

Data Quality Management with Semantic
Technologies

Christian Fürber

Data Quality
Management with
Semantic Technologies

Foreword by Prof. Dr. Martin Hepp

Christian Fürber
München, Germany

Dissertation Universität der Bundeswehr München, Neubiberg, 2015

OnlinePlus material to this book can be available on
http://www.springer-gabler.de/978-3-658-12224-9

ISBN 978-3-658-12224-9 ISBN 978-3-658-12225-6 (eBook)
DOI 10.1007/978-3-658-12225-6

Library of Congress Control Number: 2015959354

Springer Gabler
© Springer Fachmedien Wiesbaden 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, speci cally the rights of translation, reprinting, reuse of illus-
trations, recitation, broadcasting, reproduction on micro lms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a speci c statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Gabler is a brand of Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden is part of Springer Science+Business Media
(www.springer.com)

Für Tanja

VII

Foreword

In contrast to physical machinery, computer-based information systems operate on the

basis of models of reality. While traditional forms of automated systems directly handle

the actual objects of a task, computers must rely on representations of the input objects

of processing, and they return representations of the results when they are done. For

the information to be processed, these representations are in the form of digital data,

and for the details of the processing, they are computer programs, i.e. executable

instructions.

By being models, both computer data and computer programs are purpose-bound

abstractions of reality, and their appropriateness can only be judged in the light of the

information processing task at hand.

Now, the overall reliability of an information system critically depends on how well the

data represents the relevant subset of reality, and on how well the computer programs

represent appropriate processing steps. This is valid for all computer-based

information processing, from the most simplistic digital weather station up to the

complex transaction support systems in entire value chains. This sounds like a triviality,

but even if it was, it is an important one, because it helps understand the origin of many

practical problems of computer information systems.

Reality shows that our ability to use computers for the automation of business

processes is severely limited by our ability (1) to represent information and processing

instructions properly in the form of data and computer programs, and (2) to keep these

artifacts in alignment with the ever-changing reality. Our customers move from one

address to another, while our customer database will typically contain at least some

outdated addresses. Product designs change, but almost every Web shop will, every

now and then, show outdated product images and product descriptions, and the picture

of me on my university Web page does obviously not match with how I really look while

writing this foreword. Data and programs are human-made artifacts, and they do not

automatically align with changes in the environment they represent.

This problem at the interface between reality and the representations of reality in the

components of computer information systems is one of the root causes whenever

computers do not behave as we expect them to do: When they make wrong decisions,

provide wrong information, or cancel business processes unexpectedly. If a customer

VIII

database contains outdated address data, a shipment to that address will fail, if the

weight of a product in data differs from the actual weight, incorrect shipping charges

will be computed; and if a part number for consumables or spare parts is missing in a

database of inventory, the automatic procurement of those items will fail. Relevant

examples can be found in every major organization.

Since the 1990s, the systematic analysis of the quality of computer data has become

an established field of research, known as “Data Quality Management” (DQM), and its

broader notion “Information Quality Management" (IQM). One of the early works on

this topic is the thesis by Mark David Hansen, entitled "Zero Defect Data"1, published

in 1991. In the following years, numerous theoretical concepts, technical solutions and

practical implementations have emerged. In business practice, there is a wealth of

products and services available that promise to systematically improve the quality of

data or information in enterprises and value chains.

Sadly, though, data quality in many organizations is still insufficient. One reason for

this is that the interface between reality and representations of reality in computer

systems is itself not accessible for computer-based solutions. In essence, a computer

program cannot determine whether its components properly represent reality, because

it lacks a sufficient sensory apparatus. For instance, a Web application that supports

declaring your income tax cannot validate whether its processing matches the latest

state of the tax laws. Admittedly, computers can increasingly validate the consistency

within those representations, e.g. spot outliers in data based on statistical approaches

or compute logical contradictions within formally specified business models. Still, the

interface between reality and the models of reality itself remains inaccessible to them.

Typical approaches in data quality management therefore focus either (1) on helping

human actors to better collect and maintain data and process specifications, or (2) on

spotting and correcting problems within the model world of a computer, as in the

validation of data based on syntactic validation rules.

In computer science, the fundamental problem of the interface between reality on one

hand and models of reality inside computers on the other has been studied for about

20 years under the term "ontologies". Ontologies are specifications of models of reality

that aim at being consensual among many people and applicable to a broad range of

1 Hansen, M. (1991): Zero Defect Data. MSc thesis, Sloan School of Management, Cambridge, Mass.
(USA): MIT, http://hdl.handle.net/1721.1/13812.

IX

scenarios. They typically include at least some formal axioms and the underlying

modeling decisions are influenced by philosophical principles, e.g. regarding the

identity and unity of objects. The formal axioms enable a computer to spot

contradictions in the models, draw additional conclusions, and to automatically

translate between multiple data models of the same subject area, at least to a certain

degree. The philosophical grounding can increase the general validity of the model.

Ontologies are a promising attempt to improve the consistency and accuracy of models

of reality. While they do not take away the fundamental barrier between reality and the

model world of computers, because they are models themselves, they add a formally

specified and philosophically grounded intermediate level, which can reduce the

problem.

In 2001, Berners-Lee, Lassila and Hendler applied the idea of ontologies in computer

science to the problem of information interchange on the World Wide Web and

described the vision of a "Semantic Web", in which computers are increasingly able to

process information at the level of meaning2.

In this thesis, Christian Fürber analyzes the use of the ideas and technological

components of the Semantic Web, in particular ontologies, for better data quality

management. His approach is characterized by the following two main innovations.

(1) While traditional data quality management formulates requirements and metrics

at the very low level of system-specific database schemas, he lifts these to a

generic, business-level understanding of a domain of interest.

(2) He proposes the use of a Semantic-Web-powered Wiki for organizing the

elicitation and management of validation rules and metrics, thus increasing the

inclusion of domain experts into these processes.

In essence, this approach can increase the quality and reusability of data quality

knowledge. It will be easier for domain experts to be involved, it will be less effort to

validate the consistency of data quality rules and metrics, and the rules and metrics

can be applied to a broad set of data sources, because they abstract from the

implementation details of a particular database schema.

2 Berners-Lee T., Hendler J., Lassila O. (2001): The Semantic Web. Scientific American. 284(5): 28-37.

X

The topic of this thesis is practically relevant to almost any organization, and the

proposed solution is a very promising application of the Semantic Web technology

stack to real-world problems. I sincerely recommend this work and am confident it can

help improve both our understanding and the state of implementations of data quality

management as a whole.

Dr. Martin Hepp

Professor of General Management and E-Business

Universität der Bundeswehr München

XI

Preface

As this thesis is being published, we are in the middle of the digital age in which people

utilize their mobile devices to permanently share and consume data, while society still

struggles with data protection issues and credibility of information. Moreover, we are

entering an age, in which the massive amount of data is being used to increase the

degree of automation and to precisely predict future events. Data quality issues will

more and more hinder these developments, unless suitable architectures will be

provided that help to reduce them.

This dissertation, therefore, describes an innovative way on how to manage data

quality by utilizing knowledge representation and processing technologies which have

been brought up by the Semantic Web initiative of the World Wide Web Consortium

(W3C) and the Semantic Web research community. Based on a literature analysis of

typical data quality problems and typical activities of data quality management

processes, I developed the Semantic Data Quality Management (SDQM) framework

as a major contribution of this thesis. The SDQM framework consists of three major

components:

(1) an ontology for the machine-readable representation of quality-relevant

knowledge,

(2) a semantic wiki that is connected to the ontology to facilitate structured

capturing of quality-relevant knowledge, and

(3) a Web-based reporting frontend for data quality monitoring and assessment

based on the captured knowledge.

The framework has been evaluated in three different use cases based on real-world

data. Moreover, we compared SDQM with conventional data quality software to identify

strengths and weaknesses of the approach. Besides technical results, this thesis

delivers four theoretical findings, namely

(1) a comprehensive typology of data quality problems of information systems and

Semantic Web data,

XII

(2) ten generic data requirement types,

(3) a requirement-centric data quality management process fitted to the needs of

the SDQM framework, and

(4) an analysis of related work.

This dissertation would not have been possible without the support of my family,

colleagues, and friends. Therefore, I would like to thank my supervisors, Prof. Dr.

Martin Hepp and Prof. Dr. Michael Eßig, for the precious discussions, their guidance,

and their dedication to support my thesis project.

Moreover, I would like to thank Andreas Radinger, Alex Stolz, Dr. Mouzhi Ge, Uwe

Stoll, Dr. Bene Rodriguez-Castro, Leyla Jael García-Castro, Prof. Dr. Heiner

Stuckenschmidt, Dr. Holger Knublauch, and everyone else from the Semantic Web

community who supported me with valuable hints and discussions.

I would also like to thank my parents, Magrit and Claus-Dieter Fürber, for encouraging

me to always follow my passion. But most of all, I have to thank my wife Tanja for her

love and support over all these years and for giving me the freedom to spend so much

time on this thesis.

Dr. Christian Fürber

XIII

Table of Content

Table of Content .. XIII

List of Figures .. XIX

List of Tables ... XXIII

List of Abbreviations ... XXV

PART I – Introduction, Economic Relevance, and Research Design 1

1 Introduction .. 1

1.1 Initial Problem Statement ... 1

1.2 Economic Relevance .. 3

1.3 Organization of this Thesis ... 6

1.4 Published Work .. 6

1.4.1 Book Chapters ... 7

1.4.2 Papers in Conference Proceedings .. 7

1.4.3 Other Publications .. 7

2 Research Design .. 8

2.1 Semantic Technologies and Ontologies ... 8

2.2 Research Goal ... 9

2.3 Research Questions ... 11

2.4 Research Methodology .. 12

2.4.1 Design Science Research Methodology ... 13

2.4.2 Ontology Development Methodology ... 18

XIV

PART II – Foundations: Data Quality, Semantic Technologies, and
the Semantic Web .. 20

3 Data Quality .. 20

3.1 Data Quality Dimensions .. 21

3.2 Quality Influencing Artifacts .. 24

3.3 Data Quality Problem Types .. 26

3.3.1 Quality Problems of Attribute Values .. 28

3.3.2 Multi-Attribute Quality Problems ... 30

3.3.3 Problems of Object Instances ... 32

3.3.4 Quality Problems of Data Models ... 34

3.3.5 Common Linguistic Problems ... 38

3.4 Data Quality in the Data Lifecycle .. 39

3.4.1 Data Acquisition Phase ... 40

3.4.2 Data Usage Phase .. 41

3.4.3 Data Retirement Phase .. 42

3.4.4 Data Quality Management throughout the Data Lifecycle 42

3.5 Data Quality Management Activities ... 43

3.5.1 Total Information Quality Management (TIQM)....................................... 43

3.5.2 Total Data Quality Management (TDQM) ... 47

3.5.3 Comparison of Methodologies .. 49

3.6 Role of Data Requirements in DQM ... 49

3.6.1 Generic Data Requirement Types .. 50

3.6.2 Challenges Related to Requirements Satisfaction 54

4 Semantic Technologies ... 56

4.1 Characteristics of an Ontology ... 56

4.2 Knowledge Representation in the Semantic Web 58

4.2.1 Resources and Uniform Resource Identifiers (URIs) 58

4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links 59

4.2.3 Constructing an Ontology with RDF, RDFS, and OWL 60

4.2.4 Language Profiles of OWL and OWL 2 ... 63

4.3 SPARQL Query Language for RDF.. 64

XV

4.4 Reasoning and Inferencing .. 65

4.5 Ontologies and Relational Databases .. 67

5 Data Quality in the Semantic Web... 69

5.1 Data Sources of the Semantic Web ... 69

5.2 Semantic Web-specific Quality Problems ... 71

5.2.1 Document Content Problems .. 72

5.2.2 Data Format Problems .. 72

5.2.3 Problems of Data Definitions and Semantics .. 73

5.2.4 Problems of Data Classification .. 74

5.2.5 Problems of Hyperlinks ... 75

5.3 Distinct Characteristics of Data Quality in the Semantic Web 76

PART III – Development and Evaluation of the Semantic Data Quality
Management Framework... 78

6 Specification of Initial Requirements .. 78

6.1 Motivating Scenario .. 78

6.2 Initial Requirements for SDQM ... 79

6.2.1 Task Requirements ... 80

6.2.2 Functional Requirements .. 82

6.2.3 Conditional Requirements .. 83

6.2.4 Research Requirements ... 85

6.3 Summary of SDQM’s Requirements .. 86

7 Architecture of the Semantic Data Quality Management
Framework (SDQM) ... 87

7.1 Data Acquisition Layer ... 88

7.1.1 Reusable Artifacts for the Data Acquisition Layer 89

7.1.2 Data Acquisition for SDQM ... 90

7.2 Data Storage Layer .. 91

7.2.1 Reusable Artifacts for Data Storage in SDQM .. 91

7.2.2 The Data Storage Layer of SDQM .. 92

XVI

7.3 Data Quality Management Vocabulary ... 94

7.3.1 Reuse of Existing Ontologies .. 95

7.3.2 Technical Design of the DQM Vocabulary .. 96

7.4 Data Requirements Editor .. 99

7.4.1 Reusable Artifacts for SDQM’s Data Requirements Editor 100

7.4.2 Data Requirements Wiki ... 101

7.5 Reporting Layer .. 104

7.5.1 Reusable Artifacts for SDQM’s Reporting Layer 105

7.5.2 Semantic Data Quality Manager ... 105

8 Application Procedure of SDQM ... 110

8.1 Prerequisites .. 110

8.2 The Data Quality Management Process with SDQM................................ 111

9 Evaluation of the Semantic Data Quality Management
Framework (SDQM) ... 122

9.1 Evaluation of Algorithms ... 122

9.1.1 Algorithm Evaluation Methodology ... 122

9.1.2 Application Procedure ... 123

9.1.3 Results .. 124

9.2 Use Case 1: Evaluation of Material Master Data 124

9.2.1 Scenario ... 125

9.2.2 Setup and Application Procedure of SDQM .. 125

9.2.3 Results and Findings .. 127

9.3 Use Case 2: Evaluation of Data from DBpedia .. 132

9.3.1 Scenario ... 132

9.3.2 Specialties of Semantic Web Scenarios ... 133

9.3.3 Setup and Application Procedure ... 133

9.3.4 Results and Findings .. 135

9.4 Use Case 3: Consistency Checks Among Data Requirements 141

9.4.1 Scenario ... 142

9.4.2 Application Procedure ... 142

9.4.3 Summary .. 144

XVII

9.5 Comparison with Talend OS for Data Quality ... 145

9.5.1 Representation and Management of Data Requirements 145

9.5.2 Data Quality Monitoring and Assessment Reporting 148

9.5.3 Summary .. 151

PART IV – Related Work.. 153

10 Related Work .. 153

10.1 High-Level Classification Schema .. 153

10.2 Categorization Schema .. 154

10.2.1 Supported Data Lifecycle Step .. 154

10.2.2 Supported Data Representation .. 155

10.2.3 Supported Data Quality Task .. 156

10.3 Conventional Rule-Based Approaches ... 157

10.4 Ontology-based Approaches .. 158

10.4.1 Information System-oriented Approaches ... 158

10.4.2 Web-oriented Approaches .. 165

10.5 Summary .. 168

PART V - Conclusion ... 171

11 Synopsis and Future Work .. 171

11.1 Research Summary .. 171

11.2 Contributions .. 173

11.3 Conclusion and Future Work .. 174

Appendix A – Comparison of TIQM and TDQM ... 177

Appendix B –Rules for the Evaluation of SDQM ... 182

Appendix C – Test Data for SDQM’s Evaluation ... 187

Appendix D – Evaluation Results of SDQM’s Data Quality Monitoring
Queries ... 191

XVIII

Appendix E – Evaluation Results of SDQM’s Data Quality Assessment
Queries ... 193

References ... 195

XIX

List of Figures

Figure 1: Extended DIKW hierarchy

(cf. Bodendorf, 2006, p. 1; Rowley, 2007, p. 164) .. 2

Figure 2: Simplified illustration of the relationship between

business processes and data .. 4

Figure 3: Impact of poor data quality on organizational success 5

Figure 4: Design methodology as applied in this thesis (cf. Peffers et al., 2008) 13

Figure 5: Problem identification and motivation process as applied in this thesis 14

Figure 6: Process for the definition of solution objectives as applied in this thesis ... 15

Figure 7: Design and development process as applied in this thesis 16

Figure 8: Demonstration and evaluation process as applied in this thesis 17

Figure 9: Ontology engineering methodology as applied in this thesis 19

Figure 10: Layers in the perception of data consumers

(inspired by Redman, 2001, p. 72) ... 25

Figure 11: Terminology applied to tabular data .. 27

Figure 12: Attribute value problems .. 28

Figure 13: Multi-attribute quality problems .. 30

Figure 14: Instance-related quality problems .. 32

Figure 15: Quality problems of data models ... 35

Figure 16: Example of a data value attribute conflict .. 37

Figure 17: Example of an attribute entity conflict .. 38

Figure 18: Example of a data value entity conflict .. 38

Figure 19: Data lifecycle (cf. Redman, 1996, p. 217) .. 40

Figure 20: Total Information Quality Management (cf. English, 1999, p. 70) 44

Figure 21: Fundamental stages of the TDQM methodology by (Wang, 1998) 48

Figure 22: Challenges of requirement satisfaction .. 55

Figure 23: Syntax of RDF triples (cf. Klyne & Carroll, 2004) 59

Figure 24: Linking Open Data (LOD) cloud diagram

(Cyganiak & Jentzsch, 2011a) ... 70

Figure 25: Typology of requirements for artifact design .. 80

Figure 26: High-level architecture of the SDQM framework...................................... 87

Figure 27: Visualization of the DQM vocabulary (cf. Fürber & Hepp, 2011b) 98

Figure 28: Example for an inline query and its result (cf. Dauw et al., 2014) 102

Figure 29: Architecture of SDQM's data requirements wiki 104

XX

Figure 30: Web-based user interface of the Semantic Data Quality Manager 106

Figure 31: Configuration of data quality assessment reports in SDQMgr 108

Figure 32: Data quality assessment report of SDQMgr .. 109

Figure 33: DQM process as supported by SDQM (based on Wang, 1998) 111

Figure 34: SDQM's form to register new tested classes ... 112

Figure 35: SDQM's property requirement form ... 113

Figure 36: Code for a wiki page to maintain lists in the data requirements wiki 113

Figure 37: Example of new wiki page for the maintenance of legal value lists 114

Figure 38: Example of SDQM's form to add legal values 114

Figure 39: Example of legal value list in SDQM's data requirements wiki 114

Figure 40: SDQM's form to define conditions ... 115

Figure 41: SDQM's conditional requirement form ... 116

Figure 42: SDQM's functional dependency reference rule form 117

Figure 43: SDQM's form for timeliness requirements ... 118

Figure 44: SDQM's duplicate instance rule form .. 119

Figure 45: Data quality monitoring report of SDQMgr ... 120

Figure 46: SDQM application procedure (based on Wang, 1998) 121

Figure 47: Report with legal value range violations .. 127

Figure 48: Report with semantic accuracy score based on

value range requirement .. 128

Figure 49: Result of legal value requirement analysis in DBpedia 135

Figure 50: Infobox source code of Wikipedia page “Janet Wood”

as of June 27, 2011 ... 136

Figure 51: Wikipedia page "Cy (Cyclon)” as of June 10, 2012 136

Figure 52: Out of range values for property “population” in DBpedia 137

Figure 53: Wikipedia page "Downsville, Louisiana" as of June 19th 2011 138

Figure 54: Data quality assessment report displaying syntactic accuracy results ... 138

Figure 55: SPARQL query and result displaying duplicate property requirements . 143

Figure 56: SPARQL query for identification of inconsistent property requirements 144

Figure 57: SQL business rule in Talend OS for Data Quality.................................. 146

Figure 58: Selecting SQL business rules in Talend OS for Data Quality 147

Figure 59: Data quality assessment report in Talend OS for Data Quality 149

Figure 60: Data quality monitoring report of Talend OS for Data Quality 149

XXI

Figure 61: High-level classification of DQM frameworks .. 153

Figure 62: Categorization schema for related work .. 154

Figure 63: Own classification of related work ... 170

All figures can be accessed on www.springer.com under the author’s name and the
book title.

XXIII

List of Tables

Table 1: Common data quality definitions ... 20

Table 2: Data quality dimensions and their definitions according to

 Wang and Strong (Wang & Strong, 1996) .. 23

Table 3: First example schema "employee" .. 36

Table 4: Second example schema "employee" .. 36

Table 5: Generic data requirements as published in

 (Fürber & Hepp, 2011a, p. 3; 2011b, p. 3) .. 53

Table 6: Simplified mapping between RDBs and ontologies (cf. Astrova, 2009) 67

Table 7: Tasks in the SDQM framework and their equivalencies in the

 TDQM method (based on Wang, 1998) .. 81

Table 8: Summary of functional requirements including expected deliverables........ 83

Table 9: Initial requirements for the development of the SDQM framework 86

Table 10: Requirements for the data acquisition layer .. 88

Table 11: Analysis of existing data acquisition tools with RDF conversion support .. 89

Table 12: Requirements for the data storage layer ... 91

Table 13: Analysis of existing triplestores regarding their use for SDQM 92

Table 14: Requirements for the data quality management vocabulary 94

Table 15: Ontologies in the data quality space of Linked Open Vocabularies 96

Table 16: Requirements for the data requirements editor 100

Table 17: Forms provided by SDQM’s data requirements wiki 103

Table 18: Requirements of the reporting layer .. 105

Table 19: Reports of SDQMgr .. 106

Table 20: Data requirements that were collected and applied for use case 1 126

Table 21: Evaluation results of SDQMgr's data quality

 monitoring reports (use case 1) .. 129

Table 22: Evaluation results of SDQMgr's data quality

 assessment reports (use case 1) .. 130

Table 23: Assumed data requirements of use case 2 ... 134

Table 24: SDQMgr's data quality assessment results on DBpedia 139

Table 25: Qualitative comparison of SDQM and Talend OS for

 Data Quality regarding data requirements management 148

Table 26: Qualitative comparison of Talend OS for Data Quality and

 SDQM regarding data quality reporting .. 150

XXIV

Table 27: Results of performance analysis between Talend OS for

 Data Quality and SDQM ... 151

Table 28: Comparison of TIQM and TDQM, part one ... 177

Table 29: Comparison of TIQM and TDQM, part two ... 178

Table 30: Comparison of TIQM and TDQM, part three ... 179

Table 31: Comparison of TIQM and TDQM, part four ... 180

Table 32: Comparison of TIQM and TDQM, part five ... 181

Table 33: Overview of rules used for the validation of the SDQM algorithms 182

Table 34: Location test data for evaluating SDQM's algorithms 187

Table 35: Product test data for evaluating SDQM's algorithms 188

Table 36: Stock quantity test data for evaluating SDQM's algorithms 188

Table 37: Test reference data for evaluating SDQM's

 "FuncDepReferenceRules" with two properties 189

Table 38: Test reference data for evaluating SDQM's

 "FuncDepReferenceRules" with three properties 189

Table 39: Test reference data for evaluating SDQM's

 "FuncDepReferenceRules" with four properties 190

Table 40: Test reference data for evaluating SDQM's

 "FuncDepReferenceRules" with five properties 190

Table 41: Evaluation results of SDQM's data quality monitoring queries................ 191

Table 42: Evaluation results of SDQM's data quality assessment queries 193

XXV

List of Abbreviations

BIS = Business Information Systems

COIN = Context Interchange

CPU = Central Processing Unit

CRM = Customer Relationship Management

CSV = Comma-separated Value

DIKW = Data, Information, Knowledge, Wisdom

DQ = Data Quality

DQM = Data Quality Management

DSRM = Design Science Research Methodology

DSV = Delimiter-separated Values

DTD = Document Type Definition

ETL = Extraction, Transformation, and Loading

FDR = Functional Dependency Rule

FN = False Negative

FP = False Positive

FuncDepReferenceRule = Functional Dependency Reference Rule

HTTP = Hyper Text Transfer Protocol

IQ = Information Quality

IP = Information Product

IS = Information System

ISO = International Organization for

 Standardization

JSON = JavaScript Object Notation

KPI = Key Performance Indicator

XXVI

LOD = Linked Open Data

MDM = Master Data Management

MIT = Massachusetts Institute of Technology

OS = Open Studio

OWL = Web Ontology Language

OXC = Ontology-based XML Cleaning

PHP = Hypertext Preprocessor

RDB = Relational Database

RDBMS = Relational Database Management System

RDF = Resource Description Framework

RDFS = RDF Vocabulary Description Language

RQ = Research Question

SCROL = Semantic Conflict Resolution Ontology

SDQM = Semantic Data Quality Management

 Framework

SDQMgr = Semantic Data Quality Manager

SMDM = Semantic Master Data Management

SMW = Semantic MediaWiki

SPARQL = SPARQL Protocol and RDF Query

Language

SPIN = SPARQL Inferencing Notation

SQL = Structured Query Language

SSN = Social Security Number

SWRL = Semantic Web Rule Language

Talend OS for DQ = Talend Open Studio for Data Quality

TDQM = Total Data Quality Management

XXVII

TIQM = Total Information Quality Management

TQDM = Total Quality Data Management

TP = True Positive

TSV = Tab-separated Values

UDF = User-defined Function (SPARQL)

URI = Uniform Resource Identifier

URL = Uniform Resource Locator

W3C = World Wide Web Consortium

WWW = World Wide Web

XML = Extensible Markup Language

1

PART I – Introduction, Economic Relevance, and Research
Design

1 Introduction

In this chapter, we will provide a brief introduction into the thesis topic, clarify our

understanding of the term “data” and its dependency to business processes and

decisions, and discuss the economic relevance of the systematic management of data

quality. Moreover, we give a short overview of the thesis structure.

1.1 Initial Problem Statement

Data has become an important resource for our business and social life. We use data

every day for transactional and decision making processes. For example, we use data

when driving to a certain place with a navigation system (e.g. Skog & Handel, 2009),

when carrying out business tasks (e.g. Otto et al., 2011), when shopping online (e.g.

Barnes & Vidgen, 2002), or when traveling from one place to another (e.g. Redman,

1996, pp. xvii-xviii). Data as society’s core information resource is in the focus of this

thesis. At present, there is no common definition of data (cf. Rowley, 2007, pp. 163,

170-172), but many definitions of data and information utilize the Data-Information-

Knowledge-Wisdom hierarchy (DIKW) as depicted in figure 1 (Fink et al., 2005, p. 66f.;

Rowley, 2007, p. 163f.). The DIKW hierarchy originates from a poem by Eliot (Eliot,

1934) and an article of Ackoff (Ackoff, 1989). Bodendorf extends the DIKW hierarchy

by adding the characters layer to the bottom of the hierarchy (Bodendorf, 2006, p. 1).

Although there is no common understanding about the transformation process

between the layers of the hierarchy in detail (Rowley, 2007, pp. 163, 170-172), it

assumes that (1) information is created based on data, (2) knowledge is created based

on information, and (3) wisdom is created based on knowledge (cf. Rowley, 2007, p.

164).

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_1, © Springer Fachmedien Wiesbaden 2016

2

Figure 1: Extended DIKW hierarchy (cf. Bodendorf, 2006, p. 1; Rowley, 2007, p. 164)

Additionally, Bodendorf argues (1) that data are created from characters of a character

set based on defined syntax rules and (2) that data become information by assigning

meaning to data (Bodendorf, 2006, p. 1). Other definitions of data also regard data as

“discrete, objective facts or observations” without meaning or value on its own (Rowley,

2007, p. 170f.). However, many definitions of information consider data as the major

ingredient of information that is associated with meaning, context, relevance, and

purpose during processing (Rowley, 2007, pp. 170-172). In other words, the definitions

state that data processing makes data “meaningful, valuable, useful and relevant”

(Rowley, 2007, p. 172) and, therefore, data processing generates information.

Throughout this thesis, we regard data as “re-interpretable representation of

information in a formalized manner suitable for communication, interpretation, or

processing” (ISO/IEC, 1993, Section 01.01.02). For the remaining chapters of this

thesis, we do not clearly distinguish between data and information and, therefore, use

the terms “data” and “information” interchangeably. Moreover, based on the

relationships within the hierarchy, we assume that “high-quality information can only

come from high-quality data.” (Redman, 1996, p. 11). Hence, if the consumed data is

incorrect, we may derive wrong information and, therefore, make wrong decisions or

processes that rely on wrong data may fail (cf. English, 1999, pp. 10-12; Redman,

1996, pp. 6-11).

Researchers and practitioners have addressed the issues of data quality for over two

decades (cf. Ge & Helfert, 2007; Madnick et al., 2009, pp. 2-4), yet many people within

3

organizations still do not fully trust their own data (Grosser & Bange, 2009, p. 10).

According to studies by Madnick and Zhu, many data quality problems may be drawn

back to misinterpretations of data due to heterogeneous semantics (Madnick & Zhu,

2006). Semantic technologies, such as the representation of knowledge in

ontologically grounded structures (cf. Gruber, 1993, pp. 200-203), may help to improve

data quality since they provide means for the concise semantic interpretation of data

and its intended uses by machines (cf. Hepp, 2008b, pp. 13-15). Recently, a wide

range of semantic technologies predominantly originating from artificial intelligence

and knowledge management have been used in line with the Semantic Web initiative

led by the World Wide Web Consortium (W3C) to publish, share, integrate, link, and

consume data on web-scale (cf. Berners-Lee et al., 2001; Bizer, Heath, et al., 2009).

Thereby, many technologies have evolved which may also be applied in the field of

data quality management. Moreover, the availability of data on web-scale and its reuse

for data quality management may significantly reduce the manual effort.

This thesis examines how we can use semantic technologies and data published on

the Semantic Web for data quality management. The examination thereby focuses on

data quality problems in relational databases as used by many information systems,

but also addresses quality management of heterogeneous data for the Semantic Web.

1.2 Economic Relevance

Many researchers and practitioners of the data quality community agree that the level

of data quality influences the economic success of an organization (e.g. Batini &

Scannapieco, 2006, p. 1f.; Eckerson, 2002; English, 1999, pp. 6-13; Loshin, 2001, p.

10; Olson, 2003, pp. 12-14; Redman, 1998). However, there is only little evidence that

the economic success of an organization is indeed influenced by data quality (cf. Ge

& Helfert, 2013, p. 75). Today, it is widely known that the execution of business

processes relies on information technology that facilitates the creation, maintenance

and retrieval of data about entities and events (cf. Porter & Millar, 1985). People and

machines that interact within these processes create or retrieve information to perform

tasks. Information is thereby represented as data. The information system acts as an

intermediary between actors of processes and data itself. Therefore, the information

system provides functions and access facilities for information creation, maintenance

4

and retrieval (cf. Redman, 2001, pp. 43-45). Figure 2 illustrates this relationship

between business processes, information systems, and data.

Figure 2: Simplified illustration of the relationship between business processes and data

Due to this dependency between business processes and data, we assume that

incorrect data can negatively influence the execution of an organization’s processes

and tasks. Our assumption is supported by a study that discovered that 83 % of the

participants believe that poor data quality influences the potential of creating business

value (Grosser & Bange, 2009, p. 11). Redman states that data quality affects an

organization on all levels, i.e. on operations, tactical and strategic level (Redman,

1998, p. 80f.). He defines the activities that are performed on the operations level as

“day-to-day tasks such as order entry, customer support, and billing” (Redman, 1998,

p. 80), the activities performed on the tactics level as “decisions made by (usually) mid-

level managers that have consequences in the short-term to mid-term” (Redman,

1998, p. 80) and the activities performed on the strategic level as “long-term business

directions” (Redman, 1998, p. 80). Based on these definitions, we categorize business

processes into operational processes and decision-making processes. We thereby

understand a business process as “a collection of activities that takes one or more

kinds of input and creates an output […]” (Hammer & Champy, 2002, p. 35).

In operational processes, incorrect data may lead to the incorrect execution of a task

(cf. Redman, 1996, p. 4f.). For example, if the bank account details of a customer are

incorrect, payments cannot be made and, therefore, revenue will not be achieved or a

wrong account will be charged. Moreover, wrong address data in the customer

5

database can lead to wrong or delayed delivery of an ordered product which may cause

a decrease in customer satisfaction and, therefore, reduce the probability for future

revenues from that customer (Redman, 1998, p. 80). In decision-making processes,

incorrect data raises the risks to make incorrect decisions (Redman, 1996, p. 9f.). For

example when performing make-or-buy decisions based on aggregated cost values,

unawareness about missing cost figures within the aggregated results may lead to

wrong assumptions about the real costs. Thus, the risk for an incorrect make-or-buy

decision is much higher with poor data.

Figure 3: Impact of poor data quality on organizational success3

In consequence, poor data quality may impact the satisfaction of stakeholders (e.g.

customers and employees), cause unnecessary costs (e.g. data correction costs or

costs of failure), reduce product and service quality, reduce revenues, and even cause

fatal disasters (Fisher & Kingma, 2001; Redman, 1996, pp. 6-14, 39). Figure 3

summarizes the impact of poor data quality on organizational and economic success.

However, the quantification of the economic impact of data quality is difficult (Ge &

Helfert, 2013, p. 75). According to findings by Redman, we can estimate the average

total costs of poor data quality in businesses as high as 8-12 % of a company’s

revenues (Redman, 1998, p. 80). The Data Warehousing Institute even estimates that

poor customer data quality costs U.S. companies more than 600 billion US Dollar per

year (Eckerson, 2002, p. 5).4

Without the systematic management of data quality, business processes and decisions

are at risk to be affected by data quality issues, especially in systems that automatically

3 Summary based on (Eckerson, 2002; English, 1999, pp. 3-13,209-212; Redman, 1998)
4 It must be stressed that the authors do not provide many details about how these estimates have been
generated.

6

perform actions based on data (cf. Loshin, 2001, p. 171). Thus, with the growing use

of information systems and the reduction of human intervention and supervision, data

quality management becomes critical for the economic success of businesses and

organizations in general (cf. English, 1999, p. 13; Ge & Helfert, 2013, p. 75; Redman,

1996, p. 12).

1.3 Organization of this Thesis

This thesis is separated into the following five parts:

- Part I - Introduction: Economic Relevance, and Research Design

- Part II - Foundations: Data Quality, Semantic Technologies, and the Semantic

Web

- Part III - Development and Evaluation of the Semantic Data Quality

Management Framework

- Part IV - Related Work

- Part V - Conclusion

Part I outlines the initial problem, sketches its economic relevance and describes the

research methodology for this thesis. Part II provides the theoretical foundations and

defines terminology required for the understanding of the thesis. Part III describes the

design process, solution architecture, application process, and evaluation results of

the Semantic Data Quality Management Framework (SDQM) which has been

developed as part of this thesis project. Part IV discusses related work in the area of

data quality management with Semantic Web technologies. Part V summarizes the

results of the research project, derives conclusions from the findings, and outlines

future work.

1.4 Published Work

With permission by the PhD committee and in accordance with the regulations at the

Universität der Bundeswehr München, parts of the work presented in this thesis have

been published at peer-reviewed conferences or in other venues. The following is a

complete list of such publications.

7

1.4.1 Book Chapters

Fürber, C., and Hepp, M. (2013). Using Semantic Web Technologies for Data Quality

Management. In: Handbook of Data Quality: Research and Practice, (pp. 141-161),

Editor: Sadiq, S., Springer, Berlin Heidelberg.

1.4.2 Papers in Conference Proceedings

Fürber, C. and Hepp, M.: SWIQA – A Semantic Web Information Quality Assessment

Framework, in: Proceedings of the 19th European Conference on Information Systems

(ECIS 2011), June 9th – 11th, 2011, Helsinki, Finland.

Fürber, C. and Hepp, M.: Towards a Vocabulary for Data Quality Management in

Semantic Web Architectures, in: Proceedings of the 1st International Workshop on

Linked Web Data Management (pp. 1-8), March 25th, 2011, Uppsala, Sweden.

Fürber, C. and Hepp, M.: Using Semantic Web Resources for Data Quality

Management, in: Proceedings of the 17th International Conference on Knowledge

Engineering and Knowledge Management (pp. 211-225), 2010, Lisbon, Portugal,

Springer LNCS Vol. 6317.

Fürber, C. and Hepp, M.: Using SPARQL and SPIN for Data Quality Management on

the Semantic Web, in: Proceedings of the 13th International Conference on Business

Information Systems (pp. 35-46), 2010, Berlin, Germany, Springer LNBIP Vol. 47.

1.4.3 Other Publications

Fürber, C. and Hepp, M.: Ontology-Based Data Quality Management – Methodology,

Cost, and Benefits, Poster at the 6th Annual European Semantic Web Conference,

2009, Heraklion, Greece.

8

2 Research Design

In this chapter, we first provide a definition for the terms “semantic technologies” and

“ontologies” to provide a basic understanding for the following chapters. After that, we

define the research goals and research questions. This chapter concludes with the

research methodology that has been applied to generate the answers to the research

questions and achieve the research goals.

2.1 Semantic Technologies and Ontologies

Originally, the use of the term "semantics" as a noun or "semantic" as an attribute was

limited to the academic fields of

(1) semiotics, i.e. “the study of signs and symbols” (McComb, 2004, p. 9),

(2) linguistics i.e. “the study of language” (McComb, 2004, p. 8).

In semiotics, semantics is the name for studying the relationships between signs and

meaning (cf. Hoyningen-Huene, 1998, p. 251). In linguistics, it is "the study of meaning

in language" (Riemer, 2010, p. i). In computer science, the term "semantics" has been

used in the context of programming languages since the 1960s, with work by Floyd

(Floyd, 1967) being the most prominent initial reference. In this context, "semantics"

stood for the formal analysis of the execution of programs. With the advent of artificial

intelligence as a field, the notion of "semantics" in computer science got broader,

including the representation of terminological and factual knowledge by data structures

(cf. Sowa, 2014).

In 2001, Berners-Lee et al. described the vision of a "Semantic Web" as an evolution

of the World Wide Web into an ecosystem in which information would be represented

and interlinked in ways accessible to computers and not just human consumers of a

visual rendering (cf. Berners-Lee et al., 2001). This contribution has triggered a broad

usage of the term "semantics" as study of representation, sharing, and processing of

meaning in computer systems (cf. Hitzler, 2008, p. 13). Semantic technology is then

the broad range of approaches for contributing to that end. Therefore, this thesis sees

“semantic technologies” as technical approaches that facilitate or make use of the

interpretation of meaning by machines. A prerequisite for machine interpretation of

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_2, © Springer Fachmedien Wiesbaden 2016

9

knowledge is the collection and storage of relevant knowledge in a way that machines

can understand. This can be achieved via knowledge representation languages such

as the Resource Description Framework (RDF) (Manola & Miller, 2004) and the Web

Ontology Language (OWL) (Bechhofer et al., 2004).

The term "ontology" is frequently used in the context of semantic technology, and there

are many different options to define it (cf. Hepp, 2008b, pp. 3-6). It originates from

philosophy and expresses the study of existence (cf. Gasevic et al., 2006, p. 45). In

computer science, we can understand an ontology as “an explicit specification of a

conceptualization” (Gruber, 1993, p. 199). “Conceptualization” can be seen as “an

abstract model of some phenomenon in the world which identifies the relevant

concepts of that phenomenon” (Alexiev et al., 2005, p. 16). “Explicit” means that these

concepts and their restrictions are explicitly represented within an ontology (Alexiev et

al., 2005, p. 16). Grimm et al. extend this definition by additional characteristics of

ontologies in the context of knowledge representation and define it as “a formal explicit

specification of a shared conceptualization of a domain of interest” (Grimm et al., 2007,

p. 69). Based on these definitions, we understand ontologies as a formal and sharable

means to explicitly model some real-world phenomenon for machine-readable

knowledge representation. A detailed discussion about the characteristics of

ontologies will be provided in section 4.1.

2.2 Research Goal

This thesis aims to investigate the usefulness of ontologies to support data quality

management activities. Ontologies promise the concise representation of domain

knowledge with its entities and relationships in a machine-readable way (cf. Grimm et

al., 2007). In the context of data quality management, ontologies could provide the

following benefits:

Knowledge reuse: The management of data quality requires capturing business

knowledge in the form of logical rules that define the characteristics how to recognize

incorrect data (cf. Loshin, 2001, p. 179). According to Loshin this knowledge “reflects

the ongoing operations of a business” (Loshin, 2001, p. 185) and the same knowledge

may also be relevant for other business areas (cf. Loshin, 2001, p. 286). For example,

data requirements, such as the definition of credible values for a certain data element,

could not only be used for data quality measurement, but also for the verification of

10

new data entries or imported data (cf. Loshin, 2001, p. 9). In many systems, such

knowledge is often hidden within application logic. In order to make such knowledge

reusable and transparent to business users, it is necessary to move it out of the

application logic into an explicit representation (cf. Loshin, 2001, p. 279). One possible

solution to preserve and publish data knowledge in a reusable way could be the

structured representation of that knowledge via ontologies. E.g. data requirements

could be represented with help of an ontology and linked to the accordant data

element. Moreover, the data element could be linked to the data owner and the

business tasks in which the data is being processed to support organizational tasks of

data quality management.

Semantic reconciliation: Due to the expressivity of ontologies, it is possible to

precisely define the semantics of data. When requesting information, we often ask

ambiguous questions that may lead to completely different answers depending on the

interpretation of an individual. With the use of ontologies, we are able to explicitly

represent the concise semantics of data and annotate formal and informal definitions.

This may lead to a reduction of misunderstandings and misinterpretations (cf. Madnick

& Zhu, 2006).

Creation of a shared understanding: Explicit knowledge representation of a domain

in form of an ontology facilitates communication about different viewpoints and thereby

supports the creation of a shared understanding about a domain (cf. Fensel, 2001, p.

2; Hepp, 2008b, p. 5; Uschold & Gruninger, 1996, p. 8f.) Moreover, it is possible to

enrich the elements of an ontology by textual definitions. If maintained precisely, such

human-readable definitions may additionally reduce ambiguity and, therefore, support

a common understanding (cf. Hepp, 2008b, p. 13).

Content integration: Several research approaches discuss the usefulness of

ontologies for data and content integration within and across enterprises (cf. Alexiev

et al., 2005; Fensel, 2002; Kokar et al., 2004; Niemi et al., 2007; Perez-Rey et al.,

2006; Skoutas & Simitsis, 2007; Souza et al., 2008; Wache et al., 2001). The

distribution of data and quality-relevant knowledge requires superior integration

capabilities when managing data quality. Data quality management may, therefore,

benefit from the integration capabilities of ontologies.

Deduction of implicit knowledge: Due to the explicit representation of concepts and

relationships including their semantics within ontologies, it is possible to infer implicit

11

knowledge, e.g. through reasoning engines (Hepp, 2008b, p. 15). This novel feature

of ontology-based information systems may open up additional capabilities for

business cases, such as data quality management.

2.3 Research Questions

In order to evaluate the potential benefits of semantic technologies, we develop a

prototype that utilizes ontologies to support data quality management tasks. We

address the following research questions (RQ).

RQ1: What kind of data quality problems exist?

Data quality management aims to improve data quality. In order to investigate the

usefulness of ontologies in this domain, we first need to know the types and causes of

data quality problems that may occur in information systems. Hence, we initially

examine the characteristics of data quality problems.

RQ2: Which activities have to be performed during data quality management?

In order to identify the required capabilities which may be supported by semantic

technologies, we have to analyze the data quality management process for the tasks

that have to be performed to manage data quality.

RQ3: Which knowledge has to be represented to support data quality management?

Based on the identification of activities which are part of data quality management and

the types of data quality problems, we need to identify the knowledge required to

perform these tasks.

RQ4: How can we represent knowledge relevant for data quality management to

reduce manual work?

The identified knowledge shall be represented with modeling elements of an ontology

language. The ontology shall thereby be processable by both humans and machines

to reduce manual efforts for data quality management.

RQ5: How can we utilize knowledge for data quality management represented within

ontological structures?

12

Once the data quality management knowledge is captured and represented in

ontological structures, we need to find ways to use this knowledge for performing data

quality management tasks. Thus, artifacts are needed to process the represented

knowledge to serve data quality management tasks.

In order to satisfy the reusability of the findings, this thesis aims to provide domain

independent solutions to the above research questions.

2.4 Research Methodology

According to Hevner et al. the information systems discipline is dominated by two

research paradigms: behavioral science and design science. “The behavioral-science

paradigm seeks to develop and verify theories that explain or predict human or

organizational behavior. The design-science paradigm seeks to extend the boundaries

of human and organizational capabilities by creating new and innovative artifacts”

(Hevner et al., 2004, p. 75). This thesis focuses on the design science paradigm to

develop an innovative framework based on semantic technologies, called the Semantic

Data Quality Management framework (SDQM), which aims to improve and extend the

capabilities required for data quality management by providing efficient mechanisms

to store and retrieve quality-relevant knowledge. Part of the framework is an ontology

for sharing and utilizing quality-relevant knowledge, which we will refer to as the DQM

Vocabulary in the following. The development procedure of SDQM is, therefore, based

on two development methodologies: (1) the design science research methodology

(DSRM) process by Peffers et al. (Peffers et al., 2008, p. 52ff.) for the development of

the general framework of SDQM, and (2) the ontology engineering methodology by

Uschold and Gruninger (Uschold & Gruninger, 1996) for the development of the DQM

Vocabulary. Both methodologies will be explained in the following sections.

