

Formal Modeling and Verifi cation
of Cyber-Physical Systems

Rolf Drechsler • Ulrich Kühne (Eds.)

Formal Modeling
and Verifi cation
of Cyber-Physical Systems

1st International Summer School
on Methods and Tools for the Design
of Digital Systems, Bremen, Germany,
September 2015

Editors
Rolf Drechsler
University of Bremen / DFKI
Bremen, Germany

Ulrich Kühne
University of Bremen
Bremen, Germany

ISBN 978-3-658-09993-0 ISBN 978-3-658-09994-7 (eBook)
DOI 10.1007/978-3-658-09994-7

Library of Congress Control Number: 2015940758

Springer Vieweg
© Springer Fachmedien Wiesbaden 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the mate-
rial is concerned, speci cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on micro lms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de-
veloped.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a speci c statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to as-
sume that the advice and information in this book are believed to be true and accurate at the date of publication.
Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the mate-
rial contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Vieweg is a brand of Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden is part of Springer Science+Business Media
(www.springer.com)

Preface

Today, embedded systems are ubiquitous in our everyday life, in cell phones and
washing machines, but also in cars and even medical equipment. With this escape
from their former habitat within desktop computers, these systems are increas-
ingly interacting with their environment: Sensors measure physical phenomena
such as temperature, acceleration, or magnetic fields, while actors manipulate
the outside world, like in robots or electronically controlled combustion engines.
The combination of an electronic system with a physical process is called a
cyber-physical system (CPS).

With this paradigm, many new challenges need to be faced during model-
ing, design, implementation, verification, and test. For the design of hardware
and software of CPS, new approaches need to be developed, taking into account
non-functional requirements like energy efficiency and reliability even in harsh
environments. Real-time aspects often play an important role. Furthermore, if a
system is interacting with its physical environment, it becomes difficult to prove
the functional correctness of the system. The combination of discrete and contin-
uous behavior and the treatment of noisy sensor data are challenging problems.

Considering all the above aspects, CPS is an interdisciplicary topic, touch-
ing research areas such as computer science, robotics, electrical and mechanical
enginieering, physics and more. In the First International Summer School on
Methods and Tools for the Design of Digital Systems, we want to bring together
experts from different fields of research and application. The goal of this sum-
mer school is to introduce PhD students to this exciting topic, and to offer them
deeper insights into formal modeling and verification techniques. Regarding the
application areas, the courses focus on robotics and space systems, as well as the
railway domain and microfluidic biochips.

This summer school is organized by the Graduate School System Design
(SyDe). SyDe has been founded in 2012, funded by the German Excellence Ini-
tiative. It is a cooperation of the University of Bremen, the German Research
Center for Artificial Intelligence (DFKI), and the German Aerospace Center
(DLR). The graduate school provides a structured program for the formation of
young researchers, bringing together PhD students from different working groups
and research institutes that cover a wide range of scientific topics in hardware
and system design, robotics and space systems. The summer school of 2015 is
the third one organized by SyDe, and the first one open to international PhD
students.

Overview. This book is divided into two parts. The first part contains the
lecture notes, while the second part features selected short articles written by
participating PhD students. The participants had been invited to submit a short
report on their thesis projects. All submissions have undergone a review process.

The first three chapters discuss real-time and hybrid aspects, starting with
Verification of Embedded Real-time Systems. There, Paula Herber and Sabine
Glesner present a formalism for modeling real-time systems. In particular, they
give semantics to SystemC models in terms of Timed Automata, and show how
safety and timing properties can be verified.

In the second chapter, Frédéric Mallet introduces MARTE/CCSL for Model-
ing Cyber-Physical Systems. MARTE is a real-time extension of the UML. While
the UML already provides a great variety of models and diagrams, important
aspects of CPS are not captured by the standard. This chapter discusses how
CPS can be modeled using appropriate extensions.

Goran Frehse gives An Introduction to Hybrid Automata, Numerical Simula-
tion and Reachability Analysis. Hybrid automata are a popular formalism for the
modeling of CPS, since they combine discrete and continuous aspects. Depend-
ing on the continuous dynamics of a modeled system, reachability computation
can become very costly, and abstraction techniques are crucial in order to create
scalable verification tools.

The following three chapters treat different aspects of verification and test.
Here, it is discussed how classical methods from hardware and software verifi-
cation can be applied on CPS, starting with Model Checking and Model-Based
Testing in the Railway Domain. In this chapter, Anne Haxthausen and Jan Pe-
leska show the integration of verification and test in an industrial context.

Modeling Unknown Values in Test and Verification is discussed in the follow-
ing chapter by Bernd Becker et al. Unknown values occur frequently at the in-
terfaces of components when following a component-based design style, or when
systems are exposed to an uncertain environment, as is often the case for em-
bedded systems and CPS. This chapter how formal techniques can be enhanced
to treat such uncertainties without sacrificing exactness.

Complementary to static verification techniques, run-time monitoring is an
important technique to ensure the proper functionality of complex systems. In
the chapter Specification of Parametric Monitors – Quantified Event Automata
versus Rule Systems, Klaus Havelund and Giles Reger give an overview on two
parametric runtime verification systems. The formalisms are presented by means
of an extensive suite of application examples, including the monitoring of a
planetary rover.

The lecture notes are concluded with three chapters on practical applications
of CPS, in the domains of biological micro-laboratories and robotics. Krishnendu
Chakrabarty et al. present their recent Advances in Design Automation Tech-
niques for Digital-Microfluidic Biochips. These systems combine electronics with
biology, enabling the fast and cheap treatment of biological samples on a chip.
This chapter presents the design of biochips, and how domain specific constraints
can be treated.

The interaction between humans and robots is discussed in the chapter In-
tuitive Interaction with Robots – Technical Approaches and Challenges by Elsa
Kirchner et al. Here, different research areas in the field of human-robot inter-
action are presented.

VI

All chapters of the lecture notes contain extensive references to related work
for further reading.

Acknowledgements. We would like to thank all speakers, authors and co-
authors for their great contributions for the summer school and for this book.
Many thanks go to the reviewers and to all participants of the summer school.
We also thank the University of Bremen and our partner institutes DFKI and
DLR for making this event possible. We are grateful for the financial support
from our sponsoring partners Verified Systems International and Concept Engi-
neering.

We hope you will enjoy reading this book.

Bremen, April 2015 Rolf Drechsler
Spokesman of SyDe

Ulrich Kühne
Scientific Coordinator of SyDe

VII

Organization

The SyDe Summer School 2015 is organized by the Graduate School System
Design, a joint project of the University of Bremen, the German Research Center
for Artificial Intelligence (DFKI), and the German Aerospace Center (DLR).
SyDe is funded by the German Excellence Initiative within the University of
Bremen’s institutional strategy.

Executive Commitee

Ingrid Bode University of Bremen
Rolf Drechsler University of Bremen / DFKI GmbH, Germany

(Spokesman of SyDe)
Ulrich Kühne University of Bremen

Invited Speakers

Bernd Becker Albert-Ludwigs University, Freiburg, Germany
Krishnendu Chakrabarty Duke University, North Carolina, USA
Goran Frehse Verimag, Grenoble, France
Sabine Glesner Technical University of Berlin, Germany
Sami Haddadin University of Hannover, Germany
Klaus Havelund NASA Jet Propulsion Lab, Pasadena, USA
Anne Haxthausen Technical University of Denmark
Elsa Kirchner DFKI, Bremen, Germany
Frédéric Mallet Sophia Antipolis, Nice, France
Jens Dalsgaard Nielsen Aalborg University, Denmark

Reviewers

G. Aydos
M. Diependbeck
S. Eggersglüß
G. Fey
S. Frehse
U. Frese
M. Goldhoorn

D. Große
C. Hilken
O. Keszösce
U. Kühne
H. Le
J. Peters
E. Schönborn

D. Schüthe
J. Seiter
M. Soeken
N. Thole
R. Wille

Sponsoring Institutions

Verified Systems International GmbH, Bremen, Germany
Concept Engineering GmbH, Freiburg, Germany

Table of Contents

Lecture Notes
Verification of Embedded Real-time Systems . 1

P. Herber, S. Glesner

MARTE/CCSL for Modeling Cyber-Physical Systems 26
F. Mallet

An Introduction to Hybrid Automata, Numerical Simulation and
Reachability Analysis . 50
G. Frehse

Model Checking and Model-Based Testing in the Railway Domain. 82
A.E. Haxthausen, J. Peleska

Modeling Unknown Values in Test and Verification . 122
B. Becker, M. Sauer, C. Scholl, R. Wimmer

Specification of Parametric Monitors – Quantified Event Automata
versus Rule Systems . 151
K. Havelund, G. Reger

Advances in Design Automation Techniques for Digital-Microfluidic
Biochips . 190
M. Ibrahim, Z. Li, K. Chakrabarty

Intuitive Interaction with Robots – Technical Approaches and Challenges 224
E.A. Kirchner, J. de Gea Fernandez, P. Kampmann, M. Schröer,

J.H. Metzen, F. Kirchner

Physical Safety in Robotics . 249
S. Haddadin

Student Short Articles
In-circuit Error Detection with Software-based Error Correction – An

Alternative to TMR . 272
G. Aydos

Behavior Driven Development for Tests and Verification 275
M. Diepenbeck

Semantic Object Recognition Based on Qualitative Probabilistic
Spatial Relations . 278
M. Goldhoorn

Constraint-based Handling of Component Networks 281
M. Goldhoorn

Model-Based Testing Against Complex SysML Models 284
C. Hilken

Integrated Model-based Testing and Model Checking with the Benefits
of Equivalence Partition Testing . 287
F. Hübner

An SMT-based Approach to analyze Non-Linear Relations of
Parameters for Hybrid Systems . 290
X. Li

Analyzing and Simulating Time Descriptions from UML/MARTE CCSL . 293
J. Peters

Design and Synthesis of Reversible Circuits using Hardware Description
Languages . 296
E. Schönborn

Dynamic Rebound Control and Human Robot Interaction of a Ball
Playing Robot . 299
D. Schüthe

Development of Consistent Formal Models . 302
J. Seiter

Formal Verification of Robustness . 305
N. Thole

Pose and Posture Estimation using Inertial Sensor Data 308
F. Wenk

Reconfigurable Hardware-Based Acceleration for Machine Learning and
Signal Processing . 311
H. Woehrle

Author Index . 315

X

Verification of Embedded Real-time Systems

Paula Herber1 and Sabine Glesner2

1 University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam, Germany

paula.herber@uni-potsdam.de
2 Technische Universität Berlin

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
sabine.glesner@tu-berlin.de

Abstract. Real-time systems are systems where the correctness does
not only depend on their correct functioning but also on meeting real-
time constraints. Such systems are often deployed in safety-critical appli-
cations, for example in airplanes, trains, or automotive systems. There, a
failure may result in enormous costs or even in human injuries or loss of
lifes. As a consequence, systematic verification and validation of real-time
systems is a crucial issue.
The main application area for real-time systems are embedded appli-
cations, where the system controls technical processes that also evolve
in real-time. Such systems are usually composed of deeply integrated
hardware and software components, and they are developed under se-
vere resource limitations and high quality requirements. In connection
with the steadily increasing demands on multi-functioning and flexibil-
ity, analog control components are more and more replaced by complex
digital HW/SW systems.
A major challenge is to develop automated quality assurance techniques
that can be used for the verification and validation of complex embed-
ded real-time systems that consist of both hardware and software. In this
chapter, we give an overview over our research contributions to this topic.
In particular, we present our framework for the verification of safety and
timing properties of digital embedded real-time systems, which are mod-
eled in SystemC, using timed automata and the Uppaal model checker.

1 Introduction

Embedded systems are often subject to real-time constraints. As an example,
consider the control system for the airbag of a car. If the airbag inflates too late in
a crash situation, the life of the occupant is endangered. Thus, it must be ensured
that an airbag always inflates within a given deadline, e.g. 30 milliseconds. This
is an example of a so-called hard real-time constraint, where missing the deadline
is regarded as a total system failure. Embedded systems may also be subject to
firm real-time constraints, where results are not usable after the deadline, or
soft real-time constraints, where the usefulness of a result degrades after the
deadline. Embedded systems are inherently real-time dependent because they
interact with a technical process and the process evolves in real-time.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_1, © Springer Fachmedien Wiesbaden 2015

As demonstrated with the airbag example, to ensure that an embedded sys-
tem meets real-time constraints is often a vital task in the system design process.
This is of particular importance in safety-critical systems, where a failure results
in high cost or may even endanger human lifes. For such systems, it is not suf-
ficient to validate the system behavior by simulating and testing for some input
scenarios. Only methods that consider all possible input scenarios and all pos-
sible system executions on a precise system description can provide guarantees
about the system behavior. The prerequisite for such methods is an unambigious,
formal description of the system under verification and the desired (real-time)
requirements. The process of verifying that a formal model fulfills a given set of
requirements for all possible input scenarios is called formal verification.

To formally verify real-time dependent behavior, various formalisms have
been proposed. Typically, real-time is integrated into existing formalisms by
introducing timers or clocks and by assigning lower and upper timing bounds to
transitions. Examples for this are time petri nets [6], process algebras like timed
communicating sequential processes (Timed CSP) [51], or timed automata [1].
For all of these formalisms, there exists mature tool support to verify whether
a system meets given real-time requirements, e.g., the TIme petri Net Analyzer
(TINA) [7] for time petri nets, the refinement checker FDR3 [16] for Timed CSP,
or the model checker Uppaal for timed automata [4].

Still, one of the major challenges for the application of real-time verification
in system level design processes is that it can only be applied to formal models,
but formal models are often not available in practical development processes. In-
stead, typical design flows for embedded systems make use of system level design
languages such as SystemC [31] to model the system behavior on abstract and in-
termediate levels of abstraction. SystemC supports design space exploration and
performance evaluation efficiently throughout the whole design process even for
large and complex HW/SW systems. It supports an integer-valued time model
with arbitrary time resolution and thus can be used for modeling and simulation
of embedded real-time systems. SystemC allows the description of both hardware
and software, and the designs are executable on different levels of abstraction. As
a consequence, co-simulation, i. e., the simultaneous execution of hardware and
software, can be used to validate a system throughout the whole design process.
For quality assurance of safety-critical systems, however, simulation is necessary
but not sufficient. This has three reasons: First, simulation is incomplete. It can
neither be applied to all possible input scenarios, nor can it be assured that all
possible executions are covered in the case of non-deterministic systems. Sec-
ond, although HW/SW co-designs are developed in a refinement process where
an abstract design is incrementally refined to the final implementation, it is
very difficult to ensure consistency between different abstraction levels. Third,
simulation alone is not sufficient for a systematic and comprehensive quality as-
surance approach because the degree of automation is limited. In particular, the
evaluation of simulation results is typically manually performed by the designer.

In our research of the past years, we have developed a framework for formally
founded and comprehensive quality assurance of embedded real-time systems

2 P. Herber, S. Glesner

that are modeled in SystemC. Our framework for the Verification of SystemC
designs using Timed Automata [26] (VeriSTA) allows the verification and val-
idation of digital HW/SW co-designs throughout the whole design process. It
provides verification and validation techniques that explicitly consider real-time
dependent behavior and thus, it enables us to ensure that a given system meets
real-time requirements. The whole framework is automatically applicable.

In the VeriSTA framework, we assume that the HW/SW co-design process
starts with an abstract design that is incrementally refined down to the final
implementation. To enable model checking of safety, liveness, and real-time re-
quirements of abstract designs, we have developed an automated transformation
from SystemC into the formal language of Uppaal timed automata [24, 28, 47,
48]. To enable automated real-time testing in later development stages, we have
(1) proposed an evolutionary algorithm for the automatic generation of timed
input traces that achieve a high transition coverage [23] and (2) we have pre-
sented an approach for the automated generation of conformance tests based
on the relativized timed input/output conformance (rtioco) relation proposed by
[39], which can be used to validate that refined models conform to the (verified)
abstract model [25, 27].

The rest of this chapter is organized as follows: In the next section, we discuss
related work. Then, in Sec. 3, we give some preliminaries that are necessary to
understand the remainder of this chapter. In Sec. 4, we present our VeriSTA
framework and in Sec. 5 our formal semantics for SystemC. In Sec. 6, we present
our approach for model checking and conformance testing, and in Sec. 7, we
describe our evolutionary algorithm for the generation of timed test traces with
a high transition coverage. In Sec. 8, we present experimental results and we
conclude in Sec. 9.

2 Related Work

In this section, we give an overview over related work from the following ar-
eas: formal verification of SystemC designs, real-time conformance testing, and
automated test generation for SystemC.

2.1 Formal Verification of SystemC Designs

There exist several approaches to provide a formal semantics for SystemC. Some
of them only cope with a synchronous subset of SystemC, which means that
they do not support asynchronous communication between processes, dynamic
sensitivity, or thread processes. For example, in [18, 19], Große et al. present
an approach for formal verification of a synthesizable subset of SystemC. They
use Binary Decision Diagrams (BDDs) and bounded model checking but their
approach is restricted to static sensitivity and does not cope with timing.

Several other approaches rely on the transformation of SystemC designs into
some sort of state machine, as done in [22, 21, 55]. Habibi and Tahar [22, 21]
transform SystemC models into equivalent state machines. However, they only

Verification of Embedded Real-time Systems 3

support untimed models and they do not maintain the structure of the SystemC
design. Traulsen et al. [55] map (possibly timed) SystemC designs to PROMELA,
but only handle SystemC designs on an abstract level, do not model the Sys-
temC scheduler, and do not support primitive channels. In [38, 8], Kroening et
al. propose a semantics for SystemC that is based on a labeled Kripke structure
and automatically partition the design into a hardware and a software part to
increase efficiency of verification. However, they abstract from hardware and do
not consider timing or inter-process communication via sockets and channels.

Other approaches use process algebras, petri nets or a C representation for the
verification of SystemC designs. The formal language SystemCFL [42] presented
by Man et al. is based on process algebras. It considers only simple commu-
nications, and no dynamic sensitivity or channels. Garavel et al. [15] translate
SystemC/TLM into the process algebra LOTOS and import C Code into the
LOTOS model using the verification toolbox CADP. However, the transforma-
tion has to be done manually and they only support untimed SystemC designs.
Karlsson et al. [35] use a petri net based representation to verify SystemC de-
signs. Due to the fact that modeling interactions between subnets introduces
additional subnets, this approach produces a huge overhead. Behjati and Razavi
[3, 49] transform a SystemC design into an equivalent REBECA (reactive object
language) model and use the REBECA model checker Modere [32] for verifica-
tion. The transformation is done automatically, but it only supports untimed
models.

One of the few approaches for the verification of SystemC designs that also
supports the TLM 2.0 standard is the work of Cimatti et al. [11–13]. They gen-
erate three different verification models from a given SystemC design and use
software model checking techniques. The computational behavior is verified by
mapping SystemC processes to sequential C and using an abstract scheduler.
For the process interaction and communication, a model containing an explicit
scheduler and symbolic processes is used. The third model contains both an
explicit scheduler and explicitly modeled threads and the design is mapped to
a finite state machine representation. While this approach is capable of han-
dling the most important SystemC and TLM constructs, it does neither support
complex data types like structs or arrays nor can it handle any memory-related
constructs or operations. Furthermore, by using state-of-the-art software model
checkers, they do not make use of any symbolic representation of time, which
impedes the verification of real-time systems modeled in SystemC.

In [40], Le et al. present and approach to transform SystemC/TLM de-
signs into the low level intermediate verification language IVL. They use the
metaSMT framework for formal verification. They support assertion-based as
well as property-based verification. The approach can handle the TLM 2.0 stan-
dard, integer based datatypes, arrays and pointers to primitive data types, but
no complex data types like structs. Moreover, dynamic memory management is
not supported. Again, no symbolic representation of time is used, which makes
this approach inappropriate for the verification of real-time systems that are
modeled in SystemC.

4 P. Herber, S. Glesner

2.2 Conformance Testing for Real-time Systems

There exist several approaches to generate conformance tests for real-time sys-
tems from timed automata models and in particular to generate such tests from
Uppaal. However, most of them consider only a restricted subclass of the timed
automata model, or they do not allow static (offline) test generation. In [45,
37], techniques for the automatic generation of real-time black-box conformance
tests for non-deterministic systems are presented, but only for a determinizable
subclass of timed automata. The CoVer tool [30, 29] allows coverage-driven con-
formance test generation for Uppaal models. The search for a test case covering
a specific transition is formulated as a reachability problem and the Uppaal
model checker is used to generate a witness for that. The witness can then be
used as a test case. However, the coverage-driven generation of test cases using
a model checker is very expensive in terms of computation effort and in terms of
memory consumption. For our case study, the Uppaal model checker always ran
out of memory when we tried to compute the reachability of transitions in our
larger case studies. As a consequence, the use of the Uppaal model checker for
the generation of tests with a certain transition coverage is not applicable to sam-
ples of industrial size. Furthermore, the approach is restricted to deterministic
timed automata models. In contrast to that, the TRON (Testing Real-time sys-
tems ONline) tool [39, 29] can also be applied to non-deterministic specifications.
However, it uses an online test generation algorithm and thus cannot be used
to generate repeatable test cases and it may be difficult to apply it to real-time
systems if the testing system doesn’t react in a timely fashion. For conformance
testing of embedded real-time systems, it is vital to generate conformance tests
offline and to cope with non-deterministic specifications.

2.3 Automatic Test Generation for SystemC

There also already exist several approaches to systematically generate test cases
for SystemC designs. For example, in [52], a tool that generates test bench tem-
plates for functional verification of SystemC designs is presented. There, the Sys-
temC Verification Library [53] is used to produce constraint-based random-tests.
Standard code coverage criteria are used to determine when the test generation
is finished. Nevertheless, all coverage metrics must be implemented manually
and are only used as exit conditions and not for directed test case generation.
In [20], Groe et al. present an approach to identify untested parts of a given
SystemC design by using code coverage techniques. In [33], an automatic test
vector generation based on code coverage analysis is presented. For that, they
use standard statement, branch and path code coverage criteria in combination
with a coverage flow graph construction. However, the code has to be instru-
mented manually and the subset of admitted designs is very restricted. Another
work that deals with validation of SystemC design was presented in [43] and in
[46]. The authors present an approach for the generation of directed tests using
state-space exploration. The designer has to specify actions and accept states
in an abstract state machine model of the given SystemC design to be capable

Verification of Embedded Real-time Systems 5

to set the end of a test case. Afterwards, a directed test generation is under-
taken by the SpecExplorer [56], an explicit-state model checker. However, it still
requires a manual specification of both the design and a state that should be
reached by a test case. No coverage criteria are used. In [9], an approach to select
input sequences using static analysis on a given SystemC design is presented.
However, the authors do not provide any means for describing the reachable
states of interest. In [10], an approach for the generation of directed tests on
register transfer level (RTL) from transaction level modeling (TLM) specifica-
tions is presented. The main disadvantage of the presented approach is that it
is restricted to a small subset of SystemC in pure TLM. In [36], an approach
for automatic test generation for SystemC design based on manually specified
use cases is proposed. The authors make no use of existing abstract SystemC
designs, and they do not consider coverage criteria.

3 Preliminaries

In this section, we present the preliminaries that are necessary to understand the
remainder of this chapter by introducing SystemC and Uppaal timed automata.

3.1 SystemC

SystemC [31] is a system level design language and a framework for HW/SW co-
simulation. It allows modeling and execution of both hardware and software on
various levels of abstraction. The design flow usually starts with approximately
timed transaction-level models that are refined to time-accurate models of hard-
ware and software components. SystemC is implemented as a C++ class library,
which provides the language elements and an event-driven simulation kernel. A
SystemC design is a set of communicating processes, triggered by events and
interacting through channels. Modules and ports are used to represent struc-
tural information. SystemC also introduces an integer-valued time model with
arbitrary time resolution. The execution of a SystemC design is controlled by
the SystemC scheduler. It controls the simulation time and the execution of pro-
cesses, handles event notifications and updates. Like typical hardware description
languages, SystemC supports the notion of delta-cycles, which impose a partial
order on parallel processes. This means that the execution is split into an evalu-
ate and an update phase. In the first phase, concurrent processes are evaluated,
i. e., their method body is executed. This may include read and write accesses
to so-called primitive channels, which store changes in temporary variables and
do not update their channel state until the update phase. This ensures that,
although the processes are serialized, they all work on the same channel states
(i. e., input data). A delta-cycle lasts an infinitesimal amount of time and an ar-
bitrary, finite number of delta-cycles may be executed at one point in simulation
time. Note that the order in which processes are executed within a delta-cycle
is not specified in [31], i. e., it is inherently non-deterministic. The same holds
for the order of the updates of primitive channels. The simulation semantics of
a SystemC design can be summarized as follows:

6 P. Herber, S. Glesner

1. Initialization: each process is executed once,
2. Evaluation: all processes ready to run are executed in arbitrary order,
3. Update: primitive channels are updated,
4. if there are delta-delay notifications, the corresponding processes are trig-

gered and steps 2 and 3 are repeated,
5. if there are timed notifications, simulation time is advanced to the earliest

pending timed notification and steps 2 – 4 are repeated,
6. if there are no timed notifications remaining, simulation is finished.

For a more comprehensive description of the SystemC simulation semantics,
we refer to [17, 44, 50]. Overall, SystemC allows for the integrated development
of digital hardware and software components, and it supports synchronous and
asynchronous parts of a design. It is established as a premier choice for the
evaluation of design alternatives and high level simulation of integrated HW/SW
systems. Furthermore, a subset of SystemC can be automatically synthesized to
hardware.

3.2 Uppaal Timed Automata

Timed automata [1] are finite-state automata extended with real-valued clock
variables. The clocks are initialized with zero and then run synchronously with
the same speed. Clock constraints are used to model time-dependent behavior.
A timed automaton consists of a set of locations connected by directed edges.
Invariants are assigned to locations and yield conditions, under which one may
stay in the corresponding state. The invariants must not be violated, i. e., the
location must be left before its invariant is invalidated. Guards are assigned
to edges and yield conditions under which the automaton may change from
one location to another. Edges can also be labeled with actions, for example a
clock reset. Networks of timed automata are used to model concurrent processes,
which are executed with an interleaving semantics and synchronize on channels.
Formally, the semantics of timed automata and networks of timed automata are
given by [5] as follows:

Definition 1 (Operational Semantics of a Timed Automaton). A timed
automaton (TA) is a tuple (L, l0, C,A,E, I), where

– L is a set of locations,
– l0 ∈ L is the initial location,
– C is a set of clock variables,
– A is a set of actions,
– E ⊆ L× A×B(C)× 2C × L is a set of edges, where B(C) denotes a set of

clock constraints
– I : L → B(C) assigns invariants to locations.

