Sheth, 1996; Leser & Naumann, 2007; Oliveira, Rodrigues, & Henriques, 2005;
Oliveira, Rodrigues, Henriques, et al., 2005; Rahm & Do, 2000). The problems are
thereby classified from two perspectives: (1) the problem location perspective and (2)
the scenario perspective (cf. Leser & Naumann, 2007, pp. 318-322; Rahm & Do, 2000,
pp. 2-5). The problem location perspective classifies the different data quality problems
according to the location in which the problem occurs. Thus from the data location
perspective, problems are classified into (1) attribute value problems, i.e. problems in
values within a single attribute, (2) multi-attribute problems, i.e. problems where values
of two or more attributes are involved, (3) problems of object instances which are
represented via tuples in case of a table format, and (4) problems of the data model.
The problem locations refer to the data and data model layer from the previous section.
Figure 11 illustrates the terms attribute, tuple / instance, and schema as we can find

them in a table representation.

26

‘ Schema ‘ ‘ Attribute ‘

Tuple /
SSN Last Name First Name Street House No.
Instance
1234567890 | Doe John Acme St. 2040
2345678901 Smith Peter Wall 5t. 1010

Figure 11: Terminology applied to tabular data

The scenario perspective classifies data quality problems into two different scenarios
in which data quality problems typically occur. Hence from the scenario perspective,
we can distinguish between (1) single-source problems, i.e. problems that occur within
a single data source, and (2) integration-specific problems, i.e. problems that only
occur when integrating data from two or more sources. Besides this general
classification there are linguistic problems that may result in data quality problems.
Based on this classification, we will describe typical data quality problems that have
been identified by means of a thorough literature analysis. It must be stressed that
many integration-specific problems are caused by heterogeneous ways to represent
the same domain and, therefore, should not always be regarded as errors. Moreover,
in the understanding of this thesis a data quality problem should only be seen as an
error when it violates a previously defined requirement. The examples below assume
that data requirements have been violated. Problems of artifacts related to the
presentation and access layer, which have been defined in section 3.2, are not

addressed by this thesis and, therefore, not covered by the typology.

27

3.3.1 Quality Problems of Attribute Values

In this section, we describe data quality problems that typically occur in one or more
values of a single attribute. Since only one attribute is involved, there are no

integration-specific attribute value problems in this category.

Embedded values
Out-of-range values
Imprecise values

Invalid Characters
— Character alignement
violation

— Missing values Unique value H
— Falsevalues violation N Ot Ap pl ICa b I e
— Meaningless values — Cardinality constraint
— Outdated values violation
Single-Source Integration-specific

Figure 12: Attribute value problems
Invalid characters: Invalid characters are characters that are not supposed to be part
of the value (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 5). E.g. a numeric zip code

contains a letter.

Character alignment violation: Character alignment violations occur when whole
substrings or characters of a value are in the wrong position according to predefined
syntax rules (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 4; Oliveira, Rodrigues,
Henriques, et al., 2005, p. 3). E.g. the value “20.03.09” violates the syntax
“MM/DD/YYYY" where M represents the index position for numerical month values, D
for numerical day values, and Y for numerical year values. Misspelling errors and word

transpositions can also be subsumed by this category.

Missing values: Missing values are empty values or NULL values in attributes that
require a value (cf. Leser & Naumann, 2007, p. 320; Oliveira, Rodrigues, & Henriques,
2005, p. 4; Oliveira, Rodrigues, Henriques, et al., 2005, p. 3; Rahm & Do, 2000, p. 4).
Furthermore, a value may be considered as missing when only a default value or a

whitespace value is available (cf. Rahm & Do, 2000, p. 6).

False values: False values are possible values for the object, but do not represent the
correct state of the underlying entity (cf. Leser & Naumann, 2007, p. 320; Oliveira,
Rodrigues, & Henriques, 2005, p. 4; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4;
Rahm & Do, 2000, p. 3). E.g. the attribute “age” of customer “Peter Johnson” has

the value “28”, but Peter Johnson’s real age is 39.

28

Meaningless values: Meaningless values are values that do not have a
corresponding real-world entity (cf. Oliveira, Rodrigues, Henriques, et al., 2005, p. 4).

E.g. the attribute name contains a value “ABC Xxvz”.

Outdated values: Outdated values are values of an attribute or types that represent
an obsolete state of the accordant real-world entity (cf. Oliveira, Rodrigues, Henriques,
et al., 2005, p. 3). E.g. Peter married on March 15t, 2009, but the employee database
still shows the family status “single”.

Embedded values: Embedded values are substrings in a value that represent
additional information (cf. Leser & Naumann, 2007, p. 320; Oliveira, Rodrigues, &
Henriques, 2005, p. 5; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4; Rahm & Do,
2000, p. 4). Embedded values that do not fit to the intension of the attribute are also
called invalid substrings (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 5). E.g. the
attribute name holds also the titles of the person, i.e. “Dr. Peter Miller” instead

of “Peter Miller”.

Out-of-range values: Values are out of range if they are outside of a predefined
interval (cf. Leser & Naumann, 2007, p. 319; Oliveira, Rodrigues, Henriques, et al.,
2005, p. 3; Rahm & Do, 2000, p. 3). E.g. the attribute salary must not contain

negative values.

Imprecise values: Imprecise values are ambiguous values that cannot be precisely
mapped to a corresponding real-world entity or state (cf. Oliveira, Rodrigues, &
Henriques, 2005, p. 5; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4). E.g. the
textual attribute country has a value “D” which could indicate the countries
“Denmark”, “Djibouti”, “Dominican Republic”, or even “Germany’. Imprecise
values can occur in textual attributes, e.g. when using abbreviated or cryptic values
(cf. Leser & Naumann, 2007, p. 320; Rahm & Do, 2000, p. 4), or in numerical attributes,
e.g. one position after the decimal point may not be precise enough to indicate the
currency rate. Moreover, imprecise values can be caused by homonyms, i.e. values

that have more than one meaning.

Unique value violation: Some attributes must not contain the same value more than
once. Hence, a unique value violation occurs if the exact same value occurs more than
once with the same attribute (cf. Leser & Naumann, 2007, p. 319; Oliveira, Rodrigues,
& Henriques, 2005, p. 6; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4; Rahm & Do,
2000, p. 3). E.g. the attributes license plate no, tax payer no, and

29

social security no may need to obtain unique values for each tuple. The most
important types of such attributes are those that hold values that are meant to be used

as identifiers for entities for cross-references.

Cardinality constraint violation: The cardinality of an attribute is violated, if the
allowed amount of values per one entity is exceeded if given (cf. Rahm & Do, 2000, p.

6). E.g. the attribute date_of birth must have exactly one value per person.

3.3.2 Multi-Attribute Quality Problems

In this section, we describe data quality problems that occur between two or more

attributes.

Heterogeneity of syntaxes
Heterogeneity of units of measuerment
Data precision conflicts

Default value conflicts

Functional depdency violations
Referential integrity violations
Incorrect / outdated reference
Conditional missing values
Misfielded values

Single-Source Integration-specific

Figure 13: Multi-attribute quality problems
Functional dependency violation: Functional dependencies can be defined as the
dependency between two or more attribute values within the same tuple or among
different tuples of different entities and data sources (cf. Leser & Naumann, 2007, p.
319; Oliveira, Rodrigues, & Henriques, 2005, p. 7; Oliveira, Rodrigues, Henriques, et
al., 2005, p. 5f.; Olson, 2003, p. 174; Rahm & Do, 2000, p. 4). E.g. if the attribute
ZipCode contains “85577” and the country is “Germany”, then the city must be

“Neubiberg”.

Referential integrity violation: If an attribute of one entity comprises values that refer
to tuples of another entity, the we can call the values of the first attribute “foreign keys”
(cf. Codd, 1970, p. 380). In case of a referential integrity violation a foreign key value
does not have a matching value in the referenced entity (cf. Leser & Naumann, 2007,
p. 319; Oliveira, Rodrigues, & Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques,
et al., 2005, p. 6; Rahm & Do, 2000, p. 3). Thus, referential integrity is violated when
(1) a foreign key is wrong and, therefore, cannot have a corresponding tuple in the
referenced entity or (2) a foreign key is correct, but the referenced entity does not

contain the corresponding tuple. E.g. the attribute zipCode of the table Customer

30

comprises the values “4000” and “40027” that both do not exist in the referenced table
LocationZipCodes and, therefore, currently violate referential integrity. In case of
“4000”, the postal code does not exist in reality. Thus, the foreign key is wrong. In case
of the postal code “40027”, the value exists in reality. Hence, the referenced table

Customer misses a tuple.

Incorrect / outdated reference: Between two entities, an attribute comprises foreign
keys that refer to wrong tuples in the referenced entity (cf. Leser & Naumann, 2007, p.
320; Oliveira, Rodrigues, & Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques, et
al.,, 2005, p. 6; Rahm & Do, 2000, p. 4). E.g. the attribute ZipCode of the table
Customer comprises the value “51111” that refers to the tuple for “Cologne” in the
table LocationzipCodes, although the correct reference would be the zip code
“40027" referring to the tuple for “Diisseldor£”. An incorrect reference may also be
caused when a relationship, such as an address of a customer, has changed over time
and was not updated in the data source. In this case, we also talk about an outdated

reference (cf. Oliveira, Rodrigues, Henriques, et al., 2005).

Conditional Missing Values: Some attributes require a value only in certain contexts,
i.e. when other attributes obtain certain values (cf. Furber & Hepp, 2011b). E.g. the
attribute state may only require a value when the attribute country has the value

“USA”.

Misfielded values: Misfielded values are correct values that do not fit to the intension
of their attribute, but to another attribute of the same tuple (cf. Leser & Naumann, 2007,
p. 320; Rahm & Do, 2000, p. 4). E.g. the attribute city comprises the value “Germany”

which should be located in the attribute country of the same tuple.

Heterogeneity of syntaxes: Attribute values may represent the same real-world entity
or state, but use different syntactic representations (cf. Kashyap & Sheth, 1996, p. 287;
Leser & Naumann, 2007, p. 321; Oliveira, Rodrigues, & Henriques, 2005, p. 9; Oliveira,
Rodrigues, Henriques, et al., 2005, p. 7; Rahm & Do, 2000, p. 4). E.g. there are several
different possibilities to represent the current date, for example in the format
“‘dd.mm.yyyy” or in the format “mm/dd/yyyy". Heterogeneity of syntaxes also
encompasses the representation of attribute states via cryptic values or codes. In this
context, it is also called heterogeneity of representation (cf. Leser & Naumann, 2007,
p. 321).

31

Heterogeneity of units of measurement: The same real-world concept may be
represented using different scales (cf. Kashyap & Sheth, 1996, p. 287; Leser &
Naumann, 2007, p. 321; Oliveira, Rodrigues, & Henriques, 2005, p. 10; Oliveira,
Rodrigues, Henriques, et al., 2005, p. 7; Rahm & Do, 2000, p. 4). E.g. the weight of an
object may be represented in one data source using grams, while another data source
represents the weight in pounds. Heterogeneity of units of measurement is also known
as a data scaling conflict (Kashyap & Sheth, 1996, p. 287).

Data granularity mismatch: Two or more attributes coming from different sources
may refer to the same entity, but on different levels of granularity (cf. Leser & Naumann,
2007, p. 322; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8; Rahm & Do, 2000, p.
4). Data granularity mismatches typically occur when data with different aggregation
levels are integrated (cf. Leser & Naumann, 2007, p. 322; Rahm & Do, 2000, p. 4).
E.g. the table DepartmentSalaries of data source one contains salary values
aggregated to departments, while another table of data source two contains salary
values detailed on the level of individual employees. Hence, the data cannot be easily
compared or joined, since they contain summarized values on different levels of detail.
Data granularity mismatches are also known as aggregation or generalization conflicts
(Kashyap & Sheth, 1996, p. 291f.).

Default value conflicts: Different data sources may assign different default values for
semantically similar attributes in absence of the real-world information (Kashyap &
Sheth, 1996, p. 287). E.g. the attribute Legalage of data source one may have the
default value “18” to indicate adults, while data source two may assign the default value

“21” for the same purpose.

3.3.3 Problems of Object Instances

In the following, we describe data quality problems that are related to object instances

and tuples.
— Inconsistent duplicates — Heterogeneity in cardinality
— Approximate duplicates — Heterogeneity in time reference
— Contradictory relationships — Source specific identifiers
Single-Source Integration-Specific

Figure 14: Instance-related quality problems

32

Inconsistent duplicates: Two or more object instances that represent the same real-
world entity are called inconsistent duplicates, when their attribute values represent
contradicting states (cf. Leser & Naumann, 2007, p. 321; Oliveira, Rodrigues, &
Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8; Rahm & Do,
2000, p. 4). E.g. tuple one (“135”, “Johnson, Peter”, “sSN123454321") and tuple
two (“19”, “P. Johnson”, “SSN123456789”) are inconsistent duplicate instances,
assuming that the tuples represent the same person who can only have one social

security number (SSN).

Approximate duplicates: Approximate duplicates are duplicate instances that do not
have attribute values representing contradicting states (Oliveira, Rodrigues, &
Henriques, 2005, p. 7f.; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8). E.g. tuple

n o« » o«

one (“135”, “Johnson, Peter”, “Main Street 10107, “New York City”)and
tuple two (“19”,“P. Johnson”, “Main St. 10107, “NYC”) are approximate duplicates,
since they do not contain values for the same attribute that represent a contradicting
real-world state. Approximate duplicates may also have identical values for their
attributes with exception of the technical identifier, e.g. the primary key, which uniquely
identifies the tuple. Note that approximate duplicates may evolve into inconsistent
duplicates if the data about one instance is updated while the second one is kept

unchanged.

Contradictory relationships: Contradictory relationships occur when two or more
relationships between object instances are contradictory (cf. Oliveira, Rodrigues, &
Henriques, 2005; Oliveira, Rodrigues, Henriques, et al., 2005). E.g. if product B is a
subclass of product A, then product A cannot be a subclass of product B at the same
time. Depending on the design and the data storage medium, contradictory

relationships can also be located in the data model or ontology.

Heterogeneity in cardinality: Relationships between instances may have different
cardinality restrictions in different sources (cf. Leser & Naumann, 2007, p. 77). E.g. in
data source one the relationship between department and employee may always be
one to one, i.e. every employee can work for exactly one department, while in data

source two an employee may work for several departments.

Heterogeneity in time reference: Tuples of two or more sources may refer to different
points in time. Hence, the tuples might contain different values representing different

historical states of characteristics of an entity (Kashyap & Sheth, 1996, p. 290; Rahm

33

& Do, 2000, p. 4). E.g. data source one contains a tuple for “Peter Miller” with
family status “single”, while data source two contains family status “married” for the
same person. In our example, data source one refers to a point in time before the
marriage of Peter Miller. Thus, the data sources refer to a different time resulting in
different values. As illustrated, heterogeneity in time references can come along with

at least one outdated value.

Source-specific identifiers: Data sources typically use their own identifiers in their
tuples to uniquely identify an entity. Thus, semantically identical entities represented
in two or more data sources often have different identifiers in each source (cf. Kashyap
& Sheth, 1996, p. 288; Rahm & Do, 2000, p. 4). E.g. the table EMPLOYEE1 from data
source one contains the identifier “1234567890”, while table EMPLOYEE2 from data
source two contains the identifier “employee 123421” for the same employee. This

increases the risk of introducing inconsistencies by future operations on the data.

3.3.4 Quality Problems of Data Models

In this section, we describe quality problems that typically occur in data models, i.e. at
the schema level. An important contribution to the development of data models was
made by E.F. Codd in 1970 when he initially proposed a relational model for databases
(cf. Codd, 1970). According to Codd, the relational model aimed to describe “data with
its natural structure only — that is without superimposing any additional structure for
machine representation purposes” (Codd, 1970, p. 377). Therefore, the relational
model should allow changes to the data structure without impairing application
programs (cf. Codd, 1970, p. 377f.). Codd argued that a data model is a combination
of (1) “a collection of data structure types [...]", (2) “a collection of operators or
inferencing rules [...]” and (3) “a collection of general integrity rules [...]” (Codd, 1980,
p. 112). In 1976, Chen argued that the relational model “can achieve a high degree of
data independence, but it may lose some important semantic information about the
real world” (Chen, 1976, p. 9). Thus, Chen proposed the entity-relationship model
which sees data models as representations of entities and relationships (cf. Chen,
1976, p. 9). The entity-relationship model has been widely used for several decades
as a popular diagramming technique to design data models (cf. Simsion & Witt, 2005,
p. 65). Our understanding of the term “data model” is based on Chen’s entity-

relationship model. Therefore, we regard a data model as an independent artifact that

34

defines the entities, their properties and relationships between the entities of a certain
domain as a structure for data storage (cf. Chen, 1976, pp. 10-19; Simsion & Witt,
2005, p. 4; West, 2011, p. 5). Hence, quality problems at this level relate to the
structure in which the data is being stored, not to data values. However, the proper
design of data models may be relevant to achieve high quality also on object instance
or on attribute value level because data models dictate the way in which data relate to
each other and how they are used (cf. West, 2011, p. 5). Since data models are costly
to change due to their integration with interfaces for data access and storage,
workarounds, such as the misuse of conceptual elements, are sometimes used to
avoid changes to the data model (cf. West, 2003, p. 1). Hence, a well-thought and
approximately complete design of the data model may mitigate the necessity of such

workarounds that cause poor data quality or misinterpretations on instance level.

— Outdated conceptual elements — Heterogeneity of integrity constraints
— Missing conceptual elements — Schema isomorphism conflict
— Misuse of conceptual elements — Schematic descrepancy

Overlapping concepts / Role conflicts

Single-Source Integration-Specific

Figure 15: Quality problems of data models

Outdated conceptual elements: Conceptual elements, i.e. attributes, tables,
relationships, and constraints may become obsolete over time (cf. Hogan et al., 2010,
p. 6). E.g. the table Groceries of an information system of a retail company is
outdated, since the company has a new table Products in which all the products of
the company shall be stored. Thus, if some groceries are still only stored in the table

Groceries, then table Products will not be complete.

Missing conceptual elements: Sometimes conceptual elements may be missing in
the data model, e.g. when a new kind of information becomes relevant that has not
been represented in the data model before. Thus, attributes, tables, or other

conceptual elements may be missing (cf. Kashyap & Sheth, 1996, p. 289).

Misuse of conceptual elements: Existing schema elements may sometimes be used
to store data values that do not fit to the intension of the schema element due to
misinterpretation of the semantics of the schema element or due to inflexibility to
extend existing schemata (cf. Hogan et al., 2010, p. 8). E.g. the attribute 1astname

may be misused to store names of organizations in the Customer table.

35

Overlapping concepts / role conflicts: A real-world entity can be part of two or more
different real-world concepts at the same time. The concepts may have very different
semantics, but due to the membership of the individual to both concepts, they are not
disjunctive (cf. Leser & Naumann, 2007, p. 75f.). E.g. a soccer player can also be
coach, but the data model design only allows the membership of each entity in one
class. In many cases, this shows a lack of normalization of the database schema. For
normalization in database schemata, see Simsion and Witt (Simsion & Witt, 2005, p.
391ff.).

Heterogeneity of integrity constraints: The constraints on two or more semantically
similar attributes can be inconsistent with each other (cf. Kashyap & Sheth, 1996, p.
287; Leser & Naumann, 2007, p. 77; Rahm & Do, 2000, p. 4). E.g. the attribute age in
data source one requires values higher than 18, while the attribute age in data source

two requires values higher than 21.

Schema isomorphism conflict: Semantically similar real-world concepts can be
represented by a different number of attributes in different data sources (cf. Kashyap
& Sheth, 1996, p. 288; Leser & Naumann, 2007, p. 70ff.). E.g. employee data may be
represented in data source one by a table Employee with attributes employee ID,
name, and gender, while in data source two the same information is represented
within a table Employee with attributes employee ID, name, male and female.

Please see the following tables for an illustration of the above example.

Table 3: First example schema "employee"

Employee_ID Name Gender
1 Peter Smith Male
2 Jennifer Myer Female

Table 4: Second example schema "employee"

Employee_ID Name Male Female
1 Peter Smith X
2 Jennifer Myer X

36

Schematic discrepancy: If the schematic differences are not only related to the
amount of attributes, but the same information is also represented by different schema
elements, i.e. data values, attributes, or tables, then we can call this a schematic
discrepancy (cf. Kashyap & Sheth, 1996, p. 291; Leser & Naumann, 2007, p. 70ff,;
Rahm & Do, 2000, p. 4). According to Kashyap and Sheth (Kashyap & Sheth, 1996, p.

291f.), there are three different types of schematic discrepancies, i.e.

- data value attribute conflicts,
- attribute entity conflicts and

- data value entity conflicts.

Data value attribute conflicts occur “when the value of an attribute in one database
corresponds to an attribute in another database” (Kashyap & Sheth, 1996, p. 291).
Figure 16 shows an example of a data value attribute conflict between two tables of

two different data sources.

Employee_No | Revenue Revenue_Date

1 10,000 2011/03/23
2 15,000 2011/05/06

Employee_No | 2011/03/23 | 2011/05/06
1

10,000
2! 15,000

Figure 16: Example of a data value attribute conflict
Attribute entity conflicts occur “when the same entity is being modeled as an attribute
in one database and a relation in another database” (Kashyap & Sheth, 1996, p. 291f.).

Figure 17 shows an example of an attribute entity conflict.

37

Empl_Revenue | Empl_Revenue_Date | Emp2_Revenue 'Emp2_Revenue_Date

10,000 2011/03/23 15,000 2011/05/06
l ﬂ l |
Employee No. 1 Employee No.2
10,000 2011/03/23 15,000 2011/05/06

Figure 17: Example of an attribute entity conflict

A data value entity conflict occurs “when the value of an attribute in one database

corresponds to a relation in another database” (Kashyap & Sheth, 1996, p. 292).

Employee_No | Revenue | Revenue_Date

1 10,000 2011/03/23
2 15,000 2011/05/08
Employee No.1 Employee No.2
10,000 2011/03/23 15,000 2011/05/06

Figure 18: Example of a data value entity conflict

3.3.5 Common Linguistic Problems

In this section, we explain the most common linguistic problems that may cause data
quality problems in attribute values, object instances, and data models independent of

a specific scenario.

Existence of synonyms: Two or more values, instances, or names of conceptual
elements can be identical in meaning, but denoted with different terms (Kashyap &
Sheth, 1996, p. 286f.; Leser & Naumann, 2007, p. 74ff.; Oliveira, Rodrigues, &
Henriques, 2005; Oliveira, Rodrigues, Henriques, et al., 2005; Rahm & Do, 2000, p.

38

“

4). E.g. the attribute occupation contains the synonymous values “coach” and
“trainer” which represent the same real-world occupation. Synonymous values,
instances, and conceptual elements are especially problematic during data integration
and aggregation, since the synonym relationships must be known in order to produce

precise results.

Existence of homonyms and polysemes: Two or more values, instances, or names
of conceptual elements can be denoted with the same term, but represent a totally or
partly different real-world entity (Kashyap & Sheth, 1996, p. 286f.; Leser & Naumann,
2007, p. 74ff.; Oliveira, Rodrigues, & Henriques, 2005; Oliveira, Rodrigues, Henriques,
et al., 2005; Rahm & Do, 2000, p. 4). E.g. the attribute name could indicate a
customer’s name, a product’s name, a vendor’s name, etc. Homonyms may, therefore,
easily lead to data quality problems as a consequence of misinterpretations. The term
“polyseme” is sometimes used interchangeably for homonym, although it has a slightly
different meaning. A polyseme is a word or a sign that has two or more different
senses, but the senses are related to each other in opposite to homonyms which can
have unrelated meanings (Klein & Murphy, 2002, p. 548). An example of a polyseme
is the word “paper” which can (1) be the surface we use to write down words or (2) be

an essay which is also written on paper (cf. Klein & Murphy, 2002, p. 548f.).

Existence of hypernyms: A word is a hypernym to another word if it represents a
more general meaning than the second one (cf. Leser & Naumann, 2007, p. 75). E.g.
“Instructor” is a hypernym to both “professor” and “teacher”. Hypernymy can be
particularly relevant for DQM among pairs of names for tables, attributes, entities, and
values. Itis then e.g. difficult to identify the proper semantic relationship in multi-source
scenarios. Also, it may happen that a database manager maps respective conceptual
elements with an equivalence relation in lieu of a proper subtype or type of relation,
which can hamper the proper interpretation of the original data at a later point. Data

granularity mismatches are frequently caused by the existence of hypernyms.

3.4 Data Quality in the Data Lifecycle

The data lifecycle can roughly be separated into data acquisition, data usage, and data
retirement as illustrated in figure 19 (cf. Redman, 1996, p. 217). Data quality problems

may occur in any of these phases. Hence, activities for data quality management are

39

required throughout the entire data lifecycle. In the following, we describe each phase
according to the understanding underlying this thesis and emphasize the role of data

quality management for each phase.

-

Had Data Usage

Acquisition

o 4

Data
Retirement

Figure 19: Data lifecycle (cf. Redman, 1996, p. 217)

3.4.1 Data Acquisition Phase

Data acquisition relates to the problem of (1) generating new or (2) retrieving existing
data and storing it onto some kind of medium, e.g. in a spreadsheet, relational
database, or triplestore of the Semantic Web (cf. Olson, 2003, p. 44f.; Redman, 1996,
pp. 219-222). Data can thereby be generated manually, e.g. via forms, or
automatically, e.g. via sensors or algorithms that derive new data from existing data.
Also, existing data may be retrieved via data migration and extraction tools. During its
retrieval, data may be filtered or transformed. Hence, during data acquisition data may
be filtered according to their quality or transformed to cleanse incorrect data before
passing it to data usage (cf. English, 1999, p. 241). This latter improvement possibility
can be used in cases where existing data is transferred to another system and the
source data cannot directly be manipulated, e.g. when data manipulation in the source
is not possible or not desired. But since data quality problems are not removed in the
data source, data cleansing during data acquisition may cause the recurrence of the

same problems. Hence, data should better be corrected in the data source if possible.

40

Moreover, users of the target system will not know about quality problems in the source
data, if data cleansing transformations during data retrieval are not explicitly
communicated. During data generation, data may be validated prior to its storage, e.g.
through algorithms and constraints in forms that check the entered data for
conformance with specified criteria. However, simple constraints, such as mandatory
field constraints in a form, may easily be bypassed, e.g. by entering imaginary values.
Thus, constraints can also cause new data quality problems. Besides constraints and
cleansing capabilities, it is also important to provide transparency about quality
problems and the overall quality state of the retrieved data sources as a foundation for

data cleansing activities and for the selection of appropriate data sources.

3.4.2 Data Usage Phase

In the usage phase, data is used as an information source for humans and machines
in operational or decision-making processes (cf. Redman, 1998, p. 80f.). Data may be
altered, filtered, enriched or aggregated to derive additional information in this phase
(cf. Redman, 1996, p. 222f.). Moreover, the used data may again be retrieved for
distribution to other systems in cases where centralized storage for data usage is not
possible or not desired (cf. Redman, 1996, p. 223). In other words, the same data may
sometimes be stored redundantly in different systems for data usage or used by other
systems to derive new data, which causes additional data quality problems (cf. English,
1999, p. 149f.). As illustrated in section 1.2, a lack of awareness about quality problems
in the used data may result in incorrect or incomplete information for operations or
decision-making processes. In the case of data usage by multiple different agents, a
single data quality problem may cause multiple different consequent problems (cf.
Loshin, 2009, p. 205f.). Therefore, the quality state of data should be frequently
analyzed during the data usage phase. Moreover, the multiple uses of data may come
along with (1) dependencies that need to be considered before cleansing data and (2)
different quality expectations. E.g. interfaces that use data to derive new data may
expect a data value among the used data that is considered to be deficient from
another perspective. Hence, corrections of the deficient value may cause new

problems without previous communication to all data users.

41

3.4.3 Data Retirement Phase

Finally, data retirement encompasses deleting, deactivating and archiving data (cf.
Loshin, 2009, p. 223). This phase is often entered when data is not used anymore or
system performance slows down due to huge amounts of data to be processed (cf.
Loshin, 2009, p. 223). Data that shall be archived is moved to another repository and
may be retrieved again for data usage when required. In this case, the characteristics
of the data retrieval and data usage phase apply in principle. However, it must be
stressed that it may not be appropriate to alter archived data, since it may damage
legal evidence. Therefore, data cleansing activities may not always be feasible for

retired data.

3.4.4 Data Quality Management throughout the Data Lifecycle

All phases of the data lifecycle, but especially the acquisition and usage phase, require
core data quality management capabilities in order to minimize the negative impact of

poor data quality on operations and decision making processes, namely

- data quality monitoring reports to identify instances with data quality
problems

- data quality assessment reports to provide transparency about the quality
state of a data source

- data cleansing functionalities to remove data quality problems

- data constraints, i.e. data quality rules that can be automatically applied by an
information system to avoid the generation of data quality problems

- requirements management to manage the quality criteria used for data quality

assessment, monitoring, and data cleansing

A special focus of data quality management lies in the acquisition phase where data
quality problems can be identified and corrected before deficient data impacts
operations and decisions. However, a narrow focus of data quality management on the
data acquisition phase disregards the facts that (1) not all data quality problems may
be discovered during the data acquisition phase, (2) quality requirements may change
during data usage, (3) data may be altered during its usage, and (4) data may become

outdated. In cases (2) to (4), previously correct data may change to an incorrect state

42

while remaining in a system for data usage. Hence, data quality management activities
should not only be focused on data acquisition, but cover the whole data lifecycle, and
in particular cater for the fact that there may exist multiple contexts of usage for the
same data, which may require diverse and even conflicting data management

activities.

This thesis is mainly concerned with the management of data quality during data
usage, i.e. when data is already stored on a medium. This is motivated by the
heterogeneity of data quality requirements in this stage, and the context dependence
of those requirements. Also, from the perspective of value chains, the point and time
of data entry will frequently be outside the sphere of influence of the entity actually
using the data.

3.5 Data Quality Management Activities

Several methodologies have been developed which attempt to describe a procedure
of how data quality can be continuously improved. In the following, we will describe the
data quality management activities of the two most popular methodologies in data
quality management, namely Total Information Quality Management (TIQM) and Total
Data Quality Management (TDQM) (English, 1999; Wang, 1998). After describing the
operational activities of these two methodologies in sections 3.5.1 and 3.5.2, we
compare both methodologies and identify common activities (section 3.5.3) which
provides the basis for the design to meet the requirements and opportunities of the

novel, ontology-based data quality management approach developed by this thesis.

3.5.1 Total Information Quality Management (TIQM)

The Total Information Quality Management (TIQM) methodology (formally known as
Total Quality Data Management / TQDM) is a comprehensive data quality
management methodology that aims to integrate data quality management and
beneficial behavioral patterns into the culture of an organization (cf. English, 1999, p.
69f.). It was originally designed for data warehouses, i.e. reporting systems, but it is
also applicable to other information systems (Batini & Scannapieco, 2006, p. 174).

Besides operational processes it also contains guidelines to create an information

43

quality management culture within an organization, i.e. to raise awareness about the
importance of high quality information for the organizational success (cf. English, 1999,
p. 71f.). This thesis is aiming to provide artifacts that support operational data quality
managing activities. Therefore, we focus on the operational processes of TIQM rather
than the tools and methodologies to establish an information quality culture in an

enterprise.

Establish the Information Quality Environment

Reengineer
and

v

Cleanse Data

Metadata Information
Assess Data Quality
Sl Measure
3] i & Assess men
|L ?::m."-‘rqn_. Inf “F.“:-n Assessment Nonguality Information
> “r:'-f:?::l'u-r'l . l;:.lr:lft\:-n Information Value / Costs
I.lu.a.li.lv Costs Information
1l
Improve i Qua :‘;ms
' 2 Information P

Process Quality

Figure 20: Total Information Quality Management (cf. English, 1999, p. 70)
The operational processes of the TIQM methodology start with an analysis of the
quality of information architecture and data definitions, i.e. data about data’s “names,
definitions, valid value sets, and pertinent business rules” (English, 1999, p. 72). TIQM
sees data definitions as “product specifications” of data which are a prerequisite before
information quality can be assessed (cf. English, 1999, p. 72). Thus, TIQM’s first
process group aims to “assess data definition and information architecture quality” with

the following process steps (English, 1999, pp. 72-74):

- Identification of the organization’s minimal quality requirements regarding their
data definitions as the basis for the generation of technical metrics,

- selection of important information groups for the assessment,

- identification of stakeholder categories of the selected information groups , and

- assessment of the quality of (1) data definitions, (2) information architecture /

database design, and (3) customer satisfaction with data definitions.

5 Business rules in this context are policies that govern business actions that result in constraints on
data relationships and values.

44

The identified quality problems of data definitions and information architecture serve
as input for the “improve information process quality” process group which is described
later on in this section. After the quality of data definitions was checked and their quality
is regarded as sufficient, the quality of information itself is assessed with the following
processes of the “assess information quality” process group, which includes the
following steps (English, 1999, pp. 74-76):

- Reconfirmation or identification of information groups that shall be analyzed,

- establish information quality objectives and measures,

- identification of the “information value and cost chain” of the relevant information
groups,

- identification of the objects for the assessment, i.e. files, databases, or
processes,

- identification of appropriate reference sources for data validation,

- extraction of a random sample of the data to be assessed,

- measurement of information quality based on the sampled data via automated
or physical assessment®, and

- presentation and interpretation of assessment results.

The third process group “measure nonquality information costs” provides guidelines
for measuring the costs of poor quality data and contains the following subtasks
(English, 1999, p. 76f.):

- ldentify business performance measures / business drivers that may be effected
by information quality problems, such as profits, customer satisfaction, or costs,

- analyze cost of information, e.g. cost for infrastructure, value delivery, and cost-
adding developments,

- determination of costs resulting from data quality problems including cost of
caused process failures,

- identification of customer segments for customer lifetime value calculation,

- calculation of customer lifetime value as basis of lost opportunity costs, and

- calculation of missed and lost opportunity cost resulting from information quality

problems (Nonquality).

6 Automated assessment is assessment through data analysis; physical assessment is assessment
through comparison with real-world objects.

45

The improvement processes of TIQM are organized into two process groups, namely
“reengineer and cleanse data” and “improve information process quality”. The
“reengineer and cleanse data” process group contains the following subtasks (English,
1999, pp. 77-80):

- ldentification of data sources that require data cleansing or reengineering,

- extraction and analysis of the relevant source data for anomalies and patterns,

- data standardization, i.e. the reduction of synonymously used data values and
patterns,

- manual or automated correction or completion of data,

- consolidation of duplicate data,

- analysis of data defect types,

- data transformation to target state (data warehouse-specific),

- (re-)calculation of aggregates and derivations (data warehouse-specific), and

- audit and control of Extract-Transform-Load (ETL-)processes (data warehouse-

specific).

The “improve information process quality” process addresses the analysis and
correction of deficient information processes in order to resolve root causes for poor

data quality and, therefore, covers the following activities (English, 1999, p. 80f.):

- Initiation of process improvement activities including problem definition,
identification of relevant processes, and establishment of a process
improvement team,

- creation of an improvement plan including the identification of the root causes,

- implementation of changes for process and information quality improvement,

- effectiveness assessment of implemented changes, and

- standardization and enterprise-wide implementation of effective changes.

Due to the completeness and the level of detail, it may not make sense to implement
all processes of TIQM (cf. Batini & Scannapieco, 2006, p. 200). Instead, many of the
described activities may be optional in certain settings, e.g. when the costs of poor
information are unnecessary to assess because data quality problems could cause so
severe damage that avoiding them is not based on a cost / benefit rationale. While the
“reengineer and cleanse data” process group of TIQM may perfectly fit the needs of

data warehousing systems, it cannot serve as a guideline for data cleansing in

46

transactional systems, since transactional data must remain audit-proof and cannot

always be easily updated when already used in transactions.

3.5.2 Total Data Quality Management (TDQM)

Total Data Quality Management (TDQM) is a data quality management methodology
invented by Richard Wang in 1998 (Huang et al., 1999, pp. 16, 33-83; Lee, 2006;
Wang, 1998). One core idea of TDQM is that it applies the notion of a Deming cycle
(see Deming, 1986) and the approaches from Total Quality Management (TQM, see
Juran, 1988) to the task of data quality management. Same as the Deming cycle, the
TDQM cycle is also structured into four phases, namely (1) the definition phase, (2)
the measurement phase, (3) the analysis phase, and (4) the improvement phase
(Wang, 1998, p. 60).

During the definition phase the characteristics of so called information products (IP)”
are captured, such as its information requirements?, its core information objects® and
components, and its relationships (cf. Wang, 1998, p. 61). Moreover, the importance
of data quality dimensions in the perception of IP suppliers, manufacturers, consumers,
and managers are identified via surveys that capture a first judgment of the quality of
the underlying IP (cf.Wang, 1998, p. 61f.). Furthermore, the information manufacturing
system is documented via a so called “information manufacturing analysis matrix”
(Ballou et al., 1998, p. 472) as a foundation for further analysis and improvement (cf.
Wang, 1998, pp. 61-63).

In the measurement phase, data quality metrics are initially developed. The metrics
need not necessarily directly deal with data, but also with the production or access
process, e.g. who updated how much data or how many unauthorized accesses
occurred (cf. Wang, 1998, p. 64). The developed metrics are implemented in a system
and applied to the data in order to periodically measure an IP’s data quality. Based on
the measurement results, the root causes of the identified data quality problems are

analyzed during the analysis phase (Wang, 1998, p. 64).

7 An information product is the output of an information manufacturing system. From a more technical
perspective, an information product is “a collection of data element instances” (Lee, 2006, p. 126) where
a data element is “the smallest unit of named data” Lee (2006, p. 137), e.g. the date of birth of a customer
in a customer database.

8 Information requirements are called “functionalities” in the referenced literature.

9 Core information objects are called “basic units” in the referenced literature.

47

Figure 21: Fundamental stages of the TDQM methodology by (Wang, 1998)
Also the metrics are subject for further analysis, since they may occasionally need to
be adjusted, extended, or improved (cf. Wang, 1998, p. 64f.). Finally, the identified
causes of quality problems need to be removed during the improvement phase.
Therefore, it is necessary to identify the required improvements, e.g. the adjustment of
information and workflows with its infrastructure or the modification of IP characteristics
according to business needs (cf. Wang et al., 2001, p. 14). The activities of the
improvement phase are again supported by the “information manufacturing analysis
matrix”, which has been initially created during the definition phase (Wang, 1998, p.
65). Moreover, a framework developed by Ballou and Tayi (see Ballou & Tayi, 1989)
can be used to support decisions related to the allocation of resources for data quality

improvement (Wang, 1998, p. 65).

Although often cited, the TDQM methodology as described in (Wang, 1998) is not
directly applicable to practical settings as discovered by Wijnhoven, et al. (Wijnhoven
et al., 2007). In detail, TDQM in its original version has the following weaknesses (cf.
Wijnhoven et al., 2007, p. 936):

- Several data quality management activities are missing pointers or details to
appropriate toolsets or examples how to apply the methodology in practical
settings,

- important (but mostly obvious) activities are missing,

48

- certain activities, such as the definition of information manufacturing systems,
are described as mandatory, although they may already exist in other forms or
they may not be necessary since the root cause is not located within the

respective system.

3.5.3 Comparison of Methodologies

Both, TIQM and TDQM, share the same objective, i.e. to provide a methodology to
continuously improve the quality of data. While TIQM was strongly influenced by
practical experience, TDQM is a result of several years of research. However, both
share in principle the following core activities (cf. Batini & Scannapieco, 2006, p. 171f.):

- identification and definition of quality-relevant metadata and requirements,
- information quality measurement and assessment,
- analysis of the root causes of identified data quality problems, and

- resolution of the identified root causes.