13

2.4.1 Design Science Research Methodology

The design science research methodology (DSRM) is based on an analysis of

similarities between several different design methodologies to identify a consensual

way to perform design science research (cf. Peffers et al., 2008, p. 52). In detail, DSRM

has the following six processes (Peffers et al., 2008):

(1) Problem identification and motivation

(2) Define the objectives for a solution

(3) Design and development

(4) Demonstration

(5) Evaluation

(6) Communication

We chose to adjust the original DSRM by procedures and tools that have been proven

to be pragmatic means during the development of the framework. For instance, we use

a motivating scenario to illustrate the problem domain (cf. Uschold & Gruninger, 1996)

and a requirements register to keep track of SDQM’s requirements throughout its

development. Figure 4 shows an adjusted version of the DSRM as chosen for this

thesis including the generated outputs of the process steps.

Figure 4: Design methodology as applied in this thesis (cf. Peffers et al., 2008)

14

The pure sequential execution of DSRM may not be possible in many cases due to

incomplete knowledge (cf. Peffers et al., 2008, p. 56). For example, important technical

requirements or defects in the developed artifacts may be initially discovered during

the evaluation phase and, therefore, require to change the requirements register as

part of the “Definition of solution objectives” phase and cause a change of the artifact

in the development phase. Therefore, we added iteration paths that have occasionally

been used during this thesis project to return to previous process steps. In the

following, we will describe each process of the adjusted DSRM as applied in this thesis.

Problem identification and motivation: The design science research process

typically starts with the identification of the research problem and the justification of its

relevance (cf. Peffers et al., 2008, p. 52f.). In this thesis, we initially describe the

general problem and its economic relevance in chapter 1. We further specify the

problem by defining and motivating the research goals in section 2.2 and research

questions in section 2.3. Since the research goals and research questions by

themselves are not sufficient for the development of an artifact that shall be used in

practical settings, we further specify the problem definition by deriving initial

requirements from a motivating scenario in chapter 6. The motivating scenario is based

on a practical problem setting in which the artifact shall be used (cf. Uschold &

Gruninger, 1996, p. 29f.). Besides the practice-oriented requirements from the

motivating scenario, the initial requirements also encompass research requirements

derived from the research goals of this thesis.

Define motivating
scenario

(practical setting)

Derive initial
requirements

Definition of the objectives of
the solution

Define and
motivate research

goal

Initial problem
statement and

economic
relevance

Figure 5: Problem identification and motivation process as applied in this thesis

15

Definition of solution objectives: Solution objectives are the objectives that the

developed solution shall fulfill. Based on the initial requirements, we design a high level

architecture with components that shall meet the requirements that were defined in the

previous process. We then describe the purpose of each component and map the initial

requirements to the accordant components of the solution architecture. At this point,

new requirements may arise due to increasing knowledge about the problem domain.

The new requirements should, therefore, be added to the initial requirements during

the “review initial requirements” process step. The execution of this process differs

from the original process as described in (Peffers et al., 2008, p. 55) as we already

start to sketch a solution architecture and map requirements to define the objectives

of the solution components. We argue that our procedure is more pragmatic and

reduces complexity, since our objectives are defined as concrete deliverables based

on the initial requirements which encompass the research requirements. Finally, we

already start to analyze and collect related work to identify reusable artifacts.

Describe purpose
of each

component

Map initial
requirements to

components

Design high level
architecture

Review intial
requirements

Problem identification and
motivation

Design and development

Start analyzing
and collecting
related work

Figure 6: Process for the definition of solution objectives as applied in this thesis

16

Design and development: Before we start to actually develop the artifact, we first

analyze whether existing artifacts can be reused for the components of our framework.

The analysis is based on the description of components and its accordant

requirements from the previous process. In cases of more than one reusable artifact

for one component, the most appropriate artifact has to be chosen. In cases where an

existing artifact only partially fulfills the requirements, the artifact may be extended

before its reuse. In cases where no suitable existing artifact can be found, a new artifact

has to be developed from scratch according to the component’s requirements.

Moreover, the components of the architecture usually have to be integrated into a

single framework and initially configured as part of the development process. Figure 7

illustrates the “Design and development” process as applied in this thesis.

Reusable
artifacts

available?

Develop new
artifact

No

Check if the
artifact has to be

adjusted

Yes

Artifact requires
extension?

Identify existing
artifacts that
satisfy the

requirements

Reuse artifact

No

Extend artifact

Yes

Select
most appropriate

artifact

Definition of the objectives of
the solution

Demonstration and
evaluation

Figure 7: Design and development process as applied in this thesis

17

Demonstration and evaluation: We combined the activities “demonstration” and

“evaluation” (which are originally separated in DSRM) to one process due to the tight

interaction of demonstration and evaluation. Demonstration is the application of the

developed artifact to the problem domain (cf. Peffers et al., 2008, p. 55). Evaluation

identifies how well the developed artifact fulfills its intended use (cf. Peffers et al., 2008,

p. 56). Therefore, it is typically performed based on information that has been collected

during the demonstration (cf. Peffers et al., 2008, p. 56). In this thesis project, we

perform the demonstration and evaluation process in two stages. After the

development of the artifact has been finished, we initially demonstrate and evaluate

the artifact as a prototype in a controlled environment. After the prototype has been

evaluated successfully, we continue the demonstration and evaluation in a real-world

environment as a practical use case. In cases where the evaluation identifies

unacceptable limitations, we may need to return to the design and development

process to enhance the artifact. For this project, we chose two major use cases: (1)

data quality management of material master data (section 9.2) and (2) data quality

management of Semantic Web data (section 9.3) to investigate the applicability of the

artifact in both environments.

Demonstrate
prototype

Evaluate
prototype

Demonstrate
real-world
use case

Evaluate
real-world
use case

Design and development

Communication

Figure 8: Demonstration and evaluation process as applied in this thesis

Communication: The DSRM ends with the communication of the research project

which is performed by this thesis. Additionally, parts of this project have been published

18

at scientific conferences. A list of conference papers that are related to this research

project can be found in section 1.4.

2.4.2 Ontology Development Methodology

The development of the DQM Vocabulary is based on the ontology engineering

method by Uschold and Gruninger (Uschold & Gruninger, 1996). Similar to the

development of SDQM, we start with motivating scenarios for the use of the DQM

Vocabulary to illustrate the problem domain and justify its relevance (cf. Uschold &

Gruninger, 1996, pp. 103, 112f.). From the scenarios, we derive stratified competency

questions that shall be answerable by queries that will be asked against the DQM

Vocabulary (cf. Uschold & Gruninger, 1996, pp. 113-117). The competency questions

serve as the requirements for the ontology. In fact, the terms used in the competency

questions are extracted and informally defined as foundation for the definition of the

ontology elements. Therefore, these terms are first classified into objects, properties

of objects, and relationships between objects. Based on this classification and the

terms derived from the competency questions, a basic ontology can be coded (cf.

Uschold & Gruninger, 1996, p. 114). To reduce ambiguity, definitions are added to the

elements of the ontology (cf. Uschold & Gruninger, 1996, p. 114). The evaluation is

done by storing instances based on the ontology and executing queries against the

ontology that attempt to retrieve answers for the previously defined competency

questions (cf. Uschold & Gruninger, 1996, p. 113f.).

19

Figure 9: Ontology engineering methodology as applied in this thesis

20

PART II – Foundations: Data Quality, Semantic
Technologies, and the Semantic Web

3 Data Quality

Data quality is a multidimensional concept (Batini & Scannapieco, 2006, p. 19ff.;

Eppler, 2006; Redman, 1996, p. 245ff.; Wand & Wang, 1996, p. 87; Wang & Strong,

1996, p. 22f.) that can be defined from several different perspectives (cf. Ge & Helfert,

2007, p. 1; Kahn et al., 2002, p. 185). For example, data consumers, data producers,

data providers, and data custodians may all have different perspectives on the

definition of data quality (cf. Kahn et al., 2002, p. 184). From the consumer viewpoint,

data quality can be defined as “data that are fit for use by data consumers” (Wang &

Strong, 1996, p. 6) in analogy to the popular quality definition related to products and

services by Juran (Juran, 1988, p. 2.2).

Table 1: Common data quality definitions

Authors Year Data Quality Definition

Wang and

Strong

1996 “data that are fit for use by data consumers.”

(Wang & Strong, 1996, p. 6)

Redman 2001 “Data are of high quality if they are fit for their

intended uses in operations, decision making,

and planning. Data are fit for use if they are free

of defects and possess desired features.”

(Redman, 2001, p. 74)

Kahn, Strong,

and Wang

2002 “conformance to specifications” and “meeting or

exceeding consumer expectations”

(Kahn et al., 2002, p. 185)

Olson 2003 “[…] data has quality if it satisfies the

requirements of its intended use.”

(Olson, 2003, p. 24)

From a more technical perspective, data is of high quality when it is “free of defects”

and “conforms to specifications” (cf. Kahn et al., 2002; Redman, 2001, p. 71ff.). Table

1 summarizes common data quality definitions from data quality research. All of the

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_3, © Springer Fachmedien Wiesbaden 2016

21

above definitions of data quality share the assumption that data quality is relative to

formally or informally defined quality expectations, such as (1) consumer expectations

and intentions, (2) specifications, or (3) requirements imposed by the usage of data,

e.g. to execute certain tasks. According to these definitions, the level of data quality is

determined by comparison of the actual state of the data (status quo) to a desired

state. The desired state is named “fitness for use”, “specification”, “consumer

expectations”, “defect-free” “desired features”, or simply “requirements” in the above

definitions. According to ISO 9000:2005, quality is defined as the "degree to which a

set of inherent characteristics fulfils requirements" (ISO, 2005, p. 18). Therefore, we

define data quality as the degree to which data fulfils requirements. The requirements

can thereby be defined (1) by quality requirements of several different individuals or

groups of individuals, (2) by standards, by (3) laws and other regulatory requirements,

(4) by business policies, or (5) even by expectations of data processing applications,

e.g. when they only process certain values or structures.

In the following, we describe relevant aspects of data quality which are important for

the understanding of this thesis. In sections 3.1 and 3.2, we describe facets of the user

perspective, namely data quality dimensions and quality influencing artifacts. In section

3.3, we describe the technical perspective of data quality, namely data quality problem

types. In section 3.4, we briefly explain the data lifecycle with regard to data quality. In

section 3.5, we provide an overview of common management methodologies for data

quality management. Finally, we explain the role of data requirements for data quality

management and define generic data requirement types in section 3.6.

3.1 Data Quality Dimensions

From a consumer perspective, data quality can be judged by multiple different data

quality dimensions, i.e. “attributes that represent a single aspect or construct of data

quality” (Wang & Strong, 1996, p. 6). Wang and Strong (1996) conducted an empirical

study to identify important quality dimensions from the perspective of data consumers

(Wang & Strong, 1996). Based on a set of over 100 data quality dimensions, they

identified fifteen most important dimensions as perceived by data consumers when

judging data quality. The dimensions can be classified into intrinsic, contextual,

representational, and accessibility dimensions (Wang & Strong, 1996, p. 18f.). Intrinsic

22

quality dimensions contain attributes of data quality “that data has on its own” (Batini

& Scannapieco, 2006, p. 39). Contextual dimensions encompass quality attributes that

can only be perceived when using data in task contexts (cf. Wang & Strong, 1996, p.

20f.). For example, completeness can only be judged together with completeness

requirements for the task at hand. The representational category includes dimensions

related to format and meaning of data such as the consistent representation of data or

the ease to understand the data at hand (cf. Wang & Strong, 1996, p. 21). The

accessibility category considers quality attributes regarding the access to data and

data access security (cf. Wang & Strong, 1996, p. 21). Table 2 provides an overview

of all fifteen dimensions including their definitions.

23

Table 2: Data quality dimensions and their definitions according to Wang and Strong (Wang & Strong, 1996)

Category Dimension Definition

Intrinsic Believability “The extent to which data are accepted or

regarded as true, real and credible.” (p. 31)

Accuracy “The extent to which data are correct, reliable

and certified free of error.” (p. 31)

Objectivity “The extent to which data are unbiased

(unprejudiced) and impartial.” (p. 32)

Reputation “The extent to which data are trusted or highly

regarded in terms of their source or content.”

(p. 32)

Contextual Value-added “The extent to which data are beneficial and

provide advantages from their use.” (p. 31)

Relevancy “The extent to which data are applicable and

helpful for the task at hand.” (p. 31)

Timeliness “The extent to which the age of the data is

appropriate for the task at hand.” (p. 32)

Completeness “The extent to which data are of sufficient

depth, breadth, and scope for the task at hand.”

(p. 32)

Appropriate

amount of data

“The extent to which the quantity and volume of

available data is appropriate.” (p. 32)

Representational Interpretability “The extent to which data are in appropriate

language and units and the data definitions are

clear.” (p. 31)

Ease of

understanding

“The extent to which data are clear without

ambiguity and easily comprehended.” (p. 32)

Representational

consistency

“The extent to which data are always presented

in the same format and are compatible with

previous data.” (p. 32)

Concise

representation

“The extent to which data are compactly

represented without being overwhelming (i.e.,

brief in presentation, yet complete and to the

point).” (p. 32)

Accessibility Accessibility “The extent to which data are available or easily

and quickly retrievable.” (p. 32)

Access security “The extent to which access to data can be

restricted and hence kept secure.” (p. 32)

24

Although it is often ultimately the data consumer who judges data quality (Wang &

Strong, 1996, p. 6), a plain adaption of consumer dimensions for data quality

management in practical settings is not constructive for several reasons:

- Data consumers usually do not to distinguish between data, application, and

hardware when judging data quality (cf. Kahn et al., 2002, p. 186). E.g. poor

hardware performance during data consumption may result in low data quality

perception by data consumers although the quality of data may be perfect.

- Many data quality dimensions from table 2 are difficult to measure, since they

rely on very user- and context-specific preconditions and requirements that

partially depend on the individual experience, background, and intentions of

data consumers (cf. Kahn et al., 2002, p. 185).

- Data consumers are not the only stakeholders who have data requirements as

stated in the previous section. For example, data producers, data custodians,

and data providers may also have data requirements that may be different from

the consumer requirements (cf. Kahn et al., 2002, p. 184).

- The description of data quality dimensions from a consumer perspective may

neglect potential quality problems in data.

- The single view on data quality from a consumer perspective may miss

important quality dimensions, such as data redundancy.

Solely considering the perspective of data consumers is not enough, when aiming to

develop artifacts for practical data quality management settings. However, the above

dimensions may serve as a starting point for structuring data quality evaluation reports.

3.2 Quality Influencing Artifacts

Data consumers usually do not access plain data directly. They rather use query

interfaces or information systems to consume data. So the data quality perception may

be influenced by several other artifacts than just data values when using intermediaries

to access the data. We can categorize the data quality influencing artifacts into the

data layer, the data model layer, the presentation layer, and the access layer (cf.

Redman, 2001, p. 72).

25

Figure 10: Layers in the perception of data consumers (inspired by Redman, 2001, p. 72)

The data layer consists of plain data, i.e. values composed by characters according to

certain syntactical rules (Bodendorf, 2006, p. 1). The data model layer represents the

contextual information of data. It contains a schema, i.e. a formally described data

structure, integrity constraints, operators, and inferencing rules (cf. Codd, 1980, p.

112). In the understanding of this thesis, it may additionally contain classifications,

restrictions, and metadata, i.e. data about data. The presentation layer is usually the

first visible presentation of data to data consumers. The data may be represented in

separately designed user interfaces. The presentation layer may itself contain

transformations of data at run-time (e.g. aggregations) and separate labels of schema

objects (cf. Goeken, 2006, p. 42f.). Finally, the access layer contains all artifacts that

facilitate a user’s access to data. Authorizations, i.e. user access rights to view, modify,

create, or delete certain data, are the central artifact in the access layer (cf. Codd,

1990, p. 325f.). Moreover, hardware and network infrastructure may influence the

ability of a user to access data at the right speed.

In general, all components of these layers may be a source of own quality problems.

In fact, the quality of data may be perfectly flawless, while the perception of data quality

may be poor in the eyes of a data consumer, e.g. because he or she lacks access

26

rights to view certain data. Thus, when we assess data quality, we must clearly define

to which of these layers we refer to, in order to facilitate a correct interpretation of the

assessment results and for the identification of appropriate improvement objectives.

Unless specified otherwise, we use the terms data quality and information quality

synonymously for the rest of this thesis to refer to the quality of data.

3.3 Data Quality Problem Types

Data quality problems are an important source to understand the typology of data

requirements. Earlier in this chapter, we defined data quality as “the degree to which

data fulfils requirements”. Based on this definition, we can say that data quality

problems typically occur, if requirements are not met. In other words, data quality

problems are the direct result of violated data requirements. In order to identify different

types of data requirements, we, therefore, develop a generic data quality problem

typology by summarizing problem types found in the literature, in particular in (Kashyap

& Sheth, 1996; Leser & Naumann, 2007; Oliveira, Rodrigues, & Henriques, 2005;

Oliveira, Rodrigues, Henriques, et al., 2005; Rahm & Do, 2000). The problems are

thereby classified from two perspectives: (1) the problem location perspective and (2)

the scenario perspective (cf. Leser & Naumann, 2007, pp. 318-322; Rahm & Do, 2000,

pp. 2-5). The problem location perspective classifies the different data quality problems

according to the location in which the problem occurs. Thus from the data location

perspective, problems are classified into (1) attribute value problems, i.e. problems in

values within a single attribute, (2) multi-attribute problems, i.e. problems where values

of two or more attributes are involved, (3) problems of object instances which are

represented via tuples in case of a table format, and (4) problems of the data model.

The problem locations refer to the data and data model layer from the previous section.

Figure 11 illustrates the terms attribute, tuple / instance, and schema as we can find

them in a table representation.

27

Figure 11: Terminology applied to tabular data

The scenario perspective classifies data quality problems into two different scenarios

in which data quality problems typically occur. Hence from the scenario perspective,

we can distinguish between (1) single-source problems, i.e. problems that occur within

a single data source, and (2) integration-specific problems, i.e. problems that only

occur when integrating data from two or more sources. Besides this general

classification there are linguistic problems that may result in data quality problems.

Based on this classification, we will describe typical data quality problems that have

been identified by means of a thorough literature analysis. It must be stressed that

many integration-specific problems are caused by heterogeneous ways to represent

the same domain and, therefore, should not always be regarded as errors. Moreover,

in the understanding of this thesis a data quality problem should only be seen as an

error when it violates a previously defined requirement. The examples below assume

that data requirements have been violated. Problems of artifacts related to the

presentation and access layer, which have been defined in section 3.2, are not

addressed by this thesis and, therefore, not covered by the typology.

28

3.3.1 Quality Problems of Attribute Values

In this section, we describe data quality problems that typically occur in one or more

values of a single attribute. Since only one attribute is involved, there are no

integration-specific attribute value problems in this category.

Figure 12: Attribute value problems

Invalid characters: Invalid characters are characters that are not supposed to be part

of the value (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 5). E.g. a numeric zip code

contains a letter.

Character alignment violation: Character alignment violations occur when whole

substrings or characters of a value are in the wrong position according to predefined

syntax rules (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 4; Oliveira, Rodrigues,

Henriques, et al., 2005, p. 3). E.g. the value “20.03.09” violates the syntax

“MM/DD/YYYY“ where M represents the index position for numerical month values, D

for numerical day values, and Y for numerical year values. Misspelling errors and word

transpositions can also be subsumed by this category.

Missing values: Missing values are empty values or NULL values in attributes that

require a value (cf. Leser & Naumann, 2007, p. 320; Oliveira, Rodrigues, & Henriques,

2005, p. 4; Oliveira, Rodrigues, Henriques, et al., 2005, p. 3; Rahm & Do, 2000, p. 4).

Furthermore, a value may be considered as missing when only a default value or a

whitespace value is available (cf. Rahm & Do, 2000, p. 6).

False values: False values are possible values for the object, but do not represent the

correct state of the underlying entity (cf. Leser & Naumann, 2007, p. 320; Oliveira,

Rodrigues, & Henriques, 2005, p. 4; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4;

Rahm & Do, 2000, p. 3). E.g. the attribute “age” of customer “Peter Johnson” has

the value “28”, but Peter Johnson’s real age is 39.

29

Meaningless values: Meaningless values are values that do not have a

corresponding real-world entity (cf. Oliveira, Rodrigues, Henriques, et al., 2005, p. 4).

E.g. the attribute name contains a value “ABC XYZ”.

Outdated values: Outdated values are values of an attribute or types that represent

an obsolete state of the accordant real-world entity (cf. Oliveira, Rodrigues, Henriques,

et al., 2005, p. 3). E.g. Peter married on March 1st, 2009, but the employee database

still shows the family status “single”.

Embedded values: Embedded values are substrings in a value that represent

additional information (cf. Leser & Naumann, 2007, p. 320; Oliveira, Rodrigues, &

Henriques, 2005, p. 5; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4; Rahm & Do,

2000, p. 4). Embedded values that do not fit to the intension of the attribute are also

called invalid substrings (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 5). E.g. the

attribute name holds also the titles of the person, i.e. “Dr. Peter Miller” instead

of “Peter Miller”.

Out-of-range values: Values are out of range if they are outside of a predefined

interval (cf. Leser & Naumann, 2007, p. 319; Oliveira, Rodrigues, Henriques, et al.,

2005, p. 3; Rahm & Do, 2000, p. 3). E.g. the attribute salary must not contain

negative values.

Imprecise values: Imprecise values are ambiguous values that cannot be precisely

mapped to a corresponding real-world entity or state (cf. Oliveira, Rodrigues, &

Henriques, 2005, p. 5; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4). E.g. the

textual attribute country has a value “D” which could indicate the countries

“Denmark”, “Djibouti”, “Dominican Republic”, or even “Germany”. Imprecise

values can occur in textual attributes, e.g. when using abbreviated or cryptic values

(cf. Leser & Naumann, 2007, p. 320; Rahm & Do, 2000, p. 4), or in numerical attributes,

e.g. one position after the decimal point may not be precise enough to indicate the

currency rate. Moreover, imprecise values can be caused by homonyms, i.e. values

that have more than one meaning.

Unique value violation: Some attributes must not contain the same value more than

once. Hence, a unique value violation occurs if the exact same value occurs more than

once with the same attribute (cf. Leser & Naumann, 2007, p. 319; Oliveira, Rodrigues,

& Henriques, 2005, p. 6; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4; Rahm & Do,

2000, p. 3). E.g. the attributes license_plate_no, tax_payer_no, and

30

social_security_no may need to obtain unique values for each tuple. The most

important types of such attributes are those that hold values that are meant to be used

as identifiers for entities for cross-references.

Cardinality constraint violation: The cardinality of an attribute is violated, if the

allowed amount of values per one entity is exceeded if given (cf. Rahm & Do, 2000, p.

6). E.g. the attribute date_of_birth must have exactly one value per person.

3.3.2 Multi-Attribute Quality Problems

In this section, we describe data quality problems that occur between two or more

attributes.

Figure 13: Multi-attribute quality problems

Functional dependency violation: Functional dependencies can be defined as the

dependency between two or more attribute values within the same tuple or among

different tuples of different entities and data sources (cf. Leser & Naumann, 2007, p.

319; Oliveira, Rodrigues, & Henriques, 2005, p. 7; Oliveira, Rodrigues, Henriques, et

al., 2005, p. 5f.; Olson, 2003, p. 174; Rahm & Do, 2000, p. 4). E.g. if the attribute

ZipCode contains “85577” and the country is “Germany”, then the city must be

“Neubiberg”.

Referential integrity violation: If an attribute of one entity comprises values that refer

to tuples of another entity, the we can call the values of the first attribute “foreign keys”

(cf. Codd, 1970, p. 380). In case of a referential integrity violation a foreign key value

does not have a matching value in the referenced entity (cf. Leser & Naumann, 2007,

p. 319; Oliveira, Rodrigues, & Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques,

et al., 2005, p. 6; Rahm & Do, 2000, p. 3). Thus, referential integrity is violated when

(1) a foreign key is wrong and, therefore, cannot have a corresponding tuple in the

referenced entity or (2) a foreign key is correct, but the referenced entity does not

contain the corresponding tuple. E.g. the attribute ZipCode of the table Customer

31

comprises the values “4000” and “40027” that both do not exist in the referenced table

LocationZipCodes and, therefore, currently violate referential integrity. In case of

“4000”, the postal code does not exist in reality. Thus, the foreign key is wrong. In case

of the postal code “40027”, the value exists in reality. Hence, the referenced table

Customer misses a tuple.

Incorrect / outdated reference: Between two entities, an attribute comprises foreign

keys that refer to wrong tuples in the referenced entity (cf. Leser & Naumann, 2007, p.

320; Oliveira, Rodrigues, & Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques, et

al., 2005, p. 6; Rahm & Do, 2000, p. 4). E.g. the attribute ZipCode of the table

Customer comprises the value “51111” that refers to the tuple for “Cologne” in the

table LocationZipCodes, although the correct reference would be the zip code

“40027” referring to the tuple for “Düsseldorf”. An incorrect reference may also be

caused when a relationship, such as an address of a customer, has changed over time

and was not updated in the data source. In this case, we also talk about an outdated

reference (cf. Oliveira, Rodrigues, Henriques, et al., 2005).

Conditional Missing Values: Some attributes require a value only in certain contexts,

i.e. when other attributes obtain certain values (cf. Fürber & Hepp, 2011b). E.g. the

attribute state may only require a value when the attribute country has the value

“USA”.

Misfielded values: Misfielded values are correct values that do not fit to the intension

of their attribute, but to another attribute of the same tuple (cf. Leser & Naumann, 2007,

p. 320; Rahm & Do, 2000, p. 4). E.g. the attribute city comprises the value “Germany”

which should be located in the attribute country of the same tuple.

Heterogeneity of syntaxes: Attribute values may represent the same real-world entity

or state, but use different syntactic representations (cf. Kashyap & Sheth, 1996, p. 287;

Leser & Naumann, 2007, p. 321; Oliveira, Rodrigues, & Henriques, 2005, p. 9; Oliveira,

Rodrigues, Henriques, et al., 2005, p. 7; Rahm & Do, 2000, p. 4). E.g. there are several

different possibilities to represent the current date, for example in the format

“dd.mm.yyyy” or in the format “mm/dd/yyyy". Heterogeneity of syntaxes also

encompasses the representation of attribute states via cryptic values or codes. In this

context, it is also called heterogeneity of representation (cf. Leser & Naumann, 2007,

p. 321).

32

Heterogeneity of units of measurement: The same real-world concept may be

represented using different scales (cf. Kashyap & Sheth, 1996, p. 287; Leser &

Naumann, 2007, p. 321; Oliveira, Rodrigues, & Henriques, 2005, p. 10; Oliveira,

Rodrigues, Henriques, et al., 2005, p. 7; Rahm & Do, 2000, p. 4). E.g. the weight of an

object may be represented in one data source using grams, while another data source

represents the weight in pounds. Heterogeneity of units of measurement is also known

as a data scaling conflict (Kashyap & Sheth, 1996, p. 287).

Data granularity mismatch: Two or more attributes coming from different sources

may refer to the same entity, but on different levels of granularity (cf. Leser & Naumann,

2007, p. 322; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8; Rahm & Do, 2000, p.

4). Data granularity mismatches typically occur when data with different aggregation

levels are integrated (cf. Leser & Naumann, 2007, p. 322; Rahm & Do, 2000, p. 4).

E.g. the table DepartmentSalaries of data source one contains salary values

aggregated to departments, while another table of data source two contains salary

values detailed on the level of individual employees. Hence, the data cannot be easily

compared or joined, since they contain summarized values on different levels of detail.

Data granularity mismatches are also known as aggregation or generalization conflicts

(Kashyap & Sheth, 1996, p. 291f.).

Default value conflicts: Different data sources may assign different default values for

semantically similar attributes in absence of the real-world information (Kashyap &

Sheth, 1996, p. 287). E.g. the attribute LegalAge of data source one may have the

default value “18” to indicate adults, while data source two may assign the default value

“21” for the same purpose.

3.3.3 Problems of Object Instances

In the following, we describe data quality problems that are related to object instances

and tuples.

Figure 14: Instance-related quality problems

Inconsistent duplicates
Approximate duplicates
Contradictory relationships

Heterogeneity in cardinality
Heterogeneity in time reference
Source specific identifiers

Single-Source Integration-Specific

33

Inconsistent duplicates: Two or more object instances that represent the same real-

world entity are called inconsistent duplicates, when their attribute values represent

contradicting states (cf. Leser & Naumann, 2007, p. 321; Oliveira, Rodrigues, &

Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8; Rahm & Do,

2000, p. 4). E.g. tuple one (“135”, “Johnson, Peter”, “SSN123454321”) and tuple

two (“19”, “P. Johnson”, “SSN123456789”) are inconsistent duplicate instances,

assuming that the tuples represent the same person who can only have one social

security number (SSN).

Approximate duplicates: Approximate duplicates are duplicate instances that do not

have attribute values representing contradicting states (Oliveira, Rodrigues, &

Henriques, 2005, p. 7f.; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8). E.g. tuple

one (“135”, “Johnson, Peter”, “Main Street 1010”, “New York City”) and

tuple two (“19”, “P. Johnson”, “Main St. 1010”, “NYC”) are approximate duplicates,

since they do not contain values for the same attribute that represent a contradicting

real-world state. Approximate duplicates may also have identical values for their

attributes with exception of the technical identifier, e.g. the primary key, which uniquely

identifies the tuple. Note that approximate duplicates may evolve into inconsistent

duplicates if the data about one instance is updated while the second one is kept

unchanged.

Contradictory relationships: Contradictory relationships occur when two or more

relationships between object instances are contradictory (cf. Oliveira, Rodrigues, &

Henriques, 2005; Oliveira, Rodrigues, Henriques, et al., 2005). E.g. if product B is a

subclass of product A, then product A cannot be a subclass of product B at the same

time. Depending on the design and the data storage medium, contradictory

relationships can also be located in the data model or ontology.

Heterogeneity in cardinality: Relationships between instances may have different

cardinality restrictions in different sources (cf. Leser & Naumann, 2007, p. 77). E.g. in

data source one the relationship between department and employee may always be

one to one, i.e. every employee can work for exactly one department, while in data

source two an employee may work for several departments.

Heterogeneity in time reference: Tuples of two or more sources may refer to different

points in time. Hence, the tuples might contain different values representing different

historical states of characteristics of an entity (Kashyap & Sheth, 1996, p. 290; Rahm

34

& Do, 2000, p. 4). E.g. data source one contains a tuple for “Peter Miller” with

family status “single”, while data source two contains family status “married” for the

same person. In our example, data source one refers to a point in time before the

marriage of Peter Miller. Thus, the data sources refer to a different time resulting in

different values. As illustrated, heterogeneity in time references can come along with

at least one outdated value.

Source-specific identifiers: Data sources typically use their own identifiers in their

tuples to uniquely identify an entity. Thus, semantically identical entities represented

in two or more data sources often have different identifiers in each source (cf. Kashyap

& Sheth, 1996, p. 288; Rahm & Do, 2000, p. 4). E.g. the table EMPLOYEE1 from data

source one contains the identifier “1234567890”, while table EMPLOYEE2 from data

source two contains the identifier “employee_123421” for the same employee. This

increases the risk of introducing inconsistencies by future operations on the data.

3.3.4 Quality Problems of Data Models

In this section, we describe quality problems that typically occur in data models, i.e. at

the schema level. An important contribution to the development of data models was

made by E.F. Codd in 1970 when he initially proposed a relational model for databases

(cf. Codd, 1970). According to Codd, the relational model aimed to describe “data with

its natural structure only – that is without superimposing any additional structure for

machine representation purposes” (Codd, 1970, p. 377). Therefore, the relational

model should allow changes to the data structure without impairing application

programs (cf. Codd, 1970, p. 377f.). Codd argued that a data model is a combination

of (1) “a collection of data structure types […]”, (2) “a collection of operators or

inferencing rules […]” and (3) “a collection of general integrity rules […]” (Codd, 1980,

p. 112). In 1976, Chen argued that the relational model “can achieve a high degree of

data independence, but it may lose some important semantic information about the

real world” (Chen, 1976, p. 9). Thus, Chen proposed the entity-relationship model

which sees data models as representations of entities and relationships (cf. Chen,

1976, p. 9). The entity-relationship model has been widely used for several decades

as a popular diagramming technique to design data models (cf. Simsion & Witt, 2005,

p. 65). Our understanding of the term “data model” is based on Chen’s entity-

relationship model. Therefore, we regard a data model as an independent artifact that

35

defines the entities, their properties and relationships between the entities of a certain

domain as a structure for data storage (cf. Chen, 1976, pp. 10-19; Simsion & Witt,

2005, p. 4; West, 2011, p. 5). Hence, quality problems at this level relate to the

structure in which the data is being stored, not to data values. However, the proper

design of data models may be relevant to achieve high quality also on object instance

or on attribute value level because data models dictate the way in which data relate to

each other and how they are used (cf. West, 2011, p. 5). Since data models are costly

to change due to their integration with interfaces for data access and storage,

workarounds, such as the misuse of conceptual elements, are sometimes used to

avoid changes to the data model (cf. West, 2003, p. 1). Hence, a well-thought and

approximately complete design of the data model may mitigate the necessity of such

workarounds that cause poor data quality or misinterpretations on instance level.

Figure 15: Quality problems of data models

Outdated conceptual elements: Conceptual elements, i.e. attributes, tables,

relationships, and constraints may become obsolete over time (cf. Hogan et al., 2010,

p. 6). E.g. the table Groceries of an information system of a retail company is

outdated, since the company has a new table Products in which all the products of

the company shall be stored. Thus, if some groceries are still only stored in the table

Groceries, then table Products will not be complete.

Missing conceptual elements: Sometimes conceptual elements may be missing in

the data model, e.g. when a new kind of information becomes relevant that has not

been represented in the data model before. Thus, attributes, tables, or other

conceptual elements may be missing (cf. Kashyap & Sheth, 1996, p. 289).

Misuse of conceptual elements: Existing schema elements may sometimes be used

to store data values that do not fit to the intension of the schema element due to

misinterpretation of the semantics of the schema element or due to inflexibility to

extend existing schemata (cf. Hogan et al., 2010, p. 8). E.g. the attribute lastname

may be misused to store names of organizations in the Customer table.

Outdated conceptual elements
Missing conceptual elements
Misuse of conceptual elements
Overlapping concepts / Role conflicts

Heterogeneity of integrity constraints
Schema isomorphism conflict
Schematic descrepancy

Single-Source Integration-Specific

36

Overlapping concepts / role conflicts: A real-world entity can be part of two or more

different real-world concepts at the same time. The concepts may have very different

semantics, but due to the membership of the individual to both concepts, they are not

disjunctive (cf. Leser & Naumann, 2007, p. 75f.). E.g. a soccer player can also be

coach, but the data model design only allows the membership of each entity in one

class. In many cases, this shows a lack of normalization of the database schema. For

normalization in database schemata, see Simsion and Witt (Simsion & Witt, 2005, p.

391ff.).

Heterogeneity of integrity constraints: The constraints on two or more semantically

similar attributes can be inconsistent with each other (cf. Kashyap & Sheth, 1996, p.

287; Leser & Naumann, 2007, p. 77; Rahm & Do, 2000, p. 4). E.g. the attribute age in

data source one requires values higher than 18, while the attribute age in data source

two requires values higher than 21.

Schema isomorphism conflict: Semantically similar real-world concepts can be

represented by a different number of attributes in different data sources (cf. Kashyap

& Sheth, 1996, p. 288; Leser & Naumann, 2007, p. 70ff.). E.g. employee data may be

represented in data source one by a table Employee with attributes employee_ID,

name, and gender, while in data source two the same information is represented

within a table Employee with attributes employee_ID, name, male and female.

Please see the following tables for an illustration of the above example.

Table 3: First example schema "employee"

Employee_ID Name Gender

1 Peter Smith Male

2 Jennifer Myer Female

Table 4: Second example schema "employee"

Employee_ID Name Male Female

1 Peter Smith X

2 Jennifer Myer X

37

Schematic discrepancy: If the schematic differences are not only related to the

amount of attributes, but the same information is also represented by different schema

elements, i.e. data values, attributes, or tables, then we can call this a schematic

discrepancy (cf. Kashyap & Sheth, 1996, p. 291; Leser & Naumann, 2007, p. 70ff.;

Rahm & Do, 2000, p. 4). According to Kashyap and Sheth (Kashyap & Sheth, 1996, p.

291f.), there are three different types of schematic discrepancies, i.e.

- data value attribute conflicts,

- attribute entity conflicts and

- data value entity conflicts.

Data value attribute conflicts occur “when the value of an attribute in one database

corresponds to an attribute in another database” (Kashyap & Sheth, 1996, p. 291).

Figure 16 shows an example of a data value attribute conflict between two tables of

two different data sources.

Figure 16: Example of a data value attribute conflict

Attribute entity conflicts occur “when the same entity is being modeled as an attribute

in one database and a relation in another database” (Kashyap & Sheth, 1996, p. 291f.).

Figure 17 shows an example of an attribute entity conflict.

38

Figure 17: Example of an attribute entity conflict

A data value entity conflict occurs “when the value of an attribute in one database

corresponds to a relation in another database“ (Kashyap & Sheth, 1996, p. 292).

Figure 18: Example of a data value entity conflict

3.3.5 Common Linguistic Problems

In this section, we explain the most common linguistic problems that may cause data

quality problems in attribute values, object instances, and data models independent of

a specific scenario.

Existence of synonyms: Two or more values, instances, or names of conceptual

elements can be identical in meaning, but denoted with different terms (Kashyap &

Sheth, 1996, p. 286f.; Leser & Naumann, 2007, p. 74ff.; Oliveira, Rodrigues, &

Henriques, 2005; Oliveira, Rodrigues, Henriques, et al., 2005; Rahm & Do, 2000, p.

39

4). E.g. the attribute occupation contains the synonymous values “coach” and

“trainer” which represent the same real-world occupation. Synonymous values,

instances, and conceptual elements are especially problematic during data integration

and aggregation, since the synonym relationships must be known in order to produce

precise results.

Existence of homonyms and polysemes: Two or more values, instances, or names

of conceptual elements can be denoted with the same term, but represent a totally or

partly different real-world entity (Kashyap & Sheth, 1996, p. 286f.; Leser & Naumann,

2007, p. 74ff.; Oliveira, Rodrigues, & Henriques, 2005; Oliveira, Rodrigues, Henriques,

et al., 2005; Rahm & Do, 2000, p. 4). E.g. the attribute name could indicate a

customer’s name, a product’s name, a vendor’s name, etc. Homonyms may, therefore,

easily lead to data quality problems as a consequence of misinterpretations. The term

“polyseme” is sometimes used interchangeably for homonym, although it has a slightly

different meaning. A polyseme is a word or a sign that has two or more different

senses, but the senses are related to each other in opposite to homonyms which can

have unrelated meanings (Klein & Murphy, 2002, p. 548). An example of a polyseme

is the word “paper” which can (1) be the surface we use to write down words or (2) be

an essay which is also written on paper (cf. Klein & Murphy, 2002, p. 548f.).

Existence of hypernyms: A word is a hypernym to another word if it represents a

more general meaning than the second one (cf. Leser & Naumann, 2007, p. 75). E.g.

“Instructor” is a hypernym to both “professor” and “teacher”. Hypernymy can be

particularly relevant for DQM among pairs of names for tables, attributes, entities, and

values. It is then e.g. difficult to identify the proper semantic relationship in multi-source

scenarios. Also, it may happen that a database manager maps respective conceptual

elements with an equivalence relation in lieu of a proper subtype or type of relation,

which can hamper the proper interpretation of the original data at a later point. Data

granularity mismatches are frequently caused by the existence of hypernyms.

3.4 Data Quality in the Data Lifecycle

The data lifecycle can roughly be separated into data acquisition, data usage, and data

retirement as illustrated in figure 19 (cf. Redman, 1996, p. 217). Data quality problems

may occur in any of these phases. Hence, activities for data quality management are

40

required throughout the entire data lifecycle. In the following, we describe each phase

according to the understanding underlying this thesis and emphasize the role of data

quality management for each phase.

Figure 19: Data lifecycle (cf. Redman, 1996, p. 217)

3.4.1 Data Acquisition Phase

Data acquisition relates to the problem of (1) generating new or (2) retrieving existing

data and storing it onto some kind of medium, e.g. in a spreadsheet, relational

database, or triplestore of the Semantic Web (cf. Olson, 2003, p. 44f.; Redman, 1996,

pp. 219-222). Data can thereby be generated manually, e.g. via forms, or

automatically, e.g. via sensors or algorithms that derive new data from existing data.

Also, existing data may be retrieved via data migration and extraction tools. During its

retrieval, data may be filtered or transformed. Hence, during data acquisition data may

be filtered according to their quality or transformed to cleanse incorrect data before

passing it to data usage (cf. English, 1999, p. 241). This latter improvement possibility

can be used in cases where existing data is transferred to another system and the

source data cannot directly be manipulated, e.g. when data manipulation in the source

is not possible or not desired. But since data quality problems are not removed in the

data source, data cleansing during data acquisition may cause the recurrence of the

same problems. Hence, data should better be corrected in the data source if possible.

41

Moreover, users of the target system will not know about quality problems in the source

data, if data cleansing transformations during data retrieval are not explicitly

communicated. During data generation, data may be validated prior to its storage, e.g.

through algorithms and constraints in forms that check the entered data for

conformance with specified criteria. However, simple constraints, such as mandatory

field constraints in a form, may easily be bypassed, e.g. by entering imaginary values.

Thus, constraints can also cause new data quality problems. Besides constraints and

cleansing capabilities, it is also important to provide transparency about quality

problems and the overall quality state of the retrieved data sources as a foundation for

data cleansing activities and for the selection of appropriate data sources.

3.4.2 Data Usage Phase

In the usage phase, data is used as an information source for humans and machines

in operational or decision-making processes (cf. Redman, 1998, p. 80f.). Data may be

altered, filtered, enriched or aggregated to derive additional information in this phase

(cf. Redman, 1996, p. 222f.). Moreover, the used data may again be retrieved for

distribution to other systems in cases where centralized storage for data usage is not

possible or not desired (cf. Redman, 1996, p. 223). In other words, the same data may

sometimes be stored redundantly in different systems for data usage or used by other

systems to derive new data, which causes additional data quality problems (cf. English,

1999, p. 149f.). As illustrated in section 1.2, a lack of awareness about quality problems

in the used data may result in incorrect or incomplete information for operations or

decision-making processes. In the case of data usage by multiple different agents, a

single data quality problem may cause multiple different consequent problems (cf.

Loshin, 2009, p. 205f.). Therefore, the quality state of data should be frequently

analyzed during the data usage phase. Moreover, the multiple uses of data may come

along with (1) dependencies that need to be considered before cleansing data and (2)

different quality expectations. E.g. interfaces that use data to derive new data may

expect a data value among the used data that is considered to be deficient from

another perspective. Hence, corrections of the deficient value may cause new

problems without previous communication to all data users.

42

3.4.3 Data Retirement Phase

Finally, data retirement encompasses deleting, deactivating and archiving data (cf.

Loshin, 2009, p. 223). This phase is often entered when data is not used anymore or

system performance slows down due to huge amounts of data to be processed (cf.

Loshin, 2009, p. 223). Data that shall be archived is moved to another repository and

may be retrieved again for data usage when required. In this case, the characteristics

of the data retrieval and data usage phase apply in principle. However, it must be

stressed that it may not be appropriate to alter archived data, since it may damage

legal evidence. Therefore, data cleansing activities may not always be feasible for

retired data.

3.4.4 Data Quality Management throughout the Data Lifecycle

All phases of the data lifecycle, but especially the acquisition and usage phase, require

core data quality management capabilities in order to minimize the negative impact of

poor data quality on operations and decision making processes, namely

- data quality monitoring reports to identify instances with data quality

problems

- data quality assessment reports to provide transparency about the quality

state of a data source

- data cleansing functionalities to remove data quality problems

- data constraints, i.e. data quality rules that can be automatically applied by an

information system to avoid the generation of data quality problems

- requirements management to manage the quality criteria used for data quality

assessment, monitoring, and data cleansing

A special focus of data quality management lies in the acquisition phase where data

quality problems can be identified and corrected before deficient data impacts

operations and decisions. However, a narrow focus of data quality management on the

data acquisition phase disregards the facts that (1) not all data quality problems may

be discovered during the data acquisition phase, (2) quality requirements may change

during data usage, (3) data may be altered during its usage, and (4) data may become

outdated. In cases (2) to (4), previously correct data may change to an incorrect state

43

while remaining in a system for data usage. Hence, data quality management activities

should not only be focused on data acquisition, but cover the whole data lifecycle, and

in particular cater for the fact that there may exist multiple contexts of usage for the

same data, which may require diverse and even conflicting data management

activities.