We write l
a,g,r→ l′ for (l, a, g, r, l′) ∈ E. The semantics of a TA is defined as a

transition system (S, s0,→), where S ⊆ L× R
|C|
≥0 is a set of states, s0 = (l0, u0)

Verification of Embedded Real-time Systems 7

the initial state, and →⊆ S × (R≥0 ∪ A) × S the transition relation. A clock
valuation is a function u : C → R≥0 that maps a non-negative real value to each
clock, u ∈ I denotes that a clock valuation satisfies an invariant, and u′ = [r �→
0]u denotes a clock valuation where all clocks from the clock set r are reset to
zero. A semantic step of a timed automaton can either be a time step (1) or a
discrete transition (2) along an edge in the graphical representation:

(1) (l, u)
d→ (l, u+ d) iff ∀d′ : 0 ≤ d′ ≤ d ⇒ u+ d′ ∈ I(l)

(2) (l, u)
a→ (l′, u′) iff l

a,g,r→ l′ such that u ∈ g ∧ u′ = [r �→ 0]u ∧ u′ ∈ I(l′)

Definition 2 (Semantics of a Network of Timed Automata). A network
of timed automata (NTA) consists of n timed automata Ai = (Li, l0,i, C,A,Ei, Ii).
The semantics of NTA is defined by a transition system (S, s0,→). Each state
s ∈ S is a tuple (l̄, u), where l̄ is a location vector and u is a clock valuation.

S = (L1× . . .×Ln)×R
|C|
≥0 denotes the set of states, s0 = (l̄0, u0) the initial state,

and → ⊆ S × S the transition relation. Furthermore, τ denotes an internal ac-
tion, c!, c? sending resp. receiving an event on channel c, and g denotes a clock
guard. I(l̄) denotes the conjunction of all invariants Ii(li). A semantic step can
be either a time step (1), an independent step of a single automaton (2), or a
synchronization between two automata (3):

(1) (l̄, u) → (l̄, u+ d) iff ∀d′ : 0 ≤ d′ ≤ d ⇒ u+ d′ ∈ I(l̄)

(2) (l̄, u) → (l̄[l′i/li], u
′) iff li

τgr→ l′i such that u ∈ g ∧ u′ = [r �→ 0]u ∧ u′ ∈
I(l̄[l′i/li])

(3) (l̄, u) → (l̄[l′j/lj , l
′
i/li], u

′) iff li
c?gi,ri−→ l′i ∧ lj

c!gj ,rj−→ l′j
such that u ∈ (gi ∧ gj) ∧ u′ = [ri ∪ rj �→ 0]u ∧ u′ ∈ I(l̄′)

Uppaal [5, 4] is a tool suite for modeling, simulation, animation and verifi-
cation of networks of timed automata. The Uppaal modeling language extends
timed automata by bounded integer variables, binary and broadcast channels,
and urgent and committed locations. A small example Uppaal timed automa-
ton (UTA) is shown in Fig. 1. The initial location is denoted by ©◦. The label
request? denotes receiving on the channel request while ack! denotes sending
on channel ack. The clock variable x is first set to zero and then used in two
clock conditions: the invariant x <= maxtime denotes that the corresponding
location must be left before x becomes greater than maxtime, and the guard x

>= mintime enables the corresponding edge if x is greater or equal mintime.
The symbol ©∪ depicts an urgent location and the symbol ©c a committed loca-
tion. Urgent and committed locations are used to model locations where no time
may pass. Leaving a committed location has priority over leaving non-committed
locations.

While the semantic state space of UTA is infinite due to the real-valued clock
variables, the symbolic semantics [5] abstracts from certain points in time and
uses clock zones instead. A clock zone is a set of constraints on clock variables
such that for all values within the zone, the UTA behaves equivalently. For
example, in Fig. 1, the clock values x ∈ [mintime, maxtime] can be merged into

8 P. Herber, S. Glesner

x <= maxtime

ack!

value = f(t)

x >= mintime

request?
x = 0

Fig. 1. Example Uppaal Timed Automaton (UTA)

one clock zone. A symbolic state is a tuple (l̄, D), where l̄ is a set of locations
and D is a clock zone. We can define symbolic timed traces as follows:

Definition 3 (Symbolic Timed Traces). A symbolic timed trace is a possibly
infinite sequence of timed actions ai, where the time is specified as a clock zone
Di:

TTr = (D1, a1)(D2, a2)...(Di, ai)...

In UTA, an action may be composed of an event e and a manipulation of
the global data space v. As a consequence, when the system state changes,
we can observe an event e, a modified data space v, or both. As we are only
interested in observable behavior, we partition the events and the data space
into three disjoint sets of input (Ev in/Vin), output (Evout/Vout), and internal
events/variables (Ev int/Vint). A timed input or output trace can be defined as
follows:

Definition 4 (Timed input and output traces). A timed input/output trace
o of a state s is a (possibly infinite) sequence of observations, where each ob-
servation is a tuple (e,D, v) consisting of an event e ∈ Ev in/out, a clock zone
D in which the event occurs, and a vector v ∈ Vin/out containing the values of
data variables that are externally visible as inputs/outputs at this time. We use
ok.e, ok.D, resp. ok.v to access the event, clock zone, and data vector of the kth
element in a timed input or output trace. The trace is written as:

o(s) = (e0, D0, v0)(e1, D1, v1)...(ei, Di, vi)...

4 VeriSTA

Our framework for the automated Verification of SystemC designs using Timed
Automata (VeriSTA) is based on a combination of model checking and confor-
mance testing. The overall structure of the framework is shown in Fig. 2. We
assume that SystemC designs are developed in a refinement process that starts
with an abstract design, which is stepwise refined down to the final implemen-
tation. One of these manual refinement steps is shown on the left of Fig. 2.
We use model checking to verify the abstract design. Then, we generate confor-
mance tests to check whether refined designs conform to the verified abstract
design. We have presented an approach for model checking of safety, timing, and

Verification of Embedded Real-time Systems 9

Abstract
SystemC
Design

m
an

ua
l

re
fi

ne
m

en
t

Coverage
Criteria

Specification
Requirements

Refined
SystemC
Design

pass

satisfied

SystemC
Test Benches

Uppaal
Timed Automata

Model

Counter
Example

Timed
Input Traces

Uppaal
Model

Checker

Test Case
Generation

Evolutionary

Generation
Test

Conformance

mation
Transfor−

fail

not satisfied

Fig. 2. VeriSTA Framework

memory-related properties of SystemC/TLM designs in [24, 28, 47, 48, 26]. The
general idea is to map the informally defined semantics of SystemC to the for-
mally well-defined semantics of Uppaal timed automata. Using this mapping,
it is, under some restrictions, possible to transform a given SystemC design into
a semantically equivalent Uppaal model. We have developed the SystemC to
Timed Automata Transformation Engine (STATE) to perform this transfor-
mation automatically. The tool is licenced under GPL and freely available at
http://www.pes.tu-berlin.de/state project. After the transformation, the
Uppaal model checker can be used to verify safety, timing, and memory-related
properties. The model checking flow is shown in the upper part of Fig. 2. We
have demonstrated the applicability of the model checking approach with several
case studies, amongst others with an Anti-Slip Regulation and Anti-lock Brak-
ing System (ASR/ABS), and an industrial TLM implementation of the AMBA
advanced high-performance bus (AHB). The experiments show the applicability
and performance, but also the limitations of the model checking approach.

The absolute guarantees of safety, liveness, and timing properties for all pos-
sible input scenarios come at the price of a high computational effort and high
memory consumption. As a consequence, model checking can only be applied
to relatively small or abstract designs. To obtain a continuous quality assurance
throughout the whole design process, we have extended our framework with an
approach to generate conformance tests from abstract designs. The conformance
tests can automatically be generated for given timed input traces by computing
all possible timed output traces using a symbolic execution, as we have shown
in [25, 27]. These traces are then used to generate test benches that evaluate
the conformance of a given low-level design fully automatically. In [23, 26], we
presented techniques for the coverage-driven generation of timed input traces

10 P. Herber, S. Glesner

for SystemC designs. In [26], we generated timed input traces with a high port
coverage using the Uppaal model checker. In [23], we presented an evolution-
ary test generation algorithm that achieves high transition coverage. With that,
our framework facilitates a fully-automatic verification and validation flow that
supports the whole co-design process for digital embedded real-time systems.

5 Formal Semantics for SystemC

As a formal foundation for our VeriSTA framework, we have developed a formal
semantics for SystemC by defining a transformation from SystemC into Uppaal
timed automata [24, 28, 47, 48]. The transformation preserves the (informally de-
fined) behavioral semantics and the structure of a given SystemC design and can
be applied fully automatically. It can handle all relevant SystemC language ele-
ments, including process execution, interactions between processes, dynamic sen-
sitivity and timing behavior. It supports the full TLM 2.0 standard and features
a formal memory model that enables the verification of memory-related proper-
ties. It requires a few restrictions on the system under verification. First, we do
not handle dynamic process creation. This should hardly narrow the applicabil-
ity of the approach, as dynamic process creation is rarely used in safety-critical
embedded systems. Second, Uppaal supports only bounded integer variables,
arrays and structs. This is a more severe restriction, but is leveraged by the
fact that most data types used in SystemC designs can be converted to bounded
integers. Third, due to the structure of our formal memory model, we do not sup-
port any type casts, and finally, we do not support recursive functions, function
pointers, or direct memory accesses. These restrictions can again be considered
as minor restrictions.

update start

update end

methods

Events

advance
timedelay

delta
request
update

Primitive
Channels

wait

notify

Scheduler

Processes

deactivate

activate

Fig. 3. Representation of SystemC designs in Uppaal

A SystemC model consists of a set of modules, which contain methods and
processes. While methods contain sequential code, processes are executed con-
currently and their execution is triggered by events. Fig. 3 shows how we rep-
resent SystemC designs in Uppaal. Each method is mapped to a single timed

Verification of Embedded Real-time Systems 11

automata template. Process automata are used to encapsulate these methods
and care for the interactions with event objects, the scheduler, and primitive
channels. The interactions are modeled using Uppaal channels. For example,
the processes notify events using notify, and the events trigger the processes
over a wait channel if they are notified. To formalize the execution semantics of
SystemC, we have developed UTA models of the SystemC scheduler, processes,
events and other SystemC constructs such as primitive channels. As the seman-
tics of the SystemC elements is only informally defined in [31], we define their
formal semantics with our UTA models. Furthermore, for the transformation
of a given SystemC design, these models can be instantiated arbitrarily often.
With that, we achieve a compositional transformation, i. e., we transform each
module separately and compose the system in a final instantiation and binding
phase. As a consequence, the transformation scales well even for large SystemC
designs.

next_delta

time_progress

update

evaluate
ready_procs > 0

update_requests == 0
delta_delay!update_end?

deactivate?

advance_time?

ready_procs == 0

update_requests > 0
update_start!

ready_procs > 0
activate!

ready_procs == 0
delta_count++

Fig. 4. The UTA model of the Scheduler

As an example for our formalization using UTA, consider the model of the
SystemC scheduler shown in Fig. 4. The scheduler executes SystemC designs
in an event-discrete simulation. It is a cooperative scheduler, and it uses delta
cycles to impose a partial order on concurrent processes. Each delta-cycle con-
sists of an evaluate and an update phase (both shown with labeled locations
in Fig. 4). In the evaluate phase, each process that is ready for execution is
triggered by sending an activate signal. If no process is ready for execution, the
update phase is started. There, primitive channels are updated by sending an
update start signal to the corresponding update methods. If a delta-cycle is
completed, the scheduler informs all events by sending delta delay. This causes
delta-delayed notifications to take place, and may cause new processes to become
ready for execution. Then, the scheduler starts a new delta-cycle. Otherwise, if
no more processes are ready for execution at the current time, the scheduler
changes to the location time progress and waits for the advance time signal
sent by the next pending timed notification. With that, the semantics of the
SystemC scheduler is completely modeled in UTA and thus formally defined.
Note that in the evaluate and update phases, all processes and updates are trig-
gered through the same binary channel. This ensures that the order of processes

12 P. Herber, S. Glesner

(and update methods) is chosen non-deterministically. This corresponds to the
definition of the SystemC semantics in [31] and it has the advantage that we can
also detect errors that are generally non-detectable with a simulator that always
chooses a deterministic execution order.

6 Model Checking and Conformance Testing

Our transformation from SystemC into Uppaal timed automata enables the
application of the Uppaal model checker to verify that the abstract design or
specification satisfies a given set of requirements expressed in temporal logics.3

Furthermore, we use the Uppaal model to generate conformance tests [25]. The
aim of conformance testing is to check for a given set of input traces whether
the implementation conforms to the specification. To achieve this, we statically
compute all possible timed output traces for a given timed input trace by per-
forming a breadth-first search on the symbolic state space of the abstract UTA
model. As a formal foundation for this computation, we have defined a complete
definition of the symbolic semantics of UTA in [27], which extends the semantics
defined by [5] with data variables and binary and broadcast channels. The sym-
bolic execution provides all possible timed output traces as an acceptance graph,
as shown in Fig. 5. In the acceptance graph, all completely computed timed out-
put traces are joined into a pass node. Output traces for which the computation
was interrupted due to an internal limit on the maximal number of computation
step are joined into an inconclusive node. Implicitly, all traces that are not
contained in the acceptance graph correspond to a fail. In other words, the ac-
ceptance graph only accepts traces that are possible in the abstract model. From
that, we can generate SystemC test benches that evaluate the conformance of
refined designs to the abstract model fully automatically. As a formal foundation

Fig. 5. Acceptance Graph

for that, we use the relativized timed input/output conformance relation (rtioco)

3 Uppaal supports a subset of CTL.

Verification of Embedded Real-time Systems 13

defined in [39], and slightly modify it such that it allows an explicit refinement
of symbolic traces. The advantage of this is that we can explicitly express that
the implementation may refine the timing behavior of the specification. To this
end, we have defined the following refinement relation on timed traces:

Definition 5 (Refinement relation on timed traces). A timed output trace
oI that can be observed on a system I refines a timed output trace oS that can
be observed on a system S if they contain the same events and variable values,
and if the clock zone of each observation on I is a subset of the corresponding
observation on S. We use the index set K over the elements of oI and oS.

oI ≤ oS iff ∀k ∈ K : okI .e = okS .e ∧ okI .D ⊆ okS .D ∧ okI .v = okS .v

Note that the number of elements in oI and oS may be finite or infinite. If the
number of elements is finite for one of the timed output traces, oI ≤ oS if in
addition length(oI) = length(oS).

The set of timed output traces that can be observed on a system S under envi-
ronmental constraints E for a given input trace σ are denoted by TTro((S, E), σ).
The set of timed input traces that are provided by an environment are denoted
by TTri(E). With that, we can define a refinement relation on sets of timed
output traces:

Definition 6 (Refinement relation on sets of timed traces). We define
the refinement relation � on sets of timed output traces with respect to a given
environment E such that for each output trace of the implementation oI an output
trace of the specification oS with oI ≤ oS must exist:

TTro((I, E), σ) � TTro((S, E), σ) iff

∀oI ∈ TTro((I, E), σ) : (∃oS ∈ TTro((S, E), σ) : oI ≤ oS)

Based on the definition of timed traces and refinement on sets of timed out-
put traces, we can use the relativized timed input/output conformance (rtioco)
defined in [39], where we replace the refinement operator with our version:

Definition 7 (Relativized timed input/output conformance (rtioco)).
I conforms to S under the environmental constraints E if for all timed input
traces σ ∈ TTri(E) the set of timed output traces of I is a refinement of the set
of timed output traces of S for the same input trace.

I rtioco S iff ∀σ ∈ TTri(E) : TTro((I, E), σ) � TTro((S, E), σ)

14 P. Herber, S. Glesner

The rtioco relation is derived from the input/output conformance (ioco) relation
of Tretmans and de Vries [57] by taking time and environment constraints into
account. Under the assumption of weak input enabledness, i. e., if any input is
accepted in any state, the rtioco coincides with timed trace inclusion [39]. The
definition ensures that the implementation may not produce outputs that are
unexpected by the specification and that it must produce outputs whenever it is
expected by the specification. With respect to a CTL property that is satisfied
on the abstract specification, this means that the implementation also respects
this property for all given input traces, as long as the CTL property is formu-
lated with respect to observable output behavior. The internal behavior of both
models may differ. Note that our conformance evaluation approach is applicable
on multiple levels of abstraction, as long as the corresponding adapters, which
translate between the abstraction levels, are provided. As a consequence, it can
be used for quality assurance throughout the whole design flow. As we gener-
ate the test benches for automated conformance evaluation offline, we can reuse
them in each development step. With that, we ensure the consistency between
designs on different abstraction levels with a comparatively low computational
effort. The whole conformance evaluation approach is automatically applicable.
To reduce the computational effort and memory consumption of the test genera-
tion process itself, we have developed a set of optimizations that make use of the
specifics of the SystemC semantics to drastically reduce the number of semantic
states which have to be kept in memory during state-space exploration.

7 Evolutionary Generation of Timed Test Traces

With our conformance testing approach, we can automatically evaluate whether
an embedded real-time system implementation conforms to its specification for a
given timed input trace. To systematically derive timed input traces that cover
as much of the system behavior as possible is another difficult challenge for
embedded real-time systems.

We have presented an evolutionary algorithm for the generation of timed
input traces from Uppaal timed automata models in [23]. The general idea
behind evolutionary testing approaches is to transform test goals into search
problems.

Evolutionary testing is usually realized in the following way (see Fig. 6). In
a first step, a set of either random or manual test data is created. In the context
of the evolutionary search algorithms, this set is called a population. Each test
datum in this set represents an individual.

In a second step, each individual is executed on the system under test (or
software or model) and the execution leads to some observable behavior. This
is evaluated to a fitness with regard to the test goal. If at least one individual
meets the test goal at this point, the search has found its solution (stopping
condition, step 3). If not, depending on the used algorithm, the fitness of each
individual is used to either select it for removal from the population or for
transformation (typically, this means selection, mutation and recombination of

Verification of Embedded Real-time Systems 15

1

2

3

4

6

5

Initial
Population

Selection

Mutation
Recombination

Termination ?

Replacement

Fitness Evaluation

Individuals

Objective Values

Test Execution

Fig. 6. The Evolutionary Test Cycle

individuals, step 4 and 5). Individuals that have been transformed are then
joined with the old population. Depending on the concrete algorithm, the ratio
of old and transformed individuals range from complete replacement of the old
population to a mix of some individuals from the new and some of the old
population (step 6). Regardless of the exact operators used, after these steps
there is a set of new individuals that constitute the population of the next
population. This new population is again executed and evaluated for its fitness.
Every population is supposed to reveal at least equal or better fitness values
for its individuals on average. This way of constant improvement with regard to
better fitness values aims at finding at least one individual with properties that
lead to an execution that triggers the stopping condition, i. e., fulfills the test
goal.

In order to apply evolutionary algorithms to test data search problems, it
is usually required to define the representation of the test data as individuals,
the operators to apply for the evolution of the individuals (selection, mutation,
recombination), a stopping condition for the evolutionary cycle and most impor-
tantly the fitness function that represents the test goal in a numerical way. If
coverage is the test goal, as in our application, the process has to be split into
several optimization runs, each trying to cover one element.

In our work [23], we have presented an approach to encode timed traces as
individuals of an evolutionary algorithm. To cope with the requirement of long
traces, we encode timed traces as a sequence of blocks, where each block defines a
sequence of inputs that are sent with a fixed distance of time between each input.
By introducing blocks, we make the timed traces easier to handle and reduce
the search space for the test generation problem, but still keep a high degree of
flexibility by varying the number, size, and contents of the blocks. Furthermore,
we adopt a set of operators to create, to recombine, and to mutate these timed
traces, which benefit from the block structure. Moreover, we present a fitness

16 P. Herber, S. Glesner

function to evaluate the quality of an individual with respect to a given coverage
goal. To this end, we adopt the fitness function of [58, 41, 34], which combines
the concepts of approach-level and branching distance. The approach-level re-
quires a graph like structure where distances between two nodes (locations or
transitions) are computable. Applied to timed automata and transition coverage
this means that we compute the approach level of a given location with respect
to a transition we want to cover by determining the minimal path between them.
The branching distance is an indicator of the likeliness to enter the transition
that would bring us closer to our test goal and is computed using the guard of
that transition [54]. For example, if we have a guard a < b, the distance is 0 if
a − b < 0 and a − b otherwise. In our case, where we use timed automata for
the test generation, the guard may contain clock variables and variables that are
heavily time-dependent. As a consequence, traces with a better timing behavior
receive a better fitness. Thus, our fitness function implicitly takes timing into
account.

The overall fitness is a combination of approach-level and branching distance
and is simply computed as follows:

f = AL + norm(BD)

We have used an empirical value based on the experiments to normalize BD
values in the range of 0..1. BD is normalized in order to let the approach level
overrule the branching distance.

8 Experimental Results

To evaluate the applicability and the error detecting capability of our approach,
we have implemented the whole VeriSTA framework, including the directed
test generation process. The framework is implemented in Java, and thus it
is portable and easily extendible. As a frontend for SystemC designs, we have
used the Karlsruhe SystemC Parser KaSCPar [14]. Furthermore, we have used
the Uppaal model checker [4] for the verification of safety and timing prop-
erties. The overall framework allows a fully-automated verification of SystemC
designs, without any user-interaction. The only necessary inputs are one or more
SystemC designs that should be verified, a requirements specification written in
Uppaal (i. e., in a subset of CTL) and at least one SystemC test bench to pro-
vide the structural information of a test bench instantiation for the automatic
test bench generation.

For our experiments, we have used two case studies: (1) a TLM implementa-
tion of the AMBA advanced high-performance bus (AHB) provided by Carbon
Design Systems and (2) an Anti-Slip Regulation and Anti-lock Braking System
(ASR/ABS).

The Advanced Microcontroller Bus Architecture (AMBA) Bus is an on-a-chip
bus introduced by ARM Ltd4 in 1996. The AMBA advanced high performance

4 http://www.arm.com

Verification of Embedded Real-time Systems 17

bus (AHB) protocol was introduced in 1999 and features burst transfers, split
transactions and a bus width of up to 128 bits. The AMBA AHB is one of the
most popular on-chip bus architectures in IP-based embedded SoCs and it is
used in many multimedia applications.

The AMBA AHB is a synchronous clocked bus. The timing and arbitration
of the AMBA AHB are described in [2]. An AMBA AHB transfer starts with
a bus request initiated by a bus master. The arbiter collects all bus requests
and sends a grant signal to one master. The granted bus master then drives the
address and control signals. These signals provide information on the address,
direction and width of the transfer, as well as an indication if the transfer forms
part of a burst. AMBA AHB uses separate read and write buses to move data
from slave to the master and the other way around. Every transfer consists of
an address and control cycle and one or more cycles for the data. The TLM
2.0 implementation of the AMBA AHB provided by Carbon Design Systems
implements this by multiple clocked non-blocking transports for each transfer.
The design implements an arbiter and a decoder as specified in [2]. The slave
components receive transactions and read or write from/to memory, respectively.

The original model consists of about 1500 LOC. To meet the assumptions
of our approach, we performed the following modifications: (1) we changed the
sockets to TLM standard sockets, (2) we replaced the generic payload type with
a specific one, (3) we replaced operators for dynamic memory management (e.g.,
new, delete) by static memory allocation and (4) we only transfer constant data
through the bus. The latter modification drastically simplifies the verification
problem. However, our focus is on verifying the correct concurrent behavior,
synchronization, timing, and memory safety which do not depend on the data
that is transfered over the bus. The modified model consists of about 1600 LOC.

The ASR/ABS system monitors the speed at each wheel and regulates the
brake pressure in order to prevent wheel lockup or loss of traction and to improve
the driver’s control over the car. It consists of dedicated wheel speed sensors,
a hydraulic modulator to control the brake pressure, an electronic control unit
that runs the control algorithms, and a control area network (CAN) bus. To
measure the wheel speed, the number of incoming wheel signals (ticks) within
a certain amount of time are used to compute the speed at each wheel. The
results are sent to an electronic control unit (ECU) via a CAN bus. On the
ECU, the control algorithms for brake pressure control and anti slip regulation
are executed. A simple real-time operating system (RTOS) is used to schedule
the tasks and to provide an interrupt layer for interactions with the CAN bus.

The ASR/ABS was developed by using a typical HW/SW co-design flow fol-
lowing the TLM approach. We started with an abstract design where processes
communicate over FIFO channels and where timing is only coarsely estimated.
This abstract model allows the validation and verification of the control algo-
rithm without having to cope with communication details. Then, we refined the
design by using a high-speed CAN bus for communication, an interrupt layer
and a simple scheduling algorithm on the electronic control unit. While the ab-
stract design consists of approximately 500 LOC and contains 4 modules and

18 P. Herber, S. Glesner

1M1S 1M2S 2M1S 2M2S

(1) deadlock freedom 6:17 12:06 37:28 84:25
(2) only one master - - 24:07 54:32
(3.a) bus granted to M1 3:56 7:47 24:10 54:06
(3.b) bus granted to M2 - - 24:10 54:02
(4) timing 11:37 22:24 69:15 152:04
(5.a) all pointers always valid 4:36 9:16 27:57 64:07
(5.b) no null pointer accesses 6:36 13:19 39:12 87:29

Table 1. Model Checking of the AMBA AHB (Verification times in min:sec)

18 processes that communicate over 12 channels, the refined design consists of
over 2500 LOC and contains 8 modules and 26 processes that communicate over
23 channels. Overall, the ABS is well-suited to assess the performance and error
detecting capability of our testing approach because we can use the abstract
design to generate timed input traces and then automatically evaluate the error
detecting capability on the refined design.

To assess the performance and the error detecting capability of our VeriSTA
framework, we have verified the correctness of our case studies using the Uppaal
model checker. For the AMBA AHB system, which makes heavy use of pointers,
we have verified safety, liveness, timing, and memory-related properties. For the
ASR/ABS system, we have verified safety and timing properties of the abstract
model. Then, we have generated timed test inputs with complete transition cov-
erage. Finally, we have executed the generated timed test inputs on our refined
ASR/ABS system. We have used our conformance test approach to evaluate the
simulation results. All experiments were run on a machine with an Intel Pentium
3.4 GHz CPU and 4 GB main memory.

8.1 Results from the AMBA advanced high-performance bus

For the AMBA AHB system, we have checked the following properties: (1) dead-
lock freedom, (2) only one master can write to the bus at a time (mutual exclu-
sion), (3.a) if master M1 requests the bus, it will eventually get it granted, (3.b)
if master M2 requests the bus, it will eventually get it granted, (4) bus transfers
are finished within a given time limit, (5.a) all pointers in the design are always
either null, or they point to a valid part of the memory array corresponding to
their type, (5.b) the design never tries to access memory via a null pointer. To
evaluate the scalability of our approach we have used different design sizes (from
1 master and 1 slave, 1M1S, to 2 master and 2 slaves, 2M2S). The results of the
verification are shown in Table 1.