Moreover, both methodologies assume a continuous execution of data quality
management activities. Besides these commonalities, TDQM also proposes to identify
and document the information production process and the characteristics of
information products. The more detailed TIQM also considers quality assessment of
metadata and information architecture, as well as the calculation of costs resulting from
poor data quality. Furthermore, TIQM clearly differentiates between the improvement
of data, i.e. data cleansing, and the improvement of processes. A comparison of the

process steps of both methodologies can be found in Appendix A.

3.6 Role of Data Requirements in DQM

The International Organization for Standardization (ISO) defines a requirement as a
“need or expectation that is stated, generally implied or obligatory” (ISO, 2009). We
adapt this definition for the data domain and define the term “data requirement”
accordingly as needs and expectations on data that are stated, generally implied or
obligatory. During the data quality management process, data requirements play a

crucial role. They are first captured and formulated during the definition phase (cf.

49

English, 1999, pp. 119-121; Wang, 1998, p. 61). Subsequently in the measurement
phase, they are converted into metrics to generate reports about the deficient data, i.e.
data instances that violate requirements, and reports with dimensional quality scores
(cf. Wang, 1998, p. 64). In other words, the measurement phase uses the requirements
to identify and count requirement violations. The identified requirement violations are
then analyzed to find the root causes of the requirement violations during the analysis
phase (cf. Wang, 1998, p. 64f.). Finally, in the improvement phase the requirement
violations are resolved to rebuild the state according to the requirement (cf. Wang,
1998, p. 65).

Consequently, the management of data requirements is the central and most critical
part of data quality management, since they are used to formally express the desired
state of data throughout the whole management cycle. In other words, data
requirements represent the knowledge about the characteristics that constitute high
quality data. Consequently, if data requirements are in an unnoticed incomplete or
incorrect state, then they will most likely lead to the generation of poor data. In data
quality literature, data requirements are also known as data quality rules (cf. Chiang &
Miller, 2008; Firrber & Hepp, 2011a; Loshin, 2001).

3.6.1 Generic Data Requirement Types

Data quality problems can be seen as non-fulfilment of data requirements (cf. ISO,
2005, p. 27). Therefore, we can use the typology of generic data quality problem types
from section 3.3 to derive generic data requirement types. Table 5 contains a list of the
derived generic data requirements and its corresponding data quality problem types
that represent a violation of the requirement. In the following, we define each generic
data requirement type and provide an illustrating example. A first version of the generic
data requirements typology was already published in (Furber & Hepp, 2011a) and
(Furber & Hepp, 2011b).

Property completeness requirements: Property completeness requirements are
data requirements that specify the need for data values in a specific attribute for all
instances or for a specific subset of instances of a table (cf. Leser & Naumann, 2007,
p. 320; Loshin, 2001, pp. 172-174; Oliveira, Rodrigues, & Henriques, 2005, p. 4;
Oliveira, Rodrigues, Henriques, et al., 2005, p. 3; Rahm & Do, 2000, p. 4). Example:

50

The attributes indicating the latitude and longitude must exist and have values for all

instances of table Location to facilitate navigation to each location.

Syntactic requirements: Syntactic requirements are data requirements that define
the type of characters and/or the pattern of attribute values (cf. Loshin, 2001, p. 177;
Oliveira, Rodrigues, & Henriques, 2005, p. 4f.; Oliveira, Rodrigues, Henriques, et al.,
2005, p. 3). Example: Values for the attribute country-name must only contain

letters.

Legal value requirements: Legal value requirements are data requirements that
explicitly define the allowed values for a certain attribute (cf. Loshin, 2001, p. 174;
Oliveira, Rodrigues, Henriques, et al., 2005, p. 4). Example: The property gender

n o« »ow_n

must only contain the values “male”, “female”, “m”, or “£”.

Legal value range requirements: Legal value range requirements are data
requirements that explicitly define the allowed value range for a specific numeric
attribute (cf. Loshin, 2001, p. 176). A value range contains an upper and / or lower limit.

Example: The attribute population must only contain non-negative values.

lllegal value requirements: lllegal value requirements are data requirements that
explicitly define values that must not be assigned for a certain attribute (cf. Loshin,
2001, p. 176). Example: The attribute EAN13 may not contain the value
“1234567890123".

Functional dependency requirements: Functional dependency requirements are
data requirements that represent the dependencies between the values of two or more
different attributes within a table or across different tables (cf. Loshin, 2001, p. 183f.
and 189f.). Example: The values for the attribute zip-code is dependent to the values
for the attribute city, county, and country, since certain cities of certain

counties in certain countries have specific zip-codes.

Unique value requirements: Unique value requirements are data requirements which
define that the values of a specific attribute must not exist more than once in a specific
table (cf. Leser & Naumann, 2007, p. 319; Oliveira, Rodrigues, & Henriques, 2005, p.
6; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4; Rahm & Do, 2000, p. 3). Example:
The attribute supplierID may only contain unique numbers.

51

Duplicate instance identification requirements: Duplicate instance identification
requirements are data requirements that specify the attributes which (in combination)
uniquely identify an object (cf. Leser & Naumann, 2007, p. 321; Oliveira, Rodrigues, &
Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8; Rahm & Do,
2000, p. 4). Example: The values of the attributes zip-code, city-name, county,
state, and country uniquely identify a city. Instances with identical values for these

attributes can be considered as duplicates.

Update requirements: Update requirements are data requirements that specify the
maximum duration tolerated without any updates of an instance (cf. Oliveira,
Rodrigues, Henriques, et al., 2005, p. 3). Example: Instances of the table

currency rates have to be updated every 24 hours to stay timely.

Expiration requirements: Expiration requirements are data requirements which
define that an instance may not exceed its expiration date (cf. Oliveira, Rodrigues,
Henriques, et al., 2005, p. 3). Example: Instances of the table 0f fer are outdated, if

its value for the attribute validThrough is elder than the current date and time

It is important to note that the above data requirement types focus on instance data.
Generic requirement types for the quality of schemata may also exist, but are not

subject of this thesis.

52

Table 5: Generic data requirements as published in (Flrber & Hepp, 2011a, p. 3; 2011b, p. 3)

Data Requirement

Data Quality Problem Type

Example

Property
completeness
requirements

Missing values, conditionally
missing values

Attributes Latitude and
longitude must have values in
table Location to be able to
navigate to each location.

Syntactic
requirements

Syntax violations, misspelling /
mistyping errors, Embedded
values, imprecise values

The attribute country-name
must only contain letters and no
numbers.

Legal value
requirements

Syntax violations, misspelling /
mistyping errors, embedded
values, imprecise values, false
values, meaningless values,
misfielded values

The attribute gender must only
contain the values “male”,

”female”, umnl or “f".

Legal value range
Requirements

Out of range values,
meaningless values, false
values

The attribute population must
only contain non-negative values.

lllegal value
requirements

False values, meaningless
values, misspelling / mistyping
errors

The attribute gender may never
contain the value “mail”.

Functional
dependency
requirements

False values, referential
integrity violations, incorrect
references, contradictory
relationships

The attribute city is always
dependent to the value for the
attribute country, since certain
city names only exist in certain
countries.

Unique value
requirements

Unique value violations

Each value for the attribute TSBN
in instances of table Book may
not occur more than once.

Duplicate instance
identification
requirements

Inconsistent duplicates,
approximate duplicates

Instances with the same value for
the attribute ISBN and instances
with texts that have a similarity
greater than 90 % can be
considered as duplicates.

Update requirements

Outdated values

Instances of the table Quote are
outdated, if their last modification
is more than two years ago.

Expiration
requirements

Outdated values

Instances of the table Quote are
outdated, if their value for the
attribute validUntil is prior to
the current date and time.

53

3.6.2 Challenges Related to Requirements Satisfaction

From a practical perspective, the management and satisfaction of data requirements
involves at least three major challenges. The first challenge relates to the problem of
how to collect and express data requirements in an objective and unambiguous form
(cf. Loshin, 2001, p. 8f.). Knowledge about data requirements is usually distributed
across several sources (cf. Loshin, 2001, p. 8f.). For example sources for requirement
knowledge are individuals, e.g. data consumers, stakeholder groups, documents, legal
regulations, operations procedures, business policies, contracts, standards, or tasks.
Moreover, basic requirements may not be explicitly stated, but are indispensable for
satisfying user requirements (cf. Kano et al., 1984; Pohl et al., 2005, p. 181f.). In order
to be able to produce and deliver high quality data, it is necessary to gain a nearly
complete picture about the data requirements stemming from several of these sources.
To avoid ambiguous or imprecise statements, such as “the data must be timely” or “the
data must be accurate”, it is also necessary to guide knowledge workers during the
process of expressing data requirements. Pohl et al. (Pohl et al., 2005, p. 198) propose
to use a requirements modeling language for the proper representation of

requirements.

The second challenge relates to the problem of conflicting requirements. Due to
heterogeneous needs and desires, requirements may contradict each other, so that it
is impossible to fulfill all of them at the same time (cf. Boehm & In, 1996; Nuseibeh,
1996). The severity of the problem increases with the degree of integration of an
information system, since integrated systems usually attempt to avoid data redundancy
and heterogeneity. Hence, in highly integrated systems, such for Enterprise Resource
Planning (ERP), it is necessary to harmonize the conflicting requirements (cf. Batini &
Scannapieco, 2006, p. 9). Otherwise one data element would have to satisfy multiple
different desired states which may sometimes not be possible (see figure 22 for an
illustration of the problem). It must be stressed that in some cases, it will be possible
to combine the quality perspectives to generate a harmonized picture that satisfies all

perspectives.

54

Desired %
State

Individuals
mne
Status Dasired o 'y
Quo | e— State il
Groups
AR
Desired Standards,
State
etc.

Figure 22: Challenges of requirement satisfaction

The third problem refers to the satisfaction of data requirements in which the current
state of data (status quo) shall match with the desired state of data, once the desired
state is known and harmonized (cf. Loshin, 2001, p. 282f.). This latter challenge is

closely related to the process of data quality improvement.

Figure 22 illustrates three major challenges of requirement satisfaction. Thus, from a
requirements perspective these three challenges should at least be addressed by

solution approaches that aim to improve data quality.

55

4 Semantic Technologies

As discussed in section 2.1 of this thesis we regard semantic technologies “as technical
approaches that facilitate or make use of the interpretation of meaning by machines”.
Ontologies are one of the core elements of semantic solutions. In the following, we
review the definition of ontologies and briefly describe their general characteristics.
Moreover, we discuss important concepts for ontology and knowledge representation
within the Semantic Web. After that, we explain ways to process knowledge
representations, such as reasoning, inferencing, and querying. Due to the focus of this

thesis, we finally describe how relational databases and ontologies are related.

4.1 Characteristics of an Ontology

In section 2.1, we derived the following definition for ontologies: Ontologies are “a
formal and sharable means to explicitly model some real-world phenomenon for
machine-readable knowledge representation”. According to this definition, ontologies
have at least five important characteristics, namely “formality, explicitness, being
shared, conceptuality and domain-specificity” (Grimm et al., 2007, p. 69f.). In the

following, we will explain the term “ontology” along these five characteristics.

Formality: With ontologies, real-world phenomena and their relationships among each
other can be described in a machine-readable way by using formal elements, i.e.
concepts, relationships, instances, and axioms (cf. Grimm et al., 2007, p. 88).
Ontologies are therefore used to structure and store knowledge about a domain of
interest. The degree of formality of ontologies and their expressiveness to represent
real-world elements varies from natural language descriptions to highly formal axioms
(cf. Smith & Welty, 2001, p. 6f.; Uschold & Gruninger, 1996, p. 98). In fact, there are
several different knowledge representation languages that offer modeling constructs
to represent different levels of formality. The degree of formality thereby influences the
ability of machine-interpretation of the represented knowledge. With increasing
formality, the machine interpretation capabilities rise, but also the complexity of

ontology development and maintenance increases.

Explicitness: While much knowledge usually relies in people’s minds, the
development of a materialized ontology documents expert knowledge in an explicit

56

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 4, © Springer Fachmedien Wiesbaden 2016

way. Moreover, the design of formal ontologies for machine interpretation promotes
the rigorous explicit representation of knowledge within the ontology and the
automated identification of misconceptions, i.e. inconsistencies within the ontology /
understanding of a domain (cf. Grimm et al., 2007, p. 70; Hepp, 2008b, p. 16).

Being shared: Ontologies are usually developed for a certain community, e.g. to
capture the knowledge of domain experts. For its successful adaptation it is, therefore,
necessary to achieve agreement about the ontology among large parts of the
community (cf. Grimm et al., 2007, p. 70). Once an agreement can be established, the
chance for widespread adoption of the ontology as a standardized means to represent
knowledge rises. Thereby ontologies may help to improve communication, enable
reuse of shared knowledge, and facilitate interoperability while keeping schematic
heterogeneity at a minimal level (cf. Gasevic et al., 2006, p. 48).

Domain specificity: Due to the complexity of representing concise knowledge and
achieving agreement, ontologies are usually limited to a certain domain (cf. Grimm et
al., 2007, p. 70). Despite domain specificity, ontologies can be combined with other

ontologies to represent knowledge of multiple domains.

Conceptuality: The represented knowledge within ontologies is organized into
concepts and relationships. The concepts and relationships can also be represented
in hierarchies so that different levels of abstraction may be represented while being
connected to each other. Instead of explaining individual phenomena, ontologies
provide a framework for as many tasks as necessary within the domain of interest
(Grimm et al., 2007, p. 70).

In summary, the use of ontologies for the representation of domain knowledge

promises the following benefits (cf. Hepp, 2008b):

- Reduction of ambiguity through the formal and explicit representation of
knowledge,

- conservation of implicit knowledge through explicit representation,

- knowledge sharing and reuse through the provision of a common vocabulary /
ontology,

- reduction of manual work through the reuse of shared knowledge,

- reduction of manual work through a formal, machine-interpretable knowledge

representation,

57

- automated inference of implicit facts through the formal representation of
knowledge,

- automated identification of misconceptions through the formal, explicit
representation of knowledge, and

- improved interoperability through the use of a common vocabulary / ontology.

Collections of actual instances that use the elements of ontologies to represent
knowledge are known as knowledge bases and should not be confused with ontologies
that provide the vocabulary to express knowledge (cf. Hepp, 2008b, p. 6). In the
following, we use the term “ontology” to name the schema of knowledge and the term
“knowledge base” to refer to an ontology-based representation of knowledge

instances.

4.2 Knowledge Representation in the Semantic Web

Ontologies and knowledge bases in Semantic Web architectures are typically
represented by using and combining elements of the “Resource Description
Framework” (RDF)'0, “RDF Vocabulary Description Language” (which is also known
as “RDF Schema” (RDFS)'), and the “Web Ontology Language” (OWL)'2. The
following subsections will give a brief overview about the most important language
constructs of the Semantic Web, namely resources and Uniform Resource Identifiers
(URI), the core RDF Syntax, and important vocabulary elements of RDF, RDFS, and
OWL related to the topics of this thesis.

4.2.1 Resources and Uniform Resource Identifiers (URIs)

Semantic Web languages describe resources and relationships among resources. The
term “resource” has thereby a very generic meaning which is not constrained to any
subset of concepts. A resource can be a Web site, a product, a document, a service,

a plan, a person, or anything else (cf. Berners-Lee et al., 2005). Resources are

10 Resource Description Framework (RDF), http://www.w3.0rg/TR/2004/REC-rdf-syntax-grammar-
20040210/

" RDF Schema (RDFS), http://www.w3.0rg/TR/2004/REC-rdf-schema-20040210/

12 Web Ontology Language, http://www.w3.org/TR/2004/REC-owl-guide-20040210/, recently updated
to OWL 2, http://www.w3.0rg/TR/2009/REC-owl2-overview-20091027/

58

identified by Uniform Resource Identifiers (URIs) (Sauermann & Cyganiak, 2008). Web
addresses like “http://www.google.com” are a special kind of URI, namely a
Uniform Resource Locator (URL) which not only identifies a resource, but also locates
it (Berners-Lee et al., 2005). A major advantage of URIs on the World Wide Web
(WWW) is their global uniqueness. Therefore, URIs facilitate the unambiguous
identification of resources. However, there are several limitations on the WWW that
may disturb the unambiguous identification of a resource via its URI. The resource
which is identified by the URI may over time disappear or its meaning may change.
Moreover, it is possible that the URL of one resource is redirected to the URL of
another resource. In order to avoid changes, URIs should be designed carefully so that

they can be held stable and lasting (cf. Berners-Lee, 1998a).

4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links

The core structure of RDF are so called triples. Triples allow the definition of
statements in a subject, predicate, object format as illustrated in figure 23 (cf. Klyne &
Carroll, 2004). With the triple structure, it is possible to draw relationships (predicates)
between two entities or between an entity and the state of a property (subject, object).
Therefore, the predicate position of a triple is always reserved for a property “that
denotes a relationship” (Klyne & Carroll, 2004). Properties are always identified via

URIs. Combinations of multiple triples form a graph (cf. Grimm et al., 2007, p. 84).

Syntax:

<predicate>
<Subject> > <0Object>

Example:

writes
Christian > This Thesis

Figure 23: Syntax of RDF triples (cf. Klyne & Carroll, 2004)

We can differentiate between two different types of RDF triples, namely “Literal triples”
and “RDF links” (Heath & Bizer, 2011). RDF links are triples with URIs in subject and
object position (Heath & Bizer, 2011). Hence, the predicate of RDF links connects two

resources with each other (Heath & Bizer, 2011). RDF links can, therefore, be used to

59

describe relationships between two resources (cf. Heath & Bizer, 2011). RDF links
have so called object properties in predicate position when using OWL (cf. Hitzler et
al., 2009). Literal triples have data values in the object position which are known as
literals (cf. Heath & Bizer, 2011). They may be restricted to a certain datatype and
contain a language tag indicating the language in which the literal is represented (cf.
Heath & Bizer, 2011). Literals with datatype indication are called typed literals, literals
without datatype indication are called plain literals (cf. Heath & Bizer, 2011). Thus,
Literal triples can be used to assign values to properties of a resource. In other words,
Literal triples describe the states of properties of an entity (cf. Heath & Bizer, 2011).
For example the ftriple http://example.org/JonMyer foo:hasBirthday
“1970-01-01" is a Literal triple because the object position of the triple contains the
literal *1970-01-01". Literal triples can be modeled using OWL datatype properties
in predicate position. An example for an RDF link triple would be

http://example.org/JonMyer foo:hasMother

http://example.org/JanetMyer, since two resources with URIs are linked to

each other.

4.2.3 Constructing an Ontology with RDF, RDFS, and OWL

Main elements of ontologies in Semantic Web architectures are classes and
properties. Properties are in predicate position of a triple and, therefore, define
relationships between resources or describe facts about resources as explained in the
previous section. Classes are conceptual entities that can be used to classify
resources into categories (cf. Manola & Miller, 2004). The resources that belong to a
class are called its instances (Manola & Miller, 2004). An ontology together with its
instances is called a knowledge base (cf. Noy & McGuinness, 2001, p. 3). Knowledge
bases are represented in so called RDF graphs (cf. Sirin et al., 2007, p. 12). Semantic
Web programming languages provide several classes and properties that can be used
to model semantic distinctions of user-defined classes and properties in a standardized
and machine-interpretable way. In the following, core modeling constructs of RDF,

RDFS, and OWL are explained which are important for the understanding of this thesis.

Datatype properties: With OWL, a property can be declared as a datatype property

meaning that the property can only have literals in the object position. The range of the

60

property may be restricted to a certain datatype either by using XML Schema
datatypes'® or via self-defined datatypes with OWL 2 (cf. Hitzler et al., 2009).

Language tag assignment: Language tags can be assigned at the end of literals to

indicate the language in which the literal is written (cf. Alvestrand, 2001; Beckett, 2004).

Domain of a property: The property rdfs:domain is a property of RDF-properties.
It can be used to specify classes that hold individuals which can be used as a subject
for the described property (cf. Brickley & Guha, 2004). In other words, rdfs:domain
specifies the class of individuals which may be described by the property. E.g. the
domain of the property foo:hasEAN is the class foo:Material.

Range of a property: The property rdfs: range is also a property of RDF-properties.
It is used to specify the allowed types used for the values of a property, i.e. which
datatype the values must have or to which class the values must belong (cf. Brickley
& Guha, 2004). E.g. the property foo:hasName has a range of datatype
xsd:string. It is important to note that the consequences of applying a property to
an instance of another type is that an additional class membership is inferred (cf. De
Bruijn et al., 2005, p. 5).

Class membership: RDF allows the definition of class memberships of entities (cf.
Brickley & Guha, 2004). E.g. the triple Christian rdf:type PhD-Student

expresses that the individual “Christian” belongs to the class of PhD Students.

Class and property hierarchies: RDFS allows the expression of hierarchic
relationships between classes and properties (cf. Brickley & Guha, 2004). For
example, we can define that the class PhD-Students is a sub-class of the class

Person or that the property 1astName is a sub-property of the property name.

Equivalence between classes / properties: With the OWL properties
owl:equivalentClass and owl:equivalentProperty we can express that
classes or properties are equivalent in terms of that equivalent properties share the
same values and equivalent classes share the same individuals (cf. Bechhofer et al.,
2004; Hitzler et al., 2012).

13 XML Schema datatypes, http://www.w3.0rg/TR/2004/REC-xmlIschema-2-20041028/
61

Identity between individuals: With the OWL property owl: sameAs we can express
semantic equality between individuals, i.e. the resources connected with owl : sameAs

represent the same real-world object (cf. Bechhofer et al., 2004).

Disjointness of classes: The property owl:disjointWith facilitates the
expression of disjointness between two classes, i.e. that individuals cannot be member

of both classes at the same time (cf. Bechhofer et al., 2004).

Transitivity of a property: OWL supports the definition of transitive properties by
making the properties instances of the class owl : TransitiveProperty. Transitivity
in this context means that the property relationship will also apply for the subject of one
triple and the object of a second triple if the object of triple one is also the subject of
triple two, although they are not directly connected to each other. E.g. if the property
foo:subProductOf is defined to be a transitive property and the two triples X
foo:subProductOf Yand Y foo:subProductOf Z exist, then we can derive that
X foo:subProductOf Z (cf. Bechhofer et al., 2004).

Symmetry of a property: A property is symmetric if the subject and the object of the
triple, in which the property is used, can be substituted without making an incorrect
statement. Symmetric properties can be defined via OWL by making the property an
instance of the class owl : SymmetricProperty (cf. Bechhoferetal., 2004). E.g. the

property foo:marriedTo is symmetric because a marriage is always mutual.

Inverse properties: With OWL, we can define that one property is an inverse of
another property (cf. McGuinness & van Harmelen, 2004). E.g. the property

foo:writtenBy is an inverse of the property foo:authorOf.

Functional properties: Functional properties are properties “that can have only one
(unique) value y for each instance x” (Bechhofer et al., 2004). A property is defined as
functional by making it an instance of the class owl:FunctionalProperty.
Functional properties are a way to express global cardinality restrictions (cf. Bechhofer

et al., 2004). E.g. a car can only have one active license plate number.

Inverse functional properties: Inverse functional properties uniquely identify the
subject in a triple. In other words, a value of an inverse functional property must only
belong to the same individual. A property is defined as inverse functional by making it

an instance of the class owl:InverseFunctionalProperty. Inverse functional

62

properties are a way to express global cardinality restrictions (cf. Bechhofer et al.,

2004). E.g. a certain social security number can only belong to one person.

Cardinality restrictions: OWL provides the properties owl:maxCardinality,
owl:minCardinality, and owl:Cardinality to define cardinality restrictions on
ranges of properties. The OWL cardinality properties hold values of datatype
xsd:nonNegativeInteger. A restriction with owl :maxCardinality “describes a
class of all individuals that have at most N semantically distinct values (individuals or
data values) for the property concerned, where N is the value of the cardinality
constraint” (Bechhofer et al., 2004). Analogous to the owl:maxCardinality,
owl:minCardinality describes a class of individuals that must at least have N
semantically distinct values, and owl:Cardinality describes a class that has
exactly N semantically distinct values (cf. Bechhofer et al., 2004). Since the cardinality
only applies to semantically distinct values and the same individuals may be
represented by syntactically distinct values, it is possible that, although
owl:maxCardinality has value “1”, an instance has two values for a property that
represent the same individual. If both values represent the same individual, then the

restriction will still be followed.

The Semantic Web programming languages RDF, RDFS, OWL, and OWL 2 allow
many more formal semantic expressions which are not explained in this thesis due to

their lack of relevance for the focus of this work.

4.2.4 Language Profiles of OWL and OWL 2

The Web Ontology Language OWL has three common language profiles, namely OWL
Lite, OWL Description Logic (DL), and OWL Full (Bechhofer et al., 2004). A language
profile thereby provides a subset of language constructs of OWL and may constrain
their usage (Bechhofer et al., 2004). In OWL Full, all elements of the language can be
used with no restrictions as long as valid RDF documents are produced (Bechhofer et
al., 2004). OWL DL and OWL Lite are subsets of OWL (Bechhofer et al., 2004). One
of the major distinctions between OWL Full and OWL DL is the meta-modeling
capability of OWL Full. In OWL Full, classes and properties can also be used as an
individual. This is not allowed in OWL DL to provide a language profile for decidable

reasoning, i.e. automated inferencing of implicit knowledge within finite time

63

(Bechhofer et al., 2004). OWL Lite is the simplest of all OWL profiles and provides a
minimal subset of OWL with the most important ontological constructs to provide an
easy way to engineer an ontology (cf. Hitzler, 2008, p. 151ff.). At present, most
ontologies are coded in OWL DL.

OWL 2 introduces three new language profiles, namely OWL 2 EL, OWL 2 RL, and
OWL 2 QL (W3C-OWL-Working-Group, 2012). The different language profiles of OWL
2 have been composed for specific cases. For example, OWL 2 EL is optimized for
very large ontologies with many classes and properties (W3C-OWL-Working-Group,
2012). OWL 2 QL was designed to provide “sound and complete query answering”
(Motik et al., 2009) at a reasonable time. And OWL 2 RL is optimized for reasoning
(W3C-OWL-Working-Group, 2012). For a detailed overview about the different
language profiles for OWL 2, please see (Motik et al., 2009).

Thus, when designing new ontologies, it is important to consider the required level of
expressivity and the scenarios in which the ontology shall be used, in order to identify
a proper language profile. In the following, the acronym OWL is used to refer to both,
OWL and OWL 2.

4.3 SPARQL Query Language for RDF

Query languages have been used for several decades, e.g. the Structured Query
Language (SQL) to update and retrieve data from relational databases (Oracle, 2013).
The Semantic Web provides its own query language, called the SPARQL query
language for RDF (SPARQL) (Harris & Seaborne, 2010). SPARQL can be used to
store, update, retrieve, and delete data in knowledge bases and provides several
mechanisms, such as aggregations, subqueries, or filters, that are very similar to
features of SQL (cf. Harris & Seaborne, 2010). Other than with SQL, SPARQL can be
combined with reasoners to also retrieve information that is not explicitly represented®.
E.g. a SPARQL query asking for instances of the class Person could also retrieve

instances of subclasses of the class Person, if subclass reasoning was enabled. A lot

14 There has been work on deductive databases that combine logic programming and database
management systems. However, to the best of the author's knowledge they are not widely used in
business information systems.

64

of triplestores and Semantic Web tools, such as Virtuoso'® or TopBraid Composer’8,
provide so called SPARQL endpoints (Feigenbaum et al., 2013) with query interfaces
to access the knowledge base or RDF files via SPARQL queries. Moreover, a lot of
the available SPARQL query interfaces provide additional, proprietary SPARQL
functions (also known as SPARQL extensions), that extend the SPARQL standard
functionalities'” as specified by the World Wide Web Consortium (W3C). At time of this
thesis, SPARQL 1.1 provides a mostly stable and expressive syntax that is already

implemented in many commercial and non-commercial Semantic Web tools.

4.4 Reasoning and Inferencing

Besides the plain retrieval of Semantic Web data via SPARQL queries, it is also
possible to employ the expressiveness of ontologies and the represented knowledge
via so called reasoners (cf. Hebeler et al., 2009, p. 285). Reasoners are programs that
use the represented logic of ontologies and / or user-defined rules (1) to infer implicit
knowledge and (2) to check the logical consistency at ontology and instance level (cf.
Antoniou & van Harmelen, 2008, pp. 97-103; Fensel & van Harmelen, 2007).
According to Hebeler et al. (Hebeler et al., 2009, p. 285), there are two different types
of reasoners which can also be combined in a single engine, namely inference
reasoners and rule-based reasoners. Inference reasoners infer implicit knowledge and
check logical consistency based on the axioms represented via RDFS and OWL (cf.
Hepp, 2008b, p. 15f.). Rule-based reasoners process user-defined rules that are
represented additionally to the axioms of an ontology (cf. Hebeler et al., 2009, pp. 231-
233). Similar to the axioms of RDFS and OWL, user-defined rules can also be used to
infer new knowledge or check consistency, but provide more flexibility for the definition
of axioms (cf. O’Connor et al., 2005, p. 975). Depending on the processing capabilities
of the reasoner, rules can be represented in different languages, such as the Semantic
Web Rule Language (SWRL)' or via the vocabulary of the SPARQL Inferencing

15 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro (Last accessed on April 10t 2012)
16 http://www.topquadrant.com/products/TB_Composer.html (Last accessed on April 10t 2012)

17 http://www.w3.0rg/TR/2010/WD-spargl11-query-20100126/ (Last accessed on April 10" 2012)

18 http://www.w3.org/Submission/SWRL/ (Last accessed on April 11t 2012)

65

framework (SPIN)'. A popular open source reasoner that combines both, inference

and rule-based reasoning, is Pellet?.

The inferable knowledge via inference reasoning depends on the formal elements that
are used within the ontology. In the following, we provide some examples of potential
inferences that can be made when reasoning knowledge provided by an OWL DL
ontology (cf. Hitzler, 2008, p. 176f.).

Class equivalency: Based on equivalency relationships, it can be inferred which
classes belong to a specific domain concept. E.g. by specifying that class Person and
class HumanBeing are equivalent, a reasoner can process this information to

automatically infer the members of both classes.

Subclass relationships: Based on the definition of subclass relationships, a reasoner
can derive all members of a superclass including members that are not explicit
members of the superclass. E.g. a reasoner could infer that the individual Christian
not only belongs to the class PhD-Student, but also belongs to the class Person,
since the class PhD-Student is a subclass of the class Person. In the following, we

will use the term “subclass reasoning” to refer to this kind of inferencing.

Disjunctive classes: With OWL, classes can be defined as disjunctive, i.e. that
members of class A cannot also be members of class B at the same time, if class A
and class B are disjunctive. Based on this knowledge representation, reasoners can
identify individuals that are members of disjunctive classes and, thus, identify and

report inconsistent class memberships.

Additional inferencing capabilities for knowledge represented in ontologies based on
RDFS and OWL can be found in (Hitzler, 2008). As mentioned in the previous section,
the more formal elements and axioms are used within an ontology, the more resources
are needed for the reasoning based on the ontology (cf. Antoniou & van Harmelen,
2008, p. 158; Fensel & van Harmelen, 2007; Gomez-Pérez et al., 2004, p. 204). Hence,
for efficient reasoning it is important to pay attention to the design of an ontology,

especially regarding the chosen language profile.

19 http://spinrdf.org/ (Last accessed on April 11t 2012)
20 http://clarkparsia.com/pellet/features (Last accessed on April 11t 2012)

66

4.5 Ontologies and Relational Databases

Ontologies and relational databases (RDB) are related to each other in at least two
aspects. First, a lot of data that is currently available on the Semantic Web has been
published via mapping technologies between RDB and ontologies (cf. Bizer, Heath, et
al., 2009). Secondly, some triplestores use the efficient and mature technologies of
RDB management systems (RDBMS) to store RDF triples (Heymans et al., 2008, p.
92). In this section, we examine how data from relational databases can be linked to
conceptual elements from ontologies and exposed as RDF data. Relational data can
be lifted into the Semantic Web space, namely (1) virtually without a persistent
representation of the data in RDF or (2) persistently with a persistent conversion of the
data into RDF (Sahoo et al., 2009). In both cases, the elements of the relational
schema have to be mapped to the target ontology. Table 6 shows how the different
elements of an RDB schema can be mapped to the elements of an ontology based on

findings from Astrova (Astrova, 2009).

Table 6: Simplified mapping between RDBs and ontologies (cf. Astrova, 2009)

RDB Element Ontology Element

Table?! / View Class

Table with only two | Object property
foreign key columns

Column containing Datatype property
datatype values

Column containing | Object property
foreign keys

Primary keys Individuals / URIs

Row Instance

It must be stressed that there may also be much more individual mappings between
elements of an RDB to elements of an ontology. E.g. one might want to populate tuples
of a specific table to multiple different classes based on filters on certain column values.
However, there are many ways to easily expose relational sources to the Semantic
Web spaces, such as D2RQ or Virtuoso RDF-Views (please see (Sahoo et al., 2009)

21 Tables that only contain two columns with foreign keys are mapped to object properties

67

for a survey about RDB2RDF mapping technologies). In summary, we can conclude
that relational data can be used in Semantic Web architectures via mappings to
ontology elements. This facilitates the use of Semantic Web technologies to process
data of RDB.

68

5 Data Quality in the Semantic Web

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) with the
vision to evolve the traditional Web, which is essentially a graph of interlinked
documents, into a “Web of Data” (Berners-Lee et al., 2001; cf. W3C, 2013). One of the
major goals of the Semantic Web is the supply of machine-interpretable data at Web
scale to gain a higher degree of automation and to facilitate more complete processing
of information (cf. Berners-Lee et al., 2001). For example, if the prices of all consumer
products were published in a machine-readable format and structure throughout the
whole Web, then more complete price comparisons at global scale would be possible
with minimal manual effort. While the traditional Web is mainly used to publish
information in a form that empowers a Web browser to render the contents in a form
suitable for human consumption, the Semantic Web shall additionally allow computer-
based devices to extract and process the meaning of the contents (cf. Berners-Lee et
al.,, 2001). To facilitate the publication and use of structured data at Web scale,
Semantic Web formalisms such as RDF (Manola & Miller, 2004), RDFS (Brickley &
Guha, 2004), and OWL (Bechhofer et al., 2004; Hitzler et al., 2012) have been
developed to support the publication of data. Semantic Web applications can then
extract and use the published data, e.g. to derive decisions to automate tasks or to
answer complex queries (cf. Berners-Lee et al., 2001). However, Semantic Web-based

applications have a high risk to fail if the processed data is of insufficient quality.

In this chapter, we give an overview of existing data sources on the evolving Semantic

Web vision and discuss data quality problems and their impact.

5.1 Data Sources of the Semantic Web

As already explained, data on the Semantic Web is mostly published according to the
RDF data model (cf. Heath & Bizer, 2011; Manola & Miller, 2004, see also section
4.2.2), which represents graphs of information in the form of simple statements known
as triples with the basic structure of subject, predicate, object (cf. Manola & Miller,
2004). The Semantic Web already provides billions of such triples with data about
several different domains such as geography, media, health care, life sciences,

linguistics, and e-commerce (cf. Bizer, Heath, et al., 2009, p. 5f.; Heath & Bizer, 2011;

69

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 5, © Springer Fachmedien Wiesbaden 2016

Muhleisen & Bizer, 2012). Figure 24 shows the well-known linking open data (LOD)
cloud diagram?? which represents a large part of available data on the Semantic Web
(Cyganiak & Jentzsch, 2011a).

Figure 24: Linking Open Data (LOD) cloud diagram?? (Cyganiak & Jentzsch, 2011a)

The amount of triples of the LOD cloud was estimated to be around 31 billion triples in
September 2011 (Cyganiak & Jentzsch, 2011b). But the LOD cloud only represents
part of the Semantic Web, since the latest available version of the diagram was created
on September 19t 2011, and data sources have to meet certain criteria to be included
in the diagram. For instance, a data source must contain at least 1000 triples and have
at least 50 RDF links to other data sets in the diagram (cf. Cyganiak & Jentzsch,
2011a). Hence, a large amount of data that is not linked to data sets in the LOD cloud
is not part of the diagram and its statistics. For example, a lot of product data published
via the GoodRelations ontology??, a popular vocabulary for publishing E-Commerce
data (Hepp, 2008a), lack explicit links to the LOD cloud and is, therefore, not visible in

the diagram despite its significance for the practical application of the Semantic Web.

In addition to the intended usage of data published in the LOD-cloud, like intelligent
information processing (cf. Bizer, Lehmann, et al., 2009) or entity recognition in natural

language processing (cf. Kobilarov, Scott, et al., 2009, p. 732; Reuters, 2013), the data

22 Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http:/lod-cloud.net/ (Last
accessed on April 24 2012)
23 http://purl.org/goodrelations (Last accessed on April 12t 2012)

70

can also be a relevant source for data quality management. Several data quality
management heuristics use reference data sets to identify data quality problems (cf.
Apel etal., 2010, p. 74; English, 1999, p. 166; Loshin, 2001, p. 161). In (Firber & Hepp,
2010a), we have shown that Semantic Web data can particularly be useful for the
identification of illegal values or functional dependencies between attribute values in
the geographic domain with minimal effort. To proof its practical usefulness for DQM,
we performed a data quality analysis of real address data from BestBuy stores, a
popular North American retailer for consumer electronics (cf. Furber & Hepp, 2011a).
The address data contained addresses of BestBuy stores which were published on the
Web via the GoodRelations ontology and the vCard ontology?*, a vocabulary for
publishing business card data. We compared the BestBuy data with data from
Geonames?®, a Semantic Web data source for geographical information, and identified
several data quality problems such as mistyped values and a few illegal city / country
combinations. We only used the reference data as provided by Geonames for the data
quality analysis which contained all valid city / country combinations and, therefore,
saved the tremendous manual effort that would have to be invested for the manual
creation and maintenance of this data. Despite these promising first results, it must be
stressed that the Semantic Web data sets should be also frequently monitored for data
quality errors, when used as a trusted reference. Otherwise, data quality problems in

the reference data will be spread to other data sources without being noticed.

In near future, the Semantic Web will most likely further grow and expand its data
diversity to additional domains. Therefore, we can expect that more useful data will be
published that will open further possibilities for DQM. On the other hand, the number
of individuals and organizations who publish data will grow, which may make it more
difficult to evaluate the reliability of data from the Semantic Web as reference data for

data quality management.

5.2 Semantic Web-specific Quality Problems

In section 3.3, data quality problems types have been shown that are typical for data

in relational databases. While most of the illustrated problems may also occur in

24 hitp://www.w3.0rg/2006/vcard/ns-2006.html (Last accessed on April 12t 2012)
25 http://www.geonames.org (Last accessed on April 12t 2012)

71

Semantic Web data, there are some quality problems that are specific for Semantic
Web data. In the following, we enumerate and describe several Semantic Web-specific
quality problems based on findings by (Hogan et al., 2010; Lei & Nikolov, 2007; Lei et
al., 2007). We thereby use the term “conceptual elements” to refer to classes and
properties. Moreover, we sort the different types of errors into problems related to (1)
document content, (2) data format, (3) data definitions and semantics, (4)
classification, and (5) hyperlinks. The following representation of Semantic Web data
quality problems does not claim to be complete. In fact, due to missing research in this
area, additional quality problem types of Semantic Web data will most likely be

discovered in future.

5.2.1 Document Content Problems

Missing structured data: In the Semantic Web, it is often expected that machine-
processable data is returned when looking up links. But in many cases, the returned
content type indicates unstructured data which is not as useful for Semantic Web

agents (cf. Hogan et al., 2010).