This thesis is mainly concerned with the management of data quality during data

usage, i.e. when data is already stored on a medium. This is motivated by the

heterogeneity of data quality requirements in this stage, and the context dependence

of those requirements. Also, from the perspective of value chains, the point and time

of data entry will frequently be outside the sphere of influence of the entity actually

using the data.

3.5 Data Quality Management Activities

Several methodologies have been developed which attempt to describe a procedure

of how data quality can be continuously improved. In the following, we will describe the

data quality management activities of the two most popular methodologies in data

quality management, namely Total Information Quality Management (TIQM) and Total

Data Quality Management (TDQM) (English, 1999; Wang, 1998). After describing the

operational activities of these two methodologies in sections 3.5.1 and 3.5.2, we

compare both methodologies and identify common activities (section 3.5.3) which

provides the basis for the design to meet the requirements and opportunities of the

novel, ontology-based data quality management approach developed by this thesis.

3.5.1 Total Information Quality Management (TIQM)

The Total Information Quality Management (TIQM) methodology (formally known as

Total Quality Data Management / TQDM) is a comprehensive data quality

management methodology that aims to integrate data quality management and

beneficial behavioral patterns into the culture of an organization (cf. English, 1999, p.

69f.). It was originally designed for data warehouses, i.e. reporting systems, but it is

also applicable to other information systems (Batini & Scannapieco, 2006, p. 174).

Besides operational processes it also contains guidelines to create an information

44

quality management culture within an organization, i.e. to raise awareness about the

importance of high quality information for the organizational success (cf. English, 1999,

p. 71f.). This thesis is aiming to provide artifacts that support operational data quality

managing activities. Therefore, we focus on the operational processes of TIQM rather

than the tools and methodologies to establish an information quality culture in an

enterprise.

Figure 20: Total Information Quality Management (cf. English, 1999, p. 70)

The operational processes of the TIQM methodology start with an analysis of the

quality of information architecture and data definitions, i.e. data about data’s “names,

definitions, valid value sets, and pertinent business rules”5 (English, 1999, p. 72). TIQM

sees data definitions as “product specifications” of data which are a prerequisite before

information quality can be assessed (cf. English, 1999, p. 72). Thus, TIQM’s first

process group aims to “assess data definition and information architecture quality” with

the following process steps (English, 1999, pp. 72-74):

- Identification of the organization’s minimal quality requirements regarding their

data definitions as the basis for the generation of technical metrics,

- selection of important information groups for the assessment,

- identification of stakeholder categories of the selected information groups , and

- assessment of the quality of (1) data definitions, (2) information architecture /

database design, and (3) customer satisfaction with data definitions.

5 Business rules in this context are policies that govern business actions that result in constraints on
data relationships and values.

45

The identified quality problems of data definitions and information architecture serve

as input for the “improve information process quality” process group which is described

later on in this section. After the quality of data definitions was checked and their quality

is regarded as sufficient, the quality of information itself is assessed with the following

processes of the “assess information quality” process group, which includes the

following steps (English, 1999, pp. 74-76):

- Reconfirmation or identification of information groups that shall be analyzed,

- establish information quality objectives and measures,

- identification of the “information value and cost chain” of the relevant information

groups,

- identification of the objects for the assessment, i.e. files, databases, or

processes,

- identification of appropriate reference sources for data validation,

- extraction of a random sample of the data to be assessed,

- measurement of information quality based on the sampled data via automated

or physical assessment6, and

- presentation and interpretation of assessment results.

The third process group “measure nonquality information costs” provides guidelines

for measuring the costs of poor quality data and contains the following subtasks

(English, 1999, p. 76f.):

- Identify business performance measures / business drivers that may be effected

by information quality problems, such as profits, customer satisfaction, or costs,

- analyze cost of information, e.g. cost for infrastructure, value delivery, and cost-

adding developments,

- determination of costs resulting from data quality problems including cost of

caused process failures,

- identification of customer segments for customer lifetime value calculation,

- calculation of customer lifetime value as basis of lost opportunity costs, and

- calculation of missed and lost opportunity cost resulting from information quality

problems (Nonquality).

6 Automated assessment is assessment through data analysis; physical assessment is assessment
through comparison with real-world objects.

46

The improvement processes of TIQM are organized into two process groups, namely

“reengineer and cleanse data” and “improve information process quality”. The

“reengineer and cleanse data” process group contains the following subtasks (English,

1999, pp. 77-80):

- Identification of data sources that require data cleansing or reengineering,

- extraction and analysis of the relevant source data for anomalies and patterns,

- data standardization, i.e. the reduction of synonymously used data values and

patterns,

- manual or automated correction or completion of data,

- consolidation of duplicate data,

- analysis of data defect types,

- data transformation to target state (data warehouse-specific),

- (re-)calculation of aggregates and derivations (data warehouse-specific), and

- audit and control of Extract-Transform-Load (ETL-)processes (data warehouse-

specific).

The “improve information process quality” process addresses the analysis and

correction of deficient information processes in order to resolve root causes for poor

data quality and, therefore, covers the following activities (English, 1999, p. 80f.):

- Initiation of process improvement activities including problem definition,

identification of relevant processes, and establishment of a process

improvement team,

- creation of an improvement plan including the identification of the root causes,

- implementation of changes for process and information quality improvement,

- effectiveness assessment of implemented changes, and

- standardization and enterprise-wide implementation of effective changes.

Due to the completeness and the level of detail, it may not make sense to implement

all processes of TIQM (cf. Batini & Scannapieco, 2006, p. 200). Instead, many of the

described activities may be optional in certain settings, e.g. when the costs of poor

information are unnecessary to assess because data quality problems could cause so

severe damage that avoiding them is not based on a cost / benefit rationale. While the

“reengineer and cleanse data” process group of TIQM may perfectly fit the needs of

data warehousing systems, it cannot serve as a guideline for data cleansing in

47

transactional systems, since transactional data must remain audit-proof and cannot

always be easily updated when already used in transactions.

3.5.2 Total Data Quality Management (TDQM)

Total Data Quality Management (TDQM) is a data quality management methodology

invented by Richard Wang in 1998 (Huang et al., 1999, pp. 16, 33-83; Lee, 2006;

Wang, 1998). One core idea of TDQM is that it applies the notion of a Deming cycle

(see Deming, 1986) and the approaches from Total Quality Management (TQM, see

Juran, 1988) to the task of data quality management. Same as the Deming cycle, the

TDQM cycle is also structured into four phases, namely (1) the definition phase, (2)

the measurement phase, (3) the analysis phase, and (4) the improvement phase

(Wang, 1998, p. 60).

During the definition phase the characteristics of so called information products (IP)7

are captured, such as its information requirements8, its core information objects9 and

components, and its relationships (cf. Wang, 1998, p. 61). Moreover, the importance

of data quality dimensions in the perception of IP suppliers, manufacturers, consumers,

and managers are identified via surveys that capture a first judgment of the quality of

the underlying IP (cf.Wang, 1998, p. 61f.). Furthermore, the information manufacturing

system is documented via a so called “information manufacturing analysis matrix”

(Ballou et al., 1998, p. 472) as a foundation for further analysis and improvement (cf.

Wang, 1998, pp. 61-63).

In the measurement phase, data quality metrics are initially developed. The metrics

need not necessarily directly deal with data, but also with the production or access

process, e.g. who updated how much data or how many unauthorized accesses

occurred (cf. Wang, 1998, p. 64). The developed metrics are implemented in a system

and applied to the data in order to periodically measure an IP’s data quality. Based on

the measurement results, the root causes of the identified data quality problems are

analyzed during the analysis phase (Wang, 1998, p. 64).

7 An information product is the output of an information manufacturing system. From a more technical
perspective, an information product is “a collection of data element instances” (Lee, 2006, p. 126) where
a data element is “the smallest unit of named data” Lee (2006, p. 137), e.g. the date of birth of a customer
in a customer database.
8 Information requirements are called “functionalities” in the referenced literature.
9 Core information objects are called “basic units” in the referenced literature.

48

Figure 21: Fundamental stages of the TDQM methodology by (Wang, 1998)

Also the metrics are subject for further analysis, since they may occasionally need to

be adjusted, extended, or improved (cf. Wang, 1998, p. 64f.). Finally, the identified

causes of quality problems need to be removed during the improvement phase.

Therefore, it is necessary to identify the required improvements, e.g. the adjustment of

information and workflows with its infrastructure or the modification of IP characteristics

according to business needs (cf. Wang et al., 2001, p. 14). The activities of the

improvement phase are again supported by the “information manufacturing analysis

matrix”, which has been initially created during the definition phase (Wang, 1998, p.

65). Moreover, a framework developed by Ballou and Tayi (see Ballou & Tayi, 1989)

can be used to support decisions related to the allocation of resources for data quality

improvement (Wang, 1998, p. 65).

Although often cited, the TDQM methodology as described in (Wang, 1998) is not

directly applicable to practical settings as discovered by Wijnhoven, et al. (Wijnhoven

et al., 2007). In detail, TDQM in its original version has the following weaknesses (cf.

Wijnhoven et al., 2007, p. 936):

- Several data quality management activities are missing pointers or details to

appropriate toolsets or examples how to apply the methodology in practical

settings,

- important (but mostly obvious) activities are missing,

49

- certain activities, such as the definition of information manufacturing systems,

are described as mandatory, although they may already exist in other forms or

they may not be necessary since the root cause is not located within the

respective system.

3.5.3 Comparison of Methodologies

Both, TIQM and TDQM, share the same objective, i.e. to provide a methodology to

continuously improve the quality of data. While TIQM was strongly influenced by

practical experience, TDQM is a result of several years of research. However, both

share in principle the following core activities (cf. Batini & Scannapieco, 2006, p. 171f.):

- identification and definition of quality-relevant metadata and requirements,

- information quality measurement and assessment,

- analysis of the root causes of identified data quality problems, and

- resolution of the identified root causes.

Moreover, both methodologies assume a continuous execution of data quality

management activities. Besides these commonalities, TDQM also proposes to identify

and document the information production process and the characteristics of

information products. The more detailed TIQM also considers quality assessment of

metadata and information architecture, as well as the calculation of costs resulting from

poor data quality. Furthermore, TIQM clearly differentiates between the improvement

of data, i.e. data cleansing, and the improvement of processes. A comparison of the

process steps of both methodologies can be found in Appendix A.

3.6 Role of Data Requirements in DQM

The International Organization for Standardization (ISO) defines a requirement as a

“need or expectation that is stated, generally implied or obligatory” (ISO, 2009). We

adapt this definition for the data domain and define the term “data requirement”

accordingly as needs and expectations on data that are stated, generally implied or

obligatory. During the data quality management process, data requirements play a

crucial role. They are first captured and formulated during the definition phase (cf.

50

English, 1999, pp. 119-121; Wang, 1998, p. 61). Subsequently in the measurement

phase, they are converted into metrics to generate reports about the deficient data, i.e.

data instances that violate requirements, and reports with dimensional quality scores

(cf. Wang, 1998, p. 64). In other words, the measurement phase uses the requirements

to identify and count requirement violations. The identified requirement violations are

then analyzed to find the root causes of the requirement violations during the analysis

phase (cf. Wang, 1998, p. 64f.). Finally, in the improvement phase the requirement

violations are resolved to rebuild the state according to the requirement (cf. Wang,

1998, p. 65).

Consequently, the management of data requirements is the central and most critical

part of data quality management, since they are used to formally express the desired

state of data throughout the whole management cycle. In other words, data

requirements represent the knowledge about the characteristics that constitute high

quality data. Consequently, if data requirements are in an unnoticed incomplete or

incorrect state, then they will most likely lead to the generation of poor data. In data

quality literature, data requirements are also known as data quality rules (cf. Chiang &

Miller, 2008; Fürber & Hepp, 2011a; Loshin, 2001).

3.6.1 Generic Data Requirement Types

Data quality problems can be seen as non-fulfillment of data requirements (cf. ISO,

2005, p. 27). Therefore, we can use the typology of generic data quality problem types

from section 3.3 to derive generic data requirement types. Table 5 contains a list of the

derived generic data requirements and its corresponding data quality problem types

that represent a violation of the requirement. In the following, we define each generic

data requirement type and provide an illustrating example. A first version of the generic

data requirements typology was already published in (Fürber & Hepp, 2011a) and

(Fürber & Hepp, 2011b).

Property completeness requirements: Property completeness requirements are

data requirements that specify the need for data values in a specific attribute for all

instances or for a specific subset of instances of a table (cf. Leser & Naumann, 2007,

p. 320; Loshin, 2001, pp. 172-174; Oliveira, Rodrigues, & Henriques, 2005, p. 4;

Oliveira, Rodrigues, Henriques, et al., 2005, p. 3; Rahm & Do, 2000, p. 4). Example:

51

The attributes indicating the latitude and longitude must exist and have values for all

instances of table Location to facilitate navigation to each location.

Syntactic requirements: Syntactic requirements are data requirements that define

the type of characters and/or the pattern of attribute values (cf. Loshin, 2001, p. 177;

Oliveira, Rodrigues, & Henriques, 2005, p. 4f.; Oliveira, Rodrigues, Henriques, et al.,

2005, p. 3). Example: Values for the attribute country-name must only contain

letters.

Legal value requirements: Legal value requirements are data requirements that

explicitly define the allowed values for a certain attribute (cf. Loshin, 2001, p. 174;

Oliveira, Rodrigues, Henriques, et al., 2005, p. 4). Example: The property gender

must only contain the values “male”, “female”, “m”, or “f”.

Legal value range requirements: Legal value range requirements are data

requirements that explicitly define the allowed value range for a specific numeric

attribute (cf. Loshin, 2001, p. 176). A value range contains an upper and / or lower limit.

Example: The attribute population must only contain non-negative values.

Illegal value requirements: Illegal value requirements are data requirements that

explicitly define values that must not be assigned for a certain attribute (cf. Loshin,

2001, p. 176). Example: The attribute EAN13 may not contain the value

“1234567890123”.

Functional dependency requirements: Functional dependency requirements are

data requirements that represent the dependencies between the values of two or more

different attributes within a table or across different tables (cf. Loshin, 2001, p. 183f.

and 189f.). Example: The values for the attribute zip-code is dependent to the values

for the attribute city, county, and country, since certain cities of certain

counties in certain countries have specific zip-codes.

Unique value requirements: Unique value requirements are data requirements which

define that the values of a specific attribute must not exist more than once in a specific

table (cf. Leser & Naumann, 2007, p. 319; Oliveira, Rodrigues, & Henriques, 2005, p.

6; Oliveira, Rodrigues, Henriques, et al., 2005, p. 4; Rahm & Do, 2000, p. 3). Example:

The attribute supplierID may only contain unique numbers.

52

Duplicate instance identification requirements: Duplicate instance identification

requirements are data requirements that specify the attributes which (in combination)

uniquely identify an object (cf. Leser & Naumann, 2007, p. 321; Oliveira, Rodrigues, &

Henriques, 2005, p. 8; Oliveira, Rodrigues, Henriques, et al., 2005, p. 8; Rahm & Do,

2000, p. 4). Example: The values of the attributes zip-code, city-name, county,

state, and country uniquely identify a city. Instances with identical values for these

attributes can be considered as duplicates.

Update requirements: Update requirements are data requirements that specify the

maximum duration tolerated without any updates of an instance (cf. Oliveira,

Rodrigues, Henriques, et al., 2005, p. 3). Example: Instances of the table

currency_rates have to be updated every 24 hours to stay timely.

Expiration requirements: Expiration requirements are data requirements which

define that an instance may not exceed its expiration date (cf. Oliveira, Rodrigues,

Henriques, et al., 2005, p. 3). Example: Instances of the table Offer are outdated, if

its value for the attribute validThrough is elder than the current date and time

It is important to note that the above data requirement types focus on instance data.

Generic requirement types for the quality of schemata may also exist, but are not

subject of this thesis.

53

Table 5: Generic data requirements as published in (Fürber & Hepp, 2011a, p. 3; 2011b, p. 3)

Data Requirement Data Quality Problem Type Example

Property
completeness
requirements

Missing values, conditionally
missing values

Attributes latitude and
longitude must have values in
table Location to be able to
navigate to each location.

Syntactic
requirements

Syntax violations, misspelling /
mistyping errors, Embedded
values, imprecise values

The attribute country-name
must only contain letters and no
numbers.

Legal value
requirements

Syntax violations, misspelling /
mistyping errors, embedded
values, imprecise values, false
values, meaningless values,
misfielded values

The attribute gender must only
contain the values “male”,
“female”, “m”, or “f”.

Legal value range
Requirements

Out of range values,
meaningless values, false
values

The attribute population must
only contain non-negative values.

Illegal value
requirements

False values, meaningless
values, misspelling / mistyping
errors

The attribute gender may never
contain the value “mail”.

Functional
dependency
requirements

False values, referential
integrity violations, incorrect
references, contradictory
relationships

The attribute city is always
dependent to the value for the
attribute country, since certain
city names only exist in certain
countries.

Unique value
requirements

Unique value violations Each value for the attribute ISBN
in instances of table Book may
not occur more than once.

Duplicate instance
identification
requirements

Inconsistent duplicates,
approximate duplicates

Instances with the same value for
the attribute ISBN and instances
with texts that have a similarity
greater than 90 % can be
considered as duplicates.

Update requirements Outdated values Instances of the table Quote are
outdated, if their last modification
is more than two years ago.

Expiration
requirements

Outdated values Instances of the table Quote are
outdated, if their value for the
attribute validUntil is prior to
the current date and time.

54

3.6.2 Challenges Related to Requirements Satisfaction

From a practical perspective, the management and satisfaction of data requirements

involves at least three major challenges. The first challenge relates to the problem of

how to collect and express data requirements in an objective and unambiguous form

(cf. Loshin, 2001, p. 8f.). Knowledge about data requirements is usually distributed

across several sources (cf. Loshin, 2001, p. 8f.). For example sources for requirement

knowledge are individuals, e.g. data consumers, stakeholder groups, documents, legal

regulations, operations procedures, business policies, contracts, standards, or tasks.

Moreover, basic requirements may not be explicitly stated, but are indispensable for

satisfying user requirements (cf. Kano et al., 1984; Pohl et al., 2005, p. 181f.). In order

to be able to produce and deliver high quality data, it is necessary to gain a nearly

complete picture about the data requirements stemming from several of these sources.

To avoid ambiguous or imprecise statements, such as “the data must be timely” or “the

data must be accurate”, it is also necessary to guide knowledge workers during the

process of expressing data requirements. Pohl et al. (Pohl et al., 2005, p. 198) propose

to use a requirements modeling language for the proper representation of

requirements.

The second challenge relates to the problem of conflicting requirements. Due to

heterogeneous needs and desires, requirements may contradict each other, so that it

is impossible to fulfill all of them at the same time (cf. Boehm & In, 1996; Nuseibeh,

1996). The severity of the problem increases with the degree of integration of an

information system, since integrated systems usually attempt to avoid data redundancy

and heterogeneity. Hence, in highly integrated systems, such for Enterprise Resource

Planning (ERP), it is necessary to harmonize the conflicting requirements (cf. Batini &

Scannapieco, 2006, p. 9). Otherwise one data element would have to satisfy multiple

different desired states which may sometimes not be possible (see figure 22 for an

illustration of the problem). It must be stressed that in some cases, it will be possible

to combine the quality perspectives to generate a harmonized picture that satisfies all

perspectives.

55

Figure 22: Challenges of requirement satisfaction

The third problem refers to the satisfaction of data requirements in which the current

state of data (status quo) shall match with the desired state of data, once the desired

state is known and harmonized (cf. Loshin, 2001, p. 282f.). This latter challenge is

closely related to the process of data quality improvement.

Figure 22 illustrates three major challenges of requirement satisfaction. Thus, from a

requirements perspective these three challenges should at least be addressed by

solution approaches that aim to improve data quality.

56

4 Semantic Technologies

As discussed in section 2.1 of this thesis we regard semantic technologies “as technical

approaches that facilitate or make use of the interpretation of meaning by machines”.

Ontologies are one of the core elements of semantic solutions. In the following, we

review the definition of ontologies and briefly describe their general characteristics.

Moreover, we discuss important concepts for ontology and knowledge representation

within the Semantic Web. After that, we explain ways to process knowledge

representations, such as reasoning, inferencing, and querying. Due to the focus of this

thesis, we finally describe how relational databases and ontologies are related.

4.1 Characteristics of an Ontology

In section 2.1, we derived the following definition for ontologies: Ontologies are “a

formal and sharable means to explicitly model some real-world phenomenon for

machine-readable knowledge representation”. According to this definition, ontologies

have at least five important characteristics, namely “formality, explicitness, being

shared, conceptuality and domain-specificity” (Grimm et al., 2007, p. 69f.). In the

following, we will explain the term “ontology” along these five characteristics.

Formality: With ontologies, real-world phenomena and their relationships among each

other can be described in a machine-readable way by using formal elements, i.e.

concepts, relationships, instances, and axioms (cf. Grimm et al., 2007, p. 88).

Ontologies are therefore used to structure and store knowledge about a domain of

interest. The degree of formality of ontologies and their expressiveness to represent

real-world elements varies from natural language descriptions to highly formal axioms

(cf. Smith & Welty, 2001, p. 6f.; Uschold & Gruninger, 1996, p. 98). In fact, there are

several different knowledge representation languages that offer modeling constructs

to represent different levels of formality. The degree of formality thereby influences the

ability of machine-interpretation of the represented knowledge. With increasing

formality, the machine interpretation capabilities rise, but also the complexity of

ontology development and maintenance increases.

Explicitness: While much knowledge usually relies in people’s minds, the

development of a materialized ontology documents expert knowledge in an explicit

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_4, © Springer Fachmedien Wiesbaden 2016

57

way. Moreover, the design of formal ontologies for machine interpretation promotes

the rigorous explicit representation of knowledge within the ontology and the

automated identification of misconceptions, i.e. inconsistencies within the ontology /

understanding of a domain (cf. Grimm et al., 2007, p. 70; Hepp, 2008b, p. 16).

Being shared: Ontologies are usually developed for a certain community, e.g. to

capture the knowledge of domain experts. For its successful adaptation it is, therefore,

necessary to achieve agreement about the ontology among large parts of the

community (cf. Grimm et al., 2007, p. 70). Once an agreement can be established, the

chance for widespread adoption of the ontology as a standardized means to represent

knowledge rises. Thereby ontologies may help to improve communication, enable

reuse of shared knowledge, and facilitate interoperability while keeping schematic

heterogeneity at a minimal level (cf. Gasevic et al., 2006, p. 48).

Domain specificity: Due to the complexity of representing concise knowledge and

achieving agreement, ontologies are usually limited to a certain domain (cf. Grimm et

al., 2007, p. 70). Despite domain specificity, ontologies can be combined with other

ontologies to represent knowledge of multiple domains.

Conceptuality: The represented knowledge within ontologies is organized into

concepts and relationships. The concepts and relationships can also be represented

in hierarchies so that different levels of abstraction may be represented while being

connected to each other. Instead of explaining individual phenomena, ontologies

provide a framework for as many tasks as necessary within the domain of interest

(Grimm et al., 2007, p. 70).

In summary, the use of ontologies for the representation of domain knowledge

promises the following benefits (cf. Hepp, 2008b):

- Reduction of ambiguity through the formal and explicit representation of

knowledge,

- conservation of implicit knowledge through explicit representation,

- knowledge sharing and reuse through the provision of a common vocabulary /

ontology,

- reduction of manual work through the reuse of shared knowledge,

- reduction of manual work through a formal, machine-interpretable knowledge

representation,

58

- automated inference of implicit facts through the formal representation of

knowledge,

- automated identification of misconceptions through the formal, explicit

representation of knowledge, and

- improved interoperability through the use of a common vocabulary / ontology.

Collections of actual instances that use the elements of ontologies to represent

knowledge are known as knowledge bases and should not be confused with ontologies

that provide the vocabulary to express knowledge (cf. Hepp, 2008b, p. 6). In the

following, we use the term “ontology” to name the schema of knowledge and the term

“knowledge base” to refer to an ontology-based representation of knowledge

instances.

4.2 Knowledge Representation in the Semantic Web

Ontologies and knowledge bases in Semantic Web architectures are typically

represented by using and combining elements of the “Resource Description

Framework” (RDF)10, “RDF Vocabulary Description Language” (which is also known

as “RDF Schema” (RDFS)11), and the “Web Ontology Language” (OWL)12. The

following subsections will give a brief overview about the most important language

constructs of the Semantic Web, namely resources and Uniform Resource Identifiers

(URI), the core RDF Syntax, and important vocabulary elements of RDF, RDFS, and

OWL related to the topics of this thesis.

4.2.1 Resources and Uniform Resource Identifiers (URIs)

Semantic Web languages describe resources and relationships among resources. The

term “resource” has thereby a very generic meaning which is not constrained to any

subset of concepts. A resource can be a Web site, a product, a document, a service,

a plan, a person, or anything else (cf. Berners-Lee et al., 2005). Resources are

10 Resource Description Framework (RDF), http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/
11 RDF Schema (RDFS), http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
12 Web Ontology Language, http://www.w3.org/TR/2004/REC-owl-guide-20040210/, recently updated
to OWL 2, http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

59

identified by Uniform Resource Identifiers (URIs) (Sauermann & Cyganiak, 2008). Web

addresses like “http://www.google.com” are a special kind of URI, namely a

Uniform Resource Locator (URL) which not only identifies a resource, but also locates

it (Berners-Lee et al., 2005). A major advantage of URIs on the World Wide Web

(WWW) is their global uniqueness. Therefore, URIs facilitate the unambiguous

identification of resources. However, there are several limitations on the WWW that

may disturb the unambiguous identification of a resource via its URI. The resource

which is identified by the URI may over time disappear or its meaning may change.

Moreover, it is possible that the URL of one resource is redirected to the URL of

another resource. In order to avoid changes, URIs should be designed carefully so that

they can be held stable and lasting (cf. Berners-Lee, 1998a).

4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links

The core structure of RDF are so called triples. Triples allow the definition of

statements in a subject, predicate, object format as illustrated in figure 23 (cf. Klyne &

Carroll, 2004). With the triple structure, it is possible to draw relationships (predicates)

between two entities or between an entity and the state of a property (subject, object).

Therefore, the predicate position of a triple is always reserved for a property “that

denotes a relationship” (Klyne & Carroll, 2004). Properties are always identified via

URIs. Combinations of multiple triples form a graph (cf. Grimm et al., 2007, p. 84).

Figure 23: Syntax of RDF triples (cf. Klyne & Carroll, 2004)

We can differentiate between two different types of RDF triples, namely “Literal triples”

and “RDF links” (Heath & Bizer, 2011). RDF links are triples with URIs in subject and

object position (Heath & Bizer, 2011). Hence, the predicate of RDF links connects two

resources with each other (Heath & Bizer, 2011). RDF links can, therefore, be used to

60

describe relationships between two resources (cf. Heath & Bizer, 2011). RDF links

have so called object properties in predicate position when using OWL (cf. Hitzler et

al., 2009). Literal triples have data values in the object position which are known as

literals (cf. Heath & Bizer, 2011). They may be restricted to a certain datatype and

contain a language tag indicating the language in which the literal is represented (cf.

Heath & Bizer, 2011). Literals with datatype indication are called typed literals, literals

without datatype indication are called plain literals (cf. Heath & Bizer, 2011). Thus,

Literal triples can be used to assign values to properties of a resource. In other words,

Literal triples describe the states of properties of an entity (cf. Heath & Bizer, 2011).

For example the triple http://example.org/JonMyer foo:hasBirthday

“1970-01-01” is a Literal triple because the object position of the triple contains the

literal “1970-01-01”. Literal triples can be modeled using OWL datatype properties

in predicate position. An example for an RDF link triple would be
http://example.org/JonMyer foo:hasMother

http://example.org/JanetMyer, since two resources with URIs are linked to

each other.

4.2.3 Constructing an Ontology with RDF, RDFS, and OWL

Main elements of ontologies in Semantic Web architectures are classes and

properties. Properties are in predicate position of a triple and, therefore, define

relationships between resources or describe facts about resources as explained in the

previous section. Classes are conceptual entities that can be used to classify

resources into categories (cf. Manola & Miller, 2004). The resources that belong to a

class are called its instances (Manola & Miller, 2004). An ontology together with its

instances is called a knowledge base (cf. Noy & McGuinness, 2001, p. 3). Knowledge

bases are represented in so called RDF graphs (cf. Sirin et al., 2007, p. 12). Semantic

Web programming languages provide several classes and properties that can be used

to model semantic distinctions of user-defined classes and properties in a standardized

and machine-interpretable way. In the following, core modeling constructs of RDF,

RDFS, and OWL are explained which are important for the understanding of this thesis.

Datatype properties: With OWL, a property can be declared as a datatype property

meaning that the property can only have literals in the object position. The range of the

61

property may be restricted to a certain datatype either by using XML Schema

datatypes13 or via self-defined datatypes with OWL 2 (cf. Hitzler et al., 2009).

Language tag assignment: Language tags can be assigned at the end of literals to

indicate the language in which the literal is written (cf. Alvestrand, 2001; Beckett, 2004).

Domain of a property: The property rdfs:domain is a property of RDF-properties.

It can be used to specify classes that hold individuals which can be used as a subject

for the described property (cf. Brickley & Guha, 2004). In other words, rdfs:domain

specifies the class of individuals which may be described by the property. E.g. the

domain of the property foo:hasEAN is the class foo:Material.

Range of a property: The property rdfs:range is also a property of RDF-properties.

It is used to specify the allowed types used for the values of a property, i.e. which

datatype the values must have or to which class the values must belong (cf. Brickley

& Guha, 2004). E.g. the property foo:hasName has a range of datatype

xsd:string. It is important to note that the consequences of applying a property to

an instance of another type is that an additional class membership is inferred (cf. De

Bruijn et al., 2005, p. 5).

Class membership: RDF allows the definition of class memberships of entities (cf.

Brickley & Guha, 2004). E.g. the triple Christian rdf:type PhD-Student

expresses that the individual “Christian” belongs to the class of PhD Students.

Class and property hierarchies: RDFS allows the expression of hierarchic

relationships between classes and properties (cf. Brickley & Guha, 2004). For

example, we can define that the class PhD-Students is a sub-class of the class

Person or that the property lastName is a sub-property of the property name.

Equivalence between classes / properties: With the OWL properties

owl:equivalentClass and owl:equivalentProperty we can express that

classes or properties are equivalent in terms of that equivalent properties share the

same values and equivalent classes share the same individuals (cf. Bechhofer et al.,

2004; Hitzler et al., 2012).

13 XML Schema datatypes, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

62

Identity between individuals: With the OWL property owl:sameAs we can express

semantic equality between individuals, i.e. the resources connected with owl:sameAs

represent the same real-world object (cf. Bechhofer et al., 2004).

Disjointness of classes: The property owl:disjointWith facilitates the

expression of disjointness between two classes, i.e. that individuals cannot be member

of both classes at the same time (cf. Bechhofer et al., 2004).

Transitivity of a property: OWL supports the definition of transitive properties by

making the properties instances of the class owl:TransitiveProperty. Transitivity

in this context means that the property relationship will also apply for the subject of one

triple and the object of a second triple if the object of triple one is also the subject of

triple two, although they are not directly connected to each other. E.g. if the property

foo:subProductOf is defined to be a transitive property and the two triples X

foo:subProductOf Y and Y foo:subProductOf Z exist, then we can derive that

X foo:subProductOf Z (cf. Bechhofer et al., 2004).

Symmetry of a property: A property is symmetric if the subject and the object of the

triple, in which the property is used, can be substituted without making an incorrect

statement. Symmetric properties can be defined via OWL by making the property an

instance of the class owl:SymmetricProperty (cf. Bechhofer et al., 2004). E.g. the

property foo:marriedTo is symmetric because a marriage is always mutual.

Inverse properties: With OWL, we can define that one property is an inverse of

another property (cf. McGuinness & van Harmelen, 2004). E.g. the property

foo:writtenBy is an inverse of the property foo:authorOf.

Functional properties: Functional properties are properties “that can have only one

(unique) value y for each instance x” (Bechhofer et al., 2004). A property is defined as

functional by making it an instance of the class owl:FunctionalProperty.

Functional properties are a way to express global cardinality restrictions (cf. Bechhofer

et al., 2004). E.g. a car can only have one active license plate number.

Inverse functional properties: Inverse functional properties uniquely identify the

subject in a triple. In other words, a value of an inverse functional property must only

belong to the same individual. A property is defined as inverse functional by making it

an instance of the class owl:InverseFunctionalProperty. Inverse functional

63

properties are a way to express global cardinality restrictions (cf. Bechhofer et al.,

2004). E.g. a certain social security number can only belong to one person.

Cardinality restrictions: OWL provides the properties owl:maxCardinality,

owl:minCardinality, and owl:Cardinality to define cardinality restrictions on

ranges of properties. The OWL cardinality properties hold values of datatype

xsd:nonNegativeInteger. A restriction with owl:maxCardinality “describes a

class of all individuals that have at most N semantically distinct values (individuals or

data values) for the property concerned, where N is the value of the cardinality

constraint” (Bechhofer et al., 2004). Analogous to the owl:maxCardinality,

owl:minCardinality describes a class of individuals that must at least have N

semantically distinct values, and owl:Cardinality describes a class that has

exactly N semantically distinct values (cf. Bechhofer et al., 2004). Since the cardinality

only applies to semantically distinct values and the same individuals may be

represented by syntactically distinct values, it is possible that, although

owl:maxCardinality has value “1”, an instance has two values for a property that

represent the same individual. If both values represent the same individual, then the

restriction will still be followed.

The Semantic Web programming languages RDF, RDFS, OWL, and OWL 2 allow

many more formal semantic expressions which are not explained in this thesis due to

their lack of relevance for the focus of this work.

4.2.4 Language Profiles of OWL and OWL 2

The Web Ontology Language OWL has three common language profiles, namely OWL

Lite, OWL Description Logic (DL), and OWL Full (Bechhofer et al., 2004). A language

profile thereby provides a subset of language constructs of OWL and may constrain

their usage (Bechhofer et al., 2004). In OWL Full, all elements of the language can be

used with no restrictions as long as valid RDF documents are produced (Bechhofer et

al., 2004). OWL DL and OWL Lite are subsets of OWL (Bechhofer et al., 2004). One

of the major distinctions between OWL Full and OWL DL is the meta-modeling

capability of OWL Full. In OWL Full, classes and properties can also be used as an

individual. This is not allowed in OWL DL to provide a language profile for decidable

reasoning, i.e. automated inferencing of implicit knowledge within finite time

64

(Bechhofer et al., 2004). OWL Lite is the simplest of all OWL profiles and provides a

minimal subset of OWL with the most important ontological constructs to provide an

easy way to engineer an ontology (cf. Hitzler, 2008, p. 151ff.). At present, most

ontologies are coded in OWL DL.

OWL 2 introduces three new language profiles, namely OWL 2 EL, OWL 2 RL, and

OWL 2 QL (W3C-OWL-Working-Group, 2012). The different language profiles of OWL

2 have been composed for specific cases. For example, OWL 2 EL is optimized for

very large ontologies with many classes and properties (W3C-OWL-Working-Group,

2012). OWL 2 QL was designed to provide “sound and complete query answering”

(Motik et al., 2009) at a reasonable time. And OWL 2 RL is optimized for reasoning

(W3C-OWL-Working-Group, 2012). For a detailed overview about the different

language profiles for OWL 2, please see (Motik et al., 2009).

Thus, when designing new ontologies, it is important to consider the required level of

expressivity and the scenarios in which the ontology shall be used, in order to identify

a proper language profile. In the following, the acronym OWL is used to refer to both,

OWL and OWL 2.

4.3 SPARQL Query Language for RDF

Query languages have been used for several decades, e.g. the Structured Query

Language (SQL) to update and retrieve data from relational databases (Oracle, 2013).

The Semantic Web provides its own query language, called the SPARQL query

language for RDF (SPARQL) (Harris & Seaborne, 2010). SPARQL can be used to

store, update, retrieve, and delete data in knowledge bases and provides several

mechanisms, such as aggregations, subqueries, or filters, that are very similar to

features of SQL (cf. Harris & Seaborne, 2010). Other than with SQL, SPARQL can be

combined with reasoners to also retrieve information that is not explicitly represented14.

E.g. a SPARQL query asking for instances of the class Person could also retrieve

instances of subclasses of the class Person, if subclass reasoning was enabled. A lot

14 There has been work on deductive databases that combine logic programming and database
management systems. However, to the best of the author’s knowledge they are not widely used in
business information systems.

65

of triplestores and Semantic Web tools, such as Virtuoso15 or TopBraid Composer16,

provide so called SPARQL endpoints (Feigenbaum et al., 2013) with query interfaces

to access the knowledge base or RDF files via SPARQL queries. Moreover, a lot of

the available SPARQL query interfaces provide additional, proprietary SPARQL

functions (also known as SPARQL extensions), that extend the SPARQL standard

functionalities17 as specified by the World Wide Web Consortium (W3C). At time of this

thesis, SPARQL 1.1 provides a mostly stable and expressive syntax that is already

implemented in many commercial and non-commercial Semantic Web tools.

4.4 Reasoning and Inferencing

Besides the plain retrieval of Semantic Web data via SPARQL queries, it is also

possible to employ the expressiveness of ontologies and the represented knowledge

via so called reasoners (cf. Hebeler et al., 2009, p. 285). Reasoners are programs that

use the represented logic of ontologies and / or user-defined rules (1) to infer implicit

knowledge and (2) to check the logical consistency at ontology and instance level (cf.

Antoniou & van Harmelen, 2008, pp. 97-103; Fensel & van Harmelen, 2007).

According to Hebeler et al. (Hebeler et al., 2009, p. 285), there are two different types

of reasoners which can also be combined in a single engine, namely inference

reasoners and rule-based reasoners. Inference reasoners infer implicit knowledge and

check logical consistency based on the axioms represented via RDFS and OWL (cf.

Hepp, 2008b, p. 15f.). Rule-based reasoners process user-defined rules that are

represented additionally to the axioms of an ontology (cf. Hebeler et al., 2009, pp. 231-

233). Similar to the axioms of RDFS and OWL, user-defined rules can also be used to

infer new knowledge or check consistency, but provide more flexibility for the definition

of axioms (cf. O’Connor et al., 2005, p. 975). Depending on the processing capabilities

of the reasoner, rules can be represented in different languages, such as the Semantic

Web Rule Language (SWRL)18 or via the vocabulary of the SPARQL Inferencing

15 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro (Last accessed on April 10th 2012)
16 http://www.topquadrant.com/products/TB_Composer.html (Last accessed on April 10th 2012)
17 http://www.w3.org/TR/2010/WD-sparql11-query-20100126/ (Last accessed on April 10th 2012)
18 http://www.w3.org/Submission/SWRL/ (Last accessed on April 11th 2012)

66

framework (SPIN)19. A popular open source reasoner that combines both, inference

and rule-based reasoning, is Pellet20.

The inferable knowledge via inference reasoning depends on the formal elements that

are used within the ontology. In the following, we provide some examples of potential

inferences that can be made when reasoning knowledge provided by an OWL DL

ontology (cf. Hitzler, 2008, p. 176f.).

Class equivalency: Based on equivalency relationships, it can be inferred which

classes belong to a specific domain concept. E.g. by specifying that class Person and

class HumanBeing are equivalent, a reasoner can process this information to

automatically infer the members of both classes.

Subclass relationships: Based on the definition of subclass relationships, a reasoner

can derive all members of a superclass including members that are not explicit

members of the superclass. E.g. a reasoner could infer that the individual Christian

not only belongs to the class PhD-Student, but also belongs to the class Person,

since the class PhD-Student is a subclass of the class Person. In the following, we

will use the term “subclass reasoning” to refer to this kind of inferencing.

Disjunctive classes: With OWL, classes can be defined as disjunctive, i.e. that

members of class A cannot also be members of class B at the same time, if class A

and class B are disjunctive. Based on this knowledge representation, reasoners can

identify individuals that are members of disjunctive classes and, thus, identify and

report inconsistent class memberships.

Additional inferencing capabilities for knowledge represented in ontologies based on

RDFS and OWL can be found in (Hitzler, 2008). As mentioned in the previous section,

the more formal elements and axioms are used within an ontology, the more resources

are needed for the reasoning based on the ontology (cf. Antoniou & van Harmelen,

2008, p. 158; Fensel & van Harmelen, 2007; Gómez-Pérez et al., 2004, p. 204). Hence,

for efficient reasoning it is important to pay attention to the design of an ontology,

especially regarding the chosen language profile.

19 http://spinrdf.org/ (Last accessed on April 11th 2012)
20 http://clarkparsia.com/pellet/features (Last accessed on April 11th 2012)

67

4.5 Ontologies and Relational Databases

Ontologies and relational databases (RDB) are related to each other in at least two

aspects. First, a lot of data that is currently available on the Semantic Web has been

published via mapping technologies between RDB and ontologies (cf. Bizer, Heath, et

al., 2009). Secondly, some triplestores use the efficient and mature technologies of

RDB management systems (RDBMS) to store RDF triples (Heymans et al., 2008, p.

92). In this section, we examine how data from relational databases can be linked to

conceptual elements from ontologies and exposed as RDF data. Relational data can

be lifted into the Semantic Web space, namely (1) virtually without a persistent

representation of the data in RDF or (2) persistently with a persistent conversion of the

data into RDF (Sahoo et al., 2009). In both cases, the elements of the relational

schema have to be mapped to the target ontology. Table 6 shows how the different

elements of an RDB schema can be mapped to the elements of an ontology based on

findings from Astrova (Astrova, 2009).

Table 6: Simplified mapping between RDBs and ontologies (cf. Astrova, 2009)

RDB Element Ontology Element

Table21 / View Class

Table with only two
foreign key columns

Object property

Column containing
datatype values

Datatype property

Column containing
foreign keys

Object property

Primary keys Individuals / URIs

Row Instance

It must be stressed that there may also be much more individual mappings between

elements of an RDB to elements of an ontology. E.g. one might want to populate tuples

of a specific table to multiple different classes based on filters on certain column values.

However, there are many ways to easily expose relational sources to the Semantic

Web spaces, such as D2RQ or Virtuoso RDF-Views (please see (Sahoo et al., 2009)

21 Tables that only contain two columns with foreign keys are mapped to object properties

68

for a survey about RDB2RDF mapping technologies). In summary, we can conclude

that relational data can be used in Semantic Web architectures via mappings to

ontology elements. This facilitates the use of Semantic Web technologies to process

data of RDB.

69

5 Data Quality in the Semantic Web

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) with the

vision to evolve the traditional Web, which is essentially a graph of interlinked

documents, into a “Web of Data” (Berners-Lee et al., 2001; cf. W3C, 2013). One of the

major goals of the Semantic Web is the supply of machine-interpretable data at Web

scale to gain a higher degree of automation and to facilitate more complete processing

of information (cf. Berners-Lee et al., 2001). For example, if the prices of all consumer

products were published in a machine-readable format and structure throughout the

whole Web, then more complete price comparisons at global scale would be possible

with minimal manual effort. While the traditional Web is mainly used to publish

information in a form that empowers a Web browser to render the contents in a form

suitable for human consumption, the Semantic Web shall additionally allow computer-

based devices to extract and process the meaning of the contents (cf. Berners-Lee et

al., 2001). To facilitate the publication and use of structured data at Web scale,

Semantic Web formalisms such as RDF (Manola & Miller, 2004), RDFS (Brickley &

Guha, 2004), and OWL (Bechhofer et al., 2004; Hitzler et al., 2012) have been

developed to support the publication of data. Semantic Web applications can then

extract and use the published data, e.g. to derive decisions to automate tasks or to

answer complex queries (cf. Berners-Lee et al., 2001). However, Semantic Web-based

applications have a high risk to fail if the processed data is of insufficient quality.

In this chapter, we give an overview of existing data sources on the evolving Semantic

Web vision and discuss data quality problems and their impact.

5.1 Data Sources of the Semantic Web

As already explained, data on the Semantic Web is mostly published according to the

RDF data model (cf. Heath & Bizer, 2011; Manola & Miller, 2004, see also section

4.2.2), which represents graphs of information in the form of simple statements known

as triples with the basic structure of subject, predicate, object (cf. Manola & Miller,

2004). The Semantic Web already provides billions of such triples with data about

several different domains such as geography, media, health care, life sciences,

linguistics, and e-commerce (cf. Bizer, Heath, et al., 2009, p. 5f.; Heath & Bizer, 2011;

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_5, © Springer Fachmedien Wiesbaden 2016

70

Mühleisen & Bizer, 2012). Figure 24 shows the well-known linking open data (LOD)

cloud diagram22 which represents a large part of available data on the Semantic Web

(Cyganiak & Jentzsch, 2011a).