All properties have been proven to be satisfied at the end of the verification
phase, and within reasonable time. During the verification, we have detected a
bug in the original design which led to a deadlock situation. When a transaction
is split into several separate transfers, a counter variable is used to store the
number of successful transfers before the split occurs. This variable was not

Verification of Embedded Real-time Systems 19

Property counter-examples verification

no deadlock – – 722.54 s �����(maybe)
ABS reacts within time limit 2.56 s ������� 555.56 s �����(maybe)
ASR reacts within time limit 3.51 s ������� 844.15 s �����(maybe)

Table 2. Model Checking of the ASR/ABS system (Verification times in seconds)

reset in the original design. As a consequence, all split transactions besides the
first one failed. This is a typical example which is both difficult to detect and to
correct with simulation. With our approach, the generation of a counter example
took only a few minutes. Due to the structure preservation of our transformation
and the graphical visualization in Uppaal, it was easy to understand the cause
of the problem.

8.2 Results from the ASR/ABS system

For the ASR/ABS system, we checked the following properties: (1) deadlock
freedom, (2) if the deceleration exceeds a given limit, the brake pressure is re-
duced within a given time limit, (3) if the acceleration exceeds a given limit,
the brake pressure is increased within a given time limit. The experimental re-
sults are shown in Table 2. In the beginning, only the first property turned out
to be satisfied. With little debugging effort, supported by the counter-examples
produced by the model checker, we found out where the problem arose from.
We made an error during the conversion of ticks into speed. This error was not
detected by our previously used test cases because we unintentionally solely used
test cases where changes in the tick speed happened only at full seconds. Note
again that the generation of counter-examples is very fast. After the removal
of defects, the state space turned out to be too large to be completely explored
with our 4 GB main memory. This is mainly due to the large data ranges used in
the ASR/ABS example, which cannot symbolically be captured by the Uppaal
model checker. However, with bit state hashing enabled, we were able to verify
that the properties are maybe satisfied. The result of model checking with bit
state hashing is an under-approximation of the state space, i. e., the state space
is only partially explored. However, it is still very well-suited for debugging pur-
poses. Furthermore, given that a large hash table is available, it can be expected
that the verification results have a high probability to be reliable if the model
checker does not find a counter-example.

The effort of the timed test input generation together with the conformance
test generation process was approximately 2 days. Full coverage is very difficult to
achieve for the ASR/ABS example. This is due to the fact that a very specific and
comparably large trace is necessary to trigger the anti-lock braking system. This
trace must be chosen from an infinite set of possible input traces. In particular,
the timing of the input signals plays a crucial role. However, the generation of a
test bench only has to be done once in the whole development flow.

20 P. Herber, S. Glesner

random evolutionary
test generation test generation

missing assignment 54.48 % 60.43 %
wrong assignment 56.36 % 63.85 %
missing condition 71.42 % 93.75 %
wrong condition 66.66 % 91.86 %
communication delay 73.58 % 99.05 %
communication loss 68.18 % 86.36 %
communication error 64.86 % 97.29 %

Table 3. Error Detecting Capability

To assess the error detecting capability of our testing approach, we have
injected over 1000 defects from seven fault classes into the (presumably) correct
refined ASR/ABS system and checked whether these defects are detected by our
automatically generated test cases. For the defect injection, we have used the
following fault classes and injected each defect once at each possible occurence
in the code.

– Missing assignment : An assignment is removed.
– Wrong assignment : An assignment is manipulated by adding or subtract-

ing some value.
– Missing condition : A condition is completely removed.
– Wrong condition : A condition is manipulated.For example, reversed logi-

cal operators are used, e. g., < is replaced by >, == by !=, && by ||.
– Communication delay : The communication is delayed by an arbitrary

amount of time.
– Communication loss: Some data is lost during the communication.
– Communication error : Wrong data is communicated.

With the above fault classes and the corresponding defect injection, we ob-
tained 1224 faulty designs for the ASR/ABS design. Table 3 summarizes the
result. To evaluate our evolutionary algorithm for the generation of timed input
traces, we compared it to timed input traces that were generated by random. The
resulting error detection rates are shown in Table 3. In all cases, we achieved bet-
ter results than random test generation. Furthermore, the timed output traces
have been evaluated fully-automatically using our conformance testing approach.
The experiments demonstrate that our approach is very well-suited to verify and
test embedded real-time systems.

9 Conclusion

The verification of embedded real-time systems requires to have some formal
model of the system behavior that explicitly considers real-time dependant be-
havior. Timed automata provide a formalism that enables an elegant and well-
analyzable description of such systems. In particular, it enables fully-automatic

Verification of Embedded Real-time Systems 21

verification of safety, liveness, and timing properties expressed in temporal log-
ics. However, timed automata - as well as other formal models for the precise
description of embedded real-time systems - are rarely used in practical devel-
opment processes.

Our framework for the HW/SW co-Verification of SystemC designs using
Timed Automata (VeriSTA) enables an automatic transformation of SystemC
designs into Uppaal timed automata. With that, we provide a formal seman-
tics for SystemC designs that explicitly considers time-dependent behavior. The
resulting Uppaal model forms the basis for formal verification and test au-
tomation. To achieve a quality assurance process that assists the design flow of
embedded real-time systems efficiently and continuously from an abstract design
down to the final implementation, our VeriSTA framework combines the power
of model checking and testing. The general idea is to formally verify abstract de-
signs via model checking and to generate conformance tests consisting of timed
input and output traces for all subsequent refinements of the abstract design.
This combination is especially well-suited for HW/SW co-verification of embed-
ded real-time systems, as it can be applied to both the hardware and the software
parts of a given design on different levels of abstraction. Furthermore, both the
model checking and the conformance testing are automatically applicable. As a
formal basis, we have defined a transformation from SystemC to Uppaal timed
automata. The tranformation preserves both the informally defined behavior
and the structure of SystemC designs. Furthermore, it is automatically appli-
cable, introduces a negligible overhead and produces compact and comparably
small models. The automatic generation of Uppaal models from SystemC de-
signs enables the use of the Uppaal model checker and tool suite. Thus, we can
prove that the design meets a given (real-time) requirements specification fully
automatically. In addition, we use the formal model for automated conformance
test generation and for the generation of timed test input traces that achieve a
given coverage goal.

Our experimental results show that safety and timing properties of complex
abstract designs can be verified with reasonable effort. Furthermore, our ap-
proach for the generation of timed input traces together with the corrrespond-
ing expected timed outputs allows the detection of significantly more faults than
randomized test case generation for our case study of an Anti-Slip Regulation
and Anti-lock Braking System (ASR/ABS).

Acknowledgements

We thank the students who contributed to the implementation of our tools and
case studies, in particular Joachim Fellmuth, Florian Friedemann, Verena Klös,
Timm Liebrenz, Tobias Pfeffer, Marcel Pockrandt, and Daniela Rose.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126, 183–235 (1994)

22 P. Herber, S. Glesner

2. ARM Ltd.: AMBA3 AHB-Lite Protocol Specification (2006)
3. Behjati, R., Sabouri, H., Razavi, N., Sirjani, M.: An effective approach for model

checking systemc designs. In: Application of Concurrency to System Design
(ACSD). pp. 56–61 (2008)

4. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Formal Meth-
ods for the Design of Real-Time Systems. pp. 200–236. LNCS 3185, Springer (2004)

5. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lec-
ture Notes on Concurrency and Petri Nets. pp. 87–124. LNCS 3098, Springer (2004)

6. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time petri nets. IEEE Transactions on Software Engineering 17(3) (1991)

7. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina construction of abstract
state spaces for petri nets and time petri nets. International Journal of Production
Research 42(14), 2741–2756 (2004)

8. Blanc, N., Kroening, D., Sharygina, N.: Scoot: A Tool for the Analysis of SystemC
Models. In: International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS). LNCS, vol. 4963, pp. 467–470. Springer (2008)

9. Bruschi, F., Ferrandi, F., Sciuto, D.: A framework for the functional verification
of SystemC models. Int. Journal on Parallel Programming 33(6), 667–695 (2005)

10. Chen, M., Mishra, P., Kalita, D.: Towards RTL test generation from SystemC
TLM specifications. In: IEEE International High Level Design Validation and Test
Workshop. pp. 91–96. IEEE Computer Society (2007)

11. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A soft-
ware model checking approach. In: Formal Methods in Computer-Aided Design
(FMCAD), 2010. pp. 51 –59. IEEE (2010)

12. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos - A
Software Model Checker for SystemC. In: Computer Aided Verification, LNCS,
vol. 6806, pp. 310–316. Springer (2011)

13. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking systemc. IEEE
Trans. on CAD of Integrated Circuits and Systems 32(5), 774–787 (2013)

14. FZI Research Center for Information Technology: KaSCPar - Karlsruhe SystemC
Parser Suite

15. Garavel, H., Helmstetter, C., Ponsini, O., Serwe, W.: Verification of an industrial
SystemC/TLM model using LOTOS and CADP. In: Formal Methods and Models
for Co-Design (MEMOCODE). pp. 46–55. IEEE (2009)

16. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: Fdr3 a modern
refinement checker for csp. In: Tools and Algorithms for the Construction and
Analysis of Systems, LNCS, vol. 8413, pp. 187–201. Springer (2014)

17. Groetker, T.: System Design with SystemC. Kluwer Academic Publishers (2002)
18. Große, D., Drechsler, R.: Checkers for SystemC designs. In: Formal Methods and

Models for Codesign. pp. 171–178. IEEE Computer Society (2004)
19. Große, D., Kühne, U., Drechsler, R.: HW/SW Co-Verification of Embedded Sys-

tems using Bounded Model Checking. In: Great Lakes Symposium on VLSI. pp.
43–48. ACM Press (2006)

20. Große, D., Peraza, H., Klingauf, W., Drechsler, R.: Embedded Systems Specifica-
tion and Design Languages, chap. Measuring the Quality of a SystemC Testbench
by Using Code Coverage Techniques, pp. 73–86. Springer (2008)

21. Habibi, A., Moinudeen, H., Tahar, S.: Generating Finite State Machines from Sys-
temC. In: Design, Automation and Test in Europe. pp. 76–81. IEEE (2006)

22. Habibi, A., Tahar, S.: An Approach for the Verification of SystemC Designs Using
AsmL. In: Automated Technology for Verification and Analysis. pp. 69–83. LNCS
3707, Springer (2005)

Verification of Embedded Real-time Systems 23

23. Hänsel, J., Rose, D., Herber, P., Glesner, S.: An evolutionary algorithm for the
generation of timed test traces for embedded real-time systems. In: Intl. Conf. on
Software Testing, Verification and Validation (ICST). pp. 170–179. IEEE (2011)

24. Herber, P., Fellmuth, J., Glesner, S.: Model Checking SystemC Designs Using
Timed Automata. In: International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). pp. 131–136. ACM press (2008)

25. Herber, P., Friedemann, F., Glesner, S.: Combining Model Checking and Testing
in a Continuous HW/SW Co-Verification Process. In: Tests and Proofs. LNCS,
vol. 5668. Springer (2009)

26. Herber, P., Glesner, S.: A HW/SW Co-Verification Framework for SystemC. ACM
Transactions on Embedded Computing Systems (2013)

27. Herber, P., Pockrandt, M., Glesner, S.: Automated Conformance Evaluation of
SystemC Designs using Timed Automata. In: IEEE European Test Symposium
(2010)

28. Herber, P., Pockrandt, M., Glesner, S.: Transforming SystemC Transaction Level
Models into UPPAAL Timed Automata. In: Formal Methods and Models for Code-
sign (MEMOCODE). pp. 161 – 170. IEEE Computer Society (2011)

29. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Formal Methods and Testing, chap. Testing Real-Time Systems Using UPPAAL.
Springer (2008)

30. Hessel, A., Larsen, K.G., Nielsen, B., Petterson, P., Skou, A.: Time-optimal test
cases for real-time systems. In: Proceedings of the 3rd International Workshop on
Formal Approaches to Testing of Software (FATES). pp. 114–130. LNCS 2931,
Springer (2003)

31. IEEE Standards Association: IEEE Std. 1666–2011, Open SystemC Language Ref-
erence Manual (2011)

32. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: The Model-checking Engine
of Rebeca. In: ACM Symposium on Applied Computing. pp. 1810–1815. SAC ’06,
ACM (2006)

33. Junior, A.D., Cecilio da Silva, D.J.: Code-coverage Based Test Vector Generation
for SystemC Designs. In: IEEE Computer Society Annual Symposium on VLSI.
pp. 198–206. IEEE (2007)

34. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating Feasible Transition Paths for
Testing from an Extended Finite State Machine (EFSM). In: Intl. Conf. on Software
Testing Verification and Validation. pp. 230–239. IEEE (2009)

35. Karlsson, D., Eles, P., Peng, Z.: Formal verification of SystemC Designs using
a Petri-Net based Representation. In: Design, Automation and Test in Europe
(DATE). pp. 1228–1233. IEEE Press (2006)

36. Kirchsteiger, C.M., Trummer, C., Steger, C., Weiss, R., Pistauer, M.: Distributed
Embedded Systems: Design, Middleware and Resources, chap. Specification-based
Verification of Embedded Systems by Automated Test Case Generation, pp. 35–44.
Springer (2008)

37. Krichen, M., Tripakis, S.: Real-time testing with timed automata testers and cover-
age criteria. In: Joint conference on Formal Modelling and Analysis of Timed Sys-
tems and Formal Techniques in Real-Time and Fault Tolerant System (FORMATS-
FTRTFT). pp. 134–151. LNCS 3253, Springer (2004)

38. Kroening, D., Sharygina, N.: Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning. In: MEMOCODE. pp. 101–110. IEEE (2005)

39. Larsen, K.G., Mikucionis, M., Nielsen, B.: Formal Approaches to Software Testing,
chap. Online Testing of Real-time Systems Using Uppaal, pp. 79–94. Springer
(2005)

24 P. Herber, S. Glesner

40. Le, H.M., Große, D., Herdt, V., Drechsler, R.: Verifying SystemC using an inter-
mediate verification language and symbolic simulation. In: DAC. p. 116 (2013)

41. Lefticaru, R., Ipate, F.: Automatic State-based Test Generation using Genetic
Algorithms. In: International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing. pp. 188–195. IEEE Computer Society (2007)

42. Man, K.L.: An Overview of SystemCFL. In: Research in Microelectronics and
Electronics. vol. 1, pp. 145– 148 (2005)

43. Mathaikutty, D.A., Ahuja, S., Dingankar, A., Shukla, S.: Model-driven test gener-
ation for system level validation. In: IEEE International High Level Design Vali-
dation and Test Workshop. pp. 83–90. IEEE Computer Society (2007)

44. Müller, W., Ruf, J., Rosenstiel, W.: SystemC: Methodologies and Applications,
chap. An ASM based SystemC Simulation Semantics, pp. 97–126. Kluwer Aca-
demic Publishers (2003)

45. Nielsen, B., Skou, A.: Automated test generation from timed automata. In: Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). pp. 343–357. LNCS 2031, Springer (2001)

46. Patel, H.D., Shukla, S.K.: Model-driven validation of SystemC designs. EURASIP
Journal on Embedded Systems 2008(3), 1–14 (2008)

47. Pockrandt, M., Herber, P., Glesner, S.: Model Checking a SystemC/TLM Design of
the AMBA AHB Protocol. In: IEEE/ACM Symposium on Embedded Systems For
Real-time Multimedia (ESTIMedia). pp. 66 – 75. IEEE Computer Society (2011)

48. Pockrandt, M., Herber, P., Klös, V., Glesner, S.: Model Checking Memory-Related
Properties of Hardware/Software Co-Designs. In: Embedded Systems: Design,
Analysis and Verification. Proceedings of the International Embedded Systems
Symposium (IESS). Springer (2013)

49. Razavi, N., Behjati, R., Sabouri, H., Khamespanah, E., Shali, A., Sirjani, M.: Sys-
fier: Actor-based formal verification of SystemC. ACM Trans. Embedded Comput.
Syst. 10(2), 19 (2010)

50. Ruf, J., Hoffmann, D.W., Gerlach, J., Kropf, T., Rosenstiel, W., Müller, W.: The
Simulation Semantics of SystemC. In: Design, Automation and Test in Europe.
pp. 64–70. IEEE Press (2001)

51. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley
& Sons, Inc. (1999)

52. da Silva, K.R.G., Melcher, E.U.K., Araujo, G., Pimenta, V.A.: An automatic test-
bench generation tool for a SystemC functional verification methodology. In: Sym-
posium on Integrated circuits and system design. pp. 66–70. ACM Press (2004)

53. SystemC Verification Working Group - SCV: SystemC Verification Standard (2006)
54. Tracey, N.J.: A Search-based Automated Test-Data Generation Framework for

Safety-Critical Software. Ph.D. thesis, University of York (2000)
55. Traulsen, C., Cornet, J., Moy, M., Maraninchi:, F.: A SystemC/TLM semantics

in Promela and its possible applications. In: 14th Workshop on Model Checking
Software (SPIN ’07). pp. 204–222. LNCS 4595, Springer (2007)

56. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer.
In: Formal Methods and Testing, LNCS, vol. 4949, pp. 39–76. Springer (2008)

57. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. Software
Tools for Technology Transfer 2(4), 382–393 (2000)

58. Wegener, J., Buhr, K., Pohlheim, H.: Automatic Test Data Generation For Struc-
tural Testing Of Embedded Software Systems By Evolutionary Testing. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference. pp. 1233–1240.
Morgan Kaufmann Publishers Inc. (2002)

Verification of Embedded Real-time Systems 25

MARTE/CCSL for Modeling
Cyber-Physical Systems

Frédéric Mallet1,2,3

1 Univ. Nice Sophia Antipolis, I3S UMR 7271 CNRS, 06900 Sophia Antipolis, France
2 INRIA Sophia Antipolis Méditerranée, 06900 Sophia Antipolis, France

3 East China Normal University, Software Engineering Institute, Shanghai, China
Frederic.Mallet@unice.fr

Abstract. Cyber Physical Systems (CPS) combine digital computa-
tional systems with surrounding physical processes. Computations are
meant to control and monitor the physical environment, which in turn
affects the computations. The intrinsic heterogeneity of CPS demands
the integration of diverse models to cover the different aspects of sys-
tems. The UML proposes a great variety of models and is very com-
monly used in industry even though it does not prescribe a particular
way of using those models together. The MARTE profile proposes a set
of extensions to UML in a bid to allow for the modeling of real-time
and embedded systems (RTES). Yet CPS are a wider class of systems
than mere RTES. Hence a legitimate question arises as whether MARTE
can be used for CPS as well. This paper illustrates some possible uses of
MARTE to model CPS and uses logical clocks as a way to bring together
the different models.

Keywords: Heterogeneous models, Logical clocks, Fuel management
system

1 Introduction

Cyber-Physical Systems combine digital computational systems with surround-
ing physical processes. Computations are meant to control and monitor the phys-
ical environment, which in turn affects the computations. The intrinsic hetero-
geneity of CPS demands the integration of diverse models to cover the different
aspects of systems. The Unified Modeling Language (uml) proposes a great va-
riety of models and is very commonly used in industry even though it does not
prescribe a particular way of using those models together. The profile for Model-
ing and Analysis of Real-Time and Embedded Systems (marte [25]) proposes a
set of extensions to uml in a bid to allow for the modeling of real-time and em-
bedded systems. Yet CPS are a wider class of systems than mere RTES. Hence
a legitimate question arises as whether marte can be used for CPS as well. This
paper illustrates some possible uses of marte to model CPS. It deliberately
leaves aside the traditional aspects well covered in the literature on traditional
discrete embedded systems. The central concepts put forward is the notion of

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_2, © Springer Fachmedien Wiesbaden 2015

logical clock introduced by Lamport and used ever since in many applications.
The logical clocks have been brought into the uml world through marte time
subprofile. They are used in this chapter as handles attached to various model-
ing elements (whether structural or behavioral, related to hardware or software).
The Clock Constraint Specification Language (ccsl), initially defined in an an-
nex of marte, is used to constrain/animate these handles (and the associated
modeling elements) to specify the expected behavior along with some expected
interactions and synchronizations amongst the diagrams.

Section 2 starts by enumerating the main, generally accepted, characteristics
of cyber-physical systems. Then Section 3 introduces the uml profile for marte
by insisting on aspects previously highlighted as important for modeling cyber-
physical systems. In particular, after a general overview it elaborates on the
time and allocation subprofiles before introducing ccsl. Section 4 illustrates
each aspect highlighted using a common example of fuel management system
borrowed from previous works on CPS.

2 Main Characteristics of CPS

The main characteristics of Cyber Physical Systems and main design challenges
have been identified some years ago [17, 18]. We focus here only on propos-
ing a modeling framework based on standard notations to capture some most
important aspects. We present our view focusing on what is most relevant to
understand our approach. The following characteristics are further discussed in
this section and illustrated in Section 4.

CPS are:

– heterogeneous, in the sense that they combine various models of computa-
tions relying on both discrete and continuous time abstractions;

– platform-aware and resource-constrained, and thus the software depends on
various non-functional properties imposed by the platform;

– time-sensitive and often safety-critical;
– widely distributed with heterogeneous interconnects.

CPS are first and foremost complex systems and as such designing them re-
quires several models, usually hierarchical, to fully capture the different aspects
and views, whether structural or behavioral. Structural models include a descrip-
tion of the components or blocks of the systems and of the communication media
involved. Behavioral models include hierarchical state machines and data-flow
streaming diagrams. Expected or faulty interactions with the surrounding envi-
ronment can be captured as a set of use cases or requirements that correspond to
positive or negative scenarios. Such models are usually called heterogeneous
in the sense that they combine different models, each of which may follow a
different model of computation.

CPS also have the main characteristics of embedded systems, which are usu-
ally platform-aware. Contrary to standard software engineering, embedded
system design depends a lot on the execution platform on which the system

MARTE/CCSL for Modeling Cyber-Physical Systems 27

should execute, be it a system-on-a-chip (SoC), with multiple computing re-
sources and a complex memory hierarchy, or a wide scale distributed system,
with potentially all the variety of interconnects and communication media. This
awareness of the platform makes it important to account for how and when
the available resources are accessed or ‘consumed’, considering together both
the spatial and temporal dimensions. The spatial dimension is not only about
how much resource is available but also about where the resources are physically
located in the system relative to each other. How much resource is available is in-
deed easy since it is usually given by the technology used and the targeted selling
price. However, how the resources are used makes all the difference between two
a priori equivalent products. The spatial dimension encompasses the intercon-
nect topology, i.e., physical parallelism available, but also and more importantly
where the data and programs are allocated. Indeed, the distance between the
data memory and the computing resource that executes the program largely im-
pact the fetching time that may potentially largely exceed the computing time.
Then, this spatial distribution requires to perform the temporal scheduling of
both the execution of programs and the routing of data from memory to com-
puting resources, forth and back. This leads to logical concurrency coming both
from the physical parallelism and the inherent data and control dependencies of
the application. CPS are therefore resource-constrained and time-sensitive
systems. Even though the resources (memory size, computing power) are not
necessarily as scarce as they used to be, nevertheless finding the right trade-
off between the resource usage, the computation speed and the cost makes it a
multi-criteria optimization problem difficult to solve. The cost is not only mea-
sured in terms of money, but this includes all kinds of additional extra functional
properties (like power, energy, thermal dissipation), also called non-functional
properties.

More than being mere embedded systems, CPS are usually made of multiple
interconnected embedded subsystems, some of which are computing devices and
some other being physical devices. This requires some abilities to describe het-
erogeneous interconnects, while simpler embedded systems usually only rely
on homogeneous communication structures. Being made of several computing
devices also constitute a big step since it requires to model the whole system as
a closed model, with software, devices but also with the environment and the ex-
pected continuous interactions with this environment. In standard software
development, the environment is by definition outside the system to be devel-
oped. Close loop systems have been modeled for several years with tools and
techniques to find approximate solutions to differential equations are well estab-
lished. However, the integration with discrete models still causes problems in
many tools and each of them proposes ad-hoc solutions. A seamless integration
with uml models is still to be proposed.

Finally, cyber-physical systems are often big and often interacts directly with
users that are not even aware of the computer. The size is an aggravating fac-
tor since a single system concerns potentially millions of people (smart cities,
intelligent transportation systems. . .). It means some CPS are safety-critical,

28 F. Mallet

just like embedded systems but at a larger scale. It then increases the demand
to have sound models along with verification tools. Sometimes, they also require
certification tools to be accredited and allowed to be use in public environments.
However, we do not address at all the certification issue here.

To summarize, CPS demand an integration between continuous models, clas-
sical state-based or data-flow models, hardware descriptions, non-functional con-
straints. uml offers a tool-neutral non-proprietary solution that already contains
most of the required notations. However, those notations need to be tailored
to capture specific aspects of CPS (time, non-functional properties, continuous
models). Both marte and sysml offer some extensions dedicated to these goals,
and we discuss here some examples of useful features of either marte or sysml to
model CPS. These notations also need to come with adequate, not tool-specific,
explicit semantics if we are to address safety-critical issues. In this paper,
the semantics is given using the Clock Constraint Specification Language [21], a
formal specification language defined as a companion of marte in an annex.

3 The UML Profile for MARTE

This section gives a basic introduction to the marte profile. It gives a general
overview and focus on some specific aspects that are further developed in the
following sections, like the time and allocation subprofile. It also gives an intro-
duction to the Clock Constraint Specification Language defined in an annex of
marte since ccsl is used in this chapter to describe the interactions between the
models. This is done by specifying some causal relationships between the mod-
els and the way they synchronize. This section does not cover the whole marte
specification and a comprehensive review of marte along with some comple-
mentary information on how to use it for modeling cyber physical systems can
be found in a dedicated book [28].

3.1 Overview

UML and its extensions. The Unified Modeling Language [26] is a general-
purpose modeling language specified by the Object Management Group (omg).
It proposes graphical notations to represent all aspects of a system from the
early requirements to the deployment of software components, including design
and analysis phases, structural and behavioral aspects. As a general-purpose
language, it does not focus on a specific domain and maintains a weak, informal
semantics to widen its application field. However, when targeting a specific ap-
plication domain and especially when building trustworthy software components
or for critical systems where life may be at stake, it becomes necessary to extend
the uml and attach a formal semantics to its model elements. The simplest and
most efficient extension mechanism provided by the uml is through the defini-
tion of profiles. A uml profile adapts the uml to a specific domain by adding new
concepts, modifying existing ones and defining a new visual representation for
others. Each modification is done through the definition of annotations (called

MARTE/CCSL for Modeling Cyber-Physical Systems 29

stereotypes) that introduce domain-specific terminology and provide additional
semantics. However, the semantics of stereotypes must be compatible with the
original semantics (if any) of the modified or extended concepts, i.e., the base
metaclass.