Imprecise / misreported content types: Although Web documents on the Semantic
Web are published in one of the various syntaxes for RDF, like RDF/XML, the content
type as returned by the Hyper Text Transfer Protocol (HTTP) response header may be
incompatible or more generic than the actual type of the content (cf. Hogan et al.,
2010).

5.2.2 Data Format Problems

Document syntax errors: Semantic Web data is usually encoded according to W3C
standards for the syntactical representation or formal semantics, such as RDF, RDFS,
or OWL (cf. Hogan et al., 2010). These standards provide syntactic and structural

requirements which may sometimes be violated. The W3C provides validation

72

applications which test documents for compliance to the syntax rules of such

standards?6.

Misplaced conceptual elements: As stated in section 4.2.2, triples consist of
subjects, predicates, and objects. Properties should only be used in the predicate
position and classes should usually be the only objects of an rdf:type property.
Therefore, the URIs of classes and properties may be considered as misplaced, if they
do not obey these position rules (cf. Hogan et al., 2010). However, it must be stressed
that in OWL Full knowledge bases, properties may also be in subject position of a
triple. In OWL Full, it depends on the conceptual model whether the appearance of a
class or property URI in another position of a triple is a data quality problem or an

intended form of meta-modeling.

Violation of datatype syntax: In RDF documents, it is possible to define XML
datatypes for literal values. Such datatypes indicate syntactic rules for literal values of
such datatype properties without strictly enforcing them (cf. Hogan et al., 2010). E.g.
the datatype xsd:date?’ requires date values in the syntax YYYY-MM-DD.

Missing language tags: In RDF documents, it is possible to define so called language
tags for literal values indicating the language in which the literal is written (Heath &
Bizer, 2011). Language tags are especially useful for multilingual support. However, if
language tags are not assigned, then automated multiple language support is
obviously not possible. Therefore, some applications may assume missing language

tags as a data quality problem.

5.2.3 Problems of Data Definitions and Semantics

Undefined conceptual elements: In RDF documents, it is best practice to publish
definitions of all conceptual elements, i.e. classes and properties with a formalism like
RDFS (Brickley & Guha, 2004) or OWL (Bechhofer et al., 2004; Hitzler et al., 2012),
within the data set, so that they are retrievable and reusable on the Web. However, a
significant amount of conceptual elements are still undefined in Semantic Web data
(cf. Hogan et al., 2010).

26 See http://www.w3.org/RDF/Validator/ for the W3C RDF Validation service (Last accessed on April
120 2012)

27 See http://www.w3.0org/TR/xmIschema-2/#date for a full description of the required syntax (Last
accessed on July 20t 2014)

73

Ontology hijacking: Ontology hijacking is “the redefinition [...] of external
classes/properties” by third parties (Hogan et al., 2010). In other words, conceptual
elements of existing ontologies are reused in a way that conflicts with the initial
definition, e.g. by adding additional axioms to the URI of the original element that are

incompatible with the original meaning.

Ambiguous inverse functional property values: In OWL, the objects of inverse
functional properties uniquely identify an individual (Bechhofer et al., 2004). The use
of ambiguous values in the object position of inverse functional properties may cause
that reasoners assume two or more individuals to be identical, although they are
different individuals. Thus, ambiguous functional property values represent a severe

data quality problem when reasoning shall be applied (cf. Hogan et al., 2010).

Misuse of owl:DatatypeProperty and owl:ObjectProperty: Datatype
properties usually contain a resource in subject position and a literal value in object
position (cf. Bechhofer et al., 2004). Object properties usually relate two resources (cf.
Bechhofer et al., 2004). Cases where datatype properties connect resources to each
other and object properties contain literal values in subject or object positions may be
considered as misuse of these two property types (cf. Hogan et al., 2010). However, it
must be stressed that datatype properties with datatype range xsd:anyURI may also

contain literal values that look like resources (cf. Biron & Malhotra, 2004).

5.2.4 Problems of Data Classification

Imprecise classification: Imprecise classification occurs when instances are not
classified to the most specific available class (cf. Lei et al., 2007, p. 139). E.g. Peter

Miller belongs to the class foo:Agent and not to the class foo:Person.

Missing classification: Sometimes instances may not be classified at all, i.e. do not
belong to a class more specific than owl:Thing or rdfs:Resource (cf. Lei &
Nikolov, 2007; Lei et al., 2007). E.g. the individual Peter Miller does not belong to

a class, although it should be member of the class foo:Person.

Incorrect classification: Instances are incorrectly classified when they belong to a
wrong class, i.e. they actually cannot be a member of this class due to their real-world

74

semantics (cf. Lei & Nikolov, 2007). E.g. the individual Peter Miller is member of

the class foo:PopulatedPlace.

Spurious conceptual elements: Sometimes not all conceptual elements of an
ontology are used, i.e. not all classes have instances or not all properties have values.
Unused conceptual elements may, therefore, be considered as spurious (cf. Lei et al.,
2007, p. 139).

Membership in disjoint classes: With the OWL property owl:disjointWith two
classes can be connected that do not share the same individuals. Hence, an individual
cannot be member of two or more disjoint classes or their subclasses at the same time
(cf. Hogan et al., 2010; Lei & Nikolov, 2007).

Membership in deprecated conceptual elements: In OWL, classes and properties
may be flagged as deprecated via the classes owl:DeprecatedClass and
owl :DeprecatedProperty when they are shall not be used anymore (Bechhofer et
al.,, 2004). In OWL 2, alternatively the annotation property owl:deprecated with
value “true” annotates deprecated classes and properties (Bao et al., 2012). Hence,
the usage of such deprecated conceptual elements may be considered as a quality
problem, although it may not be as severe as other quality problems (cf. Hogan et al.,
2010).

5.2.5 Problems of Hyperlinks

Dereferencability problems: In Semantic Web environments, it is recommended to
use HTTP URIs to represent individuals, properties, and classes in order to be able to
look up names and link data (cf. Berners-Lee, 2006). Sometimes the links may not be
dereferencable, i.e. we receive an error when looking up the URI on the Web. In most
of these cases the target data source of the link address is missing (cf. Hogan et al.,
2010).

75

5.3 Distinct Characteristics of Data Quality in the Semantic Web

There are major differences between data quality in business information systems
(BIS) and data quality in open environments such as the Semantic Web. The World
Wide Web and the Semantic Web architecture facilitates that anyone that has an
internet connection and Web space can publish anything about anything (cf. Berners-
Lee, 1998b). In other words, anyone with access to a Web server can publish any data
on the Semantic Web, even non-sense data. In opposite to the Web, traditional
business information systems usually put control upon the creation and maintenance
of data, e.g. via constraints or role and authorization systems to avoid the creation of
heterogeneous and willfully conflicting data. These different policies are driven by
different needs. While in BIS it may be necessary to establish a common way to create,
update, and publish information in order to manage and control business processes,
the Web relies on an open architecture to use the creativity and intelligence of the
crowd and to serve as an open platform for information exchange (cf. Berners-Lee &
Fischetti, 2000). In fact, the large-scale introduction of firm constraints and
authorization systems in the Semantic Web would violate freedom of speech and other
human rights. Moreover, while large BIS may have a couple of 100.000 users, the Web
has most likely several billion users. Thereby, the amount of users also raises the level
of heterogeneity. Consequently, the diversity of quality perceptions and data
requirements is likely much bigger on the World Wide Web than in BIS. Furthermore,
not existing information underlies different interpretations in the Web and in BIS. The
Semantic Web assumes an open world, i.e. everything that we do not know is not
defined, yet, and, therefore, is neither wrong nor right (cf. Hebeler et al., 2009, p. 103f.).
Traditional BIS follow the opposite interpretation, i.e. they close the world and assume
that everything that is not represented can be assumed as false (cf. Hebeler et al.,
2009, p. 103f.). In other words, a missing instance in BIS would be assumed to not
exist, while in the Semantic Web it would be assumed that additional instances may
exist, but are currently not member of the class. During the interpretation of data,
especially aggregated data, it is important to be aware that knowledge may be
incomplete and, therefore, information may be missing. While data quality metrics
typically assume a closed world, human interpretation of data quality assessment
results can assume an open world, even for traditional BIS, since it is unlikely that all
data requirements are known at all times. E.g. an accuracy score of 97 % should be

interpreted with special regard to the assumed data requirements. Thus, the score may

76

be higher or lower, when further knowledge about data requirements is added or

different data requirements apply.

However, the Web’s openness must be respected by data quality management
systems for the Semantic Web, especially with regard to the large diversity of data
requirements. But data quality management systems can be a good support to identify
and monitor deficient data according to specific quality perspectives and thereby help
to improve processing of heterogeneous data for specific tasks, even for the open

Semantic Web.

77

PART Illl — Development and Evaluation of the Semantic
Data Quality Management Framework

6 Specification of Initial Requirements

This chapter specifies the requirements for an ontology-based data quality
management framework, called Semantic Data Quality Management Framework
(SDQM), which shall be developed to support data quality management activities by
the use of ontologies. We thereby apply the Design Science Research Methodology
(DSRM, cf. Peffers et al., 2008) process as explained in section 2.4. We start with
describing the required artifacts with a motivating scenario that illustrates the needs
related to data quality management. Based on the motivating scenario, we derive initial

requirements for the framework.

6.1 Motivating Scenario

We assume that a large organization aims to improve the quality of its data that is
already used throughout the organization because the organization often suffers from
costly process failures due to poor data quality. The data is managed by an information
system that is based on a relational database and used for the support of business
process execution. The quality requirements for data are not centrally documented and
only known to domain experts who are dispersed across the organization. In the best
case, the quality requirements are an implicit part of design documentations and
manuals that have been created several years ago when the information system had
been developed. To avoid the creation of poor data, the organization has implemented
some quality requirement checks into the program code of their information system,
but does barely review the implemented requirements as to whether they are still valid.
This is because the required experts do not have time to support this action or do not
understand the program code. Moreover, it is not known whether the data
requirements are consistent with each other. In order to improve the situation, the
organization seeks to establish a data quality management method which helps to gain

a higher transparency about the organization’s data requirements and the state of data

78

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 6, © Springer Fachmedien Wiesbaden 2016

quality of its data sources without the need for personal interaction with experts.

Therefore, the organization seeks for a tool that supports

- collection of data requirements across the organization,

- documentation of data requirements in a standardized way,

- comparison of data requirements, as well as the identification and
harmonization of inconsistent data requirements,

- central availability of data requirements including its documentation across the
organization, and

- automated processing of data requirements to derive reports about data with
requirements violations and reports that provide an overview about the quality

state of a data source.

Based on the requirement violation reports the root causes of data quality problems

shall be analyzed, in order to improve data quality at a sustainable level.

6.2 Initial Requirements for SDQM

In this section, we describe the initial requirements for the SDQM that can be derived
from the motivating scenario and the theoretical findings about data quality
management in chapter 3. According to (Grande, 2011, p. 37ff.), there are several
different types of requirements. Grande distinguishes between functional and non-
functional requirements. From Grande’s viewpoint, functional requirements “describe
the functionality and the behavior of the product” (Grande, 2011, p. 37). Non-functional
requirements are quality requirements and requirements introduced by boundary
conditions (cf. Grande, 2011, p. 37f.).

Although this categorization provides a first help to structure the definition of
requirements, it is insufficient for the analysis of requirements in the context of artifact
design. Therefore, we developed our own requirements typology as depicted in figure
25.

79

Requirements

Research
Requirements

Task Conditional
Requirements Requirements

Functional Organizational Financial
Requirements Requirements Requirements

Technological
Requirements

Figure 25: Typology of requirements for artifact design
On a high level, we distinguish between (1) task requirements, i.e. requirements of the
tasks that shall be performed with the help of the framework, (2) conditional
requirements, i.e. external requirements that are implied by the environment in which
the framework shall be used, and (3) research requirements which need to be
addressed in order to achieve the research goal as defined in section 2.1. Functional
requirements describe the desired functions of the artifact and can be derived from the
task requirements (cf. Grande, 2011, p. 37). Conditional requirements are non-
functional requirements that can be further distinguished as organizational
requirements, i.e. requirements derived from the organizational environment,
technological requirements, i.e. requirements derived from the technological
environment in which the artifact shall be integrated, and financial requirements, i.e.
limitations on resources that are necessary for the development of the artifact. In the
following, we describe the requirements of SDQM separated by these categories.

6.2.1 Task Requirements

The major goal of all data quality management activities is the continuous and
sustainable improvement of data quality (cf. English, 1999, pp. 39, 69f.; Wang, 1998).
To achieve this goal, a methodology for the continuous identification and removal of
the causes of data quality problems is needed. In section 3.5, we have described the
two most popular methodologies to improve data quality, namely Total Data Quality

Management (TDQM) and Total Information Quality Management (TIQM). In section

80

3.5.3, the following common activities of TDQM and TIQM have been identified (cf.
Batini & Scannapieco, 2006, p. 171f.):

- Identification and definition of quality-relevant metadata and requirements,
- Information quality measurement and assessment,
- Analysis of the root causes of identified data quality problems, and

- Resolution of the identified root causes

The organization in the motivating scenario requires the implementation of a data
quality management methodology. We use the findings from the comparison of TDQM
and TIQM added by the information from the motivating scenario to define a data
quality management process that fits to the organization’s needs. Hence, the data

quality management process of the organization contains the following subtasks:

Identification / collection and formulation of data requirements: Data
requirements shall be collected / identified from documents and expert knowledge
distributed across the organization. Moreover, the requirements shall be formulated in

a common language and structure, so that they are comparable and reusable.

Identification of requirement violations: Based on the formulated data

requirements, requirement violation reports shall be generated.

Evaluation of the quality state of data sources: Based on the data requirements,

transparency about the quality state of a data source shall be generated.

Identification and removal of root causes of requirement violations: Based on the
requirement violation reports, root causes of the requirement violations shall be
identified and removed.

Table 7: Tasks in the SDQM framework and their equivalencies in the TDQM method (based on Wang, 1998)

Total Data Quality Semantic Data Quality Management
Management Phase Framework

Define Identification / collection and formulation of data
requirements

Measure Identification of requirement violations

Evaluation of the quality state of data sources

Analyze Identification of root causes of requirement violations

Improve Removal of root causes of requirement violations

81

The enumerated tasks represent the task requirements of SDQM and can be aligned

according to the TDQM cycle (cf. Wang, 1998) as shown in table 7.

6.2.2 Functional Requirements

Functional requirements are requirements that describe the desired functions of an
artifact (cf. Grande, 2011, p. 37). The functional requirements of SDQM can be derived
from the task requirements, since functions of the artifact shall support the execution
of the identified tasks. The following functional requirements can be derived from the

task “Identification / collection and formulation of data requirements”:

- the artifact shall be used to collect requirements,
- the requirements shall be collected in a structured and comparable form, and
- some requirements may be in draft status and, therefore, not usable for

measurement, yet.
The task “Identification of requirement violations” requires the following functions:

- use the approved data requirements to identify requirement violations in the
tested data and

- generate a report with violated instances indicating the type of violation / data
quality problem.

The following functional requirements can be derived from the task “Evaluation of the

quality state of data sources”:

- generate a report with key performance indicators (KPI) that show the ratio
between correct instances and instances with requirement violations separated
by quality dimensions,

- automated calculation of KPI's based on data requirements, and

- reference objects of KPI's must be visible in report.

The identification and removal of root causes of data quality problems is not part of the
requirements, since these tasks require a thorough manual analysis and coordination,
e.g. with the help of brainstorming, Ishikawa diagrams, or “Why analysis” (cf. English,
1999, pp. 294-297). Data cleansing via simple database updates is not an option for
the organization in the motivating scenario since the data is highly integrated into

transactions that must be audit compliant and, therefore, cannot be changed while

82

used in transactions. Table 8 summarizes the functional requirements for SDQM and

already indicates the expected deliverable that satisfies the requirement.

Table 8: Summary of functional requirements including expected deliverables

Task
Requirement

Functional Requirement

Expected Deliverable

Identification /
Collection and
formulation of
data
requirements

Distributed acquisition of
data requirements

Web-based platform for
collaborative
development of data
requirements

Data requirements shall be
captured in structured and
comparable shape

Data requirement forms

Not all requirements may
be immediately usable for
measurement

Feature to flag approved
data requirements

Identification of
requirement
violations

Use the approved data
requirements to identify
requirement violations in
the tested data

Data quality monitoring
algorithms

Generate a report with
violated instances
indicating the type of
violation / data quality
problem

Data quality monitoring
reports

Evaluation of the
quality state of
data sources

Use the approved data
requirements to calculate
KPIs for data quality
separated by quality
dimensions

Data quality assessment
algorithms

Generate a report with
KPIs for each data quality
dimension with reference
to the assessed object

Data quality assessment
reports

6.2.3 Conditional Requirements

Conditional requirements in the understanding of this thesis are requirements that are
implied by the environment in which the framework shall be used (cf. Grande, 2011, p.
37). Furthermore, we can differentiate between (1) organizational requirements, i.e.
conditions related to the organizational environment, (2) technological requirements,

i.e. conditions implied by the system environment, and (3) financial requirements, i.e.

83

limitations of the available resources for the development project (cf. Grande, 2011, p.
38f.). In the following, we describe the conditional requirements that are relevant for
the development of the SDQM. The following organizational requirements have to be
considered during the development of the SDQM:

Ability to capture distributed knowledge: Knowledge about data requirements is
(similar to other business knowledge) distributed across the organization and,
therefore, difficult to capture (cf. Huang et al., 1999, pp. 44-47; Loshin, 2001, p. 9f.).

Ability to identify contradictory data requirements: Due to different perspectives
and heterogeneity, data requirements may be contradictory. Hence, comparability of
data requirements is important (cf. Loshin, 2001, p. 198f.).

Ability to create data requirements within a limited time: Expert knowledge is a
very precious but limited resource, since it is the source for business success and time
of domain experts is very limited (cf. Loshin, 2001, p. 15). Hence, expert knowledge

should be captured as efficiently and used as effectively as possible.

Ability to create data requirements without programming knowledge: Business
experts are the main contributors to the creation and maintenance of data
requirements, since data requirements often have their origin in business decisions (cf.
Loshin, 2001, p. 15). Therefore, the design of the framework must consider that the
creators and maintainers of data requirements usually have limited programming

knowledge.
Moreover, the following technological requirements must be considered by the SDQM:

Data retrieval from relational sources: The information system used in the
motivating scenario is based on a relational database which limits the types of quality

problems that can occur.

Different optimization of transactional and analytical systems: Transactional
systems are information systems optimized for the support business process execution
(cf. Hansen & Neumann, 2004, p. 90f.). In contrast, analytical systems, e.g. for decision
support, are usually optimized for data analysis (cf. Hansen & Neumann, 2004, pp.
789-794). Performing data quality analytics on a transactional system may, therefore,
lead to unacceptable performance overhead. The data from the organization in the

motivating scenario is located in a transactional system.

84

Performance and scalability: The artifact needs to have a sufficient performance and

must be scalable for wide-spread use.

System constraints: The experiments in this thesis are performed on a specific
operating system. Therefore, the architecture is constrained to artifacts that can be run

on the available operating system.

Furthermore, the development of the SDQM underlies financial requirements. Since
this thesis project has a very limited financial budget and limited manual resources, the
reused artifacts that shall be integrated into the framework have to be freely available
for research purposes.

Additionally to the enumerated requirements, there may be several more conditional
requirements. However, this section contains the most important conditional

requirements with regard to the development of the SDQM framework.

6.2.4 Research Requirements

Besides requirements originating from the application setting, SDQM also addresses
research requirements, i.e. requirements that have to be considered to achieve the
research goal or which are caused by the research conditions in which the artifact is
developed. Since this thesis investigates the use of ontologies for data quality

management (see section 2.1), one or more ontologies shall be part of SDQM.

85

6.3 Summary of SDQM’s Requirements

Table 9 summarizes the initial requirements of SDQM in a structured form and assigns
an identifier to each requirement. The requirements register will be used as a guideline

for the development and evaluation of the SDQM framework.

Table 9: Initial requirements for the development of the SDQM framework

ID | Requirement Requirement Type

R1 | Distributed acquisition of data requirements Functional

R2 | Data requirements shall be captured in a Functional
machine-readable form

R3 | Data requirements have to be approved Functional
before their use for data quality management

R4 | The approved data requirements can be Functional

automatically applied to the tested data and
will indicate violations

R5 | Generate a report with violated instances Functional
indicating the type of violation / data quality
problem

R6 | The approved data requirements can be Functional

used to calculate KPlIs for the data quality
separated by quality dimensions

R7 | Generate a report with KPIs for each data Functional
quality dimension with reference to the
assessed object

R8 | Ability to capture distributed knowledge Organizational

R9 | Ability to identify contradictory data Organizational
requirements

R10 | Ability to create data requirements without Organizational
programming knowledge

R11 | Ability to create data requirements under Organizational
time constraints

R12 | Data retrieval from relational sources Technological

R13 | Different optimization of transactional and Technological
analytical systems

R14 | Performance and scalability Technological

R15 | System constraints Technological

R16 | Use ontologies Research

R17 | Used artifacts must be freely available Financial

86

7 Architecture of the Semantic Data Quality Management
Framework (SDQM)

In this chapter, we define the objectives and justify the design decisions of the
Semantic Data Quality Management framework (SDQM). We describe each
component of SDQM'’s architecture as illustrated in figure 26, namely (1) the data
acquisition layer, (2) the data storage layer, (3) the data quality management
vocabulary (DQM Vocabulary), (4) the data requirements editor, and (5) the reporting
layer. The design of the architecture is based on the requirements identified in the
previous chapter. The following sections are organized according to these major

components of the SDQM.

Data Requirements Reporting Layer
Editor (Wiki) (Semantic Data Quality Manager)

- diL

Storage Layer

Triple Store

DQM Vocabulary

Data Acquisition Layer

Source Data = Reference
E:_. Data
[11] (1]

Checked Data V2

Figure 26: High-level architecture of the SDQM framework
In the first part of the following sections, we describe the purpose of the component of
the high-level architecture and map the initial requirements to the accordant
component. Additionally, we review the initial requirements since new requirements
may arise with growing knowledge about the problem domain during the design
process. In the second part of each section, we present the results of an analysis of
existing artifacts regarding their reusability for the SDQM framework as part of the
development process. At the end of each section, we briefly describe the final technical

87

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 7, © Springer Fachmedien Wiesbaden 2016

design of the component. The application procedure of SDQM’s components is
described in chapter 8. The use cases described in chapter 9 illustrate the actual use
of SDQM in real-world settings.

7.1 Data Acquisition Layer

The data acquisition layer of SDQM shall be used to acquire (1) data for further data
quality-related analyses and (2) reference data that may be needed for algorithms that
compare the tested data with normative reference data. The acquisition process can
be separated into (1) the extraction of data from a relational database or a delimiter-
separated value (DSV) file, (2) the transformation of data into RDF triples, and (3)
loading data into a SPARQL-enabled environment to facilitate the analysis of the data
in the Semantic Web environment (cf. Auer et al., 2009; Sahoo et al., 2009).

This type of process is also commonly known as Extraction, Transformation, and
Loading (ETL), in particular in the context of Business Intelligence (cf. Goeken, 2006,
p. 29). There are two main options to perform the ETL process: (1) static replication,
i.e. to extract, transform, and load the data persistently into a triplestore as a one-time
full copy of the original data or (2) dynamic data acquisition, i.e. to acquire the data on
demand from the data source depending on the executed query without a persistent
storage of a copy (cf. Sahoo et al., 2009). Since the data from the motivating scenario
is located in a transactional system that is not optimized for analytical tasks (cf.
Microsoft, 2014), we prefer the former option to avoid a negative impact on the
performance of the transactional systems (cf. Bizer & Cyganiak, 2007). In order to
consider the use of DSV files, we added the new requirement R18 to the list of
requirements. Table 10 summarizes the requirements that must be met by the data

acquisition layer.

Table 10: Requirements for the data acquisition layer

ID Requirement Requirement Type
R12 | Data retrieval from relational sources Technological
R13 | Different optimization of transactional Technological

and analytical systems
Data retrieval from delimiter-separated Technological
files (DSV)

R18

88

7.1.1 Reusable Artifacts for the Data Acquisition Layer

As of today, there are several tools that can be used to implement the SDQM data
acquisition layer. In 2009, the W3C has published a survey about the state of the art
of tools and techniques in the area of mapping relational databases to RDF (Sahoo et
al., 2009). We analyzed a subset of these tools to identify an appropriate artifact for
data acquisition in our scenario. Moreover, we added Google Refine with its RDF
Extension (Google, 2011; Maali & Cyganiak, 2011) to the list which was not part of the
W3C survey due to its novelty and the lack of direct connections to RDBMS. Our
analysis focuses on the type of data acquisition, i.e. the possibility to load relational
data to an RDF representation based on a mapping between both schemas, and the
public availability of the tool for this research project. As explained in the previous
section, there are two options to acquire data from relational sources, namely static
data acquisition as one-time full copy and dynamic data acquisition that acquires data
on demand. The results which are presented in table 11 are based on an analysis of
the information provided by the respective project’s Web site and the description in the
W3C survey.

To minimize human effort, data acquisition tools should support scheduling the
execution of data acquisition at certain points in time or triggered by certain events,
and the visual modeling of ETL processes. To the best of our knowledge, none of the
freely available tools currently support these mechanisms. Conventional data
integration tools such as Talend Open Studio?® or Pentaho Kettle?® support scheduling
and visual modeling, but do not support the conversion to RDF at the time of writing
this thesis. However, for the purpose of this thesis a visual modeling tool with

scheduling capabilities is not available, but also not necessary.

Table 11: Analysis of existing data acquisition tools with RDF conversion support

Tool Data Acquisition | Free
Type Availability
Virtuoso RDF Views (Erling, 2007) Static and No30
Dynamic

28 http://de.talend.com/products-data-integration/talend-open-studio.php (Last accessed on January
05t 2012)

29 hitp://kettle.pentaho.com/ (Last accessed on January 05" 2012)

30 Available in commercial release only (Last accessed on January 05t 2012)

89

D2RQ (Bizer, Cyganiak, et al., 2009; Static and Yes®!
Bizer & Seaborne, 2004) D .
ynamic
Triplify (Auer et al., 2009) Static and Yes®?
Dynamic
R20 (Rodriguez & Gémez-Pérez, 2006) | Static and Yes®
Dynamic
Dartgrid (Wu et al., 2006) Dynamic No3
RDBtoOnto (Cerbah, 2008) Static Yes®
Asio Semantic Bridge for Relational Static and No3
Databases (SBRD) and Automapper D .
ynamic
Google Refine with RDF Extension Static®” Yes3®
(Google, 2011; Maali & Cyganiak, 2011)

7.1.2 Data Acquisition for SDQM

In SDQM, data from relational databases and data from DSV files have to be converted
into RDF before the data can be loaded into a triplestore. The conversion of the
relational data in SDQM is done via D2RQ’s RDF dump functionality (Cyganiak, 2012)
since (1) it meets the requirements of SDQM, (2) it is publicly available, and (3) it is
easy to use. Moreover, we use Google Refine with its RDF extension (Maali &
Cyganiak, 2011) to convert data from DSV files into RDF. The loading procedure is
done via the standard loading programs of the chosen triplestore in the data storage
layer of SDQM.

31 http://sourceforge.net/projects/d2rg-map/ (Last accessed on January 05t 2012)

32 http://sourceforge.net/projects/triplify/ (Last accessed on January 05t 2012)

33 Available as NeOn Toolkit plugin at http://neon-toolkit.org/wikiODEMapster (Last accessed on
January 05" 2012)

34 The project page http://ccnt.zju.edu.cn/projects/dartgrid was not available at the time of this analysis
(Last accessed on January 05t 2012).
S5http://www.tao-project.eu/researchanddevelopment/demosanddownloads/RDBToOnto.html (Last
accessed on January 05t 2012)

36 For availability see http://www.bbn.com/technology/knowledge/asio_sbrd (Last accessed on January
05t 2012)

37 As of January 05 2012 Google Refine allows the static conversion from TSV, CSV, DSV, Excel (.xls
and .xlsx), JSON, XML, RDF as XML, and Google Data documents

38 http://code.google.com/p/google-refine/ and http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/
(Last accessed on January 05" 2012)

90

7.2 Data Storage Layer

The data storage layer of SDQM serves the purpose of storage and supply of data and

must, therefore, possess the following features:

- Storage of the acquired data,

- storage of data requirements,

- storage of ontologies,

- efficient data analysis capabilities, and

- free availability for research purposes.

In order to cover these functionalities, the storage layer consists of two artifacts: (1) a
triplestore to store the data and (2) a server that exposes an endpoint with access to
the triplestore for the execution of analytical queries and data updates by other
artifacts. During the development of SDQM, we have discovered two more
technological requirements that must be considered for the data storage layer:

- The storage artifact must provide a SPARQL 1.13%-compliant endpoint for data
quality analyses (R19).

- The SPARQL endpoint must be extendable by custom SPARQL functions
(R20).

Table 12 summarizes the requirements that must be addressed by SDQM'’s data

storage layer.

Table 12: Requirements for the data storage layer

ID | Requirement Requirement Type
R14 | Performance and scalability Technological

R15 | System constraints Technological

R16 | Use ontologies Research

R17 | Used artifacts must be freely available Financial

R19 | SPARQL 1.1-compliant endpoint Technological

R20 | Support for User-Defined Functions Technological

(UDFs) in SPARQL

7.2.1 Reusable Artifacts for Data Storage in SDQM

39 See http://www.w3.org/TR/spargl11-query/ for the SPARQL 1.1 syntax
91

At present, there are several triplestores that may meet the above requirements. As a
basis for the further selection, we used the triplestores tested in the Berlin SPARQL
Benchmark (Bizer & Schultz, 2011).

Table 13: Analysis of existing triplestores regarding their use for SDQM

Triplestore | Runs on used Availability | SPARQL 1.1
Operating System compliant

4Store No*0 Yes*! Partially*?

BigData Yes Yes* Yes

BigOwlim | Yes Yes* Yes

Jena TDB | Yes Yes* Yes

Virtuoso Yes Yes*® Partially*

Since Virtuoso and 4store did not fulfill some of the requirements as illustrated in table
13, we had to choose between BigData, BigOwlim, and Jena TDB. Because of the
strong support by the community, the openness of the framework, and its sufficient
performance, we chose Jena TDB to be part of SDQM. Moreover, we chose Fuseki
Server*® to publish the SPARQL endpoint of our Jena TDB.

7.2.2 The Data Storage Layer of SDQM

The data storage layer of SDQM consists of the triplestore Jena TDB in Version 0.8.11
integrated into a Fuseki Server (Revision 8860). The Fuseki Server endpoint was
slightly adjusted so that our custom SPARQL extensions can be interpreted by

Fuseki’'s SPARQL query engine. In particular, we added the functions dgf :pattern,

40 Qur attempts for building a Windows 7 compatible version failed.

41 http://4store.org/trac/wiki/Download (Last accessed on January 05t 2012)

42 Supported: Aggregates and GROUP BY, not supported: property paths and sub queries ((Salvadores,
2012))

43 http://sourceforge.net/projects/bigdatal

44 OWLIM Lite freely available after registration at http://www.ontotext.com/owlim/owlim-lite-registration
Last accessed on January 05t 2012)

45 http://incubator.apache.org/jena/download/index.html (Last accessed on January 05" 2012)

46 Open source edition available at http://sourceforge.net/projects/virtuosoffiles/virtuoso/ (Last accessed
on January 05t 2012)

47 Although the syntax of virtuoso’s SPARQL endpoint is very expressive, we discovered several
differences to the SPARQL 1.1 syntax that would have caused a different (non-SPARQL1.1 compliant)
query design

48 http://openjena.org/wiki/Fuseki (Last accessed on January 05" 2012)

92

dgf:dice, and dgf:requiredTimestamp to the query engine. The prefix “dgf:”

refers to the base URI http://semwebquality.org/function#.

The extension dgf:pattern can be used to analyze the syntactical differences
between string patterns of the values of a certain property. It analyzes each character
of a string and creates a new string based on standard character for each character

“n

type. E.g. capital letters are represented as “A”, small letters as “a”, numbers as “N”,
whitespaces as “_”, and all other characters as “S”. Commas and dots are not replaced
by the function. As a result the function creates a new string “AaA_Aaaaaa” based on
the existing string “PhD Thesis”. This is especially useful in combination with frequency
distribution statistics to get an impression of the different syntactical rules that apply

for the values of a certain property.

The extension dgf :dice calculates the distance between two strings based on the
dice coefficient. The dice coefficient is computed via the following formula (cf. Dice,
1945, p. 298):

2xH
d@b) =778

The similarity between two strings, string a and string b, is thereby represented as
d(a,b) (cf. Frakes & Baeza-Yates, 1992, p. 404f.). In our implementation of the dice
coefficient, we extract all bigrams, i.e. the two adjacent characters, of each string, store
each of the bigrams as a value within an array for each string, and compare both arrays
with each other. Then we use the constructed arrays and the above formula to
calculate the similarity between both strings. H is the number of matching bigrams
between string a and string b, A is the number of bigrams of string a, and B is the
number of bigrams of string b. As a result, dgf : dice produces a similarity score based
on the number of identical bigrams of the two strings. The similarity d(a,b) between
string a and string b lies between zero and one. A value of one means that both strings
have all bigrams in common. Zero means that the two compared strings do not have
any bigrams in common (cf. Dice, 1945, p. 298f.; Frakes & Baeza-Yates, 1992, p.
404f.). The extension dgf :dice can, therefore, be used to identify duplicates based
on similar values. Due to heterogeneity, duplicates often cannot be identified via exact

matches of property values.

Finally, we added the extension dgf: requiredTimestamp to Fuseki's query engine

to support the computation of timeliness. The extension subtracts a value in

93

xsd:duration format*® from the current date and time. The xsd:duration value
thereby indicates the maximum duration that may lapse between two updates. As a
result dgf : requiredTimestamp creates an xsd:dateTime formatted® value that
represents the latest timestamp an instance should have based of the required update

duration information.

In summary, the data storage layer of SDQM facilitates communication with the
triplestore via SPARQL 1.1 queries that are sent to the server’s endpoint. Moreover, it

is also suited to correctly interpret our custom SPARQL extensions.

7.3 Data Quality Management Vocabulary

One core requirement for the proposed approach is a common conceptual data model
for capturing instance data, normative reference data, quality rules and quality metrics.
Such shared data schemas are known as global or mediated schemas in the context
of databases (cf. Alexiev et al., 2005, p. 154f.; Levy, 2000, pp. 7-10) or ontologies (cf.
Alexiev et al., 2005, p. 154f.; Gruber, 1993, p. 199f.) in the context of intelligent
systems, agents, knowledge representation, or the Semantic Web. The data quality
management vocabulary presented in the following is an ontology that shall provide
the unified data structure to store quality-relevant knowledge, so that generic SPARQL
queries can process the knowledge and identify quality problems in data instances.

Table 14 shows the initial requirements for the DQM vocabulary.

Table 14: Requirements for the data quality management vocabulary

ID | Requirement Requirement Type
R2 | Data requirements shall be captured in a Functional
machine-readable form
R3 | Data requirements have to be approved Functional
before their use for data quality management
R4 | The approved data requirements can be Functional

automatically applied to the tested data and
will indicate violations

R6 | The approved data requirements can be Functional
used to calculate KPlIs for the data quality
separated by quality dimensions

49 hitp://www.w3.org/TR/xmlschema-2/#duration
50 http://www.w3.org/TR/xmlschema-2/#dateTime

94

Besides these requirements, we have specified the requirements for the development
of the ontology with the help of the ontology engineering methodology by Uschold and
Gruninger (Uschold & Gruninger, 1996). The detailed requirements for the DQM
vocabulary were described by using motivating scenarios for the use of the vocabulary
itself. Based on the scenarios a set of competency questions has been derived such

as the following:

- Which instances of a data source suffer from data quality problems according
to predefined data requirements?

- What is the data quality state of a selected data source according to predefined
data requirements?

- For which time-frame is the data requirement valid?

- Which data requirements have a confidence level above XY?

- Which data quality problems affect instances of class B and/or values of
property X?

- Which data requirements are task-dependent?

The competency questions cover information that is required to represent quality-
relevant knowledge for data quality monitoring and assessment and shall be
answerable through queries against the DQM vocabulary assuming that the retrieved
information is represented via the vocabulary. The competency questions, therefore,
facilitate the identification of the required classes and properties of the ontology. A
detailed description of the DQM vocabulary including its development can be found in
(Furber & Hepp, 2011b).

7.3.1 Reuse of Existing Ontologies

By the time of this thesis project, we did not find any suitable ontologies that fulfill the
above requirements. However, there are multiple ontologies to represent provenance
information of data in Semantic Web architectures, such as the Semantic Web
Publishing Vocabulary (SWP5") or the Open Provenance Vocabulary (OPV%2). Table
15 shows the existing vocabularies in the quality, provenance, and trust space of

Linked Open Vocabularies (Vandenbussche, 2012), a Web site that maintains a list of

51 http://www.w3.0rg/2004/03/trix/swp-2/
52 http://purl.org/net/provenance/ns

95

open vocabularies of the Semantic Web. Although some provenance vocabularies may
be expressive enough to represent some quality information relevant for the
assessment of quality dimensions such as timeliness (Hartig & Zhao, 2009), they lack
expressiveness for the representation of the different types of data requirements, such
as legal values of a property or functional dependencies. Hence, we developed a new

ontology called the DQM vocabulary from scratch.

Table 15: Ontologies in the data quality space of Linked Open Vocabularies®?

Prefix Namespace Title
cert http://www.w3.org/ns/auth/cert# The Cert Ontology
dgm http://purl.org/dgm-vocabulary/v1.1/dgm# The Data Quality

Management Vocabulary

The Identity of Resources

iw http://www.ontologydesignpatterns.org/ont/web/irw.owl#
on the Web ontology

opmv http://purl.org/net/opmv/ns# Open Provenance Model
Vocabulary
Provenance, Authoring

pav http://swan.mindinformatics.org/ontologies/1.2/pav/ and Versioning Ontology
Specification
Provenance Vocabulary

p p://purl.org pi

rov http://purl.org/net/provenance/ns# Core Ontology

prvt http://purl.org/net/provenance/types# Provenance Vocabulary

types
. Vocabulary Of Attribution
q p: g. .org g
voa http://voag.linkedmodel.org/schema/voag# and Governance
wot http://xmlns.com/wot/0.1/ Web Of Trust

7.3.2 Technical Design of the DQM Vocabulary

The DQM vocabulary currently consists of 68 classes, 46 object properties, and 54
data type properties and is coded in OWL DL (see section 4.2.4 for further
explanations) to facilitate its adoption even in knowledge bases that depend on

decidable reasoning. The DQM vocabulary serves the following basic purposes:

1. Representation of data requirements in a machine-readable way.

2. Annotation of quality-relevant meta-information to data elements.

53 Picture retrieved from Mondeca Labs at
http://labs.mondeca.com/dataset/lov/details/vocabularySpace Quality.html (Last accessed on January
05t 2012)

96

The DQM vocabulary uses the namespace http://purl.org/dgm-vocabulary/v1.1/dgm#
which is abbreviated by the prefix “dgm:” in the following. A full visualization of the
DQM vocabulary is shown in figure 27. Its central classes are highlighted in blue. The
class dgm:DataRequirement is the superclass of all data requirements and,
therefore, contains general properties that all data requirements have in common, such
as the requirement's name, description, its importance, and source, the creator’s
confidence in accuracy of the requirement, the requirement’s validity period, and
information on whether the requirement shall be used for assessment or information
filtering. The class dgm:DataRequirement is in the center of the DQM vocabulary
due to its importance for data quality management. Since data requirements may be
task-dependent, the object property dam:appliesFor can be used to connect a
specific requirement with an instance of the class dam: Task (cf. Pipino et al., 2002, p.
211). This facilitates filtering of task-dependent data requirements based on specific
tasks. Moreover, it helps to identify the tasks that may be affected in case the data

requirement is violated.