Figure 24: Linking Open Data (LOD) cloud diagram22 (Cyganiak & Jentzsch, 2011a)

The amount of triples of the LOD cloud was estimated to be around 31 billion triples in

September 2011 (Cyganiak & Jentzsch, 2011b). But the LOD cloud only represents

part of the Semantic Web, since the latest available version of the diagram was created

on September 19th 2011, and data sources have to meet certain criteria to be included

in the diagram. For instance, a data source must contain at least 1000 triples and have

at least 50 RDF links to other data sets in the diagram (cf. Cyganiak & Jentzsch,

2011a). Hence, a large amount of data that is not linked to data sets in the LOD cloud

is not part of the diagram and its statistics. For example, a lot of product data published

via the GoodRelations ontology23, a popular vocabulary for publishing E-Commerce

data (Hepp, 2008a), lack explicit links to the LOD cloud and is, therefore, not visible in

the diagram despite its significance for the practical application of the Semantic Web.

In addition to the intended usage of data published in the LOD-cloud, like intelligent

information processing (cf. Bizer, Lehmann, et al., 2009) or entity recognition in natural

language processing (cf. Kobilarov, Scott, et al., 2009, p. 732; Reuters, 2013), the data

22 Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/ (Last
accessed on April 2nd 2012)
23 http://purl.org/goodrelations (Last accessed on April 12th 2012)

71

can also be a relevant source for data quality management. Several data quality

management heuristics use reference data sets to identify data quality problems (cf.

Apel et al., 2010, p. 74; English, 1999, p. 166; Loshin, 2001, p. 161). In (Fürber & Hepp,

2010a), we have shown that Semantic Web data can particularly be useful for the

identification of illegal values or functional dependencies between attribute values in

the geographic domain with minimal effort. To proof its practical usefulness for DQM,

we performed a data quality analysis of real address data from BestBuy stores, a

popular North American retailer for consumer electronics (cf. Fürber & Hepp, 2011a).

The address data contained addresses of BestBuy stores which were published on the

Web via the GoodRelations ontology and the vCard ontology24, a vocabulary for

publishing business card data. We compared the BestBuy data with data from

Geonames25, a Semantic Web data source for geographical information, and identified

several data quality problems such as mistyped values and a few illegal city / country

combinations. We only used the reference data as provided by Geonames for the data

quality analysis which contained all valid city / country combinations and, therefore,

saved the tremendous manual effort that would have to be invested for the manual

creation and maintenance of this data. Despite these promising first results, it must be

stressed that the Semantic Web data sets should be also frequently monitored for data

quality errors, when used as a trusted reference. Otherwise, data quality problems in

the reference data will be spread to other data sources without being noticed.

In near future, the Semantic Web will most likely further grow and expand its data

diversity to additional domains. Therefore, we can expect that more useful data will be

published that will open further possibilities for DQM. On the other hand, the number

of individuals and organizations who publish data will grow, which may make it more

difficult to evaluate the reliability of data from the Semantic Web as reference data for

data quality management.

5.2 Semantic Web-specific Quality Problems

In section 3.3, data quality problems types have been shown that are typical for data

in relational databases. While most of the illustrated problems may also occur in

24 http://www.w3.org/2006/vcard/ns-2006.html (Last accessed on April 12th 2012)
25 http://www.geonames.org (Last accessed on April 12th 2012)

72

Semantic Web data, there are some quality problems that are specific for Semantic

Web data. In the following, we enumerate and describe several Semantic Web-specific

quality problems based on findings by (Hogan et al., 2010; Lei & Nikolov, 2007; Lei et

al., 2007). We thereby use the term “conceptual elements” to refer to classes and

properties. Moreover, we sort the different types of errors into problems related to (1)

document content, (2) data format, (3) data definitions and semantics, (4)

classification, and (5) hyperlinks. The following representation of Semantic Web data

quality problems does not claim to be complete. In fact, due to missing research in this

area, additional quality problem types of Semantic Web data will most likely be

discovered in future.

5.2.1 Document Content Problems

Missing structured data: In the Semantic Web, it is often expected that machine-

processable data is returned when looking up links. But in many cases, the returned

content type indicates unstructured data which is not as useful for Semantic Web

agents (cf. Hogan et al., 2010).

Imprecise / misreported content types: Although Web documents on the Semantic

Web are published in one of the various syntaxes for RDF, like RDF/XML, the content

type as returned by the Hyper Text Transfer Protocol (HTTP) response header may be

incompatible or more generic than the actual type of the content (cf. Hogan et al.,

2010).

5.2.2 Data Format Problems

Document syntax errors: Semantic Web data is usually encoded according to W3C

standards for the syntactical representation or formal semantics, such as RDF, RDFS,

or OWL (cf. Hogan et al., 2010). These standards provide syntactic and structural

requirements which may sometimes be violated. The W3C provides validation

73

applications which test documents for compliance to the syntax rules of such

standards26.

Misplaced conceptual elements: As stated in section 4.2.2, triples consist of

subjects, predicates, and objects. Properties should only be used in the predicate

position and classes should usually be the only objects of an rdf:type property.

Therefore, the URIs of classes and properties may be considered as misplaced, if they

do not obey these position rules (cf. Hogan et al., 2010). However, it must be stressed

that in OWL Full knowledge bases, properties may also be in subject position of a

triple. In OWL Full, it depends on the conceptual model whether the appearance of a

class or property URI in another position of a triple is a data quality problem or an

intended form of meta-modeling.

Violation of datatype syntax: In RDF documents, it is possible to define XML

datatypes for literal values. Such datatypes indicate syntactic rules for literal values of

such datatype properties without strictly enforcing them (cf. Hogan et al., 2010). E.g.

the datatype xsd:date27 requires date values in the syntax YYYY-MM-DD.

Missing language tags: In RDF documents, it is possible to define so called language

tags for literal values indicating the language in which the literal is written (Heath &

Bizer, 2011). Language tags are especially useful for multilingual support. However, if

language tags are not assigned, then automated multiple language support is

obviously not possible. Therefore, some applications may assume missing language

tags as a data quality problem.

5.2.3 Problems of Data Definitions and Semantics

Undefined conceptual elements: In RDF documents, it is best practice to publish

definitions of all conceptual elements, i.e. classes and properties with a formalism like

RDFS (Brickley & Guha, 2004) or OWL (Bechhofer et al., 2004; Hitzler et al., 2012),

within the data set, so that they are retrievable and reusable on the Web. However, a

significant amount of conceptual elements are still undefined in Semantic Web data

(cf. Hogan et al., 2010).

26 See http://www.w3.org/RDF/Validator/ for the W3C RDF Validation service (Last accessed on April
12th 2012)
27 See http://www.w3.org/TR/xmlschema-2/#date for a full description of the required syntax (Last
accessed on July 20th 2014)

74

Ontology hijacking: Ontology hijacking is “the redefinition […] of external

classes/properties” by third parties (Hogan et al., 2010). In other words, conceptual

elements of existing ontologies are reused in a way that conflicts with the initial

definition, e.g. by adding additional axioms to the URI of the original element that are

incompatible with the original meaning.

Ambiguous inverse functional property values: In OWL, the objects of inverse

functional properties uniquely identify an individual (Bechhofer et al., 2004). The use

of ambiguous values in the object position of inverse functional properties may cause

that reasoners assume two or more individuals to be identical, although they are

different individuals. Thus, ambiguous functional property values represent a severe

data quality problem when reasoning shall be applied (cf. Hogan et al., 2010).

Misuse of owl:DatatypeProperty and owl:ObjectProperty: Datatype

properties usually contain a resource in subject position and a literal value in object

position (cf. Bechhofer et al., 2004). Object properties usually relate two resources (cf.

Bechhofer et al., 2004). Cases where datatype properties connect resources to each

other and object properties contain literal values in subject or object positions may be

considered as misuse of these two property types (cf. Hogan et al., 2010). However, it

must be stressed that datatype properties with datatype range xsd:anyURI may also

contain literal values that look like resources (cf. Biron & Malhotra, 2004).

5.2.4 Problems of Data Classification

Imprecise classification: Imprecise classification occurs when instances are not

classified to the most specific available class (cf. Lei et al., 2007, p. 139). E.g. Peter

Miller belongs to the class foo:Agent and not to the class foo:Person.

Missing classification: Sometimes instances may not be classified at all, i.e. do not

belong to a class more specific than owl:Thing or rdfs:Resource (cf. Lei &

Nikolov, 2007; Lei et al., 2007). E.g. the individual Peter Miller does not belong to

a class, although it should be member of the class foo:Person.

Incorrect classification: Instances are incorrectly classified when they belong to a

wrong class, i.e. they actually cannot be a member of this class due to their real-world

75

semantics (cf. Lei & Nikolov, 2007). E.g. the individual Peter Miller is member of

the class foo:PopulatedPlace.

Spurious conceptual elements: Sometimes not all conceptual elements of an

ontology are used, i.e. not all classes have instances or not all properties have values.

Unused conceptual elements may, therefore, be considered as spurious (cf. Lei et al.,

2007, p. 139).

Membership in disjoint classes: With the OWL property owl:disjointWith two

classes can be connected that do not share the same individuals. Hence, an individual

cannot be member of two or more disjoint classes or their subclasses at the same time

(cf. Hogan et al., 2010; Lei & Nikolov, 2007).

Membership in deprecated conceptual elements: In OWL, classes and properties

may be flagged as deprecated via the classes owl:DeprecatedClass and

owl:DeprecatedProperty when they are shall not be used anymore (Bechhofer et

al., 2004). In OWL 2, alternatively the annotation property owl:deprecated with

value “true” annotates deprecated classes and properties (Bao et al., 2012). Hence,

the usage of such deprecated conceptual elements may be considered as a quality

problem, although it may not be as severe as other quality problems (cf. Hogan et al.,

2010).

5.2.5 Problems of Hyperlinks

Dereferencability problems: In Semantic Web environments, it is recommended to

use HTTP URIs to represent individuals, properties, and classes in order to be able to

look up names and link data (cf. Berners-Lee, 2006). Sometimes the links may not be

dereferencable, i.e. we receive an error when looking up the URI on the Web. In most

of these cases the target data source of the link address is missing (cf. Hogan et al.,

2010).

76

5.3 Distinct Characteristics of Data Quality in the Semantic Web

There are major differences between data quality in business information systems

(BIS) and data quality in open environments such as the Semantic Web. The World

Wide Web and the Semantic Web architecture facilitates that anyone that has an

internet connection and Web space can publish anything about anything (cf. Berners-

Lee, 1998b). In other words, anyone with access to a Web server can publish any data

on the Semantic Web, even non-sense data. In opposite to the Web, traditional

business information systems usually put control upon the creation and maintenance

of data, e.g. via constraints or role and authorization systems to avoid the creation of

heterogeneous and willfully conflicting data. These different policies are driven by

different needs. While in BIS it may be necessary to establish a common way to create,

update, and publish information in order to manage and control business processes,

the Web relies on an open architecture to use the creativity and intelligence of the

crowd and to serve as an open platform for information exchange (cf. Berners-Lee &

Fischetti, 2000). In fact, the large-scale introduction of firm constraints and

authorization systems in the Semantic Web would violate freedom of speech and other

human rights. Moreover, while large BIS may have a couple of 100.000 users, the Web

has most likely several billion users. Thereby, the amount of users also raises the level

of heterogeneity. Consequently, the diversity of quality perceptions and data

requirements is likely much bigger on the World Wide Web than in BIS. Furthermore,

not existing information underlies different interpretations in the Web and in BIS. The

Semantic Web assumes an open world, i.e. everything that we do not know is not

defined, yet, and, therefore, is neither wrong nor right (cf. Hebeler et al., 2009, p. 103f.).

Traditional BIS follow the opposite interpretation, i.e. they close the world and assume

that everything that is not represented can be assumed as false (cf. Hebeler et al.,

2009, p. 103f.). In other words, a missing instance in BIS would be assumed to not

exist, while in the Semantic Web it would be assumed that additional instances may

exist, but are currently not member of the class. During the interpretation of data,

especially aggregated data, it is important to be aware that knowledge may be

incomplete and, therefore, information may be missing. While data quality metrics

typically assume a closed world, human interpretation of data quality assessment

results can assume an open world, even for traditional BIS, since it is unlikely that all

data requirements are known at all times. E.g. an accuracy score of 97 % should be

interpreted with special regard to the assumed data requirements. Thus, the score may

77

be higher or lower, when further knowledge about data requirements is added or

different data requirements apply.

However, the Web’s openness must be respected by data quality management

systems for the Semantic Web, especially with regard to the large diversity of data

requirements. But data quality management systems can be a good support to identify

and monitor deficient data according to specific quality perspectives and thereby help

to improve processing of heterogeneous data for specific tasks, even for the open

Semantic Web.

78

PART III – Development and Evaluation of the Semantic
Data Quality Management Framework

6 Specification of Initial Requirements

This chapter specifies the requirements for an ontology-based data quality

management framework, called Semantic Data Quality Management Framework

(SDQM), which shall be developed to support data quality management activities by

the use of ontologies. We thereby apply the Design Science Research Methodology

(DSRM, cf. Peffers et al., 2008) process as explained in section 2.4. We start with

describing the required artifacts with a motivating scenario that illustrates the needs

related to data quality management. Based on the motivating scenario, we derive initial

requirements for the framework.

6.1 Motivating Scenario

We assume that a large organization aims to improve the quality of its data that is

already used throughout the organization because the organization often suffers from

costly process failures due to poor data quality. The data is managed by an information

system that is based on a relational database and used for the support of business

process execution. The quality requirements for data are not centrally documented and

only known to domain experts who are dispersed across the organization. In the best

case, the quality requirements are an implicit part of design documentations and

manuals that have been created several years ago when the information system had

been developed. To avoid the creation of poor data, the organization has implemented

some quality requirement checks into the program code of their information system,

but does barely review the implemented requirements as to whether they are still valid.

This is because the required experts do not have time to support this action or do not

understand the program code. Moreover, it is not known whether the data

requirements are consistent with each other. In order to improve the situation, the

organization seeks to establish a data quality management method which helps to gain

a higher transparency about the organization’s data requirements and the state of data

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_6, © Springer Fachmedien Wiesbaden 2016

79

quality of its data sources without the need for personal interaction with experts.

Therefore, the organization seeks for a tool that supports

- collection of data requirements across the organization,

- documentation of data requirements in a standardized way,

- comparison of data requirements, as well as the identification and

harmonization of inconsistent data requirements,

- central availability of data requirements including its documentation across the

organization, and

- automated processing of data requirements to derive reports about data with

requirements violations and reports that provide an overview about the quality

state of a data source.

Based on the requirement violation reports the root causes of data quality problems

shall be analyzed, in order to improve data quality at a sustainable level.

6.2 Initial Requirements for SDQM

In this section, we describe the initial requirements for the SDQM that can be derived

from the motivating scenario and the theoretical findings about data quality

management in chapter 3. According to (Grande, 2011, p. 37ff.), there are several

different types of requirements. Grande distinguishes between functional and non-

functional requirements. From Grande’s viewpoint, functional requirements “describe

the functionality and the behavior of the product” (Grande, 2011, p. 37). Non-functional

requirements are quality requirements and requirements introduced by boundary

conditions (cf. Grande, 2011, p. 37f.).

Although this categorization provides a first help to structure the definition of

requirements, it is insufficient for the analysis of requirements in the context of artifact

design. Therefore, we developed our own requirements typology as depicted in figure

25.

80

Figure 25: Typology of requirements for artifact design

On a high level, we distinguish between (1) task requirements, i.e. requirements of the

tasks that shall be performed with the help of the framework, (2) conditional

requirements, i.e. external requirements that are implied by the environment in which

the framework shall be used, and (3) research requirements which need to be

addressed in order to achieve the research goal as defined in section 2.1. Functional

requirements describe the desired functions of the artifact and can be derived from the

task requirements (cf. Grande, 2011, p. 37). Conditional requirements are non-

functional requirements that can be further distinguished as organizational

requirements, i.e. requirements derived from the organizational environment,

technological requirements, i.e. requirements derived from the technological

environment in which the artifact shall be integrated, and financial requirements, i.e.

limitations on resources that are necessary for the development of the artifact. In the

following, we describe the requirements of SDQM separated by these categories.

6.2.1 Task Requirements

The major goal of all data quality management activities is the continuous and

sustainable improvement of data quality (cf. English, 1999, pp. 39, 69f.; Wang, 1998).

To achieve this goal, a methodology for the continuous identification and removal of

the causes of data quality problems is needed. In section 3.5, we have described the

two most popular methodologies to improve data quality, namely Total Data Quality

Management (TDQM) and Total Information Quality Management (TIQM). In section

81

3.5.3, the following common activities of TDQM and TIQM have been identified (cf.

Batini & Scannapieco, 2006, p. 171f.):

- Identification and definition of quality-relevant metadata and requirements,

- Information quality measurement and assessment,

- Analysis of the root causes of identified data quality problems, and

- Resolution of the identified root causes

The organization in the motivating scenario requires the implementation of a data

quality management methodology. We use the findings from the comparison of TDQM

and TIQM added by the information from the motivating scenario to define a data

quality management process that fits to the organization’s needs. Hence, the data

quality management process of the organization contains the following subtasks:

Identification / collection and formulation of data requirements: Data

requirements shall be collected / identified from documents and expert knowledge

distributed across the organization. Moreover, the requirements shall be formulated in

a common language and structure, so that they are comparable and reusable.

Identification of requirement violations: Based on the formulated data

requirements, requirement violation reports shall be generated.

Evaluation of the quality state of data sources: Based on the data requirements,

transparency about the quality state of a data source shall be generated.

Identification and removal of root causes of requirement violations: Based on the

requirement violation reports, root causes of the requirement violations shall be

identified and removed.

Table 7: Tasks in the SDQM framework and their equivalencies in the TDQM method (based on Wang, 1998)

Total Data Quality
Management Phase

Semantic Data Quality Management
Framework

Define Identification / collection and formulation of data
requirements

Measure Identification of requirement violations

Evaluation of the quality state of data sources

Analyze Identification of root causes of requirement violations

Improve Removal of root causes of requirement violations

82

The enumerated tasks represent the task requirements of SDQM and can be aligned

according to the TDQM cycle (cf. Wang, 1998) as shown in table 7.

6.2.2 Functional Requirements

Functional requirements are requirements that describe the desired functions of an

artifact (cf. Grande, 2011, p. 37). The functional requirements of SDQM can be derived

from the task requirements, since functions of the artifact shall support the execution

of the identified tasks. The following functional requirements can be derived from the

task “Identification / collection and formulation of data requirements”:

- the artifact shall be used to collect requirements,

- the requirements shall be collected in a structured and comparable form, and

- some requirements may be in draft status and, therefore, not usable for

measurement, yet.

The task “Identification of requirement violations” requires the following functions:

- use the approved data requirements to identify requirement violations in the

tested data and

- generate a report with violated instances indicating the type of violation / data

quality problem.

The following functional requirements can be derived from the task “Evaluation of the

quality state of data sources”:

- generate a report with key performance indicators (KPI) that show the ratio

between correct instances and instances with requirement violations separated

by quality dimensions,

- automated calculation of KPI’s based on data requirements, and

- reference objects of KPI’s must be visible in report.

The identification and removal of root causes of data quality problems is not part of the

requirements, since these tasks require a thorough manual analysis and coordination,

e.g. with the help of brainstorming, Ishikawa diagrams, or “Why analysis” (cf. English,

1999, pp. 294-297). Data cleansing via simple database updates is not an option for

the organization in the motivating scenario since the data is highly integrated into

transactions that must be audit compliant and, therefore, cannot be changed while

83

used in transactions. Table 8 summarizes the functional requirements for SDQM and

already indicates the expected deliverable that satisfies the requirement.

Table 8: Summary of functional requirements including expected deliverables

Task
Requirement

Functional Requirement Expected Deliverable

Identification /
Collection and
formulation of
data
requirements

Distributed acquisition of
data requirements

Web-based platform for
collaborative
development of data
requirements

Data requirements shall be
captured in structured and
comparable shape

Data requirement forms

Not all requirements may
be immediately usable for
measurement

Feature to flag approved
data requirements

Identification of
requirement
violations

Use the approved data
requirements to identify
requirement violations in
the tested data

Data quality monitoring
algorithms

Generate a report with
violated instances
indicating the type of
violation / data quality
problem

Data quality monitoring
reports

Evaluation of the
quality state of
data sources

Use the approved data
requirements to calculate
KPIs for data quality
separated by quality
dimensions

Data quality assessment
algorithms

Generate a report with
KPIs for each data quality
dimension with reference
to the assessed object

Data quality assessment
reports

6.2.3 Conditional Requirements

Conditional requirements in the understanding of this thesis are requirements that are

implied by the environment in which the framework shall be used (cf. Grande, 2011, p.

37). Furthermore, we can differentiate between (1) organizational requirements, i.e.

conditions related to the organizational environment, (2) technological requirements,

i.e. conditions implied by the system environment, and (3) financial requirements, i.e.

84

limitations of the available resources for the development project (cf. Grande, 2011, p.

38f.). In the following, we describe the conditional requirements that are relevant for

the development of the SDQM. The following organizational requirements have to be

considered during the development of the SDQM:

Ability to capture distributed knowledge: Knowledge about data requirements is

(similar to other business knowledge) distributed across the organization and,

therefore, difficult to capture (cf. Huang et al., 1999, pp. 44-47; Loshin, 2001, p. 9f.).

Ability to identify contradictory data requirements: Due to different perspectives

and heterogeneity, data requirements may be contradictory. Hence, comparability of

data requirements is important (cf. Loshin, 2001, p. 198f.).

Ability to create data requirements within a limited time: Expert knowledge is a

very precious but limited resource, since it is the source for business success and time

of domain experts is very limited (cf. Loshin, 2001, p. 15). Hence, expert knowledge

should be captured as efficiently and used as effectively as possible.

Ability to create data requirements without programming knowledge: Business

experts are the main contributors to the creation and maintenance of data

requirements, since data requirements often have their origin in business decisions (cf.

Loshin, 2001, p. 15). Therefore, the design of the framework must consider that the

creators and maintainers of data requirements usually have limited programming

knowledge.

Moreover, the following technological requirements must be considered by the SDQM:

Data retrieval from relational sources: The information system used in the

motivating scenario is based on a relational database which limits the types of quality

problems that can occur.

Different optimization of transactional and analytical systems: Transactional

systems are information systems optimized for the support business process execution

(cf. Hansen & Neumann, 2004, p. 90f.). In contrast, analytical systems, e.g. for decision

support, are usually optimized for data analysis (cf. Hansen & Neumann, 2004, pp.

789-794). Performing data quality analytics on a transactional system may, therefore,

lead to unacceptable performance overhead. The data from the organization in the

motivating scenario is located in a transactional system.

85

Performance and scalability: The artifact needs to have a sufficient performance and

must be scalable for wide-spread use.

System constraints: The experiments in this thesis are performed on a specific

operating system. Therefore, the architecture is constrained to artifacts that can be run

on the available operating system.

Furthermore, the development of the SDQM underlies financial requirements. Since

this thesis project has a very limited financial budget and limited manual resources, the

reused artifacts that shall be integrated into the framework have to be freely available

for research purposes.

Additionally to the enumerated requirements, there may be several more conditional

requirements. However, this section contains the most important conditional

requirements with regard to the development of the SDQM framework.

6.2.4 Research Requirements

Besides requirements originating from the application setting, SDQM also addresses

research requirements, i.e. requirements that have to be considered to achieve the

research goal or which are caused by the research conditions in which the artifact is

developed. Since this thesis investigates the use of ontologies for data quality

management (see section 2.1), one or more ontologies shall be part of SDQM.

86

6.3 Summary of SDQM’s Requirements

Table 9 summarizes the initial requirements of SDQM in a structured form and assigns

an identifier to each requirement. The requirements register will be used as a guideline

for the development and evaluation of the SDQM framework.

Table 9: Initial requirements for the development of the SDQM framework

ID Requirement Requirement Type

R1 Distributed acquisition of data requirements Functional
R2 Data requirements shall be captured in a

machine-readable form
Functional

R3 Data requirements have to be approved
before their use for data quality management

Functional

R4 The approved data requirements can be
automatically applied to the tested data and
will indicate violations

Functional

R5 Generate a report with violated instances
indicating the type of violation / data quality
problem

Functional

R6 The approved data requirements can be
used to calculate KPIs for the data quality
separated by quality dimensions

Functional

R7 Generate a report with KPIs for each data
quality dimension with reference to the
assessed object

Functional

R8 Ability to capture distributed knowledge Organizational
R9 Ability to identify contradictory data

requirements
Organizational

R10 Ability to create data requirements without
programming knowledge

Organizational

R11 Ability to create data requirements under
time constraints

Organizational

R12 Data retrieval from relational sources Technological
R13 Different optimization of transactional and

analytical systems
Technological

R14 Performance and scalability Technological
R15 System constraints Technological
R16 Use ontologies Research
R17 Used artifacts must be freely available Financial

87

7 Architecture of the Semantic Data Quality Management
Framework (SDQM)

In this chapter, we define the objectives and justify the design decisions of the

Semantic Data Quality Management framework (SDQM). We describe each

component of SDQM’s architecture as illustrated in figure 26, namely (1) the data

acquisition layer, (2) the data storage layer, (3) the data quality management

vocabulary (DQM Vocabulary), (4) the data requirements editor, and (5) the reporting

layer. The design of the architecture is based on the requirements identified in the

previous chapter. The following sections are organized according to these major

components of the SDQM.

Figure 26: High-level architecture of the SDQM framework

In the first part of the following sections, we describe the purpose of the component of

the high-level architecture and map the initial requirements to the accordant

component. Additionally, we review the initial requirements since new requirements

may arise with growing knowledge about the problem domain during the design

process. In the second part of each section, we present the results of an analysis of

existing artifacts regarding their reusability for the SDQM framework as part of the

development process. At the end of each section, we briefly describe the final technical

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_7, © Springer Fachmedien Wiesbaden 2016

88

design of the component. The application procedure of SDQM’s components is

described in chapter 8. The use cases described in chapter 9 illustrate the actual use

of SDQM in real-world settings.

7.1 Data Acquisition Layer

The data acquisition layer of SDQM shall be used to acquire (1) data for further data

quality-related analyses and (2) reference data that may be needed for algorithms that

compare the tested data with normative reference data. The acquisition process can

be separated into (1) the extraction of data from a relational database or a delimiter-

separated value (DSV) file, (2) the transformation of data into RDF triples, and (3)

loading data into a SPARQL-enabled environment to facilitate the analysis of the data

in the Semantic Web environment (cf. Auer et al., 2009; Sahoo et al., 2009).

This type of process is also commonly known as Extraction, Transformation, and

Loading (ETL), in particular in the context of Business Intelligence (cf. Goeken, 2006,

p. 29). There are two main options to perform the ETL process: (1) static replication,

i.e. to extract, transform, and load the data persistently into a triplestore as a one-time

full copy of the original data or (2) dynamic data acquisition, i.e. to acquire the data on

demand from the data source depending on the executed query without a persistent

storage of a copy (cf. Sahoo et al., 2009). Since the data from the motivating scenario

is located in a transactional system that is not optimized for analytical tasks (cf.

Microsoft, 2014), we prefer the former option to avoid a negative impact on the

performance of the transactional systems (cf. Bizer & Cyganiak, 2007). In order to

consider the use of DSV files, we added the new requirement R18 to the list of

requirements. Table 10 summarizes the requirements that must be met by the data

acquisition layer.

Table 10: Requirements for the data acquisition layer

ID Requirement Requirement Type

R12 Data retrieval from relational sources Technological
R13 Different optimization of transactional

and analytical systems
Technological

R18 Data retrieval from delimiter-separated
files (DSV)

Technological

89

7.1.1 Reusable Artifacts for the Data Acquisition Layer

As of today, there are several tools that can be used to implement the SDQM data

acquisition layer. In 2009, the W3C has published a survey about the state of the art

of tools and techniques in the area of mapping relational databases to RDF (Sahoo et

al., 2009). We analyzed a subset of these tools to identify an appropriate artifact for

data acquisition in our scenario. Moreover, we added Google Refine with its RDF

Extension (Google, 2011; Maali & Cyganiak, 2011) to the list which was not part of the

W3C survey due to its novelty and the lack of direct connections to RDBMS. Our

analysis focuses on the type of data acquisition, i.e. the possibility to load relational

data to an RDF representation based on a mapping between both schemas, and the

public availability of the tool for this research project. As explained in the previous

section, there are two options to acquire data from relational sources, namely static

data acquisition as one-time full copy and dynamic data acquisition that acquires data

on demand. The results which are presented in table 11 are based on an analysis of

the information provided by the respective project’s Web site and the description in the

W3C survey.

To minimize human effort, data acquisition tools should support scheduling the

execution of data acquisition at certain points in time or triggered by certain events,

and the visual modeling of ETL processes. To the best of our knowledge, none of the

freely available tools currently support these mechanisms. Conventional data

integration tools such as Talend Open Studio28 or Pentaho Kettle29 support scheduling

and visual modeling, but do not support the conversion to RDF at the time of writing

this thesis. However, for the purpose of this thesis a visual modeling tool with

scheduling capabilities is not available, but also not necessary.

Table 11: Analysis of existing data acquisition tools with RDF conversion support

Tool Data Acquisition
Type

Free
Availability

Virtuoso RDF Views (Erling, 2007) Static and

Dynamic

No30

28 http://de.talend.com/products-data-integration/talend-open-studio.php (Last accessed on January
05th 2012)
29 http://kettle.pentaho.com/ (Last accessed on January 05th 2012)
30 Available in commercial release only (Last accessed on January 05th 2012)

90

D2RQ (Bizer, Cyganiak, et al., 2009;
Bizer & Seaborne, 2004)

Static and

Dynamic

Yes31

Triplify (Auer et al., 2009) Static and

Dynamic

Yes32

R2O (Rodriguez & Gómez-Pérez, 2006) Static and

Dynamic

Yes33

Dartgrid (Wu et al., 2006) Dynamic No34

RDBtoOnto (Cerbah, 2008) Static Yes35

Asio Semantic Bridge for Relational
Databases (SBRD) and Automapper

Static and

Dynamic

No36

Google Refine with RDF Extension
(Google, 2011; Maali & Cyganiak, 2011)

Static37 Yes38

7.1.2 Data Acquisition for SDQM

In SDQM, data from relational databases and data from DSV files have to be converted

into RDF before the data can be loaded into a triplestore. The conversion of the

relational data in SDQM is done via D2RQ’s RDF dump functionality (Cyganiak, 2012)

since (1) it meets the requirements of SDQM, (2) it is publicly available, and (3) it is

easy to use. Moreover, we use Google Refine with its RDF extension (Maali &

Cyganiak, 2011) to convert data from DSV files into RDF. The loading procedure is

done via the standard loading programs of the chosen triplestore in the data storage

layer of SDQM.

31 http://sourceforge.net/projects/d2rq-map/ (Last accessed on January 05th 2012)
32 http://sourceforge.net/projects/triplify/ (Last accessed on January 05th 2012)
33 Available as NeOn Toolkit plugin at http://neon-toolkit.org/wiki/ODEMapster (Last accessed on
January 05th 2012)
34 The project page http://ccnt.zju.edu.cn/projects/dartgrid was not available at the time of this analysis
(Last accessed on January 05th 2012).
35http://www.tao-project.eu/researchanddevelopment/demosanddownloads/RDBToOnto.html (Last
accessed on January 05th 2012)
36 For availability see http://www.bbn.com/technology/knowledge/asio_sbrd (Last accessed on January
05th 2012)
37 As of January 05th 2012 Google Refine allows the static conversion from TSV, CSV, DSV, Excel (.xls
and .xlsx), JSON, XML, RDF as XML, and Google Data documents
38 http://code.google.com/p/google-refine/ and http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/
(Last accessed on January 05th 2012)

91

7.2 Data Storage Layer

The data storage layer of SDQM serves the purpose of storage and supply of data and

must, therefore, possess the following features:

- Storage of the acquired data,

- storage of data requirements,

- storage of ontologies,

- efficient data analysis capabilities, and

- free availability for research purposes.

In order to cover these functionalities, the storage layer consists of two artifacts: (1) a

triplestore to store the data and (2) a server that exposes an endpoint with access to

the triplestore for the execution of analytical queries and data updates by other

artifacts. During the development of SDQM, we have discovered two more

technological requirements that must be considered for the data storage layer:

- The storage artifact must provide a SPARQL 1.139-compliant endpoint for data

quality analyses (R19).

- The SPARQL endpoint must be extendable by custom SPARQL functions

(R20).

Table 12 summarizes the requirements that must be addressed by SDQM’s data

storage layer.

Table 12: Requirements for the data storage layer

ID Requirement Requirement Type

R14 Performance and scalability Technological
R15 System constraints Technological
R16 Use ontologies Research
R17 Used artifacts must be freely available Financial
R19 SPARQL 1.1-compliant endpoint Technological
R20 Support for User-Defined Functions

(UDFs) in SPARQL
Technological

7.2.1 Reusable Artifacts for Data Storage in SDQM

39 See http://www.w3.org/TR/sparql11-query/ for the SPARQL 1.1 syntax

92

At present, there are several triplestores that may meet the above requirements. As a

basis for the further selection, we used the triplestores tested in the Berlin SPARQL

Benchmark (Bizer & Schultz, 2011).

Table 13: Analysis of existing triplestores regarding their use for SDQM

Triplestore Runs on used
Operating System

Availability SPARQL 1.1
compliant

4Store No40 Yes41 Partially42

BigData Yes Yes43 Yes

BigOwlim Yes Yes44 Yes

Jena TDB Yes Yes45 Yes

Virtuoso Yes Yes46 Partially47

Since Virtuoso and 4store did not fulfill some of the requirements as illustrated in table

13, we had to choose between BigData, BigOwlim, and Jena TDB. Because of the

strong support by the community, the openness of the framework, and its sufficient

performance, we chose Jena TDB to be part of SDQM. Moreover, we chose Fuseki

Server48 to publish the SPARQL endpoint of our Jena TDB.

7.2.2 The Data Storage Layer of SDQM

The data storage layer of SDQM consists of the triplestore Jena TDB in Version 0.8.11

integrated into a Fuseki Server (Revision 8860). The Fuseki Server endpoint was

slightly adjusted so that our custom SPARQL extensions can be interpreted by

Fuseki’s SPARQL query engine. In particular, we added the functions dqf:pattern,

40 Our attempts for building a Windows 7 compatible version failed.
41 http://4store.org/trac/wiki/Download (Last accessed on January 05th 2012)
42 Supported: Aggregates and GROUP BY, not supported: property paths and sub queries ((Salvadores,
2012))
43 http://sourceforge.net/projects/bigdata/
44 OWLIM Lite freely available after registration at http://www.ontotext.com/owlim/owlim-lite-registration
Last accessed on January 05th 2012)
45 http://incubator.apache.org/jena/download/index.html (Last accessed on January 05th 2012)
46 Open source edition available at http://sourceforge.net/projects/virtuoso/files/virtuoso/ (Last accessed
on January 05th 2012)
47 Although the syntax of virtuoso’s SPARQL endpoint is very expressive, we discovered several
differences to the SPARQL 1.1 syntax that would have caused a different (non-SPARQL1.1 compliant)
query design
48 http://openjena.org/wiki/Fuseki (Last accessed on January 05th 2012)

93

dqf:dice, and dqf:requiredTimestamp to the query engine. The prefix “dqf:”

refers to the base URI http://semwebquality.org/function#.

The extension dqf:pattern can be used to analyze the syntactical differences

between string patterns of the values of a certain property. It analyzes each character

of a string and creates a new string based on standard character for each character

type. E.g. capital letters are represented as “A”, small letters as “a”, numbers as “N”,

whitespaces as “_”, and all other characters as “S”. Commas and dots are not replaced

by the function. As a result the function creates a new string “AaA_Aaaaaa” based on

the existing string “PhD Thesis”. This is especially useful in combination with frequency

distribution statistics to get an impression of the different syntactical rules that apply

for the values of a certain property.

The extension dqf:dice calculates the distance between two strings based on the

dice coefficient. The dice coefficient is computed via the following formula (cf. Dice,

1945, p. 298):

The similarity between two strings, string a and string b, is thereby represented as

d(a,b) (cf. Frakes & Baeza-Yates, 1992, p. 404f.). In our implementation of the dice

coefficient, we extract all bigrams, i.e. the two adjacent characters, of each string, store

each of the bigrams as a value within an array for each string, and compare both arrays

with each other. Then we use the constructed arrays and the above formula to

calculate the similarity between both strings. H is the number of matching bigrams

between string a and string b, A is the number of bigrams of string a, and B is the

number of bigrams of string b. As a result, dqf:dice produces a similarity score based

on the number of identical bigrams of the two strings. The similarity d(a,b) between

string a and string b lies between zero and one. A value of one means that both strings

have all bigrams in common. Zero means that the two compared strings do not have

any bigrams in common (cf. Dice, 1945, p. 298f.; Frakes & Baeza-Yates, 1992, p.

404f.). The extension dqf:dice can, therefore, be used to identify duplicates based

on similar values. Due to heterogeneity, duplicates often cannot be identified via exact

matches of property values.

Finally, we added the extension dqf:requiredTimestamp to Fuseki’s query engine

to support the computation of timeliness. The extension subtracts a value in

94

xsd:duration format49 from the current date and time. The xsd:duration value

thereby indicates the maximum duration that may lapse between two updates. As a

result dqf:requiredTimestamp creates an xsd:dateTime formatted50 value that

represents the latest timestamp an instance should have based of the required update

duration information.

In summary, the data storage layer of SDQM facilitates communication with the

triplestore via SPARQL 1.1 queries that are sent to the server’s endpoint. Moreover, it

is also suited to correctly interpret our custom SPARQL extensions.

7.3 Data Quality Management Vocabulary

One core requirement for the proposed approach is a common conceptual data model

for capturing instance data, normative reference data, quality rules and quality metrics.

Such shared data schemas are known as global or mediated schemas in the context

of databases (cf. Alexiev et al., 2005, p. 154f.; Levy, 2000, pp. 7-10) or ontologies (cf.

Alexiev et al., 2005, p. 154f.; Gruber, 1993, p. 199f.) in the context of intelligent

systems, agents, knowledge representation, or the Semantic Web. The data quality

management vocabulary presented in the following is an ontology that shall provide

the unified data structure to store quality-relevant knowledge, so that generic SPARQL

queries can process the knowledge and identify quality problems in data instances.

Table 14 shows the initial requirements for the DQM vocabulary.

Table 14: Requirements for the data quality management vocabulary

ID Requirement Requirement Type

R2 Data requirements shall be captured in a
machine-readable form

Functional

R3 Data requirements have to be approved
before their use for data quality management

Functional

R4 The approved data requirements can be
automatically applied to the tested data and
will indicate violations

Functional

R6 The approved data requirements can be
used to calculate KPIs for the data quality
separated by quality dimensions

Functional

49 http://www.w3.org/TR/xmlschema-2/#duration
50 http://www.w3.org/TR/xmlschema-2/#dateTime

95

Besides these requirements, we have specified the requirements for the development

of the ontology with the help of the ontology engineering methodology by Uschold and

Gruninger (Uschold & Gruninger, 1996). The detailed requirements for the DQM

vocabulary were described by using motivating scenarios for the use of the vocabulary

itself. Based on the scenarios a set of competency questions has been derived such

as the following:

- Which instances of a data source suffer from data quality problems according

to predefined data requirements?

- What is the data quality state of a selected data source according to predefined

data requirements?

- For which time-frame is the data requirement valid?

- Which data requirements have a confidence level above XY?

- Which data quality problems affect instances of class B and/or values of

property X?

- Which data requirements are task-dependent?

The competency questions cover information that is required to represent quality-

relevant knowledge for data quality monitoring and assessment and shall be

answerable through queries against the DQM vocabulary assuming that the retrieved

information is represented via the vocabulary. The competency questions, therefore,

facilitate the identification of the required classes and properties of the ontology. A

detailed description of the DQM vocabulary including its development can be found in

(Fürber & Hepp, 2011b).

7.3.1 Reuse of Existing Ontologies

By the time of this thesis project, we did not find any suitable ontologies that fulfill the

above requirements. However, there are multiple ontologies to represent provenance

information of data in Semantic Web architectures, such as the Semantic Web

Publishing Vocabulary (SWP51) or the Open Provenance Vocabulary (OPV52). Table

15 shows the existing vocabularies in the quality, provenance, and trust space of

Linked Open Vocabularies (Vandenbussche, 2012), a Web site that maintains a list of

51 http://www.w3.org/2004/03/trix/swp-2/
52 http://purl.org/net/provenance/ns

96

open vocabularies of the Semantic Web. Although some provenance vocabularies may

be expressive enough to represent some quality information relevant for the

assessment of quality dimensions such as timeliness (Hartig & Zhao, 2009), they lack

expressiveness for the representation of the different types of data requirements, such

as legal values of a property or functional dependencies. Hence, we developed a new

ontology called the DQM vocabulary from scratch.

Table 15: Ontologies in the data quality space of Linked Open Vocabularies53

Prefix Namespace Title

cert http://www.w3.org/ns/auth/cert# The Cert Ontology

dqm http://purl.org/dqm-vocabulary/v1.1/dqm# The Data Quality
Management Vocabulary

irw http://www.ontologydesignpatterns.org/ont/web/irw.owl# The Identity of Resources
on the Web ontology

opmv http://purl.org/net/opmv/ns# Open Provenance Model
Vocabulary

pav http://swan.mindinformatics.org/ontologies/1.2/pav/
Provenance, Authoring
and Versioning Ontology
Specification

prov http://purl.org/net/provenance/ns# Provenance Vocabulary
Core Ontology

prvt http://purl.org/net/provenance/types# Provenance Vocabulary
types

voag http://voag.linkedmodel.org/schema/voag# Vocabulary Of Attribution
and Governance

wot http://xmlns.com/wot/0.1/ Web Of Trust

7.3.2 Technical Design of the DQM Vocabulary

The DQM vocabulary currently consists of 68 classes, 46 object properties, and 54

data type properties and is coded in OWL DL (see section 4.2.4 for further

explanations) to facilitate its adoption even in knowledge bases that depend on

decidable reasoning. The DQM vocabulary serves the following basic purposes:

1. Representation of data requirements in a machine-readable way.

2. Annotation of quality-relevant meta-information to data elements.

53 Picture retrieved from Mondeca Labs at
http://labs.mondeca.com/dataset/lov/details/vocabularySpace_Quality.html (Last accessed on January
05th 2012)

97

The DQM vocabulary uses the namespace http://purl.org/dqm-vocabulary/v1.1/dqm#

which is abbreviated by the prefix “dqm:” in the following. A full visualization of the

DQM vocabulary is shown in figure 27. Its central classes are highlighted in blue. The

class dqm:DataRequirement is the superclass of all data requirements and,

therefore, contains general properties that all data requirements have in common, such

as the requirement’s name, description, its importance, and source, the creator’s

confidence in accuracy of the requirement, the requirement’s validity period, and

information on whether the requirement shall be used for assessment or information

filtering. The class dqm:DataRequirement is in the center of the DQM vocabulary

due to its importance for data quality management. Since data requirements may be

task-dependent, the object property dqm:appliesFor can be used to connect a

specific requirement with an instance of the class dqm:Task (cf. Pipino et al., 2002, p.

211). This facilitates filtering of task-dependent data requirements based on specific

tasks. Moreover, it helps to identify the tasks that may be affected in case the data

requirement is violated.

98

Figure 27: Visualization of the DQM vocabulary (cf. Fürber & Hepp, 2011b)

99

The instances of the class dqm:DataRequirement and its subclasses may be used

to identify requirement violations and calculate data quality scores. Therefore, these

instances can be used to derive other instances for

dqm:DataRequirementViolation and dqm:DataQualityScore. The class

dqm:DataRequirementViolation has the purpose of annotating instances that

violate data requirements with information about the time of identification, the affected

classes and properties, and the data requirement that identified the violation. The class

dqm:DataQualityScore can be used to store the results of data quality

assessments. The class, therefore, provides properties to identify the time when the

assessment was conducted, the requirement the measurement is based on, the

classes and properties that have been analyzed, the actual score and its unit. The

class dqm:DataElement and its subclasses, which are highlighted in yellow in figure

27, are used to provide the range for the classes dqm:DataRequirement,

dqm:DataRequirementViolation, and dqm:DataQualityScore. Hence, every

class and property that is used in an instance of the class dqm:DataRequirement

has to be either a direct instance of one of dqm:DataElement’s subclasses or

mapped to one of its instances via its properties. In the latter option, the knowledge

base stays in the OWL DL language profile. In the former option, the knowledge base

becomes OWL Full. A full description of the DQM vocabulary can be found at

http://semwebquality.org/dqm-vocabulary/v1/dqm.

7.4 Data Requirements Editor

The data requirements editor shall be used to collect data requirements in a structured

and comparable form so that other artifacts can make use of the specified

requirements, e.g. to automatically derive reports about requirement violations and the

quality state of data sources (see section 6.2.2). Therefore, the requirements editor

must address the requirements specified in table 16.