The uml profile for marte [25] extends the uml with concepts related to
the domain of real-time and embedded systems. It supersedes the uml profile for
Schedulability, Performance and Time (SPT [24]) that was extending the uml
1.x and that had limited capabilities. uml 2.0 has introduced a simple (or even
simplistic) model of time and has proposed several new extensions that made
SPT unusable. Therefore marte has been defined to be compatible with uml
Simple Time model and now supersedes SPT as the official OMG specification.
sysml [10] is another extension dedicated to systems engineering. We use some
notations coming from sysml and we introduce those notations when required.
The task forces of marte and sysml have synchronized their effort to allow for
a joint use of both profiles.

The remainder of this subsection gives an overview of the marte, which is
made up of three parts: Foundations, Design and Analysis.

MARTE Foundations. The foundation part of marte is itself divided into
five chapters: CoreElements, NonFunctionalProperties (NFP), Time, Generic
Resource Modeling (GRM) and Allocation.

CoreElements define configurations and modes, which are key parameters for
analysis.

In real-time systems, preserving the non-functional (or extra-functional) prop-
erties (power consumption, area, financial cost, time budget. . .) is often as im-
portant as preserving the functional ones. The uml proposes no mechanism at
all to deal with non-functional properties and relies on mere string for that pur-
pose. The NFP subprofile offers mechanisms to describe the quantitative as well
as the qualitative aspects of properties and to attach a unit and a dimension
to quantities. It defines a set of predefined quantities, units and dimensions and
supports customization. NFP comes with a companion language called Value
Specification Language (VSL) that defines the concrete syntax to be used in
expressions of non-functional properties. VSL also recommends syntax for user-
defined properties.

Time is often considered as an extra-functional property that comes as a
mere annotation after the design. These annotations are fed into analysis tools
that check the conformity without any actual impact on the functional model:
e.g., whether a deadline is met, whether the end-to-end latency is within the
expected range. Sometimes though, time can also be of a functional nature and
has a direct impact on what is done and not only when it is done. All these
aspects are addressed in the time chapter of marte. The next section elaborates
on the time subprofile.

GRM chapter provides annotations to capture the available resources on
which the applicative part shall be deployed.

30 F. Mallet

The allocation chapter gives a sysml-compatible way to make this deploy-
ment. In marte, we use the wording allocation since the uml deployment usually
implies (in people’s minds) a physical distribution of a software artifact onto a
physical node. Allocation in marte goes further. It encompasses the physical
distribution of software onto hardware, but also of tasks onto operating system
processes, and, more importantly, it covers the temporal distribution (or schedul-
ing) of operating parts that need to share a common resource (e.g., several tasks
executing on a single core processor, distributed computations communicating
through an interconnect). This subprofile is further described in subsection 3.3.

MARTE for design. The design part has four chapters: High Level applica-
tion modeling, Generic component modeling, Software Resource Modeling, and
Hardware Resource Modeling.

The first chapter describes real-time units and active objects. Active objects
depart from passive ones by their ability to send spontaneous messages or signals,
and react to event occurrences. Normal objects, the passive ones, can only answer
to the messages they receive or react on event occurrences. The three other
chapters provide a support to describe resources used and in particular execution
platforms on which applications may run. A generic description of resources is
provided, including stereotypes to describe communication media, storages and
computing resources. Then this generic model is refined to describe software and
hardware resources along with their non-functional properties.

MARTE for analysis. The analysis part also has a chapter that defines generic
elements to perform model-driven analysis on real-time and embedded systems.

This generic chapter is specialized to address schedulability analysis and
performance analysis.

The chapter on schedulability analysis is not specific to a given technique and
addresses various formalisms like the classic and generalized Rate Monotonic
Analysis (RMA), holistic techniques, or extended timed automata. This chapter
provides all the keywords usually required for such analyzes.

Finally, the chapter on performance analysis, even if somewhat independent
of a specific analysis technique, emphasizes on concepts supported by the queue-
ing theory and its extensions.

MARTE usages and extensions. marte extends the uml for real-time and
embedded systems but should be refined by more specific profiles to address
specific domains (avionics, automotive, silicon) or specific analysis techniques
(simulation, schedulability, static analysis). Because marte targets different do-
mains and/or different analysis techniques, the time model of marte is rich
and combines physical and logical clocks. This is further explained in the next
subsection.

We have briefly reviewed here the whole specification of marte. However,
marte is not expected to be used as a whole on a single specification, as his

MARTE/CCSL for Modeling Cyber-Physical Systems 31

usage chapter states. It is expected to be the base of several complementary
methodologies that cover different aspects of a system. This chapter covers one
aspect and proposes a partial usage to capture important features. It is not
intended to offer a comprehensive cover of all aspects.

3.2 Time in MARTE

This subsection only gives a very brief introduction to the time model of marte.
See [3, 2, 20] for more explanations and examples.

Time in spt is a metric time with implicit reference to physical time. As a
successor of spt, marte supports this model of time. uml 2, issued after spt, has
introduced a model of time called SimpleTime. This model also makes implicit
references to physical time, but is too simple for use in real-time applications,
and was initially devised to be extended in dedicated profiles.

marte goes beyond spt and uml 2. It adopts a more general time model
suitable for system design. In marte, Time can be physical, and considered as
continuous or discretized, but it can also be logical, and related to user-defined
clocks. Time may even be multiform, allowing different times to progress in a
non-uniform fashion, and possibly independently to any (direct) reference to
physical time. In marte, time is represented by a collection of Clocks. The use
of word Clock comes from vocabulary used in the synchronous languages. They
may be understood as a specific kind of events on which constraints (temporal,
hence the name, but also logical ones) can be applied. Each clock specifies a
totally ordered set of instants, i.e.,, a sequence of event occurrences. There may
be dependence relationships between the various occurrences of different events.
Thus this model, called the marte time structure, is akin to the Tagged Sys-
tems [16]. To cover continuous and discrete times, the set of instants associated
with a clock can either be dense or discrete.

Figure 1 shows the main stereotypes introduced by marte Time subprofile.

Fig. 1. Excerpt of MARTE Time subprofile

32 F. Mallet

Stereotype Clock is one foundational stereotype that extends uml metaclass
Event. A Clock carries specific information such as its actual unit, and values of
quantitative (resolution, offset. . .) or qualitative (time standard) properties, if
relevant.

TimedElement is another stereotype introduced in marte. A timed element
is an abstract stereotype that associates at least one clock with a modeling
element. TimedProcessing is a specialization of TimedElement, which extends the
uml metaclasses Action, Behavior and Message. It defines a start and a finish event
for a given action/behavior/message. These events (which are usually clocks)
specify when the action starts or when it finishes. TimedProcessing also specifies
the duration of an action. Duration is also measured on a given logical or physical
clock. In a marte model of a system, stereotype TimedElement or one of its
specializations is applied to model elements which have an influence on the
specification of the temporal behavior of this system. The expected behavior of
such TimedElements is controlled by a set of ClockConstraints. Those constraints
specify dependencies between the various occurrences of events. ccsl, which
is further described in the following subsection, can be used to specify those
constraints formally.

The marte Time subprofile also provides a model library named TimeLibrary.
This model library defines the enumeration TimeUnitKind which is the standard
type of time units for chronometric clocks. This enumeration contains units like
s (second), its submultiples, and other related units (e.g., minute, hour). The
library also predefines a clock called IdealClock, which is a dense chronometric
clock with the second as time unit. This clock is assumed to be an ideal clock,
perfectly reflecting the evolutions of physical time. It should be imported in
user’s models with references to physical time concepts (e.g., frequency, physical
duration).

3.3 Allocation in MARTE

Since embedded systems are platform-aware, one need a way to map the ele-
ments of the application onto the execution platform. This aspect is specifically
addressed by the allocation subprofile of marte, which is further described in
this subsection.

The wording Allocation has been retained to distinguish this notion from
uml Deployment diagrams. Deployments are reserved to deploy artifacts (e.g.,
source code, documents, executable, database table) onto deployment targets
(e.g., processor, server, database system). The marte allocation is much more
general than that. For instance, it is meant to represent the allocation of a
program onto a system thread, or of a process onto a processor core. More
generally, it is used to represent the association of an element (action, message,
algorithm) that consumes a resource onto the consumed resource (processing
unit, communication media, memory). Wordings ’mapping’ or ’map’ have also
been discarded since they very often refer to a function and then map one input
from a domain to one single output in the co-domain. The allocation process,

MARTE/CCSL for Modeling Cyber-Physical Systems 33

however, is an n-to-m association. Take for instance, a bunch of tasks that need
to be scheduled on several cores.

Note that the wording execution platform has been preferred to ’architecture’
or ’hardware’. Indeed, architecture is a way to describe the structure of a system,
while an execution platform contains both structural and behavioral parts. On
the other hand, the execution platform is not necessarily a piece of hardware. It
can be a piece of software, a virtual machine, a middleware, an operating system
or a mixed platform that combines software and hardware intellectual properties
(IPs).

Finally, it is also important to note that this notion of allocation is common
between marte and sysml in a bid to ease the combination of the two profiles.
In particular, for CPS both profiles must be used jointly [28].

Figure 2 shows the two main stereotypes of the subprofile, Allocate and Al-

located. Allocate represents the allocation itself, while Allocated may be used on
both sides to mark either the element that is allocated or the resource onto which
an element is allocated. The property nature is meant to distinguish two kinds

Fig. 2. Exerpt of MARTE Allocation subprofile

of possible allocations: spatial and temporal. Typically, when messages are allo-
cated onto a buffer or a memory, this is a spatial allocation. Indeed, the message
will consume/use some cells of the memory. However, when two tasks are allo-
cated onto a processing unit, this is a temporal allocation (scheduling); It means
the two tasks must be scheduled to avoid resource conflicts. When a program is
allocated onto a processor, it can be seen both as spatial and temporal; Spatial
because the program consumes disk and memory resources, temporal because
while this program executes, another one cannot execute simultaneously. The al-
location usually implies constraints that describe precisely the impact (or cost)
of the allocation on the non-functional properties. This is why there is an asso-
ciation to a specific marte stereotype called NfpConstraint, i.e., to capture the
constraints implied by the allocation in terms of memory consumption, power
consumption, execution time, for instance.

Figure 3 shows an example of allocation borrowed from [23]. The upper part
depicts an algorithm as an uml activity diagram. Two input values are captured

34 F. Mallet

as in1 and in2. Those values are processed respectively by actions step1 and
step2 producing two intermediate values. Those two intermediate values are used
by step3 to process the final result. The bottom part shows a possible execution
platform as a composite structure diagram. It contains two tasks (or threads, or
processes) that communicate through a shared memory. Each task is scheduled
at a different frequency.

Fig. 3. Example of Allocation: spatial allocation vs. temporal scheduling

marte allocation is used in two different ways. The first way corresponds to
a temporal scheduling operation. Indeed, the three steps from the application
part are scheduled on the tasks of the execution platform. In this example, step1
and step3 are allocated to task t2, while step1 is allocated to task t1. The second
kind of allocation is more of a spatial nature. It allocates the intermediate values
to the shared memory. Even though there are different in nature, both kinds of
allocations imply some constraints (temporal and non-functional) that should
be checked and captured as NfpConstraints. The spatial distribution actually
implies that one must check whether there is enough space available in the shared
memory for the two communications to overlap. The temporal scheduling implies
that the two actions step1 and step2 must not execute simultaneously. Both kinds
of constraints can be captured and analyzed with ccsl [23].

MARTE/CCSL for Modeling Cyber-Physical Systems 35

3.4 The Clock Constraint Specification Language

The Clock Constraint Specification Language [21] is a declarative language to
build specifications of systems by accumulation of constraints that progressively
refine what can be expected from the system under consideration. The specifica-
tion can be used and analyzed with our tool timesquare [8]. ccsl mainly targets
embedded systems and was then designed to capture constraints imposed by the
applicative part, the execution platform or also external requirements from the
users, like non-functional properties. Constraints from the application and the
execution platform are bound together through allocation constraints also ex-
pressed in ccsl. The central concept in ccsl are the logical clocks, which have
been successfully used for their multiform nature by synchronous languages to
build circuits and control-oriented systems, to design avionic systems with data-
flow descriptions or design polychronous control systems [4]. They have also been
used outside the synchronous community to capture partial orderings between
components in distributed systems [15]. We promote their use here for captur-
ing the concurrency inherent to the application, the parallelism offered by the
execution platform and synchronization constraints induced by the allocation.

Definition 1 (Logical discrete clock). A logical discrete clock c is defined
as an infinite sequence of ticks: (cn)

∞
n=1.

Logical clocks are used to represent noticeable events of the system, e.g., start-
ing/finishing the execution of an agent, writing/reading a data from a place/mem-
ory, acquiring/releasing a resource; Their ticks are the successive (totally or-
dered) occurrences of the events.

In ccsl, the expected behavior of the system is described by a specifica-
tion that constrains the way the clocks can tick. Basically, a ccsl specification
prevents clocks from ticking when some conditions hold.

Definition 2 (CCSL specification). A ccsl specification is a tuple Spec =
〈C,Cons〉, where C is a finite set of clocks and Cons is a finite set of constraints.

A ccsl specification denotes a set of schedules. If empty, there is no solution,
the specification is invalid. If there are many possible schedules, it leaves some
freedom to make some choices depending on additional criteria. For instance,
some may want to run everything as soon as possible (ASAP), others may want
to optimize the usage of resources (processors/memory/bandwidth).

Definition 3 (Schedule). A schedule σ over a set of clocks C is a sequence of
sets representing the ticking clocks. σ : N → 2C .

Given a clock c, a step s ∈ N and a schedule σ, c ∈ σ(s) means that clock c
ticks at step s for this particular schedule.

Definition 4 (Satisfaction). A schedule σ satisfies a specification (σ |= Spec)
if it satisfies all of its constraints (∀cons ∈ Cons, σ |= cons).

36 F. Mallet

Note that there are usually an infinite number of schedules that satisfy a
specification, we only consider the ones that do not have empty steps: ∀n ∈
N \ {0}, σ(n) �= ∅.

The schedules are synchronous but the specification is called polychronous
since the constraints are independent of each others and do not know when the
next step is going to happen or whether it has actually happened. In Esterel [5],
there is an instruction called pause that waits until the next step. This is not
directly possible in ccsl without explicitly building the union of all the clocks
to know when something is going to happen next.

New ccsl constraints can be defined from kernel ones (see [1]) in dedicated
libraries. Before presenting newly-defined constraints, we introduce here some of
the kernel constraints needed. Some constraints are stateless, i.e., the constraint
imposed on a schedule is identical at all steps; others are stateful, i.e., they
depend on what has happened in previous steps.

The first basic stateless ccsl constraint is Subclocking, which prevents a
(sub)clock from ticking when a (master) clock cannot tick.

Definition 5 (Subclocking). Let a, b be two logical clocks. A schedule σ sat-

isfies the subclocking constraint on a and b (a ⊆ b) if the following condition
holds:
σ |= a ⊆ b ⇐⇒ (∀n ∈ N, b /∈ σ(n) =⇒ a /∈ σ(n)

)
.

Contrary to full synchronous systems, we never assume the existence of a
global master clock from which all the other clocks should derive. When a ⊆ b

and b ⊆ a, the two clocks a and b are said to be synchronous, this is denoted
as a = b.

One example of simple stateless ccsl constraint is Union.

Definition 6 (Union). Let a, b be two logical clocks. A schedule σ satisfies the
union constraint on a and b if the following condition holds: σ |= u � a +

b ⇐⇒ (∀n ∈ N, u ∈ σ(n) ⇐⇒ (a ∈ σ(n) ∨ b ∈ σ(n))
)

Note that Union is commutative and associative, we sometimes use an n-ary
extension of this binary definition.

For stateful constraints, we use the history of clocks for a specific schedule.

Definition 7 (History). Given a schedule σ, the history over a set of clocks C
is a function Hσ : C ×N → N defined inductively as follows for all clocks c ∈ C:
Hσ(c, 0) = 0
∀n ∈ N, c /∈ σ(n) =⇒ Hσ(c, n+ 1) = Hσ(c, n)
∀n ∈ N, c ∈ σ(n) =⇒ Hσ(c, n+ 1) = Hσ(c, n) + 1

A simple example of a primitive stateful ccsl clock constraint is Causality.
When an event causes another one, the effect cannot occur if the cause has not.
In ccsl, causality can be instantaneous.

Definition 8 (Causality). Let a, b be two logical clocks. A schedule σ satisfies

the causality constraint on a and b if the following condition holds: σ |= a �
b ⇐⇒ (∀n ∈ N, Hσ(a, n) ≥ Hσ(b, n)

)

MARTE/CCSL for Modeling Cyber-Physical Systems 37

A small extension of Causality includes a notion of temporality and is called
Precedence.

Definition 9 (Precedence). Let a, b be two logical clocks and δ ∈ Z. A sched-
ule σ satisfies the precedence constraint on a and b if the following condition

holds: σ |= a δ≺ b ⇐⇒ (∀n ∈ N, Hσ(a, n)−Hσ(b, n) = −δ =⇒ b /∈ σ(n)
)

The primitive ccsl precedence is defined as: a ≺ b ≡ a 0≺ b. A bounded

version of precedence is defined as a ≺N b ≡ a ≺ b∧a N≺ b. In this paper,

we use a particular case called alternation and defined as a ∼ b ≡ a ≺1 b.

4 Illustration

This section illustrates the joint use of uml, marte, sysml and ccsl to model
some aspects of CPS and more importantly to unify them.We start by discussing
the fuel management system of an aircraft [12, 9]. This example illustrates one
possible way to take into accounts some non-functional properties of CPS (see
subsection 4.1). Then subsection 4.2 puts together two (heterogeneous) models
and combine discrete control (e.g., state machines) along with continuous aspects
(e.g., sysml parametrics).

4.1 Non-Functional Properties

To model the non-functional properties, we use the NFP subprofile of marte. To
illustrate this use, we consider here, as an example, an Aircraft Fuel Management
System (AFMS) [12]. Several fuel tanks are spread in the aircraft to feed the two
engines. This is done for redundancy purpose; in case there is a problem with one
tank then another one can be used. It also serves for balancing the weight during
the flight, some fuel is moved from one tank to another depending on various
requirements that vary depending on the current flight phase (mode). Weight
constraints are not identical during takeoff, landing or while in cruise mode. Some
valves are used to transfer fuel from one tank to another, sometimes relying on
gravity, sometimes using pumps. All the transfers are processed by a computer.
Such a system is clearly safety-critical since fuel is of course of major importance
in an aircraft. It can also be considered as a cyber-physical systems since the
whole system has to mix physical models of fuel flows along with digital aspects
to deal with flight modes and various states of the different components.

Figure 4 shows the types introduced in a uml class diagrams to build the
model of the aircraft fuel management system. The fuel available in a tank is
measured by its weight and we use the type NFP Weight defined in a dedicated
marte library called MeasurementUnits. We also use enumeration WeightUnitKind

that defines, amongst others, unit kg and dimension Mass (M). This process is
similar to the one used previously to define the time units (s, ms. . .) for dimension
Time (T).

Transfers are measured in kg/s. Such a unit is not predefined in marte. We
then define ourselves a new dimension FlowRate (M/T−1), a new unit kg/s and a

38 F. Mallet

Fig. 4. NFP Types for Aircraft Fuel Management System

new type NFP FlowRate using marte stereotypes defined in the NFP subprofile.
The mechanism used here is further described in [28].

Once basic data types are defined we define two kinds of abstract elements.
ActiveElements are elements that can be turned on and off; Engine and Pump

are two examples of such kinds of elements. Such elements are commanded by
two discrete signals turnOn and turnOff. FuelFlowElements are mechanical elements
that connect several input flow rates to several output flow rates. For instance,
a valve, when opened, transfers a part of its input flow rate coming from a tank
or a pump to an output flow rate ending up either in another valve or directly
into a tank. The valve is regulated by a signal that determines the position of its
throttle. This position is given as a percentage4, 0 % meaning closed while 100 %
means fully opened. As shown in the figure some elements can be of both kinds.
For instance, a pump can be turned on and off but also connects one input flow
from a tank to an output flow, either to another tank or to a valve.

Some constraints may be specified on those elements. For instance, a fuel
flow element must preserve flows between inputs and outputs, i.e., they cannot
be more fuel going out that the amount flowing in. This is captured by a specific
NFPConstraint (see Eq. 1):∑

i

out[i].value ≤
∑
i

in[i].value (1)

4.2 Heterogeneous modeling with explicit interactions

Cyber Physical systems imply using several models to combine various aspects of
the system. The previous subsection shows a static view of the types involved.
This subsection focuses on behavioral aspects and elaborates on the example
AFMS. Two kinds of information, very different in nature, must be combined
here. On the one hand, there is the flow dynamics and on the other end, there

4 NFP Percentage is also defined in a standard library of marte

MARTE/CCSL for Modeling Cyber-Physical Systems 39

is the discrete control of the valves, pumps and engines. For the former we rely
on sysml parametrics, while we use uml state machines and logical clocks for
the latter.

sysml has introduced a specific diagram, called Parametrics to describe
acausal relations. Causal here must be understood as functional. It is a rela-
tion established between some inputs to produce an input (or even multiple
outputs). Acausal, however, is a way to build relations where there is no input
or output but a set of property values that follow given laws. This is not specific
to continuous phenomenon but is clearly useful in that case. Considering the
example of the Valve in the AFSM, one can capture an acausal relation between
the output flow, input flow and the position of the throttle. Figure 5 shows the
corresponding sysml parametrics. A sysml constraint block, here called FlowReg-

ulation captures a constraint between three real numbers (see Eq. 2).

exhaust = intake× k (2)

This (simple) law is applied to property values that represent the input flow rate,
the output flow rate and the throttle position. One could consider that intake
and k are inputs from which output exhaust is deduced. However, capturing
this as an acausal relation one can deduce k that must be applied considering
the actual intake flow and the expected exhaust flow.

Fig. 5. Valve regulation: SysML Parametrics

Moving now to the pump, the regulation system is similar except that the
pump is either on or off . The actual state of the pump can easily be captured
as a uml state machine (see the bottom of Fig. 6). The expected behavior of this
state machine can be captured using ccsl constraints. This requires to attach
logical clocks to the relevant modeling elements. Relevant means the ones that
play a role in the dynamics that is to be specified. In that example, this is done by
associating clocks to the events involved in the triggering of the transitions, i.e.,
turnOn and turnOff . Indeed, in uml, each transition has a trigger; A trigger is
associated with an event; Events become clocks by using the stereotype defined

40 F. Mallet

in marte time profile (see Section 3.2). The clock constraint then can carry the
specification shown in Eq. 3, which specifies that the state machine alternates
from state On to state Off , forth and back.

turnOn ∼ turnOff (3)

reads turnOn alternatesWith turnOff

The actual flow rate of pumps depends on its throughput and on its input
flow rate. Similarly to valves, the relation between the flows can be captured
using sysml parametrics. The state machine and the sysml parametrics are
combined together using additional ccsl logical clocks and constraints as shown
in Figure 6. This can be done for instance using the allocation (see Section 3.3).
Each allocation implies a set of constraints, in this case, it implies a ClockCon-

straint carrying a ccsl specification. In our example, the constraint may be the

Fig. 6. Pump regulation: UML/MARTE State Machine with SysML parametrics

one given in Eq. 4.

switch = turnOn + turnOff (4)

reads switch = turnOn union turnOff

Generally speaking logical clocks should be attached to various model ele-
ments in different models and a clock constraint then specifies the relationships
between those clocks. Within a single model this is useful to make explicit the
expected semantics of the model. A ccsl specification is used in that case to
specify what should happen and when it should happen. This is done by de-
scribing the causal relationships and the possible synchronizations between the

MARTE/CCSL for Modeling Cyber-Physical Systems 41

events of the system. In this example, we did it manually, but for classical mod-
els and assuming a ’standard’ semantic interpretation, this can be done in a
automatic way [7]. Whether automatic or manual, it is important to have an
explicit semantics that can be used as a golden reference to conduct further
verifications. Such a golden reference can also be used to validate a potential
exogeneous transformation to a formal language.

More examples of such a use of ccsl to make a semantic adaptation between
heterogeneous models can be found in other works [6, 14] although it is done in
a manner independent of uml and marte.

4.3 Heterogeneous interconnects

As underlined in Section 2, CPS very often have a complex heterogeneous inter-
connect. The kind of interconnect may vary a lot depending on the systems. uml
alone is already very rich to describe structural architectural aspects. Composite
structure diagrams are one solution to describe the different parts of a system.
sysml however distinguishes two kinds: the block diagrams and the internal
block diagrams. While block diagrams are very close to uml class diagrams, the
sysml internal block diagrams are closer to uml composite structure diagrams.
Further distinctions are described in other works [28].

In our example, the architecture is very important since it defines the number
of devices and the interrelations. In the previous subsection we have described the
behavior of valves and pumps using parametrics and state machines. However,
without the topology we do not know how many parametrics and how many
state machines should be instantiated nor which one communicates with which
other ones.

Figure 7 shows a uml composite structure model that captures the inter-
connection of the devices in the AFMS. The two engines (LE and RE) and fed
from the left feed tank (LFT) and the right feed tank (RFT) through pump
P1/P2 (respectively P3/P4) and valve N. Valve N is a special kind of valve that
is commanded manually. There two other tanks in each wing to store extra fuel:
the middle tank (xMT) and the outer tank (xOT). There is also one trim tank
in the tail (TT). Some transfers are done through pumps and valves (like from
LFT to LE), some others do not require any pump and rather takes advantage
of the wing inclination for simple gravity transfers. This is the case for transfers
from FT to MT and MT to OT. In the other direction however, pumps should
be used. For instance, transfers from MT to FT are done through pump TP1,
valves B and C. There are several redundancies in fuel paths in case of a compo-
nent failure. This model is mainly a pure uml model since uml provides native
mechanisms to associate a behavior (for instance a state machine) to a class,
and therefore to each instance of such a class. However, the semantic models in
ccsl must be replicated for each instance. With adequate tools, like the GeMoC
studio5, this instanciation can be done automatically [7].

5 http://www.gemoc.org - The GeMoC initiative

42 F. Mallet

Fig. 7. Aircraft Fuel System: UML/MARTE composite structure

In this example, the platform is mainly a physical platform. marte does
not provide any particular support for such descriptions except for providing
an annotation mechanism to attach non-functional properties to elements. For
instance here, the flow rates are identified. When the platform is made of digital
elements (processors, memory, buses, networks) then marte proposes a set of
stereotypes in the hardware resource modeling (HRM) and software resource
modeling (SRM) subprofiles.

However, note that the arrows on the ports are not natively provided by uml.
Indeed, composite structures are meant to represent static types and intercon-
nections, not flows of information and even less flows of fuel. marte provides a
stereotype called FlowPort to enhance composite structures with this capability
of describing flows. Stereotype FlowPort comes with a property called direction

whose values can be in, out or inout. This annotation is mainly used to per-
form simple type-checking operations. sysml also supports the same notion of
FlowPort as marte.

