
Analyzing and Simulating Time Descriptions
from UML/MARTE CCSL�

Judith Peters
PhD advisor: Rolf Drechsler

Institute of Computer Science, University of Bremen, Bremen 28359, Germany
jpeters@informatik.uni-bremen.de

Abstract. The complexity of modern embedded systems makes it in-
evitable to consider higher abstraction levels in the design process to
overcome problems in acceptable time and effort. In higher abstraction
levels, the utilization of functional requirements is quite advanced, while
the utilization of non-functional requirements like timing still is an open
problem. We aim to address this problem utilizing the timing definitions
from UML/MARTE CCSL.

Keywords: CCSL, UML, MARTE, SystemC, Formal Methods

1 Introduction

Modern embedded systems are growing to a huge complexity, making classical
design tasks error-prone and time-consuming. As a consequence, novel design
flows introduced several abstraction levels to overcome this problem. At this
stage, the classical level of highest abstraction is the Electronic Systems Level
(ESL), where SystemC and other high-level programming languages are used
to describe the system. But still, a big gap remains between textual specifica-
tion and ESL. In the last decade, modeling languages like the Unified Modeling
Language (UML, [2]) provided a “bridge” between the given specification and
its initial implementation [4]. In the design of embedded and cyber-physical sys-
tems, particularly theModeling and Analysis of Real-time and Embedded systems
profile (MARTE, [1]) finds considerable attention.

In this field, the utilization of non-functional requirements like timing is still
an open problem. MARTE provides a special language for timing specification:
the Clock Constraint Specification Language (CCSL), which relies on describing
clocks and instants. In our project we are going to utilize this language for
classical design tasks such as verification or code-generation.

2 Design and More – A Generic Representation of CCSL

To utilize the textual CCSL specification, we introduce a generic automaton
representation of it. A lot of approaches have already been proposed to directly

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems, 
DOI 10.1007/978-3-658-09994-7_17, © Springer Fachmedien Wiesbaden 2015



A isPer iod i cOn B
per iod 2 . 0 ;

(a) CCSL constraints

{B} {A,B}

g : (cA = 2) ∨ ¬dA
u : (cA = 0) ∧ (dA = true)

g : cA < 2
u : cA++

g : cA < 2
u : cA++

V0 =
(cA = 0,
dA = false)

(b) Corresponding automaton

Fig. 1. Generic representation of CCSL constraints

transform the CCSL constraints to input for certain model checkers [5] or to
ESL descriptions [3]. We transform it to a more generic representation which
can be used for several tasks at the same time.

The main concept of our approach is the ticking set, which is the set of
clocks c ∈ C ticking in one simulation step. All clock behavior can be modeled
as a movement between these ticking sets, making the ticking sets states and
the movement between them the transitions. These transitions can be restricted
according to the CCSL constraints using guard functions over global variables.
These variables are manipulated using update functions.

For a more detailed explanation, consider the CCSL specification from
Fig. 1(a). It means that B is not restricted and can tick whenever it wants,
while A is a subclock of B. Thus, A cannot tick alone but has to tick coincidently
with B. For the resulting automaton, this gives the ticking sets {B} and {A, B}
(see Fig. 1(b)). Furthermore, as the period of A is 2.0, we can conclude that
the ticking set {A, B} can never be followed by itself, i. e. this transition is not
needed. Finally this leads to two states and three transitions (see Fig. 1(b)).

To enforce the periodicity, now a counter cA for the period is added and
additionally a Boolean variable dA to represent, if the subclock A has already
ticked. The initial values V0 are cA = 0 and dA = false. For every transition
leading to a state not containing A, cA is increased, while the other transition
resets the counter to zero and sets dA, representing, that A has ticked now and
the period starts again (see the conditions u in Fig. 1(b)). The transition to the
ticking set including A can only be taken if the counter is high enough, while
the other transitions can only be taken if it is low enough (see g in Fig. 1(b)).
Now, the resulting automaton can be used for various design tasks such as e. g.
verification or code-generation.

3 Generating SystemC

As the behavior and thereby the automaton and its analysis time is growing
exponentially in the clock number, we developed a faster way to simulate and
test the constraints together with SystemC applications [3]. This is an alternative
to the automaton approach especially for systems with high numbers of clocks
and, thus, long verification times. Our code generation scheme extends a given
functional implementation in SystemC with timing. To generate the behavior,
we extend the existing implementation by a TimeController as shown in Fig. 2.

294 J. Peters



SystemC CCSL Framework

Module1

Module2

Clock1

Clock2
TimeController

Fig. 2. Example SystemC implementation extended by CCSL Framework

CCSL constraints can be divided in two kinds: combination and future con-
straints. Combination constraints state, in what combinations clocks may or may
not tick, while future constraints define times in the future from a given moment
on, where other clocks have to tick or not to tick. To store the future constraint
information, we use ClockMonitor objects. One object for every clock stores,
which constraints it applies to other clocks and what restrictions are applied to
itself. The combination constraints are represented by Bind objects. Finally, the
TimeController uses lists of clocks that can, cannot or must tick in every step
to represent the behavior. These lists are updated according to the constraints,
until all clocks are distributed between must and cannot. The clocks in must
form finally the ticking set of that simulation step.

4 Conclusion and Future Work

In the recent past, we developed a generic representation of CCSL constraints in
terms of automata, which can represent the whole breadth of CCSL constraints.
As the analysis of these automata is time-consuming, we developed a simple and
fast code-generation scheme, which can be used for fast tests and simulations.
Now, we want to combine the two approaches to get better simulations (regarding
non-deterministic choices and clock-dependencies) and to improve the automa-
ton evaluation towards bounded model checking and symbolic representation to
make its use more feasible.

References

1. Object Management Group: UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems. Object Management Group (2011)

2. Object Management Group: OMG Unified Modeling Language TM (OMG UML)
Superstructure. Object Management Group (2011)

3. Peters, J., Wille, R., Drechsler, R.: Generating SystemC Implementations for Clock
Constraints Specified in UML/MARTE CCSL. International Conference on Engi-
neering of Complex Computer Systems (ICECCS), 116–125 (2014)

4. Drechsler, R., Soeken, M., Wille, R.: Formal Specification Level: Towards
Verification-driven Design Based on Natural Language Processing. Forum on Spec-
ification and Design Languages (FDL), 53–58 (2012)

5. Mallet, F., Yin, L.: Correct Transformation from CCSL to Promela for verification.
Institut National de Recherche en Informatique et en Automatique, (2012)

Analyzing and Simulating CCSL 295


	Analyzing and Simulating Time Descriptions from UML/MARTE CCSL
	1 Introduction
	2 Design and More – A Generic Representation of CCSL
	3 Generating SystemC
	4 Conclusion and Future Work
	References