100

Table 16: Requirements for the data requirements editor

ID Requirement Requirement Type

R1 Distributed acquisition of data requirements Functional
R2 Data requirements shall be captured in a

machine-readable form
Functional

R3 Data requirements have to be approved
before their use for data quality management

Functional

R8 Ability to capture distributed knowledge Organizational
R9 Ability to identify contradictory data

requirements
Organizational

R10 Ability to create data requirements without
programming knowledge

Organizational

R11 Ability to create data requirements under
time constraints

Organizational

7.4.1 Reusable Artifacts for SDQM’s Data Requirements Editor

The collection of structured information can, in general, be supported by forms.

However, platforms are needed that facilitate the collection of distributed knowledge

and the creation of consensual agreement in an easy and efficient way. Wiki software

addresses these issues and is especially useful in distributed environments (cf.

Krötzsch et al., 2006, p. 935). Moreover, first experiences have been collected in the

use of wikis for metadata management (Hüner, Brauer, et al., 2011; Hüner, Otto, et al.,

2011). Therefore, we chose wiki technology as the platform for SDQM’s data

requirements editor. In order to meet the functional requirements, the data

requirements need to be captured and stored in a structured way, so that external tools

can retrieve the data requirements for further processing. We found two wiki-software

platforms that already offer such functionalities, namely Atlassian Confluence54 with

the semantic plugin Wikidsmart55 and MediaWiki56 with the extensions Semantic

MediaWiki57 and Semantic Forms58. Atlassian Confluence is a popular commercial wiki

software widely used in enterprises. According to Atlassian (Atlassian, 2012)

Confluence is used by more than 8000 customers in over 94 countries. Not much is

known about the usage of the Confluence plugin Wikidsmart. On the other hand

MediaWiki is freely available. Its Semantic MediaWiki extension is already widely

54 http://www.atlassian.com/software/confluence/overview (Last accessed on January 06th 2012)
55 http://www.zagile.com/products/wikidsmart.html (Last accessed on January 06th 2012)
56 http://www.MediaWiki.org/wiki/MediaWiki (Last accessed on January 06th 2012)
57 http://semantic-MediaWiki.org/ (Last accessed on January 06th 2012)
58 http://www.MediaWiki.org/wiki/Extension:Semantic_Forms (Last accessed on January 06th 2012)

101

used59 and its documentation makes it easily adaptable. We, therefore, decided to

build the data requirements editor based upon MediaWiki with the extensions Semantic

MediaWiki and Semantic Forms.

7.4.2 Data Requirements Wiki

The architecture of SDQM’s data requirements wiki makes use of standard features of

MediaWiki (Version 1.17.0)56, Semantic MediaWiki (Version 1.7)57, and Semantic

Forms (Version 2.3.2)58. The Semantic MediaWiki extension offers features to

represent and use properties and classes in the MediaWiki environment (cf. Krötzsch

et al., 2006, p. 937). For example the sentence “Cologne has approximately 1,000,000

inhabitants” can be expressed in a machine-interpretable way by adding property tags

to the elements of a sentence, e.g. “[[city::Cologne]] has approximately

[[population::1000000]] inhabitants”. The tags [[city::]] and [[population::]] represent

properties that can by freely defined and retrieved via so called inline queries within

the wiki (cf. Dauw et al., 2014). Moreover, the wiki page that contains this text could

be categorized into the wiki category “Location” which can be seen as a class for all

wiki pages that describe locations. Based on the annotation of properties and

categories, it is now possible to query the data in a structured way. Figure 28 shows

an inline query and its results. The inline query can be saved on regular wiki pages to

integrate dynamically retrieved wiki content (cf. Dauw et al., 2014).

59 See http://semantic-MediaWiki.org/wiki/Sites_using_Semantic_MediaWiki for a list of wikis using
Semantic MediaWiki (Last accessed on February 12th 2012)

102

Figure 28: Example for an inline query and its result (cf. Dauw et al., 2014)

In order to alleviate the complexity and heterogeneity related to the manual annotation

of properties and categories, it is possible to define wiki-based forms with help of the

Semantic Forms extension for Semantic MediaWiki. Semantic Forms allows defining

input elements for properties and categories of Semantic MediaWiki which can be

organized within forms. Therefore, users do not need to bother annotating the right

property and category to the information stored in the wiki. They rather have to fill in

forms to express the information. The data requirements wiki offers several different

forms to capture data requirements (F1-6) and to register tested and trusted data

elements (F7-F11). The forms and its purpose are listed in

table 17. The forms offer several possibilities to enter data such as checkboxes,

dropdown lists, or text areas. Each of the form elements is bound to an internal property

that can be defined via the Semantic MediaWiki extension. The binding between the

form and the properties is done via a MediaWiki template (cf. Koren, 2012, pp. 147-

150; Koren, 2014). The internal categories and properties of the data requirements wiki

are mapped to external classes and properties of the DQM vocabulary via a standard

vocabulary import function60. Due to the mapping, all data captured via the forms is

stored with the URIs of the classes and properties of the DQM vocabulary. Moreover,

the captured data is automatically stored in SDQM’s triplestore in real-time via a

60 The vocabulary import function of Semantic MediaWiki is described in detail at http://semantic-
MediaWiki.org/wiki/Help:Import_vocabulary (Last accessed on February 12th 2012)

103

Standard MediaWiki triplestore connector and is, therefore, immediately available for

data quality analyses within SDQM’s architecture. Figure 29 illustrates the technical

design of the data requirements wiki.

Table 17: Forms provided by SDQM’s data requirements wiki

No. Form Purpose

F1 Property requirements Capture data requirements bound to
single properties.

F2 Conditional requirements Capture data requirements that are valid
for a specific subset of instances of a
class.

F3 Timeliness requirements Capture data requirements related to
the timeliness of instances of a class.

F4 Duplicate rules Capture data requirements that can
identify duplicate instances.

F5 Functional dependency

reference rules

Capture data requirements that refer to
a trusted data source to identify
functional dependency violations.

F6 Custom requirements Capture data requirements that are not
expressible with the above forms.

F7
Tested Classes

Register classes with instances that
shall be analyzed for data quality
problems.

F8 Tested Properties Register properties that shall be
analyzed for data quality problems.

F9 Conditions Define conditions that shall be used for
conditional requirements to filter a
relevant subset of a class.

F10 Trusted Classes Register classes of another data source
as a trusted reference for legal value
rules and functional dependency
reference rules.

F11 Trusted Properties Register properties of another data
source as a trusted reference for legal
value rules and functional dependency
reference rules.

104

Figure 29: Architecture of SDQM's data requirements wiki

7.5 Reporting Layer

The reporting layer of SDQM shall provide data quality monitoring and data quality

assessment reports that are automatically generated based on the data requirements

that were previously created and approved within the data requirements wiki. Data

quality monitoring reports shall contain information about instances of the data source

that violate approved requirements. The data quality monitoring report shall also

indicate which requirement was violated to support root cause analysis. The data

quality assessment report shall provide an overview about the quality state of a data

source separated by quality dimensions. Table 18 summarizes the requirements of the

reporting layer.

105

Table 18: Requirements of the reporting layer

ID Requirement Requirement Type

R4 Use the approved data requirements to
identify requirement violations in the tested
data

Functional

R5 Generate a report with violated instances
indicating the type of violation / data quality
problem

Functional

R6 The approved data requirements can be
used to calculate KPIs for the data quality
separated by quality dimensions

Functional

R7 Generate a report with KPIs for each data
quality dimension with reference to the
assessed object

Functional

7.5.1 Reusable Artifacts for SDQM’s Reporting Layer

The reporting layer of SDQM has to be able to process data specified in the DQM

vocabulary. Since there is currently (by the time of this thesis project) no artifact

available that can meet this specific requirement, we have to build our own reporting

frontend, called Semantic Data Quality Manager (SDQMgr). To minimize the

development effort we chose to use the Jena Semantic Web framework61 for

processing of Semantic Web data and Vaadin62, a Java framework for building Web-

based user interfaces. We chose the Jena framework since it is freely available and

supports the most recent version of the SPARQL query language syntax as defined by

the W3C. Vaadin was chosen since (1) it is written in the same programming language

as the Jena framework, (2) it is also freely available and actively maintained, and (3) it

provides appropriate graphical elements for the definition of modern user interfaces.

7.5.2 Semantic Data Quality Manager

The Semantic Data Quality Manager (SDQMgr) is one of the major artifacts of this

thesis project. SDQMgr is a Web-based frontend application with a user interface for

ad-hoc data quality monitoring and assessment based on approved data requirements

61 http://incubator.apache.org/jena/ (Last accessed on February 12th 2012)
62 https://vaadin.com/home (Last accessed on February 20th 2012)

106

expressed in the syntax of the DQM vocabulary. It is programmed in Java and uses

the Jena Semantic Web Framework63 for processing the data from SDQM’s triplestore.

Figure 30: Web-based user interface of the Semantic Data Quality Manager

SDQMgr’s graphical user interface is Web-based and, therefore, callable from any

Web browser. Thus, users of the SDQMgr only require a Web browser as a

prerequisite for using the application. Figure 30 shows a screenshot of the user

interface of the SDQMgr. In the heart of SDQMgr are Java classes for data quality

monitoring and data quality assessment which contain generic SPARQL queries for

processing the data in SDQM’s triplestore. The generic use of the queries is achieved

by using only the terms provided by the DQM vocabulary. Users can choose from 32

predesigned reports for the identification of instances with requirement violations (data

quality monitoring reports) and 32 reports for the evaluation of the quality state of data

elements (data quality assessment reports). The reports can be chosen from a

dropdown box below “Please select report” in SDQMgr’s user interfaces (see Figure

30). The data quality monitoring reports are organized according to the type of quality

problem and the data quality assessment reports according to data quality dimensions.

Table 19 provides an overview about the SDQMgr’s reports.

Table 19: Reports of SDQMgr

63 http://incubator.apache.org/jena/ (Last accessed on February 12th 2012)

107

Data Quality Monitoring Reports Data Quality Assessment
Reports

Missing Values and Properties Completeness

Conditional Missing Values and
Properties
(1 – 5 Conditions, 5 Reports)

Completeness
(Conditional Rules, 5 Reports)

Syntax Violations Syntactic Accuracy

Conditional Syntax Violations
(1 – 5 Conditions, 5 Reports)

Syntactic Accuracy
(Conditional Rules, 5 Reports)

Illegal Values (Legal Value Rules) Syntactic Accuracy

Out Of Range Values Semantic Accuracy

Illegal Values (Illegal Value Rules) Semantic Accuracy

FuncDepReferenceRule Violations
(2 - 5 Properties, 4 Reports)

Semantic Accuracy
(4 Reports)

FuncDepValueRule Violations
(1 – 5 Conditions, 5 Reports)

Semantic Accuracy
(5 Reports)

Expired Instances Timeliness

Exceeded Update Interval Timeliness

Uniqueness Violations Uniqueness in Depth

Duplicate Instances
(1 – 5 Equal Values, 5 Reports)

Uniqueness in Scope
(5 Reports)

The data quality assessment reports in the right column are thereby based on the

heuristics of the data quality monitoring reports in the left column. The assessment

reports compute a key performance indicator for each quality dimension which is based

on the simple ratio between the number of correct instances (and the number

of all relevant instances (cf. Fürber & Hepp, 2011a, p. 4f.; Pipino et al., 2002, p.

213).

The number of correct instances is thereby determined by subtracting the number of

instances with requirement violations from the number of all relevant instances .

The number of instances with requirement violations is determined by the same

heuristics as applied in the data quality monitoring reports. Figure 31 illustrates the

relationship between the types of data requirement that are used to compute the quality

108

scores for the accordant data quality dimension. For example, instances of the class

dqm:UpdateRule are used to compute the timeliness of a specific data source. It is,

therefore, not necessary to define own data requirements for data quality assessment.

The data requirements that have been used to create data quality monitoring reports

are automatically reused to compute the quality scores.

Figure 31: Configuration of data quality assessment reports in SDQMgr

The dimensional data quality scores presented in SDQMgr’s data quality assessment

reports allow the quick evaluation how complete, syntactic and semantically accurate,

timely, and unique the tested data are based on the captured data requirements. The

user only has to define his data requirements in the data requirements wiki once.

Therefore, the manual effort is reduced. Figure 32 shows a data quality assessment

report of the SDQMgr which contains the completeness scores of three different

properties.

109

Figure 32: Data quality assessment report of SDQMgr

110

8 Application Procedure of SDQM

In this chapter, we explain how to use the SDQM architecture from the perspective of

business users who want to create data requirements, identify data requirement

violations, and evaluate the quality state based on their data requirements.

8.1 Prerequisites

Before the SDQM environment can be used for the first time, it is necessary to install,

to configure its components and to import the required data. The installation of SDQM

contains the following steps:

(1) Install D2RQ

(2) Extract the data to be tested from the relational database with D2RQ into

a file in N-Triples format

(3) Install Google Refine with RDF Extension (optional)

(4) Convert DSV files into RDF files with Google Refine (optional)

(5) Setup, configure, and start the SDQM-optimized Fuseki server

(6) Import RDF and N-Triples files into Jena TDB of Fuseki via Fuseki’s user

interface or TDB’s command line tool “tdbloader”

(7) Setup and configure MediaWiki with the extensions Semantic MediaWiki,

Semantic Forms, Semantic Forms Inputs, and Category Tree including a

database for MediaWiki (e.g. MySQL64)

(8) Deploy the wiki via a PHP65-enabled Web server (e.g. WampServer66)

(9) Import SDQM’s forms, categories, properties, templates, and the DQM

vocabulary mapping

Most of the above steps have to be performed only once before the first use of the

SDQM framework. Steps (2), (4), and (6) may be performed each time new test or

reference data is required. However, in practical settings these processes will usually

be automated with the help of ETL tools that support visual modeling.

64 http://mysql.com/ (Last accessed on February 22th 2012)
65 Hypertext Preprocessor (Programming language for web applications)
66 http://www.wampserver.com/en/ (Last accessed on February 22th 2012)

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_8, © Springer Fachmedien Wiesbaden 2016

111

8.2 The Data Quality Management Process with SDQM

The general application procedure of SDQM is based on the main activities of the data

quality management process as identified in section 3.5.3.

Figure 33: DQM process as supported by SDQM (based on Wang, 1998)

During the definition phase one has to define “What is high quality data?”. This

definition can be performed by using data requirements. SDQM’s data requirements

wiki provides standard forms for this purpose which can be used to express data

requirements and, therefore, define data quality from a specific perspective. In order

to create data requirements with SDQM’s data requirements wiki, the user has to first

register the classes and properties that shall be tested. Figure 34 shows the form of

SDQM’s data requirements wiki that can be used to register new classes that shall be

analyzed for data quality problems. Besides this form, the data requirements wiki also

contains similar forms to register tested properties, trusted classes, trusted properties,

and blacklist classes and properties. The forms only require the specification of the

URI of the class or property that shall be registered. The form then automatically

classifies the registered class into one of the classes of the DQM vocabulary, i.e. the

112

classes dqm:TestedClass, dqm:TestedProperty, dqm:TrustedClass,

dqm:TrustedProperty, dqm:BlacklistClass, or

dqm:BlacklistProperty.

Figure 34: SDQM's form to register new tested classes

After registration of the tested, trusted, and blacklist data elements, data requirements

can be added. Therefore, the data requirements wiki provides several forms for the

different kinds of requirements, namely forms for property requirements, conditional

requirements, timeliness requirements, duplicate instance rules, functional

dependency reference rules, and custom requirements.

The property requirement form contains form elements to create data requirements

that are solely related to a single property. Such property-related requirements are

property completeness rules, unique value rules, legal value range rules, legal value

rules, and illegal value rules (cf. Loshin, 2001, pp. 171-179). Figure 35 shows the form

used to capture property requirements with SDQM’s data requirements wiki.

113

Figure 35: SDQM's property requirement form

The legal and illegal value rules thereby make use of a separate class and property

that contains the legal / illegal values in a list. Such a list can also be generated within

the data requirements wiki. Therefore, one has to first create a category for the list in

the wiki. In case the list shall represent legal values, the new category has to be defined

as subcategory of the category “LegalValue” and needs to be registered as trusted

class via the trusted class form. In the other case, the new category has to be defined

as subcategory of the category “IllegalValue” and has to be registered as blacklist class

with the blacklist class form. After that, a new wiki page should be created for the

maintenance of the list. In case of a legal value list, the legal values could be retrieved

and maintained within a wiki page via the inline query shown in figure 36.

Figure 36: Code for a wiki page to maintain lists in the data requirements wiki

114

After the wiki page has been created, it should provide a button to add values to the

list as illustrated in figure 37

Figure 37: Example of new wiki page for the maintenance of legal value lists

When pushing the button “Add Value” a form will pop up to add a legal value to the

new category as shown in figure 38.

Figure 38: Example of SDQM's form to add legal values

After entering a new legal value and choosing the appropriate category, a list with the

legal values of the category will be shown and dynamically updated each time a new

value is added to the category. Figure 39 shows the dynamic list which contains the

new value captured with the form from figure 38.

Figure 39: Example of legal value list in SDQM's data requirements wiki

115

After the legal value list has been completed, it can be selected in the property

requirement form to define a legal value rule.

The conditional requirement form allows the definition of conditional mandatory value

requirements, conditional syntax requirements, and functionally dependent values.

The form design is thereby aligned to the structure of a conditional rule, i.e. if / then

expressions (cf. Loshin, 2001, p. 170). The if-part allows the expression of conditions

to filter a relevant subset of a class. The current form facilitates the selection of up to

five different filter conditions that are connected with logical AND relationships. The

conditions have to be defined by a separate form of SDQM before it can be selected

in the conditional requirement form. Figure 40 displays the condition form of SDQM’s

data requirements wiki.

Figure 40: SDQM's form to define conditions

The then-part of the requirement represents certain characteristics that are expected

for all values of a certain property that are part of instances that meet the previously

defined conditions (cf. Loshin, 2001, p. 170). Such consequences are for example a

specific syntax requirement, a conditional completeness requirement, or a functionally

dependent value for a specific subset of a class / table. Figure 41 shows the conditional

requirement form of SDQM’s data requirements wiki.

116

Figure 41: SDQM's conditional requirement form

Functionally dependent value requirements can also be captured with the functional

dependency reference rule form of SDQM. The form allows the definition of a reference

data source that holds the legal value combinations. Hence, a lot of manual work can

be saved in cases where there is a reference data source that already contains the

valid property value combinations. A popular example is zip code data which can often

be purchased from the countries’ mail companies. The functional dependency

reference rule form currently allows the definition of dependencies between up to five

property values. Figure 42 shows the functional dependency reference rule form as it

can be called in SDQM’s data requirements wiki.

117

Figure 42: SDQM's functional dependency reference rule form

Timeliness requirements can be captured with the outdated instance rule form of

SDQM’s data requirements wiki. The timeliness requirement can thereby be defined in

two different ways: (1) We can define an update interval (cf. Oliveira, Rodrigues,

Henriques, et al., 2005, p. 3) or (2) we can define a property that represents the date

of expiry (cf. Oliveira, Rodrigues, Henriques, et al., 2005, p. 3). The update interval has

to be specified in xsd:duration syntax67 and represents the duration in which the

instances of a specific class / table have to be periodically updated. The update rule

requires the existence of a property that indicates the timestamp of the last update of

an instance in order to work. The expiry rule requires the existence of a property that

indicates the date of expiry of an instance. In cases, where none of these properties

are available, it is not possible to assess timeliness with SDQM. Figure 43 shows the

form of SDQM’s Data requirements wiki that can be used to capture timeliness

requirements.

67 We refer to http://www.w3.org/TR/xmlschema-2/#duration for the syntax of xsd:duration values

118

Figure 43: SDQM's form for timeliness requirements

Moreover, SDQM provides a form to capture duplicate rules. Duplicate rules are data

requirements that can be used to identify potential duplicates of a class. The respective

form of SDQM’s data requirements wiki allows to define up to five properties of a class

that are used to check whether there are instances with identical values for these

properties. The SDQMgr’s data quality monitoring reports then show all instances with

identical values for these properties, since they are suspicious to be duplicates. Figure

44 shows SDQM’s form to capture duplicate instance rules.

119

Figure 44: SDQM's duplicate instance rule form

Since there may be some requirements that cannot be expressed by using the above

forms, SDQM also provides a form to define custom requirements in SPARQL syntax.

After a data requirement has been captured by the data requirements wiki, it is

recommended to approve the requirement by independent experts or an expert group.

This has the purpose of resolving contradicting data requirements and to facilitate a

common definition of the desired state of data. Only if the data requirements are

consistent to each other, it is technically possible to reach 100% data quality (cf.

Loshin, 2001, p. 198f.).

After approval the data requirements can be flagged, e.g. with the assessment

checkbox which is available in all data requirement forms of SDQM. The approved

data requirements are then used by the SDQMgr to produce the reports for data quality

monitoring and assessment during the measurement phase. The data quality

monitoring reports thereby contain information about instances that violate the defined

requirements. The data quality assessment reports indicate how many instances

120

contain violations compared to the whole data set by providing scores for each quality

dimension as explained in the previous section. Figure 45 shows a data quality

monitoring report that was generated based on the requirement specified in figure 44.

Figure 45: Data quality monitoring report of SDQMgr

Based on the generated data quality monitoring and assessment reports, a thorough

analysis is required to identify the root causes of the requirement violations. The

identification of the root causes is very important, because as long as the root cause

is not removed, the problem may return (cf. English, 1999, pp. 80f., 286-289). The

causes for requirement violations may be manifold (cf. Loshin, 2001, p. 381f.). For

example programs that create data may contain errors, business process manuals

may provide outdated or incorrect information, or people who capture data do not have

time for quality checks. Any of these issues may lead to the production of incorrect

data. Moreover, also the data requirement used for the measurement should be

checked, since the requirement itself may be incomplete, outdated, or even wrong (cf.

Loshin, 2001, p. 198f.). After the root causes of the requirement violations have been

identified, they need to be removed to avoid the return of the data quality problem.

Therefore, options for the removal of the root causes have to be identified, compared,

and implemented during the improvement phase (cf. English, 1999, pp. 289-302;

Wang, 1998, p. 65). Besides the removal of the root cause, it is usually also necessary

to cleanse the data, i.e. to update the data that violate requirements (cf. English, 1999,

pp. 77-80).

121

Figure 46: SDQM application procedure (based on Wang, 1998)

Figure 46 illustrates the application procedure of the SDQM framework based on the

TDQM cycle by (Wang, 1998). The blue-colored process steps are fully supported by

SDQM. At present, the white-colored process steps have to be performed outside of

the SDQM framework. However, the identification and removal of the root causes of

data requirement violations are at present predominantly manual process steps and

can be supported by creativity techniques such as mind mapping, process analysis, or

root cause analysis (cf. English, 1999, pp. 295-302; Loshin, 2001, pp. 381-397; Wang,

1998, p. 64f.).

122

9 Evaluation of the Semantic Data Quality Management
Framework (SDQM)

In this chapter, we evaluate the proposed SDQM approach. The evaluation

methodology of SDQM is separated into three parts. The first part is concerned with

the evaluation of precision and recall of SDQM’s data quality monitoring and

assessment algorithms. The second part evaluates the practical applicability of SDQM

by applying the framework to three different use cases, namely one business use case

on material master data of a large organization, one Semantic Web use case with data

from DBpedia68, and one use case that examines the capability of SDQM to

automatically identify inconsistent data requirements. In the third part of the evaluation,

SDQM is compared to a conventional data quality tool.

9.1 Evaluation of Algorithms

9.1.1 Algorithm Evaluation Methodology

In this section, we will apply the notions of recall and precision from the field of

Information Retrieval to data quality management and use them as indicators for the

performance of our approach (cf. Batini & Scannapieco, 2006, pp. 125-127; Buckland

& Gey, 1994; Raghavan et al., 1989). This is based on the idea that essentially our

algorithms attempt to retrieve all requirement violations. Precision can be defined as

the degree to which an information retrieval result contains relevant information (cf.

Buckland & Gey, 1994, p. 12f.). It is measured via the ratio between true positives (TP)

and the sum of true positives (TP) and false positives (FP) (Batini & Scannapieco,

2006, p. 126). True positives are thereby instances that are correctly identified to be

relevant (Batini & Scannapieco, 2006, p. 125f.). False positives are relevant instances

that were incorrectly identified to be relevant (Batini & Scannapieco, 2006, p. 125f.). In

our case, true positives are correctly identified data requirement violations and false

positives are requirement violations that have not been identified.

68 http://dbpedia.org

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_9, © Springer Fachmedien Wiesbaden 2016

123

Hence, precision in our case measures how many of the identified data requirement

violations have been identified correctly, i.e. really violate a data requirement (Batini &

Scannapieco, 2006, p. 126).

Recall is a measure that represents the ratio between the retrieved relevant instances

and all relevant instances (cf. Buckland & Gey, 1994, p. 12). In our case, the equivalent

is the number of correctly identified requirement violations (TP) and all requirement

violations including false negatives (FN), i.e. requirement violations that have not been

identified by the algorithms. Recall, therefore, measures how many data requirement

violations have been identified by the algorithm compared to the whole population of

data requirements violations (cf. Batini & Scannapieco, 2006, pp. 125-127).

Since our algorithms attempt to identify all data quality problems related to a certain

data requirement, the scores for precision and recall should be equal to one in the ideal

case.

9.1.2 Application Procedure

In order to identify the required variables correctly, we created a small test data set

with product and location data that contains all instance-related single-source data

quality problem types as listed in table 5 of section 3.6.1. Additionally, we created 49

self-defined data requirements for the data, such as “Every instance of class

Location must have a ZIP code.” The full set of rules that were used to evaluate

SDQM’s algorithms can be found in appendix B. The full test data set including the

reference data that was used in the evaluation can be found in appendix C. All

requirement violations in the test data set were known, so that we were able to exactly

identify all false positives and false negatives. In sum, we tested all 64 algorithms of

SDQM for data quality monitoring and data quality assessment.

124

9.1.3 Results

As expected all tested algorithms returned perfect results for precision and recall.

These perfect results are necessary before we apply the algorithms to real data, in

order to make sure that they are able to identify all types of data quality problems. It

must be stressed that the queries related to “Functional Dependency Reference Rules”

return instances that miss one or more dependent values or properties as requirement

violations, i.e. true positives, although the correct value may be located in a different

attribute. E.g. the record with LOCID equal to 3 with city value “Nantes” and state value

“France” returned as true positive since the correct dependent value “France” was not

located in the property country, but located in the wrong property state. A full list of the

algorithm evaluation results of SDQM can be found in appendices D and E. In

summary, the evaluation results show that SDQM’s algorithms are able to identify data

requirement violations and assess the state of data quality correctly.

9.2 Use Case 1: Evaluation of Material Master Data

The first use case deals with a real business scenario that is concerned with the quality

of master data of an information system. According to ISO 8000-102:2009 master data

is defined as “data held by an organization that describes the entities that are both

independent and fundamental for that organization and that it needs to reference in

order to perform its transactions” (ISO, 2009). Hence, correct and complete master

data is essential for the execution of business processes and, therefore, the

organizational success. This first use case shall illustrate how the SDQM framework

can be applied for master data quality management in real-world settings. We thereby

evaluate SDQM especially regarding the following criteria:

- Ability of SDQM to represent the organization’s data requirements

- ability to process the organization’s data requirements to create data quality

reports, and

- performance of SDQM’s data quality reports

125

9.2.1 Scenario

A large public organization uses an ERP system to support its logistic processes. The

system contains material master data as a source for process-relevant information that

is used for process execution. The system uses the material master data to automate

tasks such as the placement of purchase orders, storage management, or to inform

people, e.g. about appropriate handling of materials. In order to avoid process failures,

it is necessary to assure that the master data provided by the ERP system is of

sufficient quality. Therefore, the organization seeks for a system that identifies data

quality problems, i.e. instances with data that violate the organization’s requirements,

and that allows the quick evaluation of the overall quality state of data items.

9.2.2 Setup and Application Procedure of SDQM

The SDQM framework is used in the context of the above scenario to (1) represent

data requirements, (2) identify requirement violations, and (3) evaluate the quality state

of data items of the data source. Therefore, SDQM was set up with the data of the

organization on a local server as explained in section 8.1. The server used is an AMD

Athlon II X4 630 Processor 2.80 GHz with 8 GB RAM on a Windows 7 64bit operating

system. The Fuseki server thereby received 4,600 megabyte of the RAM and the

SDQMgr 1,536 megabyte of RAM. The capturing of data requirements and the

execution of data quality measurement reports was performed as described in section

8.2. The organization provided 19 data requirements for their general material master

data. The source data was stored in single table of a relational database. We converted

the data into an N-Triples file via D2RQ69 and imported the N-Triples file into the

triplestore via the user interface of the Fuseki server70. In the relational database, the

source table had 3.3 million records. Together with the data requirements the

triplestore contained 53,077,730 triples. Before executing SDQM’s reports, the

hardware setup was optimized by comparing the execution time of a simple SPARQL

query that counts all triples of the Jena TDB published by the Fuseki server. In the

mentioned configuration, the COUNT query performed best and executed within

41,713 milliseconds. Table 20 shows the rules that have been collected from experts

69 http://d2rq.org/ (Last accessed on 30.08.2014)
70 http://jena.apache.org/documentation/serving_data/ (Last accessed on 30.08.2014)

126

of the organization and were applied on their material data to identify data quality

problems.

Table 20: Data requirements that were collected and applied for use case 171

Report Rule

Missing values and
properties
(5 property requirements)

The following fields must have a value for all
materials:

- Lab/Office
- Material group
- Base unit of measure
- Manufacturer part number
- Material type

Conditional missing values
and properties
(1 requirement)

If the material type is set for non-valuated
materials, then the field “Installation type” must
always have a value.

Syntax violations
(1 property requirement)

The field “Internal material number” must always
have 9 digits.

Illegal values
(Legal value rules)
(6 property requirements)

The following fields can only obtain specific values:

- Installation type
- External material group
- Material condition management
- Serial number profile
- Lab/Office
- Material type

Out of range values
(1 property requirement)

The field “Standard price” must not be lower than
0.02 € and not higher than 999,999,999.00 €.

Duplicate instances
(3 equal values)
(1 duplicate instance
requirement)

If the material text, the manufacturer part number
and the standard price have the same value for
two or more instances, then the instances are
potential duplicates.

Functional dependent
value rule
(4 requirements)

Furniture materials must have a specific installation
type value.

Certain material types are always in ownership of a
specific office.

Materials with a specific external material group
are always in ownership of a specific office.

Materials with a certain installation type must
always have a price greater than 4,999.00 €.

71 The rules are described on an abstract level in order to assure the anonymity of the organization.

127

9.2.3 Results and Findings

As shown in table 20, the data requirements delivered by the organization covered

syntax rules, legal value rules, duplicate instance rules, property completeness rules,

legal value range rules, and functional dependency rules. The standard forms of

SDQM’s data requirements wiki were expressive enough to cover all of the

organization’s data requirements. All data requirements were represented in the data

requirements wiki and could be processed by the SDQMgr to generate reports about

requirements violations and reports that reflect the overall quality state of the

organization’s data items. Figure 47 shows the data quality monitoring report with

instances that violate a legal value range requirement of a certain property.

Figure 47: Report with legal value range violations

Figure 48 shows the accordant data quality assessment report which contains a score

about the overall semantic accuracy of the property. The score has been computed

based on the legal value range requirement which contains an upper and lower legal

value for the property.

128

Figure 48: Report with semantic accuracy score based on value range requirement

The overall performance of the reports that were executed with the SDQMgr showed

mostly sufficient results as shown in table 21. One exception was discovered during

the execution of the report that indicates duplicate instances. The accordant query of

SDQMgr was designed to compare certain property values of each instance with each

other. In our use case, duplicate instances should be identified in a class with roughly

3,000,000 instances. This resulted in (3,000,000 – 1)2 / 2 comparisons which was not

processable in a sufficient time with the current setup. However, the data quality

assessment reports showed also sufficient results regarding their performance as

illustrated in table 22.

129

Table 21: Evaluation results of SDQMgr's data quality monitoring reports (use case 1)

Report Result Execution Time
(in min:sec.ms)

Missing Values and
Properties

(5 requirements)
311,821 rows 10:02.901

Conditional Missing Values
and Properties

(1 requirement)
56 rows 01:43.038

Syntax violations

(1 requirement)
7 rows 03:54.431

Illegal Values

(Legal Value Rules)

(6 requirements)

23,724 rows 18:35.353

Out of Range Values

(1 requirement)
414,444 rows 02:00.738

Duplicate Instances

(3 Equal Values)

(1 duplicate instance
requirement)

Did not finish Did not finish

Functional Dependent
Value Rule

(4 requirements)

71 rows 02:02.784

130

Table 22: Evaluation results of SDQMgr's data quality assessment reports (use case 1)

Report Result Execution Time
(in min:sec.ms)

Completeness

(5 requirements)

Property 1: 100 %

Property 2: 99,05 %

Property 3: 93,05 %

Property 4: 97,53 %

Property 5: 100 %

15:59.841

Conditional Completeness

(1 requirement)

Property 6: 99,93 % 01:50.137

Syntactic Accuracy

(Syntax Rules)

(1 requirement)

Property 7: 99,99 %
02:08.727

Syntactic Accuracy

(Legal Value Rules)

(6 requirements)

Property 8: 99,95 %

Property 9: 100 %

Property 6: 99,99 %

Property 4: 99,97 %

Property 10: 99,28 %

Property 5: 100 %

27:18.928

Semantic Accuracy

(Legal Value Range Rules)

(1 requirement)

Property 11: 86,20 %
03:04.716

Semantic Accuracy FDV

(1 Condition)

(4 requirements)

FDV 1: 100 %

FDV 2: 100 %

FDV 3: 99,96 %

FDV 4: 99,77 %

02:54.406

In summary, the evaluation results show that SDQM is basically capable to be used

for quality management of master data in real-world business settings. However, there

is room for improvement in several areas. In particular, future work on SDQM should

regard the following options to increase performance:

131

- Jena’s in-memory technology could be used to load the whole Jena TDB of

SDQM into the computer’s main memory before execution of SDQMgr’s reports.

- The execution of queries and generation of data quality reports could be

decoupled from each other. E.g. the queries could be executed at night and the

reports would only access a cached query result.

- The CPU and main memory capacity could be extended to provide more

resources for SDQM’s applications.

- An authorization system could be added that requires user’s login before the

execution of data quality reports to avoid inappropriate use.

Moreover, SDQM’s mechanisms for representing and processing duplicate instance

requirements should be optimized to be applicable to larger data sets, e.g. by adapting

duplicate detection algorithms as proposed in (Monge & Elkan, 1997) or (Herschel et

al., 2011). For example the performance of SDQM’s duplicate checking algorithm can

be improved by adjusting the algorithm to search for duplicates only in a sorted

neighborhood (Bitton & DeWitt, 1983) or by building clusters based on the transitivity

of the “isDuplicateOf” relationship and thereby avoiding unnecessary comparisons

(Monge & Elkan, 1997).

Despite the successful application of SDQM in this use case, it must be stressed that

this is only a first step to prove SDQM’s practical applicability. A longer practical

application of SDQM in a realistic business setting would be needed to evaluate the

strengths and weaknesses of SDQM with higher precision. For example the amount of

data requirements will most likely increase over time and easily exceed the number of

data requirements as applied in this use case. Furthermore, more complex functional

dependencies may exist that may not be represented with the standard forms of

SDQM.

132

9.3 Use Case 2: Evaluation of Data from DBpedia

The second use case attempts to investigate the applicability of SDQM for tasks related

to data quality in Semantic Web scenarios. As for the evaluation, we chose DBpedia

(Bizer, Lehmann, et al., 2009), a publicly available Semantic Web data source that

contains structured information from Wikipedia. As DBpedia data stems from the open

environment of Wikipedia where anyone can edit content, it raises new challenges for

a data quality management tool especially regarding the heterogeneity of data and

data requirements.

9.3.1 Scenario

Wikipedia is a public encyclopedia that can be edited by anyone who has access to

the internet (cf. Voss, 2005, p. 1). As of June 2012 the English Wikipedia contains over

3.9 million articles about persons, locations, movies, species, and many other things72.

The DBpedia project extracts the structured part of Wikipedia’s articles regularly and

publishes the data in the Semantic Web (cf. Kobilarov, Bizer, et al., 2009, p. 35f.) where

it can be used by anyone for multiple different purposes. Due to the amount of data, it

is not feasible to identify data quality problems manually. Thus, means are required to

efficiently identify data quality problems and to evaluate the quality state of DBpedia’s

data items for the following purposes:

- Administrators of DBpedia and Wikipedia may want to efficiently identify

vandalism caused by the openness of Wikipedia.

- Data consumers may want to evaluate the quality state of certain parts of

DBpedia before relying on it.

In the following, we evaluate whether SDQM may help in these tasks.

72 http://en.wikipedia.org/wiki/Main_Page (Last accessed on June 10th 2012)

133

9.3.2 Specialties of Semantic Web Scenarios

Data quality tasks in open environments such as the Semantic Web underlie different

conditions than data quality management tasks of information systems in closed

settings. Since data can be edited and used by anyone, the degree of heterogeneity is

much larger in open settings than in closed settings (cf. Batini & Scannapieco, 2006,

p. 15; Bizer, 2007, p. 44). Heterogeneity thereby does not only reflect on data, but also

on data requirements due to different subjective preferences and different use cases,

in which the data is used (Bizer & Cyganiak, 2009, p. 2). Hence, the definition of the

characteristics of high quality data may be much more contrary in open settings, since

it is more difficult to achieve agreement in a large and diverse environment such as the

Web. In consequence, the goal of data quality management tasks is usually not

primarily the correction of data according to specific requirements of single users. A

consensual agreement would have to be first established about a data requirement

before requirement violations can be corrected in the data source. Due to

heterogeneous world views and ways of expression, it is not realistic to satisfy

everyone’s requirements.

9.3.3 Setup and Application Procedure

First of all, we downloaded the DBpedia ontology, the ontology infobox types, the

property data including the specific properties, and the titles data which are all available

at http://dbpedia.org/Downloads37. The downloaded data sets were extracted from the

English Wikipedia in July 22nd 2011 and contain 35,823,373 million triples in summary.

The data was loaded into SDQM’s triplestore. We thereby used the same hardware

configuration as in use case one. We also again used the application procedure as

describe in figure 46 to create the requirement metadata for the data quality

management tasks. Since (to the best of our knowledge) there is currently no

community that establishes agreement among data requirements in Web

environments such as DBpedia, we created our own subjective data requirements. It

must be stressed that, therefore, the ability of SDQM to represent data requirements

cannot be fully evaluated. However, this second use case rather focuses on collecting

first evidence for the applicability of SDQM in Semantic Web environments. Table 23

lists the assumed data requirements for this use case.

134

Table 23: Assumed data requirements of use case 2

No. Requirement Description

1 The property http://dbpedia.org/ontology/gender can only obtain the

values http://dbpedia.org/resource/Female and

http://dbpedia.org/resource/Male.

2 The property http://dbpedia.org/ontology/populationTotal can only

obtain values between 0 and 7,000,000,000.

3 The property http://dbpedia.org/ontology/populationTotal can only

obtain numeric values.

4 The property http://dbpedia.org/ontology/populationTotal should exist

in all instances of the class

http://dbpedia.org/ontology/PopulatedPlace.

5 The property http://www.w3.org/2003/01/geo/wgs84_pos#long must

exist in all instances of class http://dbpedia.org/ontology/Place.

6 The property http://www.w3.org/2003/01/geo/wgs84_pos#long must

have a specific syntax (Regular expression: “^(\-?\d+(\.\d+)?)”).

7 The property http://www.w3.org/2003/01/geo/wgs84_pos#lat must

exist in all instances of class http://dbpedia.org/ontology/Place.

8 The property http://www.w3.org/2003/01/geo/wgs84_pos#lat must

have a specific syntax (Regular expression: “^(\-?\d+(\.\d+)?)”).

9 Country – Capital combinations in DBpedia must match the country

capital combinations of Geonames.

We focused on data requirements relevant for data usage of data from the DBpedia

classes dbo:Place73, dbo:PopulatedPlace74, dbo:Country75, and

dbo:Person76. It must be stressed that the data requirements as listed above are the

73 http://dbpedia.org/ontology/Place
74 http://dbpedia.org/ontology/PopulatedPlace
75 http://dbpedia.org/ontology/Country
76 http://dbpedia.org/ontology/Person

135

subjective requirements of the author and do not necessarily represent a commonly

accepted understanding of high-quality data in DBpedia.

9.3.4 Results and Findings

Our analyses identified several requirement violations. E.g. requirement no. 1 revealed

that there are eight other values for the property http://dbpedia.org/ontology/gender in

instances of the class http://dbpedia.org/ontology/Person besides “Male” and “Female”

in the English Wikipedia as of July 2011, namely “Man”, “Nerd”, “Cylon (Battlestar

Galactica)”, “Elves (Shannara)”, “Puppet”, “Sex”, and “Pantomime horse”. Figure 49

shows the results as identified by the SDQMgr.

Figure 49: Result of legal value requirement analysis in DBpedia

An additional random check confirmed the usage of these values in the English version

of Wikipedia. Figure 50 reveals that the Wikipedia page of the television character

“Janet Wood” has been subject to assignment of the value “Nerd” as gender. In the

meanwhile the value for gender has been changed by the Wikipedia community to

“Female”. This reflects agreement to the author’s understanding of legal values for the

properties representing the gender of a person.

136

Figure 50: Infobox source code of Wikipedia page “Janet Wood” as of June 27, 2011

However, the analysis results contain other requirement violations that point to less

agreement about the correct gender value. Figure 51 shows a page about the robot

“Cy” from the television series “Galactica 1980” which indicates the Gender “Cylon” for

“Cy” until today77.

Figure 51: Wikipedia page "Cy (Cyclon)” as of June 10, 2012

To the best of our knowledge, there is no commonly accepted truth about the real

gender of Cy. Therefore, the gender “Cylon” may be seen as valid. However, from our

subjective perspective it is not harmful to regard “Cylon” as invalid value for

representation of a gender. But most likely we are not able to change the value for “Cy”

permanently to “Male” in Wikipedia without convincing the community. This example

77 Today in this context equals June 10th 2012.

137

emphasizes the special problems related to data quality management in open

environments such as the Web.

Moreover, we were able to detect obviously incorrect values for the property

http://dbpedia.org/ontology/populationTotal. We found 47 instances of the class

http://dbpedia.org/ontology/Place which contain a population value greater than

7,000,000,000. Figure 52 shows SDQMgr’s report on out of range violations according

to our data requirement No.2 of table 23.

Figure 52: Out of range values for property “population” in DBpedia

The highlighted row in the result table shows that “Downsville Louisiana” has a

population value of “100,000,000,000”. The accordant Wikipedia page from June 19th

2011 confirms this result as illustrated in figure 53.

138

Figure 53: Wikipedia page "Downsville, Louisiana" as of June 19th 2011

In the meanwhile, the population value for Downsville (Louisiana) has been corrected

to 141 inhabitants78. The syntactic requirements for the property

http://www.w3.org/2003/01/geo/wgs84_pos#long and the property

http://www.w3.org/2003/01/geo/wgs84_pos#lat did not return any violations in the

SDQMgr.

Figure 54: Data quality assessment report displaying syntactic accuracy results

78 http://en.wikipedia.org/wiki/Downsville,_Louisiana (Last accessed on June 10th 2011)

139

Moreover, we generated data quality assessment reports to each of the requirements

which are shown in table 24.

Table 24: SDQMgr's data quality assessment results on DBpedia

Report Result Execution Time
(min:sec.ms)

Completeness

(Requirement no. 4,

5, 7)

Population total: 61,21 %

Latitude: 65,79 %

Longitude: 65,79 %

01:27.221

Syntactic Accuracy

(syntax rules)

(Requirement no. 3,

6, 8)

Population total: 100 %

Latitude: 100 %

Longitude: 100 %
01:02.057

Syntactic Accuracy

(legal value rules)

(Requirement no. 1)

Gender: 99,99 %

00:47.565

Semantic Accuracy

(out of range rules)

(Requirement no. 2)

Population: 99,98 %

00:14.773

Semantic Accuracy

(functional

dependency

reference rule)

(Requirement no. 9)

Country Capital Combinations

(Variant 1: Class Country):

0,07 %

Country Capital Combinations

(Variant 2: Class

CurrentCountry): 46,22 %

00:06.100

00:01.701

It must be stressed that the interpretation of the above results must be performed very

carefully. For example the analysis results show that DBpedia and, therefore, most

likely also Wikipedia provides data on population, latitude, and longitude for almost two

thirds of the documented places or populated places respectively. This does not mean

140

that it makes sense to provide such data for all of Wikipedia’s places and populated

places, since these high level classes may combine different concepts. For example,

the data quality monitoring report with missing latitude and longitude values contains

a lot of rivers which do not have specific latitude and longitude values. Moreover, we

identified almost perfect results regarding our syntactic requirements except for the

gender values that were mentioned earlier. The semantic accuracy of the population

values that were tested with help of a legal value range (requirement no. 2) is also on

a very high level. The 0.02 % requirement violations are all caused by population

values beyond 7,000,000,000 which have partly already been removed in Wikipedia

as shown earlier. Finally, we tested country related data of DBpedia against

Geonames79, a publicly available data source for geographic data. We thereby

downloaded the country info data of Geonames80 as of June10th 2012 which contains

information about 252 countries, such as population, capital, currency, format of postal

codes, etc. The Geonames data was converted to be matched against data from

DBpedia’s dbo:Country class as trusted reference to check valid combinations of

country names and its capital cities. The first run showed insufficient results as only

0.07 % of DBpedia’s country data matched with the data in Geonames. One of the

major reasons for this poor result was the fact that DBpedia represents current and

historic countries while Geonames only represents current countries. Thus, we

adjusted our data requirement by creating a new class CurrentCountries that

contains all instances of DBpedia without a property value for dbpedia-

owl:dissolutionDate or dbpedia-owl:dissolutionYear. In consequence,

the semantic accuracy score raised up to 46.22 %. The remaining requirement

violations are in majority caused by different naming, e.g. “Bogota” versus “Bogotá” or

“China” versus “People’s Republic of China”. But besides these heterogeneities, there

are also real errors. For example, DBpedia contains a triple that says that “La Paz” is

the capital of “Bolivia”. In fact, “Sucre” is the constitutional capital of Bolivia, while “La

Paz” is only the seat of government. However, in cases where the seat of government

is also regarded as capital, the combination “La Paz” and “Bolivia” would have to be

added to the trusted reference.