In the interconnect or the execution platform is more regular, like for Network-
On-Chips or multi-core processors with a regular topology like a mesh, marte
provides a dedicated annex called Repetitive Structure Modeling (RSM). Exam-
ples of use of marte and ccsl together with RSM can be found elsewhere [11].

4.4 Hybrid models

In sysml constraint blocks, which are used as basic blocks for parametrics, the
relations are built directly using natural language. One can then directly use
traditional mathematical functions to construct the required expressions, as we

MARTE/CCSL for Modeling Cyber-Physical Systems 43

did in the previous subsection. When the functions are linear (as in the AFSM
example), there is no need to rely on hybrid automata. Level crossing can be
computed in a straightforward way. The logical clocks capture the event occur-
rences and identify the points in time where the functions must be evaluated.

In the AFSM example, however, most constraint blocks were relative to fuel
flow rate. So to get the actual fuel level in tanks, one needs to integrate the flow
rates over time. For instance, one can consider the simple abstraction in Eq. 5
to compute the fuel level in a tank.

level =

∫ (∑
i

ini.value−
∑
j

outj .value
)
dt (5)

As the flow rate is expressed as a constant value, the integration can be done
using purely discrete models.

If we consider now a temperature controller, which attempts to maintain
the engine temperature between a range of values, we need to mix discrete and
continuous time. Figure 8 shows such a combination. The temperature follows a
different laws and the variation (derivative over time) is linear with respect to
the current temperature. When the temperature reaches the maximal threshold

Fig. 8. Temperature controller: mixing discrete and continuous time

(e.g., 85 ◦C), the system is overheating and the cooling system is turned on. In
the cooling mode, the temperature follows Eq. 7 as a basic abstraction. Then,
when the temperature goes down and reaches the minimal threshold (e.g., 80 ◦C),

44 F. Mallet

the cooling system is turned down and the temperature raises again.

Normal mode:
dT

dt
= 0.1× (T − 100) (6)

Cooling mode:
dT

dt
= −0.1× (T − 30) (7)

Note that a logical clock called step is used on the state machine. This logical
step is used to drive the integration of the continuous part, using Scilab6 and its
fix-step simulation engine. The ccsl specification is fed into timesquare7 [8], our
analysis tool dedicated to ccsl, ccsl computes possible solutions to the con-
straint system. Based on these solutions it decides which clock ticks (i.e., which
event can occur). When the event step ticks, this drives the SciLab simulation
engine which integrates the temperature controller equations depending on the
current state. The resulting simulation is shown in Figure 9. This integration of

Fig. 9. Mixed simulation with TimeSquare and Scilab.

marte/ccsl models with SciLab is described in more details in a report [13].

6 http://www.scilab.org
7 http://timesquare.inria.fr

MARTE/CCSL for Modeling Cyber-Physical Systems 45

In this chapter, only the discrete aspects of marte clocks have been dis-
cussed. However, in marte clocks can be either a discrete set of ordered in-
stants (i.e., a sequence of event occurrences) or a dense set of instants. The
latter characterization allows for the use of marte clocks in a hybrid settings.
ccsl, however, as defined in Section 3.4 can only describe discrete properties.
An extension of ccsl for dense clocks has initially been defined in [1] and refined
in [19].

4.5 Safety critical

Because CPS are often safety-critical we need to have a precise and sound se-
mantics for the models. The uml is described informally and has many semantic
variation points. This approximative interpretation is very convenient for us to
adapt and restrict the models to our specific needs without risking violating the
usual/general understanding of uml models. In this chapter, we mainly rely on
ccsl and its logical clocks to describe the events of the model. This has the
main advantage to make explicit the expected semantics within the model while
clocks have become first class citizens of uml marte models.

Apart from heterogeneous simulations as illustrated in the previous subsec-
tion, there have been a set of verification techniques and tools developed and
tailored to the analysis of ccsl specifications. This subsection briefly reviews
the different families of analysis techniques available for ccsl.

The first idea that comes into mind is to use ccsl as a specification of the
expected behavior of the discrete control part of the system and to generate the
controller based on this specification. This idea was exploited in [29] using Signal
as an intermediate language. ccsl specifications were transformed into a Signal
program that is then used to synthesize the controller. A similar idea is used in
[27] in order to transform ccsl into a SystemC specification.

Another possible usage of ccsl is to use it to verify an existing implementa-
tion. In such an approach, a ccsl specification is transformed into an observing
automata [20] used to observe some code and raise alarms whenever the specifi-
cation is violated. This observer-based approach was attempted for VHDL and
for the Esterel language. The main difference between those two choices is that
because Esterel Studio comes with a model-checker then the observer can be used
also to make an exhaustive verification of the Esterel implementation model.

Finally, if ccsl expresses the expected behavior, one solution is to analyze
the ccsl specification to establish its intrinsic correctness properties [23]. An
important characteristics of ccsl specifications is whether there are deadlocks
or not. In ccsl, since we have polychronous specifications and the parts of a
specification may be completely uncorrelated, the deadlocks may be only par-
tial, which make them more difficult to detect. Indeed, some clocks may stop
ticking as a specification feature, some others may stop because there is a con-
tradiction between two constraints and no satisfying solution can be found. This
particular aspect was studied and a general criteria was given to detect so-called
bad paths in ccsl specifications. Another very important aspect is safety of
ccsl specifications [22], more precisely usage of bounded memory. Because the

46 F. Mallet

specification is polychronous, some parts are unrelated. If two parts execute at
completely different rates, and in particular if one parts goes ultimately infinitely
faster than another one, then the communication buffers between the two parts
are unbounded.

5 Conclusion

In this chapter, we have presented a view for using a subset of the uml pro-
file for marte to model some important aspects of cyber-physical systems. We
started by emphasizing the generally accepted important characteristics of CPS.
Then we have briefly introduced some parts of the marte specification that are
important to capture some of these aspects and that are not often described in
the literature. Finally the use of those constructs is illustrated mainly through
a classical example of cyber-physical systems taken from the literature, i.e., the
fuel management system of an aircraft. While marte, and uml in general, pro-
vide only a language (as a set of modeling elements), we propose a way to unify
and integrate the different modeling elements and diagrams through the use of
logical clocks. Those logical clocks have become first-class citizens in marte
time subprofile and are handled in our examples through the Clock Constraint
Specification Language. ccsl clocks are used to describe discrete phenomena
and clearly for CPS it has become very important to integrate continuous phe-
nomena as well. marte clocks can be both discrete and dense so it opens a
wide path to more work on defining an adequate specification language able to
combine both discrete and continuous properties.

References

1. André, C.: Syntax and semantics of the Clock Constraint Specification Lan-
guage (CCSL). Research Report 6925, INRIA (May 2009), http://hal.inria.fr/inria-
00384077/

2. André, C., DeAntoni, J., Mallet, F., de Simone, R.: The Time Model of Logi-
cal Clocks available in the OMG MARTE profile, chap. 7, pp. 201–227. Springer
Science+Business Media, LLC 2010 (July 2010), http://hal.inria.fr/inria-00495664

3. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: 10th Int. Conf. on
Model Driven Engineering Languages and Systems (MODELS ’07). pp. 559–573.
No. 4735 in LNCS, ACM-IEEE, Springer, Nashville, TN, USA (September 2007)

4. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1),
64–83 (Jan 2003)

5. Berry, G., Cosserat, L.: The ESTEREL synchronous programming language and its
mathematical semantics. In: Seminar on Concurrency. Lecture Notes in Computer
Science, vol. 197, pp. 389–448. Springer (1984), http://dx.doi.org/10.1007/3-540-
15670-4 19

6. Boulanger, F., Dogui, A., Hardebolle, C., Jacquet, C., Marcadet, D., Prodan,
I.: Semantic adaptation using CCSL clock constraints. ECEASST 50 (2011),
http://journal.ub.tu-berlin.de/eceasst/article/view/731

MARTE/CCSL for Modeling Cyber-Physical Systems 47

7. Combemale, B., DeAntoni, J., Larsen, M.V., Mallet, F., Barais, O., Baudry, B.,
France, R.B.: Reifying concurrency for executable metamodeling. In: 6th Int. Conf.
on Software Language Engineering - SLE 2013. Lecture Notes in Computer Science,
vol. 8225, pp. 365–384. Springer (October 2013)

8. Deantoni, J., Mallet, F.: Timesquare: Treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS (50). Lecture Notes in Computer Science, vol.
7304, pp. 34–41. Springer (2012)

9. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.L.: Modeling cyber-
physical systems. Proceedings of the IEEE 100(1), 13–28 (2012),
http://dx.doi.org/10.1109/JPROC.2011.2160929

10. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems
Modeling Language. MK/OMG (2014)

11. Glitia, C., DeAntoni, J., Mallet, F., Millo, J., Boulet, P., Gamatié, A.: Progres-
sive and explicit refinement of scheduling for multidimensional data-flow applica-
tions using UML MARTE. Design Autom. for Emb. Sys. 16(2), 137–169 (2012),
http://dx.doi.org/10.1007/s10617-012-9093-y

12. Jimenez, J.F., Giron-Sierra, J.M., Insaurralde, C., Seminario,
M.: A simulation of aircraft fuel management system. Simu-
lation Modelling Practice and Theory 15(5), 544–564 (2007),
http://www.sciencedirect.com/science/article/pii/S1569190X07000160

13. Khecharem, A., Gomez, C., DeAntoni, J., Mallet, F., de Simone, R.: Execution of
heterogeneous models for thermal analysis with a multi-view approach. In: Forum
on specification and Design Languages (FDL’14) (2014)

14. Koch, T., Holtmann, J., DeAntoni, J.: Generating EAST-ADL event chains from
scenario-based requirements specifications. In: Software Architecture - 8th Euro-
pean Conference, ECSA 2014, Vienna, Austria, August 25-29, 2014. Proceedings.
Lecture Notes in Computer Science, vol. 8627, pp. 146–153. Springer (2014)

15. Lamport, L.: The parallel execution of do loops. Communications of ACM 17(2),
83–93 (1974)

16. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 17(12), 1217–1229 (December 1998)

17. Lee, E.A.: Cyber physical systems: Design challenges. In: 11th IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC 2008). pp. 363–369. IEEE Computer Society (May 2008),
http://dx.doi.org/10.1109/ISORC.2008.25

18. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. LeeSeshia.org (2014), iSBN 978-0-557-70857-4

19. Liu, J., Liu, Z., He, J., Mallet, F., Ding, Z.: Hybrid marte statecharts. Frontiers of
Computer Science 7(1), 95–108 (2013)

20. Mallet, F.: Logical Time @ Work for the Modeling and Analysis of Embedded Sys-
tems. LAMBERT Academic Publishing (January 2011), iSBN: 978-3-8433-9388-1.

21. Mallet, F., André, C., de Simone, R.: CCSL: specifying clock constraints with
UML/Marte. Innovations in Systems and Software Engineering 4(3), 309–314
(2008)

22. Mallet, F., Millo, J.V., de Simone, R.: Safe CCSL specifications and marked graphs.
In: 11th ACM/IEEE Int. Conf. on Formal Methods and Models for Codesign. pp.
157–166. IEEE (2013)

23. Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci-
ence of Computer Programming (2015), DOI: 10.1016/j.scico.2015.03.001

48 F. Mallet

24. OMG: UML Profile for Schedulability, Performance, and Time Specification, v1.1.
Object Management Group (January 2005), formal/05-01-02

25. OMG: UML Profile for MARTE, v1.1. Object Management Group (June 2011),
formal/2011-06-02

26. OMG: UML Superstructure, v2.4.1. Object Management Group (May 2012),
formal/12-05-07

27. Peters, J., Wille, R., Drechsler, R.: Generating SystemC implementations for clock
constraints specified in UML/MARTE CCSL. In: 2014 19th International Confer-
ence on Engineering of Complex Computer Systems. pp. 116–125. IEEE (2014),
http://dx.doi.org/10.1109/ICECCS.2014.24

28. Selic, B., Gerard, S.: Modeling and Analysis of Real-Time and Embedded Systems
with UML and MARTE. Elsevier (2013)

29. Yu, H., Talpin, J., Besnard, L., Gautier, T., Marchand, H., Guernic,
P.L.: Polychronous controller synthesis from MARTE CCSL timing spec-
ifications. In: 9th IEEE/ACM International Conference on Formal Meth-
ods and Models for Codesign, MEMOCODE 2011. pp. 21–30. IEEE (2011),
http://dx.doi.org/10.1109/MEMCOD.2011.5970507

MARTE/CCSL for Modeling Cyber-Physical Systems 49

An Introduction to Hybrid Automata,
Numerical Simulation and Reachability Analysis

Goran Frehse

Verimag, Université Joseph Fourier - Grenoble 1,
2 avenue de Vignate, Centre Equation,

38610 Giéres, France,
frehse@imag.fr

Abstract. Hybrid automata combine finite state models with contin-
uous variables that are governed by differential equations. Hybrid au-
tomata are used to model systems in a wide range of domains such as
automotive control, robotics, electronic circuits, systems biology, and
health care. Numerical simulation approximates the evolution of the vari-
ables with a sequence of points in discretized time. This highly scalable
technique is widely used in engineering and design, but it is difficult to
simulate all representative behaviors of a system. To ensure that no crit-
ical behaviors are missed, reachability analysis aims at accurately and
quickly computing a cover of the states of the system that are reachable
from a given set of initial states. Reachability can be used to formally
show safety and bounded liveness properties. This chapter outlines the
major concepts and discusses advantages and shortcomings of the differ-
ent techniques.

1 Introduction

Hybrid automata are a modeling formalism that combines discrete states with
continuously evolving, real-valued variables. The discrete states and the possible
transitions from one state to another are described with a finite state-transition
system. A change in discrete state can update the continuous variables and
modify the set of differential equations that describes how variables evolve with
time. Hybrid automata are non-deterministic, which means that different futures
may be available from any given state. Rates of change or variable updates can be
described by providing bounds instead of fixed numbers. Incomplete knowledge
about initial conditions, perturbations, parameters, etc. can easily be captured
this way. Hybrid automata capture a rich variety of behaviors, and are used in a
wide range of domains such as automotive control, robotics, electronic circuits,
systems biology, and health care. The hybrid automaton model is well-suited
for formal analysis, in the sense that sets of behaviors are readily described by
mathematical equations.

In the next section, we present the hybrid automaton formalism with an
example and give a formal definition of the model and its semantics. Behaviors
of hybrid automata are computed in practice using numerical simulation, which

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_3, © Springer Fachmedien Wiesbaden 2015

m

Fs

Fg

xr

xr + L

x

(a) extension

m

Fg

xr

xr + L

x

(b) freefall

Fig. 1. A ball suspended from a ceiling by an elastic string

is presented in Sect. 3. We discuss major aspects such as approximation errors,
stability, stiffness and Zeno behavior. Simulation techniques have recently been
extended to provide formal guarantees for certain classes of systems. Reachability
techniques are discussed in Sect. 4. Different algorithms and data structures are
suitable for reachability, depending mainly on the type of dynamics: piecewise
constant, affine, and nonlinear. We present an overview of the main techniques,
with particular attention to scalability.

Related work is indicated throughout the text, but given the rich literature
on the topic this introduction is far from exhaustive. For further reading, see
[43, 4, 50].

2 Hybrid Automata

We introduce the hybrid automaton formalism with the following example. The
technical details are fleshed out in the sections that follow. Consider a ball that
is suspended from a ceiling by a string, as shown in Fig. 1. We will construct a
simple model that only takes into account the vertical movement of the ball.

Equations of motion. Let x be the variable representing the position of the
ball measured in the upwards direction, and let xr be the position of the ball
when the string is at its natural length L. The ball has mass m and is at all
times subject to a gravitational force

Fg = −mg.

The string is elastic, so when the string is extended beyond its natural length
L, i.e., x ≤ xr, it acts as a damped spring pulling the ball upwards with a force

Fs = −k(x− xr)− dẋ,

where k is the spring constant and d is a damping factor that models the loss of
energy through deformation of the string. When x ≥ xr, the string is slack and
only the gravitational force is acting on the ball.

An Introduction to Hybrid Automata 51

Fig. 2. A hybrid automaton model of a ball on string, constructed in the tool SpaceEx.
In the flow equations, x′ denotes the derivative ẋ

The case distinction for the string force leads to two discrete states of the
system, which we shall call freefall and extension. Each state is associated with
a different set of differential equations and active for different values of x. The
system is in freefall when x ≥ xr and we have

mẍ = Fg = −mg.

The system is in extension when x ≤ xr, with

mẍ = Fg + Fs = −mg + kxr − kx− dẋ.

A discrete event, also called transition, takes place when the ball hits the
ceiling, i.e., when x = xr + L. We assume that the collision is elastic, so the
velocity of the ball changes its sign and is diminished by a factor c ∈ [0, 1] that
reflects the loss of energy during the collision. Denoting the value of x after the
collision with x′, we get

ẋ′ = −cẋ.

Hybrid automaton model. Figure 2 shows a hybrid automaton that models
the system. Each discrete state, also called location, is labelled with the differen-
tial equations that govern the variables. Typically, this is a first-order ordinary
differential equation system (ODE) of the form

ẋ = f(x).

We refer to the ODE as the dynamics of the system. To bring the laws of motion
to ODE form we introduce an auxiliary variable to replace ẍ. Let v be the velocity
of the ball, i.e., ẋ = v. Then ẍ = v̇ and we can substitute ẍ with v̇. Solving the
equations so that all derivatives are on the left hand side leads to the dynamics
shown in Fig. 2.

In addition to the ODE, the locations are also labelled with a staying condi-
tion, called invariant. It characterizes any non-differential conditions that must

52 G. Frehse

hold whenever the system is in the location, such as boundary conditions or alge-
braic equations. In location extension, the invariant is x ≤ xr since this is when
the string extends beyond its natural length. In location freefall, the invariant
is given by two constraints: Since the ball needs to be above where it extends
the string, we have x ≥ xr. Since the ball cannot go further up than the ceiling,
which is located at x = xr + L, we have x ≤ xr + L.

When the ball does hit the ceiling with positive velocity, it bounces off and
its velocity changes sign. This is modeled by a transition with label bounce. It
goes from location freefall to freefall, since the ball remains subject to the same
differential and boundary conditions. The transition is labeled with a guard
condition

x = xr + L ∧ v > 0,

which must be satisfied for a state to be able to take the jump. The target state
after the jump is expressed by the assignment

v′ = −cv.

Variables not mentioned in the assignment are considered unchanged.
Transitions up and down model the switching between freefall and extension.

A guard condition on the velocity of the ball is included to avoid unnecessary
switches when the ball is on the switching border x = xr and v = 0. It also
helps verification tools that are based on overapproximations, since it excludes
unnecessary switches.

Run semantics. The behavior of a hybrid automaton is described by the evo-
lution of its continuous variables and its location, i.e., its discrete state. Note
that in general there need not be any correspondence between the values of the
variables, called the continuous state, and the discrete state. In our example,
the ball can be in position x = xr in location freefall and in location extension,
independently of the value of v. The combination of the continuous state and the
discrete state is called the state of the hybrid automaton. The state, by defini-
tion, is what determines the set of possible futures of the system. The evolution
of the state over time is called a run of the system. In the following, we choose
the parameter values L = 1, xr = 0, k = 100, d = 4, c = 0.8, m = 1, and g = 10.

Figure 3 shows the evolution of the variables x, v over time, starting from
x0 = −1, v0 = 0, and location extension. We follow this evolution location by
location:

1. The ball is pulled upwards by the string until x1 = xr, at which point the
automaton can no longer spend time in location extension since otherwise
the invariant x ≤ xr would be violated. Since v is positive, the transition
up to location freefall is enabled, and taking it is the only possible future in
which time can progress.

2. From (x1, v1), the ball continues its upward motion in a parabola until it
reaches the ceiling at x2 = xr + L, where the invariant x ≤ xr + L ensures
that the only possible future is to take the transition bounce. The transition
instantaneously changes the velocity from v−2 to v2, see Fig. 3(b).

An Introduction to Hybrid Automata 53

0 0.5 1 1.5 2 2.5

−1

0

1

x0

x1

x2

x3
x4

x5

t

p
o
si
ti
o
n

x

(a) position x over time t

0 0.5 1 1.5 2 2.5

−5

0

5

v0

v1

v−
2

v2

v3

v4

v5

t

v
e
lo
c
it
y
v

(b) velocity v over time t

Fig. 3. A run of the ball on string model consists of a sequence of trajectories. Trajec-
tories in location extension are shown in black, trajectories in freefall in gray

3. From (x2, v2), the ball falls towards the ground. When x3 = xr, the transition
down, which is enabled since v < 0, leads to location extension.

4. The ball is pulled upwards until it reaches x = xr, where the transition up
leads to location freefall.

5. In location freefall at (x4, v4), the ball follows a parabola until x5 = xr,
where the transition down takes it back to location extension.

6. The trajectory from (x5, v5) remains in the invariant for all time, and none
of the transitions are enabled. The ball converges towards its equilibrium
point.

Each of the steps of the above sequence corresponds to one location and a differ-
entiable function of time representing the evolution of the continuous variables.
Going from one step to the next is associated with the label of corresponding
transition. Such a sequence is called the run of a hybrid automaton, and the set
of runs defines the semantics (the set of behaviors) of the system.

2.1 Preliminaries

Hybrid automata describe the evolution of a set of real-valued variables over
time. We now introduce the notation for describing sets of values for these vari-
ables.

54 G. Frehse

Variables. Let X = {x1, . . . , xn} be a finite set of identifiers we call variables.
Attributing a real value to each variable we get a valuation over X, written as
x ∈ R

X or x : X → R. We will use the primed variables X ′ = {x′
1, . . . , x

′
n} to

denote successor values and the dotted variables Ẋ = {ẋ1, . . . , ẋn} to denote the
derivatives of the variables with respect to time. Given a set of variables Y ⊆ X,
the projection y = x ↓Y is a valuation over Y that maps each variable in Y to
the same value that it has in x. We may simply use a vector x ∈ R

n if it is clear
from the context which index of the vector corresponds to which variable. We
denote the i-th element of a vector x as xi or x(i) if the latter is ambiguous. In
the following, we use Rn instead of RX except when the correspondance between
indices and variables is not obvious, e.g., when valuations over different sets of
variables are involved.

Predicates. A predicate over X is an expression that, given a valuation x over
X, can be evaluated to either true or false. A linear constraint is a predicate

a1x1 + a2x2 + · · ·+ anxn ≤ b,

where a1, . . . an and b are real-valued constants, and whose sign may be strict
(<) or nonstrict (≤). A linear constraint is written in vector notation as

aTx ≤ b,

with coefficient vector a ∈ R
n and inhomogeneous coefficient b ∈ R. A predicate

over X defines a continuous set, which is the subset of RX on which the predicate
evaluates to true.

Polyhedra. A conjunction of finitely many linear constraints defines an H-
polyhedron, or polyhedron in constraint form,

P =
{
x
∣∣∣ ∧m

i=1
aTix ��i bi

}
, with ��i∈ {<,≤},

with facet normals ai ∈ R
n and inhomogeneous coefficients bi ∈ R. In vector-

matrix notation, an H-polyhedron can be written as

P =
{
x
∣∣∣ Ax �� b

}
, with A =

⎛
⎝ aT

1

...
aT
m

⎞
⎠, ��=

(
��1

...
��m

)
,b =

(
b1
...

bm

)
.

An H-polyhedron is a closed set if it can be defined using only nonstrict con-
straints. A bounded polyhedron is called a polytope. Note that the constraints
defining P are not necessarily unique. A closed polyhedron P can be represented
in generator form by a pair (V,R), where V ⊆ R

n is a finite set of vertices, and
R ⊆ R

n is a finite set of rays. They define the V-polyhedron

P =
{∑
vi∈V

λi · vi +
∑
rj∈R

μj · rj
∣∣∣ λi ≥ 0, μj ≥ 0,

∑
i

λi = 1
}
,

An Introduction to Hybrid Automata 55

which consists of the convex hull of the vertices, extended towards infinity along
the directions of the rays. The generator representation can be extended with
closure points to deal with non-closed polyhedra [10]. An H-polyhedron can be
converted to a V-polyhedron and vice versa, but this may increase the complexity
exponentially.

2.2 Definition and Semantics

We now give a formal definition of a hybrid automaton and its run semantics.

Definition 1 (Hybrid automaton). [5, 35] A hybrid automaton

H = (Loc, Lab,Edg, X, Init, Inv,Flow, Jump)

consists of

– a finite set of locations Loc = {�1, . . . , �m} represents the discrete states,
– a finite set of synchronization labels Lab, also called its alphabet, which can

be used to coordinate state changes between several automata,
– a finite set of edges Edg ⊆ Loc × Lab × Loc, also called transitions, which

determines which discrete state changes are possible using which label,
– a finite set of variables X = {x1, . . . , xn}, partitioned into uncontrolled vari-

ables U and controlled variables Y ; a state of H consists of a location � and
a value for each of the variables, and is denoted by s = (�,x);

– a set of states Inv called invariant or staying condition; it restricts for each
location the values that x can possibly take and so determines how long the
system can remain in the location;

– a set of initial states Init ⊆ Inv; every behavior of H must start in one of
the initial states;

– a flow relation Flow, where Flow(�) ⊆ R
Ẋ × R

X gives for each state (�,x)
the set of possible derivatives ẋ, e.g., using a differential equation such as

ẋ = f(x);

Given a location �, a trajectory of duration δ ≥ 0 is a continuously dif-
ferentiable function ξ : [0, δ] → R

X such that for all t ∈ [0, δ], (ξ̇(t), ξ(t)) ∈
Flow(�). The trajectory satisfies the invariant if for all t ∈ [0, δ], ξ(t) ∈ Inv(�).

– a jump relation Jump, where Jump(e) ⊆ R
X×R

X′
defines for each transition

e ∈ Edg the set of possible successors x′ of x; jump relations are typically
given by a guard set G ⊆ R

X and an assignment (or reset) x′ = r(x) as

Jump(e) = {(x,x′) | x ∈ G ∧ x′ = r(x)}.
We define the behavior of a hybrid automaton with a run: starting from one of
the initial states, the state evolves according to the differential equations whilst
time passes, and according to the jump relations when taking an (instantaneous)
transition. Special events, which we call uncontrolled assignments, model an
environment that can make arbitrary changes to the uncontrolled variables.

56 G. Frehse

Definition 2 (Run semantics). A run of H is a sequence

(�0,x0)
δ0,ξ0−−−→ (�0, ξ0(δ0))

α0−→ (�1,x1)
δ1,ξ1−−−→ (�1, ξ1(δ1)) . . .