97

[~ii——

The instances of the class dgm:DataRequirement and its subclasses may be used
to identify requirement violations and calculate data quality scores. Therefore, these
instances can be used to derive other instances for
dgm:DataRequirementViolation and dgm:DataQualityScore. The class
dgm:DataRequirementViolation has the purpose of annotating instances that
violate data requirements with information about the time of identification, the affected
classes and properties, and the data requirement that identified the violation. The class
dgm:DataQualityScore can be used to store the results of data quality
assessments. The class, therefore, provides properties to identify the time when the
assessment was conducted, the requirement the measurement is based on, the
classes and properties that have been analyzed, the actual score and its unit. The
class dgm:DataElement and its subclasses, which are highlighted in yellow in figure
27, are used to provide the range for the classes dgm:DataRequirement,
dgm:DataRequirementViolation, and dgm:DataQualityScore. Hence, every
class and property that is used in an instance of the class dgm:DataRequirement
has to be either a direct instance of one of dgm:DataElement’s subclasses or
mapped to one of its instances via its properties. In the latter option, the knowledge
base stays in the OWL DL language profile. In the former option, the knowledge base
becomes OWL Full. A full description of the DQM vocabulary can be found at
http://semwebquality.org/dgm-vocabulary/v1/dgm.

7.4 Data Requirements Editor

The data requirements editor shall be used to collect data requirements in a structured
and comparable form so that other artifacts can make use of the specified
requirements, e.g. to automatically derive reports about requirement violations and the
quality state of data sources (see section 6.2.2). Therefore, the requirements editor

must address the requirements specified in table 16.

99

Table 16: Requirements for the data requirements editor

ID Requirement Requirement Type

R1 | Distributed acquisition of data requirements Functional

R2 | Data requirements shall be captured in a Functional
machine-readable form

R3 | Data requirements have to be approved Functional
before their use for data quality management

R8 | Ability to capture distributed knowledge Organizational

R9 | Ability to identify contradictory data Organizational
requirements

R10 | Ability to create data requirements without Organizational
programming knowledge

R11 | Ability to create data requirements under Organizational
time constraints

7.41 Reusable Artifacts for SDQM’s Data Requirements Editor

The collection of structured information can, in general, be supported by forms.
However, platforms are needed that facilitate the collection of distributed knowledge
and the creation of consensual agreement in an easy and efficient way. Wiki software
addresses these issues and is especially useful in distributed environments (cf.
Krotzsch et al., 2006, p. 935). Moreover, first experiences have been collected in the
use of wikis for metadata management (Hiner, Brauer, et al., 2011; Hiner, Otto, et al.,
2011). Therefore, we chose wiki technology as the platform for SDQM’s data
requirements editor. In order to meet the functional requirements, the data
requirements need to be captured and stored in a structured way, so that external tools
can retrieve the data requirements for further processing. We found two wiki-software
platforms that already offer such functionalities, namely Atlassian Confluence® with
the semantic plugin Wikidsmart®® and MediaWiki®® with the extensions Semantic
MediaWiki®” and Semantic Forms®8. Atlassian Confluence is a popular commercial wiki
software widely used in enterprises. According to Atlassian (Atlassian, 2012)
Confluence is used by more than 8000 customers in over 94 countries. Not much is
known about the usage of the Confluence plugin Wikidsmart. On the other hand

MediaWiki is freely available. Its Semantic MediaWiki extension is already widely

54 http://www.atlassian.com/software/confluence/overview (Last accessed on January 06t 2012)

55 http://www.zagile.com/products/wikidsmart.html (Last accessed on January 06% 2012)

56 http://www.MediaWiki.org/wiki/MediaWiki (Last accessed on January 06" 2012)

57 hitp://semantic-MediaWiki.org/ (Last accessed on January 06t 2012)

58 http://www.MediaWiki.org/wiki/Extension:Semantic Forms (Last accessed on January 06t 2012)

100

used®® and its documentation makes it easily adaptable. We, therefore, decided to
build the data requirements editor based upon MediaWiki with the extensions Semantic

MediaWiki and Semantic Forms.

7.4.2 Data Requirements Wiki

The architecture of SDQM'’s data requirements wiki makes use of standard features of
MediaWiki (Version 1.17.0)%, Semantic MediaWiki (Version 1.7)%, and Semantic
Forms (Version 2.3.2)%. The Semantic MediaWiki extension offers features to
represent and use properties and classes in the MediaWiki environment (cf. Krotzsch
et al., 2006, p. 937). For example the sentence “Cologne has approximately 1,000,000
inhabitants” can be expressed in a machine-interpretable way by adding property tags
to the elements of a sentence, e.g. “[[city::Cologne]] has approximately
[[population::1000000]] inhabitants”. The tags [[city::]] and [[population::]] represent
properties that can by freely defined and retrieved via so called inline queries within
the wiki (cf. Dauw et al., 2014). Moreover, the wiki page that contains this text could
be categorized into the wiki category “Location” which can be seen as a class for all
wiki pages that describe locations. Based on the annotation of properties and
categories, it is now possible to query the data in a structured way. Figure 28 shows
an inline query and its results. The inline query can be saved on regular wiki pages to

integrate dynamically retrieved wiki content (cf. Dauw et al., 2014).

5 See http://semantic-MediaWiki.org/wiki/Sites using Semantic MediaWiki for a list of wikis using
Semantic MediaWiki (Last accessed on February 12t 2012)

101

{{#ask: [[Category:Location]]
| mainlabel=Wikipage
| ?city
| ?population
| format=table

b

& City ¢ Population ¢
Berlin Berlin 3,500,000
Bonn Bonn 325,000
Cologne Cologne 1,000,000

New York City New York City|8,100,000

Figure 28: Example for an inline query and its result (cf. Dauw et al., 2014)

In order to alleviate the complexity and heterogeneity related to the manual annotation
of properties and categories, it is possible to define wiki-based forms with help of the
Semantic Forms extension for Semantic MediaWiki. Semantic Forms allows defining
input elements for properties and categories of Semantic MediaWiki which can be
organized within forms. Therefore, users do not need to bother annotating the right
property and category to the information stored in the wiki. They rather have to fill in
forms to express the information. The data requirements wiki offers several different
forms to capture data requirements (F1-6) and to register tested and trusted data

elements (F7-F11). The forms and its purpose are listed in

table 17. The forms offer several possibilities to enter data such as checkboxes,
dropdown lists, or text areas. Each of the form elements is bound to an internal property
that can be defined via the Semantic MediaWiki extension. The binding between the
form and the properties is done via a MediaWiki template (cf. Koren, 2012, pp. 147-
150; Koren, 2014). The internal categories and properties of the data requirements wiki
are mapped to external classes and properties of the DQM vocabulary via a standard
vocabulary import function®®. Due to the mapping, all data captured via the forms is
stored with the URIs of the classes and properties of the DQM vocabulary. Moreover,

the captured data is automatically stored in SDQM'’s ftriplestore in real-time via a

60 The vocabulary import function of Semantic MediaWiki is described in detail at http://semantic-
MediaWiki.org/wiki/Help:Import_vocabulary (Last accessed on February 12th 2012)

102

Standard MediaWiki triplestore connector and is, therefore, immediately available for
data quality analyses within SDQM'’s architecture. Figure 29 illustrates the technical

design of the data requirements wiki.

Table 17: Forms provided by SDQM’s data requirements wiki

No. | Form Purpose

F1 | Property requirements Capture data requirements bound to
single properties.

Capture data requirements that are valid
for a specific subset of instances of a
class.

F3 | Timeliness requirements | Capture data requirements related to
the timeliness of instances of a class.
F4 | Duplicate rules Capture data requirements that can
identify duplicate instances.

F5 | Functional dependency Capture data requirements that refer to
a trusted data source to identify
functional dependency violations.

F2 Conditional requirements

reference rules

F6 | Custom requirements Capture data requirements that are not
expressible with the above forms.

F7 Register classes with instances that

Tested Classes shall be analyzed for data quality

problems.

F8 | Tested Properties Register properties that shall be
analyzed for data quality problems.

F9 | Conditions Define conditions that shall be used for

conditional requirements to filter a
relevant subset of a class.

F10 | Trusted Classes Register classes of another data source
as a trusted reference for legal value
rules and functional dependency
reference rules.

F11 | Trusted Properties Register properties of another data
source as a trusted reference for legal
value rules and functional dependency
reference rules.

103

Form Template
property 1: [mb:gp:l:’pl.#r\ﬁrgqum—]
Property 2: - http://purl.org/dgm-]

vacabulary/vl.1/dgm#Property2

. http://purl.org/dgm-
property N: [vocabulary/vl.1/dgm#PropertyN
http:l,’pur\;jorg;‘dqm—)

Jena TDB

Figure 29: Architecture of SDQM's data requirements wiki

7.5 Reporting Layer

The reporting layer of SDQM shall provide data quality monitoring and data quality
assessment reports that are automatically generated based on the data requirements
that were previously created and approved within the data requirements wiki. Data
quality monitoring reports shall contain information about instances of the data source
that violate approved requirements. The data quality monitoring report shall also
indicate which requirement was violated to support root cause analysis. The data
quality assessment report shall provide an overview about the quality state of a data
source separated by quality dimensions. Table 18 summarizes the requirements of the

reporting layer.

104

Table 18: Requirements of the reporting layer

ID | Requirement Requirement Type

R4 | Use the approved data requirements to Functional
identify requirement violations in the tested
data

R5 | Generate a report with violated instances Functional
indicating the type of violation / data quality
problem

R6 | The approved data requirements can be Functional
used to calculate KPlIs for the data quality
separated by quality dimensions

R7 | Generate a report with KPIs for each data Functional
quality dimension with reference to the
assessed object

7.5.1 Reusable Artifacts for SDQM’s Reporting Layer

The reporting layer of SDQM has to be able to process data specified in the DQM
vocabulary. Since there is currently (by the time of this thesis project) no artifact
available that can meet this specific requirement, we have to build our own reporting
frontend, called Semantic Data Quality Manager (SDQMgr). To minimize the
development effort we chose to use the Jena Semantic Web framework®! for
processing of Semantic Web data and Vaadin®?, a Java framework for building Web-
based user interfaces. We chose the Jena framework since it is freely available and
supports the most recent version of the SPARQL query language syntax as defined by
the W3C. Vaadin was chosen since (1) it is written in the same programming language
as the Jena framework, (2) it is also freely available and actively maintained, and (3) it

provides appropriate graphical elements for the definition of modern user interfaces.

7.5.2 Semantic Data Quality Manager

The Semantic Data Quality Manager (SDQMgr) is one of the major artifacts of this
thesis project. SDQMgr is a Web-based frontend application with a user interface for

ad-hoc data quality monitoring and assessment based on approved data requirements

61 http://incubator.apache.org/jena/ (Last accessed on February 12 2012)
62 https://vaadin.com/home (Last accessed on February 20t 2012)

105

expressed in the syntax of the DQM vocabulary. It is programmed in Java and uses

the Jena Semantic Web Framework® for processing the data from SDQM'’s triplestore.

=7 e
o Sernannic Duta Guabty . = | L MVR 0011 - Data Requ... = | < 1
& 3 D o= | B Web sdmnpc A .4y -

Semantic Data Quality Manager

Ensipoint (Remots oniy)

e

Flease seledt report
FuncDepReferenceRule Violasons G2 Propemes
Chosss Custom Reguirsment

Fun Cuery
Cuey Resuss

DATARLCARREMENT macE
p Apeda orphescerceFanads_River 5
D BEBOE8A B1DYS SurceEScuntha_River

iEp s crpe s crcatndany

NP P MR NG Y
DD B080 O/ et RICAMBIS CINATY_Riiver
D SEpeaa cprescurceRacaramsl_Fiver

Ep BEpeaa (pTes enCHEIMAINGIZa_Fiver

Hitp Epedia crphescunceliamb:

HEp BEmpea cipescorcaapes
Mp Bmpeaa orpres

Figure 30: Web-based user interface of the Semantic Data Quality Manager

SDQMgr’s graphical user interface is Web-based and, therefore, callable from any
Web browser. Thus, users of the SDQMgr only require a Web browser as a
prerequisite for using the application. Figure 30 shows a screenshot of the user
interface of the SDQMgr. In the heart of SDQMgr are Java classes for data quality
monitoring and data quality assessment which contain generic SPARQL queries for
processing the data in SDQM’s triplestore. The generic use of the queries is achieved
by using only the terms provided by the DQM vocabulary. Users can choose from 32
predesigned reports for the identification of instances with requirement violations (data
quality monitoring reports) and 32 reports for the evaluation of the quality state of data
elements (data quality assessment reports). The reports can be chosen from a
dropdown box below “Please select report” in SDQMgr’s user interfaces (see Figure
30). The data quality monitoring reports are organized according to the type of quality
problem and the data quality assessment reports according to data quality dimensions.

Table 19 provides an overview about the SDQMgr’s reports.

Table 19: Reports of SDQMgr

63 http://incubator.apache.org/jena/ (Last accessed on February 12" 2012)

106

Data Quality Monitoring Reports

Data Quality Assessment
Reports

Missing Values and Properties

Completeness

Conditional Missing Values and
Properties
(1 — 5 Conditions, 5 Reports)

Completeness
(Conditional Rules, 5 Reports)

Syntax Violations

Syntactic Accuracy

Conditional Syntax Violations
(1 — 5 Conditions, 5 Reports)

Syntactic Accuracy
(Conditional Rules, 5 Reports)

lllegal Values (Legal Value Rules)

Syntactic Accuracy

Out Of Range Values

Semantic Accuracy

lllegal Values (lllegal Value Rules)

Semantic Accuracy

FuncDepReferenceRule Violations
(2 - 5 Properties, 4 Reports)

Semantic Accuracy
(4 Reports)

FuncDepValueRule Violations

Semantic Accuracy

(1 — 5 Conditions, 5 Reports) (5 Reports)
Expired Instances Timeliness
Exceeded Update Interval Timeliness

Uniqueness Violations

Uniqueness in Depth

Duplicate Instances
(1 — 5 Equal Values, 5 Reports)

Uniqueness in Scope
(5 Reports)

The data quality assessment reports in the right column are thereby based on the
heuristics of the data quality monitoring reports in the left column. The assessment
reports compute a key performance indicator for each quality dimension which is based
on the simple ratio between the number of correct instances (I — Iy) and the number
of all relevant instances Iy (cf. Furber & Hepp, 2011a, p. 4f.; Pipino et al., 2002, p.
213).

(I —Iy)
DQ — Scorepimension = T

The number of correct instances is thereby determined by subtracting the number of
instances with requirement violations Iy from the number of all relevant instances Iy.
The number of instances with requirement violations Iy is determined by the same
heuristics as applied in the data quality monitoring reports. Figure 31 illustrates the

relationship between the types of data requirement that are used to compute the quality

107

scores for the accordant data quality dimension. For example, instances of the class
dgm:UpdateRule are used to compute the timeliness of a specific data source. It is,
therefore, not necessary to define own data requirements for data quality assessment.
The data requirements that have been used to create data quality monitoring reports

are automatically reused to compute the quality scores.

Syntactic
Accuracy

Unigueness D Uniqueness
in Depth in Scope

Semantic
Accuracy

Timeliness

Completeness

Figure 31: Configuration of data quality assessment reports in SDQMgr

The dimensional data quality scores presented in SDQMgr’s data quality assessment
reports allow the quick evaluation how complete, syntactic and semantically accurate,
timely, and unique the tested data are based on the captured data requirements. The
user only has to define his data requirements in the data requirements wiki once.
Therefore, the manual effort is reduced. Figure 32 shows a data quality assessment
report of the SDQMgr which contains the completeness scores of three different

properties.

108

D

+ 4+ D o - i pe 070/ A x| @7 Suche mit Google. — &)

|
Semantic Data Quality Manager

| TMASPR_34P_ERP_UARANEINS N0 PRl 0TS few w3 OrGE DN e eng e w3 GrO20010 Schemanecimt
270

Figure 32: Data quality assessment report of SDQMgr

109

HEp BTAIASPR_SAP_DRP_MARA_MFRPN tapfo bapMocsl

hEp SOymeaaPR_SAP_ERP_MARA_MATKL hapmo SapMocal 300482 208825

hitp SdqmwiiddPR_SAP_ERP_UWARA_LABOR hipfo hpitocall TABIO

D S3yTmEASPR_SAP_ERFP_MARA_MTART hapMo hapiiocall 300482 Ohip e

Lo — i El

e query PSR4 y
Easatatalainn e

8 Application Procedure of SDQM

In this chapter, we explain how to use the SDQM architecture from the perspective of
business users who want to create data requirements, identify data requirement

violations, and evaluate the quality state based on their data requirements.

8.1 Prerequisites

Before the SDQM environment can be used for the first time, it is necessary to install,
to configure its components and to import the required data. The installation of SDQM

contains the following steps:

(1) Install D2RQ
(2) Extract the data to be tested from the relational database with D2RQ into
a file in N-Triples format

(3) Install Google Refine with RDF Extension (optional)

(4) Convert DSV files into RDF files with Google Refine (optional)

(5) Setup, configure, and start the SDQM-optimized Fuseki server

(6) Import RDF and N-Triples files into Jena TDB of Fuseki via Fuseki’s user

interface or TDB’s command line tool “tdbloader”

(7) Setup and configure MediaWiki with the extensions Semantic MediaWiki,
Semantic Forms, Semantic Forms Inputs, and Category Tree including a
database for MediaWiki (e.g. MySQLS%*)

(8) Deploy the wiki via a PHP®-enabled Web server (e.g. WampServert®)

(9) Import SDQM'’s forms, categories, properties, templates, and the DQM

vocabulary mapping

Most of the above steps have to be performed only once before the first use of the
SDQM framework. Steps (2), (4), and (6) may be performed each time new test or
reference data is required. However, in practical settings these processes will usually

be automated with the help of ETL tools that support visual modeling.

64 hitp://mysqgl.com/ (Last accessed on February 22t 2012)
65 Hypertext Preprocessor (Programming language for web applications)
66 http://www.wampserver.com/en/ (Last accessed on February 22" 2012)

110

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 8, © Springer Fachmedien Wiesbaden 2016

8.2 The Data Quality Management Process with SDQM

The general application procedure of SDQM is based on the main activities of the data

quality management process as identified in section 3.5.3.

Define

What is high quality
data?

\3

Measure
Improve
Which instances violate
Which options should requirements?
be chosento resolve

the root causes? How much of the data

have violations?

Analyze

What arethe root
causes forthe
violations?

Figure 33: DQM process as supported by SDQM (based on Wang, 1998)
During the definition phase one has to define “What is high quality data?”. This
definition can be performed by using data requirements. SDQM'’s data requirements
wiki provides standard forms for this purpose which can be used to express data
requirements and, therefore, define data quality from a specific perspective. In order
to create data requirements with SDQM'’s data requirements wiki, the user has to first
register the classes and properties that shall be tested. Figure 34 shows the form of
SDQM’s data requirements wiki that can be used to register new classes that shall be
analyzed for data quality problems. Besides this form, the data requirements wiki also
contains similar forms to register tested properties, trusted classes, trusted properties,
and blacklist classes and properties. The forms only require the specification of the
URI of the class or property that shall be registered. The form then automatically

classifies the registered class into one of the classes of the DQM vocabulary, i.e. the

111

classes dgm:TestedClass, dgm:TestedProperty, dgm:TrustedClass,
dgm:TrustedProperty, dgm:BlacklistClass, or

dgm:BlacklistProperty.

Create TestedClass

Label: |VCARD Organization
HasURI: | http-/fwww w3 org/2006/vcard/ns#0rganization

Summary:

[T This is a minor edit [7] Watch this page

[Save page] [Show preview] [Show changes] Cancel

Categories: TestedClass | Prototype

Figure 34: SDQM's form to register new tested classes
After registration of the tested, trusted, and blacklist data elements, data requirements
can be added. Therefore, the data requirements wiki provides several forms for the
different kinds of requirements, namely forms for property requirements, conditional
requirements, timeliness requirements, duplicate instance rules, functional

dependency reference rules, and custom requirements.

The property requirement form contains form elements to create data requirements
that are solely related to a single property. Such property-related requirements are
property completeness rules, unique value rules, legal value range rules, legal value
rules, and illegal value rules (cf. Loshin, 2001, pp. 171-179). Figure 35 shows the form

used to capture property requirements with SDQM'’s data requirements wiki.

112

Create PropertyRequirement

Hame: Property requirement Supplier ID Assessment: =
Tested class 'VCARD Organization - Cleansing]

Tested property: |FOC Supplier IO -
Valid from: 20/08/2012 00:00
Valid unti at122012 00:00

Validation 0

Filtering, B

Importance: 10 Unit of importance
Confidence: |100 Unit of confidence:
Task dependent: [] Applies for task:

Requirement description: | Every record in VCARD oOrganizaticn must posses 2 unique supplier ID starting from 1.

Requirement source: Business policy SOF 30/8

m

Completeness / Uniqueness

Property required: [/ Values must be unique

RequiredValue: 4]

Syntax Rule

Regular Expression:

Pattern Expression
Legal Value Range

Lowest legal value: 1| Highest legal value:
Legal Value Rule

Class with legal values =

Property with legal values: =
llegal Value Rule

Class with illegal values: -

Property with illegal values -

Summary: -

Figure 35: SDQM's property requirement form

The legal and illegal value rules thereby make use of a separate class and property
that contains the legal / illegal values in a list. Such a list can also be generated within
the data requirements wiki. Therefore, one has to first create a category for the list in
the wiki. In case the list shall represent legal values, the new category has to be defined
as subcategory of the category “LegalValue” and needs to be registered as trusted
class via the trusted class form. In the other case, the new category has to be defined
as subcategory of the category “lllegalValue” and has to be registered as blacklist class
with the blacklist class form. After that, a new wiki page should be created for the
maintenance of the list. In case of a legal value list, the legal values could be retrieved
and maintained within a wiki page via the inline query shown in figure 36.

{{#ask: [[Category:<CategoryOflLegalvaluelList>]]

| mainlabel=Page name

| ?legalvalue

1

{{#formlink:form=LegalVvalue|link type=button|link text=Add Value|popup}}

Figure 36: Code for a wiki page to maintain lists in the data requirements wiki

113

After the wiki page has been created, it should provide a button to add values to the

list as illustrated in figure 37

Page Discussion Read Edit View history ~ Go | | Search

Legal Value List Suppliers

Figure 37: Example of new wiki page for the maintenance of legal value lists
When pushing the button “Add Value” a form will pop up to add a legal value to the

new category as shown in figure 38.

Create LegalValue

Legal value: Exotic Liguids

© None
[x] @ LegalSupplier
[%] © LegalValueCountry

[] This is a minor edit [] Watch this page

[Save page][Show preview][Show changes | Cancel

Categories: LegalValue | Prototype

Figure 38: Example of SDQM's form to add legal values
After entering a new legal value and choosing the appropriate category, a list with the
legal values of the category will be shown and dynamically updated each time a new
value is added to the category. Figure 39 shows the dynamic list which contains the

new value captured with the form from figure 38.

Page Discussion Read Edit View history ™

Legal Value List Suppliers

-

Page name + |LegalValue #

LegalSupplier Exotic Liquids | Exotic Liquids

Figure 39: Example of legal value list in SDQM's data requirements wiki

114

After the legal value list has been completed, it can be selected in the property

requirement form to define a legal value rule.

The conditional requirement form allows the definition of conditional mandatory value
requirements, conditional syntax requirements, and functionally dependent values.
The form design is thereby aligned to the structure of a conditional rule, i.e. if / then
expressions (cf. Loshin, 2001, p. 170). The if-part allows the expression of conditions
to filter a relevant subset of a class. The current form facilitates the selection of up to
five different filter conditions that are connected with logical AND relationships. The
conditions have to be defined by a separate form of SDQM before it can be selected
in the conditional requirement form. Figure 40 displays the condition form of SDQM'’s
data requirements wiki.

Create Condition: Country Germany

Conditional Property: VCARD Country Name v
Operator: equals =
Value: Germany

[] This is a minor edit [_] Watch this page

[Save page] [Show preview] | Show changes] Cancel

Figure 40: SDQM's form to define conditions
The then-part of the requirement represents certain characteristics that are expected
for all values of a certain property that are part of instances that meet the previously
defined conditions (cf. Loshin, 2001, p. 170). Such consequences are for example a
specific syntax requirement, a conditional completeness requirement, or a functionally
dependent value for a specific subset of a class / table. Figure 41 shows the conditional

requirement form of SDQM'’s data requirements wiki.

115

Create ConditionalRule

Mame: Syntsx requirement German ZIF codes Assessment: =

Valid from BEX [@] Cleansing
Valid until (@] [oo:00 [@] validation

Filtering: [
Importance: 10 Unit of importance:
Confidence: 100 Unit of confidence:
Task dependent: Applies for task

Requirement description: (German 717 coges alusys consist of five consecutive mumbers

Requirement source: http: /i de. wikipedia org /wiki/Postisitzahl_{ Deutsc
Conditions (IF)

Condition 1: [Cauntry Germany -

Condition 2 -
Condition 3 -
Condition 4 -
Condition § -

Consequences (THEN)

Tested class: VCARD Organization -
Tested property: [VCARD Fostal Code -
Completeness consequence

Property required: [7]

Value required: [¥]

Syntactic consequence

Regular Expression: *[0-8}{5}5

Pattern Expression:

Semantic consequence

Operator: -
Value:

Summary:

[] This is & minor edit [7] Watch this page

([Save page | [[Show preview | (Show changes | Cancel

Category: Prototype

Figure 41: SDQM's conditional requirement form

Functionally dependent value requirements can also be captured with the functional
dependency reference rule form of SDQM. The form allows the definition of a reference
data source that holds the legal value combinations. Hence, a lot of manual work can
be saved in cases where there is a reference data source that already contains the
valid property value combinations. A popular example is zip code data which can often
be purchased from the countries’ mail companies. The functional dependency
reference rule form currently allows the definition of dependencies between up to five
property values. Figure 42 shows the functional dependency reference rule form as it
can be called in SDQM’s data requirements wiki.

116

Functional Dependency Reference Rule: MVR 00001

Maarne: Lecality Country Combinaticns Assessmemt: i
Valid from: 052012 Gl || 00:00 T Cleansing:
Valld unil: 31279999 (@] [00:00 (@] validation:

Filturing:
Importance: 10 Unit of imporance:
Confidence: a0 Unit of confidence:
Task dependent: Applies for tsk:

Requirement description: Lacality country comhinations in WCARD Organization must he carrect.

Ruquinement source:

Tested class: WCARD Organization -
Tested property 1: WCARD Locality -
Tested property 2: WOARD Country Mame -
Tested property J; X
Tested property 4; X
Tested property 5; X

Reference class: TrustedClass Locally Counlry Comnk| =

Reference property 1: TwsledPopery Locadly =
Reference proporty 22 Tusledioperly Counlry -

Relerence property 3: -

e property 4: -

snce property 4 -

Figure 42: SDQM's functional dependency reference rule form

Timeliness requirements can be captured with the outdated instance rule form of
SDQM'’s data requirements wiki. The timeliness requirement can thereby be defined in
two different ways: (1) We can define an update interval (cf. Oliveira, Rodrigues,
Henriques, et al., 2005, p. 3) or (2) we can define a property that represents the date
of expiry (cf. Oliveira, Rodrigues, Henriques, et al., 2005, p. 3). The update interval has
to be specified in xsd:duration syntax®” and represents the duration in which the
instances of a specific class / table have to be periodically updated. The update rule
requires the existence of a property that indicates the timestamp of the last update of
an instance in order to work. The expiry rule requires the existence of a property that
indicates the date of expiry of an instance. In cases, where none of these properties
are available, it is not possible to assess timeliness with SDQM. Figure 43 shows the
form of SDQM’s Data requirements wiki that can be used to capture timeliness

requirements.

57 We refer to http://www.w3.org/TR/xmlschema-2/#duration for the syntax of xsd:duration values

17

Create OutdatedInstanceRule

Name: Expiry rule for VCARD On A
Tested class: |VCARD Organization S Cleansing: B
Tested
st FOO Valid Unil - Validation: [
property:
30/05/2012
Valid from: Filtering: m
00:00
31/12/9999
Valid until:
00:00
Unit of
Importance: 9 N
importance:
Confidence: 100 Unit of
confidence:
Task 5 Applies for
dependent: task:
Requirement Instances of WCARD Organization must not be elder than their date of expiration.

description:

Requirement source:

Timeliness

Expected Update Interval:
Instance Expires:

[T This is a minor edit [] Watch this page

l Save page][Show preview][Show changes]Cancel

Category: Prototype

Figure 43: SDQM's form for timeliness requirements
Moreover, SDQM provides a form to capture duplicate rules. Duplicate rules are data
requirements that can be used to identify potential duplicates of a class. The respective
form of SDQM’s data requirements wiki allows to define up to five properties of a class
that are used to check whether there are instances with identical values for these
properties. The SDQMgr’s data quality monitoring reports then show all instances with
identical values for these properties, since they are suspicious to be duplicates. Figure

44 shows SDQM'’s form to capture duplicate instance rules.

118

Create DuplicatelnstanceRule

Name: Duplicate Supplier Identification Assessment:
Tested
VCARD Organization -
class:
30/05/2012
Valid from: Cleansing: []
00:00
31/12/9999
Valid until: Validation: []
00:00
Filtering: (=]
Unit of
Importance: |5 .
importance:
Confidence: |75 Unit of E
confidence:
Task & Applies for
dependent: task:
Requirement Instances that have identical values for contact name, position title, street
description: address, locality name, and postal code are suspicious to be duplicates.

Requirement source: |John Doe, Manager Purchasing Dlgpartment

Duplicate, if following properties have identical values

Tested property 1: | VCARD Formatted Name I
Tested property 2: VCARD Position Title]
Tested property 3: | VCARD Street Address I
Tested property 4: VCARD Locality]
Tested property 5: | VCARD Postal Code I i

[] This is a minor edit [[] Watch this page

[Save page] [Show preview] [Show changes] Cancel -

Figure 44: SDQM's duplicate instance rule form

Since there may be some requirements that cannot be expressed by using the above

forms, SDQM also provides a form to define custom requirements in SPARQL syntax.

After a data requirement has been captured by the data requirements wiki, it is
recommended to approve the requirement by independent experts or an expert group.
This has the purpose of resolving contradicting data requirements and to facilitate a
common definition of the desired state of data. Only if the data requirements are
consistent to each other, it is technically possible to reach 100% data quality (cf.
Loshin, 2001, p. 198f.).

After approval the data requirements can be flagged, e.g. with the assessment
checkbox which is available in all data requirement forms of SDQM. The approved
data requirements are then used by the SDQMgr to produce the reports for data quality
monitoring and assessment during the measurement phase. The data quality
monitoring reports thereby contain information about instances that violate the defined

requirements. The data quality assessment reports indicate how many instances

119

contain violations compared to the whole data set by providing scores for each quality
dimension as explained in the previous section. Figure 45 shows a data quality
monitoring report that was generated based on the requirement specified in figure 44.

* € @ localhost 5050/SDGMgr w RO =6 A

Semantic Data Quality Manager

Cuplicate Instances 5 Lgasl Vansa)

Choase Cusiom Reguiment

Aun Gusry

Custry RUsURs

CATAREGUIREMENT wisrance

Rty tacsing b1 10 Finde ANFL_00002 it s #x3mela SepUBRIRE#12
stmediawiii-1 18 Zndex phpsp R_00002 it o examelo cepisuppliersa 1

The queny was expcuied in 565 milisoconds and contains 2 ows.

Figure 45: Data quality monitoring report of SDQMgr
Based on the generated data quality monitoring and assessment reports, a thorough
analysis is required to identify the root causes of the requirement violations. The
identification of the root causes is very important, because as long as the root cause
is not removed, the problem may return (cf. English, 1999, pp. 80f., 286-289). The
causes for requirement violations may be manifold (cf. Loshin, 2001, p. 381f.). For
example programs that create data may contain errors, business process manuals
may provide outdated or incorrect information, or people who capture data do not have
time for quality checks. Any of these issues may lead to the production of incorrect
data. Moreover, also the data requirement used for the measurement should be
checked, since the requirement itself may be incomplete, outdated, or even wrong (cf.
Loshin, 2001, p. 198f.). After the root causes of the requirement violations have been
identified, they need to be removed to avoid the return of the data quality problem.
Therefore, options for the removal of the root causes have to be identified, compared,
and implemented during the improvement phase (cf. English, 1999, pp. 289-302;
Wang, 1998, p. 65). Besides the removal of the root cause, it is usually also necessary
to cleanse the data, i.e. to update the data that violate requirements (cf. English, 1999,
pp. 77-80).

120

Register tested

classes and
properties Register trusted /

blacklist classes
and properties
Cleanse data
Add data

requirements,

Remove or Improve Define conditions, legal /

mitigate root illegal value lists

causes

Approve data
requirements

Analyze Measure

Identify root Measure and

causes of data assess data quality
quality problems

Figure 46: SDQM application procedure (based on Wang, 1998)

Figure 46 illustrates the application procedure of the SDQM framework based on the
TDQM cycle by (Wang, 1998). The blue-colored process steps are fully supported by
SDQM. At present, the white-colored process steps have to be performed outside of
the SDQM framework. However, the identification and removal of the root causes of
data requirement violations are at present predominantly manual process steps and
can be supported by creativity techniques such as mind mapping, process analysis, or
root cause analysis (cf. English, 1999, pp. 295-302; Loshin, 2001, pp. 381-397; Wang,
1998, p. 64f.).

121

9 Evaluation of the Semantic Data Quality Management
Framework (SDQM)

In this chapter, we evaluate the proposed SDQM approach. The evaluation
methodology of SDQM is separated into three parts. The first part is concerned with
the evaluation of precision and recall of SDQM’'s data quality monitoring and
assessment algorithms. The second part evaluates the practical applicability of SDQM
by applying the framework to three different use cases, namely one business use case
on material master data of a large organization, one Semantic Web use case with data
from DBpedia®®, and one use case that examines the capability of SDQM to
automatically identify inconsistent data requirements. In the third part of the evaluation,

SDQM is compared to a conventional data quality tool.

9.1 Evaluation of Algorithms

9.1.1 Algorithm Evaluation Methodology

In this section, we will apply the notions of recall and precision from the field of
Information Retrieval to data quality management and use them as indicators for the
performance of our approach (cf. Batini & Scannapieco, 2006, pp. 125-127; Buckland
& Gey, 1994; Raghavan et al., 1989). This is based on the idea that essentially our
algorithms attempt to retrieve all requirement violations. Precision can be defined as
the degree to which an information retrieval result contains relevant information (cf.
Buckland & Gey, 1994, p. 12f.). It is measured via the ratio between true positives (TP)
and the sum of true positives (TP) and false positives (FP) (Batini & Scannapieco,
2006, p. 126). True positives are thereby instances that are correctly identified to be
relevant (Batini & Scannapieco, 2006, p. 125f.). False positives are relevant instances
that were incorrectly identified to be relevant (Batini & Scannapieco, 2006, p. 125f.). In
our case, true positives are correctly identified data requirement violations and false

positives are requirement violations that have not been identified.

68 http://dbpedia.org
122

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 9, © Springer Fachmedien Wiesbaden 2016

Hence, precision in our case measures how many of the identified data requirement
violations have been identified correctly, i.e. really violate a data requirement (Batini &
Scannapieco, 2006, p. 126).

TP

Precision = ————
recision TP + FP

Recall is a measure that represents the ratio between the retrieved relevant instances
and all relevant instances (cf. Buckland & Gey, 1994, p. 12). In our case, the equivalent
is the number of correctly identified requirement violations (TP) and all requirement
violations including false negatives (FN), i.e. requirement violations that have not been
identified by the algorithms. Recall, therefore, measures how many data requirement
violations have been identified by the algorithm compared to the whole population of
data requirements violations (cf. Batini & Scannapieco, 2006, pp. 125-127).

TP

Recall = TP-l-—FN

Since our algorithms attempt to identify all data quality problems related to a certain
data requirement, the scores for precision and recall should be equal to one in the ideal

case.

9.1.2 Application Procedure

In order to identify the required variables correctly, we created a small test data set
with product and location data that contains all instance-related single-source data
quality problem types as listed in table 5 of section 3.6.1. Additionally, we created 49
self-defined data requirements for the data, such as “Every instance of class
Location must have a ZIP code.” The full set of rules that were used to evaluate
SDQM’s algorithms can be found in appendix B. The full test data set including the
reference data that was used in the evaluation can be found in appendix C. All
requirement violations in the test data set were known, so that we were able to exactly
identify all false positives and false negatives. In sum, we tested all 64 algorithms of

SDQM for data quality monitoring and data quality assessment.

123

9.1.3 Results

As expected all tested algorithms returned perfect results for precision and recall.
These perfect results are necessary before we apply the algorithms to real data, in
order to make sure that they are able to identify all types of data quality problems. It
must be stressed that the queries related to “Functional Dependency Reference Rules”
return instances that miss one or more dependent values or properties as requirement
violations, i.e. true positives, although the correct value may be located in a different
attribute. E.g. the record with LOCID equal to 3 with city value “Nantes” and state value
“France” returned as true positive since the correct dependent value “France” was not
located in the property country, but located in the wrong property state. A full list of the
algorithm evaluation results of SDQM can be found in appendices D and E. In
summary, the evaluation results show that SDQM'’s algorithms are able to identify data

requirement violations and assess the state of data quality correctly.

9.2 Use Case 1: Evaluation of Material Master Data

The first use case deals with a real business scenario that is concerned with the quality
of master data of an information system. According to ISO 8000-102:2009 master data
is defined as “data held by an organization that describes the entities that are both
independent and fundamental for that organization and that it needs to reference in
order to perform its transactions” (ISO, 2009). Hence, correct and complete master
data is essential for the execution of business processes and, therefore, the
organizational success. This first use case shall illustrate how the SDQM framework
can be applied for master data quality management in real-world settings. We thereby

evaluate SDQM especially regarding the following criteria:

- Ability of SDQM to represent the organization’s data requirements
- ability to process the organization’s data requirements to create data quality
reports, and

- performance of SDQM’s data quality reports

124

9.2.1 Scenario

A large public organization uses an ERP system to support its logistic processes. The
system contains material master data as a source for process-relevant information that
is used for process execution. The system uses the material master data to automate
tasks such as the placement of purchase orders, storage management, or to inform
people, e.g. about appropriate handling of materials. In order to avoid process failures,
it is necessary to assure that the master data provided by the ERP system is of
sufficient quality. Therefore, the organization seeks for a system that identifies data
quality problems, i.e. instances with data that violate the organization’s requirements,

and that allows the quick evaluation of the overall quality state of data items.

9.2.2 Setup and Application Procedure of SDQM

The SDQM framework is used in the context of the above scenario to (1) represent
data requirements, (2) identify requirement violations, and (3) evaluate the quality state
of data items of the data source. Therefore, SDQM was set up with the data of the
organization on a local server as explained in section 8.1. The server used is an AMD
Athlon Il X4 630 Processor 2.80 GHz with 8 GB RAM on a Windows 7 64bit operating
system. The Fuseki server thereby received 4,600 megabyte of the RAM and the
SDQMgr 1,536 megabyte of RAM. The capturing of data requirements and the
execution of data quality measurement reports was performed as described in section
8.2. The organization provided 19 data requirements for their general material master
data. The source data was stored in single table of a relational database. We converted
the data into an N-Triples file via D2RQ®® and imported the N-Triples file into the
triplestore via the user interface of the Fuseki server’. In the relational database, the
source table had 3.3 million records. Together with the data requirements the
triplestore contained 53,077,730 triples. Before executing SDQM'’s reports, the
hardware setup was optimized by comparing the execution time of a simple SPARQL
query that counts all triples of the Jena TDB published by the Fuseki server. In the
mentioned configuration, the COUNT query performed best and executed within

41,713 milliseconds. Table 20 shows the rules that have been collected from experts

69 hittp://d2rg.org/ (Last accessed on 30.08.2014)
70 http://jena.apache.org/documentation/serving_data/ (Last accessed on 30.08.2014)

125

of the organization and were applied on their material data to identify data quality

problems.