In summary, SDQM indicates that it can be used in Semantic Web environments, such

as DBpedia, (1) to spot potential data quality problems according to one’s requirements

79 http://www.geonames.org (Last accessed on June 2nd 2011)
80 Available at http://download.geonames.org/export/dump/countryInfo.txt (Last accessed on June 10th
2011)

141

and (2) serve data consumers to quickly analyze a Semantic Web data source

regarding their own quality perception. Moreover, the performance of SDQM showed

promising results. But we also discovered several problems which have to be

considered when using SDQM in Semantic Web settings:

- Agreement about data requirements is much harder to achieve in Web

environments than in closed settings due to a greater heterogeneity of world

views.

- Heterogeneity and different world views may lead to inconsistent data

requirements. E.g. one may define “Cylon” as valid value for gender, while

another person defines “Cylon” as invalid value for gender.

- Correction of an open data source, such as Wikipedia, usually requires

agreement from the community to persist.

- Heterogeneity makes the definition of data requirements more complicated,

since it raises the amount of acceptable states of values.

- The classes of the DBpedia ontology only barely distinguish between real

entities and fictitious entities. This again complicates the definition of data

requirements. For example the robot “Cy” from the television series “Battlestar

Galactica” is considered as a person in DBpedia and, therefore, should have a

gender.

- The classes of the DBpedia ontology do not distinguish between historic and

currently existing entities. For example the German Democratic Republic is

member of the class “Populated Place” in DBpedia.

As part of future work, SDQM could be deployed to the Web to generate commonly

accepted data requirements by the Semantic Web community. Therefore, it can

efficiently support data quality management on Web-scale and the improvement of

Semantic Web data.

9.4 Use Case 3: Consistency Checks Among Data Requirements

In this use case, we intend to demonstrate how SDQM facilitates the automated

identification of inconsistent data requirements.

142

9.4.1 Scenario

A large organization that performs data quality management has many data

requirements which are used to improve data quality. The organization uses SDQM.

The organization’s data requirements have been previously represented via the data

requirements wiki of SDQM. The organization seeks for an efficient automatic way to

identify conflicting data requirements.

9.4.2 Application Procedure

In SDQM, all data requirements are represented in a common structure that is provided

by the DQM vocabulary. The data requirements are themselves represented as data

in RDF format. Therefore, we can use standard SPARQL queries to manage the quality

of data requirements. In general, there are two different types of inconsistencies

between data requirements, namely (1) duplicate, but consistent requirements, and (2)

contradicting requirements (cf. Oliveira, Rodrigues, & Henriques, 2005, p. 8). Duplicate

requirements typically refer to the same schema elements, i.e. classes and properties,

which are tested for requirement violations. Contradicting requirements are two or

more requirements about the same schema elements that oppose each other and,

therefore, cannot be applied at the same time. In the following, we will provide some

example queries that are based on fictitious data requirements. The data requirements

are based on the test data with information about suppliers. The examples are

separated according to the different types of data requirements, since they require

different application procedures.

SDQM’s property requirements can in general not become inconsistent due to the

enforced naming convention of wiki pages in the data requirements wiki. By convention

the property requirement title in the wiki is concatenated from the class and property

name. Hence, if the tested class and property is only registered under one name in the

data requirements wiki, it will not be possible to create duplicate property requirements.

However, the naming convention may be modified to create duplicate requirements for

the same property if the use case required capturing heterogeneous and potentially

inconsistent requirements. In such cases, the same property may be associated to

multiple different requirements. Due to the annotation of each requirement with the

143

“testedClass” and “testedProperty” properties and their representation in RDF,

it is possible to identify duplicate requirements and duplicate inconsistent requirements

with standard SPARQL queries. To prove this, we created three property requirements

for the property http://www.example.org/suppliers#supplierID. The first property

requirement “PR Organization FOO Supplier ID” defines that unique values are

required for this property in all instances of the class

http://www.w3.org/2006/vcard/ns#Organization. The second property requirement “PR

Organization EXAMPLE Supplier ID” refers to the same class and property, but does

not define that unique values are required. Thus, the property requirement “PR

Organization EXAMPLE Supplier ID” is not consistent with the original requirement

“PR Organization FOO Supplier ID”. The third property requirement “PR Organization

Supplier ID” consistently defines that unique values are required for this property in all

instances of the class http://www.w3.org/2006/vcard/ns#Organization. All of the three

requirements make statements about the same tested class and property, but use

different representations of the property http://www.example.org/suppliers#supplierID,

since the same property has been registered with three different names in the data

requirements wiki. Figure 55 shows a generic SPARQL query that identifies duplicate

property requirements and its result based on our test data.

Figure 55: SPARQL query and result displaying duplicate property requirements

In general, it is possible to identify only such duplicate requirements that are

inconsistent with each other. Figure 56 shows a SPARQL query and its result that can

be used to identify inconsistent unique value rules, in case the requirements have been

represented in the DQM vocabulary.

144

Figure 56: SPARQL query for identification of inconsistent property requirements

9.4.3 Summary

The above queries are domain independent and can be reused to identify

inconsistencies among unique value requirements in a data quality management

system that represents its data requirements with the DQM vocabulary. Therefore,

data quality management with SDQM is especially useful in large environments with

distributed knowledge where it is important to identify inconsistent data requirements

that have been created and maintained by several different individuals. However, the

demonstrated duplicate and consistency checks are only first steps and do not prove

that every data requirement type can be checked for consistency. For example,

consistency checks among conditional requirements, timeliness requirements, and

functional dependency reference rules have not been evaluated, yet. Moreover, as

soon as reasoning is enabled, the identification of duplicates and conflicts may become

more complex. Further research is needed in this area, to provide reliable information

about the scope of consistency checks that is currently possible with SDQM. But the

current results based on this evaluation are a promising first approach that may

probably be extendable to other data requirement types.

145

9.5 Comparison with Talend OS for Data Quality

In this section, we compare SDQM with Talend Open Studio for Data Quality (Talend

OS for Data Quality), a conventional data quality software tool from the software

company Talend81. Talend OS for Data Quality can be used for analyzing the quality

of data. It is open-source software that is freely available for download. The comparison

is focused on the following issues:

- Representation of data requirements

- consistency checks among data requirements

- data quality monitoring and assessment reporting, and

- performance of data quality analyses

It must be stressed that Talend OS for Data Quality offers many more features, e.g. in

the area of data profiling, that are beyond the scope of SDQM and, therefore, not

subject of this comparison.

9.5.1 Representation and Management of Data Requirements

In Talend OS for Data Quality, data requirements can be represented with so called

“SQL business rules”. In order to represent a data requirement with Talend OS for Data

Quality, the following three high-level steps are required (cf. Talend, 2012, p. 140ff.):

(1) Create SQL business rule

(2) Create new analysis

(3) Run analysis

As the name implies, SQL business rules are based on the relational query language

SQL. The data requirement is thereby represented in SQL code which is later

automatically embedded into the WHERE clause of an SQL query. Figure 57 shows

an SQL business rule for the identification of missing values in the attribute “city”.

81 http://www.talend.com (Last accessed on June 2nd 2012)

146

Figure 57: SQL business rule in Talend OS for Data Quality

After the data requirements have been represented as SQL business rules, they have

to be attached to a so called analysis. Therefore, a new business analysis object has

to be created in Talend OS for Data Quality. The tool provides a wizard for the creation

of the analysis object in which the relevant table and the relevant SQL business rules

can be chosen from a list. The latter is shown in figure 58. Based on these inputs the

analysis can be run to identify requirement violations.

147

Figure 58: Selecting SQL business rules in Talend OS for Data Quality

In the area of data requirements management, there are three major differences

between Talend OS for Data Quality and SDQM. The first difference lies in the way of

representing data requirements. Talend OS for Data Quality uses plain SQL coding,

while SDQM uses forms to capture data requirements which are automatically

converted into RDF data. Other than the users of Talend OS for Data Quality, SDQM’s

users do not have to know any query language to create data requirements, since they

just have to fill in wiki-based forms. The second difference is the location in which the

data requirements are created and maintained. In Talend OS for Data Quality data

requirements are typically created and maintained on the client of the software

installation. Since SDQM uses the data requirements wiki to manage data

requirements, they can be created and maintained at Web scale by anyone who has

sufficient access rights. Lastly, due to the representation of the data requirements in

RDF, it is possible to check consistency among data requirements with SDQM by using

standard SPARQL queries. To the best of our knowledge, this is not possible with the

data requirements represented in Talend OS for Data Quality, since the requirements

are represented in plain SQL. Finally, in Talend OS for Data Quality the data

requirements are hard-wired to the actual schema elements of the data source,

148

whereas SDQM provides a level of abstraction which allows the reuse of the same

type of algorithm for multiple different schema elements. Table 25 summarizes the

findings of the comparison in the area of data requirements management.

Table 25: Qualitative comparison of SDQM and Talend OS for Data Quality regarding data requirements
management

Criterion Talend OS for
Data Quality

SDQM

Representation of data

requirements

SQL Forms /

Wikipage

Location of data requirements Local Web

Consistency checks among data

requirements

No Yes

Binding to schema of data source Direct Abstract

9.5.2 Data Quality Monitoring and Assessment Reporting

In this section, we compare the data quality reporting capabilities of Talend OS for

Data Quality and SDQM. SDQM provides separate reports for data quality monitoring,

i.e. the identification of instances with requirements violations, and for data quality

assessment, i.e. the computation of dimensional quality scores. In Talend OS for Data

Quality, these reports are combined. After data requirements have been represented

and integrated into an analysis object, the execution process of Talend OS for Data

Quality first computes a score which indicates the percentage to which the requirement

has been met. Figure 59 shows such a report in which the completeness scores for

five different attributes are shown. Based on this assessment report, it is possible to

drill down to the tuples that violate data requirements via the context menu in the red

box as shown in figure 59.

149

Figure 59: Data quality assessment report in Talend OS for Data Quality

When hitting the menu option “View invalid rows”, an SQL query is automatically

executed which retrieves the tuples violating the requirements. Figure 60 shows the

result of such a query which can be viewed as the data quality monitoring reports of

Talend OS for Data Quality.

Figure 60: Data quality monitoring report of Talend OS for Data Quality

150

Hence, in summary we can say that Talend OS for Data Quality and SDQM almost

provide the same reports for data quality monitoring and assessment. However, both

differ in two issues:

(1) In opposite to the current version of SDQM, Talend OS for Data Quality also

visualizes the data quality assessment reporting by providing bar charts.

(2) The reports of SDQM can be made available on the Web, while the reports of

Talend OS for Data Quality are only available locally.

Table 26 summarizes the qualitative comparison of Talend OS for Data Quality and

SDQM.

Table 26: Qualitative comparison of Talend OS for Data Quality and SDQM regarding data quality reporting

Criterion Talend OS for
Data Quality

SDQM

Identification of requirement

violations

Yes Yes

Automated computation of data

quality scores

Yes Yes

Graphical visualization of data

quality scores

Yes No

Availability of reports Local Web-scale

Moreover, we compared the performance of a DQM architecture with Talend OS for

Data Quality and our SDQM architecture. The Talend OS for Data Quality architecture

uses a 64bit MySQL database and 4,600 megabytes buffer size. Moreover, we

assigned 1,536 megabytes of main memory to Talend OS for Data Quality. This shall

represent a similar configuration as used in use case one for the SDQM architecture.

For the evaluation of the performance we used the same data corpus for both

architectures with one exception: the Talend architecture processed the data in

relational format, while SDQM processed it in the triple structure. We executed the

same data requirements and created data quality assessment reports in both cases.

The results of the performance analysis are listed in table 27.

151

The performance analysis shows that SDQM still has a significant performance

drawback compared to conventional DQM architectures. But it must be stressed that

SDQM is an early prototype, while the conventional DQM architecture with Talend OS

for Data Quality and MySQL has already matured through practical experience over

several years. However, we expect that with the optimization of SDQMgr’s queries and

with increasing maturity of triplestores the performance gap between both

architectures will decrease.

Table 27: Results of performance analysis between Talend OS for Data Quality and SDQM

Report Talend OS for
Data Quality

SDQM
(in mm:ss.ms)

Completeness

(5 requirements)
00:23.790 15:59.841

Conditional Completeness

(1 requirement)
00:07.800 01:50.137

Syntactic Accuracy (Syntax Rules)

(1 requirement)
00:09.937 02:08.727

Syntactic Accuracy (Legal Value

Rules)

(6 requirements)

00:29.937 27:18.928

Semantic Accuracy (Legal Value

Range Rules)

(1 requirement)

00:07.504 03:04.716

Semantic Accuracy FDV (1

Condition)

(4 requirements)

00:32.402 02:14.406

9.5.3 Summary

152

In summary, we can say that both architectures, the SDQM architecture and the

conventional DQM architecture, have strengths and weaknesses and none of the

architectures is superior in general. The strengths of SDQM lie in data requirements

management. While Talend OS for Data Quality requires SQL knowledge to create

data requirements, SDQM only requires users to fill in wiki-based forms which is much

less time consuming and more convenient for business experts who often do not have

programming skills. Also, in contrast to DQM tools based on the state-of-the-art, SDQM

can identify inconsistencies among data requirements automatically. Moreover, SDQM

provides a Web-based user interface for the management of data requirements which

facilitates collaboration and the generation of agreement. A shared understanding of

data requirements promises a more sustainable and effective improvement of data

quality. A local data quality tool, such as Talend OS for Data Quality, hides data

requirements in SQL code of client software which hinders the generation of a common

understanding about data requirements. SDQM’s data requirements are audit-proof

due to its version-based storage in Semantic MediaWiki and they can be combined

with other information due to the wiki architecture. A major weakness of SDQM

compared to the conventional DQM architecture is currently the comparatively slow

speed of execution. The current performance of SDQM is acceptable, but far away

from the performance of a conventional DQM architecture. As mentioned earlier, the

growing use of SDQM and the increasing maturity of triplestore technology will

decrease this gap over time. Moreover, the use of Jena’s in-memory features may

close this gap in the future.

153

PART IV – Related Work

10 Related Work

This chapter summarizes research approaches in the area of ontology-based data

quality management and compares the SDQM framework with such related work.

Ontology-based data quality management frameworks in here are artifacts that make

use of ontologies to support data quality management activities. In the following, we

provide a high-level classification of the field, which is then used to organize the

presentation of related work in this chapter.

10.1 High-Level Classification Schema

On a high level, we can distinguish work in the area of data quality management

frameworks between (1) conventional rule-based approaches and (2) ontology-based

approaches. The latter can be further distinguished into approaches that are (1) Web-

oriented, i.e. aim to manage the quality of Web information, and approaches that are

(2) oriented towards the management of data quality in databases of information

systems (IS) that are used in closed environments. Figure 61 illustrates this high-level

classification schema.

Figure 61: High-level classification of DQM frameworks

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_10, © Springer Fachmedien Wiesbaden 2016

154

10.2 Categorization Schema

In order to provide a systematic account of existing data quality management

approaches that make use of ontologies, we defined three different categories that

further classify related approaches according to their application area. The

categorization is based on our findings about the data lifecycle from section 3.4 and

on a literature analysis of the related work. In order to classify the approaches, we try

to answer the following questions:

1. For which step(s) of the data lifecycle was the approach designed?

2. Which representations of data are in the focus of the approach’s data quality

functionalities?

3. Which data quality tasks are supported by the approach?

Based on these questions, we defined the three categories (1) supported data lifecycle

step, (2) supported data representation, and (3) supported data quality task to

categorize the analyzed approaches. As illustrated in figure 62, these abstract

categories are organized into several subcategories that classify common approaches.

In the following, we will define each of the subcategories as applied in our analysis.

Figure 62: Categorization schema for related work

10.2.1 Supported Data Lifecycle Step

As explained in section 3.4, the data lifecycle can be separated into the data acquisition

phase, the data usage phase, and the data retirement phase (cf. Redman, 1996, p.

217). Therefore, we define each of the steps as follows:

Data Acquisition: Data acquisition is the process of “generating new or retrieving

existing data and storing it onto some kind of medium” (see section 3.4.1, cf. Olson,

2003, p. 44f.; Redman, 1996, pp. 219-222).

155

Data Usage: Data usage is the process of using data “as an information source for

humans and machines in operational or decision-making processes” (see section

3.4.2, cf. Redman, 1998, p. 80f.).

Data Retirement: Data retirement is the process of deleting, deactivating or archiving

data (see section 3.4.3, cf. Loshin, 2009, p. 223).

Research approaches in the area of data management usually attempt to support a

specific problem of one or more data lifecycle phases. Therefore, we classify the

related work according to these phases.

10.2.2 Supported Data Representation

Data quality tasks can be applied to various representations of data because data can

be represented in many different formats, e.g. in proprietary formats of legacy

databases, in relational database systems, in XML documents or within Web sites (cf.

Bodendorf, 2006, p. 3). Therefore, different solutions may be required due to the nature

of the format of the data. Our analysis, therefore, classifies the related work based on

the following representations of data:

 Relational data, i.e. data that is stored in relational databases (cf. Codd, 1970),

 XML data, i.e. data that is stored in XML documents (cf. Bray et al., 2008),

 RDF data, i.e. data that is stored in RDF documents or databases that can store

RDF structured data (cf. Beckett, 2004; Berners-Lee, 1998b; Sahoo et al.,

2009), and

 Text / Web Site, i.e. data that is not structured, but stored on a Web site or within

a text document.

Moreover, we added the category “Other” for approaches that focus on the quality of

other data formats not covered by the enumerated categories, e.g. proprietary data

streaming formats sent by sensors, etc.

156

10.2.3 Supported Data Quality Task

As outlined in section 3.5, data quality management consists of several different tasks.

In order to easily find appropriate techniques, we try to classify the ontology-based

approaches according to the data quality management task that they support.

Specifically, the following tasks are part of the classification framework:

Data Profiling: Data profiling is the process of creating statistics about data, such as

the used patterns and value distribution, the number of distinct values, the number of

null values, etc. (cf. Apel et al., 2010, p. 110f.; Friedman & Bitterer, 2011, p. 3; Olson,

2003, p. 20).

Data Requirements Management: Data requirements management is the process of

collecting, maintaining, and publishing data requirements (cf. Loshin, 2001, p. 197f.).

Moreover, the process of the identification and resolution of conflicting data

requirements may be part of data requirements management (cf. Loshin, 2001, p.

198f.).

Data Quality Monitoring: Data quality monitoring is the continuous process of

monitoring the quality of data according to specified data requirements (cf. Friedman

& Bitterer, 2011, p. 3; Olson, 2003, p. 20f.).

Data Quality Assessment: Data quality assessment is “the process of assigning

numerical or categorical values (quality scores) to quality criteria in a given data

setting” (Gertz et al., 2004, p. 129) based on previously defined measures and data

requirements (cf. Ge & Helfert, 2008, p. 382).

Data Cleansing: In terms of this analysis, data cleansing encompasses the removal

of errors from data by update, merge, or removal of data (cf. Friedman & Bitterer, 2011,

p. 3; Rahm & Do, 2000, p. 1).

Data Validation: In the understanding of this thesis, data validation is the process of

verifying the correctness of data during its creation according to previously specified

requirements before it is passed to further processes (cf. Loshin, 2001, p. 54f.).

Information Filtering: Information filtering is the process of selecting and filtering

relevant information from the available information according to previously defined

requirements (cf. Bizer, 2007, p. 3f.).

157

Data Integration: Data integration is the process of “combining data residing at

different sources, and providing the user with a unified view of these data.” (Lenzerini,

2002, p. 233).

Master Data Management: In the understanding of this thesis, we use the category

“Master Data Management” to classify approaches that are focused on the central

management of master data. Management activities include the integration,

harmonization, evaluation, and distribution of master data across a heterogeneous

system landscape (cf. Loshin, 2009, p. 8f.). According to (ISO, 2009), master data is

“data held by an organization that describes the entities that are both independent and

fundamental for that organization, and that it needs to reference in order to perform its

transactions” (ISO, 2009). Master data is typically used in different applications across

and beyond an organization to supply business processes with information about these

objects (cf. Loshin, 2009, p. 3f.). Examples of master data objects are material,

customer, location, or contract (cf. ISO, 2009; Loshin, 2009, pp. 5-8).

10.3 Conventional Rule-Based Approaches

Rule-based approaches for data quality monitoring and assessment are similar to

ontology-based approaches, since they aim to represent logic that is necessary for the

measurement of data quality. Other than ontology-based approaches, the conventional

approaches usually find alternative ways to represent and store the required logic.

Since they still have some similarities to the proposed approach in this thesis, we briefly

describe some related rule-based data quality management approaches in the

following.

Loshin (2002) developed a framework called GuardianIQ that uses user-defined

business rules to assess and monitor data quality. The business rules of GuardianIQ

are thereby implemented automatically via SQL or Java code.

Categories: Relational Data, Data Quality Monitoring, Data Quality Assessment, Data

Usage, Data Requirements Management

Hipp et al. (2007) propose an approach to measure the data quality dimension

“accuracy” based on association rules. The association rules are thereby automatically

158

derived from data via a complex outlier detection algorithm that considers confidence

values.

Categories: Relational Data, Data Quality Assessment, Data Usage

More conventional rule-based approaches can be found in the Gartner Magic Quadrant

for Data Quality Tools (Friedman & Bitterer, 2011), a yearly market analysis report

about commercial software tools that support the data quality management process.

10.4 Ontology-based Approaches

In the following, related ontology-based data quality management frameworks are

described. Specifically, we outline how they are related to SDQM, the artifact that has

been developed in this thesis. Ontology-based data quality management approaches

can be further distinguished into (1) IS-oriented approaches and (2) Web-oriented

approaches. As explained in section 10.1, IS-oriented approaches are approaches that

aim to improve the quality of data in IS of closed environments, while Web-oriented

approaches aim to improve the quality of information in open Web environments.

10.4.1 Information System-oriented Approaches

Brüggemann et al. (Brüggemann, 2006, 2008a, 2008b; Brüggemann & Aden, 2007;

Brüggemann & Grüning, 2008, 2009; Grüning, 2009) propose two major uses of

ontologies for data quality management, namely: (1) the representation of functional

dependencies between data values (Brüggemann, 2008b, p. 523f.; Brüggemann &

Aden, 2007, p. 208) and (2) the representation of quality-relevant metadata. For the

first purpose, legal and illegal attribute value combinations are defined within an

ontology and used to identify incorrect value combinations in the tested data set (cf.

Brüggemann & Aden, 2007, p. 208). In (Brüggemann, 2008b), the approach was

extended to track user’s cleansing decisions to increase automation in data cleansing

operations. In addition, they use ontologies for the following purposes:

- to label potential duplicate instances (cf. Brüggemann & Grüning, 2009, p. 197),

- to annotate the correctness of instances (cf. Brüggemann, 2008b, p. 523;

Brüggemann & Grüning, 2009, p. 195),

159

- to create a history of data manipulations (cf. Grüning, 2009, p. 67f.), and

- to annotate the scale of measurement for proper processing of property values

during duplicate detection (cf. Brüggemann & Grüning, 2009, p. 196f.; Grüning,

2009, p. 66).

Moreover, the Brüggemann and Grüning (2009, p. 197f.) propose an ontology for DQM

which contains a configuration for data quality assessment metrics based on identified

data quality problems. The approaches of Brüggemann, Aden, and Grüning have a

strong focus on data cleansing during the data acquisition phase of data warehouses.

However, the approaches seem to be applicable also during the data usage phase.

Although the approaches of Brüggemann et al. are a promising first step in the area of

utilization of Semantic Web technologies for DQM, they seem to lack support for data

quality problem types such as syntax or legal value violations. Moreover, the proposed

solution for the representation of functional dependencies seems to only support binary

relationships.

Categories: Data Acquisition, Relational Data, Data Quality Monitoring, Data Quality

Assessment, Data Cleansing

Chen et al. (2007) propose an ontology-based framework to detect inconsistencies in

biological databases. The addressed inconsistencies are mainly heterogeneous

terminology as it typically occurs in multi-source scenarios. The attributes of different

databases are linked to the concepts of a domain ontology (cf. Chen et al., 2007, p.

279f.). The domain ontology is thereby used as a controlled vocabulary to harmonize

heterogeneous terms in the data sources and to identify equivalent concepts (cf. Chen

et al., 2007, pp. 280-282). The approach also defines a metric to measure consistency

between two data sources based on the mappings to the domain ontology with the

goal to support the selection of a reliable data source for further data mining (cf. Chen

et al., 2007, pp. 284-288). Hence, the approach rather accepts data deficiencies and

heterogeneity between data sources and, therefore, does not focus on improving the

quality of data directly in the data source.

Categories: Data Acquisition, Data Usage, Relational Data, Data Integration,

Information Filtering

Curé and Jeansoulin (2007) also propose to use domain ontologies to represent data

dependencies and to check data from multiple sources for violations. The framework

provides reports which contain the results of a comparison of the source data with the

160

data dependencies represented in the ontology (cf. Curé & Jeansoulin, 2007, pp. 1128-

1130). The approach considers the completeness and correctness of data, but does

not provide many details about the covered data quality problem types (cf. Curé &

Jeansoulin, 2007, pp. 1128-1130). Moreover, it is focused on data from relational

sources.

Categories: Data Usage, Relational Data, Data Quality Monitoring, Data Cleansing

Curé (2009) proposes another approach that uses a mapping between queries that

are based on ontological concepts and SQL queries to identify functional dependency

violations in databases. The advantage of the proposed approach is that it does not

require the conversion of relational data to RDF. But in contrast to SDQM, the approach

requires the representation of each functional dependency as an SQL query and is,

therefore, not generic (cf. Curé, 2009, p. 4). Moreover, it does not cover other data

quality problem types besides functional dependency and does not provide data quality

assessment metrics.

Categories: Data Usage, Relation Data, Data Quality Monitoring

Preece et al. (2006) present an approach that utilizes a so called information quality

ontology (IQ ontology) as the foundation to identify acceptable results of proteomic

analyses. The IQ ontology contains generic and domain-dependent concepts and is

used to classify and organize domain specific quality characteristics which are

important for scientists to find appropriate data. The data to be analyzed predominantly

stems from XML sources and relational databases. In contrast to SDQM, it focuses on

the selection of information, rather than the monitoring and assessment of data quality.

Moreover, it does not focus on the broad identification of typical data quality problems

for their correction.

Categories: Data Usage, Information Filtering, Relational Data, XML Data

X. Wang et al. (2005) use a task ontology to describe data cleansing tasks for

information systems. Suitable cleansing methods are identified based on user-defined

cleansing goals that are translated into queries over a knowledge base (cf. X. Wang et

al., 2005, p. 4). The appropriate cleansing method is then applied based on the results

of the queries. In contrast to SDQM, the proposed approach puts the data cleansing

task into the center of interest. We argue that it is first necessary to provide

mechanisms to identify data quality problems based on requirements, since the

cleansing goal is determined by the data requirements that shall be fulfilled. To the

161

best of our knowledge, the research work for this task-centric approach has not been

continued.

Categories: Data Usage, Data Cleansing, Relational Data

Kedad and Métais (2002) propose a framework that uses knowledge represented via

domain ontologies to identify corresponding data values. The identification process is

thereby based on a so called “level of accuracy” which represents a user-defined metric

that defines the scope of values that are considered as semantically similar. The

proposed approach is applied for data cleansing in data integration scenarios of

predominantly relational data. While SDQM focuses on the identification of defective

data, the approach of Kedad and Métais attempts to deal with data heterogeneity,

rather than real data defects.

Categories: Data Acquisition, Data Usage, Relational Data, Data Cleansing, Data

Integration

Another ontology-based approach in the area of data quality improvement, called

Context Interchange (COIN), has been developed at the Massachusetts Institute of

Technology (MIT) (Madnick & Zhu, 2006). Supposing that many data quality problems

are based on misinterpretations, they developed a knowledge-based mediation

technology that attempts to overcome semantic heterogeneities of the underlying data

sources. With COIN the data consumer is empowered to formulate queries expressed

in his context independent of the underlying data sources (cf. Madnick & Zhu, 2006, p.

466). A mediator executes the user’s query by transforming the query into source-

orientated sub-queries to retrieve the requested information (cf. Madnick & Zhu, 2006,

pp. 470-473). The context mediator is able to identify and reconcile semantic

differences by accessing domain knowledge about the underlying sources, which is

represented in a shared ontology and context definitions (cf. Madnick & Zhu, 2006, pp.

470-473). With this technique the ontology and the related context definitions facilitate

interoperability between users and heterogeneous information systems by providing

access to knowledge, which helps overcoming semantic differences. In contrast to

SDQM, COIN does neither attempt to identify quality problems in the data, nor monitor

or assess the level of data quality in a data source. It rather tries to solve problems of

heterogeneity during data consumption, in order to avoid the misinterpretation of data.

Categories: Data Usage, Relational Data, XML Data, Data Cleansing

162

OntoDataClean is an approach from (Perez-Rey et al., 2006) that uses an ontology to

store information about the required transformation for preprocessing data as part of a

knowledge discovery process. The approach supports harmonization and cleansing of

data from heterogeneous data sources for various problem types, such as missing

values, duplicate instances, heterogeneous syntaxes, and inconsistent terminology (cf.

Perez-Rey et al., 2006, p. 266f.). However, the application domain of OntoDataClean

differs significantly from SDQM due to OntoDataClean’s focus on data cleansing for

the knowledge discovery process.

Categories: Data Acquisition, Data Usage, Data Cleansing, Relational Data

The Semantic Conflict Resolution Ontology (SCROL) as proposed by (Ram & Park,

2004) is a domain-independent ontology to detect and resolve semantic differences at

instance and schema level when integrating data from heterogeneous data sources.

On instance level, the ontology can be used to store information to resolve

heterogeneities, such as different units, representations, or different levels of precision

(cf. Ram & Park, 2004, p. 197f.). On schema level, the ontology is able to represent

information required to resolve schematic discrepancies and other schema-related

conflicts (cf. Ram & Park, 2004, p. 198f.). In contrast to SDQM, SCROL was designed

to integrate and harmonize data from multiple sources rather than for data quality

monitoring, data quality assessment, or management of data requirements. Moreover,

it is primarily focused on the data acquisition phase.

Categories: Data Acquisition, Relational Data, Data Integration

The Ontology-based XML Cleaning (OXC) framework from (Milano et al., 2005) uses

a domain ontology for the identification and resolution of data quality problems in XML

documents. A domain ontology is created and mapped to the Document Type

Definition (DTD) of the XML document to serve as a reference for the identification of

quality problems in the accordant XML document (cf. Milano et al., 2005, pp. 567-570).

In contrast to SDQM, OXC requires the creation of a separate domain ontology before

its application to a specific domain. Moreover, the approach is only focused on quality

problems related to the completeness dimension.

Categories: Data Usage, Data Cleansing, Data Quality Monitoring, XML-Data

Semantic Master Data Management (SMDM) is an approach from IBM China

Research Lab (Wang et al., 2009). SMDM extends the conventional MDM solution of

IBM by Semantic Web technologies. The approach uses a core MDM ontology as a

163

global schema for business entities and relationships (cf. Wang et al., 2009, p. 1594).

The concepts of the ontologies are mapped to relational data entities (cf. Wang et al.,

2009, pp. 1594-1596). The data in the relational databases can be queried via a

SPARQL-to-SQL translation technology that also allows reasoning during query

execution (cf. Wang et al., 2009, p. 1595). Additionally, it is possible to integrate user-

defined rules into query execution (cf. Wang et al., 2009, p. 1595). Although the

approach does not provide data quality management features, it could be combined

with SDQM to provide a holistic platform for master data management that entails

quality management of master data.

Categories: Data Usage, Relational Data, Master Data Management

Bidlack (2009) describes an industry-driven approach to data quality management with

lightweight ontologies. The ontologies are thereby part of a Python program that can

only be managed by programmers (cf. Bidlack, 2009, p. 4). The ontologies represent

synonym mappings and reference data with functional dependencies and legal value

lists (cf. Bidlack, 2009, p. 6). The stored information is then used for data cleansing

operations. The proposed approach is focused on data cleansing in Customer

Relationship Management (CRM) and does not seem to use any Semantic Web

technologies.

Categories: Data Usage, Data Cleansing, Relational Data

Geisler et al. (2011) propose an ontology-based approach for data quality

management in data streaming applications. The approach’s ontology is thereby used

to store information about quality assessment and monitoring metrics which are also

mapped to data quality dimensions (cf. Geisler et al., 2011, p. 7f.). The ontology

facilitates the flexible representation of user-defined metrics (cf. Geisler et al., 2011, p.

7f.). However, the approach focuses on data streaming applications in traffic

management and does not fully materialize data requirements as SDQM does.

Instead, it rather provides capabilities to store SQL code snippets.

Categories: Data Acquisition, Data Quality Monitoring, Data Quality Assessment,

Other (Streaming Messages)

F. Wang et al. (2005) introduce an approach for the validation of geographic data

based on rules expressed via the Semantic Web Rule Language (SWRL). The

information system directly identifies potential data quality problems and risks based

on the data quality constraints that have been previously expressed via SWRL (cf. F.

164

Wang et al., 2005, p. 5f.). The approach was especially designed for mobile users who

capture geographic information in fields and meadows (cf. F. Wang et al., 2005, p. 1f.).

In comparison to SDQM, the approach uses SWRL instead of a plain ontology and

RDF instances to store quality requirements (cf. F. Wang et al., 2005, p. 3). This

reduces the ability to automatically identify inconsistencies among requirements.

Additionally, the proposed approach does not provide requirement templates, which

raises the complexity for users to express data requirements.

Categories: Data Acquisition, Data Validation

Becker et al. (2008) propose an approach for ontology-based data quality management

that utilizes domain ontologies as an independent conceptual layer to integrate data

from disparate data sources. Queries are then executed based on the ontology to

identify data quality problems (cf. Becker et al., 2008, p. 8f.). Other than SDQM, the

approach does not utilize a special ontology for the domain of data quality management

and does not materialize data requirements in RDF.

Categories: Data Usage, Data Quality Monitoring, Data Quality Assessment,

Relational Data

In addition to the presented related work, the author of this thesis proposed an

alternative approach which utilizes the SPARQL INferencing framework (SPIN) to

materialize and process data requirements in RDF (Fürber & Hepp, 2010b). SPIN is a

vocabulary that is able to represent SPARQL queries in RDF (Knublauch, 2011).

Based on the materialized data requirements, data quality monitoring reports can be

derived that identify the instances with requirement violations. Moreover, the data

requirements can be used for data validation during data entry (cf. Fürber & Hepp,

2010b, p. 10f.). The author extended the SPIN-based framework by a data quality

assessment component to compute scores for the data quality dimensions accuracy,

completeness, timeliness, and uniqueness based on materialized data requirements

(Fürber & Hepp, 2011a). The SPIN-based approaches are closely related to the SDQM

framework. Other than the SPIN-based approaches, SDQM is strictly optimized for

data quality management, since it uses a vocabulary that is especially designed for

supporting data quality management activities. Moreover, sharing data requirements

is much easier with the DQM vocabulary than with the SPIN-Vocabulary, since SPIN

provides the full syntax of SPARQL and the DQM vocabulary is only focused on data

quality management related information.

165

Categories: Data Acquisition, Data Usage, Relational Data, RDF Data, Data Quality

Monitoring, Data Quality Assessment

10.4.2 Web-oriented Approaches

Web-oriented data quality management approaches focus on the quality of Web

information. In the following, we describe related approaches that utilize Semantic Web

technology for quality management of Web information.

Lei et al. (2007) present a framework to evaluate the quality of semantic metadata. The

framework is based on an analysis of typical problems that may occur during the

annotation of data sources with semantic metadata. In order to evaluate the quality,

gold standard annotations that serve as a reference for quality checks have to be

created which often do not exist in real-world scenarios and, therefore, require

considerable human effort to create. In (Lei & Nikolov, 2007), the authors have

addressed this limitation by using available domain ontologies, knowledge bases, and

lexical resources as a substitute for the manually created reference as used in the

initial proposal. This automatic approach thereby recognizes inconsistent, duplicate,

ambiguous, inaccurate, and spurious annotations (cf. Lei & Nikolov, 2007, p. 3f.). Since

the approach is focused on the quality of annotations, such as semantic tags of blogs,

it cannot directly be compared to SDQM. However, the proposed approach is valuable

for the quality evaluation of semantic annotations of unstructured resources.

Categories: Data Usage, RDF Data, Data Quality Assessment

The Web Information Quality Assessment framework (WIQA) as proposed by (Bizer,

2007; Bizer & Cyganiak, 2009) allows to filter Web data that corresponds to user-

defined information filtering policies. The filtering policies have to be defined via the

WIQA policy language (WIQA-PL), which is based on the SPARQL query language

grammar (Bizer, 2007, pp. 95-97). Each WIQA policy consists of three parts, namely a

name, a description, and a pattern (Bizer, 2007, p. 96f.). The pattern is used to express

a set of filtering conditions to filter desired data out of the underlying data sources

(Bizer, 2007, p. 97). The framework thereby relies on the availability of provenance

information in the data sources, such as timestamps, authors of information, or ratings,

depending on the type of filtering policy that shall be applied (cf. Bizer, 2007, pp. 101-

103). Except for the domain-specific functions of WIQA, such as the “Tidal Trust”

166

function (cf. Bizer, 2007, pp. 110-112) and the “More Positive Ratings” function (cf.

Bizer, 2007, p. 109f.), most WIQA policies should now be representable with standard

SPARQL 1.1 queries (Harris & Seaborne, 2010). However, WIQA is also able to

provide explanations why certain information has been filtered (cf. Bizer, 2007, pp.

119-121). Moreover, the framework provides a browser add-on which facilitates

information filtering based on WIQA policies and explains why the information has

been filtered (cf. Bizer, 2007, p. 143). Compared to SDQM, WIQA does not attempt to

improve information quality. It rather provides a filtering mechanism that finds

information corresponding to the quality requirements of information consumers.

Moreover, WIQA was primarily designed for Web information consumers, while SDQM

shall provide tools for monitoring and assessing the quality of information sources.

Categories: Data Usage, RDF Data, Information Filtering

Hartig (2009) proposed an extension of the SPARQL query language for RDF called

tSPARQL to query information based on previously assigned trust values. As a

prerequisite, trust values have to be generated (cf. Hartig, 2009, p. 14f.). Compared to

SDQM, tSPARQL uses a completely different approach to evaluate the quality of

information. tSPARQL relies on subjective user judgments of the trustworthiness of

information, rather than focusing on hard facts that are based on detailed and explicitly

represented data requirements. Thus, the assumptions that lead users to create

certain scores of trustworthiness are not explicit in tSPARQL.

Categories: Data Usage, RDF Data, Data Quality Assessment, Information Filtering

Hartig and Zhao (2009) propose a framework to assess the timeliness of Semantic

Web data based on provenance information. The timeliness assessment is similar to

the timeliness assessment as implemented by SDQM. However, SDQM uses a

different formula to assess timeliness and is based on the previous creation of data

requirements related to timeliness. Moreover, in contrast to SDQM, the approach from

Hartig and Zhao does not directly allow to express a required update interval as a

requirement for the timeliness assessment.

Categories: Data Usage, Data Quality Assessment, RDF Data

Pernici and Scannapieco (2002) propose a framework to monitor and assess the

quality of published and unpublished Web sites. Quality meta-information such as the

author and date of the last update are thereby attached to a Web site with the help of

an RDF document, called “data quality file” (cf. Pernici & Scannapieco, 2002, p. 62f.).

167

Moreover, dynamic data quality dimension scores like completability, i.e. “how fast (the

completeness of an information source) will grow in time” (Pernici & Scannapieco,

2002, p. 53), are computed and stored in the data quality file (cf. Pernici &

Scannapieco, 2002, p. 62f.). A module of the framework called “Data Quality Viewer”

displays the data of the data quality file to Web consumers in a browser (cf. Pernici &

Scannapieco, 2002, pp. 63-65). Hence, the framework shall help information

consumers to evaluate the quality of Web information and to select appropriate

information. SDQM differs significantly from the proposed approach, since SDQM is

focused on evaluating the quality of structured data and not of Web sites.

Categories: Data Usage, Text / Web Site, Information Filtering

ProLOD is a tool designed for profiling Linked Open Data introduced by (Böhm et al.,

2010). ProLOD clusters the data on schema level based on similarity measures and

generates several different statistics about the profiled data on instance level (cf. Böhm

et al., 2010, p. 176f.). The statistics are similar to conventional profiling tools and

amongst others, they provide information about datatypes, pattern distributions, and

value frequencies. ProLOD is, therefore, very valuable to gain a quick insight into the

content of Semantic Web data sets. But to the best of our knowledge, it does not allow

the storage and evaluation of data requirements which is possible with SDQM. ProLOD

may be used together with SDQM, for example during the definition phase to identify

data requirements based on the generated statistics.

Categories: Data Usage, RDF Data, Data Profiling

Mendes et al. (2012) developed a framework for data cleansing and data quality

assessment operations during the integration of linked data called Sieve. Sieve is part

of the Linked Data Integration Framework (LDIF) and can be configured to user-

specific needs. The assessment metrics are thereby encoded in a proprietary XML-

based language. The assessment results can be used during the data integration

process to decide how to cleanse the data (cf. Mendes et al., 2012, pp. 3-5). Sieve and

SDQM differ significantly in two aspects. Firstly, Sieve is focused on the use in data

integration, while SDQM is optimized for data quality monitoring and assessment

during the data usage phase. Secondly, Sieve stores quality-relevant metadata with

help of a proprietary XML-based language rather than within an ontology.

Categories: Data Acquisition, Data Quality Assessment, Data Cleansing, Data

Integration, RDF Data

168

10.5 Summary

Our analysis of related work in the area of ontology-based data quality management

shows that, in summary, no common approach has yet evolved in the area of utilizing

ontologies for data quality tasks. But considering the diversity of different use cases for

which the approaches have been designed, we can say that ontology-based

techniques have shown to be applicable to a broad range of problems in the data

quality domain, ranging from data quality monitoring and cleansing to master data

management, data integration, and information filtering. The role of ontologies in the

analyzed approaches is also very diverse. Some approaches make use of domain

ontologies that represent and utilize domain knowledge of a specific data domain, e.g.

to integrate semantically similar data elements from different sources via the ontology

(e.g. Chen et al., 2007) and to resolve heterogeneities (Madnick & Zhu, 2006; e.g. Ram

& Park, 2004). Furthermore, domain ontologies are used as reference data to identify

functional dependency violations (e.g. Brüggemann & Aden, 2007; Curé & Jeansoulin,

2007). Other techniques use ontologies to represent and utilize quality-relevant

metadata such as annotations related to the correctness of instances (cf. Brüggemann,

2008b, p. 523; Brüggemann & Grüning, 2009, p. 195), assessment metrics (e.g.

Brüggemann & Grüning, 2009, p. 197f.; Preece et al., 2006, p. 478), data cleansing

tasks (cf. X. Wang et al., 2005, p. 4), or data requirements (e.g. Perez-Rey et al., 2006,

p. 267). Additionally, some approaches utilize provenance metadata, , e.g. about the

publisher of data and its credibility, represented via ontologies to evaluate the quality

of a data source (e.g. Bizer, 2007; Hartig & Zhao, 2009). Moreover, we can say that

most of the approaches concentrate on the data lifecycle phases of data acquisition

and data usage. In fact, we did not find any solution that actively supports data

retirement, although especially information filtering approaches, such as the approach

from (Preece et al., 2006), could also be used to identify data for retirement and

archiving. Figure 63 provides an overview of the differences between the analyzed

approaches and SDQM.

By comparing the number of approaches we can also say that, so far, only little work

has been done to manage the quality of the Semantic Web as only a few Web-oriented

approaches could be found. More work has been done with a focus on closed IS.