αN−1−−−−→ (�N ,xN),

with αi ∈ Lab ∪ {τ}, satisfying for i = 0, . . . , N − 1:

1. The first state is an initial state of the automaton, i.e., (�0,x0) ∈ Init.
2. Trajectories: In location �i, ξi is a trajectory of duration δi that satisfies the

invariant.
3. Jumps: If αi ∈ Lab, there exists a transition (�i, αi, �i+1) ∈ Edg with jump

relation Jump(e) such that (ξi(δi),xi+1) ∈ Jump(e) and xi+1 ∈ Inv(�i+1).
4. Uncontrolled assignments: If αi = τ , then �i = �i+1 and ξi(δi) ↓Y = xi+1 ↓Y .

This represents arbitrary assignments that the environment might perform
on the uncontrolled variables U = X \ Y .

A state (�,x) is reachable if there exists a run with (�i,xi) = (�,x) for some i.

Note that the strict alternation of trajectories and jumps in Def. 2 is of no par-
ticular importance. Two consecutive jumps can be represented by inserting a
trajectory with duration zero (which always exists), and two consecutive tra-
jectories can be represented by inserting an uncontrolled assignment jump that
does not modify the variables.

Example 1 (Ball/String). The Ball on String example is modeled by the hybrid
automaton shown in Fig. 2. All elements except the labels and the initial states
are visible in the figure. Since we do not expect x or v to be modified by the
environment, we consider both variables to be controlled (as is usually the case
for variables whose derivative is given). The set of synchronization labels is Lab =
{bounce, up, down}. For now, we assume Init = {extension} × {x = −1, v = 0}.

In location extension, the dynamics are those of a damped oscillator. The
ODE system is linear in the variables x and v, so its solution is a combination of
exponential, sine and cosine functions of time. In location freefall , the dynamics
are also linear, but of a particularly simple kind. The derivative of v is constant,
v̇ = −g, so that v evolves in a straight line and x in a parabola. Figure 4 shows
the trajectories of the same run as in Fig. 3, but in the state space (also called
phase space), which allows one to graph over an infinite time horizon.

May and Must semantics. In Def. 2, transitions may be taken when they
are enabled, but there is no obligation to do so – the system may remain in
a location as long as the invariant is satisfied. These so-called may semantics
allow one to include nondeterminism about when a transition will be taken, e.g.,
when it is not clear how fast a discrete controller will react to a stimulus. In the
Ball/String example, this could be used if the length of the string (position of the
ceiling) is not exactly known. In contrast, must or ASAP semantics dictate that
the transition is taken as soon as possible. These semantics are used by simula-
tors such as Simulink [45], Dymola [13], MapleSim [44], etc., since they require
deterministic models. Some verification tools, like HyTech [32] and PHAVer [23],
allow one to include both types of transitions.

An Introduction to Hybrid Automata 57

−1 −0.8 −0.6 −0.4 −0.2 0

−5

0

5

x0

ξ0(δ0)

x3

ξ3(δ3)

x5

position x

v
e
lo
c
it
y
v

(a) location extension

0 0.2 0.4 0.6 0.8 1

−5

0

5

x1

ξ1(δ1)

x2

ξ2(δ2)

x4

ξ4(δ4)

position x

v
e
lo
c
it
y
v

(b) location freefall

Fig. 4. A sample run of the ball/string example, with trajectories ξ0, . . . , ξ5. The initial
state x0 corresponds to the variable values x = −1, v = 0 in location extension. The
arrows indicate the direction and magnitude of the derivative

3 Numerical Simulation

The approximate computation of a run of a hybrid automaton is called numerical
simulation. This technique is widely applied in industrial practice and has the
distinct advantage that precise and highly scalable algorithms are available. In
this section, we briefly introduce the basic principles and discuss the major
difficulties. Numerical simulation is related to formal verification in several ways:

– The reachability methods of Sect. 4 are built on the same principles, and
similar difficulties arise, such as numerics, stability, stiffness and Zeno.

– Set-based extensions of numerical simulation algorithms are available in both
approximate [12] and conservative forms [11].

– Verification-by-simulation techniques extend simulation runs to their neigh-
borhoods such that coverage can be formally guaranteed.

– Numerical simulation is typically the validation technique used for construct-
ing models. Knowing its strengths and limitations may help to avoid mod-
eling errors and oversights.

– In testing, a large number of simulation runs are computed to sample as much
of the state space as possible. Various guiding schemes choose these runs
intelligently, aiming to achieve coverage similar (but not equal) to formal
methods.

Computing a simulation run for a given maximum number of jumps and a given
time horizon consists of the following steps:

1. Choose a single state from the set of initial states.
2. Continuous step: Compute a trajectory by solving the ODE of the location,

stopping when the invariant is violated or the time horizon has been reached.

58 G. Frehse

3. Discrete step: Detect the transitions that are enabled along the trajectory. If
available, choose one of the transitions, and a time point when it is enabled.
Compute one of the successor states of the jump.

4. If the maximum number of jumps or the time horizon has been reached,
stop. Otherwise, continue with step 2.

In the following section, we present an overview on solving ODEs, which is the
main ingredient for the continuous step. In Sect. 3.2, we discuss how to detect
state-based events, such as violating the invariant or entering a guard, which
is the main ingredient for the discrete step. In actual implementations, both
techniques are intertwined to generate a sequence of states on the run with as
little computational overhead as possible.

3.1 Solving ODEs

We consider an ordinary differential equation (ODE) of the form

ẋ = f(x),

where ẋ = dx/dt represents the rate of change of x with respect to time t ∈
R

≥0. Solving the ODE for a given initial state x0 and time horizon T means
to find a function ξ(t) such that ξ(0) = x0 and ξ̇(t) = f(ξ(t)) for all t ∈ [0, T].
This is referred to as an initial value problem. We are interested in solving the
ODE numerically, which means computing a sequence of states x0, . . . ,xN that
approximates ξ(t) at time points t0, . . . , tN . The choice of time points is either
fixed with a given time step h, i.e.,

ti+1 = ti + h,

or h is adapted on the fly in order to achieve a given error bound. Standard ODE
solvers do not guarantee actual error bounds at the computed points, since such
bounds are frequently overly conservative in practice. Instead, it is guaranteed
that, at least for certain classes of problems, the approximation error vanishes
as h → 0. While in engineering practice the linear interpolation between these
points is typically considered a good approximation of ξ(t), there are no a-priori
bounds on the distance between the linear interpolation and the actual solution.
We now provide a brief overview over the main methods for solving ODEs, a
readable introduction can be found, e.g., in [14]. In the following, we consider
ODEs of a single variable x. The extension to a vector x is straightforward.

Euler’s Method The simplest integration method is called Euler’s method. It
computes the sequence

xi+1 = xi + f(xi)h. (1)

An estimation for the local error, i.e., the error made at each step, can be ob-
tained by comparing the sequence to a Taylor series expansion around xi,

xi+1 = xi + ẋih+
ẍi

2!
h2 + . . .+

(n−1)
xi

n!
hn +O(hn+1), (2)

An Introduction to Hybrid Automata 59

where O(hn+1) specifies that the truncation error is proportional to hn+1 if h is
chosen small enough. Substituting ẋi = f(xi), we can see that the first two terms
of the Taylor expansion are identical to Euler’s sequence. The local (one-step)
approximation error is therefore εa = O(h2).

The global error is the sum of the local errors at each step. Note that local
errors may cancel each other out. The estimation of the global error is more
complex than for the local error, but it can be shown for Euler’s method that it
is O(h). It is therefore called first-order method. In principle, this means that
any desired accuracy can be achieved by choosing h small enough. However, we
must also take the numerical roundoff error into account, which is O(1/h). If the
time steps are too small, the roundoff error will surpass the approximation error
and the accuracy will decrease. This limitation is common to all ODE solvers,
and motivates the search for integration methods with a smaller error for the
same number of function evaluations.

Example 2 (Ball/String). Figure 5 shows approximations of a trajectory in loca-
tion extension, starting from x = −1, v = 0. Euler’s method was applied for time
steps h = 0.05, 0.025, 0.0125, 0.00625. For h = 0.05, the Euler approximation di-
verges towards infinity. With decreasing time steps, the approximation converges
towards the exact solution, shown in black. For h = 0.00625, the global error at
the end of the trajectory amounts to 175% of the exact value. The state space
view in Fig. 5(b) superimposes the trajectory approximation with a quiver plot
of the derivative. At each xi in the sequence, Euler’s method applies the local
derivative f(xi) for h time units, i.e., it follows f(xi) along a straight line.

Stability and Implicit Methods If the time step is too large, the global error
of Euler’s method may go quickly to infinity. Consider the linear ODE

ẋ = ax, (3)

which converges to zero for a < 0. Euler’s method computes the sequence

xi+1 = xi + f(xi)h = xi + axih = (1 + ah)xi.

This sequence converges to zero iff |1 + ah| < 1. If h > −2/a, then |xi| → ∞
as i → ∞. Because Euler’s method converges only under certain conditions, it
is called conditionally stable. An unconditionally stable method is the backwards
Euler method, which computes the sequence

xi+1 = xi + f(xi+1)h. (4)

The backwards Euler method is an implicit method, since the unknown value
xi+1 figures on both sides of the equation. It must be computed iteratively, e.g.,
using root-finding techniques. Like other implicit methods, the backwards Euler
method thus requires more function evaluations than explicit methods. For the
linear ODE (3), the backwards Euler sequence can be rearranged to

xi+1 =
1

1− ah
xi.

60 G. Frehse

0 0.2 0.4 0.6 0.8 1

−1

0

1
h = 0.05

h = 0.025

h = 0.0125

t

p
o
si
ti
o
n

x

(a) position x in the time domain

x1

x2

x3

h = 0.05

h = 0.025

−1.5 −1 −0.5 0 0.5 1 1.5

−10

−5

0

5

10

15

x0

x

v
e
lo
c
it
y
v

(b) state space, with arrows indicating the derivative

Fig. 5. A trajectory of the ball/string example, approximated with Euler’s method for
varying time steps. The exact solution is shown in solid black

Since 1
1−ah < 1 for all a < 0 and h > 0, the backwards Euler method converges

whenever the ODE does, independently of the step size. It is therefore called
unconditionally stable.

Runge-Kutta Methods Runge-Kutta (RK) methods are a family of higher-
order integration methods that use intermediate evaluations of f(x) to improve
the precision. Explicit Runge-Kutta methods compute the sequence

xi+1 = xi + φ(xi, h)h, (5)

An Introduction to Hybrid Automata 61

where the increment function φ(xi, h) can be interpreted as a representative
slope over the time interval. The increment function is given as

φ(xi, h) = a1k1 + a2k2 + · · ·+ ankn, (6)

where the ai are constants and the ki are obtained by evaluating the ODE at
intermediate states,

k1 = f(x̂1
i), x̂1

i = xi,
k2 = f(x̂2

i), x̂2
i = xi + q11k1h,

k3 = f(x̂3
i), x̂3

i = xi + q21k1h+ q21k2h,
...

...
kn = f(x̂n

i), x̂n
i = xi + q(n−1)1k1h+ q(n−1)2k2h+ · · ·+ q(n−1)(n−1)kn−1h,

(7)

where the qij are constants. Note that k1 is used to derive the intermediate state
x̂2
i that leads to k2, etc. The parameters ai,qij are derived by equating the terms

in (5) to those of a Taylor series expansion, so the method has zero error if the
solution is a nth order polynomial. There are more parameters than terms, so
the remaining parameters can be chosen to optimize other properties such as
the truncation error. Euler’s method is a RK method with n = 1 and a1 = 1.
Ralston’s method is given by n = 2, a1 = 1/3, a2 = 2/3, and q11 = 3/4, and is
the second-order RK method with the smallest truncation error. Runge-Kutta
methods for n = 2, . . . , 5 are used in practice, with truncation error O(hn+1)
and global error O(hn).

Example 3 (Ball/String). Figure 6 shows approximations of the trajectory from
Ex. 2, using Ralston’s method for h = 0.1, 0.05, 0.025, 0.0125. The number of
evaluations for h = 0.1 with Ralston’s method is the same as with Euler’s method
at h = 0.05. At h = 0.025, the global error at the end of the trajectory is 33% of
the exact value, while at h = 0.0125 it is 7%, which is consistent with a global
error of O(h2). Figure 6(b) shows the approximation with a quiver plot of the
derivative and illustrates that the xi+1 are closer to the real solution than the
x̂2
i from which they are derived.

Error estimation and adaptive time steps Relatively precise error esti-
mates can be obtained by comparing the result of two sequences with different
levels of precision. One such approach is halving time steps, i.e., taking the
difference between the result for time steps h/2 and h. Another is to take the
difference between a (n−1)th order and a nth order solver. Runge-Kutta-Fehlberg
(RKF) methods combine (n− 1)th order and nth order RK methods such that
the intermediate results from one sequence are used in the other, so it requires
no more evaluations than an nth order RK method on its own. Popular ODE
solvers are RKF 2(3) and RKF 4(5), also known as ode23 and ode45.

The estimated error can be used to adapt the time steps. Let εa be the
current estimate of the truncation error, and εd be the desired error. The time
step can be adapted, e.g., using h ← h

∣∣εd/εa∣∣α, where α = 0.25 if εa < εd, and
α = 0.2 otherwise [48].

62 G. Frehse

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5 h = 0.1

x1

x2

x3

x̂2
1

x̂2
2

x̂2
3

h = 0.05

t

p
o
si
ti
o
n

x

(a) position x in the time domain

x̂2
1

x̂2
2

x̂2
3

x̂2
4

h = 0.1

x1

x2

x3

x4

h = 0.05

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−6

−4

−2

0

2

4

6

8

x0

x

v
e
lo
c
it
y
v

(b) state space, with arrows indicating the derivative

Fig. 6. A trajectory of the ball/string example, approximated with Ralston’s method
for different time steps h. Intermediate states x̂2

i are shown as squares for h = 0.1, the
exact solution is shown in solid black

Stiff Systems A system of ODEs is called stiff if it involves rapidly changing
components together with slowly changing ones, typically with time constants
differing by a factor of 1000 or more. On the scale of the slow time constant,
the rapid changes thus seem to take place nearly instantaneously, and have little
effect once they have died down. Nonetheless, solvers are forced to take tiny
time steps throughout the entire time horizon due to stability problems caused
by the fast time constants: the approximation error in each step moves the rapid
component away from its equilibrium, which is followed by a rapid move back to
the equilibrium that must be taken into account by taking small steps. Special

An Introduction to Hybrid Automata 63

0 0.02 0.04 0.06 0.08 0.1

−1

−0.5

0

h = 5 · 10−4

h = 2.5 · 10−4

h =

{
2.5 · 10−4, t ≤ 0.4
10 · 10−4, t > 0.4

x0

t

p
o
si
ti
o
n
x

0 0.02 0.04 0.06 0.08 0.1

0

10

20

30

h = 5 · 10−4

h = 2.5 · 10−4

h =

{
2.5 · 10−4, t ≤ 0.4
10 · 10−4, t > 0.4

v0

t

v
el
o
ci
ty

v

Fig. 7. When applied to stiff systems, Runge Kutta methods can be very sensitive to
the time step and require a small time step throughout. Increasing the time step h
even during slow phases can make the approximation diverge

solvers are available for stiff ODEs, using implicit methods to achieve stability
at larger time steps.

Example 4 (Ball/String). The Ball/String system is stiff for sufficiently small
values of the mass m. Figure 7 shows several approximations of the velocity
trajectory from Ex. 2, obtained using Ralston’s method for m = 1/1000. To
obtain a stable result, the time step h must be about a factor 100 smaller than
in Ex. 3. For h = 0.5 · 10−4, the solution is qualitatively false: v remains close
to zero (x is approximated curiously well). For h = 0.25 · 10−4, the solution is
approximated well, which indicates how sensitive the error is to the time step.
The bold line depicts the trajectory obtained by using a time step h = 0.25 ·10−4

up to t = 0.04, and then switching to h = 10·10−4. Twenty steps after the switch,
the sequence suddenly diverges to infinity.

3.2 Computing Trajectories and Jumps

Using an appropriate ODE solver from the previous section, we can approximate
points on a trajectory in a given location up to arbitrary precision. However, we
need to detect when the trajectory leaves the invariant, since this poses a hard
limit on how long the system can stay in the location. This is related to the
problem of detecting jumps, i.e., finding out when any of the outgoing transitions
are enabled. Both types of events can be detected as a zero crossing of suitable
functions that are zero on the border of the invariant and guard sets. Typically,

64 G. Frehse

a vector of such functions is passed to the ODE solver, which stops whenever
one of the functions changes sign from integration step to another. The solver
then uses a root-finding algorithm to approximate the exact time of the crossing
and returns the time and corresponding state at the crossing.

Shortcomings. Several difficulties arise in the above procedure, for a detailed
discussion see [51]:

– Missed events: It is hard to ensure that no roots are missed. This means that
violations of the invariants or states in the guard could go undetected.

– Increased computational cost: Using the ODE solver over a strictly increasing
sequence of time points allows it to reuse certain intermediate states. This
advantage is lost through the back-and-forth of the root-finding algorithm.

– Relaxed constraints: Since the ODE can only be solved approximately, the
crossing state may lie slightly outside the guard or invariant. Relaxing the
constraints to account for numerical errors may generate spurious behavior.

Zeno Behavior The switching times in a hybrid system may get closer and
closer together, to the point that the sequence of switching times converges.
This means that an infinite amount of events take place in a finite amount of
time. Such behavior is called Zeno, and poses a particular problem for numerical
simulation, since the simulator seems to get “stuck” as switching times converge.

Example 5 (Ball/String). Consider the Ball/String system turned upside down
by reversing the gravitational acceleration to g = −10. In this form it becomes a
variation of the well-known bouncing ball, a standard example for Zeno behavior.
Figure 8 shows a run, starting from x = −1, v = 0, in which the switching times
converge at around t = 5.5.

3.3 Accounting for Nondeterminism

The biggest challenge for numerical simulation is nondeterminism, such as

– sets of states: a state must be selected from the set of initial states and from
the successor states in the jump relation;

– jumps times: the jump time of a transition with may semantics must be
chosen from an interval of time;

– dynamics: a differential inclusion, such as ẋ ∈ [−1, 1], leaves a choice for the
derivative at each time step;

– discrete successors: if several guards are enabled simultaneously, one must
choose between transitions;

A numerical simulation needs to pick one value from the set of possible choices
in order to compute the next state. The set of possible runs from a single initial
state grows exponentially with each choice. This is particularly detrimental if
the dynamics are nondeterministic, where the choice is made at every time step.

An Introduction to Hybrid Automata 65

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

x0

t

p
o
si
ti
o
n
x

0 1 2 3 4 5 6

−5

0

5

10

v0

t

v
el
o
ci
ty

v

Fig. 8. Zeno behavior in the Ball/String example for g = −10. Trajectories in location
extension are shown in black, trajectories in freefall in gray

Typical simulation environments such as Simulink [45], Modelica [46], or
Ptolemy [21] use purely deterministic models with must semantics (ref. Sect 2.2),
which make jump times deterministic. One way to deal with the complexity
resulting from nondeterminism is to associate probabilities to the choices. This
leads to stochastic hybrid systems, for which techniques such as Monte Carlo
simulation can produce a sampling of the possible runs that is associated with
probabilities [15].

3.4 Verification by simulation

Verification by simulation techniques aim at formally proving bounded-horizon
properties by computing a finite number of trajectories [22, 37]. A so-called bisim-
ulation metric is established to identify a neighborhood around each state such
that the states inside remain sufficiently close together for all time. Under suit-
able assumptions, this makes it possible to identify a finite subset of initial states
whose trajectories are sufficient to show certain properties of the system [28].
Similar techniques can be applied for parameter synthesis [20].

4 Reachability Analysis

Reachability analysis extends the concept of numerical simulation from numbers
to sets. By computing with sets of states, nondeterminism in the model can be
fully taken into account, and the analysis can be exhaustive, even up to an infi-
nite time horizon. Furthermore, successor computations can be conservative in

66 G. Frehse

the sense that the computed sets are sure to cover all solutions. Just like nu-
merical simulation, reachability has to resort to approximations if the dynamics
of the system are complex. On the downside, the cost of set-based computa-
tions generally increases sharply with the number of continuous variables, so
scalability is critical. Scalable approximations are available for certain types of
dynamics, as discussed later in this section, but this performance comes at a
price in accuracy. The trade-off between runtime and accuracy remains a central
problem in reachability analysis.

Decidability. The problem whether a given state is reachable from the initial
states is generally undecidable for hybrid automata, which means that no al-
gorithm exists that eventually terminates with the right answer [35]. The main
subclass for which the problem is decidable are timed automata, where all deriva-
tives have the value 1, guards are given by constraints with only one variable
each (this may be extended to include the difference between two variables), and
jumps either leave a variable unchanged or reset it to a constant value.

4.1 Reachability Algorithm

The standard method to compute the reachable states is to iterate the following
one-step successor operators for discrete and continuous transitions. Given a set
of states S, let PostC(S) be the set of states reachable by letting time elapse
from any state in S,

PostC(S) = {(�, ξ(δ)) | ∃(�, x) ∈ S : (�,x)
δ,ξ−−→ (�, ξ(δ))}.

Let PostD(S) be the set of states resulting from a jump from any state in S,

PostD(S) = {(�′,x′) | ∃(�′,x′) ∈ S, ∃α ∈ Lab ∪ {τ} : (�,x)
α−→ (�′,x′)}.

Starting from the initial states, PostC(S) and PostD(S) are computed in alterna-
tion and all states that are obtained are recorded, as in the following sequence:

R0 = PostC(Init), (8)

Ri+1 = Ri ∪ PostC(PostD(Ri)). (9)

If the sequence reaches a fixed-point, i.e., when Ri+1 = Ri, then Ri is the set
of reachable states. Note that simply computing the sequence and testing for a
fixed-point may not lead to termination, even for systems where reachability is
decidable. E.g., a system with an (unbounded) counter would enter a new state
at each iteration such that the fixed-point is never reached.

In tools such as HyTech [33], PHAVer [23] and SpaceEx [24], the sequence
(8) is computed using symbolic states s = (�,P), where � ∈ Loc and P is a
continuous set, e.g., a polyhedron. Computing the timed successors PostC of a
symbolic state s = (�,P) produces a new symbolic state s′ = (�,P ′). Computing
the jump successors PostD of s = (�,P) involves iterating over all outgoing

An Introduction to Hybrid Automata 67

Fig. 9. Reachable states of the ball/string example, computed using SpaceEx

transitions of �, and produces a set of symbolic states {s′1, . . . , s′N}, each in
one of the target locations. A waiting list contains the symbolic states whose
successors still need to be explored, and a passed list contains all symbolic states
computed so far. The fixed-point computation proceeds as follows:

1. Initialization: Compute the continuous successors of the initial states and
put them on the waiting list.

2. Pop a symbolic state s from the waiting list and compute its one-step suc-
cessors {s′1, . . . , s′N} = PostC(PostD(s)).

3. Containment checking: Discard the s′i that have previously been encoun-
tered, i.e., those contained in any symbolic state on the passed list. Add the
remaining symbolic states to the passed and waiting list.

4. If the waiting list is empty, terminate and return the passed list as the
reachable states. Otherwise, continue with step 2.

Different approaches are taken for computing the one-step successors, depending
on the type of dynamics. In the following sections, we present the major methods.

Example 6. Figure 9 shows the reachable states of the ball/string example, start-
ing from an initial set of −1.05 ≤ x ≤ −0.95, −0.1 ≤ v ≤ 0.1 in location
extension. Initializing the waiting list with the continuous successors of the in-
tial states, the fixed point is reached on the 6th iteration. Each symbolic state
corresponds to a segment of the run from Ex. 1, and contains all of the corre-
sponding trajectories, from any of the initial states.

68 G. Frehse

4.2 Piecewise Constant Dynamics

Hybrid automata with piecewise constant dynamics (PCDA), also called linear
hybrid automata (LHA), have

– initial states and invariants given by conjunctions of linear constraints,
– flows given by conjunctions of linear constraints over the derivatives Ẋ, and
– jumps given by linear constraints over X∪X ′, where X ′ denote the variables

after the jump.

The one-step successors of PCDA can be computed exactly, which is not the
case for the more complex dynamics discussed in later sections. For simplicity
we will assume that flow constraints are closed and bounded. Examples for flow
constraints of a PCDA include differential inclusions such as ẋ ∈ [1, 2], and
conservation laws such as ẋ + ẏ = 0. The jump constraints of a PCDA can
generate complex behavior, and even chaos [16]. For example, PCDA can model
discrete-time affine systems, a widely used class of control systems, with jump
constraints of the form x′ = Ax+ b.

Continuous successors. In the following, we discuss how to compute the states
reachable by time elapse in a given location �. Since � is clear from the context
we call x a (continuous) state. By definition, a trajectory can be an arbitrarily
curved function as long as it is differentiable and satisfies the constraints of flow
and invariant. For PCDA, it suffices to consider straight-line trajectories:

Lemma 1. [36] In any given location of a PCDA, there is a trajectory ξ(t) from
x = ξ(0) to x′ = ξ(δ) for some δ > 0 iff η(t) = x+ qt with q = (x′ − x)/δ is a
trajectory from x to x′.

Consider polyhedra P and Q. The states on straight line trajectories starting in
P with constant derivative ẋ = q for any q ∈ Q are the time successors [6].

P↗Q = {x′ | x ∈ P,q ∈ Q, t ∈ R
≥0,x′ = x+ qt}. (10)

We now transform the right-hand term of (10) into a linear constraint. Let
P and Q be polyhedra given in vector-matrix form as P = {x | Ax ≤ b},
Q = {q | Āq ≤ b̄}. Eliminating q = x′−x

t for t > 0 and multiplying with t yields

P↗Q =
{
x′
∣∣∣ Ax ≤ b ∧ Ā(x′ − x) ≤ b̄ · t ∧ t ≥ 0

}
. (11)

The above set is a polyhedron that can be computed by quantifier elimination
over X ∪ {t} using, e.g., Fourier-Motzkin elimination. The time successors can
also be obtained using geometrical operations, as illustrated in Fig. 10. The cone
of Q is the polyhedron pos(Q) = {q · t | q ∈ Q, t ≥ 0}. The Minkowski sum is
defined as P ⊕ Q = {p+ q | p ∈ P,q ∈ Q}. The time successors are [31]

P↗Q = P ⊕ pos(Q). (12)

If P and Q are closed with generator representation (V,R) and (V̄ , R̄), respec-
tively, then a generator representation of P↗Q is (V,R∪ V̄ ∪ R̄). It remains to
ensure that the time successors satisfy the invariant Inv(�), which leads to the
following continuous successor operator for PCDA.

An Introduction to Hybrid Automata 69

x1

x2

Q
pos(Q)

(a) Q and its cone pos(Q)

x1

x2

P

P ⊕ pos(Q)

(b) P and P↗Q = P ⊕ pos(Q)

Fig. 10. The time successors P↗Q, obtained using geometric operations on P and Q

Lemma 2. [6] The continuous successors of a polyhedron P in location � are

post	(P) =
(
P ↗Flow(�)

) ∩ Inv(�).