Table 20: Data requirements that were collected and applied for use case 17!

Report

Rule

Missing values and
properties
(5 property requirements)

The following fields must have a value for all
materials:

- Lab/Office

- Material group

- Base unit of measure

- Manufacturer part number
- Material type

Conditional missing values
and properties
(1 requirement)

If the material type is set for non-valuated
materials, then the field “Installation type” must
always have a value.

Syntax violations
(1 property requirement)

The field “Internal material number” must always
have 9 digits.

lllegal values
(Legal value rules)
(6 property requirements)

The following fields can only obtain specific values:

- Installation type

- External material group

- Material condition management
- Serial number profile

- Lab/Office

- Material type

Out of range values
(1 property requirement)

The field “Standard price” must not be lower than
0.02 € and not higher than 999,999,999.00 €.

Duplicate instances
(3 equal values)

(1 duplicate instance
requirement)

If the material text, the manufacturer part number
and the standard price have the same value for
two or more instances, then the instances are
potential duplicates.

Functional dependent
value rule
(4 requirements)

Furniture materials must have a specific installation
type value.

Certain material types are always in ownership of a
specific office.

Materials with a specific external material group
are always in ownership of a specific office.

Materials with a certain installation type must
always have a price greater than 4,999.00 €.

71 The rules are described on an abstract level in order to assure the anonymity of the organization.

126

9.2.3 Results and Findings

As shown in table 20, the data requirements delivered by the organization covered
syntax rules, legal value rules, duplicate instance rules, property completeness rules,
legal value range rules, and functional dependency rules. The standard forms of
SDQM'’s data requirements wiki were expressive enough to cover all of the
organization’s data requirements. All data requirements were represented in the data
requirements wiki and could be processed by the SDQMgr to generate reports about
requirements violations and reports that reflect the overall quality state of the
organization’s data items. Figure 47 shows the data quality monitoring report with

instances that violate a legal value range requirement of a certain property.

Tor Semantic Data Guaity _. | kY Duta Requinements - D » | &5
€ ¢ D o= [& we sdmep roe q-
Semantic Data Quality Manager
Gndpeict tarmcta 2niy)
nep Mocamat J030ntasatiuery
Please sebect repont
Out O Range Values
Choose Cusiom Requrement
-
Quiry Results
s

Hap SaamwikiVAPR_SAP_ERP_WARA_STPRS

ip P Db3am camemAmU apaE,_maryt
Mg P 053G CHMERATAAEHE,_Maras
g P 5539 CEMERETA AP,

g OBEGM CEMATETVIARIE_Marst
Hap PdgTWikNGPR_SAR_ERP_UARA_ETRRS Ip P OB COMAATVAPHE,
hip fdgmwikilGPR_S4R_ERP_UARA_STRRE
RpAdgmWikAGPR_S4P_ERF_MARA_STFRS
p dgTWIAGFR_S4P_ERF_MARA_STRRS
hiap gmwikilaPR_SAP_ERF_MARA_STFRS

The goery was ssecutedin 120730 milksaconds and conting 414444 rows

0 & 4 o

Figure 47: Report with legal value range violations
Figure 48 shows the accordant data quality assessment report which contains a score
about the overall semantic accuracy of the property. The score has been computed

based on the legal value range requirement which contains an upper and lower legal
value for the property.

127

==

Semantic Data Quality Manager

Endpsint Remote only)
B Macanost 3030 st UqUsy

Accuracy (Legal Vakus Rangs Fuses,
Cheose Cusiom Requrement

oan SEMANTCACTURACY
M RGTWIAIPR_SAP_ERP_UARA_STPRE OLBECNTIT SRR 1541 TIE0AETEO NI P w3 SIQ200 DML SchemaBdeamal

The qesy was evsculed in 135260 millisaconds and conkaing 1 fows.

0 & % a & s———

Figure 48: Report with semantic accuracy score based on value range requirement

The overall performance of the reports that were executed with the SDQMgr showed
mostly sufficient results as shown in table 21. One exception was discovered during
the execution of the report that indicates duplicate instances. The accordant query of
SDQMgr was designed to compare certain property values of each instance with each
other. In our use case, duplicate instances should be identified in a class with roughly
3,000,000 instances. This resulted in (3,000,000 — 1)?/ 2 comparisons which was not
processable in a sufficient time with the current setup. However, the data quality
assessment reports showed also sufficient results regarding their performance as
illustrated in table 22.

128

Table 21: Evaluation results of SDQMgr's data quality monitoring reports (use case 1)

Report

Result

Execution Time

(in min:sec.ms)

Missing Values and
Properties

(5 requirements)

311,821 rows

10:02.901

Conditional Missing Values

and Properties

(1 requirement)

56 rows

01:43.038

Syntax violations

(1 requirement)

7 rows

03:54.431

lllegal Values
(Legal Value Rules)

(6 requirements)

23,724 rows

18:35.353

Out of Range Values

(1 requirement)

414,444 rows

02:00.738

Duplicate Instances
(3 Equal Values)

(1 duplicate instance
requirement)

Did not finish

Did not finish

Functional Dependent
Value Rule

(4 requirements)

71 rows

02:02.784

129

Table 22: Evaluation results of SDQMgr's data quality assessment reports (use case 1)

Report Result Execution Time
(in min:sec.ms)
Completeness Property 1: 100 %
(5 requirements) Property 2: 99,05 %
Property 3: 93,05 % | 15:59.841
Property 4: 97,53 %
Property 5: 100 %
Conditional Completeness | Property 6: 99,93 % 01:50.137
(1 requirement)
Syntactic Accuracy Property 7: 99,99 %
(Syntax Rules) 02:08.727
(1 requirement)
Syntactic Accuracy Property 8: 99,95 %
(Legal Value Rules) Property 9: 100 %
(6 requirements) Property 6: 99,99 % 27:18.928
Property 4: 99,97 %
Property 10: 99,28 %
Property 5: 100 %
Semantic Accuracy Property 11: 86,20 %
(Legal Value Range Rules) 03:04.716
(1 requirement)
Semantic Accuracy FDV FDV 1: 100 %
(1 Condition) FDV 2: 100 % 02:54.406
(4 requirements) FDV 3: 99,96 %
FDV 4: 99,77 %

In summary, the evaluation results show that SDQM is basically capable to be used
for quality management of master data in real-world business settings. However, there
is room for improvement in several areas. In particular, future work on SDQM should

regard the following options to increase performance:

130

- Jena’s in-memory technology could be used to load the whole Jena TDB of
SDQM into the computer’s main memory before execution of SDQMgr’s reports.

- The execution of queries and generation of data quality reports could be
decoupled from each other. E.g. the queries could be executed at night and the
reports would only access a cached query result.

- The CPU and main memory capacity could be extended to provide more
resources for SDQM'’s applications.

- An authorization system could be added that requires user’s login before the

execution of data quality reports to avoid inappropriate use.

Moreover, SDQM'’s mechanisms for representing and processing duplicate instance
requirements should be optimized to be applicable to larger data sets, e.g. by adapting
duplicate detection algorithms as proposed in (Monge & Elkan, 1997) or (Herschel et
al., 2011). For example the performance of SDQM'’s duplicate checking algorithm can
be improved by adjusting the algorithm to search for duplicates only in a sorted
neighborhood (Bitton & DeWitt, 1983) or by building clusters based on the transitivity
of the “isDuplicateOf” relationship and thereby avoiding unnecessary comparisons
(Monge & Elkan, 1997).

Despite the successful application of SDQM in this use case, it must be stressed that
this is only a first step to prove SDQM'’s practical applicability. A longer practical
application of SDQM in a realistic business setting would be needed to evaluate the
strengths and weaknesses of SDQM with higher precision. For example the amount of
data requirements will most likely increase over time and easily exceed the number of
data requirements as applied in this use case. Furthermore, more complex functional
dependencies may exist that may not be represented with the standard forms of
SDQM.

131

9.3 Use Case 2: Evaluation of Data from DBpedia

The second use case attempts to investigate the applicability of SDQM for tasks related
to data quality in Semantic Web scenarios. As for the evaluation, we chose DBpedia
(Bizer, Lehmann, et al., 2009), a publicly available Semantic Web data source that
contains structured information from Wikipedia. As DBpedia data stems from the open
environment of Wikipedia where anyone can edit content, it raises new challenges for
a data quality management tool especially regarding the heterogeneity of data and

data requirements.

9.3.1 Scenario

Wikipedia is a public encyclopedia that can be edited by anyone who has access to
the internet (cf. Voss, 2005, p. 1). As of June 2012 the English Wikipedia contains over
3.9 million articles about persons, locations, movies, species, and many other things?2.
The DBpedia project extracts the structured part of Wikipedia’s articles regularly and
publishes the data in the Semantic Web (cf. Kobilarov, Bizer, et al., 2009, p. 35f.) where
it can be used by anyone for multiple different purposes. Due to the amount of data, it
is not feasible to identify data quality problems manually. Thus, means are required to
efficiently identify data quality problems and to evaluate the quality state of DBpedia’s
data items for the following purposes:

- Administrators of DBpedia and Wikipedia may want to efficiently identify
vandalism caused by the openness of Wikipedia.
- Data consumers may want to evaluate the quality state of certain parts of

DBpedia before relying on it.

In the following, we evaluate whether SDQM may help in these tasks.

2 http://en.wikipedia.org/wiki/Main_Page (Last accessed on June 10" 2012)
132

9.3.2 Specialties of Semantic Web Scenarios

Data quality tasks in open environments such as the Semantic Web underlie different
conditions than data quality management tasks of information systems in closed
settings. Since data can be edited and used by anyone, the degree of heterogeneity is
much larger in open settings than in closed settings (cf. Batini & Scannapieco, 2006,
p. 15; Bizer, 2007, p. 44). Heterogeneity thereby does not only reflect on data, but also
on data requirements due to different subjective preferences and different use cases,
in which the data is used (Bizer & Cyganiak, 2009, p. 2). Hence, the definition of the
characteristics of high quality data may be much more contrary in open settings, since
it is more difficult to achieve agreement in a large and diverse environment such as the
Web. In consequence, the goal of data quality management tasks is usually not
primarily the correction of data according to specific requirements of single users. A
consensual agreement would have to be first established about a data requirement
before requirement violations can be corrected in the data source. Due to
heterogeneous world views and ways of expression, it is not realistic to satisfy

everyone’s requirements.

9.3.3 Setup and Application Procedure

First of all, we downloaded the DBpedia ontology, the ontology infobox types, the
property data including the specific properties, and the titles data which are all available

at http://dbpedia.org/Downloads37. The downloaded data sets were extracted from the

English Wikipedia in July 22" 2011 and contain 35,823,373 million triples in summary.
The data was loaded into SDQM'’s triplestore. We thereby used the same hardware
configuration as in use case one. We also again used the application procedure as
describe in figure 46 to create the requirement metadata for the data quality
management tasks. Since (to the best of our knowledge) there is currently no
community that establishes agreement among data requirements in Web
environments such as DBpedia, we created our own subjective data requirements. It
must be stressed that, therefore, the ability of SDQM to represent data requirements
cannot be fully evaluated. However, this second use case rather focuses on collecting
first evidence for the applicability of SDQM in Semantic Web environments. Table 23

lists the assumed data requirements for this use case.

133

Table 23: Assumed data requirements of use case 2

No. | Requirement Description

1 The property http://dbpedia.org/ontology/gender can only obtain the

values http://dbpedia.org/resource/Female and

http://dbpedia.org/resource/Male.

2 The property http://dbpedia.org/ontology/populationTotal can only
obtain values between 0 and 7,000,000,000.

3 The property http://dbpedia.org/ontology/populationTotal can only

obtain numeric values.

4 The property http://dbpedia.org/ontology/populationTotal should exist

in all instances of the class

http://dbpedia.org/ontology/PopulatedPlace.

5 The property http://www.w3.0rg/2003/01/geo/wgs84 pos#long must

exist in all instances of class http://dbpedia.org/ontology/Place.

6 The property http://www.w3.0rg/2003/01/geo/wgs84 pos#long must

have a specific syntax (Regular expression: “*(\-2\d+(\.\d+)?)").

7 The property http://www.w3.0rg/2003/01/geo/wgs84 pos#lat must

exist in all instances of class http://dbpedia.org/ontology/Place.

8 The property http://www.w3.0rg/2003/01/geo/wgs84 pos#lat must

have a specific syntax (Regular expression: “*(\-2\d+(\.\d+)?)").

9 Country — Capital combinations in DBpedia must match the country

capital combinations of Geonames.

We focused on data requirements relevant for data usage of data from the DBpedia
classes dbo:Place’, dbo:PopulatedPlace’, dbo:Country’®, and

dbo: Person’®. It must be stressed that the data requirements as listed above are the

73 http://dbpedia.org/ontology/Place

74 hitp://dbpedia.org/ontology/PopulatedPlace
75 hitp://dbpedia.org/ontology/Country

76 http://dbpedia.org/ontology/Person

134

subjective requirements of the author and do not necessarily represent a commonly
accepted understanding of high-quality data in DBpedia.

9.3.4 Results and Findings

Our analyses identified several requirement violations. E.g. requirement no. 1 revealed

that there are eight other values for the property http://dbpedia.org/ontology/gender in

instances of the class http://dbpedia.org/ontology/Person besides “Male” and “Female”

in the English Wikipedia as of July 2011, namely “Man”, “Nerd”, “Cylon (Battlestar
Galactica)”, “Elves (Shannara)”, “Puppet”, “Sex”, and “Pantomime horse”. Figure 49
shows the results as identified by the SDQMgr.

¥ cee: |
J Sermanic Duts Quality . = | 0

==

+ + D o |6 Web admnpcs % | [- Suche iz Googke

Semantic Data Quality Manager
Endpoint (Remaote only)
hitp Mecalost 30 3Vdatasebquery
Piea 2 report

el Values (Legal Value Rudes)
Choase Custom Requiremant

Rown Query
Guery Resuls

ooR
NRE OGN GPR_DEF edia_genoer
i PGP R_DBPedia_gtnder
hii ek dPR_DDPedia_gtnder
i Dtk UPR_DEPadia_genssr
hi bR _DBPedia_gendr
it BaTIPR _DEPedia_gendr
hit ek dPR_DBPedia_gender

FAIpIDpEd DG SOUIHGEE

P OBpeE OIpeSOUTCeLIon_Arbucke
Fitpfdbpedia orghesourceilamet_Wosd
it dBpe s BrgTasoUNEACY_KINCHoNNID
Fpdbpea IS oUCHTEACTYS

D dbpedEa OIS OUTCHENl_HIRTIWSRITH
Fétpidbpedia ongiresourceiiido_Trapan

VALUE

g REpedia crgtesture)
g REpedia crgtes
bl et padia crahes
heplsapadia cepres fian_S2ARssEEr_Galactics%
L urcahes

hEgiEpacia crpressurcaPuRDel

higiEpadia crphesourc

gk APR_DEFdia_gtnder PApIDpea. OrgresourcH S etretanat_%28Caky_ Fargust hRpuiSpedia sphescunceaniomime_horse

The query was axeculed in 2050 miliseconds and Containg & rows

B & * 6 Ioom(d%

Figure 49: Result of legal value requirement analysis in DBpedia

An additional random check confirmed the usage of these values in the English version
of Wikipedia. Figure 50 reveals that the Wikipedia page of the television character
“Janet Wood” has been subject to assignment of the value “Nerd” as gender. In the
meanwhile the value for gender has been changed by the Wikipedia community to
“Female”. This reflects agreement to the author’s understanding of legal values for the

properties representing the gender of a person.

135

{{Infobox character

portrayer = [[Joyce DeWitt]]

creator =

| name = Janet Wood

|image = [[Image:Janet Wood 1982.png|22@8px]]
| caption = Joyce DeWitt as Janet Wood

| first = "A Man About the House"

| last = "Friends and Lovers"

| nickname =

| alias =

| species =

| gender = [[Merd|Female]]

| occupation = Florist, Aerobics instructor

| title =

| family = Roland Wood (father)<br:Ruth Wood (mother)<br:Jenny Wood (sister)<br:unnamed brother
| children =

| relatives =

I

I

t

Figure 50: Infobox source code of Wikipedia page “Janet Wood” as of June 27, 2011

However, the analysis results contain other requirement violations that point to less
agreement about the correct gender value. Figure 51 shows a page about the robot
“Cy” from the television series “Galactica 1980” which indicates the Gender “Cylon” for

“Cy” until today™".

')
WGy o Wi, | G Mo G -
-+ - & e L. |

Cy (Cylon)

PN B P B ot e 8 Crwhed o st oy Gamcer Lomm e
Lot cormpanion oe te planat e whech he and fha Cylons crashed Gy xpvased | oty]
a0 waring capalaaty 53 e an 3 paricpats i SR, e abosd iwsus that b

Exrrsd Comitargton e sut a3 sy e 8ad 1 Contua Spensng the St Qs when

O the o Angels's ham. or 2419 iy Humang arud Cybims By amamees. o0 28 13 why Stavbuch's playing of 8 g o Pyamid
comradcts the statnd mben

T 830 dereratisind o Perinsh Bath of thinsd i s s Sintasch b Sors whil Tom Ly wrngmrs shemid 15 85w [ha gmemrse
Sace thy had saganzd & (3 TvEBOn sisement that Cy hemue¥ t5atnd wwn a1 bersg he Scial Cylon gosf Cy Faught sesr Sun quenton. and
S— e 1 Stk £ by] b sl wenid g ot e v b g oy partudty g tatrbeng

[PPNE e a— rap——" Aeupla, e 1 Ry i they
Sacomns e

iy T rinated Do oty omta-tow B Uy ool it ol ooty Birely bblble Loabeadl’ i sinct e obaorvmt 1 Thn

e u -
Other madia (]
o s i e webpect of the comec: T st of G Pt 1, svnsed By Mo Frss. | e iy, which grres e Comtuty b

Gainctca 10 on 1n e 19 Cilem §765 wht expprarcas & musoneton shee s Rasder pocwstirs o on sbirm Alar beesg vtud by

I T

Figure 51: Wikipedia page "Cy (Cyclon)” as of June 10, 2012

To the best of our knowledge, there is no commonly accepted truth about the real
gender of Cy. Therefore, the gender “Cylon” may be seen as valid. However, from our
subjective perspective it is not harmful to regard “Cylon” as invalid value for
representation of a gender. But most likely we are not able to change the value for “Cy”
permanently to “Male” in Wikipedia without convincing the community. This example

77 Today in this context equals June 10t 2012.

136

emphasizes the special problems related to data quality management in open
environments such as the Web.

Moreover, we were able to detect obviously incorrect values for the property

http://dbpedia.org/ontology/populationTotal. We found 47 instances of the class

http://dbpedia.org/ontology/Place which contain a population value greater than

7,000,000,000. Figure 52 shows SDQMgr’s report on out of range violations according
to our data requirement No.2 of table 23.

L opess | = o
o Semantic Data Qualty . = l.'}

= S D o= | B Web | sdmin-peBlTHDOMWIE o || &+ Suche mit Google

Semantic Data Quality Manager

Endpoirt (Remote any)
g Iacalhos 3030ialas ebiguery
Please select report
Out Of Range Valurs -
Choase Custom Reguinement
Run Guery
Guery Resuls
ot i waLuE =
hEpdgMWIk AFR_DBPedia_populalion_total WRpdBpecia orgiescunceitaga_Township_Hubbara Gt S2Z337T20366547 TEE0T hitp itwwai *
BEpgMWIKAGFR_DEPedia_population_Batal hEpidBpedia orginessuncel anging_Township,_Mowss_Ci J2497324920000hitp iwww w3 065

hmo MdamwikdaPR_DOPedia_populason_tetal hmpldepecka orprescurce/Valley _Hetraska S223IT2006654TTER0T Np WL
hEpidgmwikiiaPR_DBFedia_populstion_total hmpiidbpecka orgirescurceEast Wemimack_New_Hamps S223372006854775807" hitpoiwaw.
hep MdarmwikiidPR_DBPedia_populaion_total hWipidbpedia orghesourcelLock_Springs, Missour S2233T2026854TTEB0TMhifp Hwww 1

hEg MOgMWIKNOFR_DEPeia_population_total RROROBOeE 06pIes curcerStan,_HNew_York
REp MAGMWIKAFR_DEPeIa_population_Botal | REpUIEHes 06QIeS SURCAIEnD_New_Yark

SEFAIT 2068547 TEB0T NI Mwwow L
TTEROTnp w1

hepidomwikiAaPR_DBPedia_population_total hiipJidbpecka orgirescurceiVest_Kalimantan 436323926119 N IWWW. W3 o2 |

hitp idarwikiidPR_DBPedia_population_total Wip Mdbpedia County s22x ity

hiEp MagrvAKAGPR_DBPedia_populaion_litil g MBoeca orgiesourceBeauton_Malaysia E1Z0HGEA1 207 hEp v wi o020
R HGqEWAKAGER_DBFedia_populaion_total MEpUIBHOGa OfgIescurcaSaint- Tasr-sur-Aloignans S2IHZIID000NEp iwwn W06
hmp MdgmwikdaPR_DBPedia_populagon_total hipidtpedia orprescurce/iest_Aica 151612151612 hap www W crgi2C
hEpidgmwikiaPR_DBFedia_populsaon_total mmpuidopedia.orgirescurceDon,_Durkina_Fase A5G E1612 nimp e wl.orp2C
hep MdarmwikiidPR_DBPedia_populaion_total Wiip idbpedia orghresourcelet%C%ATaa TH14TTII 1 “Hiltp Paww w2001 ~

The query was execuled in 4248 milliseconds and containg 47 rows.

O & % o ——

Figure 52: Out of range values for property “population” in DBpedia

The highlighted row in the result table shows that “Downsville Louisiana” has a
population value of “100,000,000,000". The accordant Wikipedia page from June 19t
2011 confirms this result as illustrated in figure 53.

137

[T r—
4 D o= [B Wb | o wikipedinon .

2 population 4 Vocharige Stelle | ® Michte Seelle

Mos gance Wises suchen | K Farsg

& Login Creste sccount

G ok
RN Aicle Talk Rasd Edt Verwhistoey | Search Q
LY o
"
.

Wném-:mﬁ Downsville, Louisiana

» ow Cosraruten: (G 33N KRNEW
Thia in T — ontriba) s¢ £3:38, 19 June 081, K may deter sigeificantsy from the Curreed rewaicn.

U gt

— 1) e Prvicss reveion | Latast revsn (G41] | Hemer revmics -« (41

Featured content Downaville is & lown in Lincein snd Lisson parishes in the U S state of Lowisans. The population was

S 198 at the 2000 census

Rangom atcly

The Lincols Parish portion of Dewnsile is pan of e Ruston Micropoiten Statstical Aces, whis the
Unign Panish portion is part of the Monsos Metropoitan Statstical Avea

Dienate 1o Wikipedia

- ibaracaon

Hep Contenta o]

Abeut Wikizeda 1 Gaography

Comemunty posal 2 Demegraphics Area Btsamiztie)

Raceet manges 3 Eucaton = e

Gontact Witipeda 4 Rerences - wanet B8 samia),

Populston 100,000,008,008 (2011)
Faiee—— Geogragh Deasty 000/ 8q (183051 /1)
» Prmwszon QR Tumesons CST(ATCH)
Deecrale is located a8 33°3738°N 3 24ETW (32 627112, 52 4144837 wwnm O4T) .

- Lasgusges Area

Cataly According 1o the Usited States Cansus Bureau, the vilaps has 3 101al area of 0.8 sau L 3

Eapadol (14 k), ol and . %

Kewytd asyen X

Hesatsnds Demegraphics by j)

0 & 4 & - ——

Figure 53: Wikipedia page "Downsville, Louisiana" as of June 19th 2011

In the meanwhile, the population value for Downsville (Louisiana) has been corrected

141 inhabitants’®. The syntactic requirements for the property

http://www.w3.0rg/2003/01/geo/wgs84 pos#long and the property

http://www.w3.0rg/2003/01/geo/wgs84 pos#lat did not return any violations in the

SDQMgr.

|}>s=mmm Data Quality ... % | &5

= 3 D o= | & Web | admin-pciliDOMNiL ¥ || 8+ Suchemit Gocgle

Semantic Data Quality Manager

Endpaint (Remate aniy)

hitgr Mocalhast 3030k seliquery

Pl et ripord

Symlisctic Accuracy (Sl Rules) -

Choose Custom Requirement

 hitp ik dPR_DEP
nepeamwikiGPR_DBPedls WG34 It V30097200300 poswat 1. 10ALS
hap oeamwikGFR_DEFedia_WEE34_leng ttp A W3 OrgH 4_peswiong 1. 3orgr2001KMLE

_population_talal hifp Mdbpedia orglantalogyipoputationTatal 1 4Ahitp o w argf200 1ML Schirmal decims

Figure 54: Data quality assessment report displaying syntactic accuracy results

78 http://en.wikipedia.org/wiki/Downsville, Louisiana (Last accessed on June 10t 2011)

138

Moreover, we generated data quality assessment reports to each of the requirements

which are shown in table 24.

Table 24: SDQMgr's data quality assessment results on DBpedia

Report

Result

Execution Time

(min:sec.ms)

Completeness

Population total: 61,21 %

(Requirement no. 4, | Latitude: 65,79 % 01:27.221
57 Longitude: 65,79 %
Syntactic Accuracy Population total: 100 %
(syntax rules) Latitude: 100 %

01:02.057
(Requirement no. 3, | Longitude: 100 %
6, 8)
Syntactic Accuracy Gender: 99,99 %
(legal value rules) 00:47.565
(Requirement no. 1)
Semantic Accuracy Population: 99,98 %
(out of range rules) 00:14.773
(Requirement no. 2)
Semantic Accuracy Country Capital Combinations | 00:06.100
(functional (Variant 1: Class Country):
dependency 0,07 %
reference rule) Country Capital Combinations | 00:01.701

(Requirement no. 9)

(Variant 2: Class
CurrentCountry): 46,22 %

It must be stressed that the interpretation of the above results must be performed very
carefully. For example the analysis results show that DBpedia and, therefore, most
likely also Wikipedia provides data on population, latitude, and longitude for almost two

thirds of the documented places or populated places respectively. This does not mean

139

that it makes sense to provide such data for all of Wikipedia’s places and populated
places, since these high level classes may combine different concepts. For example,
the data quality monitoring report with missing latitude and longitude values contains
a lot of rivers which do not have specific latitude and longitude values. Moreover, we
identified almost perfect results regarding our syntactic requirements except for the
gender values that were mentioned earlier. The semantic accuracy of the population
values that were tested with help of a legal value range (requirement no. 2) is also on
a very high level. The 0.02 % requirement violations are all caused by population
values beyond 7,000,000,000 which have partly already been removed in Wikipedia
as shown earlier. Finally, we tested country related data of DBpedia against
Geonames™, a publicly available data source for geographic data. We thereby
downloaded the country info data of Geonames® as of June10" 2012 which contains
information about 252 countries, such as population, capital, currency, format of postal
codes, etc. The Geonames data was converted to be matched against data from
DBpedia’s dbo:Country class as trusted reference to check valid combinations of
country names and its capital cities. The first run showed insufficient results as only
0.07 % of DBpedia’s country data matched with the data in Geonames. One of the
major reasons for this poor result was the fact that DBpedia represents current and
historic countries while Geonames only represents current countries. Thus, we
adjusted our data requirement by creating a new class CurrentCountries that
contains all instances of DBpedia without a property value for dbpedia-
owl:dissolutionDate or dbpedia-owl:dissolutionYear. In consequence,
the semantic accuracy score raised up to 46.22 %. The remaining requirement
violations are in majority caused by different naming, e.g. “Bogota” versus “Bogota” or
“China” versus “People’s Republic of China”. But besides these heterogeneities, there
are also real errors. For example, DBpedia contains a triple that says that “La Paz” is
the capital of “Bolivia”. In fact, “Sucre” is the constitutional capital of Bolivia, while “La
Paz” is only the seat of government. However, in cases where the seat of government
is also regarded as capital, the combination “La Paz” and “Bolivia” would have to be

added to the trusted reference.

In summary, SDQM indicates that it can be used in Semantic Web environments, such

as DBpedia, (1) to spot potential data quality problems according to one’s requirements

79 http://www.geonames.org (Last accessed on June 2™ 2011)
80 Available at http://download.geonames.org/export/dump/countrylnfo.txt (Last accessed on June 10t
2011)

140

and (2) serve data consumers to quickly analyze a Semantic Web data source
regarding their own quality perception. Moreover, the performance of SDQM showed
promising results. But we also discovered several problems which have to be
considered when using SDQM in Semantic Web settings:

- Agreement about data requirements is much harder to achieve in Web
environments than in closed settings due to a greater heterogeneity of world
views.

- Heterogeneity and different world views may lead to inconsistent data
requirements. E.g. one may define “Cylon” as valid value for gender, while
another person defines “Cylon” as invalid value for gender.

- Correction of an open data source, such as Wikipedia, usually requires
agreement from the community to persist.

- Heterogeneity makes the definition of data requirements more complicated,
since it raises the amount of acceptable states of values.

- The classes of the DBpedia ontology only barely distinguish between real
entities and fictitious entities. This again complicates the definition of data
requirements. For example the robot “Cy” from the television series “Battlestar
Galactica” is considered as a person in DBpedia and, therefore, should have a
gender.

- The classes of the DBpedia ontology do not distinguish between historic and
currently existing entities. For example the German Democratic Republic is

member of the class “Populated Place” in DBpedia.

As part of future work, SDQM could be deployed to the Web to generate commonly
accepted data requirements by the Semantic Web community. Therefore, it can
efficiently support data quality management on Web-scale and the improvement of
Semantic Web data.

9.4 Use Case 3: Consistency Checks Among Data Requirements

In this use case, we intend to demonstrate how SDQM facilitates the automated

identification of inconsistent data requirements.

141

9.4.1 Scenario

A large organization that performs data quality management has many data
requirements which are used to improve data quality. The organization uses SDQM.
The organization’s data requirements have been previously represented via the data
requirements wiki of SDQM. The organization seeks for an efficient automatic way to

identify conflicting data requirements.

9.4.2 Application Procedure

In SDQM, all data requirements are represented in a common structure that is provided
by the DQM vocabulary. The data requirements are themselves represented as data
in RDF format. Therefore, we can use standard SPARQL queries to manage the quality
of data requirements. In general, there are two different types of inconsistencies
between data requirements, namely (1) duplicate, but consistent requirements, and (2)
contradicting requirements (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 8). Duplicate
requirements typically refer to the same schema elements, i.e. classes and properties,
which are tested for requirement violations. Contradicting requirements are two or
more requirements about the same schema elements that oppose each other and,
therefore, cannot be applied at the same time. In the following, we will provide some
example queries that are based on fictitious data requirements. The data requirements
are based on the test data with information about suppliers. The examples are
separated according to the different types of data requirements, since they require

different application procedures.

SDQM’s property requirements can in general not become inconsistent due to the
enforced naming convention of wiki pages in the data requirements wiki. By convention
the property requirement title in the wiki is concatenated from the class and property
name. Hence, if the tested class and property is only registered under one name in the
data requirements wiki, it will not be possible to create duplicate property requirements.
However, the naming convention may be modified to create duplicate requirements for
the same property if the use case required capturing heterogeneous and potentially
inconsistent requirements. In such cases, the same property may be associated to

multiple different requirements. Due to the annotation of each requirement with the

142

“testedClass” and “testedProperty” properties and their representation in RDF,
itis possible to identify duplicate requirements and duplicate inconsistent requirements
with standard SPARQL queries. To prove this, we created three property requirements

for the property http://www.example.org/suppliers#supplierlD. The first property

requirement “PR Organization FOO Supplier ID” defines that unique values are
required for this property in all instances of the class

http://www.w3.0rg/2006/vcard/ns#Organization. The second property requirement “PR

Organization EXAMPLE Supplier ID” refers to the same class and property, but does
not define that unique values are required. Thus, the property requirement “PR
Organization EXAMPLE Supplier ID” is not consistent with the original requirement
“PR Organization FOO Supplier ID”. The third property requirement “PR Organization
Supplier ID” consistently defines that unique values are required for this property in all

instances of the class http://www.w3.0rg/2006/vcard/ns#Qrganization. All of the three

requirements make statements about the same tested class and property, but use

different representations of the property http://www.example.org/suppliers#supplierlD,

since the same property has been registered with three different names in the data
requirements wiki. Figure 55 shows a generic SPARQL query that identifies duplicate

property requirements and its result based on our test data.

PREFIX dqm: chrrp: //purl.arg/dqe-vacabulary fvl. 1 /dqeds
SELECT {tclassURTE A8 *laas} {PtproplRTi &S MProperty) (}drl A5 MwteRequiresent}
WHERE |

el 4 g

e Fprop:
1propl MproplRT1
ORDER BY PrelassURT1 ProropURT1 Parl
s Frogeimy DiataReguie varear

T T e me—— | ek LLE 2iendes, sher il UR R o PR, Crismcatin EXAMPLE Swoie U~
p e w3 oep 1006 veard s Oupardrsicn” | Bmp: www exssmpie tey T 1LE 2 inden. she Specid URIRewoler D>
“hep eg 2008 sraion” | hep: www £ arnple oeg i <M. LLE2 wdessbe Spocist L RIRciob e PR Orgaocaton Sk D>
ity w3 ong 2006 v et O it | hmp 3 g 200 vl sty e | b 1 LB 2iwndes st Suovial R ioh e PR, VCARD Cosatry N
“herp: wwew w3 oeg 2004 " | e W) oep 2004 " 118 2inde LRIResobee PR_YCARD: Formamed Name>

Figure 55: SPARQL query and result displaying duplicate property requirements
In general, it is possible to identify only such duplicate requirements that are
inconsistent with each other. Figure 56 shows a SPARQL query and its result that can
be used to identify inconsistent unique value rules, in case the requirements have been

represented in the DQM vocabulary.

143

i PREFIX dgm:<http://purl.org/dqm-vecabulary/vl.1/dqmi>
i SELECT (3drl AS 2Uni 1) (2dr2 A ? i 1)
i WHERE{

i 2drl d ¥class1
2class1URI .
H Propertyl ?propl
i 2?propl dq RI ?proplURL

tedClass ?class2 .
2class2URT
pertyl ?propl .
2prop2 dqm:hasURT ?prop2URT .
FILTER(str(?proplURL) = str(?prop2URI) 8% str(?class1URI) = str(?class2URI) && 2drl != 2dr2)
MINUS{
2dr2 a dgm:UniqueValueRul
}

il
i FILTER(bound(?prop2URI))
il

UsiqueValueRequirement InconsistentRequirement]
[T3 e i Spccial U R PR

15 2/index phpSpecial URIResohver PR_Organization,_Supplier_[D>

v

hitp, 18 2 /ndex php/Speciat URIR esolver PR Orgaization EXAMPLE_Suppher [D> |

Figure 56: SPARQL query for identification of inconsistent property requirements

9.4.3 Summary

The above queries are domain independent and can be reused to identify
inconsistencies among unique value requirements in a data quality management
system that represents its data requirements with the DQM vocabulary. Therefore,
data quality management with SDQM is especially useful in large environments with
distributed knowledge where it is important to identify inconsistent data requirements
that have been created and maintained by several different individuals. However, the
demonstrated duplicate and consistency checks are only first steps and do not prove
that every data requirement type can be checked for consistency. For example,
consistency checks among conditional requirements, timeliness requirements, and
functional dependency reference rules have not been evaluated, yet. Moreover, as
soon as reasoning is enabled, the identification of duplicates and conflicts may become
more complex. Further research is needed in this area, to provide reliable information
about the scope of consistency checks that is currently possible with SDQM. But the
current results based on this evaluation are a promising first approach that may

probably be extendable to other data requirement types.

144

9.5 Comparison with Talend OS for Data Quality

In this section, we compare SDQM with Talend Open Studio for Data Quality (Talend
OS for Data Quality), a conventional data quality software tool from the software
company Talend®!. Talend OS for Data Quality can be used for analyzing the quality
of data. It is open-source software that is freely available for download. The comparison

is focused on the following issues:

- Representation of data requirements
- consistency checks among data requirements
- data quality monitoring and assessment reporting, and

- performance of data quality analyses

It must be stressed that Talend OS for Data Quality offers many more features, e.g. in
the area of data profiling, that are beyond the scope of SDQM and, therefore, not

subject of this comparison.

9.5.1 Representation and Management of Data Requirements

In Talend OS for Data Quality, data requirements can be represented with so called
“SQL business rules”. In order to represent a data requirement with Talend OS for Data

Quality, the following three high-level steps are required (cf. Talend, 2012, p. 140ff.):

(1) Create SQL business rule
(2) Create new analysis

(3) Run analysis

As the name implies, SQL business rules are based on the relational query language
SQL. The data requirement is thereby represented in SQL code which is later
automatically embedded into the WHERE clause of an SQL query. Figure 57 shows
an SQL business rule for the identification of missing values in the attribute “city”.

81 http://www.talend.com (Last accessed on June 2™ 2012)
145

£ New DQ Rule o [2-]EEs]
DQ Rule Creation Page 2/2
Define the WHERE clause

Where Abschnitt city is not null AND city =" 7

® Weiter > Fertigstellen][Abbrechen]

Figure 57: SQL business rule in Talend OS for Data Quality

After the data requirements have been represented as SQL business rules, they have
to be attached to a so called analysis. Therefore, a new business analysis object has
to be created in Talend OS for Data Quality. The tool provides a wizard for the creation
of the analysis object in which the relevant table and the relevant SQL business rules
can be chosen from a list. The latter is shown in figure 58. Based on these inputs the

analysis can be run to identify requirement violations.

146

4 RN ECR =)

New Analysis

Select DQ Rules

4 (= Rules
a (= sSqQL

4 [J] (= Comparison
(V] 2] Completeness_contacttitle
(7] 42/ Completeness_city
(V] £2/ Completeness_contactname
(V] £2] Completeness_phone
(V] #2] Completeness_postalcode

. [7] = Evaluation_1

» [[] & Tests

|C?:1 Weiter > Fertigstellen] [Abbrechen

Figure 58: Selecting SQL business rules in Talend OS for Data Quality

In the area of data requirements management, there are three major differences
between Talend OS for Data Quality and SDQM. The first difference lies in the way of
representing data requirements. Talend OS for Data Quality uses plain SQL coding,
while SDQM uses forms to capture data requirements which are automatically
converted into RDF data. Other than the users of Talend OS for Data Quality, SDQM'’s
users do not have to know any query language to create data requirements, since they
just have to fill in wiki-based forms. The second difference is the location in which the
data requirements are created and maintained. In Talend OS for Data Quality data
requirements are typically created and maintained on the client of the software
installation. Since SDQM uses the data requirements wiki to manage data
requirements, they can be created and maintained at Web scale by anyone who has
sufficient access rights. Lastly, due to the representation of the data requirements in
RDF, it is possible to check consistency among data requirements with SDQM by using
standard SPARQL queries. To the best of our knowledge, this is not possible with the
data requirements represented in Talend OS for Data Quality, since the requirements
are represented in plain SQL. Finally, in Talend OS for Data Quality the data

requirements are hard-wired to the actual schema elements of the data source,

147

whereas SDQM provides a level of abstraction which allows the reuse of the same
type of algorithm for multiple different schema elements. Table 25 summarizes the

findings of the comparison in the area of data requirements management.