However, a lot of work has to be done in both areas to account for the central

management of data requirements, since it is the requirements that are the foundation

169

of all activities within the data quality management cycle (cf. English, 1999, pp. 119-

121; Wang, 1998, p. 61). To the best of our knowledge, the SDQM framework is the

only framework that allows the representation of a broad range of data requirement

types fully represented in RDF. Moreover, we did not find any other tool besides SDQM

that integrates wiki-based requirements management with data quality monitoring and

assessment functionalities. However, SDQM could be extended to support more

Semantic Web-specific features, e.g. to evaluate the quality of annotations, and to

support heterogeneity resolution when integrating data from different sources.

Moreover, the integration of data profiling features into SDQM should be further

investigated.

170

Figure 63: Own classification of related work

Acq
uisit

ion
UsageRetir
ementRelatio

nal

XML

RDF

Text
/ U

nstr
uctu

red Data
Oth

erData
Profili

ng
Data

Require
ments

Management

Data
Quali

ty

M
onito

rin
g

Data
Quali

ty

Asse
ssm

ent
Data

Cleansin
g

Data
Valid

ati
on

Inform
atio

n Fi
lte

rin
g

Data
Integratio

n
Maste

r D
ata

Management

Represe
ntat

ion of

Quality
-re

levan
t M

etadata
Represe

ntat
ion of

Domain Knowledge
Represe

ntat
ion of

Prove
nance

 M
etadata

SWRL /
 Reaso

ning ru
les

Au
th

or

Lo
sh

in
, 2

00
2

X
X

X
X

X
Hi

pp
, M

ül
le

r,
Ho

he
nd

or
ff

, &
 N

au
m

an
n,

 2
00

7
X

X
X

Br
üg

ge
m

an
n,

 2
00

6,
 2

00
8a

, 2
00

8b
; B

rü
gg

em
an

n
&

Ad

en
, 2

00
7;

 B
rü

gg
em

an
n

&
 G

ru
en

in
g,

 2
00

8;

Br
üg

ge
m

an
n

&
 G

rü
ni

ng
, 2

00
9;

 G
rü

ni
ng

, 2
00

9
X

X
X

X
X

X
X

X

Ch
en

, C
he

n,
 &

 Z
ha

ng
, 2

00
7

X
X

X
X

X
X

Cu
ré

 &
 Je

an
so

ul
in

, 2
00

7
X

X
X

X
X

X
Cu

ré
, 2

00
9

X
X

X
X

Pr
ee

ce
 e

t a
l.,

 2
00

6
X

X
X

X
X

Xi
n

W
an

g,
 H

am
ilt

on
, &

 B
ith

er
, 2

00
5

X
X

X
X

Ke
da

d
&

 M
ét

ai
s,

20
02

X
X

X
X

X
X

M
ad

ni
ck

 &
 Z

hu
, 2

00
6

X
X

X
X

X
Pe

re
z-

Re
y,

 A
ng

ui
ta

, &
 C

re
sp

o,
 2

00
6

X
X

X
X

X
Ra

m
 &

 P
ar

k,
 2

00
4

X
X

X
X

M
ila

no
, S

ca
nn

ap
ie

co
, &

 C
at

ar
ci

, 2
00

5
X

X
X

X
X

Xi
ao

yu
an

 W
an

g
et

 a
l.,

 2
00

9
X

X
X

X
X

Bi
dl

ac
k,

 2
00

9
X

X
X

X
X

Ge
isl

er
, W

eb
er

, &
 Q

ui
x,

 2
01

1
X

X
X

X
X

F.
 W

an
g,

 M
äs

, R
ei

nh
ar

dt
, &

 K
an

da
w

as
vi

ka
, 2

00
5

X
X

X
X

X
Be

ck
er

, M
at

zn
er

, M
ue

lle
r,

&
 W

in
ke

lm
an

n,
 2

00
8

X
X

X
X

X
Fü

rb
er

 &
 H

ep
p,

 2
01

0
an

d
Fü

rb
er

 &
 H

ep
p,

 2
01

1
X

X
X

X
X

X
X

Le
i,

U
re

n,
 &

 M
ot

ta
, 2

00
7

an
d

Le
i &

 N
ik

ol
ov

, 2
00

7
X

X
X

X
Bi

ze
r,

20
07

 a
nd

 B
ize

r &
 C

yg
an

ia
k,

 2
00

9
X

X
X

X
X

X
Ha

rt
ig

, 2
00

9
X

X
X

X
X

Ha
rt

ig
 &

 Z
ha

o,
 2

00
9

X
X

X
X

Pe
rn

ic
i &

 S
ca

nn
ap

ie
co

, 2
00

2
X

X
X

X
X

Bö
hm

 e
t a

l.,
 2

01
0

X
X

X
M

en
de

s,
M

üh
le

ise
n,

 &
 B

ize
r,

20
12

X
X

X
X

X
X

SD
Q

M
X

X
X

X
X

X
X

W
eb

-o
rie

nt
ed

 A
pp

ro
ac

he
s

Ro
le

 o
f O

nt
ol

og
ie

s

Co
nv

en
tio

na
l R

ul
e-

ba
se

d
Ap

pr
oa

ch
es

In
fo

rm
at

io
n

Sy
st

em
-o

rie
nt

ed
 A

pp
ro

ac
he

s

Su
pp

or
te

d
Da

ta
 R

ep
re

se
nt

at
io

n
Su

pp
or

te
d

Da
ta

Li

fe
cy

cl
e

St
ep

Su
pp

or
te

d
Da

ta
 Q

ua
lit

y
Ta

sk

171

PART V - Conclusion

11 Synopsis and Future Work

The research goal of this thesis was the investigation of the usefulness of ontologies

for data quality management. In this thesis project, we created an ontology, called the

Data Quality Management vocabulary (DQM vocabulary), to collect and store data

requirements in a structured and linkable format. Moreover, we configured a wiki,

called data requirements wiki, which contains standard forms to capture data

requirements and to store them based on the elements of our ontology, the DQM

vocabulary. Because of the storage of data requirements in the DQM vocabulary

schema, we were able to create a reporting tool, called the Semantic Data Quality

manager, that automatically processes the captured data requirements and creates

data quality monitoring and assessment reports without any additional manual

intervention. In the following, we review our initial research questions, provide answers,

and highlight the findings and results of this thesis. Moreover, we draw a final

conclusion on the usefulness of ontologies and provide starting points for future work.

11.1 Research Summary

In section 2.1, we have subdivided the initial research goal into five research questions,

which served as the roadmap for this thesis. In the following, we provide a short

summary of the answers to the research questions:

RQ1: What kind of data quality problems exist?

We have argued that, in order to develop solutions to improve data quality, the nature

of data quality problems has to be understood. Therefore, we have developed a

typology of data quality problems for relational systems (see section 3.3) and for the

Semantic Web (see section 5.2). The derived typologies are based on an analysis of

literature related to data quality problems in relational databases and the Semantic

Web.

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6_11, © Springer Fachmedien Wiesbaden 2016

172

RQ2: Which activities have to be performed during data quality management?

Since we have aimed to develop an artifact that facilitates data quality management,

we had to identify typical activities that are performed during data quality management.

Consequently, we analyzed the two most popular data quality management

methodologies, namely Total Data Quality Management (TDQM, Wang, 1998) and

Total Information Quality Management (TIQM, English, 1999), for commonalities as

part of section 3.5. Based on the commonalities, we defined a new data quality

management process in section 8.2 that is fitted to SDQM, the major artifact of this

thesis.

RQ3: Which knowledge has to be represented to support data quality management?

In section 3.6, we argued that data requirements represent knowledge about the

characteristics of high-quality data. Assuming that data quality problems are the result

of requirement violations, we derived ten generic data requirement types from the

typology of data quality problems. We thereby focused on quality problems of relational

data. The generic data requirement types represent the core knowledge concepts that

have to be represented to support data quality management.

RQ4: How can we represent knowledge relevant for data quality management to

reduce manual work?

Based on the generic requirement types, we developed an ontology, called the DQM

vocabulary, that supports the representation of knowledge for data quality

management activities, such as data requirements definition, data quality monitoring,

and data quality assessment (see section 0 and (Fürber & Hepp, 2011b)). The

development procedure followed the ontology development methodology as provided

in (Uschold & Gruninger, 1996). The DQM vocabulary consists of classes and

properties that can be used to represent data requirements in a machine-readable

format. Due to this design, we reduced manual input by automating the generation of

data quality monitoring and assessment reports based on the representation of data

requirements knowledge via the DQM vocabulary.

RQ5: How can we utilize knowledge for data quality management represented within

ontological structures?

In chapter 7, we have developed the SDQM framework, a data quality management

framework that is based on other programming frameworks and artifacts primarily from

173

the Semantic Web community. SDQM processes quality-relevant knowledge

represented in the DQM vocabulary to derive data quality monitoring and assessment

reports. Knowledge processing within the SDQM framework is based on generic

SPARQL queries which provide the basis for the derived reports. Since the SPARQL

queries only use elements from the DQM vocabulary, they are of generic use for any

domain, as long as the data requirements are formulated based on the DQM

vocabulary. SDQM’s data requirements wiki can be used to capture data requirements

from business experts via standardized forms. Thus, users of SDQM do not need to

possess programming skills to evaluate the quality of data. Furthermore, we have

shown in section 9.4 that the represented knowledge can also be used to automatically

identify inconsistent or duplicate data requirements. Finally, we provided an installation

and application procedure for SDQM in chapter 8 of this thesis so that our research

project is reproducible.

11.2 Contributions

The contributions of this thesis can be separated into (1) practical and (2) theoretical

contributions. On the practical side, we developed a new artifact, called SDQM, which

solves real-world problems in the area of data quality management and integrates state

of the art technology of the Web.

SDQM consists of three major artifacts that have been developed in the course of this

thesis, namely (1) an ontology for representing knowledge that is relevant for data

quality management, (2) a wiki for capturing and maintaining data requirements, and

(3) a reporting frontend to create data quality monitoring and assessment reports.

SDQM’s data requirements wiki can be used to capture quality-relevant knowledge

from business experts via standardized forms. Thus, users of SDQM do not need to

possess programming skills to evaluate the quality of data. The captured data

requirements are automatically represented in RDF based on the DQM vocabulary.

Therefore, SDQM’s reporting frontend, called the Semantic Data Quality Manager

(SDQMgr), can automatically process the captured knowledge to derive data quality

monitoring and assessment reports without any additional programming. As evaluated

in section 0, this is a major distinction from conventional data quality tools such as

Talend OS for Data Quality, since they usually represent data requirements as part of

174

programming code. Due to its integration with standard wiki software, SDQM is

especially suited for large organizations with distributed knowledge. The reduced

complexity of maintaining data requirements logic may mitigate the effort for data

quality management. To the best of our knowledge, SDQM is the first data quality

management framework that uses standard wiki software to capture, manage, and

utilize data requirements for automated data quality monitoring and assessment.

Moreover, SDQM facilitates the automated identification of inconsistent and duplicate

requirements with standard SPARQL queries, since the captured data requirements

are represented in RDF format. At present, we do not know of any data quality

management software that has a similar feature.

Moreover, this thesis provided several theoretical contributions for data quality

research as listed below:

(1) A typology of data quality problems in relational systems and the Semantic

Web (sections 3.3 and 5.2).

(2) A requirement-centric methodology for data quality management (section 8.2).

(3) Ten generic data requirement types (section 3.6.1).

(4) A survey of related work (chapter 10).

These theoretical contributions of this thesis may be useful for future research and

applications in the area of data quality management.

11.3 Conclusion and Future Work

In this thesis, we have shown a way how ontologies can be employed for data

requirements management, data quality monitoring, and data quality assessment for

information systems and Semantic Web data. The evaluation results documented in

chapter 9 indicate that the developed approach is also usable in real-world settings.

Furthermore, we have collected first evidence that Web and Semantic Web

technologies can facilitate the management of data quality in several ways, namely

- Semantic wikis facilitate the generation of data requirements by non-

programmers, since they offer standardized forms for knowledge capturing.

- Representation of data requirements within ontological structures facilitates the

automated derivation of requirement violations and data quality scores.

175

- Representation of data requirements within ontological structures facilitates the

automated identification of duplicate and inconsistent data requirements.

However, we also discovered some limitations. Compared to conventional data quality

architectures, such as Talend OS for Data Quality with a MySQL database, SDQM still

has a significant performance gap. Moreover, SDQM does not yet provide features for

data profiling and may not be able to represent complex functional dependencies in

RDF. Additionally, we discovered that the use of SDQM for open environments, such

as the Semantic Web, has some limitations. For example, Semantic Web scenarios

contain a large diversity of world views which may sometimes collide. Therefore, it may

not be possible or even suitable to solely seek for consistent data requirements (cf.

Madnick & Zhu, 2006, p. 460f.). In consequence, the perceived characteristics of high

quality data may be diverse and contradictory. Thus, data quality improvement directed

to a single, harmonized quality perception is most likely not applicable for the Semantic

Web. However, the results of this thesis provide multiple possibilities for future work in

several areas which are explained in the following.

Semantic Web settings: Currently, SDQM is focused on closed environments based

on relational information systems. Future work could address the extension of SDQM

to cover specific data quality problems of the Semantic Web as specified in section

5.2. Moreover, SDQM could be deployed to the World Wide Web to collect data

requirements from the Web community about public Semantic Web data sources, such

as DBpedia or Geonames. Based on the captured knowledge, agreement and

disagreement about data requirements could be identified and further investigated.

Technological optimization: Currently, SDQM was mainly used in single source

scenarios. Future work could address the investigation of SDQM’s ability to cover

multi-source scenarios, e.g. in which properties with identical intensions are stored in

disparate data sources. Moreover, SDQM’s duplicate checking algorithms require

further performance optimizations as explained in section 9.2. Additionally, SDQMgr’s

reports could be extended by charts to visualize data quality scores. Finally, SDQM

could be extended by data profiling features to identify data requirements via data

analysis.

Economic impact: SDQM may save manual effort due to the provision of

standardized forms for capturing data requirements and standardized data quality

reports. However, solid evidence is still missing that really proves a higher efficiency

176

and lower costs compared to conventional data quality management tools. Future

studies could also address the potential of SDQM to reduce costs of information

exchange among different parties within a supply chain. For example, SDQM could be

used to express and publish data requirements of customers within supply chains in

an audit-proof way. Then the delivered data of the supplier could be verified according

to these explicitly specified data requirements with SDQM. As a potential outcome,

ambiguity and misunderstandings during information exchange may be reduced and

the result of the verification against the customer’s data requirements could be part of

contracts and, therefore, used as an incentive to improve the quality of the information

exchange within the supply chain. SDQM could be applied in a study related to such a

scenario to investigate its potential to reduce costs for information exchange within the

supply chain.

177

Appendix A – Comparison of TIQM and TDQM
Ta

bl
e

28
: C

om
pa

ris
on

 o
f T

IQ
M

 a
nd

 T
D

Q
M

, p
ar

t o
ne

TI
Q

M

TD
Q

M

Pr
oc

es
s

G
ro

up

Pr
oc

es
s

St
ep

Pr

oc
es

s
St

ep

Pr
oc

es
s

G
ro

up

A
ss

es
s

da
ta

 d
ef

in
iti

on

an
d

ar
ch

ite
ct

ur
e

qu
al

ity

(E
ng

lis
h,

 1
99

9,
 p

p.
 7

2-
74

)

Id
en

tif
ic

at
io

n
of

 q
ua

lit
y

re
qu

ire
m

en
ts

 fo
r d

at
a

de
fin

iti
on

 q
ua

lit
y

S
el

ec
tio

n
of

 im
po

rta
nt

 in
fo

rm
at

io
n

gr
ou

ps
 fo

r
th

e
as

se
ss

m
en

t

Id
en

tif
ic

at
io

n
of

 s
ta

ke
ho

ld
er

 c
at

eg
or

ie
s

of

th
e

se
le

ct
ed

 in
fo

rm
at

io
n

gr
ou

ps

Q
ua

lit
y

as
se

ss
m

en
t o

f d
at

a
de

fin
iti

on
s

Id

en
tif

y
ch

ar
ac

te
ris

tic
s

of
 th

e
IP

(c

f.
W

an
g,

 1
99

8,
 p

. 6
1)

D

ef
in

iti
on

 p
ha

se

Q
ua

lit
y

as
se

ss
m

en
t o

f i
nf

or
m

at
io

n
ar

ch
ite

ct
ur

e
/ d

at
ab

as
e

de
si

gn
,

A
ss

es
sm

en
t o

f c
us

to
m

er
 s

at
is

fa
ct

io
n

w
ith

da

ta
 d

ef
in

iti
on

s

Id

en
tif

y
in

fo
rm

at
io

n
m

an
uf

ac
tu

rin
g

pr
oc

es
s

(c
f.

W
an

g,
 1

99
8,

 p
p.

 6
1-

63
)

D
ef

in
iti

on
 p

ha
se

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

178

Ta
bl

e
29

: C
om

pa
ris

on
 o

f T
IQ

M
 a

nd
 T

D
Q

M
, p

ar
t t

w
o

TI
Q

M

TD
Q

M

Pr
oc

es
s

G
ro

up

Pr
oc

es
s

St
ep

Pr

oc
es

s
St

ep

Pr
oc

es
s

G
ro

up

A
ss

es
s

in
fo

rm
at

io
n

qu
al

ity

(E
ng

lis
h,

 1
99

9,
 p

p.
 7

4-
76

)

R
ec

on
fir

m
at

io
n

or
 id

en
tif

ic
at

io
n

of
 re

le
va

nt

in
fo

rm
at

io
n

gr
ou

ps

E
st

ab
lis

h
in

fo
rm

at
io

n
qu

al
ity

 o
bj

ec
tiv

es
 a

nd

m
ea

su
re

s
Id

en
tif

y
IQ

 e
xp

ec
ta

tio
ns

 a
nd

pe

rc
ep

tio
ns

 o
f I

P
su

pp
lie

rs
,

m
an

uf
ac

tu
re

rs
, c

on
su

m
er

s,
 a

nd

m
an

ag
er

s
(c

f.W
an

g,
 1

99
8,

 p
. 6

1f
.)

D
ef

in
iti

on
 p

ha
se

D
ev

el
op

 IQ
 m

et
ric

s

(c
f.

W
an

g,
 1

99
8,

 p
. 6

4)

M
ea

su
re

m
en

t p
ha

se

Id
en

tif
ic

at
io

n
of

 th
e

“in
fo

rm
at

io
n

va
lu

e
an

d
co

st
 c

ha
in

” o
f t

he
 re

le
va

nt
 in

fo
rm

at
io

n
gr

ou
ps

Id
en

tif
ic

at
io

n
of

 th
e

ob
je

ct
s

fo
r t

he

as
se

ss
m

en
t,

i.e
. f

ile
s,

 d
at

ab
as

es
, o

r
pr

oc
es

se
s

Id
en

tif
ic

at
io

n
of

 a
pp

ro
pr

ia
te

 re
fe

re
nc

e
so

ur
ce

s
fo

r d
at

a
va

lid
at

io
n

Ex
tra

ct
io

n
of

 a
 ra

nd
om

 s
am

pl
e

of
 th

e
da

ta
 to

be

 a
ss

es
se

d

M
ea

su
re

m
en

t o
f i

nf
or

m
at

io
n

qu
al

ity
 b

as
ed

on

 th
e

sa
m

pl
ed

 d
at

a
vi

a
au

to
m

at
ed

 o
r

ph
ys

ic
al

 a
ss

es
sm

en
t

Im
pl

em
en

t I
Q

 m
et

ric
s

(c
f.

W
an

g,

19
98

, p
. 6

4)

M
ea

su
re

m
en

t p
ha

se

P
re

se
nt

at
io

n
an

d
in

te
rp

re
ta

tio
n

of

as
se

ss
m

en
t r

es
ul

ts

179

Ta
bl

e
30

: C
om

pa
ris

on
 o

f T
IQ

M
 a

nd
 T

D
Q

M
, p

ar
t t

hr
ee

TI
Q

M

TD
Q

M

Pr
oc

es
s

G
ro

up

Pr
oc

es
s

St
ep

Pr

oc
es

s
St

ep

Pr
oc

es
s

G
ro

up

M
ea

su
re

 n
on

qu
al

ity

in
fo

rm
at

io
n

co
st

s
(E

ng
lis

h,
 1

99
9,

 p
. 7

6f
.)

 Id
en

tif
y

bu
si

ne
ss

 p
er

fo
rm

an
ce

 m
ea

su
re

s
/

bu
si

ne
ss

 d
riv

er
s

th
at

 m
ay

 b
e

ef
fe

ct
ed

 b
y

in
fo

rm
at

io
n

qu
al

ity
 p

ro
bl

em
s,

 s
uc

h
as

 p
ro

fit
s,

cu

st
om

er
 s

at
is

fa
ct

io
n,

 o
r c

os
ts

An
al

yz
e

co
st

 o
f i

nf
or

m
at

io
n,

 e
.g

. c
os

t f
or

in

fra
st

ru
ct

ur
e,

 v
al

ue
 d

el
iv

er
y,

 a
nd

 c
os

t-a
dd

in
g

de
ve

lo
pm

en
ts

D
et

er
m

in
at

io
n

of
 c

os
ts

 re
su

lti
ng

 fr
om

 d
at

a
qu

al
ity

pr

ob
le

m
s

in
cl

ud
in

g
co

st
 o

f c
au

se
d

pr
oc

es
s

fa
ilu

re
s

Id
en

tif
ic

at
io

n
of

 c
us

to
m

er
 s

eg
m

en
ts

 fo
r c

us
to

m
er

lif

et
im

e
va

lu
e

ca
lc

ul
at

io
n

C
al

cu
la

tio
n

of
 c

us
to

m
er

 li
fe

tim
e

va
lu

e
as

 b
as

is
 o

f
lo

st
 o

pp
or

tu
ni

ty
 c

os
ts

C
al

cu
la

tio
n

of
 m

is
se

d
an

d
lo

st
 o

pp
or

tu
ni

ty
 c

os
t

re
su

lti
ng

 fr
om

 in
fo

rm
at

io
n

qu
al

ity
 p

ro
bl

em
s

(N
on

qu
al

ity
)

180

Ta
bl

e
31

: C
om

pa
ris

on
 o

f T
IQ

M
 a

nd
 T

D
Q

M
, p

ar
t f

ou
r

TI
Q

M

TD
Q

M

Pr
oc

es
s

G
ro

up

Pr
oc

es
s

St
ep

Pr

oc
es

s
St

ep

Pr
oc

es
s

G
ro

up

R
ee

ng
in

ee
r a

nd

cl
ea

ns
e

da
ta

(E

ng
lis

h,
 1

99
9,

 p
p.

 7
7-

80
)

Id
en

tif
ic

at
io

n
of

 d
at

a
so

ur
ce

s
th

at
 re

qu
ire

 d
at

a
cl

ea
ns

in
g

or
 re

en
gi

ne
er

in
g

P
er

fo
rm

 ro
ot

 c
au

se
 a

na
ly

si
s

fo
r

id
en

tif
ie

d
da

ta
 q

ua
lit

y
pr

ob
le

m
s

(W
an

g,
 1

99
8,

 p
. 6

4)

An
al

ys
is

 p
ha

se

E
xt

ra
ct

io
n

an
d

A
na

ly
si

s
of

 th
e

re
le

va
nt

 s
ou

rc
e

da
ta

fo

r a
no

m
al

ie
s

an
d

pa
tte

rn
s

D
at

a
st

an
da

rd
iz

at
io

n
ba

se
d

on
 s

em
an

tic
 m

ea
ni

ng

M
an

ua
l o

r a
ut

om
at

ed
 c

or
re

ct
io

n
or

 c
om

pl
et

io
n

of

da
ta

C
on

so
lid

at
io

n
of

 d
up

lic
at

e
da

ta

An
al

ys
is

 o
f d

at
a

de
fe

ct
 ty

pe
s

D
at

a
tra

ns
fo

rm
at

io
n

to
 ta

rg
et

 s
ta

te
 (d

at
a

w
ar

eh
ou

se
-s

pe
ci

fic
)

(R
e-

)C
al

cu
la

tio
n

of
 a

gg
re

ga
te

s
an

d
de

riv
at

io
ns

(d

at
a

w
ar

eh
ou

se
-s

pe
ci

fic
)

A
ud

it
an

d
co

nt
ro

l o
f E

xt
ra

ct
-T

ra
ns

fo
rm

-L
oa

d
(E

TL
-)

pr

oc
es

se
s

(d
at

a
w

ar
eh

ou
se

-s
pe

ci
fic

)

181

Ta
bl

e
32

: C
om

pa
ris

on
 o

f T
IQ

M
 a

nd
 T

D
Q

M
, p

ar
t f

iv
e

TI
Q

M

TD
Q

M

Pr
oc

es
s

G
ro

up

Pr
oc

es
s

St
ep

Pr

oc
es

s
St

ep

Pr
oc

es
s

G
ro

up

Im
pr

ov
e

in
fo

rm
at

io
n

pr
oc

es
s

qu
al

ity

(E
ng

lis
h,

 1
99

9,

p.
 8

0f
.)

In
iti

at
io

n
of

 p
ro

ce
ss

 im
pr

ov
em

en
t a

ct
iv

ity
 in

cl
ud

in
g

pr
ob

le
m

 d
ef

in
iti

on
, i

de
nt

ifi
ca

tio
n

of
 re

le
va

nt

pr
oc

es
se

s,
 a

nd
 e

st
ab

lis
hm

en
t o

f p
ro

ce
ss

im

pr
ov

em
en

t t
ea

m

C
re

at
io

n
of

 im
pr

ov
em

en
t p

la
n

in
cl

ud
in

g
id

en
tif

ic
at

io
n

of
 th

e
ro

ot
 c

au
se

s
P

er
fo

rm
 ro

ot
 c

au
se

 a
na

ly
si

s
fo

r
id

en
tif

ie
d

da
ta

 q
ua

lit
y

pr
ob

le
m

s
(W

an
g,

 1
99

8,
 p

. 6
4)

An

al
ys

is
 p

ha
se

Im
pl

em
en

ta
tio

n
of

 c
ha

ng
es

 fo
r p

ro
ce

ss
 a

nd

in
fo

rm
at

io
n

qu
al

ity
 im

pr
ov

em
en

t

E
ffe

ct
iv

en
es

s
as

se
ss

m
en

t o
f i

m
pl

em
en

te
d

ch
an

ge
s

S
ta

nd
ar

di
za

tio
n

an
d

en
te

rp
ris

e-
w

id
e

im
pl

em
en

ta
tio

n
of

 e
ffe

ct
iv

e
ch

an
ge

s
Im

pr
ov

e
al

ig
nm

en
t b

et
w

ee
n

IP

ch
ar

ac
te

ris
tic

s
an

d
bu

si
ne

ss
 n

ee
ds

(c

f.
W

an
g

et
 a

l.,
 2

00
1,

 p
. 1

4)

Im
pr

ov
em

en
t p

ha
se

Im

pr
ov

e
al

ig
nm

en
t o

f i
nf

or
m

at
io

n
flo

w

an
d

w
or

kf
lo

w

(c
f.

W
an

g
et

 a
l.,

 2
00

1,
 p

. 1
4)

182

Appendix B –Rules for the Evaluation of SDQM

Table 33: Overview of rules used for the validation of the SDQM algorithms

ID Rule Category Rule

1 Missing values and
properties

Mandatory properties:
- City
- Zip
- Streetno
- Street
- Country
- Location ID
- Quantity
- Price
- PCATID
- PNAME
- WEIGHT

2 Conditional missing values
and properties
(1 condition)

1) If city starts with an N, then property country
must have a value.
2) If country has value "USA", then the property
"state" must have a value.

3 Conditional missing values
and properties
(2 conditions)

If country has value "USA" and city has value
"San Diego", then the property "state" must have
a value

4 Conditional missing values
and properties
(3 conditions)

If the property country has the value
"Deutschland" and the value of the property city
starts with "Neu" and property streetno contains
"39", then the property state must have a value.

5 Conditional missing values
and properties
(4 conditions)

If the property country has value "USA" and the
value of property street ends with "Plaza" and the
property city starts with "San" and the property
streetno contains the value "3", then the property
state must have a value.

6 Conditional missing values
and properties
(5 conditions)

If the property city starts with "San" and the
property country has the value "USA" and the
property streetno contains the value "3" and the
property street ends with "Plaza" and the
property zip is less than 95000, then the property
state must have a value.

7 Syntax violations 1) The property streetno can only contain
numbers, letters and whitespaces
(Regular expression: ^[0-9A-Za-z\s]*$).

2) The street property can only contain numbers,

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

183

ID Rule Category Rule

letters, whitespaces, and dots
(Regular expression: ^[A-Za-z-\s\.]*$).

8 Conditional syntax
violations
(1 condition)

If the property country has the value "USA", then
the property state must contain 2 letters (Regular
expression: ^[A-Z]{2}$).

If the property country has the value
"Deutschland", then the property zip must contain
5 digits (Regular expression: ^[0-9]{5}$).

9 Conditional syntax
violations
(2 conditions)

If the property city has the value "Köln" and the
property street starts with "Flughafen", then the
property zip must contain 5 digits
(Regular expression: ^[0-9]{5}$).

10 Conditional syntax
violations
(3 conditions)

If the property country has the value
"Deutschland" and the property street starts with
"Flughafen" and the property zip is less than
95000, then the property zip must contain 5 digits
(Regular expression: ^[0-9]{5}$).

11 Conditional syntax
violations
(4 conditions)

If the property city has the value "San Diego" and
the property country has the value "USA" and the
property street no contains a "3" and the property
zip is less than 95000, then the property zip must
contain 4 digits (Regular expression: ^[0-9]{4}$).

12 Conditional syntax
violations
(5 conditions)

If the property city starts with value "San" and the
property country has the value "USA" and the
property street no contains a "3" and the property
street ends with "Plaza" and the property zip is
less than 95000, then the property location ID
must contain 2 digits
(Regular expression: ^[0-9]{2}$).

13 Out Of range values 1) weight: Lower Limit = 0
2) location_id: Lower Limit = 1
3) quantity: Lower Limit = 0
4) price: Lower Limit = 0, Upper Limit =
10000000
5) pcatid: Lower Limit = 1

14 Illegal values
(Legal value rules)

The property country must have one of these
values:
"USA", "Germany", "France", "United States of
America", "Deutschland"

184

ID Rule Category Rule

15 Illegal values
(Illegal value rules)

The property pcatid cannot have the value "0".

16 FuncDepReferenceRule
violations (2 properties)

Value combinations of instances of class
foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:

- City
- Country

17 FuncDepReferenceRule
violations (3 properties)

Value combinations of instances of class
foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:

- City
- Country
- Zip

18 FuncDepReferenceRule
violations (4 properties)

Value combinations of instances of class
foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:

- City
- Country
- Zip
- Street

19 FuncDepReferenceRule
violations (5 properties)

Value combinations of instances of class
foo:Location must match value combinations
between properties of instances of class
tref:Location within the following properties:

- City
- Country
- Zip
- Street
- Streetno

20 FuncDepValueRule
violations (1 condition)

If the property city has the value "Stavern", then
the property country must have value "Norway".

185

ID Rule Category Rule

21 FuncDepValueRule
violations (2 conditions)

If the property city has the value "Köln" and the
property street starts with "Flughafen", then the
property zip must have the value "51147".

22 FuncDepValueRule
violations (3 conditions)

If the property country has the value
"Deutschland" and the property street starts with
"Flughafen" and the property zip must have the
value "3".

23 FuncDepValueRule
violations (4 conditions)

If the property city has the value "San Diego" and
the property country has the value "USA" and the
property street no contains a "3" and the property
zip is less than 95000, then the property zip must
have the value "92102".

24 FuncDepValueRule
violations (5 conditions)

If the property city starts with value "San" and the
property country has the value "USA" and the
property street no contains a "3" and the property
street ends with "Plaza" and the property zip is
less than 95000, then the property location ID
must have the value "81".

25 Expired instances If date and time of property validThrough is
before the current date and time, then the
instance is outdated.

26 Exceeded Update Interval If timestamp of instances is elder than 6 months,
then the instance is outdated.

27 Uniqueness violations The values of the property location_id must
always be unique.

28 Duplicate instances (1
equal value)

If two or more instances have the same values in
the following properties, then the instances are
potential duplicates:

- Zip

29 Duplicate instances (2
equal values)

If two or more instances have the same values in
the following properties, then the instances are
potential duplicates:

- City
- Zip

30 Duplicate instances (3
equal values)

If two or more instances have the same values in
the following properties, then the instances are
potential duplicates:

- Street
- Streetno

186

ID Rule Category Rule

- Zip

31 Duplicate instances (4
equal values)

If two or more instances have the same values in
the following properties, then the instances are
potential duplicates:

- Zip
- Country
- Street
- Streetno

32 Duplicate instances (5
equal values)

If two or more instances have the same values in
the following properties, then the instances are
potential duplicates:

- City
- Country
- Street
- Streetno
- Zip

187

Appendix C – Test Data for SDQM’s Evaluation
Ta

bl
e

34
: L

oc
at

io
n

te
st

 d
at

a
fo

r e
va

lu
at

in
g

S
D

Q
M

's
 a

lg
or

ith
m

s

In
st

an
ce

LO

C
ID

ST

R
EE

T
ST

R
EE

TN
O

ZI

P
C

IT
Y

ST
AT

E
C

O
U

N
TR

Y

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
1>

1

84
89

 S
tro

ng
 S

t.

La

s
Ve

ga
s

N
V

U

SA

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
2>

1

63
6

St
 K

ild
a

R
oa

d

30
04

M

el
bo

ur
ne

Vi

ct
or

ia

Au
st

ra
lia

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
3>

3

67
, r

ue
 d

es
 C

in
qu

an
te

O

ta
ge

s

44
00

0
N

an
te

s
Fr

an
ce

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
4>

4

Er
lin

g
Sk

ak
ke

s
ga

te

78

41
10

St

av
er

n

Be
lg

ie
n

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
5>

5

56
77

 S
tro

ng
 S

t.

97
56

2
Sa

n
R

af
ae

l
C

A

U
SA

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
6>

6

W
er

ne
r-

H
ei

se
nb

er
g-

W
eg

39

85

57
7

N
eu

bi
be

rg

D

eu
ts

ch
la

nd

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
7>

7

W
er

ne
r-

H
ei

se
nb

er
g-

W
eg

39

85

57
7

N
eu

bi
be

rg

D

eu
ts

ch
la

nd

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
8>

8

H
or

to
n

Pl
az

a
32

4
92

10
1

Sa
n

D
ie

go

U

SA

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
9>

9

Fl
ug

ha
fe

ns
tr.

1

51
14

Kö

ln

D

eu
ts

ch
la

nd

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

188

Ta
bl

e
35

: P
ro

du
ct

 te
st

 d
at

a
fo

r e
va

lu
at

in
g

S
D

Q
M

's
 a

lg
or

ith
m

s

In
st

an
ce

pi

d
pc

at
id

pn

am
e

pr
ic

e
w

ei
gh

t
va

lid
Th

ro
ug

h
<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

10
>

10

10

le
nu

x
w

in
sh

ie
ld

 w
ip

er
, a

ud
i

25
00

00
00

0.

33
3

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

11
>

11

1
fu

nn
y

t-s
hi

rt,
 w

hi
te

-1

0.

3

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
12

>
12

6

fu
nn

y
t-s

hi
rt,

 b
la

ck

15

0.
3

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

1>

1
1

sl
op

py
 s

oc
ks

, r
ed

12

.2
2

0.
2

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

2>

2
4

P
an

is
on

y
LC

D
, 4

2'
'

13
33

.9
9

35

20
10

-1
1-

13
T1

7:
19

:3
9.

68
3

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
3>

3

3
Pe

ac
h

Bo
ok

 A
ir,

 s
lim

 e
di

tio
n

14
00

1.

5
20

12
-1

1-
13

T1
7:

20
:2

1.
17

9
<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

4>

4
3

su
ni

 w
ai

o,
 n

et
bo

ok

44
9.

00

1.
4

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

5>

5
0

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
6>

6

7
D

ai
ly

 s
un

1.

00

0.
2

20
12

-1
1-

13
T1

7:
20

:2
1.

17
9

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
7>

7

6
pa

n,
 b

ig

20

2

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
8>

8

8
ga

ox
, b

us
in

es
s,

 b
la

ck

75
.0

0
0.

8

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
9>

9

4
Pe

ac
h

Bo
ok

 A
ir,

 s
lim

 e
di

tio
n

12
00

1.

8
20

12
-1

1-
13

T1
7:

20
:2

1.
17

9
 Ta

bl
e

36
: S

to
ck

 q
ua

nt
ity

 te
st

 d
at

a
fo

r e
va

lu
at

in
g

S
D

Q
M

's
 a

lg
or

ith
m

s

In
st

an
ce

sp

id

sl
oc

id

qu
an

tit
y

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bs
to

ck
/1

/1
2>

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

12
>

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
1>

1

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bs
to

ck
/1

/2
>

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
2>

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bl

oc
at

io
n/

1>

15
00

0

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bs
to

ck
/3

/5
>

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
5>

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bl

oc
at

io
n/

3>

84
4

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bs
to

ck
/6

/6
>

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bp
ro

du
ct

s/
6>

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bl

oc
at

io
n/

6>

-2

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bs
to

ck
/7

/1
1>

<h

ttp
://

w
w

w
.e

xa
m

pl
e.

or
g/

st
oc

kd
bp

ro
du

ct
s/

11
>

<h
ttp

://
w

w
w

.e
xa

m
pl

e.
or

g/
st

oc
kd

bl
oc

at
io

n/
7>

13

4

189

Ta
bl

e
37

: T
es

t r
ef

er
en

ce
 d

at
a

fo
r e

va
lu

at
in

g
S

D
Q

M
's

 "F
un

cD
ep

R
ef

er
en

ce
R

ul
es

" w
ith

 tw
o

pr
op

er
tie

s

U
RI

Ci

ty

Co
un

tr
y

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

#L
oc

at
io

n_
2>

M

el
bo

ur
ne

Au

st
ra

lia

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

#L
oc

at
io

n_
7>

Sa

n
Di

eg
o

U
SA

<h

tt
p:

//
w

w
w

.e
xa

m
pl

e.
or

g/
tr

us
te

dr
ef

er
en

ce
/lo

ca
tio

ns
#L

oc
at

io
n_

5>

Sa
n

Ra
fa

el

U
SA

<h

tt
p:

//
w

w
w

.e
xa

m
pl

e.
or

g/
tr

us
te

dr
ef

er
en

ce
/lo

ca
tio

ns
#L

oc
at

io
n_

3>

N
an

te
s

Fr
an

ce

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

#L
oc

at
io

n_
8>

Kö

ln

De
ut

sc
hl

an
d

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

#L
oc

at
io

n_
1>

La

s V
eg

as

U
SA

<h

tt
p:

//
w

w
w

.e
xa

m
pl

e.
or

g/
tr

us
te

dr
ef

er
en

ce
/lo

ca
tio

ns
#L

oc
at

io
n_

6>

N
eu

bi
be

rg

De
ut

sc
hl

an
d

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

#L
oc

at
io

n_
4>

St

av
er

n
N

or
w

ay

 Ta
bl

e
38

: T
es

t r
ef

er
en

ce
 d

at
a

fo
r e

va
lu

at
in

g
S

D
Q

M
's

 "F
un

cD
ep

R
ef

er
en

ce
R

ul
es

" w
ith

 th
re

e
pr

op
er

tie
s

U
RI

ZI

P
Ci

ty

Co
un

tr
y

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

3#
Lo

ca
tio

n_
7>

92

10
1

Sa
n

Di
eg

o
U

SA

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

3#
Lo

ca
tio

n_
2>

97

56
2

Sa
n

Ra
fa

el

U
SA

<h

tt
p:

//
w

w
w

.e
xa

m
pl

e.
or

g/
tr

us
te

dr
ef

er
en

ce
/lo

ca
tio

ns
3#

Lo
ca

tio
n_

5>

41
10

St

av
er

n
N

or
w

ay

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

3#
Lo

ca
tio

n_
3>

32

53
2

La
s V

eg
as

U

SA

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

3#
Lo

ca
tio

n_
8>

51

14
7

Kö
ln

De

ut
sc

hl
an

d
<h

tt
p:

//
w

w
w

.e
xa

m
pl

e.
or

g/
tr

us
te

dr
ef

er
en

ce
/lo

ca
tio

ns
3#

Lo
ca

tio
n_

1>

30
04

M

el
bo

ur
ne

Au

st
ra

lia

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

3#
Lo

ca
tio

n_
6>

85

57
7

N
eu

bi
be

rg

De
ut

sc
hl

an
d

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

3#
Lo

ca
tio

n_
4>

44

00
0

N
an

te
s

Fr
an

ce

190

Ta
bl

e
39

: T
es

t r
ef

er
en

ce
 d

at
a

fo
r e

va
lu

at
in

g
S

D
Q

M
's

 "F
un

cD
ep

R
ef

er
en

ce
R

ul
es

" w
ith

 fo
ur

 p
ro

pe
rti

es

U
RI

ZI

P
Ci

ty

Co
un

tr
y

St
re

et

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

4#
Lo

ca
tio

n_
2>

 9
75

62

Sa
n

Ra
fa

el

U
SA

56

77
 S

tr
on

g
St

.
<h

tt
p:

//
w

w
w

.e
xa

m
pl

e.
or

g/
tr

us
te

dr
ef

er
en

ce
/lo

ca
tio

ns
4#

Lo
ca

tio
n_

7>
 9

21
01

Sa

n
Di

eg
o

U
SA

Ho

rt
on

 P
la

za

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

4#
Lo

ca
tio

n_
8>

 5
11

47

Kö
ln

De

ut
sc

hl
an

d
Fl

ug
ha

fe
ns

tr
.

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

4#
Lo

ca
tio

n_
6>

 8
55

77

N
eu

bi
be

rg

De
ut

sc
hl

an
d

W
er

ne
r-

He
ise

nb
er

g-
W

eg

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

4#
Lo

ca
tio

n_
1>

 3
00

4
M

el
bo

ur
ne

Au

st
ra

lia

M
ai

ns
tr

ee
t

 Ta
bl

e
40

: T
es

t r
ef

er
en

ce
 d

at
a

fo
r e

va
lu

at
in

g
S

D
Q

M
's

 "F
un

cD
ep

R
ef

er
en

ce
R

ul
es

" w
ith

 fi
ve

 p
ro

pe
rti

es

U
RI

ZI

P
Ci

ty

Co
un

tr
y

St
re

et

St
re

et
no

<h

tt
p:

//
w

w
w

.e
xa

m
pl

e.
or

g/
tr

us
te

dr
ef

er
en

ce
/lo

ca
tio

ns
5#

Lo
ca

tio
n_

8>
 5

11
47

Kö

ln

De
ut

sc
hl

an
d

Fl
ug

ha
fe

ns
tr

.
1

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

5#
Lo

ca
tio

n_
6>

 8
55

79

N
eu

bi
be

rg
 D

eu
ts

ch
la

nd

W
er

ne
r-

He
ise

nb
er

g-
W

eg

39

<h
tt

p:
//

w
w

w
.e

xa
m

pl
e.

or
g/

tr
us

te
dr

ef
er

en
ce

/lo
ca

tio
ns

5#
Lo

ca
tio

n_
7>

 9
21

01

Sa
n

Di
eg

o
U

SA

Ho
rt

on
 P

la
za

32

4

191

Appendix D – Evaluation Results of SDQM’s Data Quality
Monitoring Queries

The table below shows the evaluation results of SDQM’s data quality monitoring

queries. Information about the evaluation procedure and interpretation of the results

can be found in section 9.1 (TP = True Positives, FP = False Positives, FN = False

Negatives).

Table 41: Evaluation results of SDQM's data quality monitoring queries

No. Algorithm TP FP FN Precision Recall

M1 Missing values and properties 9 0 0 1 1

M2 Conditional missing values and properties
(1 condition) 2 0 0 1 1

M3 Conditional missing values and properties
(2 conditions) 1 0 0 1 1

M4 Conditional missing values and properties
(3 conditions) 2 0 0 1 1

M5 Conditional missing values and properties
(4 conditions) 1 0 0 1 1

M6 Conditional missing values and properties
(5 conditions) 1 0 0 1 1

M7 Syntax violations 4 0 0 1 1

M8 Conditional syntax violations (1 condition) 1 0 0 1 1

M9 Conditional syntax violations (2 conditions) 1 0 0 1 1

M10 Conditional syntax violations (3 conditions) 1 0 0 1 1

M11 Conditional syntax violations (4 conditions) 1 0 0 1 1

M12 Conditional syntax violations (5 conditions) 1 0 0 1 1

M13 Out of range values 4 0 0 1 1

M14 Illegal values (legal value rules) 2 0 0 1 1

M15 Illegal values (illegal value rules) 1 0 0 1 1

M16 FuncDepReferenceRule violations
(2 properties) 2 0 0 1 1

M17 FuncDepReferenceRule violations
(3 properties) 4 0 0 1 1

M18 FuncDepReferenceRule violations
(4 properties) 5 0 0 1 1

M19 FuncDepReferenceRule violations
(5 properties)

7 0 0 1 1

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

192

No. Algorithm TP FP FN Precision Recall

M20 FuncDepValueRule violations (1 condition) 1 0 0 1 1

M21 FuncDepValueRule violations (2 conditions) 1 0 0 1 1

M22 FuncDepValueRule violations (3 conditions) 1 0 0 1 1

M23 FuncDepValueRule violations (4 conditions) 1 0 0 1 1

M24 FuncDepValueRule violations (5 conditions) 1 0 0 1 1

M25 Expired instances 1 0 0 1 1

M26 Exceeded update interval 1 0 0 1 1

M27 Uniqueness violations 2 0 0 1 1

M28 Duplicate instances (1 equal value) 2 0 0 1 1

M29 Duplicate instances (2 equal values) 2 0 0 1 1

M30 Duplicate instances (3 equal values) 2 0 0 1 1

M31 Duplicate instances (4 equal values) 2 0 0 1 1

M32 Duplicate instances (5 equal values) 2 0 0 1 1

193

Appendix E – Evaluation Results of SDQM’s Data Quality
Assessment Queries

The table below shows the evaluation results of SDQM’s data quality assessment

queries. Information about the evaluation procedure and interpretation of the results

can be found in section 9.1 (TP = True Positives, FP = False Positives, FN = False

Negatives).