The computation of the time successors is of exponential complexity. In the
form of (11), it requires quantifier elimination, while in the form of (12) it re-
quires switching representations, since intersection computed on H-polyhedra
and Minkowski sum on V-polyhedra.

Discrete successors. The discrete successors of a polyhedron P for an edge
e = (�, α, k) is the polyhedron:

poste(P)
{
x′ ∣∣ ∃x ∈ P : (x,x′) ∈ Jump(ε) ∧ x′ ∈ Inv(k)

}
.

This set is defined using existential quantification, and computing it may require
costly quantifier elimination. Frequently occurring special cases can be computed
more efficiently. Consider Jump(e) given by a guard x ∈ G and an assignment
x′ = Cx+d, with a constant matrix C and a vector d of appropriate dimensions.
The discrete successors are

poste(P) =
(
C(P ∩ G)⊕ {d}) ∩ Inv(k). (13)

If C is invertible and P,G are H-polyhedra, the computation is straightforward
since intersection corresponds to concatenation of constraints, and for any poly-
hedron Q = {x | Ax ≤ b},

CQ ⊕ {d} = {x | AC−1x ≤ b+ C−1d}.

4.3 Piecewise Affine Dynamics

Hybrid automata with piecewise affine dynamics (PWA) have

– initial states and invariants given by conjunctions of linear constraints,
– flows given by affine ODEs, and
– jumps given by a guard set and linear assignments.

70 G. Frehse

We divide the continuous variables into state variables X = {x1, . . . , xn}, whose
derivative is explicitly defined, and input variables U = {u1, . . . , um}, whose
derivative is unconstrained. The input variables can be used to model nondeter-
minism such as open inputs to the system, approximation errors, disturbances,
etc. In each location of a PWA, the continuous dynamics are given by affine
ODEs of the form

ẋ = Ax+Bu, u ∈ U , (14)

where A and B are matrices of appropriate dimension and the input set U is
compact and convex. Note that U may be specified in the invariant. To simplify
notation in this section, we assume that constants are modeled with U , e.g.,
ẋ = Ax+b with B = I and U = {b}. Some differential inclusions can be brought
to the form of (14) by introducing auxiliary variables. The jump constraints of
an edge e are defined by a guard set G and an assignment of the form

x′ = Cx+Du, (15)

where x′ denotes the value of x after the jump, u is defined as above and C and
D are matrices of appropriate dimension.

Continuous successors. We start with the basic construction, which ignores
the invariant. The evolution of the input variables is described by an input signal
ζ : R≥0 → U that attributes to each point in time a value of the input u. The
input signal does not need to be continuous. A trajectory ξ(t) from a state x0 is
the solution of the differential equation (14) for initial condition ξ(0) = x0 and
a given input signal ζ. It has the form

ξx0,ζ(t) = eAtx0 +

∫ t

0

eA(t−s)Bζ(s)ds. (16)

It consists of the superposition of the solution of the autonomous system, ob-
tained for ζ(t) = 0, and the input integral obtained for x0 = 0. Let Xt be the
states reachable in time t from any state in X0 and let Yt be the states reachable
from X0 = {0}, then (16) can be written as

Xt = eAtX0 ⊕ Yt. (17)

The goal is to compute a finite sequence of sets Ω0, Ω1, . . . such that⋃
0≤t≤T

Xt ⊆ Ω0 ∪Ω1 ∪ (18)

We present the construction of the sequence Ωk for a fixed time step δ > 0 such
that Ωk covers Xt for t ∈ [kδ, (k + 1)δ], as illustrated in Fig. 11. The so-called
semi-group property of reachability says that, starting from Xs, for any s ≥ 0,
and then waiting r time units leads to the same states as starting from X0 and
waiting r + s time units. Applying this to (17), we obtain that for any r, s ≥ 0,

Xr+s = eArXs ⊕ Yr. (19)

An Introduction to Hybrid Automata 71

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(a) polyhedra

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(b) ellipsoids

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(c) zonotopes

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(d) support functions (box directions)

Fig. 11. A sequence of sets Ω0, Ω1, . . . that covers Xt over a finite time horizon T .
The choice of set representation for Ωk has a substantial impact on accuracy and
computational complexity

Substituting r ← δ, s ← kδ, we get a time discretization

X(k+1)δ = eAδXkδ ⊕ Yδ.

It follows that if we have initial approximations Ω0 and Ψδ such that⋃
0≤t≤δ

Xt ⊆ Ω0, Yδ ⊆ Ψδ, (20)

then the sequence
Ωk+1 = eAδΩk ⊕ Ψδ. (21)

satisfies (18). Note that Ω0 covers the reachable set over an interval of time [0, δ],
while Ψδ covers the values of the input integral at a single time instant δ.

Computing initial approximations Ω0 and Ψδ . The set Ω0 needs to cover
Xt from t = 0 to t = δ. A good starting point for such a cover is the convex hull of
X0 and Xδ. One approach, shown in Fig. 12(a), is to compute the convex hull in
constraint representation, and push the facets out far enough to be conservative
[29]. The required values can be computed from a Taylor approximation of (16)
[8], or by solving an optimization problem [18]. Note that the cost of computing
the exact constraints of the convex hull can be exponential in the number of
variables, which limits the scalability of this approach.

A scalable way to obtain Ω0 is to bloat X0 and Xδ enough to compensate for
the curvature of trajectories, as illustrated in Fig. 12(b). The approach from [26]
uses uniform bloating and whose approximation error is asymptotically linear in
the time step δ as δ → 0. This is asymptotically optimal for any approximation

72 G. Frehse

0

(a) pushing facets (b) bloating

Fig. 12. An approximation Ω0 that covers Xt for t ∈ [0, δ] can be obtained from the
convex hull of X0 and Xδ and compensating for the curvature of trajectories

containing the convex hull of X0 and Xδ [41]. The bloating factor is derived
from a Taylor approximation of (16), whose remainder is bounded using norms.
To formalize the above statements, we use the following notation. Let ‖·‖ be a
vector norm and let ‖A‖ be its induced matrix norm.1 Let μ(X) = maxx∈X ‖x‖
and let B be the unit ball of the norm, i.e., the largest set B such that μ(B) = 1.
For a scalar c, let cX = {cx | x ∈ X}.
Lemma 3. [26] Given a set of initial states X0 and affine dynamics (14), let

αδ = μ(X0) · (e‖A‖δ − 1− ‖A‖δ),
βδ = 1

‖A‖μ(BU) · (e‖A‖δ − 1),

Ω0 = chull(X0 ∪ eAδX0)⊕ (αδ + βδ)B,
Ψδ = βδB.

Then
⋃

0≤t≤δ Xt ⊆ Ω0 and Yδ ⊆ Ψδ.

Approximations and the wrapping effect. The sequence in (21) can be
problematic to compute since the complexity of Ωk may increase sharply with k.
To avoid this increase in complexity, we approximate each Ωk by a simplified set.
Let Appr be an approximation function such that for any set P, P ⊆ Appr(P).
The sequence (21) then becomes

Ω̂k+1 = Appr(eAδΩ̂k ⊕ Ψδ). (22)

The recursive application of the approximation function can lead to an exponen-
tial increase in the approximation error. This phenomenon is known in numerical
analysis as the wrapping effect [38] and is illustrated in Fig. 13.

For affine dynamics, the wrapping effect can be avoided by combining two
techniques [27]. First, the alternation of the map eAkδ with the Minkowski sum
in (21) is avoided by splitting it into two sequences

Ψ̂k+1 = Appr(eAkδΨδ)⊕ Ψ̂k, with Ψ̂0 = {0},
Ω̂k = Appr(eAkδΩ0)⊕ Ψ̂k.

(23)

1 For example, the infinity norm ‖x‖∞ = max{|x1|, . . . , |xn|} induces the matrix norm
‖A‖ = max1≤i≤n

∑m
j=1|aij |, where A is of dimension n × m. Its ball B∞ is a cube

of side length 2.

An Introduction to Hybrid Automata 73

X0

eAδX0

Appr(eAδX0)

Appr(eAδAppr(eAδX0))

(a) with wrapping effect

X0

eAδX0

Appr(eAδX0)

Appr(eA2δX0)

(b) using a wrapping-free algorithm

Fig. 13. An example for the wrapping effect, with eAδ performing a rotation of 45 de-
grees around the origin. The exact solution is eAkδX0 (shaded). Mapping (dashed) and
then applying the approximation operator (thick) at each step leads to the wrapping
effect. For visual clarity, X0 is used here instead of Ω0

Second, the approximation operator is chosen such that

Appr(P ⊕ Q) = Appr(P)⊕Appr(Q),

which is the case, e.g., for the interval hull (bounding box). Under this assump-
tion it holds that Ω̂k = Appr(Ωk), which means the resulting approximation is
free of the wrapping effect.

Invariants. A simple but frequently sufficient heuristic to account for the in-
variant is to stop computing the sequence Ωk as soon as Ωk lies completely
outside of the invariant. The computed Ω0, . . . , Ωk−1 are then intersected with
Inv(�), which produces an overapproximation of the exact solution. A more pre-
cise solution can be obtained by intersecting at each step with the set of states
reachable from the invariant itself [30].

Discrete successors. Consider an edge e = (�, σ, k) of a PWA, with guard set
G and assignment

x′ = Cx+Du.

Recall that u ∈ U , where U is compact, convex and given by constraints in
Inv(�). The discrete successors of a set P is

poste(P) =
(
C(P ∩ G)⊕DU) ∩ Inv(k).

Set Representations Whether the presented successor operators post	(P) and
poste(P) are efficient to compute, depends on the type of set used for P and
how it is represented. We summarize some of the set representations proposed in
literature. Scalable implementations and approximations need to be available for
the operators in the algorithm. Using the initial approximation from Lemma 3

74 G. Frehse

and the recurrence equation (23), the operators are linear map, Minkowski sum,
convex hull and intersection.

Polyhedra. Figure 11(a) shows a reach set approximation computed using poly-
hedra. The class of polyhedra is closed under all required operations, i.e., linear
map, Minkowski sum, convex hull, and intersection. However, not all of them
scale well. As mentioned in Sect. 4.2, intersection is computed on H-polyhedra
and Minkowski sum on V-polyhedra, and the result can be of exponential com-
plexity in both forms. A polyhedral approximation for the non-scalable oper-
ations can be efficiently computed by a-priori fixing the facet normals of the
result, which leads to so-called template polyhedra. The accuracy of the approxi-
mation can be increased by including additional directions, leading to a scalable
approach [9].

Ellipsoids. A scalable reachability algorithm for affine dynamics is obtained
for ellipsoids [39], see Fig. 11(b). An ellipsoid E(c, Q) ⊆ R

n is represented by a
center c ∈ R

n and a positive definite2 matrix Q ∈ R
n×n,

E(c, Q) =
{
x
∣∣ (x− c)TQ−1(x− c) ≤ 1

}
.

Deterministic affine transforms can be computed efficiently for ellipsoids. How-
ever, ellipsoids are not closed under Minkowski sum, convex hull, nor intersection.
One therefore suffers from the wrapping effect unless BU is a singleton. Efficient
approximations are available for Minkowski sum, convex hull, and special cases
of intersection, but the computation of discrete successors can be problematic
in terms of accuracy. For an implementation, see [40].

Zonotopes. Zonotopes are a subclass of central-symmetric polytopes that has
been used successfully for reachability analysis [26, 3], see Fig. 11(c). A zonotope
P ⊆ R

n is defined by a center c ∈ R
n and generators v1, . . . ,vk ∈ R

n as

P =
{
c+
∑k

i=1
αivi

∣∣ αi ∈ [−1, 1]
}
.

Affine transformations and Minkowski sum can be computed efficiently for zono-
topes. Since zonotopes are closed under Minkowski sum, it is straightforward to
devise an approximation operator Appr that distributes over Minkowski sum
and use the wrapping-free sequence (23). Zonotopes are neither closed under
convex hull, nor under intersection. But efficient approximations exists, and the
accuracy of approximating the convex hull in the above reachabililty algorithm
can be improved by taking smaller time steps. However, the lack of accuracy in
intersections can make the computation of discrete successors with zonotopes
problematic. In special cases it can be advantageous to use an approach called
continuization to avoid the intersection operation, see [2].

Support functions. The support function of a convex set represents the set
exactly. Support functions lead to very scalable algorithms since linear map,

2 A matrix Q is positive definite iff it is symmetric and xTQx > 0 for all x �= 0.

An Introduction to Hybrid Automata 75

d
�P (d)

0

(a) support function in direction d

d3

d4

d1

d2

(b) outer approximation

Fig. 14. Evaluating the support function in a set of directions gives a polyhedral outer
approximations that can be computed very efficiently

Minkowski sum, and convex hull correspond to simple operations on vectors and
scalars [42, 30].

The support function �P : Rn → R of a nonempty, closed, bounded, and
convex set P is �P(d) = max{dTx | x ∈ P}. It attributes to every direction
d ∈ R

n the position of the tangent halfspace in that direction, see Fig. 14(a).
The values of the support function over a set of directions D ⊆ R

n define an
outer approximation

�P D =
⋂
d∈D

{
dTx ≤ �P(d)

}
.

If D = R
n or D is the ball of a norm, then �P D = P. If D is a finite set of

directions, the outer approximation is a polyhedron, see Fig. 14(b). If D con-
sists of the positive and negative axis directions, the result is an interval hull
(bounding box), see Fig. 11(d). If the goal is to compute an outer approximation
of a given accuracy, one does not escape the curse of dimensionality: an outer
approximation with an error of ε in n dimensions requires O(1/εn−1) directions.
However, even a small number of directions can lead to reachability results with
an acceptable approximation error [24].

Computing the support function of the sequence (23) for a given direction
can be done very efficiently even without the approximation operator Appr [30].
Linear map, Minkowski sum, and convex hull are easily computed with support
functions. The intersection operation is more complex, and can be formulated
as an optimization problem [30]. Switching to H-polyhedra (the outer approxi-
mation) before intersection operations can avoid scalability problems, but leads
to an overapproximation error [24].

Clustering The accuracy of the approximation in Lemma 3 depends on the
size of the time step. This property, common to all approaches cited in Sect. 4.3,
points to a potential bottleneck: To achieve a desired accuracy, one may end
up with a large number of sets to cover the required time horizon. In the next
iteration of the fixed point computation, each one of these sets may become
the initial set of yet another sequence, easily leading to an exponential increase
in the number of sets. If only very few of these sets intersect with the guard

76 G. Frehse

sets, the discrete successor computation acts as a filter that might just keep
the number of sets manageable. But this is not the case in general; note that
these sets necessarily overlap. To prevent an explosion in the number of sets,
a common approach is to cluster together all sets that intersect with the same
guard [30]. The clustering operation, e.g., taking the convex hull, can itself be
costly and adds to the approximation error in a way that is not easy to quantify.
An approach to obtain a suboptimal number of clusters for a given error bound
is presented in [25].

4.4 Nonlinear Dynamics

We give only a very brief overview of techniques that deal with nonlinear dy-
namics

ẋ = f(x),

where f is usually assumed to be globally Lipschitz continuous.

Linearization. One way to deal with nonlinear dynamics is to approximate
them with affine dynamics ẋ = Ax + u,u ∈ U and then use reachability algo-
rithms for affine dynamics. First, the states are confined to a bounded domain
S. This could be the invariant in a location, or S can be derived from suitable
bounds around a given set of initial states. Then, a suitable matrix A and vector
b are chosen. For example, linearizing f(x) around a point x0 ∈ S gives matrix
elements aij =

∂fi
∂xj

∣∣
x=x0

and b = f(x0)−Ax0. Finally, one derives a set Uε that

bounds the error such that for all x ∈ S, f(x) − (Ax + b) ∈ Uε. Such bounds
can be obtained using, e.g., interval arithmetic or optimization techniques. The
states reachable using the affine dynamics ẋ = Ax+ u, u ∈ Uε ⊕{b} cover those
of the original nonlinear dynamics.

The accuracy of the linearization depends on the size of the domain S and
can be increased by partitioning S into smaller parts. This process is known as
phase portrait approximation [34]. It can be of use even when dealing with purely
continuous dynamical systems, and is also referred to as hybridization [7].

Polynomial Approximations. If the dynamics are polynomial, bringing them
to Bernstein form allows one to compute conservative approximations of succes-
sors sets in polynomial form [19, 47]. Another approach is to use Taylor models,
which are polynomial approximations of a functions that are derived from a
higher-order Taylor expansion and an interval bound on the remainder. The
resulting ODE can be solved by iterative approximations using the Picard oper-
ator. The reachable states are approximated by sets that are polyhedra [49] or
polynomial images of intervals [17]. A similar approach uses polynomial images
of zonotopes, which are themselves images of intervals [1]. Since polynomial im-
ages of intervals are generally not closed under intersection, the accuracy may
be diminished when computing discrete successors.

An Introduction to Hybrid Automata 77

5 Conclusions

Systems with mixed continuous-discrete dynamics can exhibit complex behav-
iors that are difficult to analyze and predict, even for small systems with only a
handful of variables. If safety or performance is critical, one would like to ver-
ify that the systems behaves according to the specification. Hybrid automata
provide a rigorous mathematical formalism for describing and verifying such
systems. Certain types of specifications can also be described in this form, as
monitor automata that are run in parallel with the rest of the system, with an
error location that is reachable if the specification is violated.

The most basic way to analyze the behavior of a hybrid automaton is to pick
an initial state and numerically compute an approximation of one of its runs. By
computing a sufficiently large number of such runs, sampling a variety of initial
states and other sources of nondeterminism, one hopes to get a fairly good idea
about the system. But this is not exhaustive and critical behavior may be missed.
Set-based reachability, in the form presented in this chapter, is an extension of
numerical simulation that establishes a conservative cover of all possible runs. If
a safety specification is satisfied by the cover, one can be sure that none of the
runs violates the specification. If the cover violates the specification, one either
needs to tune the analysis parameters in order to obtain a closer approximation,
try to confirm the violation with numerical simulation, or resort to alternative
techniques.

The biggest drawback of set-based reachability is the computational cost,
which depends on the number of variables in the system and the complexity of
the dynamics. Scalable algorithms are known for systems with piecewise affine
dynamics, but the trade-off between approximation accuracy and computational
cost remains a challenge. Recent progress for systems with nonlinear dynamics
has also lead to encouraging results for more and more complex systems. As
reachability techniques mature, it remains to figure out how to best integrate
them in the design and engineering process, connect them to existing models,
and establish suitable specifications.

References

1. M. Althoff. Reachability analysis of nonlinear systems using conservative poly-
nomialization and non-convex sets. In Hybrid systems: computation and control
(HSCC’13), pages 173–182. ACM, 2013.

2. M. Althoff and B. H. Krogh. Avoiding geometric intersection operations in reach-
ability analysis of hybrid systems. In Hybrid Systems: Computation and Control
(HSCC’12), pages 45–54. ACM, 2012.

3. M. Althoff, B. H. Krogh, and O. Stursberg. Analyzing reachability of linear dy-
namic systems with parametric uncertainties. In A. Rauh and E. Auer, editors,
Modeling, Design, and Simulation of Systems with Uncertainties. Springer, 2011.

4. R. Alur. Formal verification of hybrid systems. In S. Chakraborty, A. Jerraya,
S. K. Baruah, and S. Fischmeister, editors, EMSOFT, pages 273–278. ACM, 2011.

78 G. Frehse

5. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

6. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Hybrid Systems, LNCS 736, pages 209–229. Springer, 1993.

7. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of
nonlinear systems. Acta Inf., 43(7):451–476, 2007.

8. E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate reachability anal-
ysis of piecewise-linear dynamical systems. In Hybrid Systems: Computation and
Control (HSCC’00), volume 1790 of LNCS, pages 20–31. Springer, 2000.

9. E. Asarin, T. Dang, O. Maler, and R. Testylier. Using redundant constraints for
refinement. In Automated Technology for Verification and Analysis, pages 37–51.
Springer, 2010.

10. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

11. O. Bouissou, A. Chapoutot, S. Mimram, and B. Strazzulla. Set-based simulation
for design and verification of simulink models. In Embedded Real Time Software
and Systems (ERTS’14), 2014.

12. O. Bouissou, S. Mimram, and A. Chapoutot. Hyson: Set-based simulation of hybrid
systems. In RSP, pages 79–85. IEEE, October 2012.

13. D. Brück, H. Elmqvist, S. E. Mattsson, and H. Olsson. Dymola for multi-
engineering modeling and simulation. In Proceedings of Modelica, 2002.

14. R. P. Canale and S. C. Chapra. Numerical methods for engineers. Mc Graw Hill,
New York, 1998.

15. C. G. Cassandras and J. Lygeros. Stochastic hybrid systems. CRC Press, 2006.
16. C. Chase, J. Serrano, and P. J. Ramadge. Periodicity and chaos from switched

flow systems: contrasting examples of discretely controlled continuous systems.
Automatic Control, IEEE Transactions on, 38(1):70–83, 1993.

17. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Taylor model flowpipe con-
struction for non-linear hybrid systems. In RTSS, pages 183–192. IEEE Computer
Society, 2012.

18. A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In F. W. Vaandrager and J. H. van
Schuppen, editors, HSCC, volume 1569 of LNCS, pages 76–90. Springer, 1999.

19. T. Dang and R. Testylier. Reachability analysis for polynomial dynamical systems
using the bernstein expansion. Reliable Computing, 17(2):128–152, 2012.

20. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In Computer Aided Verification, pages 167–170. Springer, 2010.

21. J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity-the ptolemy approach. Proceedings
of the IEEE, 91(1):127–144, 2003.

22. G. E. Fainekos, A. Girard, and G. J. Pappas. Temporal logic verification using
simulation. In Formal Modeling and Analysis of Timed Systems, pages 171–186.
Springer, 2006.

23. G. Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech. STTT,
10(3):263–279, 2008.

24. G. Frehse, C. L. Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems. In
G. Gopalakrishnan and S. Qadeer, editors, CAV, LNCS. Springer, 2011.

An Introduction to Hybrid Automata 79

25. G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe approximation and clustering
in space-time. In Hybrid systems: computation and control (HSCC’13), pages 203–
212. ACM, 2013.

26. A. Girard. Reachability of uncertain linear systems using zonotopes. In M. Morari
and L. Thiele, editors, HSCC, volume 3414 of LNCS, pages 291–305. Springer,
2005.

27. A. Girard, C. L. Guernic, and O. Maler. Efficient computation of reachable sets
of linear time-invariant systems with inputs. In J. P. Hespanha and A. Tiwari,
editors, HSCC, volume 3927 of LNCS, pages 257–271. Springer, 2006.

28. A. Girard and G. Zheng. Verification of safety and liveness properties of metric
transition systems. ACM Transactions on Embedded Computing Systems (TECS),
11(S2):54, 2012.

29. M. R. Greenstreet. Verifying safety properties of differential equations. In Com-
puter Aided Verification, pages 277–287. Springer, 1996.

30. C. L. Guernic and A. Girard. Reachability analysis of hybrid systems using support
functions. In A. Bouajjani and O. Maler, editors, CAV, volume 5643 of LNCS,
pages 540–554. Springer, 2009.

31. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In International Static Analysis Symposium,
SAS’94, Namur (Belgium), September 1994.

32. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, pages 110–122, 1997.

33. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. In O. Grumberg, editor, CAV, volume 1254 of LNCS, pages 460–463.
Springer, 1997.

34. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43:540–554, 1998.

35. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998.

36. P.-H. Ho. Automatic Analysis of Hybrid Systems. PhD thesis, Cornell University,
Aug. 1995. Technical Report CSD-TR95-1536.

37. A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas. Robust test
generation and coverage for hybrid systems. In Hybrid Systems: Computation and
Control, pages 329–342. Springer, 2007.

38. W. Kühn. Rigorously computed orbits of dynamical systems without the wrapping
effect. Computing, 61(1):47–67, 1998.

39. A. B. Kurzhanski and P. Varaiya. Dynamics and Control of Trajectory Tubes.
Springer, 2014.

40. A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox (et). In Decision and
Control, 2006 45th IEEE Conference on, pages 1498–1503. IEEE, 2006.

41. C. Le Guernic. Reachability analysis of hybrid systems with linear continuous
dynamics. PhD thesis, Université Grenoble 1 - Joseph Fourier, 2009.

42. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. Interactive Decision Maps,
volume 89 of Applied Optimization. Kluwer, 2004.

43. O. Maler. Algorithmic verification of continuous and hybrid systems. In Int.
Workshop on Verification of Infinite-State System (Infinity), 2013.

44. MapleSoft. Maplesim 7: Advanced system-level modeling. http://www.maplesoft.
com/products/maplesim, 2015.

45. MathWorks. Mathworks simulink: Simulation et model-based design, Mar. 2014.
www.mathworks.fr/products/simulink.

80 G. Frehse

46. S. E. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling with mod-
elica. Control Engineering Practice, 6(4):501–510, 1998.

47. P. Prabhakar and M. Viswanathan. A dynamic algorithm for approximate flow
computations. In E. Frazzoli and R. Grosu, editors, HSCC, pages 133–142. ACM,
2011.

48. W. H. Press. Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge University Press, 2007.

49. S. Sankaranarayanan, T. Dang, and F. Ivančić. Symbolic model checking of hybrid
systems using template polyhedra. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 188–202. Springer, 2008.

50. P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009.

51. F. Zhang, M. Yeddanapudi, and P. Mosterman. Zero-crossing location and de-
tection algorithms for hybrid system simulation. In IFAC World Congress, pages
7967–7972, 2008.

An Introduction to Hybrid Automata 81

Model Checking and Model-based Testing
in the Railway Domain

Anne E. Haxthausen1 and Jan Peleska2

1 DTU Compute
Technical University of Denmark

E-mail: aeha@dtu.dk
2 Department of Mathematics and Computer Science,

University of Bremen
E-mail: jp@informatik.uni-bremen.de

Abstract. This chapter describes some approaches and emerging trends
for verification and model-based testing of railway control systems. We
describe state-of-the-art methods and associated tools for verifying in-
terlocking systems and their configuration data, using bounded model
checking and k-induction. Using real-world models of novel Danish in-
terlocking systems, it is exemplified how this method scales up and
is suitable for industrial application. For verification of the integrated
HW/SW system performing the interlocking control tasks, a model-
based hardware-in-the-loop testing approach is presented. The trade-off
between complete test strategies capable of uncovering every error in im-
plementations of a given fault domain on the one hand, and on the other
hand the unmanageable load of test cases typically created by these
strategies is discussed. Pragmatic approaches resulting in manageable
test suites with good test strength are explained. Interlocking systems
represent just one class of many others, where concrete system instances
are created from generic representations, using configuration data for de-
termining the behaviour of the instances. We explain how the systematic
transition from generic to concrete instances in the development path is
complemented by associated transitions in the verification and testing
paths.