Table 25: Qualitative comparison of SDQM and Talend OS for Data Quality regarding data requirements
management

Criterion Talend OS for | SDQM
Data Quality
Representation of data SQL Forms /
requirements Wikipage
Location of data requirements Local Web
Consistency checks among data No Yes
requirements
Binding to schema of data source Direct Abstract

9.5.2 Data Quality Monitoring and Assessment Reporting

In this section, we compare the data quality reporting capabilities of Talend OS for
Data Quality and SDQM. SDQM provides separate reports for data quality monitoring,
i.e. the identification of instances with requirements violations, and for data quality
assessment, i.e. the computation of dimensional quality scores. In Talend OS for Data
Quality, these reports are combined. After data requirements have been represented
and integrated into an analysis object, the execution process of Talend OS for Data
Quality first computes a score which indicates the percentage to which the requirement
has been met. Figure 59 shows such a report in which the completeness scores for
five different attributes are shown. Based on this assessment report, it is possible to
drill down to the tuples that violate data requirements via the context menu in the red

box as shown in figure 59.

148

WMsch SNoMuce Rlsc S bech
PRSI T T}

[r—— &wa & wa B 1

R N T 1

e s Bwe B i

Compleimen petacode B WA B ta B8 »

Figure 59: Data quality assessment report in Talend OS for Data Quality

When hitting the menu option “View invalid rows”, an SQL query is automatically

executed which retrieves the tuples violating the requirements. Figure 60 shows the

result of such a query which can be viewed as the data quality monitoring reports of
Talend OS for Data Quality.

i Analysisi

suppbend Compasynime dontacineme doniiie s Gty repen pesislode couniry phose Porrpage salaflined

SELEST ¢ FROM

View izvali

Completanass_sgpliers 1 -
alysis: Table Asalysis :

Scflw

‘evalwation’. pepplieTs’ WEERE W07 s mot Ell AN =ty <

g

Messages

Teneitarg
Rymghyid Frksbakken 1 Lynghy k] Denema amaI AL TTO00080 J03-04-11T00000

Figure 60: Data quality monitoring report of Talend OS for Data Quality

149

Hence, in summary we can say that Talend OS for Data Quality and SDQM almost
provide the same reports for data quality monitoring and assessment. However, both

differ in two issues:

(1) In opposite to the current version of SDQM, Talend OS for Data Quality also
visualizes the data quality assessment reporting by providing bar charts.
(2) The reports of SDQM can be made available on the Web, while the reports of

Talend OS for Data Quality are only available locally.

Table 26 summarizes the qualitative comparison of Talend OS for Data Quality and
SDQM.

Table 26: Qualitative comparison of Talend OS for Data Quality and SDQM regarding data quality reporting

Criterion Talend OS for | SDQM
Data Quality

Identification of requirement Yes Yes

violations

Automated computation of data Yes Yes

quality scores

Graphical visualization of data Yes No

quality scores

Availability of reports Local Web-scale

Moreover, we compared the performance of a DQM architecture with Talend OS for
Data Quality and our SDQM architecture. The Talend OS for Data Quality architecture
uses a 64bit MySQL database and 4,600 megabytes buffer size. Moreover, we
assigned 1,536 megabytes of main memory to Talend OS for Data Quality. This shall
represent a similar configuration as used in use case one for the SDQM architecture.
For the evaluation of the performance we used the same data corpus for both
architectures with one exception: the Talend architecture processed the data in
relational format, while SDQM processed it in the triple structure. We executed the
same data requirements and created data quality assessment reports in both cases.

The results of the performance analysis are listed in table 27.

150

The performance analysis shows that SDQM still has a significant performance
drawback compared to conventional DQM architectures. But it must be stressed that
SDQM is an early prototype, while the conventional DQM architecture with Talend OS
for Data Quality and MySQL has already matured through practical experience over
several years. However, we expect that with the optimization of SDQMgr’s queries and
with increasing maturity of triplestores the performance gap between both

architectures will decrease.

Table 27: Results of performance analysis between Talend OS for Data Quality and SDQM

Report Talend OS for | SDQM
Data Quality (in mm:ss.ms)
Completeness
00:23.790 15:59.841
(5 requirements)
Conditional Completeness
00:07.800 01:50.137
(1 requirement)
Syntactic Accuracy (Syntax Rules)
00:09.937 02:08.727
(1 requirement)
Syntactic Accuracy (Legal Value
Rules) 00:29.937 27:18.928
(6 requirements)
Semantic Accuracy (Legal Value
Range Rules) 00:07.504 03:04.716
(1 requirement)
Semantic Accuracy FDV (1
Condition) 00:32.402 02:14.406
(4 requirements)

9.5.3 Summary

151

In summary, we can say that both architectures, the SDQM architecture and the
conventional DQM architecture, have strengths and weaknesses and none of the
architectures is superior in general. The strengths of SDQM lie in data requirements
management. While Talend OS for Data Quality requires SQL knowledge to create
data requirements, SDQM only requires users to fill in wiki-based forms which is much
less time consuming and more convenient for business experts who often do not have
programming skills. Also, in contrast to DQM tools based on the state-of-the-art, SDQM
can identify inconsistencies among data requirements automatically. Moreover, SDQM
provides a Web-based user interface for the management of data requirements which
facilitates collaboration and the generation of agreement. A shared understanding of
data requirements promises a more sustainable and effective improvement of data
quality. A local data quality tool, such as Talend OS for Data Quality, hides data
requirements in SQL code of client software which hinders the generation of a common
understanding about data requirements. SDQM'’s data requirements are audit-proof
due to its version-based storage in Semantic MediaWiki and they can be combined
with other information due to the wiki architecture. A major weakness of SDQM
compared to the conventional DQM architecture is currently the comparatively slow
speed of execution. The current performance of SDQM is acceptable, but far away
from the performance of a conventional DQM architecture. As mentioned earlier, the
growing use of SDQM and the increasing maturity of triplestore technology will
decrease this gap over time. Moreover, the use of Jena’s in-memory features may

close this gap in the future.

152

PART IV — Related Work

10 Related Work

This chapter summarizes research approaches in the area of ontology-based data
quality management and compares the SDQM framework with such related work.
Ontology-based data quality management frameworks in here are artifacts that make
use of ontologies to support data quality management activities. In the following, we
provide a high-level classification of the field, which is then used to organize the

presentation of related work in this chapter.

10.1 High-Level Classification Schema

On a high level, we can distinguish work in the area of data quality management
frameworks between (1) conventional rule-based approaches and (2) ontology-based
approaches. The latter can be further distinguished into approaches that are (1) Web-
oriented, i.e. aim to manage the quality of Web information, and approaches that are
(2) oriented towards the management of data quality in databases of information
systems (IS) that are used in closed environments. Figure 61 illustrates this high-level

classification schema.

DQM
Frameworks

Conventional Ontology-based

Approaches Approaches

Web-oriented IS-oriented
Approaches Approaches

Figure 61: High-level classification of DQM frameworks

153

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 10, © Springer Fachmedien Wiesbaden 2016

10.2 Categorization Schema

In order to provide a systematic account of existing data quality management
approaches that make use of ontologies, we defined three different categories that
further classify related approaches according to their application area. The
categorization is based on our findings about the data lifecycle from section 3.4 and
on a literature analysis of the related work. In order to classify the approaches, we try

to answer the following questions:

1. For which step(s) of the data lifecycle was the approach designed?
2. Which representations of data are in the focus of the approach’s data quality
functionalities?

3. Which data quality tasks are supported by the approach?

Based on these questions, we defined the three categories (1) supported data lifecycle
step, (2) supported data representation, and (3) supported data quality task to
categorize the analyzed approaches. As illustrated in figure 62, these abstract
categories are organized into several subcategories that classify common approaches.

In the following, we will define each of the subcategories as applied in our analysis.

Representation

Data Quality Task

Figure 62: Categorization schema for related work

10.2.1 Supported Data Lifecycle Step

As explained in section 3.4, the data lifecycle can be separated into the data acquisition
phase, the data usage phase, and the data retirement phase (cf. Redman, 1996, p.

217). Therefore, we define each of the steps as follows:

Data Acquisition: Data acquisition is the process of “generating new or retrieving
existing data and storing it onto some kind of medium” (see section 3.4.1, cf. Olson,
2003, p. 44f.; Redman, 1996, pp. 219-222).

154

Data Usage: Data usage is the process of using data “as an information source for
humans and machines in operational or decision-making processes” (see section
3.4.2, cf. Redman, 1998, p. 80f.).

Data Retirement: Data retirement is the process of deleting, deactivating or archiving
data (see section 3.4.3, cf. Loshin, 2009, p. 223).

Research approaches in the area of data management usually attempt to support a
specific problem of one or more data lifecycle phases. Therefore, we classify the

related work according to these phases.

10.2.2 Supported Data Representation

Data quality tasks can be applied to various representations of data because data can
be represented in many different formats, e.g. in proprietary formats of legacy
databases, in relational database systems, in XML documents or within Web sites (cf.
Bodendorf, 2006, p. 3). Therefore, different solutions may be required due to the nature
of the format of the data. Our analysis, therefore, classifies the related work based on

the following representations of data:

e Relational data, i.e. data that is stored in relational databases (cf. Codd, 1970),

o XML data, i.e. data that is stored in XML documents (cf. Bray et al., 2008),

e RDF data, i.e. data that is stored in RDF documents or databases that can store
RDF structured data (cf. Beckett, 2004; Berners-Lee, 1998b; Sahoo et al.,
2009), and

o Text/Web Site, i.e. data that is not structured, but stored on a Web site or within

a text document.

Moreover, we added the category “Other” for approaches that focus on the quality of
other data formats not covered by the enumerated categories, e.g. proprietary data

streaming formats sent by sensors, etc.

155

10.2.3 Supported Data Quality Task

As outlined in section 3.5, data quality management consists of several different tasks.
In order to easily find appropriate techniques, we try to classify the ontology-based
approaches according to the data quality management task that they support.

Specifically, the following tasks are part of the classification framework:

Data Profiling: Data profiling is the process of creating statistics about data, such as
the used patterns and value distribution, the number of distinct values, the number of
null values, etc. (cf. Apel et al., 2010, p. 110f.; Friedman & Bitterer, 2011, p. 3; Olson,
2003, p. 20).

Data Requirements Management: Data requirements management is the process of
collecting, maintaining, and publishing data requirements (cf. Loshin, 2001, p. 197f.).
Moreover, the process of the identification and resolution of conflicting data
requirements may be part of data requirements management (cf. Loshin, 2001, p.
198f.).

Data Quality Monitoring: Data quality monitoring is the continuous process of
monitoring the quality of data according to specified data requirements (cf. Friedman
& Bitterer, 2011, p. 3; Olson, 2003, p. 20f.).

Data Quality Assessment: Data quality assessment is “the process of assigning
numerical or categorical values (quality scores) to quality criteria in a given data
setting” (Gertz et al., 2004, p. 129) based on previously defined measures and data
requirements (cf. Ge & Helfert, 2008, p. 382).

Data Cleansing: In terms of this analysis, data cleansing encompasses the removal
of errors from data by update, merge, or removal of data (cf. Friedman & Bitterer, 2011,
p. 3; Rahm & Do, 2000, p. 1).

Data Validation: In the understanding of this thesis, data validation is the process of
verifying the correctness of data during its creation according to previously specified

requirements before it is passed to further processes (cf. Loshin, 2001, p. 54f.).

Information Filtering: Information filtering is the process of selecting and filtering
relevant information from the available information according to previously defined
requirements (cf. Bizer, 2007, p. 3f.).

156

Data Integration: Data integration is the process of “combining data residing at
different sources, and providing the user with a unified view of these data.” (Lenzerini,
2002, p. 233).

Master Data Management: In the understanding of this thesis, we use the category
“Master Data Management” to classify approaches that are focused on the central
management of master data. Management activities include the integration,
harmonization, evaluation, and distribution of master data across a heterogeneous
system landscape (cf. Loshin, 2009, p. 8f.). According to (ISO, 2009), master data is
“data held by an organization that describes the entities that are both independent and
fundamental for that organization, and that it needs to reference in order to perform its
transactions” (ISO, 2009). Master data is typically used in different applications across
and beyond an organization to supply business processes with information about these
objects (cf. Loshin, 2009, p. 3f.). Examples of master data objects are material,

customer, location, or contract (cf. ISO, 2009; Loshin, 2009, pp. 5-8).

10.3 Conventional Rule-Based Approaches

Rule-based approaches for data quality monitoring and assessment are similar to
ontology-based approaches, since they aim to represent logic that is necessary for the
measurement of data quality. Other than ontology-based approaches, the conventional
approaches usually find alternative ways to represent and store the required logic.
Since they still have some similarities to the proposed approach in this thesis, we briefly
describe some related rule-based data quality management approaches in the

following.

Loshin (2002) developed a framework called Guardian/Q that uses user-defined
business rules to assess and monitor data quality. The business rules of GuardianlQ
are thereby implemented automatically via SQL or Java code.

Categories: Relational Data, Data Quality Monitoring, Data Quality Assessment, Data

Usage, Data Requirements Management

Hipp et al. (2007) propose an approach to measure the data quality dimension

“accuracy” based on association rules. The association rules are thereby automatically

157

derived from data via a complex outlier detection algorithm that considers confidence

values.
Categories: Relational Data, Data Quality Assessment, Data Usage

More conventional rule-based approaches can be found in the Gartner Magic Quadrant
for Data Quality Tools (Friedman & Bitterer, 2011), a yearly market analysis report

about commercial software tools that support the data quality management process.

10.4 Ontology-based Approaches

In the following, related ontology-based data quality management frameworks are
described. Specifically, we outline how they are related to SDQM, the artifact that has
been developed in this thesis. Ontology-based data quality management approaches
can be further distinguished into (1) 1S-oriented approaches and (2) Web-oriented
approaches. As explained in section 10.1, IS-oriented approaches are approaches that
aim to improve the quality of data in IS of closed environments, while Web-oriented

approaches aim to improve the quality of information in open Web environments.

10.4.1 Information System-oriented Approaches

Briiggemann et al. (Briiggemann, 2006, 2008a, 2008b; Briiggemann & Aden, 2007;
Briggemann & Grining, 2008, 2009; Gruning, 2009) propose two major uses of
ontologies for data quality management, namely: (1) the representation of functional
dependencies between data values (Briiggemann, 2008b, p. 523f.; Briiggemann &
Aden, 2007, p. 208) and (2) the representation of quality-relevant metadata. For the
first purpose, legal and illegal attribute value combinations are defined within an
ontology and used to identify incorrect value combinations in the tested data set (cf.
Briggemann & Aden, 2007, p. 208). In (Briggemann, 2008b), the approach was
extended to track user’s cleansing decisions to increase automation in data cleansing

operations. In addition, they use ontologies for the following purposes:

- tolabel potential duplicate instances (cf. Briiggemann & Griining, 2009, p. 197),
- to annotate the correctness of instances (cf. Briggemann, 2008b, p. 523;

Briggemann & Griining, 2009, p. 195),

158

- to create a history of data manipulations (cf. Griining, 2009, p. 67f.), and

- to annotate the scale of measurement for proper processing of property values
during duplicate detection (cf. Briiggemann & Griining, 2009, p. 196f.; Griining,
2009, p. 66).

Moreover, the Briggemann and Grining (2009, p. 197f.) propose an ontology for DQM
which contains a configuration for data quality assessment metrics based on identified
data quality problems. The approaches of Briiggemann, Aden, and Griining have a
strong focus on data cleansing during the data acquisition phase of data warehouses.
However, the approaches seem to be applicable also during the data usage phase.
Although the approaches of Briiggemann et al. are a promising first step in the area of
utilization of Semantic Web technologies for DQM, they seem to lack support for data
quality problem types such as syntax or legal value violations. Moreover, the proposed
solution for the representation of functional dependencies seems to only support binary

relationships.

Categories: Data Acquisition, Relational Data, Data Quality Monitoring, Data Quality

Assessment, Data Cleansing

Chen et al. (2007) propose an ontology-based framework to detect inconsistencies in
biological databases. The addressed inconsistencies are mainly heterogeneous
terminology as it typically occurs in multi-source scenarios. The attributes of different
databases are linked to the concepts of a domain ontology (cf. Chen et al., 2007, p.
279f.). The domain ontology is thereby used as a controlled vocabulary to harmonize
heterogeneous terms in the data sources and to identify equivalent concepts (cf. Chen
et al., 2007, pp. 280-282). The approach also defines a metric to measure consistency
between two data sources based on the mappings to the domain ontology with the
goal to support the selection of a reliable data source for further data mining (cf. Chen
et al., 2007, pp. 284-288). Hence, the approach rather accepts data deficiencies and
heterogeneity between data sources and, therefore, does not focus on improving the

quality of data directly in the data source.

Categories: Data Acquisition, Data Usage, Relational Data, Data Integration,

Information Filtering

Curé and Jeansoulin (2007) also propose to use domain ontologies to represent data
dependencies and to check data from multiple sources for violations. The framework

provides reports which contain the results of a comparison of the source data with the

159

data dependencies represented in the ontology (cf. Curé & Jeansoulin, 2007, pp. 1128-
1130). The approach considers the completeness and correctness of data, but does
not provide many details about the covered data quality problem types (cf. Curé &
Jeansoulin, 2007, pp. 1128-1130). Moreover, it is focused on data from relational

sources.
Categories: Data Usage, Relational Data, Data Quality Monitoring, Data Cleansing

Curé (2009) proposes another approach that uses a mapping between queries that
are based on ontological concepts and SQL queries to identify functional dependency
violations in databases. The advantage of the proposed approach is that it does not
require the conversion of relational data to RDF. But in contrast to SDQM, the approach
requires the representation of each functional dependency as an SQL query and is,
therefore, not generic (cf. Curé, 2009, p. 4). Moreover, it does not cover other data
quality problem types besides functional dependency and does not provide data quality

assessment metrics.
Categories: Data Usage, Relation Data, Data Quality Monitoring

Preece et al. (2006) present an approach that utilizes a so called information quality
ontology (IQ ontology) as the foundation to identify acceptable results of proteomic
analyses. The |IQ ontology contains generic and domain-dependent concepts and is
used to classify and organize domain specific quality characteristics which are
important for scientists to find appropriate data. The data to be analyzed predominantly
stems from XML sources and relational databases. In contrast to SDQM, it focuses on
the selection of information, rather than the monitoring and assessment of data quality.
Moreover, it does not focus on the broad identification of typical data quality problems

for their correction.
Categories: Data Usage, Information Filtering, Relational Data, XML Data

X. Wang et al. (2005) use a task ontology to describe data cleansing tasks for
information systems. Suitable cleansing methods are identified based on user-defined
cleansing goals that are translated into queries over a knowledge base (cf. X. Wang et
al., 2005, p. 4). The appropriate cleansing method is then applied based on the results
of the queries. In contrast to SDQM, the proposed approach puts the data cleansing
task into the center of interest. We argue that it is first necessary to provide
mechanisms to identify data quality problems based on requirements, since the

cleansing goal is determined by the data requirements that shall be fulfilled. To the

160

best of our knowledge, the research work for this task-centric approach has not been

continued.
Categories: Data Usage, Data Cleansing, Relational Data

Kedad and Métais (2002) propose a framework that uses knowledge represented via
domain ontologies to identify corresponding data values. The identification process is
thereby based on a so called “level of accuracy” which represents a user-defined metric
that defines the scope of values that are considered as semantically similar. The
proposed approach is applied for data cleansing in data integration scenarios of
predominantly relational data. While SDQM focuses on the identification of defective
data, the approach of Kedad and Métais attempts to deal with data heterogeneity,

rather than real data defects.

Categories: Data Acquisition, Data Usage, Relational Data, Data Cleansing, Data

Integration

Another ontology-based approach in the area of data quality improvement, called
Context Interchange (COIN), has been developed at the Massachusetts Institute of
Technology (MIT) (Madnick & Zhu, 2006). Supposing that many data quality problems
are based on misinterpretations, they developed a knowledge-based mediation
technology that attempts to overcome semantic heterogeneities of the underlying data
sources. With COIN the data consumer is empowered to formulate queries expressed
in his context independent of the underlying data sources (cf. Madnick & Zhu, 2006, p.
466). A mediator executes the user’s query by transforming the query into source-
orientated sub-queries to retrieve the requested information (cf. Madnick & Zhu, 2006,
pp. 470-473). The context mediator is able to identify and reconcile semantic
differences by accessing domain knowledge about the underlying sources, which is
represented in a shared ontology and context definitions (cf. Madnick & Zhu, 2006, pp.
470-473). With this technique the ontology and the related context definitions facilitate
interoperability between users and heterogeneous information systems by providing
access to knowledge, which helps overcoming semantic differences. In contrast to
SDQM, COIN does neither attempt to identify quality problems in the data, nor monitor
or assess the level of data quality in a data source. It rather tries to solve problems of

heterogeneity during data consumption, in order to avoid the misinterpretation of data.

Categories: Data Usage, Relational Data, XML Data, Data Cleansing

161

OntoDataClean is an approach from (Perez-Rey et al., 2006) that uses an ontology to
store information about the required transformation for preprocessing data as part of a
knowledge discovery process. The approach supports harmonization and cleansing of
data from heterogeneous data sources for various problem types, such as missing
values, duplicate instances, heterogeneous syntaxes, and inconsistent terminology (cf.
Perez-Rey et al., 2006, p. 266f.). However, the application domain of OntoDataClean
differs significantly from SDQM due to OntoDataClean’s focus on data cleansing for

the knowledge discovery process.
Categories: Data Acquisition, Data Usage, Data Cleansing, Relational Data

The Semantic Conflict Resolution Ontology (SCROL) as proposed by (Ram & Park,
2004) is a domain-independent ontology to detect and resolve semantic differences at
instance and schema level when integrating data from heterogeneous data sources.
On instance level, the ontology can be used to store information to resolve
heterogeneities, such as different units, representations, or different levels of precision
(cf. Ram & Park, 2004, p. 197f.). On schema level, the ontology is able to represent
information required to resolve schematic discrepancies and other schema-related
conflicts (cf. Ram & Park, 2004, p. 198f.). In contrast to SDQM, SCROL was designed
to integrate and harmonize data from multiple sources rather than for data quality
monitoring, data quality assessment, or management of data requirements. Moreover,

it is primarily focused on the data acquisition phase.
Categories: Data Acquisition, Relational Data, Data Integration

The Ontology-based XML Cleaning (OXC) framework from (Milano et al., 2005) uses
a domain ontology for the identification and resolution of data quality problems in XML
documents. A domain ontology is created and mapped to the Document Type
Definition (DTD) of the XML document to serve as a reference for the identification of
quality problems in the accordant XML document (cf. Milano et al., 2005, pp. 567-570).
In contrast to SDQM, OXC requires the creation of a separate domain ontology before
its application to a specific domain. Moreover, the approach is only focused on quality

problems related to the completeness dimension.
Categories: Data Usage, Data Cleansing, Data Quality Monitoring, XML-Data

Semantic Master Data Management (SMDM) is an approach from IBM China
Research Lab (Wang et al., 2009). SMDM extends the conventional MDM solution of

IBM by Semantic Web technologies. The approach uses a core MDM ontology as a

162

global schema for business entities and relationships (cf. Wang et al., 2009, p. 1594).
The concepts of the ontologies are mapped to relational data entities (cf. Wang et al.,
2009, pp. 1594-1596). The data in the relational databases can be queried via a
SPARQL-to-SQL translation technology that also allows reasoning during query
execution (cf. Wang et al., 2009, p. 1595). Additionally, it is possible to integrate user-
defined rules into query execution (cf. Wang et al., 2009, p. 1595). Although the
approach does not provide data quality management features, it could be combined
with SDQM to provide a holistic platform for master data management that entails

quality management of master data.
Categories: Data Usage, Relational Data, Master Data Management

Bidlack (2009) describes an industry-driven approach to data quality management with
lightweight ontologies. The ontologies are thereby part of a Python program that can
only be managed by programmers (cf. Bidlack, 2009, p. 4). The ontologies represent
synonym mappings and reference data with functional dependencies and legal value
lists (cf. Bidlack, 2009, p. 6). The stored information is then used for data cleansing
operations. The proposed approach is focused on data cleansing in Customer
Relationship Management (CRM) and does not seem to use any Semantic Web

technologies.
Categories: Data Usage, Data Cleansing, Relational Data

Geisler et al. (2011) propose an ontology-based approach for data quality
management in data streaming applications. The approach’s ontology is thereby used
to store information about quality assessment and monitoring metrics which are also
mapped to data quality dimensions (cf. Geisler et al., 2011, p. 7f.). The ontology
facilitates the flexible representation of user-defined metrics (cf. Geisler et al., 2011, p.
7f.). However, the approach focuses on data streaming applications in traffic
management and does not fully materialize data requirements as SDQM does.
Instead, it rather provides capabilities to store SQL code snippets.

Categories: Data Acquisition, Data Quality Monitoring, Data Quality Assessment,

Other (Streaming Messages)

F. Wang et al. (2005) introduce an approach for the validation of geographic data
based on rules expressed via the Semantic Web Rule Language (SWRL). The
information system directly identifies potential data quality problems and risks based

on the data quality constraints that have been previously expressed via SWRL (cf. F.

163

Wang et al., 2005, p. 5f.). The approach was especially designed for mobile users who
capture geographic information in fields and meadows (cf. F. Wang et al., 2005, p. 1f.).
In comparison to SDQM, the approach uses SWRL instead of a plain ontology and
RDF instances to store quality requirements (cf. F. Wang et al., 2005, p. 3). This
reduces the ability to automatically identify inconsistencies among requirements.
Additionally, the proposed approach does not provide requirement templates, which

raises the complexity for users to express data requirements.
Categories: Data Acquisition, Data Validation

Becker et al. (2008) propose an approach for ontology-based data quality management
that utilizes domain ontologies as an independent conceptual layer to integrate data
from disparate data sources. Queries are then executed based on the ontology to
identify data quality problems (cf. Becker et al., 2008, p. 8f.). Other than SDQM, the
approach does not utilize a special ontology for the domain of data quality management

and does not materialize data requirements in RDF.

Categories: Data Usage, Data Quality Monitoring, Data Quality Assessment,
Relational Data

In addition to the presented related work, the author of this thesis proposed an
alternative approach which utilizes the SPARQL INferencing framework (SPIN) to
materialize and process data requirements in RDF (Firber & Hepp, 2010b). SPIN is a
vocabulary that is able to represent SPARQL queries in RDF (Knublauch, 2011).
Based on the materialized data requirements, data quality monitoring reports can be
derived that identify the instances with requirement violations. Moreover, the data
requirements can be used for data validation during data entry (cf. Firber & Hepp,
2010b, p. 10f.). The author extended the SPIN-based framework by a data quality
assessment component to compute scores for the data quality dimensions accuracy,
completeness, timeliness, and uniqueness based on materialized data requirements
(Furber & Hepp, 2011a). The SPIN-based approaches are closely related to the SDQM
framework. Other than the SPIN-based approaches, SDQM is strictly optimized for
data quality management, since it uses a vocabulary that is especially designed for
supporting data quality management activities. Moreover, sharing data requirements
is much easier with the DQM vocabulary than with the SPIN-Vocabulary, since SPIN
provides the full syntax of SPARQL and the DQM vocabulary is only focused on data

quality management related information.

164

Categories: Data Acquisition, Data Usage, Relational Data, RDF Data, Data Quality

Monitoring, Data Quality Assessment

10.4.2 Web-oriented Approaches

Web-oriented data quality management approaches focus on the quality of Web
information. In the following, we describe related approaches that utilize Semantic Web

technology for quality management of Web information.

Lei et al. (2007) present a framework to evaluate the quality of semantic metadata. The
framework is based on an analysis of typical problems that may occur during the
annotation of data sources with semantic metadata. In order to evaluate the quality,
gold standard annotations that serve as a reference for quality checks have to be
created which often do not exist in real-world scenarios and, therefore, require
considerable human effort to create. In (Lei & Nikolov, 2007), the authors have
addressed this limitation by using available domain ontologies, knowledge bases, and
lexical resources as a substitute for the manually created reference as used in the
initial proposal. This automatic approach thereby recognizes inconsistent, duplicate,
ambiguous, inaccurate, and spurious annotations (cf. Lei & Nikolov, 2007, p. 3f.). Since
the approach is focused on the quality of annotations, such as semantic tags of blogs,
it cannot directly be compared to SDQM. However, the proposed approach is valuable

for the quality evaluation of semantic annotations of unstructured resources.
Categories: Data Usage, RDF Data, Data Quality Assessment

The Web Information Quality Assessment framework (WIQA) as proposed by (Bizer,
2007; Bizer & Cyganiak, 2009) allows to filter Web data that corresponds to user-
defined information filtering policies. The filtering policies have to be defined via the
WIQA policy language (WIQA-PL), which is based on the SPARQL query language
grammar (Bizer, 2007, pp. 95-97). Each WIQA policy consists of three parts, namely a
name, a description, and a pattern (Bizer, 2007, p. 96f.). The pattern is used to express
a set of filtering conditions to filter desired data out of the underlying data sources
(Bizer, 2007, p. 97). The framework thereby relies on the availability of provenance
information in the data sources, such as timestamps, authors of information, or ratings,
depending on the type of filtering policy that shall be applied (cf. Bizer, 2007, pp. 101-
103). Except for the domain-specific functions of WIQA, such as the “Tidal Trust”

165

function (cf. Bizer, 2007, pp. 110-112) and the “More Positive Ratings” function (cf.
Bizer, 2007, p. 109f.), most WIQA policies should now be representable with standard
SPARQL 1.1 queries (Harris & Seaborne, 2010). However, WIQA is also able to
provide explanations why certain information has been filtered (cf. Bizer, 2007, pp.
119-121). Moreover, the framework provides a browser add-on which facilitates
information filtering based on WIQA policies and explains why the information has
been filtered (cf. Bizer, 2007, p. 143). Compared to SDQM, WIQA does not attempt to
improve information quality. It rather provides a filtering mechanism that finds
information corresponding to the quality requirements of information consumers.
Moreover, WIQA was primarily designed for Web information consumers, while SDQM

shall provide tools for monitoring and assessing the quality of information sources.
Categories: Data Usage, RDF Data, Information Filtering

Hartig (2009) proposed an extension of the SPARQL query language for RDF called
tSPARQL to query information based on previously assigned trust values. As a
prerequisite, trust values have to be generated (cf. Hartig, 2009, p. 14f.). Compared to
SDQM, tSPARQL uses a completely different approach to evaluate the quality of
information. tSPARQL relies on subjective user judgments of the trustworthiness of
information, rather than focusing on hard facts that are based on detailed and explicitly
represented data requirements. Thus, the assumptions that lead users to create

certain scores of trustworthiness are not explicit in tSPARQL.
Categories: Data Usage, RDF Data, Data Quality Assessment, Information Filtering

Hartig and Zhao (2009) propose a framework to assess the timeliness of Semantic
Web data based on provenance information. The timeliness assessment is similar to
the timeliness assessment as implemented by SDQM. However, SDQM uses a
different formula to assess timeliness and is based on the previous creation of data
requirements related to timeliness. Moreover, in contrast to SDQM, the approach from
Hartig and Zhao does not directly allow to express a required update interval as a

requirement for the timeliness assessment.
Categories: Data Usage, Data Quality Assessment, RDF Data

Pernici and Scannapieco (2002) propose a framework to monitor and assess the
quality of published and unpublished Web sites. Quality meta-information such as the
author and date of the last update are thereby attached to a Web site with the help of
an RDF document, called “data quality file” (cf. Pernici & Scannapieco, 2002, p. 62f.).

166

Moreover, dynamic data quality dimension scores like completability, i.e. “how fast (the
completeness of an information source) will grow in time” (Pernici & Scannapieco,
2002, p. 53), are computed and stored in the data quality file (cf. Pernici &
Scannapieco, 2002, p. 62f.). A module of the framework called “Data Quality Viewer”
displays the data of the data quality file to Web consumers in a browser (cf. Pernici &
Scannapieco, 2002, pp. 63-65). Hence, the framework shall help information
consumers to evaluate the quality of Web information and to select appropriate
information. SDQM differs significantly from the proposed approach, since SDQM is

focused on evaluating the quality of structured data and not of Web sites.
Categories: Data Usage, Text / Web Site, Information Filtering

ProLOD is a tool designed for profiling Linked Open Data introduced by (B6hm et al.,
2010). ProLOD clusters the data on schema level based on similarity measures and
generates several different statistics about the profiled data on instance level (cf. B6hm
et al., 2010, p. 176f.). The statistics are similar to conventional profiling tools and
amongst others, they provide information about datatypes, pattern distributions, and
value frequencies. ProLOD is, therefore, very valuable to gain a quick insight into the
content of Semantic Web data sets. But to the best of our knowledge, it does not allow
the storage and evaluation of data requirements which is possible with SDQM. ProLOD
may be used together with SDQM, for example during the definition phase to identify

data requirements based on the generated statistics.
Categories: Data Usage, RDF Data, Data Profiling

Mendes et al. (2012) developed a framework for data cleansing and data quality
assessment operations during the integration of linked data called Sieve. Sieve is part
of the Linked Data Integration Framework (LDIF) and can be configured to user-
specific needs. The assessment metrics are thereby encoded in a proprietary XML-
based language. The assessment results can be used during the data integration
process to decide how to cleanse the data (cf. Mendes et al., 2012, pp. 3-5). Sieve and
SDQM differ significantly in two aspects. Firstly, Sieve is focused on the use in data
integration, while SDQM is optimized for data quality monitoring and assessment
during the data usage phase. Secondly, Sieve stores quality-relevant metadata with

help of a proprietary XML-based language rather than within an ontology.

Categories: Data Acquisition, Data Quality Assessment, Data Cleansing, Data

Integration, RDF Data

167

10.5 Summary

Our analysis of related work in the area of ontology-based data quality management
shows that, in summary, no common approach has yet evolved in the area of utilizing
ontologies for data quality tasks. But considering the diversity of different use cases for
which the approaches have been designed, we can say that ontology-based
techniques have shown to be applicable to a broad range of problems in the data
quality domain, ranging from data quality monitoring and cleansing to master data
management, data integration, and information filtering. The role of ontologies in the
analyzed approaches is also very diverse. Some approaches make use of domain
ontologies that represent and utilize domain knowledge of a specific data domain, e.g.
to integrate semantically similar data elements from different sources via the ontology
(e.g. Chen etal., 2007) and to resolve heterogeneities (Madnick & Zhu, 2006; e.g. Ram
& Park, 2004). Furthermore, domain ontologies are used as reference data to identify
functional dependency violations (e.g. Briggemann & Aden, 2007; Curé & Jeansoulin,
2007). Other techniques use ontologies to represent and utilize quality-relevant
metadata such as annotations related to the correctness of instances (cf. Briggemann,
2008b, p. 523; Briggemann & Grlning, 2009, p. 195), assessment metrics (e.g.
Briiggemann & Gruning, 2009, p. 197f.; Preece et al., 2006, p. 478), data cleansing
tasks (cf. X. Wang et al., 2005, p. 4), or data requirements (e.g. Perez-Rey et al., 2006,
p. 267). Additionally, some approaches utilize provenance metadata, , e.g. about the
publisher of data and its credibility, represented via ontologies to evaluate the quality
of a data source (e.g. Bizer, 2007; Hartig & Zhao, 2009). Moreover, we can say that
most of the approaches concentrate on the data lifecycle phases of data acquisition
and data usage. In fact, we did not find any solution that actively supports data
retirement, although especially information filtering approaches, such as the approach
from (Preece et al., 2006), could also be used to identify data for retirement and
archiving. Figure 63 provides an overview of the differences between the analyzed

approaches and SDQM.

By comparing the number of approaches we can also say that, so far, only little work
has been done to manage the quality of the Semantic Web as only a few Web-oriented
approaches could be found. More work has been done with a focus on closed IS.
However, a lot of work has to be done in both areas to account for the central

management of data requirements, since it is the requirements that are the foundation

168

of all activities within the data quality management cycle (cf. English, 1999, pp. 119-
121; Wang, 1998, p. 61). To the best of our knowledge, the SDQM framework is the
only framework that allows the representation of a broad range of data requirement
types fully represented in RDF. Moreover, we did not find any other tool besides SDQM
that integrates wiki-based requirements management with data quality monitoring and
assessment functionalities. However, SDQM could be extended to support more
Semantic Web-specific features, e.g. to evaluate the quality of annotations, and to
support heterogeneity resolution when integrating data from different sources.
Moreover, the integration of data profiling features into SDQM should be further

investigated.

169

X X X X X X X oas
X X X X X 2102 13219 18 ‘U3sIBIYNIN ‘SIPUSIN
X X 0TOZ “[e 32 Wyog
X X X z00T ‘Ouw_n Buueds g 121uiad
X X X X 6007 ‘0eyz B BieH
X X X X 6007 ‘BiHieH
X X X X X 6007 “e1uesA) 1 Jazig pue £00Z 19719
% X X X £00Z “NO|OY{IN 8 197 PUE £00T ‘BNOIN 78 ‘UaIN 191
saydeosddy pajusio-gam

X X X X X X X TT0T ‘dday 13 Jaqun4 pue oT0 ‘ddaH 8 Jaguny
X X X X X 800 ‘UUBWIYUIM B U3|[3NIA JaUZIBIN U098
X X X X S00Z ‘e)IASeMEPUE)| 18 ‘IpJBYUIRY ‘SBIN ‘BuBM 3
X X X X T10Z XIND 8 JaqaM “I3]s199
X X X X X 6002 SPeIp!g
X X X X 6007 “[e 32 Suem uenhoelx

X X X X 500T ‘124e38) 13 ‘033ideuuedS ‘oul
X X X 00T Sed '8 wey
X X X X X 9007 ‘0dsau) g ‘eyn8uy ‘Aay-zaiad
X X X X 9007 ‘NYZ '8 21UpEN
X X X X | X 2007 SIEIIN 3 Pepa)
X X X X 5002 “43y3g 78 ‘Uo|iwieH ‘Buem uix
X X X 900 “|e 1 2933id
X X X X 6002 94nD
X X X X X X £00T ‘uljnosueaf g 9and
X X X | X £00T ‘BuBYZ 3 ‘UdY) ‘Uayd
6007 ‘Butunio ‘600z ‘Buiunio g uuewsssnig
X X X X X X X X 800z ‘Buluanio g uuewassnig /002 ‘Uspy
g uuewasanig ‘98007 ‘8800 ‘900¢ ‘uuewassnig

saydeosddy pajuslio-waisAs uonewogu|
[[[[[[x] [[X [x] £00¢ ‘uuewineN g ‘}410puayoH 43I0 ‘ddiH
[[| | [[x T x T x] X [x| 200Z ‘ulysol
y: paseq-a|ny |euoy

uonejuasaiday ejeqg papoddns

dais appAday

ejeq payoddng

Joyiny

Own classification of related work

Figure 63

170

PART V - Conclusion
11 Synopsis and Future Work

The research goal of this thesis was the investigation of the usefulness of ontologies
for data quality management. In this thesis project, we created an ontology, called the
Data Quality Management vocabulary (DQM vocabulary), to collect and store data
requirements in a structured and linkable format. Moreover, we configured a wiki,
called data requirements wiki, which contains standard forms to capture data
requirements and to store them based on the elements of our ontology, the DQM
vocabulary. Because of the storage of data requirements in the DQM vocabulary
schema, we were able to create a reporting tool, called the Semantic Data Quality
manager, that automatically processes the captured data requirements and creates
data quality monitoring and assessment reports without any additional manual
intervention. In the following, we review our initial research questions, provide answers,
and highlight the findings and results of this thesis. Moreover, we draw a final
conclusion on the usefulness of ontologies and provide starting points for future work.