Table 42: Evaluation results of SDQM's data quality assessment queries

No. Algorithm TP FP FN Precision Recall

A1 Completeness 9 0 0 1 1

A2 Conditional completeness (1 condition) 2 0 0 1 1

A3 Conditional completeness (2 conditions) 1 0 0 1 1

A4 Conditional completeness (3 conditions) 2 0 0 1 1

A5 Conditional completeness (4 conditions) 1 0 0 1 1

A6 Conditional completeness (5 conditions) 1 0 0 1 1

A7 Syntactic accuracy (syntax rules) 4 0 0 1 1

A8 Conditional syntactic accuracy (1 condition) 1 0 0 1 1

A9 Conditional syntactic accuracy (2 conditions) 1 0 0 1 1

A10 Conditional syntactic accuracy (3 conditions) 1 0 0 1 1

A11 Conditional syntactic accuracy (4 conditions) 1 0 0 1 1

A12 Conditional syntactic accuracy (5 conditions) 1 0 0 1 1

A13 Semantic accuracy (legal value range rules) 4 0 0 1 1

A14 Syntactic accuracy (legal value rules) 2 0 0 1 1

A15 Semantic accuracy (illegal value rules) 1 0 0 1 1

A16 Semantic accuracy (FDR 2 properties) 2 0 0 1 1

A17 Semantic accuracy (FDR 3 properties) 4 0 0 1 1

A18 Semantic accuracy (FDR 4 properties) 5 0 0 1 1

A19 Semantic accuracy (FDR 5 properties) 7 0 0 1 1

A20 Semantic accuracy (FDV 1 condition) 1 0 0 1 1

A21 Semantic accuracy (FDV 2 conditions) 1 0 0 1 1

A22 Semantic accuracy (FDV 3 conditions) 1 0 0 1 1

A23 Semantic accuracy (FDV 4 conditions) 1 0 0 1 1

A24 Semantic accuracy (FDV 5 conditions) 1 0 0 1 1

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

194

No. Algorithm TP FP FN Precision Recall

A25 Timeliness (expiry rule) 1 0 0 1 1

A26 Timeliness (update rule) 1 0 0 1 1

A27 Uniqueness in depth 2 0 0 1 1

A28 Uniqueness in scope (1 equal value) 2 0 0 1 1

A29 Uniqueness in scope (2 equal values) 2 0 0 1 1

A30 Uniqueness in scope (3 equal values) 2 0 0 1 1

A31 Uniqueness in scope (4 equal values) 2 0 0 1 1

A32 Uniqueness in scope (5 equal values) 2 0 0 1 1

195

References

Ackoff, R. L. (1989). From Data to Wisdom. Journal of Applied Systems Analysis, 16,
3-9.

Alexiev, V., Breu, M., de Bruin, J., Fensel, D., Lara, R., & Lausen, H. (2005).
Information Integration with Ontologies: Experiences from an Industrial
Showcase. Chichester, Wiley.

Alvestrand, H. (2001). Tags for the Identification of Languages, Retrieved October 22,
2011, from http://www.ietf.org/rfc/rfc3066.txt.

Antoniou, G., & van Harmelen, F. (2008). A Semantic Web Primer (2nd ed.), MIT
Press.

Apel, D., Behme, W., Eberlein, R., & Merighi, C. (2010). Datenqualität erfolgreich
steuern. München, Carl Hanser Verlag.

Astrova, I. (2009). Rules for Mapping SQL Relational Databases to OWL Ontologies.
In M.-A. Sicilia & M. D. Lytras (Eds.), Metadata and Semantics (pp. 415-424),
Springer US.

Atlassian (2012). Atlassian Confluence Overview, Retrieved January 6, 2012, from
http://www.atlassian.com/software/confluence/overview.

Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., & Aumueller, D. (2009). Triplify -
Light-weight Linked Data Publication from Relational Databases. In:
Proceedings of the 18th International World Wide Web Conference. from
http://www2009.eprints.org/63/.

Ballou, D., & Tayi, G. K. (1989). Methodology for Allocating Resources for Data Quality
Enhancement. Communications of the ACM, 32(3), 320-329.

Ballou, D., Wang, R., Pazer, H., & Tayi, G. K. (1998). Modeling Information
Manufacturing Systems to Determine Information Product Quality. Management
Science, 44(4), 462-484.

Bao, J., Kendall, E. F., McGuinness, D. L., & Patel-Schneider, P. F. (2012). OWL 2
Web Ontology Language Quick Reference Guide. W3C Recommendation,
Retrieved July 20, 2014, from http://www.w3.org/TR/2012/REC-owl2-quick-
reference-20121211/.

Barnes, S., & Vidgen, R. (2002). An Integrative Approach to the Assessment of E-
Commerce Quality. Journal of Electronic Commerce Research, 3(3), 114-127.

Batini, C., & Scannapieco, M. (2006). Data Quality: Concepts, Methodologies and
Techniques. Berlin, Springer.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., et al.
(2004). OWL Web Ontology Language Reference. W3C Recommendation,
Retrieved September 24, 2011, from http://www.w3.org/TR/2004/REC-owl-ref-
20040210/.

Becker, J., Matzner, M., Mueller, O., & Winkelmann, A. (2008). Towards a Semantic
Data Quality Management - Using Ontologies to Assess Master Data Quality in
Retailing. In: Proceedings of the Americas Conference on Information Systems
(AMCIS 2008).

Beckett, D. (2004). RDF/XML Syntax Specification (Revised). W3C Recommendation,
Retrieved August 14, 2010, from http://www.w3.org/TR/2004/REC-rdf-syntax-
grammar-20040210/.

Berners-Lee, T. (1998a). Cool URIs don't change, Retrieved September 25, 2011, from
http://www.w3.org/Provider/Style/URI.

Berners-Lee, T. (1998b). Relational Databases on the Semantic Web, Retrieved
January 5, 2012, from http://www.w3.org/DesignIssues/RDB-RDF.html.

C. Fürber, Data Quality Management with Semantic Technologies,
DOI 10.1007/978-3-658-12225-6, © Springer Fachmedien Wiesbaden 2016

196

Berners-Lee, T. (2006). Linked Data, Retrieved September 30, 2011, from
http://www.w3.org/DesignIssues/LinkedData.html.

Berners-Lee, T., Fielding, R., & Masinter, L. (2005). Uniform Resource Identifiers
(URI): Generic Syntax, Retrieved September 25, 2011, from
http://www.ietf.org/rfc/rfc3986.txt.

Berners-Lee, T., & Fischetti, M. (2000). Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor, Paw Prints.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific
American, 284(5), 34-43.

Bidlack, C. R. (2009). Enabling Data Quality with Lightweight Ontologies. In:
Proceedings of the 21st Innovative Applications of Artificial Intelligence
Conference (IAAI 2009). from http://www.aaai.org/ocs/index.php/IAAI/IAAI09/
paper/view/259/1010.

Biron, P. V., & Malhotra, A. (2004). XML Schema Part 2: Datatypes (Second Edition).
W3C Recommendation, Retrieved August 15, 2010, from http://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/

Bitton, D., & DeWitt, D. J. (1983). Duplicate Record Elimination in Large Data Files.
ACM Transactions on Database Systems, 8(2), 255-265.

Bizer, C. (2007). Quality-driven Information Filtering in the Context of Web-Based
Information Systems. Dissertation, Freie Universität Berlin, Berlin.

Bizer, C., & Cyganiak, R. (2007). D2RQ - Lessons Learned. W3C Workshop on RDF
Access to Relational Databases, Retrieved January 4, 2011, from
http://www.w3.org/2007/03/RdfRDB/papers/d2rq-positionpaper/.

Bizer, C., & Cyganiak, R. (2009). Quality-driven Information Filtering using the WIQA
Policy Framework. Journal of Web Semantics, 7(1), 1-10.

Bizer, C., Cyganiak, R., Garbers, J., Maresch, O., & Becker, C. (2009). D2RQ Version
0.7 - User Manual and Language Specification, Retrieved January 4, 2011, from
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/20090810/.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far.
International Journal on Semantic Web and Information Systems, 5(3), 1-22.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., et al. (2009). DBpedia - A
Crystallization Point for the Web of Data. Journal of Web Semantics, 7(3), 154-
165.

Bizer, C., & Schultz, A. (2011). Berlin SPARQL Benchmark (BSBM) Results (February
2011), Retrieved January 4, 2012, from http://www4.wiwiss.fu-berlin.de
/bizer/BerlinSPARQLBenchmark/results/V6/index.html.

Bizer, C., & Seaborne, A. (2004). D2RQ - Treating Non-RDF Databases as Virtual RDF
Graphs. In: Proceedings of the International Semantic Web Conference (ISWC
2004). from http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-D2RQ-
ISWC2004-Poster.pdf.

Bodendorf, F. (2006). Daten- und Wissensmanagement (second ed.). Berlin, Springer.
Boehm, B., & In, H. (1996). Identifying Quality-Requirement Conflicts. IEEE Software

Magazine, 13(2), 25-35.
Böhm, C., Naumann, F., Ziawasch, A., Fenz, D., Grütze, T., et al. (2010). Profiling

Linked Open Data with ProLOD. In: Proceedings of the 2nd International
Workshop on New Trends in Information Integration (NTII 2010).

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008).
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation,
Retrieved 23.08.2014, 2014, from http://www.w3.org/TR/2008/REC-xml-
20081126/.

197

Brickley, D., & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, Retrieved September 24, 2011, from
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

Brüggemann, S. (2006). Ontologiebasierte domänenspezifische Datenbereinigung in
Data Warehouse Systemen. In: Proceedings of the Grundlagen von
Datenbanken.

Brüggemann, S. (2008a). Proaktives Management von Konsistenzbedingungen im
Analytischen Performance Management. In: Proceedings of the Data
Warehousing (DW 2008).

Brüggemann, S. (2008b). Rule Mining for Automatic ontology-based Data Cleaning.
In: Proceedings of the 10th Asia-Pacific Web Conference (APWEB 2008).

Brüggemann, S., & Aden, T. (2007). Ontology Based Data Validation and Cleaning:
Restructuring Operations for Ontology Maintenance. In: Proceedings of the 37.
Jahrestagung der Gesellschaft für Informatik e.V.

Brüggemann, S., & Grüning, F. (2008). Using Domain Knowledge Provided by
Ontologies for Improving Data Quality Management. In: Proceedings of the
International Conferences on Knowledge Management and New Media
Technology (I-Know 2008 and I-Media 2008).

Brüggemann, S., & Grüning, F. (2009). Using Ontologies Providing Domain Knowledge
for Data Quality Management In T. Pellegrini, S. Auer, K. Tochtermann & S.
Schaffert (Eds.), Networked Knowledge - Networked Media (pp. 187-203).
Berlin / Heidelberg, Springer

Buckland, M. K., & Gey, F. C. (1994). The Relationship between Recall and Precision.
Journal of the American Society for Information Science, 45(1), 12-19.

Cerbah, F. (2008). Learning Highly Structured Semantic Repositories from Relational
Databases: the RDBToOnto Tool. In: Proceedings of the 5th European
Semantic Web Conference (ESWC 2008).

Chen, P. P.-S. (1976). The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1), 9-36.

Chen, Q., Chen, Y.-P. P., & Zhang, C. (2007). Detecting Inconsistency in Biological
Molecular Databases using Ontologies. Data Mining Knowledge Discovery,
15(2), 275-296.

Chiang, F., & Miller, R. J. (2008). Discovering Data Quality Rules. In: Proceedings of
the VLDB Endowment.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6), 377-387.

Codd, E. F. (1980). Data Models in Database Management. In: Proceedings of the
Workshop on Data abstraction, databases and conceptual modeling.

Codd, E. F. (1990). The Relational Model for Database Management: Version 2.
Reading, Massachusetts, Addison-Wesley.

Curé, O. (2009). Improving the Data Quality of Relational Databases using OBDA and
OWL 2 QL. In: Proceedings of the Workshop OWL: Experiences and Directions
(OWLED 2009).

Curé, O., & Jeansoulin, R. (2007). Data Quality Enhancement of Databases Using
Ontologies and Inductive Reasoning. In: Proceedings of the Workshop On the
Move to Meaningful Internet Systems (OTM 2007). from http://dx.doi.org
/10.1007/978-3-540-76848-7_73.

Cyganiak, R. (2012). Dump-rdf: Dumping the Database to an RDF file, Retrieved
January 5, 2012, from http://d2rq.org/dump-rdf.

Cyganiak, R., & Jentzsch, A. (2011a, 19.09.2011). The Linking Open Data Cloud
Diagram, Retrieved April 12, 2012, from http://lod-cloud.net/.

198

Cyganiak, R., & Jentzsch, A. (2011b, 19.09.2011). State of the LOD Cloud, Retrieved
July 20, 2014, from http://lod-cloud.net/state/.

Dauw, J. D., Hoffmeyer, K., & Katkov, Y. (2014). Semantic MediaWiki Help - Inline
Queries, Retrieved July 27, 2014, from http://semantic-mediawiki.org/wiki/
Help:Inline_queries.

De Bruijn, J., Lara, R., Polleres, A., & Fensel, D. (2005). OWL DL vs. OWL flight:
Conceptual Modeling and Reasoning for the Semantic Web. In: Proceedings of
the 14th International Conference on World Wide Web.

Deming, W. E. (1986). Out of the Crisis (2. print.. ed.). Cambridge, Massachusetts,
Massachusetts Inst. of Technology, Center for Advanced Engineering Study.

Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species.
Ecology, 26(3), 297-302.

Eckerson, W. W. (2002). Data Quality and the Bottom Line: Achieving Business
Success through a Commitment to High Quality Data (Report): The Data
Warehousing Institute.

Eliot, T. S. (1934). The Rock. London, Faber & Faber.
English, L. P. (1999). Improving Data Warehouse and Business Information Quality:

Methods for Reducing Costs and Increasing Profits. New York, Wiley.
Eppler, M. J. (2006). Managing Information Quality: Increasing the Value of Information

in Knowledge-intensive Products and Processes (Second ed.). Berlin, Springer.
Erling, O. (2007). Declaring RDF Views of SQL Data, Retrieved January 5, 2012, from

http://www.w3.org/2007/03/RdfRDB/papers/erling.html.
Feigenbaum, L., Williams, G. T., Clark, K. G., & Torres, E. (2013, 21.03.2013).

SPARQL 1.1 Protocol. W3C Recommendation, Retrieved July 19, 2014, from
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/.

Fensel, D. (2001). Ontologies: Dynamic Networks of Formally Represented Meaning.
In: Proceedings of the 1st Semantic Web Working Symposium. from http://sw-
portal.deri.at/papers/publications/network.pdf.

Fensel, D. (2002). Intelligent Information Integration in B2B Electronic Commerce.
Boston, Kluwer Academic Publishers.

Fensel, D., & van Harmelen, F. (2007). Unifying Reasoning and Search to Web Scale.
IEEE Internet Computing, 11(2), 95-96.

Fink, A., Schneidereit, G., & Voß, S. (2005). Grundlagen der Wirtschaftsinformatik.
Heidelberg, Physica-Verlag.

Fisher, C. W., & Kingma, B. R. (2001). Criticality of Data Quality as Exemplified in two
Disasters. Information and Management, 39(2), 109-116.

Floyd, R. W. (1967). Assigning Meanings to Programs. In: Proceedings of the
Symposium on Applied Mathematics.

Frakes, W. B., & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and
Algorithms, Prentice-Hall.

Friedman, T., & Bitterer, A. (2011). Magic Quadrant for Data Quality Tools, Retrieved
July 29, 2011, from http://www.gartner.com/technology/reprints.do?id=1-
16TGI70&ct=110729&s.

Fürber, C., & Hepp, M. (2010a). Using Semantic Web Resources for Data Quality
Management. In: Proceedings of the 17th International Conference on
Knowledge Engineering and Knowledge Management (EKAW 2010).

Fürber, C., & Hepp, M. (2010b). Using SPARQL and SPIN for Data Quality
Management on the Semantic Web. In: Proceedings of the 13th International
Conference on Business Information Systems 2010 (BIS 2010).

Fürber, C., & Hepp, M. (2011a). SWIQA – A Semantic Web Information Quality
Assessment Framework. In: Proceedings of the European Conference on
Information Systems (ECIS 2011).

199

Fürber, C., & Hepp, M. (2011b). Towards a Vocabulary for Data Quality Management
in Semantic Web Architectures. In: Proceedings of the 1st International
Workshop on Linked Web Data Management (LWDM 2011).

Gasevic, D., Djuric, D., & Devedzic, V. (2006). Model Driven Architecture and Ontology
Development. Berlin, Springer-Verlag.

Ge, M., & Helfert, M. (2007). A Review of Information Quality Research - Develop a
Research Agenda. In: Proceedings of the 12th International Conference on
Information Quality (ICIQ 2007).

Ge, M., & Helfert, M. (2008). Data and Information Quality Assessment in Information
Manufacturing Systems. In: Proceedings of the 11th International Conference
on Business Information Systems (BIS 2008).

Ge, M., & Helfert, M. (2013). Cost and Value Management for Data Quality. In S. Sadiq
(Ed.), Handbook of Data Quality (pp. 75-92). Berlin / Heidelberg, Springer.

Geisler, S., Weber, S., & Quix, C. (2011). Ontology-Based Data Quality Framework for
Data Stream Applications. In: Proceedings of the 16th International Conference
on Information Quality (ICIQ 2011).

Gertz, M., Ozsu, M. T., Saake, G., & Sattler, K.-U. (2004). Report on the Dagstuhl
Seminar “Data Quality on the Web”. SIGMOD Record, 33(1), 127.

Goeken, M. (2006). Entwicklung von Data-Warehouse-Systemen
Anforderungsmanagement, Modellierung, Implementierung. Wiesbaden,
Deutscher Universitätsverlag.

Gómez-Pérez, A., Fernández-López, M., & Corcho, O. (2004). Ontological
Engineering. London, New York, Springer.

Google (2011). Google Refine, Retrieved January 5, 2012, from
http://code.google.com/p/google-refine/.

Grande, M. (2011). 100 Minuten für Anforderungsmanagement: Kompaktes Wissen
nicht nur für Projektleiter und Entwickler. Wiesbaden, Vieweg / Teubner.

Grimm, S., Hitzler, P., & Abecker, A. (2007). Knowledge Representation and
Ontologies. In R. Studer, S. Grimm & A. Abecker (Eds.), Semantic Web
Services - Concepts, Technologies, and Applications (pp. 51-105). Berlin /
Heidelberg, Springer.

Grosser, T., & Bange, C. (2009). Datenqualität in SAP-Systemen: Business Application
Research Center.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2), 199-220.

Grüning, F. (2009). Datenqualitätsmanagement in der Energiewirtschaft. Dissertation,
Oldenburger Verlag für Wirtschaft, Informatik und Recht, Oldenburg.

Hammer, M., & Champy, J. (2002). Reengineering the Corporation: A Manifesto for
Business Revolution. New York, HarperBusiness.

Hansen, H. R., & Neumann, G. (2004). Wirtschaftsinformatik 1 - Grundlagen und
Anwendungen (9th ed.). Stuttgart, Lucius & Lucius.

Harris, S., & Seaborne, A. (2010, 26.01.2010). SPARQL Query Language 1.1. W3C
Working Draft, Retrieved April 10, 2012, from http://www.w3.org/TR/2010/WD-
sparql11-query-20100126/.

Hartig, O. (2009). Querying Trust in RDF Data with tSPARQL. In: Proceedings of the
6th European Semantic Web Conference (ESWC 2009).

Hartig, O., & Zhao, J. (2009). Using Web Data Provenance for Quality Assessment. In:
Proceedings of the 1st International Workshop on the role of Semantic Web in
Provenance Management.

Heath, T., & Bizer, C. (2011). Linked Data - Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology 1st Edition.
Retrieved September 25, 2011, from http://linkeddatabook.com/editions/1.0/.

200

Hebeler, J., Fisher, M., Blace, R., & Perez-Lopez, A. (2009). Semantic Web
Programming, Wiley Publishing.

Hepp, M. (2008a). GoodRelations: An Ontology for Describing Products and Services
Offers on the Web. In: Proceedings of the 16th international conference on
Knowledge Engineering: Practice and Patterns.

Hepp, M. (2008b). Ontologies: State of the Art, Business Potential, and Grand
Challenges. In M. Hepp, P. De Leenheer, A. de Moor & Y. Sure (Eds.), Ontology
Management: Semantic Web, Semantic Web Services, and Business
Applications (pp. 3-22).

Herschel, M., Felix, N., Sascha, S., & Maik, T. (2011). Scalable Iterative Graph
Duplicate Detection. IEEE Transactions on Knowledge and Data Engineering,
99.

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. MANAGEMENT INFORMATION SYSTEMS QUARTERLY.

Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., et al. (2008). Ontology
Reasoning with Large Data Repositories. In M. Hepp, P. De Leenheer, A. de
Moor & Y. Sure (Eds.), Ontology Management: Semantic Web, Semantic Web
Services, and Business Applications (pp. 89-128), Springer.

Hipp, J., Müller, M., Hohendorff, J., & Naumann, F. (2007). Rule-Based Measurement
Of Data Quality in Nominal Data. In: Proceedings of the 12th International
Conference on Information Quality (ICIQ 2007).

Hitzler, P. (2008). Semantic Web: Grundlagen (First ed.). Berlin, Springer.
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2009). OWL

2 Web Ontology Language Primer. W3C Recommendation, Retrieved
September 24, 2011, from http://www.w3.org/TR/2009/REC-owl2-primer-
20091027/.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2012). OWL
2 Web Ontology Language Primer (Second Edition). W3C Recommendation,
Retrieved July 19, 2014, from http://www.w3.org/TR/2012/REC-owl2-primer-
20121211/.

Hogan, A., Harth, A., Passant, A., Decker, S., & Polleres, A. (2010). Weaving the
Pedantic Web. In: Proceedings of the Workshop on Linked Data on the Web
(LDOW 2010).

Hoyningen-Huene, P. (1998). Formale Logik - Eine philosophische Einführung.
Stuttgart, Reclam.

Huang, K.-T., Lee, Y. W., & Wang, R. Y. (1999). Quality Information and Knowledge.
Upper Saddle River, N.J., Prentice Hall PTR.

Hüner, K., Brauer, B., Otto, B., & Österle, H. (2011). Fachliches
Metadatenmanagement mit einem semantischen Wiki. HMD – Praxis der
Wirtschaftsinformatik, 277(48), 98-108.

Hüner, K., Otto, B., & Österle, H. (2011). Collaborative Management of Business
Metadata. International Journal of Information Management, 31(4), 366-373.

ISO (2005). ISO 9000:2005, Quality management systems - Fundamentals and
vocabulary: International Organization for Standardization.

ISO (2009). ISO 8000-102:2009, Data quality - Part 102: Master data: Exchange of
characteristic data: Vocabulary: International Organization for Standardization.

ISO/IEC (1993). ISO/IEC 2382-1:1993, Information technology - Vocabulary - Part 1:
Fundamental terms: International Organization for Standardization.

Juran, J. M. (1988). Juran's quality control handbook (Fourth ed.). New York, McGraw-
Hill.

201

Kahn, B. K., Strong, D. M., & Wang, R. Y. (2002). Information Quality Benchmarks:
Product and Service Performance. Communications of the ACM, 45(4), 184-
192.

Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Attractive Quality and Must-Be
Quality. Journal of the Japanese Society for Quality Control, 14(2), 147-156.

Kashyap, V., & Sheth, A. P. (1996). Semantic and Schematic Similarities Between
Database Objects: A Context-Based Approach. Very Large Data Base
Journal(5), 276--304.

Kedad, Z., & Métais, E. (2002). Ontology-Based Data Cleaning. In: Proceedings of the
6th International Conference on Applications of Natural Language to Information
Systems-Revised Papers.

Klein, D. E., & Murphy, G. L. (2002). Paper has been my Ruin: Conceptual Relations
of Polysemous Senses. Journal of Memory and Language, 47(4), 548-570.

Klyne, G., & Carroll, J. J. (2004). Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation, Retrieved September 24, 2011,
from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

Knublauch, H. (2011). SPIN - SPARQL Syntax. W3C Member Submission, Retrieved
August 19, 2014, from http://www.w3.org/Submission/2011/SUBM-spin-sparql-
20110222/.

Kobilarov, G., Bizer, C., Auer, S., & Lehmann, J. (2009). DBpedia-A Linked Data Hub
and Data Source for Web and Enterprise Applications. In: Proceedings of the
18th International World Wide Web Conference.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., et al. (2009). Media
meets Semantic Web – How the BBC uses DBpedia and Linked Data to make
Connections. In: Proceedings of the 6th European Semantic Web Conference
(ESWC 2009).

Kokar, M. M., Matheus, C. J., Baclawski, K., Letkowski, J. A., Hinman, M., & Salerno,
J. (2004). Use Cases for Ontologies in Information Fusion. In: Proceedings of
the 7th International Conference on Information Fusion.

Koren, Y. (2012). Working with MediaWiki, WikiWorks Press.
Koren, Y. (2014). Semantic Forms and Templates, Retrieved July 27, 2014, from

http://www.mediawiki.org/wiki/Extension:Semantic_Forms/Semantic_Forms_a
nd_templates.

Krötzsch, M., Vrandečić, D., & Völkel, M. (2006). Semantic MediaWiki. In: Proceedings
of the International Semantic Web Conference (ISWC 2006). from
http://dx.doi.org/10.1007/11926078_68.

Lee, Y. W. (2006). Journey to Data Quality. Cambridge, Mass., MIT Press.
Lei, Y., & Nikolov, A. (2007). Detecting Quality Problems in Semantic Metadata without

the Presence of a Gold Standard. In: Proceedings of the 5th International
Workshop on Evaluation of Ontologies and Ontology-based Tools (EON 2007).

Lei, Y., Uren, V., & Motta, E. (2007). A Framework for Evaluating Semantic Metadata.
In: Proceedings of the 4th International Conference on Knowledge Capture.

Lenzerini, M. (2002). Data Integration: a Theoretical Perspective. In: Proceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems.

Leser, U., & Naumann, F. (2007). Informationsintegration: Architekturen und Methoden
zur Integration verteilter und heterogener Datenquellen (1st ed.). Heidelberg,
dpunkt-Verl.

Levy, A. Y. (2000). Logic-based Techniques in Data Integration Logic-based Artificial
Intelligence (pp. 575-595), Springer.

Loshin, D. (2001). Enterprise Knowledge Management: The Data Quality Approach.
San Diego, London, Morgan Kaufmann Academic Press.

202

Loshin, D. (2002). Rule-based Data Quality. In: Proceedings of the 11th International
Conference on Information and Knowledge Management.

Loshin, D. (2009). Master Data Management. Amsterdam, Elsevier/Morgan Kaufmann.
Maali, F., & Cyganiak, R. (2011). RDF Extension for Google Refine, Retrieved January

5, 2012, from http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/.
Madnick, S., & Zhu, H. (2006). Improving Data Quality through Effective Use of Data

Semantics. Data & Knowledge Engineering, 59(2), 460-475.
Madnick, S. E., Wang, R. Y., Lee, Y. W., & Zhu, H. (2009). Overview and Framework

for Data and Information Quality Research. Journal of Data and Information
Quality, 1(1), 1-22.

Manola, F., & Miller, E. (2004). RDF Primer. W3C Recommendation, Retrieved
September 24, 2011, from http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/.

McComb, D. (2004). Semantics in Business Systems: The Savvy Manager's Guide.
San Francisco, Elsevier Science.

McGuinness, D. L., & van Harmelen, F. (2004). OWL Web Ontology Language
Overview. W3C Recommendation, Retrieved September 24, 2011, from
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

Mendes, P. N., Mühleisen, H., & Bizer, C. (2012). Sieve: Linked Data Quality
Assessment and Fusion. In: Proceedings of the 1st International Workshop on
Linked Web Data Management (LWDM 2012).

Microsoft (2014). Data Warehousing and Online Analytical Processing, Retrieved
August 31, 2014, from http://technet.microsoft.com/en-us/library/
aa933152%28v=sql.80%29.aspx.

Milano, D., Scannapieco, M., & Catarci, T. (2005). Using Ontologies for XML Data
Cleaning. In: Proceedings of the On the Move to Meaningful Internet Systems
(OTM 2005).

Monge, A., & Elkan, C. (1997). An Efficient Domain-Independent Algorithm for
Detecting Approximately Duplicate Database Records. In: Proceedings of the
Workshop on Research Issues on Data Mining and Knowledge Discovery.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2009). OWL 2 Web
Ontology Language Profiles. W3C Recommendation, Retrieved September 24,
2011, from http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/.

Mühleisen, H., & Bizer, C. (2012). Web Data Commons - Extracting Structured Data
from Two Large Web Corpora. In: Proceedings of the 4th Linked Data on the
Web Workshop (LDOW 2012).

Niemi, T., Toivonen, S., Niinimaki, M., & Nummenmaa, J. (2007). Ontologies with
Semantic Web/Grid in Data Integration for OLAP. International Journal on
Semantic Web and Information Systems, 3(4), 25–49.

Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology (Technical Report): Stanford Knowledge Systems
Laboratory.

Nuseibeh, B. (1996). Conflicting Requirements: When the Customer is Not Always
Right. Requirements Engineering, 1(1), 70-71.

O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., et al. (2005). Supporting
Rule System Interoperability on the Semantic Web with SWRL. In: Proceedings
of the 4th International Semantic Web Conference (ISWC 2005).

Oliveira, P., Rodrigues, F., & Henriques, P. R. (2005). A Formal Definition of Data
Quality Problems. In: Proceedings of the International Conference on
Information Quality (ICIQ 2005)

203

Oliveira, P., Rodrigues, F., Henriques, P. R., & Galhardas, H. (2005). A Taxonomy of
Data Quality Problems. In: Proceedings of the 2nd International Workshop on
Data and Information Quality.

Olson, J. (2003). Data Quality: The Accuracy Dimension. San Francisco, USA, Morgan
Kaufmann.

Oracle (2013). History of SQL. Oracle Database SQL Language Reference, Retrieved
July 19, 2014, from http://docs.oracle.com/cd/B28359_01/server.111/b28286/
intro001.htm#i1712.

Otto, I. B., Kokemüller, D.-P. J., & Gizanis, D. (2011). Stammdatenmanagement:
Datenqualität für Geschäftsprozesse. HMD Praxis der Wirtschaftsinformatik,
48(3), 5-16.

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2008). A Design
Science Research Methodology for Information Systems Research. Journal of
Management Information Systems, 24(3), 45-77.

Perez-Rey, D., Anguita, A., & Crespo, J. (2006). OntoDataClean: Ontology-Based
Integration and Preprocessing of Distributed Data In: Proceedings of the
Biological and Medical Data Analysis.

Pernici, B., & Scannapieco, M. (2002). Data Quality in Web Information Systems. In:
Proceedings of the 21st International Conference on Conceptual Modeling.

Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data Quality Assessment.
Communications of the ACM, 45(4), 211-218.

Pohl, K., Böckle, G., & van der Linden, F. (2005). Software Product Line Engineering:
Foundations, Principles, and Techniques. Berlin, Springer.

Porter, M. E., & Millar, V. E. (1985). How Information gives you Competitive Advantage.
Harvard Business Review, 149-160.

Preece, A., Jin, B., Pignotti, E., Missier, P., Embury, S., et al. (2006). Managing
Information Quality in E-science using Semantic Web Technology. In:
Proceedings of the 3rd European Conference on the Semantic Web (ESWC
2006).

Raghavan, V., Bollmann, P., & Jung, G. S. (1989). A Critical Investigation of Recall
and Precision as Measures of Retrieval System Performance. ACM
Transactions on Information Systems, 7(3), 205-229.

Rahm, E., & Do, H.-H. (2000). Data Cleaning: Problems and Current Approaches.
IEEE Data Engineering Bulletin, 23(4), 3-13.

Ram, S., & Park, J. (2004). Semantic Conflict Resolution Ontology (SCROL): An
Ontology for Detecting and Resolving Data and Schema-Level Semantic
Conflicts. IEEE Transactions on Knowledge and Data Engineering, 16(2), 189-
202.

Redman, T. C. (1996). Data Quality for the Information Age. Boston, Artech House.
Redman, T. C. (1998). The Impact of Poor Data Quality on the Typical Enterprise.

Communications of the ACM, 41(2), 79-82.
Redman, T. C. (2001). Data Quality: The Field Guide. Boston, Digital Press.
Reuters, T. (2013). How does Calais work?, Retrieved July 20, 2014, from

http://www.opencalais.com/about.
Riemer, N. (2010). Introducing Semantics. Cambridge, New York, Cambridge

University Press.
Rodriguez, J. B., & Gómez-Pérez, A. (2006). Upgrading Relational Legacy Data to the

Semantic Web. In: Proceedings of the 15th International Conference on World
Wide Web.

Rowley, J. (2007). The Wisdom Hierarchy: Representations of the DIKW Hierarchy.
Journal of Information Science, 33(2), 163-180.

204

Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, T., et al. (2009).
A Survey of Current Approaches for Mapping of Relational Databases to RDF
Retrieved January 4, 2012, from http://www.w3.org/2005/Incubator/rdb2rdf/
RDB2RDF_SurveyReport_01082009.pdf.

Salvadores, M. (2012). E-Mail Communication with Developer of 4store Regarding
SPARQL 1.1 Compliance of 4Store.

Sauermann, L., & Cyganiak, R. (2008). Cool URIs for the Semantic Web, Retrieved
September 25, 2011, from http://www.w3.org/TR/cooluris/.

Simsion, G. C., & Witt, G. C. (2005). Data Modeling Essentials (3rd ed.). Amsterdam ;
Boston, Morgan Kaufmann Publishers.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical
OWL-DL reasoner, Retrieved April 11, 2012, from http://www.mindswap.org/
papers/PelletJWS.pdf.

Skog, I., & Handel, P. (2009). In-Car Positioning and Navigation Technologies - A
Survey. IEEE Transactions on Intelligent Transportation Systems, 10(1), 4-21.

Skoutas, D., & Simitsis, A. (2007). Ontology-Based Conceptual Design of ETL
Processes for Both Structured and Semi-Structured Data. International Journal
on Semantic Web and Information Systems, 3(4), 1-24.

Smith, B., & Welty, C. (2001). Ontology: Towards a New Synthesis. In: Proceedings of
the Formal Ontology in Information Systems.

Souza, D., Belian, R., Salgado, A. C., & Tedesco, P. A. (2008). Towards a Context
Ontology to Enhance Data Integration Processes. In: Proceedings of the 4th
Workshop on Ontologies-based Techniques for DataBases in Information
Systems and Knowledge Systems (ODBIS).

Sowa, J. F. (2014). Semantic Networks. Encyclopedia of Artificial Intelligence,
Retrieved April 16, 2014, from http://www.jfsowa.com/pubs/semnet.htm.

Talend (2012). Talend Open Studio for Data Quality User Guide, Retrieved June 8,
2012, from http://www.talend.com/resources/documentation.php.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, Methods, and
Applications. The Knowledge Engineering Review, 11(2), 93-155.

Vandenbussche, P.-Y. (2012). Linked Open Vocabularies (LOV) - Quality, Provenance
and Trust Space, Retrieved January 5, 2012, from http://lov.okfn.org/dataset/
lov/details/vocabularySpace_Quality.html.

Voss, J. (2005). Measuring Wikipedia. In: Proceedings of the 10th International
Conference of the International Society for Scientometrics and Informetrics.

W3C-OWL-Working-Group (2012). OWL 2 Web Ontology Language Document
Overview (Second Edition). W3C Recommendation, Retrieved July 19, 2014,
from http://www.w3.org/TR/2012/REC-owl2-overview-20121211/.

W3C (2013). Semantic Web Project Website, Retrieved July 19, 2014, from
http://www.w3.org/standards/semanticweb/.

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., et al. (2001).
Ontology-Based Integration of Information - A Survey of Existing Approaches.
In: Proceedings of the Workshop on Ontologies and Information Sharing. from
http://www.iwayan.powernet.or.id/Research/Ontology/Papers_Research/SUR
VEY.pdf.

Wand, Y., & Wang, R. Y. (1996). Anchoring Data Quality Dimensions in Ontological
Foundations. Communications of the ACM, 39(11), 86-95.

Wang, F., Mäs, S., Reinhardt, W., & Kandawasvika, A. (2005). Ontology-Based Quality
Assurance for Mobile Data Acquisition. In: Proceedings of the 19th International
Conference on Informatics for Environmental Protection: Networking
Environmental Information.

205

Wang, R. Y. (1998). A Product Perspective on Total Data Quality Management.
Communications of the ACM, 41(2), 58-65.

Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality means to
Data Consumers. Journal of Management Information Systems, 12(4), 5-33.

Wang, X., Hamilton, H. J., & Bither, Y. (2005). An Ontology-Based Approach to Data
Cleaning (Technical Report No. 0773105336 9780773105331). Regina:
Department of Computer Science, University of Regina.

Wang, X., Sun, X., Cao, F., Ma, L., Kanellos, N., et al. (2009). SMDM: Enhancing
Enterprise-Wide Master Data Management Using Semantic Web Technologies.
VLDB Endowment, 2(2), 1594-1597.

Wang, Y. R., Ziad, M., & Lee, Y. W. (2001). Data Quality. Boston, Kluwer Academic
Publishers.

West, M. (2003). Developing High Quality Data Models. 1-56. Retrieved from
https://d2024367-a-62cb3a1a-s-sites.googlegroups.com/site/drmatthewwest/
publications/princ03.pdf

West, M. (2011). Developing High Quality Data Models, Elsevier.
Wijnhoven, F., Boelens, R., Middel, R., & Louissen, K. (2007). Total Data Quality

Management: A Study of Bridging Rigor and Relevance. In: Proceedings of the
15th European Conference on Information Systems (ECIS 2007).

Wu, Z., Chen, H., Wang, H., Wang, Y., Mao, Y., et al. (2006). Dartgrid: A Semantic
Web Toolkit for Integrating Heterogeneous Relational Databases. In:
Proceedings of the International Semantic Web Conference (ISWC 2006).

	Foreword
	Preface
	Table of Content
	List of Figures
	List of Tables
	List of Abbreviations
	PART I – Introduction, Economic Relevance, and Research
Design

	1 Introduction
	1.1 Initial Problem Statement
	1.2 Economic Relevance
	1.3 Organization of this Thesis
	1.4 Published Work
	1.4.1 Book Chapters
	1.4.2 Papers in Conference Proceedings
	1.4.3 Other Publications

	2 Research Design
	2.1 Semantic Technologies and Ontologies
	2.2 Research Goal
	2.3 Research Questions
	2.4 Research Methodology
	2.4.1 Design Science Research Methodology
	2.4.2 Ontology Development Methodology

	PART II – Foundations: Data Quality, Semantic
Technologies, and the Semantic Web

	3 Data Quality
	3.1 Data Quality Dimensions
	3.2 Quality Influencing Artifacts
	3.3 Data Quality Problem Types
	3.3.1 Quality Problems of Attribute Values
	3.3.2 Multi-Attribute Quality Problems
	3.3.3 Problems of Object Instances
	3.3.4 Quality Problems of Data Models
	3.3.5 Common Linguistic Problems

	3.4 Data Quality in the Data Lifecycle
	3.4.1 Data Acquisition Phase
	3.4.2 Data Usage Phase
	3.4.3 Data Retirement Phase
	3.4.4 Data Quality Management throughout the Data Lifecycle

	3.5 Data Quality Management Activities
	3.5.1 Total Information Quality Management (TIQM)
	3.5.2 Total Data Quality Management (TDQM)
	3.5.3 Comparison of Methodologies

	3.6 Role of Data Requirements in DQM
	3.6.1 Generic Data Requirement Types
	3.6.2 Challenges Related to Requirements Satisfaction

	4 Semantic Technologies
	4.1 Characteristics of an Ontology
	4.2 Knowledge Representation in the Semantic Web
	4.2.1 Resources and Uniform Resource Identifiers (URIs)
	4.2.2 Core RDF Syntax: Triples, Literal Triples, and RDF Links
	4.2.3 Constructing an Ontology with RDF, RDFS, and OWL
	4.2.4 Language Profiles of OWL and OWL 2

	4.3 SPARQL Query Language for RDF
	4.4 Reasoning and Inferencing
	4.5 Ontologies and Relational Databases

	5 Data Quality in the Semantic Web
	5.1 Data Sources of the Semantic Web
	5.2 Semantic Web-specific Quality Problems
	5.2.1 Document Content Problems
	5.2.2 Data Format Problems
	5.2.3 Problems of Data Definitions and Semantics
	5.2.4 Problems of Data Classification
	5.2.5 Problems of Hyperlinks

	5.3 Distinct Characteristics of Data Quality in the Semantic Web

	PART III – Development and Evaluation of the Semantic
Data Quality Management Framework

	6 Specification of Initial Requirements
	6.1 Motivating Scenario
	6.2 Initial Requirements for SDQM
	6.2.1 Task Requirements
	6.2.2 Functional Requirements
	6.2.3 Conditional Requirements
	6.2.4 Research Requirements

	6.3 Summary of SDQM’s Requirements

	7 Architecture of the Semantic Data Quality Management Framework (SDQM)
	7.1 Data Acquisition Layer
	7.1.1 Reusable Artifacts for the Data Acquisition Layer
	7.1.2 Data Acquisition for SDQM

	7.2 Data Storage Layer
	7.2.1 Reusable Artifacts for Data Storage in SDQM
	7.2.2 The Data Storage Layer of SDQM

	7.3 Data Quality Management Vocabulary
	7.3.1 Reuse of Existing Ontologies
	7.3.2 Technical Design of the DQM Vocabulary

	7.4 Data Requirements Editor
	7.4.1 Reusable Artifacts for SDQM’s Data Requirements Editor
	7.4.2 Data Requirements Wiki

	7.5 Reporting Layer
	7.5.1 Reusable Artifacts for SDQM’s Reporting Layer
	7.5.2 Semantic Data Quality Manager

	8 Application Procedure of SDQM
	8.1 Prerequisites
	8.2 The Data Quality Management Process with SDQM

	9 Evaluation of the Semantic Data Quality Management Framework (SDQM)
	9.1 Evaluation of Algorithms
	9.1.1 Algorithm Evaluation Methodology
	9.1.2 Application Procedure
	9.1.3 Results

	9.2 Use Case 1: Evaluation of Material Master Data
	9.2.1 Scenario
	9.2.2 Setup and Application Procedure of SDQM
	9.2.3 Results and Findings

	9.3 Use Case 2: Evaluation of Data from DBpedia
	9.3.1 Scenario
	9.3.2 Specialties of Semantic Web Scenarios
	9.3.3 Setup and Application Procedure
	9.3.4 Results and Findings

	9.4 Use Case 3: Consistency Checks Among Data Requirements
	9.4.1 Scenario
	9.4.2 Application Procedure
	9.4.3 Summary

	9.5 Comparison with Talend OS for Data Quality
	9.5.1 Representation and Management of Data Requirements
	9.5.2 Data Quality Monitoring and Assessment Reporting
	9.5.3 Summary

	PART IV – Related Work

	10 Related Work
	10.1 High-Level Classification Schema
	10.2 Categorization Schema
	10.2.1 Supported Data Lifecycle Step
	10.2.2 Supported Data Representation
	10.2.3 Supported Data Quality Task

	10.3 Conventional Rule-Based Approaches
	10.4 Ontology-based Approaches
	10.4.1 Information System-oriented Approaches
	10.4.2 Web-oriented Approaches

	10.5 Summary

	PART V Conclusion

	11 Synopsis and Future Work
	11.1 Research Summary
	11.2 Contributions
	11.3 Conclusion and Future Work

	Appendix A – Comparison of TIQM and TDQM

	Appendix B –Rules for the Evaluation of SDQM
	Appendix C – Test Data for SDQM’s Evaluation

	Appendix D – Evaluation Results of SDQM’s Data Quality
Monitoring Queries

	Appendix E – Evaluation Results of SDQM’s Data Quality
Assessment Queries

	References