11.1 Research Summary

In section 2.1, we have subdivided the initial research goal into five research questions,
which served as the roadmap for this thesis. In the following, we provide a short

summary of the answers to the research questions:
RQ1: What kind of data quality problems exist?

We have argued that, in order to develop solutions to improve data quality, the nature
of data quality problems has to be understood. Therefore, we have developed a
typology of data quality problems for relational systems (see section 3.3) and for the
Semantic Web (see section 5.2). The derived typologies are based on an analysis of
literature related to data quality problems in relational databases and the Semantic
Web.

171

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6 11, © Springer Fachmedien Wiesbaden 2016

RQ2: Which activities have to be performed during data quality management?

Since we have aimed to develop an artifact that facilitates data quality management,
we had to identify typical activities that are performed during data quality management.
Consequently, we analyzed the two most popular data quality management
methodologies, namely Total Data Quality Management (TDQM, Wang, 1998) and
Total Information Quality Management (TIQM, English, 1999), for commonalities as
part of section 3.5. Based on the commonalities, we defined a new data quality
management process in section 8.2 that is fitted to SDQM, the major artifact of this

thesis.
RQ3: Which knowledge has to be represented to support data quality management?

In section 3.6, we argued that data requirements represent knowledge about the
characteristics of high-quality data. Assuming that data quality problems are the result
of requirement violations, we derived ten generic data requirement types from the
typology of data quality problems. We thereby focused on quality problems of relational
data. The generic data requirement types represent the core knowledge concepts that

have to be represented to support data quality management.

RQ4: How can we represent knowledge relevant for data quality management to

reduce manual work?

Based on the generic requirement types, we developed an ontology, called the DQM
vocabulary, that supports the representation of knowledge for data quality
management activities, such as data requirements definition, data quality monitoring,
and data quality assessment (see section 0 and (Firber & Hepp, 2011b)). The
development procedure followed the ontology development methodology as provided
in (Uschold & Gruninger, 1996). The DQM vocabulary consists of classes and
properties that can be used to represent data requirements in a machine-readable
format. Due to this design, we reduced manual input by automating the generation of
data quality monitoring and assessment reports based on the representation of data

requirements knowledge via the DQM vocabulary.

RQ5: How can we utilize knowledge for data quality management represented within

ontological structures?

In chapter 7, we have developed the SDQM framework, a data quality management

framework that is based on other programming frameworks and artifacts primarily from

172

the Semantic Web community. SDQM processes quality-relevant knowledge
represented in the DQM vocabulary to derive data quality monitoring and assessment
reports. Knowledge processing within the SDQM framework is based on generic
SPARQL queries which provide the basis for the derived reports. Since the SPARQL
queries only use elements from the DQM vocabulary, they are of generic use for any
domain, as long as the data requirements are formulated based on the DQM
vocabulary. SDQM'’s data requirements wiki can be used to capture data requirements
from business experts via standardized forms. Thus, users of SDQM do not need to
possess programming skills to evaluate the quality of data. Furthermore, we have
shown in section 9.4 that the represented knowledge can also be used to automatically
identify inconsistent or duplicate data requirements. Finally, we provided an installation
and application procedure for SDQM in chapter 8 of this thesis so that our research

project is reproducible.

11.2 Contributions

The contributions of this thesis can be separated into (1) practical and (2) theoretical
contributions. On the practical side, we developed a new artifact, called SDQM, which
solves real-world problems in the area of data quality management and integrates state

of the art technology of the Web.

SDQM consists of three major artifacts that have been developed in the course of this
thesis, namely (1) an ontology for representing knowledge that is relevant for data
quality management, (2) a wiki for capturing and maintaining data requirements, and
(3) a reporting frontend to create data quality monitoring and assessment reports.
SDQM'’s data requirements wiki can be used to capture quality-relevant knowledge
from business experts via standardized forms. Thus, users of SDQM do not need to
possess programming skills to evaluate the quality of data. The captured data
requirements are automatically represented in RDF based on the DQM vocabulary.
Therefore, SDQM'’s reporting frontend, called the Semantic Data Quality Manager
(SDQMgr), can automatically process the captured knowledge to derive data quality
monitoring and assessment reports without any additional programming. As evaluated
in section 0, this is a major distinction from conventional data quality tools such as

Talend OS for Data Quality, since they usually represent data requirements as part of

173

programming code. Due to its integration with standard wiki software, SDQM is
especially suited for large organizations with distributed knowledge. The reduced
complexity of maintaining data requirements logic may mitigate the effort for data
quality management. To the best of our knowledge, SDQM is the first data quality
management framework that uses standard wiki software to capture, manage, and
utilize data requirements for automated data quality monitoring and assessment.
Moreover, SDQM facilitates the automated identification of inconsistent and duplicate
requirements with standard SPARQL queries, since the captured data requirements
are represented in RDF format. At present, we do not know of any data quality

management software that has a similar feature.

Moreover, this thesis provided several theoretical contributions for data quality

research as listed below:

(1) A typology of data quality problems in relational systems and the Semantic
Web (sections 3.3 and 5.2).

(2) A requirement-centric methodology for data quality management (section 8.2).

(3) Ten generic data requirement types (section 3.6.1).

(4) A survey of related work (chapter 10).

These theoretical contributions of this thesis may be useful for future research and

applications in the area of data quality management.

11.3 Conclusion and Future Work

In this thesis, we have shown a way how ontologies can be employed for data
requirements management, data quality monitoring, and data quality assessment for
information systems and Semantic Web data. The evaluation results documented in
chapter 9 indicate that the developed approach is also usable in real-world settings.
Furthermore, we have collected first evidence that Web and Semantic Web

technologies can facilitate the management of data quality in several ways, namely

- Semantic wikis facilitate the generation of data requirements by non-
programmers, since they offer standardized forms for knowledge capturing.

- Representation of data requirements within ontological structures facilitates the
automated derivation of requirement violations and data quality scores.

174

- Representation of data requirements within ontological structures facilitates the

automated identification of duplicate and inconsistent data requirements.

However, we also discovered some limitations. Compared to conventional data quality
architectures, such as Talend OS for Data Quality with a MySQL database, SDQM still
has a significant performance gap. Moreover, SDQM does not yet provide features for
data profiling and may not be able to represent complex functional dependencies in
RDF. Additionally, we discovered that the use of SDQM for open environments, such
as the Semantic Web, has some limitations. For example, Semantic Web scenarios
contain a large diversity of world views which may sometimes collide. Therefore, it may
not be possible or even suitable to solely seek for consistent data requirements (cf.
Madnick & Zhu, 2006, p. 460f.). In consequence, the perceived characteristics of high
quality data may be diverse and contradictory. Thus, data quality improvement directed
to a single, harmonized quality perception is most likely not applicable for the Semantic
Web. However, the results of this thesis provide multiple possibilities for future work in

several areas which are explained in the following.

Semantic Web settings: Currently, SDQM is focused on closed environments based
on relational information systems. Future work could address the extension of SDQM
to cover specific data quality problems of the Semantic Web as specified in section
5.2. Moreover, SDQM could be deployed to the World Wide Web to collect data
requirements from the Web community about public Semantic Web data sources, such
as DBpedia or Geonames. Based on the captured knowledge, agreement and

disagreement about data requirements could be identified and further investigated.

Technological optimization: Currently, SDQM was mainly used in single source
scenarios. Future work could address the investigation of SDQM’s ability to cover
multi-source scenarios, e.g. in which properties with identical intensions are stored in
disparate data sources. Moreover, SDQM'’s duplicate checking algorithms require
further performance optimizations as explained in section 9.2. Additionally, SDQMgr’s
reports could be extended by charts to visualize data quality scores. Finally, SDQM
could be extended by data profiling features to identify data requirements via data

analysis.

Economic impact: SDQM may save manual effort due to the provision of
standardized forms for capturing data requirements and standardized data quality

reports. However, solid evidence is still missing that really proves a higher efficiency

175

and lower costs compared to conventional data quality management tools. Future
studies could also address the potential of SDQM to reduce costs of information
exchange among different parties within a supply chain. For example, SDQM could be
used to express and publish data requirements of customers within supply chains in
an audit-proof way. Then the delivered data of the supplier could be verified according
to these explicitly specified data requirements with SDQM. As a potential outcome,
ambiguity and misunderstandings during information exchange may be reduced and
the result of the verification against the customer’s data requirements could be part of
contracts and, therefore, used as an incentive to improve the quality of the information
exchange within the supply chain. SDQM could be applied in a study related to such a
scenario to investigate its potential to reduce costs for information exchange within the
supply chain.

176

Appendix A — Comparison of TIQM and TDQM

aseyd uoniuyeq

(£9-19 "dd ‘geg | ‘Buepp Jo) ssaooid
Buunioenuew uonew.loul Ayusp|

suopjuep ejep
YJIM UONORSIIES J8WIOISND JO JUBLUSSOSSY

‘uBisep aseqe)ep / 8injos}yoIe
uonBWIOlUI JO JuBWSSasse AJlenD

aseyd uoniuyaq

(19 d ‘g661 ‘Buepm J)
dI 8y} Jo sonsuslorIeyd Ajuap)

suoniuep eyep Jo Juswssasse Alend

sdnoub uonew.ojul pajos|as ay)
1o sali0Ba)ed Japjoyaye)s Jo uoneouuap|

JUBWISSasSe ay)
10} sdnoJB uoew.oul Juepoduwi Jo UONOBISS

Ayjenb uonuyep
ejep Joj sjuswalinbai Ayjienb jo uoneoynuap)

(v,

-z/ 'dd ‘6661 ‘us!ibu3)
Ajlenb ainyosyyole pue
uopulap ejep ssassy

dnoug sse20.d |

da)g ssao0.d

da)g ssa204d

dnoug ssasoud

NOaL

INOIL

auo Jed ‘NOAL pue WOIL 0 uosuedwo) :8Z ajqel

177

C. Fiirber, Data Quality Management with Semantic Technologies,

DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

S)|Nsal JUSLISSaSSe
10 uonejaidisiul pue uoieussald

aseyd juswalinses|y

(v9 "d ‘8661
‘Buepn '10) souew P uswa|dw|

juswissasse [eaisAyd
10 pajewolne el ejep pajdwes ay} uo
paseq Ajljenb uoinew.ojul Jo Juswainses|y

pessasse aq
0} EJep 8y} Jo 9|dWEeS Wopuel B JO Uoijoexg

uoljepl|eA ejep Joj $82Inos
aouaJajal ajeldoidde Jo uoneoyuap|

sassao0.d
10 ‘saseqelep ‘sl 9’| ‘JUBISSISSE
8y} 10} S)09[qo By} Jo uonedyuSp|

sdnolb
uoljewIoul JUBAS|SI Y} JO Uleyd }S00
pue anjeA uoljew.oyul, 8y} Jo uoiesyuap|

aseyd juswainses|y

(79 'd ‘8661 ‘Buep ")
soujew P| dojpasq

aseyd uonuyaq

(";19 "d ‘g6 ‘Buepp10) S1ebeuew
pUE ‘SIBWNSUO ‘slainjoejnuew
‘sia1iddns 4| jo suondaoiad

pue suojnejoadxa | Ayuap|

sainseaw
pue saAoa(qo Ayjenb uonewloyur ysijgeis3

sdnoub uoew.oyul
JUBAS|SJ JO UOIEOLIIUSPI IO UOIIBWLIU0DSY

(92

-¥/ "dd ‘6661 ‘ys!|bu3)
Ayjenb

uoljew.lojul ssassy

dnoug ssasolid

de)g ssaooud

da)g ssaooid

dnoug ssaosolid

NOaL

INOILL

om} ped ‘WOAL Pug WOIL o uoskedwoD :6Z lqeL

178

(Ayjenbuon)
swa|qo.ld Ayjenb uonew.oyul wouy Buiynsal
1509 Ajunpoddo }so| pue passiw Jo uonende)

$)s09 Ajunpuoddo 1so)
10 sIseq Se anjeA awi}ayl| Jawolsno Jo uoienoje)

UOI}EINOJED BNjeA awiay|
JowoIsNo 104 sjuawbes JsWo)sno JO UOIBOIIUSP]

saJn|ie} ssao04d pasned Jo 1s09 Buipnjoul swajqold
Ajienb ejep wouy Buiynsal s}s09 Jo uoneulwId}eq

syuswdojansp
Buippe-}sod pue ‘AlaAljap anjeA ‘einjonJseul
104 1502 "6 ‘uoljew.olul JO 10D 8zAleuy

S}S0D JO ‘UOIOBJSI}ES JBWO)}SND

‘syyoud se yons ‘swajqold Ayjenb uonewiojul
Aq pajoaye aq Aew jey) SIoAlp ssaulsng

/ sainseaw souewlopad ssauisng Apuap|

(492 "d ‘6661 ‘us!ibu3)
S}S00 uoljewJojul
Ajjenbuou ainsesyy

dnoug ssasolid

da)g ssaooid

de)g ssaooud

dnoug ssasolid

NoatL

INOIL

991y} Led ‘NOAL PUE NDIL JO uosuedwo) :0g ajqeL

179

(oi10ads-asnoyaiem ejep) sassaoold
(-7..3) peo-wiojsuel] -joeix3 JO [0J3U0D pue JIpNy

(o1y10ads-asnoyaiem ejep)
suoleAllap pue sajebaibbe Jo uoienoje)(-ay)

(ouoeds-asnoyaiem
elep) eje)s 19b.e) 0] uolewlojsuel) eleq

sadA} Joajep ejep Jo sishjleuy

elep a1eoljdnp Jo uolepIosuo)

ejep
10 UO1}B|dWOD JO UOI}08.I00 PBJEWOINE IO [BNUEB|

Buiuesw onueWSS UO Paseq uolezipiepuels ejeq

suseped pue sajjewoue 10}
B]Eep 921N0S JUBAS|aJ 8Y} JO SISA[EUY pue uooRIXT

aseyd sisAleuy

(¥9 "d ‘g661 ‘BuBN)
swajgold Ayjenb ejep painuapi
10} sisAjeue asned J00J Wliouad

Buussulbusa. o Buisues|o
ejep alinbal 1ey) $924N0S elep JO UoIeoIIuap|

(08

-,/ "dd ‘6661 ‘us!|buz)
ejep asues|o

pue Jasuibusay

dnoug ssasoud

da)g ssasoid

da)g ssa20.d

dnoug) ssaosoud

NOaL

INOLL

inoy ped ‘NOAL PUB NDIL JO uoskedwo) :Lg ajqeL

180

aseyd juswanoidw)

(Y1 "d“L00Z “|e 18 Buep, Jo)
MO|}IOM pue
MO} uoljewJoul Jo Juswubie srosdw|

(71 "d"1L00z “|e 10 buep Jo)
Spasu ssauIsSNg pue solslsloeIeyd
dl usamiaq Juswubije snoidw|

sabueyo aAoaYs Jo uonejuawa|dw
apIm-asiidiajua pue uopezipJepues

sabueyo
pajuswa|dwl JO JUBWISSOSSE SSaUBAIDBYT

wswanoidwi Ayijenb uonewou
pue sseo0.d 1o} sebueyo jo uonejuswadw|

aseyd sisAleuy

(9 d "g661 ‘Buem)
swa|qold Ayjenb ejep paynuapl
10} sisAjeue asneo 100J Wwiouad

$9SNED J00. BY} JO UOIeOIIUSPI
Buipnjoul ueyd yuswanoidwi Jo uoneal)

wea) Juswarosdwi

ssa00.d Jo Juswysiigelss pue ‘sassasold

JUBAS|I JO UOIIedl)uSpI ‘uoniuyep wajqold
Buipnjour Ayaioe Juswaoidwi ssao0ud Jo uoneniu|

(Jog d

‘6661 ‘Us!ibuz)
Ajienb ssao0ud
uonewlojul
anosdw|

dnouig ssasold

da)g ssao01d

da)g ssao0ud

dnoug ssasoud

NoaL

INOLL

oAl ped ‘WOAL Pue NOIL Jo uosuedwo) :z¢ ajqeL

181

Appendix B —Rules for the Evaluation of SDQM

Table 33: Overview of rules used for the validation of the SDQM algorithms

ID Rule Category Rule
1 Missing values and Mandatory properties:
properties - City
-Zip
- Streetno
- Street
- Country
- Location ID
- Quantity
- Price
- PCATID
- PNAME
- WEIGHT
2 Conditional missing values | 1) If city starts with an N, then property country
and properties must have a value.
(1 condition) 2) If country has value "USA", then the property
"state" must have a value.
3 Conditional missing values | If country has value "USA" and city has value
and properties "San Diego", then the property "state" must have
(2 conditions) a value
4 Conditional missing values | If the property country has the value
and properties "Deutschland" and the value of the property city
(3 conditions) starts with "Neu" and property streetno contains
"39", then the property state must have a value.
5 Conditional missing values | If the property country has value "USA" and the
and properties value of property street ends with "Plaza" and the
(4 conditions) property city starts with "San" and the property
streetno contains the value "3", then the property
state must have a value.
6 Conditional missing values | If the property city starts with "San" and the
and properties property country has the value "USA" and the
(5 conditions) property streetno contains the value "3" and the
property street ends with "Plaza" and the
property zip is less than 95000, then the property
state must have a value.
7 Syntax violations 1) The property streetno can only contain
numbers, letters and whitespaces
(Regular expression: [0-9A-Za-2\s]*$).
2) The street property can only contain numbers,

182

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

ID Rule Category Rule
letters, whitespaces, and dots
(Regular expression: N[A-Za-z-\s\.]*$).
8 Conditional syntax If the property country has the value "USA", then
violations the property state must contain 2 letters (Regular
(1 condition) expression: N[A-Z{2}$).
If the property country has the value
"Deutschland”, then the property zip must contain
5 digits (Regular expression: A[0-9]{5}$).
9 Conditional syntax If the property city has the value "K&In" and the
violations property street starts with "Flughafen", then the
(2 conditions) property zip must contain 5 digits
(Regular expression: N[0-9{5}$).
10 Conditional syntax If the property country has the value
violations "Deutschland" and the property street starts with
(3 conditions) "Flughafen" and the property zip is less than
95000, then the property zip must contain 5 digits
(Regular expression: A[0-9]{5}$).
11 Conditional syntax If the property city has the value "San Diego" and
violations the property country has the value "USA" and the
(4 conditions) property street no contains a "3" and the property
zip is less than 95000, then the property zip must
contain 4 digits (Regular expression: A[0-9]{4}$).
12 Conditional syntax If the property city starts with value "San" and the
violations property country has the value "USA" and the
(5 conditions) property street no contains a "3" and the property
street ends with "Plaza" and the property zip is
less than 95000, then the property location ID
must contain 2 digits
(Regular expression: [0-91{2}$).
13 Out Of range values 1) weight: Lower Limit =0
2) location_id: Lower Limit = 1
3) quantity: Lower Limit=0
4) price: Lower Limit = 0, Upper Limit =
10000000
5) pcatid: Lower Limit = 1
14 lllegal values The property country must have one of these

(Legal value rules)

values:
"USA", "Germany", "France", "United States of
America", "Deutschland”

183

Rule Category

Rule

15 lllegal values The property pcatid cannot have the value "0".
(llegal value rules)
16 FuncDepReferenceRule Value combinations of instances of class
violations (2 properties) foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:
- City
- Country
17 FuncDepReferenceRule Value combinations of instances of class
violations (3 properties) foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:
- City
- Country
- Zip
18 FuncDepReferenceRule Value combinations of instances of class
violations (4 properties) foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:
- City
- Country
- Zip
- Street
19 FuncDepReferenceRule Value combinations of instances of class
violations (5 properties) foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:
- City
- Country
- Zip
- Street
- Streetno
20 FuncDepValueRule If the property city has the value "Stavern", then

violations (1 condition)

the property country must have value "Norway".

184

ID Rule Category Rule
21 FuncDepValueRule If the property city has the value "KdIn" and the
violations (2 conditions) property street starts with "Flughafen", then the
property zip must have the value "51147".
22 FuncDepValueRule If the property country has the value
violations (3 conditions) "Deutschland" and the property street starts with
"Flughafen" and the property zip must have the
value "3".
23 FuncDepValueRule If the property city has the value "San Diego" and
violations (4 conditions) the property country has the value "USA" and the
property street no contains a "3" and the property
zip is less than 95000, then the property zip must
have the value "92102".
24 FuncDepValueRule If the property city starts with value "San" and the
violations (5 conditions) property country has the value "USA" and the
property street no contains a "3" and the property
street ends with "Plaza" and the property zip is
less than 95000, then the property location ID
must have the value "81".

25 Expired instances If date and time of property validThrough is
before the current date and time, then the
instance is outdated.

26 Exceeded Update Interval If timestamp of instances is elder than 6 months,
then the instance is outdated.

27 Uniqueness violations The values of the property location_id must
always be unique.

28 Duplicate instances (1 If two or more instances have the same values in

equal value) the following properties, then the instances are
potential duplicates:
- Zip
29 Duplicate instances (2 If two or more instances have the same values in
equal values) the following properties, then the instances are
potential duplicates:
- City
- Zip
30 Duplicate instances (3 If two or more instances have the same values in

equal values)

the following properties, then the instances are
potential duplicates:

- Street
- Streetno

185

ID Rule Category Rule
- Zip
31 Duplicate instances (4 If two or more instances have the same values in
equal values) the following properties, then the instances are
potential duplicates:
- Zip
- Country
- Street
- Streetno
32 Duplicate instances (5 If two or more instances have the same values in

equal values)

the following properties, then the instances are
potential duplicates:

- City

- Country
- Street

- Streetno
- Zip

186

Appendix C — Test Data for SDQM’s Evaluation

pue|yosjnag ueM | ¥LLS L “Jysuayeybn|4 6| <e/uONEIOIGPYO0)S/BI0 B|dWEXS MMM//:dRY>
vsn obeig ues | 10126 ¥2e eze|d uouoH 8 | <g/uoneoo|qpxools/Bio-ejdwexe mmm//:dpy>
puejyosinaqg BiaqignaN | 27658 6 | Bapn-Braquasioy-iaulopn / </ /uoieoo|qp)o0}s/61o-sjdwexa mmm//:diy>
puejyosynaqg BiaqignaN | 27668 6c | Bapn-BiaquasioH-iauiap 9 <9/uoneoao|gpxo0}s/Bio-aidwexa mmm//:dpys>
vsn VO | [9ejey ues | 29G/6 '}s Buons /295 G| <G/uoneoo|qpxools/Bio-ejdwexs mmm//:dny>
uaibleg UIBABIS oLLYy 8/ a1eb soyyeys bulug 4 <f/uoneoo|gpxo0ls/Bio-aidwexa mmm//:dnys>
sabejo
aouel sajueN | 000%¥ ayuenbul) sep ani ‘9 ¢ | <g/uoneoo|qpsools/bio ajdwexs mmm//:dpy>
ellensny | BUORPIA | 8ulnogieiN | $00€ peoy ep|iM 1S 9€9 3 <g/uoneoo|qp00)s/Bioajdwexs mmm//:dpy>
vsn AN | sebap seq 1S Buons 6818 L <] /uoneoo|gpxo0ls/Bio-aidwexa mmm//:dpys>
AYLINNOD | 3LVIS ALID dIZ | ONL133¥1S 133341S | AId01 aouejsu|

swyioBle s NOAS Bunen|eas oy ejep 1$8) UOEI0T pE dlqeL

187

C. Fiirber, Data Quality Management with Semantic Technologies,

DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

€1 | <//uoneoo|qpyooys/Bio ajdwexa mmm//:dnys | <) |/sionpoidgpsooss/bioajdwexs mmm/:dpys [<| L///500isqpsools/bio ajdwexs’ mmm//:dpy>

Z- | <9/uoneoo|gpsooys/bio-ajdwexs mmm/:dpy> | <g/syonpoidqpyooys/Bio-ajdwexa mmm/:diys> | <9/9/4001sqpxo03s/Bio ajdwexa mmm//:dpys

8| <g/uoneoo|gpyooys/Bio-ajdwexa mmm/:dpys> | <G/syonpoidgpsools/bio-ajdwexs mmm/:dpys | <G/e/x003sqpyo0)s/bio-aidwexa mmm//:diy>

000G | <1/uoneoo|qpsools/bio-aidwexa mmm/:dpy> | <z/syonpoidgpyooys/Bio ajdwexa mmm/:dpys | <z/1/40031sqpxo03s/Bio ajdwexa mmm//:dpys.

| | <1/uoneoojqpxo0ys/Bio-ajdwexa mmmy//:dnys | <z |/sionpoidapyools/bio-ajdwexs mmm//:dpys [<z /1 /5201sqpxo0)s/bio-ajdwexs’ mmm//:dpy>

Knuenb p1oojs pids aouejsu|
swypoble s,NOAs Bunenieas 1oy ejep 1s9) Ayjuenb 3001S :9¢ ajqe]

6.1°12:0C:LL1€EL-LL-2L0Z 8L 0021 | uonipa wijs Iy yoog yoead ¥ 6 <6/S1oNnpoidgpxo0}s/b10°s|dwexs mmm//:dpy>

80 00°G.)oe|q ‘ssauisng ‘xoeb 8 Q <g/s1onpoidqgpsools/Bio aidwexa mmm//:diy>

4 0z biq ‘ued 9 . <//s1onpoidqgpsoo)s/Bio aidwexa mmm//:diy>

6/1°12:02:LL1EL-L1-2L0T 20 00’} uns Aleqg Ll 9 <9/s1onpoidgpxo0}s/B.10-a|dwexs Mmm//:diy>

0 g <G/syonpoidgpxooys/bio-ajdwexs mmm//:dpys>

vl 00671)00q}au ‘olem luns [¥ <{/s1onpoidqgpsiools/Bio-aidwexa mmm//:diy>

6.1°Lg:0C:LLLEL-LL-Cl0C Sl 00%1 | uonipa wis Iy ¥oog yoead €l € <g/s1npoidgpxo0}s/B10-ajdwexs mmm//:dpy>

€89'6€6L:21L1€L-L1-0L0C ge| 66'¢eeel .2 ‘a0 Auosiued 44 <z/snpoidgpx00}s/B10-ajdwexs Mmm//-dpy>

Z0 22T paJ ‘s)oos Addojs | 1 <} /syonpoidgpxooys/Bio-ajdwexs mmm//:dpy>

€0 Gl 3oe|q ‘MIys-} Auuny 9| zL <z /s1onpoidgpooys/b10°ajdwexs mmm//:dny>

€0 1- a)lym ‘Wiys-} Auuny Lo <| }/s1onpoidqpyo0ys/bi0°ajdwexa mmm//:dpy>

€€€°0]/ 0000005z | 1Pne ‘Jadim pjalysuim xnus) 0L| 0L| <0l/syonpoidgpyoois/Bio-aidwexs mmm//:dpy>

ybnouayppijea | ybam aoud aweud| pnead| pid aouejsu|

swyyoBle s,NDAS Bunen|eas 1oy ejep 1se} Jonpoid G aqel

188

ouelq sajueN 000b¥ | <t UOI1BIOTHESUOIIRIO|/2oUBIR)04paIsNIY /310 a|dwexa mmm//:d1ay>
puejyasinaq EIEGTERE]N £/GS8| <9 UOI1BIOTHESUOIIRIO|/2IUdIR)RIpaIsNI)/S10 9| dwexa mmm//:d1ay>
eljeJisny | auJnoq|aN 00€ | <T UOI1BIOT#ESUOIIRIO|/30UaIa)a.palsnil/310 s/ dwexa mmm//:d1ay>
puejyasinaqg ujoy LYTTG | <8 UOIIBIOTH#ESUOIIRI0|/20UBIB)24palsnil/3io a|dwexa mmm//:d1y>
vsSn se8a seq ZESTE | <€ UO0IRIOTHESUOIIRIO|/2oUBIR R4PRISNIY/310 9| dwexa mmm//:d1ay>
AemioN ulaneis 0TT¥ | <G UOIIBIOTHESUOIRIO|/30UaIa)a4palsnil/310 9| dwexa mmm//:d1ay>
vsn |oejey ues 79S/6 | <7 UOIIBIOTHESUOIIRIO|/30UBIR424palsNJl/S10 9| dwexa mmm//:d1y>

vsn o08a1q ues TOTZ6 | </ UOIIBIOTHESUOIIRIO|/30UBIRR4palsNIY /310 9| dwexa mmm//:d1ay>
Anunop 5Te} diz N

sapadoud 881y} yim ,sainyaouaisjeydagound, s,NDAS Bunenjeas oy eyep aouslayel 1sa] 8¢ a|qel

AemioN UJaARIS | <p UOIIBIOT#SUOIIRIO0|/20UdIa)a1palsniy/3i0 9| dwexa mmm//:d1ay>
pueyasinag 843aqIgnaN | <9~ UOI1BI0T#SUOIIEIO|/30UB4B)31paIsnIl/310 3 dwexa mmm//:d1y>
vsSn se39/\ Se7| <T~ UOI1EJOTHSUOIIRIO|/30UBIR4R.4pa1sNJY/B10 9| dwexa mmm//:d1y>
pue|yasinag ujQy | <8 UOIIBJOT#SUOI1EIO0|/20UdIa)aapalsniy/3i0 a|dwexa mmm//:d1y>
Qduel4 S9IUBN | <€ UOI1RDOTHSUOIIBIO|/2oUBl 2ipalsnil/310 a|dwexa mmm//:diy>

vsn |[9BjEY UBS| <G UOI1BI0T#SUOI1eIO|/20UB4a)alpalsnil/3i0 a|dwexs mmm//:d1y>

vsn 0831q ueS| </~ UOI1BIOTHSUOIILIO|/2oUBIR RIpaISNIY/SI0 a|dwexa mmm//:d1y>
eljesisny SUINOQ|3IAI| <Z UOIIBIOTHSUOIIRIO|/20UBJ)eipalsnJl/310 a|dwexs mmm//:d1y>
Anuno) L. T) N

saipadoid omy yim ,sejnyeousiajeydagound, s, NOAS Bunen|eas 1oy eyep aouaia)el }sa] /¢ d|qel

189

(743 eze|d UOMOH VSN | 03831q ues| TOTZ6 | </ UONBIOTHGSUOIIRIO|/20Uala)alpalsnil/3i0 s|dwexa mmm//:d1ay>
oM

6€| -84aquasiaH-1aula | pue|yasINeQ | S49qIgNaN | 64558 | <9 UOIIBIOTHGSUOIIRIO0|/20UdIa)a1palsniy/310 9| dwexs mmm//:d1ay>

T “J1suajeysni4 | puejyasinag Ul | LPTTS | <8 UONEIOT#SSUOIIRI0|/a0udla)a4palsnil/3io ajdwexa mmm//:d1y>

ouldans 19318 Asuno) A diz 1N

sajpadoid aAl yIm ,se|nyeouaiaeydagound, SNDAS Bullen|eAs 1o} ejep aouaialel }sa] 10f d|qel

199J1sule| ellessny | auunoqdA| $00E | <T UOIBI0T#HSUOIIEIO|/2dUB4a)24pRaIsnIl /310 9 dwexs mmm//:d1ny>
3o/\-819quasiaH-Jaula) | puelyasineg | 84aqignaN | £/SG8 | <9 UOIIRIOTH#PSUOIIRIO| /20U a1pa1snil/Si0 9 dwexa mmm//:d1y>
“J3suajeysni4 | puejyasinag U|oY | LPTTS | <8 U0Ned0 #tSU0IIeI0|/30Uala)alpalsnil/3i0 a|dwexa mmm//:d1y>

eze|d UOLIOH vsn 0391q ueS| TOTZ6 | </ UOILIOTH#HSUOIIRIO|/2oUBIR)D4paISNIY/310 9|dwexa mmm//:d1y>

1S 8uous £/99 VSN | [9.jeY UeS| Z9G/6 | < UOI1BIOT#ySUOIIRIO|/20UB4)21pa1sNJ1 /310 a|dwexa mmm//:d1y>

193ns Anunoy Ao diz N

salpadoud Inoy ypm ,sajnyaouaiajaydagound, S,NDAS Bunenjeas Joj ejep aoualajal 1s9] :6€ dlqel

190

Appendix D — Evaluation Results of SDQM’s Data Quality
Monitoring Queries

The table below shows the evaluation results of SDQM’s data quality monitoring
queries. Information about the evaluation procedure and interpretation of the results
can be found in section 9.1 (TP = True Positives, FP = False Positives, FN = False

Negatives).

Table 41: Evaluation results of SDQM's data quality monitoring queries

No. | Algorithm TP | FP | FN | Precision | Recall
M1 | Missing values and properties 9 |0 |0 1 1
M2 | Conditional missing values and properties

(1 condition) 2 |0 |0 |1 1
M3 | Conditional missing values and properties

(2 conditions) 1 10 (0 |1 1
M4 | Conditional missing values and properties

(3 conditions) 2 |0 |0 1 1
M5 | Conditional missing values and properties

(4 conditions) 1 0 |0 1 1
M6 | Conditional missing values and properties

(5 conditions) 1 10 (0 |1 1
M7 | Syntax violations 4 |0 |0 |1 1
M8 | Conditional syntax violations (1 condition) 1 10 (0 |1 1
M9 | Conditional syntax violations (2 conditions) 110 (0 |1 1
M10 | Conditional syntax violations (3 conditions) 1 0 |0 1 1
M11 | Conditional syntax violations (4 conditions) 110 (0 |1 1
M12 | Conditional syntax violations (5 conditions) 1 0 |0 1 1
M13 | Out of range values 4 |0 |0 1 1
M14 | lllegal values (legal value rules) 2 |0 |0 1 1
M15 | lllegal values (illegal value rules) 1 0 |0 1 1
M16 | FuncDepReferenceRule violations

(2 properties) 2 |0 |0 |1 1
M17 | FuncDepReferenceRule violations

(3 properties) 4 |0 |O 1 1
M18 | FuncDepReferenceRule violations

(4 properties) 5 |0 |0 1 1
M19 | FuncDepReferenceRule violations 7 1o |o 1 1

(5 properties)

191

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

No.

Algorithm

i1

-
-l

-
4

Precision

Recall

M20

FuncDepValueRule violations (1 condition)

M21

FuncDepValueRule violations (2 conditions)

M22

M23

FuncDepValueRule violations (4 conditions)

M24

(

(
FuncDepValueRule violations (3 conditions)

(

(

FuncDepValueRule violations (5 conditions)

M25

Expired instances

M26

Exceeded update interval

M27

Uniqueness violations

M28

Duplicate instances (1 equal value)

M29

Duplicate instances (2 equal values

M30

M31

M32

(

()
Duplicate instances (3 equal values)
Duplicate instances (4 equal values)

()

Duplicate instances (5 equal values

N N N N NN

ol O O o o o o o o o o o o

ol O O o o o o o o o o o o

192

Appendix E — Evaluation Results of SDQM'’s Data Quality
Assessment Queries

The table below shows the evaluation results of SDQM’s data quality assessment
queries. Information about the evaluation procedure and interpretation of the results
can be found in section 9.1 (TP = True Positives, FP = False Positives, FN = False

Negatives).

Table 42: Evaluation results of SDQM's data quality assessment queries

No. | Algorithm TP | FP | FN | Precision | Recall
A1 Completeness 9 0 0 1 1
A2 | Conditional completeness (1 condition) 2 0 0 1 1
A3 | Conditional completeness (2 conditions) 1 0 0 1 1
A4 | Conditional completeness (3 conditions) 2 0 0 1 1
A5 | Conditional completeness (4 conditions) 1 0 0 1 1
A6 | Conditional completeness (5 conditions) 1 0 |0 1 1
A7 | Syntactic accuracy (syntax rules) 4 |0 |0 1 1
A8 | Conditional syntactic accuracy (1 condition) 1 0 |0 1 1
A9 | Conditional syntactic accuracy (2 conditions) | 1 0 |0 1 1
A10 | Conditional syntactic accuracy (3 conditions) | 1 0 |0 1 1
A11 | Conditional syntactic accuracy (4 conditions) | 1 0 0 1 1
A12 | Conditional syntactic accuracy (5 conditions) | 1 0 0 1 1
A13 | Semantic accuracy (legal value range rules) 4 0 0 1 1
A14 | Syntactic accuracy (legal value rules) 2 0 0 1 1
A15 | Semantic accuracy (illegal value rules) 1 0 |0 1 1
A16 | Semantic accuracy (FDR 2 properties) 2 |0 (O 1 1
A17 | Semantic accuracy (FDR 3 properties) 4 |0 |0 1 1
A18 | Semantic accuracy (FDR 4 properties) 5 |0 |0 1 1
A19 | Semantic accuracy (FDR 5 properties) 7 0 0 1 1
A20 | Semantic accuracy (FDV 1 condition) 1 0 0 1 1
A21 | Semantic accuracy (FDV 2 conditions) 1 0 0 1 1
A22 | Semantic accuracy (FDV 3 conditions) 1 0 0 1 1
A23 | Semantic accuracy (FDV 4 conditions) 1 0 |0 1 1
A24 | Semantic accuracy (FDV 5 conditions) 1 0 |0 1 1

193

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

No. | Algorithm TP | FP | FN | Precision | Recall
A25 | Timeliness (expiry rule) 1 0 0 1 1
A26 | Timeliness (update rule) 1 0 0 1 1
A27 | Uniqueness in depth 2 0 0 1 1
A28 | Uniqueness in scope (1 equal value) 2 0 0 1 1
A29 | Uniqueness in scope (2 equal values) 2 0 0 1 1
A30 | Uniqueness in scope (3 equal values) 2 |0 (O 1 1
A31 | Uniqueness in scope (4 equal values) 2 |0 |0 1 1
A32 | Uniqueness in scope (5 equal values) 2 0 0 1 1

194

References

Ackoff, R. L. (1989). From Data to Wisdom. Journal of Applied Systems Analysis, 16,
3-9.

Alexiev, V., Breu, M., de Bruin, J., Fensel, D., Lara, R., & Lausen, H. (2005).
Information Integration with Ontologies: Experiences from an Industrial
Showcase. Chichester, Wiley.

Alvestrand, H. (2001). Tags for the Identification of Languages, Retrieved October 22,
2011, from http://www.ietf.org/rfc/rfc3066.txt.

Antoniou, G., & van Harmelen, F. (2008). A Semantic Web Primer (2nd ed.), MIT
Press.

Apel, D., Behme, W., Eberlein, R., & Merighi, C. (2010). Datenqualitét erfolgreich
steuern. Minchen, Carl Hanser Verlag.

Astrova, I. (2009). Rules for Mapping SQL Relational Databases to OWL Ontologies.
In M.-A. Sicilia & M. D. Lytras (Eds.), Metadata and Semantics (pp. 415-424),
Springer US.

Atlassian (2012). Atlassian Confluence Overview, Retrieved January 6, 2012, from
http://www.atlassian.com/software/confluence/overview.

Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., & Aumueller, D. (2009). Triplify -
Light-weight Linked Data Publication from Relational Databases. In:
Proceedings of the 18th International World Wide Web Conference. from
http://www2009.eprints.org/63/.

Ballou, D., & Tayi, G. K. (1989). Methodology for Allocating Resources for Data Quality
Enhancement. Communications of the ACM, 32(3), 320-329.

Ballou, D., Wang, R., Pazer, H., & Tayi, G. K. (1998). Modeling Information
Manufacturing Systems to Determine Information Product Quality. Management
Science, 44(4), 462-484.

Bao, J., Kendall, E. F., McGuinness, D. L., & Patel-Schneider, P. F. (2012). OWL 2
Web Ontology Language Quick Reference Guide. W3C Recommendation,
Retrieved July 20, 2014, from http://www.w3.0rg/TR/2012/REC-owl2-quick-
reference-20121211/.

Barnes, S., & Vidgen, R. (2002). An Integrative Approach to the Assessment of E-
Commerce Quality. Journal of Electronic Commerce Research, 3(3), 114-127.

Batini, C., & Scannapieco, M. (2006). Data Quality: Concepts, Methodologies and
Techniques. Berlin, Springer.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, |., McGuinness, D. L., et al.
(2004). OWL Web Ontology Language Reference. W3C Recommendation,
Retrieved September 24, 2011, from http://www.w3.0rg/TR/2004/REC-owl-ref-
20040210/.

Becker, J., Matzner, M., Mueller, O., & Winkelmann, A. (2008). Towards a Semantic
Data Quality Management - Using Ontologies to Assess Master Data Quality in
Retailing. In: Proceedings of the Americas Conference on Information Systems
(AMCIS 2008).

Beckett, D. (2004). RDF/XML Syntax Specification (Revised). W3C Recommendation,
Retrieved August 14, 2010, from http://www.w3.0org/TR/2004/REC-rdf-syntax-
grammar-20040210/.

Berners-Lee, T. (1998a). Cool URIs don't change, Retrieved September 25, 2011, from
http://www.w3.org/Provider/Style/URI.

Berners-Lee, T. (1998b). Relational Databases on the Semantic Web, Retrieved
January 5, 2012, from http://www.w3.org/Designlssues/RDB-RDF.html.

195

C. Fiirber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

Berners-Lee, T. (2006). Linked Data, Retrieved September 30, 2011, from
http://www.w3.org/Designissues/LinkedData.html.

Berners-Lee, T., Fielding, R., & Masinter, L. (2005). Uniform Resource ldentifiers
(URI): Generic Syntax, Retrieved September 25, 2011, from
http://www.ietf.org/rfc/rfc3986.txt.

Berners-Lee, T., & Fischetti, M. (2000). Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor, Paw Prints.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific
American, 284(5), 34-43.

Bidlack, C. R. (2009). Enabling Data Quality with Lightweight Ontologies. In:
Proceedings of the 21st Innovative Applications of Atrtificial Intelligence
Conference (IAAI 2009). from http://www.aaai.org/ocs/index.php/IAAI/IAAIO9/
paper/view/259/1010.

Biron, P. V., & Malhotra, A. (2004). XML Schema Part 2: Datatypes (Second Edition).
W3C Recommendation, Retrieved August 15, 2010, from http://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/

Bitton, D., & DeWitt, D. J. (1983). Duplicate Record Elimination in Large Data Files.
ACM Transactions on Database Systems, 8(2), 255-265.

Bizer, C. (2007). Quality-driven Information Filtering in the Context of Web-Based
Information Systems. Dissertation, Freie Universitat Berlin, Berlin.

Bizer, C., & Cyganiak, R. (2007). D2RQ - Lessons Learned. W3C Workshop on RDF
Access to Relational Databases, Retrieved January 4, 2011, from
http://www.w3.0rg/2007/03/RdfRDB/papers/d2rqg-positionpaper/.

Bizer, C., & Cyganiak, R. (2009). Quality-driven Information Filtering using the WIQA
Policy Framework. Journal of Web Semantics, 7(1), 1-10.

Bizer, C., Cyganiak, R., Garbers, J., Maresch, O., & Becker, C. (2009). D2RQ Version
0.7 - User Manual and Language Specification, Retrieved January 4, 2011, from
http://www4 .wiwiss.fu-berlin.de/bizer/d2rq/spec/20090810/.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far.
International Journal on Semantic Web and Information Systems, 5(3), 1-22.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., et al. (2009). DBpedia - A
Crystallization Point for the Web of Data. Journal of Web Semantics, 7(3), 154-
165.

Bizer, C., & Schultz, A. (2011). Berlin SPARQL Benchmark (BSBM) Results (February
2011), Retrieved January 4, 2012, from http://www4.wiwiss.fu-berlin.de
/bizer/BerlinSPARQLBenchmark/results/V6/index.html.

Bizer, C., & Seaborne, A. (2004). D2RQ - Treating Non-RDF Databases as Virtual RDF
Graphs. In: Proceedings of the International Semantic Web Conference (ISWC
2004). from http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-D2RQ-
ISWC2004-Poster.pdf.

Bodendorf, F. (2006). Daten- und Wissensmanagement (second ed.). Berlin, Springer.

Boehm, B., & In, H. (1996). Identifying Quality-Requirement Conflicts. IEEE Software
Magazine, 13(2), 25-35.

Bohm, C., Naumann, F., Ziawasch, A., Fenz, D., Gritze, T., et al. (2010). Profiling
Linked Open Data with ProLOD. In: Proceedings of the 2nd International
Workshop on New Trends in Information Integration (NTII 2010).

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008).
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation,
Retrieved 23.08.2014, 2014, from http://www.w3.0rg/TR/2008/REC-xml-
20081126/.

196

Brickley, D., & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, Retrieved September 24, 2011, from
http://www.w3.0rg/TR/2004/REC-rdf-schema-20040210/.

Briiggemann, S. (2006). Ontologiebasierte doménenspezifische Datenbereinigung in
Data Warehouse Systemen. In: Proceedings of the Grundlagen von
Datenbanken.

Briggemann, S. (2008a). Proaktives Management von Konsistenzbedingungen im
Analytischen Performance Management. In: Proceedings of the Data
Warehousing (DW 2008).

Briiggemann, S. (2008b). Rule Mining for Automatic ontology-based Data Cleaning.
In: Proceedings of the 10th Asia-Pacific Web Conference (APWEB 2008).

Briiggemann, S., & Aden, T. (2007). Ontology Based Data Validation and Cleaning:
Restructuring Operations for Ontology Maintenance. In: Proceedings of the 37.
Jahrestagung der Gesellschaft fur Informatik e.V.

Briggemann, S., & Grlining, F. (2008). Using Domain Knowledge Provided by
Ontologies for Improving Data Quality Management. In: Proceedings of the
International Conferences on Knowledge Management and New Media
Technology (I-Know 2008 and I-Media 2008).

Briiggemann, S., & Grining, F. (2009). Using Ontologies Providing Domain Knowledge
for Data Quality Management In T. Pellegrini, S. Auer, K. Tochtermann & S.
Schaffert (Eds.), Networked Knowledge - Networked Media (pp. 187-203).
Berlin / Heidelberg, Springer

Buckland, M. K., & Gey, F. C. (1994). The Relationship between Recall and Precision.
Journal of the American Society for Information Science, 45(1), 12-19.

Cerbah, F. (2008). Learning Highly Structured Semantic Repositories from Relational
Databases: the RDBToOnto Tool. In: Proceedings of the 5th European
Semantic Web Conference (ESWC 2008).

Chen, P. P.-S. (1976). The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1), 9-36.

Chen, Q., Chen, Y.-P. P., & Zhang, C. (2007). Detecting Inconsistency in Biological
Molecular Databases using Ontologies. Data Mining Knowledge Discovery,
15(2), 275-296.

Chiang, F., & Miller, R. J. (2008). Discovering Data Quality Rules. In: Proceedings of
the VLDB Endowment.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6), 377-387.

Codd, E. F. (1980). Data Models in Database Management. In: Proceedings of the
Workshop on Data abstraction, databases and conceptual modeling.

Codd, E. F. (1990). The Relational Model for Database Management: Version 2.
Reading, Massachusetts, Addison-Wesley.

Curé, 0. (2009). Improving the Data Quality of Relational Databases using OBDA and
OWL 2 QL. In: Proceedings of the Workshop OWL: Experiences and Directions
(OWLED 20009).

Curé, O., & Jeansoulin, R. (2007). Data Quality Enhancement of Databases Using
Ontologies and Inductive Reasoning. In: Proceedings of the Workshop On the
Move to Meaningful Internet Systems (OTM 2007). from http://dx.doi.org
/10.1007/978-3-540-76848-7 73.

Cyganiak, R. (2012). Dump-rdf: Dumping the Database to an RDF file, Retrieved
January 5, 2012, from http://d2rg.org/dump-rdf.

Cyganiak, R., & Jentzsch, A. (2011a, 19.09.2011). The Linking Open Data Cloud
Diagram, Retrieved April 12, 2012, from http://lod-cloud.net/.

197

Cyganiak, R., & Jentzsch, A. (2011b, 19.09.2011). State of the LOD Cloud, Retrieved
July 20, 2014, from http://lod-cloud.net/state/.

Dauw, J. D., Hoffmeyer, K., & Katkov, Y. (2014). Semantic MediaWiki Help - Inline
Queries, Retrieved July 27, 2014, from http://semantic-mediawiki.org/wiki/
Help:Inline_queries.

De Bruijn, J., Lara, R., Polleres, A., & Fensel, D. (2005). OWL DL vs. OWL flight:
Conceptual Modeling and Reasoning for the Semantic Web. In: Proceedings of
the 14th International Conference on World Wide Web.

Deming, W. E. (1986). Out of the Crisis (2. print.. ed.). Cambridge, Massachusetts,
Massachusetts Inst. of Technology, Center for Advanced Engineering Study.

Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species.
Ecology, 26(3), 297-302.

Eckerson, W. W. (2002). Data Quality and the Bottom Line: Achieving Business
Success through a Commitment to High Quality Data (Report): The Data
Warehousing Institute.

Eliot, T. S. (1934). The Rock. London, Faber & Faber.

English, L. P. (1999). Improving Data Warehouse and Business Information Quality:
Methods for Reducing Costs and Increasing Profits. New York, Wiley.

Eppler, M. J. (2006). Managing Information Quality: Increasing the Value of Information
in Knowledge-intensive Products and Processes (Second ed.). Berlin, Springer.

Erling, O. (2007). Declaring RDF Views of SQL Data, Retrieved January 5, 2012, from
http://www.w3.0rg/2007/03/RdfRDB/papers/erling.html.

Feigenbaum, L., Wiliams, G. T., Clark, K. G., & Torres, E. (2013, 21.03.2013).
SPARQL 1.1 Protocol. W3C Recommendation, Retrieved July 19, 2014, from
http://www.w3.0rg/TR/2013/REC-sparqgl11-protocol-20130321/.

Fensel, D. (2001). Ontologies: Dynamic Networks of Formally Represented Meaning.
In: Proceedings of the 1st Semantic Web Working Symposium. from http://sw-
portal.deri.at/papers/publications/network.pdf.

Fensel, D. (2002). Intelligent Information Integration in B2B Electronic Commerce.
Boston, Kluwer Academic Publishers.

Fensel, D., & van Harmelen, F. (2007). Unifying Reasoning and Search to Web Scale.
IEEE Internet Computing, 11(2), 95-96.

Fink, A., Schneidereit, G., & VoR, S. (2005). Grundlagen der Wirtschaftsinformatik.
Heidelberg, Physica-Verlag.

Fisher, C. W., & Kingma, B. R. (2001). Criticality of Data Quality as Exemplified in two
Disasters. Information and Management, 39(2), 109-116.

Floyd, R. W. (1967). Assigning Meanings to Programs. In: Proceedings of the
Symposium on Applied Mathematics.

Frakes, W. B., & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and
Algorithms, Prentice-Hall.

Friedman, T., & Bitterer, A. (2011). Magic Quadrant for Data Quality Tools, Retrieved
July 29, 2011, from http://www.gartner.com/technology/reprints.do?id=1-
16TGI70&ct=1107298&s.

Firber, C., & Hepp, M. (2010a). Using Semantic Web Resources for Data Quality
Management. In: Proceedings of the 17th International Conference on
Knowledge Engineering and Knowledge Management (EKAW 2010).

Farber, C., & Hepp, M. (2010b). Using SPARQL and SPIN for Data Quality
Management on the Semantic Web. In: Proceedings of the 13th International
Conference on Business Information Systems 2010 (BIS 2010).

Flrber, C., & Hepp, M. (2011a). SWIQA — A Semantic Web Information Quality
Assessment Framework. In: Proceedings of the European Conference on
Information Systems (ECIS 2011).

198

Firber, C., & Hepp, M. (2011b). Towards a Vocabulary for Data Quality Management
in Semantic Web Architectures. In: Proceedings of the 1st International
Workshop on Linked Web Data Management (LWDM 2011).

Gasevic, D., Djuric, D., & Devedzic, V. (2006). Model Driven Architecture and Ontology
Development. Berlin, Springer-Verlag.

Ge, M., & Helfert, M. (2007). A Review of Information Quality Research - Develop a
Research Agenda. In: Proceedings of the 12th International Conference on
Information Quality (ICIQ 2007).

Ge, M., & Helfert, M. (2008). Data and Information Quality Assessment in Information
Manufacturing Systems. In: Proceedings of the 11th International Conference
on Business Information Systems (BIS 2008).

Ge, M., & Helfert, M. (2013). Cost and Value Management for Data Quality. In S. Sadiq
(Ed.), Handbook of Data Quality (pp. 75-92). Berlin / Heidelberg, Springer.

Geisler, S., Weber, S., & Quix, C. (2011). Ontology-Based Data Quality Framework for
Data Stream Applications. In: Proceedings of the 16th International Conference
on Information Quality (ICIQ 2011).

Gertz, M., Ozsu, M. T., Saake, G., & Sattler, K.-U. (2004). Report on the Dagstuhl
Seminar “Data Quality on the Web”. SIGMOD Record, 33(1), 127.

Goeken, M. (2006). Entwicklung von Data-Warehouse-Systemen
Anforderungsmanagement, Modellierung, Implementierung. Wiesbaden,
Deutscher Universitatsverlag.

Gomez-Pérez, A., Fernandez-Lépez, M., & Corcho, O. (2004). Ontological
Engineering. London, New York, Springer.

Google (2011). Google Refine, Retrieved January 5, 2012, from
http://code.google.com/p/google-refine/.

Grande, M. (2011). 100 Minuten fiir Anforderungsmanagement: Kompaktes Wissen
nicht nur fiir Projektleiter und Entwickler. Wiesbaden, Vieweg / Teubner.
Grimm, S., Hitzler, P., & Abecker, A. (2007). Knowledge Representation and
Ontologies. In R. Studer, S. Grimm & A. Abecker (Eds.), Semantic Web
Services - Concepts, Technologies, and Applications (pp. 51-105). Berlin /

Heidelberg, Springer.

Grosser, T., & Bange, C. (2009). Datenqualitdt in SAP-Systemen: Business Application
Research Center.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2), 199-220.

Griining, F. (2009). Datenqualitdtsmanagement in der Energiewirtschaft. Dissertation,
Oldenburger Verlag fur Wirtschaft, Informatik und Recht, Oldenburg.

Hammer, M., & Champy, J. (2002). Reengineering the Corporation: A Manifesto for
Business Revolution. New York, HarperBusiness.

Hansen, H. R., & Neumann, G. (2004). Wirtschaftsinformatik 1 - Grundlagen und
Anwendungen (9th ed.). Stuttgart, Lucius & Lucius.

Harris, S., & Seaborne, A. (2010, 26.01.2010). SPARQL Query Language 1.1. W3C
Working Draft, Retrieved April 10, 2012, from http://www.w3.0rg/TR/2010/WD-
sparql11-query-20100126/.

Hartig, O. (2009). Querying Trust in RDF Data with tSPARQL. In: Proceedings of the
6th European Semantic Web Conference (ESWC 2009).

Hartig, O., & Zhao, J. (2009). Using Web Data Provenance for Quality Assessment. In:
Proceedings of the 1st International Workshop on the role of Semantic Web in
Provenance Management.

Heath, T., & Bizer, C. (2011). Linked Data - Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology 1st Edition.
Retrieved September 25, 2011, from http://linkeddatabook.com/editions/1.0/.

199

Hebeler, J., Fisher, M., Blace, R., & Perez-Lopez, A. (2009). Semantic Web
Programming, Wiley Publishing.

Hepp, M. (2008a). GoodRelations: An Ontology for Describing Products and Services
Offers on the Web. In: Proceedings of the 16th international conference on
Knowledge Engineering: Practice and Patterns.

Hepp, M. (2008b). Ontologies: State of the Art, Business Potential, and Grand
Challenges. In M. Hepp, P. De Leenheer, A. de Moor & Y. Sure (Eds.), Ontology
Management: Semantic Web, Semantic Web Services, and Business
Applications (pp. 3-22).

Herschel, M., Felix, N., Sascha, S., & Maik, T. (2011). Scalable lterative Graph
Duplicate Detection. IEEE Transactions on Knowledge and Data Engineering,
99.

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. MANAGEMENT INFORMATION SYSTEMS QUARTERLY.

Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., et al. (2008). Ontology
Reasoning with Large Data Repositories. In M. Hepp, P. De Leenheer, A. de
Moor & Y. Sure (Eds.), Ontology Management: Semantic Web, Semantic Web
Services, and Business Applications (pp. 89-128), Springer.

Hipp, J., Miller, M., Hohendorff, J., & Naumann, F. (2007). Rule-Based Measurement
Of Data Quality in Nominal Data. In: Proceedings of the 12th International
Conference on Information Quality (ICIQ 2007).

Hitzler, P. (2008). Semantic Web: Grundlagen (First ed.). Berlin, Springer.

Hitzler, P., Krétzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2009). OWL
2 Web Ontology Language Primer. W3C Recommendation, Retrieved
September 24, 2011, from http://www.w3.0rg/TR/2009/REC-owl2-primer-
20091027/.

Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2012). OWL
2 Web Ontology Language Primer (Second Edition). W3C Recommendation,
Retrieved July 19, 2014, from http://www.w3.0rg/TR/2012/REC-owl2-primer-
20121211/.

Hogan, A., Harth, A., Passant, A., Decker, S., & Polleres, A. (2010). Weaving the
Pedantic Web. In: Proceedings of the Workshop on Linked Data on the Web
(LDOW 2010).

Hoyningen-Huene, P. (1998). Formale Logik - Eine philosophische Einfiihrung.
Stuttgart, Reclam.

Huang, K.-T., Lee, Y. W., & Wang, R. Y. (1999). Quality Information and Knowledge.
Upper Saddle River, N.J., Prentice Hall PTR.

Hiner, K., Brauer, B. Otto, B., & Osterle, H. (2011). Fachliches
Metadatenmanagement mit einem semantischen Wiki. HMD — Praxis der
Wirtschaftsinformatik, 277(48), 98-108.

Hiner, K., Otto, B., & Osterle, H. (2011). Collaborative Management of Business
Metadata. International Journal of Information Management, 31(4), 366-373.

ISO (2005). ISO 9000:2005, Quality management systems - Fundamentals and
vocabulary: International Organization for Standardization.

ISO (2009). ISO 8000-102:2009, Data quality - Part 102: Master data: Exchange of
characteristic data: Vocabulary: International Organization for Standardization.

ISO/IEC (1993). ISO/IEC 2382-1:1993, Information technology - Vocabulary - Part 1:
Fundamental terms: International Organization for Standardization.

Juran, J. M. (1988). Juran's quality control handbook (Fourth ed.). New York, McGraw-
Hill.

200

Kahn, B. K., Strong, D. M., & Wang, R. Y. (2002). Information Quality Benchmarks:
Product and Service Performance. Communications of the ACM, 45(4), 184-
192.

Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Attractive Quality and Must-Be
Quality. Journal of the Japanese Society for Quality Control, 14(2), 147-156.

Kashyap, V., & Sheth, A. P. (1996). Semantic and Schematic Similarities Between
Database Objects: A Context-Based Approach. Very Large Data Base
Journal(5), 276--304.

Kedad, Z., & Métais, E. (2002). Ontology-Based Data Cleaning. In: Proceedings of the
6th International Conference on Applications of Natural Language to Information
Systems-Revised Papers.

Klein, D. E., & Murphy, G. L. (2002). Paper has been my Ruin: Conceptual Relations
of Polysemous Senses. Journal of Memory and Language, 47(4), 548-570.

Klyne, G., & Carroll, J. J. (2004). Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation, Retrieved September 24, 2011,
from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

Knublauch, H. (2011). SPIN - SPARQL Syntax. W3C Member Submission, Retrieved
August 19, 2014, from http://www.w3.org/Submission/2011/SUBM-spin-spargl-
20110222/.

Kobilarov, G., Bizer, C., Auer, S., & Lehmann, J. (2009). DBpedia-A Linked Data Hub
and Data Source for Web and Enterprise Applications. In: Proceedings of the
18th International World Wide Web Conference.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., et al. (2009). Media
meets Semantic Web — How the BBC uses DBpedia and Linked Data to make
Connections. In: Proceedings of the 6th European Semantic Web Conference
(ESWC 20009).

Kokar, M. M., Matheus, C. J., Baclawski, K., Letkowski, J. A., Hinman, M., & Salerno,
J. (2004). Use Cases for Ontologies in Information Fusion. In: Proceedings of
the 7th International Conference on Information Fusion.

Koren, Y. (2012). Working with MediaWiki, WikiWorks Press.

Koren, Y. (2014). Semantic Forms and Templates, Retrieved July 27, 2014, from
http://www.mediawiki.org/wiki/Extension:Semantic_Forms/Semantic Forms_a
nd_templates.

Krotzsch, M., Vrandeci¢, D., & Volkel, M. (2006). Semantic MediaWiki. In: Proceedings
of the International Semantic Web Conference (ISWC 2006). from
http://dx.doi.org/10.1007/11926078 68.

Lee, Y. W. (2006). Journey to Data Quality. Cambridge, Mass., MIT Press.

Lei, Y., & Nikolov, A. (2007). Detecting Quality Problems in Semantic Metadata without
the Presence of a Gold Standard. In: Proceedings of the 5th International
Workshop on Evaluation of Ontologies and Ontology-based Tools (EON 2007).

Lei, Y., Uren, V., & Motta, E. (2007). A Framework for Evaluating Semantic Metadata.
In: Proceedings of the 4th International Conference on Knowledge Capture.

Lenzerini, M. (2002). Data Integration: a Theoretical Perspective. In: Proceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems.

Leser, U., & Naumann, F. (2007). Informationsintegration: Architekturen und Methoden
zur Integration verteilter und heterogener Datenquellen (1st ed.). Heidelberg,
dpunkt-Verl.

Levy, A. Y. (2000). Logic-based Techniques in Data Integration Logic-based Artificial
Intelligence (pp. 575-595), Springer.

Loshin, D. (2001). Enterprise Knowledge Management: The Data Quality Approach.
San Diego, London, Morgan Kaufmann Academic Press.

201

Loshin, D. (2002). Rule-based Data Quality. In: Proceedings of the 11th International
Conference on Information and Knowledge Management.

Loshin, D. (2009). Master Data Management. Amsterdam, Elsevier/Morgan Kaufmann.

Maali, F., & Cyganiak, R. (2011). RDF Extension for Google Refine, Retrieved January
5, 2012, from http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/.

Madnick, S., & Zhu, H. (2006). Improving Data Quality through Effective Use of Data
Semantics. Data & Knowledge Engineering, 59(2), 460-475.

Madnick, S. E., Wang, R. Y., Lee, Y. W., & Zhu, H. (2009). Overview and Framework
for Data and Information Quality Research. Journal of Data and Information
Quality, 1(1), 1-22.

Manola, F., & Miller, E. (2004). RDF Primer. W3C Recommendation, Retrieved
September 24, 2011, from http://www.w3.0rg/TR/2004/REC-rdf-primer-
20040210/.

McComb, D. (2004). Semantics in Business Systems: The Savvy Manager's Guide.
San Francisco, Elsevier Science.

McGuinness, D. L., & van Harmelen, F. (2004). OWL Web Ontology Language
Overview. W3C Recommendation, Retrieved September 24, 2011, from
http://www.w3.0rg/TR/2004/RE C-owl-features-20040210/.

Mendes, P. N., Muhleisen, H., & Bizer, C. (2012). Sieve: Linked Data Quality
Assessment and Fusion. In: Proceedings of the 1st International Workshop on
Linked Web Data Management (LWDM 2012).

Microsoft (2014). Data Warehousing and Online Analytical Processing, Retrieved
August 31, 2014, from http://technet.microsoft.com/en-us/library/
2a933152%28v=sql.80%29.aspx.

Milano, D., Scannapieco, M., & Catarci, T. (2005). Using Ontologies for XML Data
Cleaning. In: Proceedings of the On the Move to Meaningful Internet Systems
(OTM 2005).

Monge, A., & Elkan, C. (1997). An Efficient Domain-Independent Algorithm for
Detecting Approximately Duplicate Database Records. In: Proceedings of the
Workshop on Research Issues on Data Mining and Knowledge Discovery.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2009). OWL 2 Web
Ontology Language Profiles. W3C Recommendation, Retrieved September 24,
2011, from http://www.w3.0rg/TR/2009/REC-owl2-profiles-20091027/.

Muhleisen, H., & Bizer, C. (2012). Web Data Commons - Extracting Structured Data
from Two Large Web Corpora. In: Proceedings of the 4th Linked Data on the
Web Workshop (LDOW 2012).

Niemi, T., Toivonen, S., Niinimaki, M., & Nummenmaa, J. (2007). Ontologies with
Semantic Web/Grid in Data Integration for OLAP. International Journal on
Semantic Web and Information Systems, 3(4), 25-49.

Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology (Technical Report): Stanford Knowledge Systems
Laboratory.

Nuseibeh, B. (1996). Conflicting Requirements: When the Customer is Not Always
Right. Requirements Engineering, 1(1), 70-71.

O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., et al. (2005). Supporting
Rule System Interoperability on the Semantic Web with SWRL. In: Proceedings
of the 4th International Semantic Web Conference (ISWC 2005).

Oliveira, P., Rodrigues, F., & Henriques, P. R. (2005). A Formal Definition of Data
Quality Problems. In: Proceedings of the International Conference on
Information Quality (ICIQ 2005)

202

Oliveira, P., Rodrigues, F., Henriques, P. R., & Galhardas, H. (2005). A Taxonomy of
Data Quality Problems. In: Proceedings of the 2nd International Workshop on
Data and Information Quality.

Olson, J. (2003). Data Quality: The Accuracy Dimension. San Francisco, USA, Morgan
Kaufmann.

Oracle (2013). History of SQL. Oracle Database SQL Language Reference, Retrieved
July 19, 2014, from http://docs.oracle.com/cd/B28359 01/server.111/b28286/
intro001.htm#i1712.

Otto, I. B., Kokemiiller, D.-P. J., & Gizanis, D. (2011). Stammdatenmanagement:
Datenqualitat flir Geschaftsprozesse. HMD Praxis der Wirtschaftsinformatik,
48(3), 5-16.

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2008). A Design
Science Research Methodology for Information Systems Research. Journal of
Management Information Systems, 24(3), 45-77.

Perez-Rey, D., Anguita, A., & Crespo, J. (2006). OntoDataClean: Ontology-Based
Integration and Preprocessing of Distributed Data In: Proceedings of the
Biological and Medical Data Analysis.

Pernici, B., & Scannapieco, M. (2002). Data Quality in Web Information Systems. In:
Proceedings of the 21st International Conference on Conceptual Modeling.

Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data Quality Assessment.
Communications of the ACM, 45(4), 211-218.

Pohl, K., Bockle, G., & van der Linden, F. (2005). Software Product Line Engineering:
Foundations, Principles, and Techniques. Berlin, Springer.

Porter, M. E., & Millar, V. E. (1985). How Information gives you Competitive Advantage.
Harvard Business Review, 149-160.

Preece, A., Jin, B., Pignotti, E., Missier, P., Embury, S., et al. (2006). Managing
Information Quality in E-science using Semantic Web Technology. In:
Proceedings of the 3rd European Conference on the Semantic Web (ESWC
2006).

Raghavan, V., Bollmann, P., & Jung, G. S. (1989). A Critical Investigation of Recall
and Precision as Measures of Retrieval System Performance. ACM
Transactions on Information Systems, 7(3), 205-229.

Rahm, E., & Do, H.-H. (2000). Data Cleaning: Problems and Current Approaches.
IEEE Data Engineering Bulletin, 23(4), 3-13.

Ram, S., & Park, J. (2004). Semantic Conflict Resolution Ontology (SCROL): An
Ontology for Detecting and Resolving Data and Schema-Level Semantic
Conflicts. IEEE Transactions on Knowledge and Data Engineering, 16(2), 189-
202.

Redman, T. C. (1996). Data Quality for the Information Age. Boston, Artech House.

Redman, T. C. (1998). The Impact of Poor Data Quality on the Typical Enterprise.
Communications of the ACM, 41(2), 79-82.

Redman, T. C. (2001). Data Quality: The Field Guide. Boston, Digital Press.

Reuters, T. (2013). How does Calais work?, Retrieved July 20, 2014, from
http://www.opencalais.com/about.

Riemer, N. (2010). Introducing Semantics. Cambridge, New York, Cambridge
University Press.

Rodriguez, J. B., & Gomez-Pérez, A. (2006). Upgrading Relational Legacy Data to the
Semantic Web. In: Proceedings of the 15th International Conference on World
Wide Web.

Rowley, J. (2007). The Wisdom Hierarchy: Representations of the DIKW Hierarchy.
Journal of Information Science, 33(2), 163-180.

203

Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, T., et al. (2009).
A Survey of Current Approaches for Mapping of Relational Databases to RDF
Retrieved January 4, 2012, from http://www.w3.0rg/2005/Incubator/rdb2rdf/
RDB2RDF_SurveyReport_01082009.pdf.

Salvadores, M. (2012). E-Mail Communication with Developer of 4store Regarding
SPARQL 1.1 Compliance of 4Store.

Sauermann, L., & Cyganiak, R. (2008). Cool URIs for the Semantic Web, Retrieved
September 25, 2011, from http://www.w3.org/TR/cooluris/.

Simsion, G. C., & Witt, G. C. (2005). Data Modeling Essentials (3rd ed.). Amsterdam ;
Boston, Morgan Kaufmann Publishers.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical
OWL-DL reasoner, Retrieved April 11, 2012, from http://www.mindswap.org/
papers/PelletJWS.pdf.

Skog, I., & Handel, P. (2009). In-Car Positioning and Navigation Technologies - A
Survey. IEEE Transactions on Intelligent Transportation Systems, 10(1), 4-21.

Skoutas, D., & Simitsis, A. (2007). Ontology-Based Conceptual Design of ETL
Processes for Both Structured and Semi-Structured Data. International Journal
on Semantic Web and Information Systems, 3(4), 1-24.

Smith, B., & Welty, C. (2001). Ontology: Towards a New Synthesis. In: Proceedings of
the Formal Ontology in Information Systems.

Souza, D., Belian, R., Salgado, A. C., & Tedesco, P. A. (2008). Towards a Context
Ontology to Enhance Data Integration Processes. In: Proceedings of the 4th
Workshop on Ontologies-based Techniques for DataBases in Information
Systems and Knowledge Systems (ODBIS).

Sowa, J. F. (2014). Semantic Networks. Encyclopedia of Atrtificial Intelligence,
Retrieved April 16, 2014, from http://www.jfsowa.com/pubs/semnet.htm.
Talend (2012). Talend Open Studio for Data Quality User Guide, Retrieved June 8,

2012, from http://www.talend.com/resources/documentation.php.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, Methods, and
Applications. The Knowledge Engineering Review, 11(2), 93-155.

Vandenbussche, P.-Y. (2012). Linked Open Vocabularies (LOV) - Quality, Provenance
and Trust Space, Retrieved January 5, 2012, from http://lov.okfn.org/dataset/
lov/details/vocabularySpace_Quality.html.

Voss, J. (2005). Measuring Wikipedia. In: Proceedings of the 10th International
Conference of the International Society for Scientometrics and Informetrics.

W3C-OWL-Working-Group (2012). OWL 2 Web Ontology Language Document
Overview (Second Edition). W3C Recommendation, Retrieved July 19, 2014,
from http://www.w3.0org/TR/2012/REC-owl2-overview-20121211/.

W3C (2013). Semantic Web Project Website, Retrieved July 19, 2014, from
http://www.w3.org/standards/semanticweb/.

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., et al. (2001).
Ontology-Based Integration of Information - A Survey of Existing Approaches.
In: Proceedings of the Workshop on Ontologies and Information Sharing. from
http://www.iwayan.powernet.or.id/Research/Ontology/Papers Research/SUR
VEY .pdf.

Wand, Y., & Wang, R. Y. (1996). Anchoring Data Quality Dimensions in Ontological
Foundations. Communications of the ACM, 39(11), 86-95.

Wang, F., Mas, S., Reinhardt, W., & Kandawasvika, A. (2005). Ontology-Based Quality
Assurance for Mobile Data Acquisition. In: Proceedings of the 19th International
Conference on Informatics for Environmental Protection: Networking
Environmental Information.

204

Wang, R. Y. (1998). A Product Perspective on Total Data Quality Management.
Communications of the ACM, 41(2), 58-65.

Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality means to
Data Consumers. Journal of Management Information Systems, 12(4), 5-33.

Wang, X., Hamilton, H. J., & Bither, Y. (2005). An Ontology-Based Approach to Data
Cleaning (Technical Report No. 0773105336 9780773105331). Regina:
Department of Computer Science, University of Regina.

Wang, X., Sun, X., Cao, F., Ma, L., Kanellos, N., et al. (2009). SMDM: Enhancing
Enterprise-Wide Master Data Management Using Semantic Web Technologies.
VLDB Endowment, 2(2), 1594-1597.

Wang, Y. R, Ziad, M., & Lee, Y. W. (2001). Data Quality. Boston, Kluwer Academic
Publishers.

West, M. (2003). Developing High Quality Data Models. 1-56. Retrieved from
https://d2024367-a-62cb3a1a-s-sites.googlegroups.com/site/drmatthewwest/
publications/princ03.pdf

West, M. (2011). Developing High Quality Data Models, Elsevier.

Wijnhoven, F., Boelens, R., Middel, R., & Louissen, K. (2007). Total Data Quality
Management: A Study of Bridging Rigor and Relevance. In: Proceedings of the
15th European Conference on Information Systems (ECIS 2007).

Wu, Z., Chen, H., Wang, H., Wang, Y., Mao, Y., et al. (2006). Dartgrid: A Semantic
Web Toolkit for Integrating Heterogeneous Relational Databases. In:
Proceedings of the International Semantic Web Conference (ISWC 2006).

205

	Foreword
	Preface
	Table of Content
	List of Figures
	List of Tables
	List of Abbreviations
	PART I – Introduction, Economic Relevance, and Research
Design

	1 Introduction
	1.1 Initial Problem Statement
	1.2 Economic Relevance
	1.3 Organization of this Thesis
	1.4 Published Work
	1.4.1 Book Chapters
	1.4.2 Papers in Conference Proceedings
	1.4.3 Other Publications

	2 Research Design
	2.1 Semantic Technologies and Ontologies
	2.2 Research Goal
	2.3 Research Questions
	2.4 Research Methodology
	2.4.1 Design Science Research Methodology
	2.4.2 Ontology Development Methodology

	PART II – Foundations: Data Quality, Semantic
Technologies, and the Semantic Web

	3 Data Quality
	3.1 Data Quality Dimensions
	3.2 Quality Influencing Artifacts
	3.3 Data Quality Problem Types
	3.3.1 Quality Problems of Attribute Values
	3.3.2 Multi-Attribute Quality Problems
	3.3.3 Problems of Object Instances
	3.3.4 Quality Problems of Data Models
	3.3.5 Common Linguistic Problems

	3.4 Data Quality in the Data Lifecycle
	3.4.1 Data Acquisition Phase
	3.4.2 Data Usage Phase
	3.4.3 Data Retirement Phase
	3.4.4 Data Quality Management throughout the Data Lifecycle

	3.5 Data Quality Management Activities
	3.5.1 Total Information Quality Management (TIQM)
	3.5.2 Total Data Quality Management (TDQM)
	3.5.3 Comparison of Methodologies

	3.6 Role of Data Requirements in DQM
	3.6.1 Generic Data Requirement Types
	3.6.2 Challenges Related to Requirements Satisfaction

	4 Semantic Technologies
	4.1 Characteristics of an Ontology
	4.2 Knowledge Representation in the Semantic Web
	4.2.1 Resources and Uniform Resource Identifiers (URIs)
	4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links
	4.2.3 Constructing an Ontology with RDF, RDFS, and OWL
	4.2.4 Language Profiles of OWL and OWL 2

	4.3 SPARQL Query Language for RDF
	4.4 Reasoning and Inferencing
	4.5 Ontologies and Relational Databases

	5 Data Quality in the Semantic Web
	5.1 Data Sources of the Semantic Web
	5.2 Semantic Web-specific Quality Problems
	5.2.1 Document Content Problems
	5.2.2 Data Format Problems
	5.2.3 Problems of Data Definitions and Semantics
	5.2.4 Problems of Data Classification
	5.2.5 Problems of Hyperlinks

	5.3 Distinct Characteristics of Data Quality in the Semantic Web

	PART III – Development and Evaluation of the Semantic
Data Quality Management Framework

	6 Specification of Initial Requirements
	6.1 Motivating Scenario
	6.2 Initial Requirements for SDQM
	6.2.1 Task Requirements
	6.2.2 Functional Requirements
	6.2.3 Conditional Requirements
	6.2.4 Research Requirements

	6.3 Summary of SDQM’s Requirements

	7 Architecture of the Semantic Data Quality Management Framework (SDQM)
	7.1 Data Acquisition Layer
	7.1.1 Reusable Artifacts for the Data Acquisition Layer
	7.1.2 Data Acquisition for SDQM

	7.2 Data Storage Layer
	7.2.1 Reusable Artifacts for Data Storage in SDQM
	7.2.2 The Data Storage Layer of SDQM

	7.3 Data Quality Management Vocabulary
	7.3.1 Reuse of Existing Ontologies
	7.3.2 Technical Design of the DQM Vocabulary

	7.4 Data Requirements Editor
	7.4.1 Reusable Artifacts for SDQM’s Data Requirements Editor
	7.4.2 Data Requirements Wiki

	7.5 Reporting Layer
	7.5.1 Reusable Artifacts for SDQM’s Reporting Layer
	7.5.2 Semantic Data Quality Manager

	8 Application Procedure of SDQM
	8.1 Prerequisites
	8.2 The Data Quality Management Process with SDQM

	9 Evaluation of the Semantic Data Quality Management Framework (SDQM)
	9.1 Evaluation of Algorithms
	9.1.1 Algorithm Evaluation Methodology
	9.1.2 Application Procedure
	9.1.3 Results

	9.2 Use Case 1: Evaluation of Material Master Data
	9.2.1 Scenario
	9.2.2 Setup and Application Procedure of SDQM
	9.2.3 Results and Findings

	9.3 Use Case 2: Evaluation of Data from DBpedia
	9.3.1 Scenario
	9.3.2 Specialties of Semantic Web Scenarios
	9.3.3 Setup and Application Procedure
	9.3.4 Results and Findings

	9.4 Use Case 3: Consistency Checks Among Data Requirements
	9.4.1 Scenario
	9.4.2 Application Procedure
	9.4.3 Summary

	9.5 Comparison with Talend OS for Data Quality
	9.5.1 Representation and Management of Data Requirements
	9.5.2 Data Quality Monitoring and Assessment Reporting
	9.5.3 Summary

	PART IV – Related Work

	10 Related Work
	10.1 High-Level Classification Schema
	10.2 Categorization Schema
	10.2.1 Supported Data Lifecycle Step
	10.2.2 Supported Data Representation
	10.2.3 Supported Data Quality Task

	10.3 Conventional Rule-Based Approaches
	10.4 Ontology-based Approaches
	10.4.1 Information System-oriented Approaches
	10.4.2 Web-oriented Approaches

	10.5 Summary

	PART V Conclusion

	11 Synopsis and Future Work
	11.1 Research Summary
	11.2 Contributions
	11.3 Conclusion and Future Work

	Appendix A – Comparison of TIQM and TDQM

	Appendix B –Rules for the Evaluation of SDQM
	Appendix C – Test Data for SDQM’s Evaluation

	Appendix D – Evaluation Results of SDQM’s Data Quality
Monitoring Queries

	Appendix E – Evaluation Results of SDQM’s Data Quality
Assessment Queries

	References