1 Introduction

Background. Railway control systems represent an example of cyber-physical
systems, as they are computational entities controlling physical objects like
trains, points, and signals, using a distributed communication topology. Their
task is to ensure safe train movements through railway networks. In Europe,
railway control systems must adhere to the CENELEC standards: the standard
EN50128 [13], for example, applies to the development of software in railway con-
trol systems. For software of the highest criticality, it requires the application of
formal specification and design models and formalised, justified verification and
validation (V&V) activities to be performed. The objective of such formalisa-
tions is to ensure that potential safety breaches caused by invalid configuration

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_4, © Springer Fachmedien Wiesbaden 2015

data or erroneous control algorithms can be identified in a systematic way. If for-
mal methods application can also be “mechanised” by means of suitable tools,
this contributes to the efficiency of V&V in a considerable way, provided that
the tools are qualified, so that one can rely on their verification results.

An overview of trends in formal methods applications to railway signalling
can be found in [6, 14]. As of today, three major formal verification approaches
are applied to railway control systems: theorem proving, global model checking,
and bounded model checking. Theorem proving has been successfully applied to
industrial cases, see, e.g. [3] and [16], but has the disadvantage of not being fully
automated. Global model checking has the advantage of being fully automated,
but has the disadvantage that it may lead to state space explosions, cf., e.g. [15],
where a systematic study of applicability bounds of the symbolic model-checker
NuSMV and the explicit model checker SPIN showed that these popular model
checkers could only verify railway interlocking systems for small railway net-
works. Bounded model checking (BMC) only investigates model properties in the
neighbourhood of a given set of model states, exploring this neighbourhood for
a limited number of transition steps, using SAT-based or SMT-based constraint
solving techniques to find witnesses for given properties [4]. This avoids explicit
and symbolic (BDD) model representations: global model behaviour is specified
in propositional form by the transition relation, and concrete behaviours are cal-
culated by means of solving the unrolled transition relation in conjunction with
a proposition encoding the verification objective or its negation. In theory, BMC
can also prove global model properties, if the transition relation is unrolled for a
sufficient number of steps [5]. In practise, however, this will also frequently lead
to exhaustion of memory resources or to unacceptable execution times, because
the complexity of SAT or SMT solving tasks may become exponential in the
number of unrolling steps.

Testing is of course an integrated standard activity of the V&V cycle for
railway control systems. There is, however, currently an increasing interest in
model-based testing (MBT), because the possibility to derive test cases, test data,
test procedures, and traceability information from test models in an automated
way [25, 7] offers substantial improvements of both testing efficiency and qual-
ity [23]. MBT depends on formal methods in a crucial way: (1) precise model
semantics is needed in order to calculate concrete test data suitable to check a
given test objective, and (2) the justification of test strategies (typically their
test strength, i.e. their capabilities to uncover errors in the system under tests
(SUT)) strongly relies on mathematical modelling and theorem proving.

Objectives. In this contribution, a formal methods approach to modelling and
automated V&V of modern interlocking systems in the framework of the Euro-
pean Train Control System (ETCS) is described. Both system designs and V&V
methods exploit the generic “production line” character of state-of-the-art inter-
locking systems: interface types and control algorithms are typically designed in
a re-usable way, and this generic system is instantiated with concrete data de-
scribing the railway network to be controlled and the interlocking tables defining

Model Checking and Model-Based Testing in the Railway Domain 83

the concrete train routes through the network. On the V&V side, generic proof
obligations and test objectives can be identified once and for all, and these are
automatically transformed into concrete verification conditions and test cases
during the instantiation process.

We use BMC to verify that the re-usable design instantiated with the concrete
configuration data results in a system whose behaviour fulfils the concrete safety
and user requirements. Due to the complexity considerations described above,
we apply BMC only to verify whether a property violation can occur within k
transition steps from some initial state. However, for the verification of safety
properties it is needed to prove that they hold in all reachable states. Therefore
we combine BMC with inductive reasoning; this technique is called k-induction.
It allows to verify global model properties, because BMC is just used to prove
the induction step, for which an investigation of k transition steps in the vicinity
of a safe starting point suffices.

With the globally verified concrete system model at hand, the testing process
can use this model as a test oracle, that is, as a reference for checking the
actual system behaviour observed during tests. Moreover, the model can be
used to identify the “relevant” test cases needed to check the conformance of
system behaviour with the model. We first prove the existence of complete test
suites that are capable of detecting every deviation of system behaviour from
the required behaviour specified in the model, provided that the deviations lie
in a certain class of possible behaviours, called the fault domain. Complete test
suites, however, are usually too big to be performed with acceptable effort. It
is therefore shown how global test objectives can be decomposed into separate
functional tests, and how equivalence class testing strategies can be applied to
reduce test suites to manageable sizes.

Our approach is illustrated by means of a case study that has been derived
from novel interlocking system designs currently implemented for Denmark’s
novel ETCS high-speed railway network.

V&V-Workflow. The V&V-approach sketched above induces the workflow
depicted in Fig. 1, which is described in a more refined manner in the sections
below. Interlocking systems and the behaviour of trains moving through railway
networks can be modelled in a generic way, so that each concrete behavioural
model can be instantiated using a model generator that inputs the generic model
and the concrete configuration data consisting of network and route descriptions.
The concrete model is then to be verified with respect to the safety of the
specified routes and the route control algorithm. To this end, all safety-related
verification conditions are created for the concrete model according to a generic
“recipe”. The verification conditions are safety properties expressible as temporal
logic formulas. Their validity is globally verified by a well-known inductive proof
concept, where the base case and the induction step can be discharged in a
mechanised way by means of bounded model checking.

At this stage, we have a formal behavioural model of the interlocking system
and its railway network, whose safety properties have been formally established.

84 A.E. Haxthausen, J. Peleska

Train movements and
interlocking behaviour

Safety requirements Model verification Integration testing

Generic model

Configuration
data

Concrete model

Model generator

Generic test
objectives

Generic
verification conditions

Verification
condition
generator

Concrete
verification conditions

Concrete model

Bounded model
checking and k-

induction

Verification
results

Concrete model

Model-based test
generator

Concrete
integration test suite

Fig. 1: Workflow associated with the V&V approach presented here.

As a consequence, this model is an ideal reference for both software development
and model-based testing of the integrated HW/SW system. In this chapter, we
focus on the latter activity. Using the concrete model and, again, a generic recipe
for test case generation, integration tests suites with well-defined test strength
can be generated.

Section overview. In Section 2 we describe some technical preliminaries; these
are needed to introduce the k-induction technique for formal verification of user
and safety requirements for railway control systems. In Section 3 we show how
this method has been applied to a case study: the future Danish ERTMS/ETCS
level 2 based interlocking systems. In Section 4 we describe how to perform
model-based testing in the interlocking system domain and discuss suitable test-
ing strategies and heuristics. Finally, a conclusion is drawn in Section 5.

2 Formal Verification

In this section we present a fully automated, formal, model-based method [19]
for verifying product lines of railway control systems. In Section 3 we show
how this method has been applied to a new product line of the future Danish
ERTMS/ETCS level 2 based interlocking systems. The method has also been
(partially) applied to a German tramway control system, see [20] and to an
existing Danish relay interlocking system [18, 17].

Model Checking and Model-Based Testing in the Railway Domain 85

2.1 Verification by Bounded Model Checking and k-Induction

As indicated in Section 1, we apply BMC in combination with k-induction for
verifying global safety properties and user requirements of railway interlocking
system instances. The idea of this method is to apply bounded model checking to
perform a k-induction proof. Before we show the method (see [30, 10] for further
details), we first explain the mathematical background.

Mathematical Preliminaries. As behavioural models of systems, we will use
Kripke structures. A Kripke structure M is a five tuple (S, s0, R, L,AP) with
finite state space S, initial state s0 ∈ S, a total transition relation R ⊆ S × S,
and labelling function L : S → 2AP , where AP is a set of atomic propositions
and 2AP is the power set of AP . The labelling function L maps a state s to the
set L(s) of atomic propositions that hold in s.

For the formalising of desired, global properties of a model M , we will use
core formulas φ in propositional logic over the set of atomic propositions AP
of M . The set of these core formulas (propositions) is the least set satisfying
the following rules: (1) If φ ∈ AP , then φ is a formula and called an atomic
proposition. (2) If φ, ψ are formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, and φ ⇒ ψ are also
formulas. The satisfaction relation |= between states s ∈ S and formula φ is the
least relation satisfying:

– s |= φ, if φ ∈ L(s)
– s |= ¬φ, if it is not the case that s |= φ
– s |= φ ∧ ψ, if s |= φ and s |= ψ
– s |= φ ∨ ψ, if s |= φ or s |= ψ
– s |= φ ⇒ ψ, if s |= ψ whenever s |= φ

When s |= φ holds, φ is said to hold in s.
Two states si and si+1 are said to be consecutive in M , if there is a transition

from si to si+1, i.e. R(si, si+1) holds. A state s is said to be reachable from
another state s′ in M , if there is a finite path of consecutive states s′, . . . , s in
M , starting in s′ and ending in s. The reachable states of M is the set of states
reachable from the initial state s0 of M . We write M |= G φ (“M satisfies
globally φ”) to denote that formula φ holds in all states of M that are reachable
from the initial state s0.

Typical models have states s ∈ S assigning specific values to model variables.
Assume given a finite set V of variable symbols and for each v ∈ V an associated
value domain Dv. Then, formally speaking, the state space is the set of all
valuation functions s : V → ⋃

v∈V Dv, such that s(v) ∈ Dv for all v ∈ V . If S
is such a set of variable valuation functions, its initial state can be expressed by
the proposition

I(s0) ≡
∧
v∈V

v = s0(v)

The transition relation R ⊆ S × S can be expressed in propositional form as a
proposition Φ over free variables from V and V ′ = {v′ | v ∈ V }, such that

R = {(s, s′) ∈ S × S | Φ(s, s′)}

86 A.E. Haxthausen, J. Peleska

where Φ(s, s′) is the proposition Φ with every occurrence of v ∈ V replaced by
its value s(v) valid in state s, and every occurrence of v′ ∈ V ′ replaced by its
s′-value s′(v).

Using the proposition representation of initial state and transition relation,
any finite path s0, . . . , sk−1, si ∈ S of length k through the model, starting at
the initial model state s0, is identified by a solution of the formula

path(s0, k) ≡ I(s0) ∧
k−1∧
i=1

Φ(si−1, si) (1)

Every finite path sn, . . . , sn+k, si ∈ S of length k + 1, starting in an arbitrary
model state sn (whether reachable or not), is characterised by the formula

path(k + 1) ≡
n+k∧

i=n+1

Φ(si−1, si) (2)

The Method. For the problems we are considering in this paper, our goal is
to verify M |= G φ, where M is a Kripke model of a railway control system
and φ expresses safety properties or user requirements that should hold in all
reachable states of M . To prove the validity of M |= G φ, the following k-
induction principle for k > 0 can be applied.

Base Case. Prove the following for any path of k consecutive states s0, . . . , sk−1

in M , starting from the initial state s0:
φ holds for all the states of s0, . . . , sk−1.

Induction Step. Prove the following for any path of k + 1 consecutive states
sn, . . . , sn+k in M of which the first sn is an arbitrary state (reachable or
not from the initial state s0):

If φ holds in the first k states sn, . . . , sn+k−1, then φ must also hold
in the (k + 1st) state sn+k.

Given the model’s transition relation R in propositional form Φ and a propo-
sition I characterising the initial state, the base case can be verified with BMC,
by showing that the following formula has no witness, that is, no solution.

base case violation ≡ path(s0, k) ∧ ¬(k−1∧
i=0

φ(si)
)

(with path(s0, k) defined by Equation (1)). If the model checker finds a solution
for base case violation, this proves the existence of a finite path s0, s1, . . . , sk−1

through the model, where φ is violated in at least one of its states. If no such
witness can be found, this proves the base case. The induction step is proved by
using BMC to show that no witness exists for the formula

induction step violation ≡ path(k + 1) ∧ (k−1∧
i=0

φ(sn+i)
) ∧ ¬φ(sn+k)

Model Checking and Model-Based Testing in the Railway Domain 87

(with path(k + 1) defined by Equation (2)). Here the first state sn ∈ S is un-
restricted, and the solver tries to find a solution of (k + 1) consecutive states
starting from sn, such that φ holds in sn, . . . , sn+k−1, but is violated in sn+k. If
no such witness can be found, this proves the induction step. Using this induction
scheme, there are the following possible cases:

– The base case is violated. Then one can conclude that Gφ does not hold.
– Both the base case and the induction step are verified (no violations are

found). Then one can conclude that Gφ holds.
– The base case is verified, but the induction step is violated. From this one

can’t immediately conclude that Gφ does not hold, as the induction step
may fail for sequences starting at an unreachable state, i.e. for sequences
that do not correspond to real executions of the model. Only if the first
state sn of the violation trace is reachable one can conclude that Gφ does
not hold.

Hence, due to the third case, the method may give rise to false negatives. As
a remedy against this problem the desired property φ should be strengthened
with an auxiliary property ψ that is false for those unreachable states, sn, for
which the induction step would otherwise fail. One should now use the induction
principle to simultaneously prove φ∧ψ instead of only proving φ. The auxiliary
property ψ is called a strengthening invariant.

An alternative to invariant strengthening is to increase k one by one, until
reaching a k, where either the base case fails or both the base case and the
induction step hold. In order to ensure that this method terminates (and hence
becomes complete), one has to add an extra condition∧

n≤i<j≤n+k

(si �= sj)

to the induction step violation formula, cf. e.g. [10]. This extra condition ex-
presses that all the states sn, . . . , sn+k are distinct such that only acyclic exe-
cution sequences are considered. According to [10], any k-induction proof can
be reduced to a 1-induction proof by means of invariant strengthening. In this
paper we use the latter method, as our experience showed that already for small
values of k, state explosion happens.

2.2 Formal Modelling

In this section, we describe our approach for creating formal models.

Modelling Product Lines. A characteristic feature of railway control sys-
tems is the need for producing an individual system with each installation: the
requirements for each concrete control system typically depend on individual
parameters such as – in case of interlocking systems – the railway network to be
controlled and the train routes allowed through that network. Therefore it is a

88 A.E. Haxthausen, J. Peleska

common practise to design the software as a collection of generic units that can
be re-used for many systems by instantiating these units with the individual con-
figuration/application data required for each concrete system. It is evident that
formal models of such systems should reflect this generic product line character.
Therefore, in our method we will use generic models that can be instantiated with
configuration data.

Domain-Specific Approach. In recent years, domain-specific, generative meth-
ods [11] for software development have gained wide interest. One of the main
objectives addressed by these methods is the possibility for a given domain to
re-use various artifacts when developing software. The re-use of models for a
product line of systems can be enabled by developing re-configurable systems
as suggested above. Domain-specific methods typically use domain-specific lan-
guages and generators for the construction of re-configurable artefact’s. An ap-
plication generator is a tool that takes a specification of an application as input
and returns an application as output. It yields this application by instantiating
the generic part of the application with configuration data that it derives from
the specification. The specifications are formulated in a domain-specific language
(DSL). In contrast to general-purpose specification and programming languages,
a domain-specific language is dedicated to a specific application domain by using
the terminology of that domain. Hence, it can be used by domain experts who are
not specialists in the field of information technology. Typically the ‘applications’
are software source code represented in a high-level programming language, but
they can also be formal models or formal requirement specifications.

Inspired by that, our method suggests to provide a domain-specific language
and a generator that from specifications in this language can produce formal
models by instantiating a generic model with configuration data. Likewise, there
should be a generator that produces formal specifications of required safety prop-
erties.

2.3 Method Summary

Our methodological approach results in a domain-specific development and V&V
framework for railway control systems comprising the following elements (see
Fig. 2).

1. A domain-specific language (DSL).
2. A collection of development tools, including

(a) a DSL specification editor and well-formedness checker for configuration
data,

(b) a bounded model checker that can perform k-induction,
(c) a generator that takes a well-formed generic DSL model and a well-

formed DSL specification of configuration data as input and produces a
behavioural model M of the control system and its physical environment
as a Kripke structure with initial condition and transition relation in
propositional form,

Model Checking and Model-Based Testing in the Railway Domain 89

DSL Specification

Specification Checker

Behavioral Model

Properties

Generators

Configuration
Data

Checking
Result

Generic
Model

Generic
Verification
Conditions

Model
Instance

Verification
Conditions

k-induction
by bounded

model checking

×
Counter-examples

�

Fig. 2: Toolchain.

(d) a generator that takes a well-formed DSL specification of configuration
data and generic verification conditions as input and produces the re-
quired verification conditions (safety conditions φ and strengthening con-
ditions ψ expressed in the property language of the model checker).

For a given product line, initially the generic model (which is common for all
control systems of the product line) is created and checked to be well-formed.
Then for each control system to be verified, users should first apply the specifica-
tion editor to specify the configuration data in the domain-specific language and
check the resulting descriptionD by means of the specification checker. Next, the
generators should be applied to the generic model and the specification of con-
figuration data to produce (1) a model M of the control system and its physical
environment and (2) the required state invariants φ and ψ. Finally, the bounded
model checker is applied to automatically check the validity of M |= G(φ ∧ ψ)
by means of k-induction.

3 Interlocking System Verification – a Case Study

In this section we illustrate the verification method described in Section 2.3 by
providing a framework for constructing and verifying both generic software and
concrete configuration data for a new family of ERTMS/ETCS level 2 based
interlocking systems [12]. These systems are going to be deployed in Denmark
over the next years until 2021 as part of the Danish Signalling Programme3. The
work presented in this section is based on the publications [32, 33].

3.1 The Novel Danish Interlocking Systems

Complete ETCS signalling systems consist of a multitude of components, such as
interlocking systems, radio block centres, track elements (e.g. points, balises, axle
counters), and on-board equipment (e.g. the European Vital Computer (EVC)
performing automated train protection according to the ETCS protocols). An

3 http://www.bane.dk/signalprogrammet

90 A.E. Haxthausen, J. Peleska

interlocking system has the task to control the points in a railway network and
to set safe train routes through this network according to traffic control requests.
In the old signalling systems, interlocking systems also controlled signals placed
along the tracks. In the new signalling systems, there are no signals installed
along the tracks, but only marker boards to show the start and end of routes.
The interlocking systems now have a virtual signal associated with each marker
board. A virtual signal can be OPEN or CLOSED, allowing or disallowing trains
to pass the associated marker board. Based on the state of the virtual signals,
movement authorities (permissions to proceed) are sent via radio block centres
to the on-board units in the trains.

3.2 The Domain-specific Language for Interlocking Systems

In our DSL, a description D of a concrete interlocking system configuration
consists of a network diagram N and an interlocking table T . The configuration
(N,T) is then complemented by the generic algorithms controlling the allocation
of train routes through the network.

Network Diagrams. A network diagram N outlines the geographical arrange-
ment of the tracks and track-side equipment. Fig. 3 shows an example of a
network diagram for a typical smaller station. From the diagram it can be seen
that the station has six linear sections (b10,t10,t12,t14,t20,b14), two points
(t11,t13), and eight marker boards (mb10,...,mb21). A linear section is a sec-
tion with up to two neighbours: one at the up end, and one at the down end.4

The linear section t12 in Fig. 3, for example, has t13 and t11 as neighbours at
its up end and down end, respectively. A point can have up to three neighbours:
one at the stem, one at the plus end, and one at the minus end. Point t11 in
Fig. 3, for example, has t10, t12, and t20 as neighbours at its stem, plus, and
minus ends, respectively. Linear sections and points are collectively called (train
detection) sections, as they are each provided with train detection equipment
which the interlocking system uses to determine whether the section is occupied
by a train or not. A point can be switched between two positions: PLUS and
MINUS. When it is in the PLUS/MINUS position, the stem is connected to
the plus/minus end. Along each linear section, up to two marker boards (one
for each direction) can be installed. A marker board can only be seen in one
direction and is used as reference location (for start and end of routes) for trains
going in that direction. For instance, mb13 in Fig. 3 is installed along section
t12, and it is intended for travel direction up.

Interlocking Tables. An interlocking table T specifies the routes in the given
network diagram N and the conditions (to be used by the interlocking system)

4 In Denmark, up and down denote the directions in which the distance from a refer-
ence location is increasing and decreasing, respectively. The reference location is the
same for both up and down, e.g. an end of a line.

Model Checking and Model-Based Testing in the Railway Domain 91

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Fig. 3: An example railway network layout.

for setting these routes. In railway signalling terminology, setting a route denotes
the process of allocating the resources – i.e. linear sections, points, and virtual
signals – for the route, and then locking the route exclusively for only one train.

Interlocking tables (see Table 1) have one row for each route r. Each row
has the following fields. Field id contains the route identification r, field source
states its source marker board src(r), field dest states its destination marker
board dst(r), and field path specifies the sequence path(r) of track sections
associated with r. Moreover, field overlaps specifies the sections overlaps(r)
which are located beyond the destination marker board and must be vacant
in order to avoid collisions in case a train should fail to stop. Field points
describes the set points(r) of points associated with the route. This includes
points in the path and overlap, and points used for flank and front protection.
For each point p associated with r, its required position req(r, p) to be enforced
when allocating r is specified. The table field signals specifies the set signals(r)
of virtual signals that must be CLOSED for flank or front protection of the
route. The field conflicts describes the set conflicts(r) of routes conflicting
with r: if two routes require the same point to be in different positions, or if the
routes overlap such that concurrent use could lead to train collisions, they are
considered to be conflicting. The set Route contains all route identifications in
the interlocking table T . Set Signal denotes all marker boards, Point all points,
and LSection all linear sections occurring in T .

Table 1: Excerpt of the interlocking table for the network layout in Fig. 3.
id source dest points signals path conflicts

1a mb10 mb13 t11:p;t13:m mb11;mb12;mb20 t10;t11;t12 1b;2a;2b;3;4;5a;5b;6b;7
..
7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;3;5b;6a
The overlap column is omitted as it is empty for all of the routes.
‘p’ means PLUS, ‘m’ means MINUS.

Table 1 shows an excerpt of an interlocking table for the network shown in
Fig. 3. As can be seen, one of the routes has id 1a, goes from mb10 to mb13

via three sections t10, t11 and t12, and has no overlap. It requires point t11
(in its path) to be in PLUS position and point t13 (outside its path) to be in
MINUS position (as a protecting point). The route has mb11, mb12 and mb20 as

92 A.E. Haxthausen, J. Peleska

protecting signals, and it is in conflict with routes 1b, 2a, 2b, 3, 4, 5a, 5b, 6b,
and 7.

3.3 Framework Implementation

Following the method in Section 2.3, we have implemented a framework of tools
centered around the domain-specific language. Fig. 4 illustrates the architecture
of the implemented framework.

DSL Specification of Configuration Data

XML Representation Internal Representation

Parser

Specification Checker

Behavioral Model

Properties

Generators

Network

Interlocking
Table

Network

Interlocking
Table

Checking
Result

Generic
Model

Generic
Verification
Conditions

Model
Instance

Verification
Conditions

k-induction
by bounded

model checking

×
Counter-examples

�

Fig. 4: Implemented framework.

The domain-specific language for configuration data has been given an XML
representation as well as a graphical representation. A graphical editor has been
developed and from this the XML representation can be exported. A parser
from the XML representation into an internal DSL representation has been im-
plemented as well. The generator tools have been implemented to take as input
an internal DSL representation and return an internal representation of a Kripke
model M and an internal representation of state invariants φ and ψ, respectively.
As model checker, we use the bounded model checker of the RT-Tester model-
based testing and bounded model checking tool, described in more detail in [25].
This model checker takes as input M5, φ, and ψ, and performs k-induction using
the SONOLAR SMT solver described in [28].

3.4 Generated Models

Given a domain-specific description D consisting of a network layout N and an
interlocking table T , the model generator returns a representation of a Kripke
Structure M = (S, s0, R, L,AP) modelling the behaviour of the interlocking
system and its operational environment. Below we will outline the state space
S, the initial state s0, and the transition relation R of M .

5 Precisely speaking, it takes the variable symbols v ∈ V , their domains Dv, as well as
the initial condition I and the transition relation R in propositional form as input.

Model Checking and Model-Based Testing in the Railway Domain 93

State Space. As described above, every state is a valuation function s : V →⋃
v∈V Dv, such that s(v) ∈ Dv for all variable symbols v ∈ V . Every variable

domain Dv is a finite subset of N0. Below, we describe how the state space is
constructed from the set of sections (points and linear sections), the set of marker
boards in the network description N , and the set of routes in the interlocking
table T :

Point Positions. For each point p in N there are two variables:

– p.POS – representing the actual position of p
– p.CMD – representing the position of p, as requested by the interlocking

The value of p.POS can be one of the following: PLUS(0), MINUS(1), or INTER-
MEDIATE(2), the latter representing the transition phases PLUS ↔ MINUS.
The value of p.CMD can only be PLUS or MINUS.

Virtual Signal Aspects. For each marker board s in N , there is an associated
virtual signal s (with the same name as the marker board) for which there are
two variables:

– s.ACT – representing the actual aspect of s, as “seen” by the train
– s.CMD – representing the aspect of s, as requested by the interlocking

The values of these variables can be one of the following: OPEN(0) or CLOSED(1).
The actual aspect of a virtual signal is an abstraction of the information trans-
mitted to the train: Only if the virtual signal is OPEN, the train is allowed to
pass the associated marker board. The values of the two variables may differ
due to the delay in the communication between the interlocking system and the
trains.

Section Occupancy Status. For each linear section l in N , there are two variables,
each representing an occupancy status:

– l.D2U representing the occupancy status of l in direction up
– l.U2D representing the occupancy status of l in direction down

and for each point p in N , there are three variables:

– p.S2PM representing the occupancy status of p in direction stem to plus or
minus

– p.P2S representing the occupancy status p in direction plus to stem
– p.M2S representing the occupancy status p in direction minus to stem

Each of these variables is represented by an integer FRO encoded by 3 bits F ,
R, and, O. Seven out of eight possible bit combinations are used, as specified in
Table 2. We distinguish between six ways a section can be occupied by trains
in the given direction: four ways a single train can occupy the section and two
ways it can be occupied by two trains travelling in the same direction. If, for a
given direction, a section has occupancy status 111 or 011 (i.e. a single train is

94 A.E. Haxthausen, J. Peleska

Table 2: Representation of occupancy statuses.
FRO represented occupancy status

000 vacant

101 occupied by the front, but not by the rear of a train
011 occupied by the rear, but not by the front of a train
111 occupied by both the front and by the rear of a train
001 occupied by a train, but neither by its front nor by its rear

010 occupied by two trains: a rear-end collision
110 occupied by two trains: a rear-end collision

occupying the section and its rear has left the previous section) and a second
train going in the same direction is entering the section from the previous section,
a rear-end collision, represented by occupancy statuses 010 and 110, respectively,
will happen. Head-on collisions are represented by non-zero values of more than
one occupancy status variable associated with a linear section or point. If, for
example, l.D2U ∈ {101, 111} and at the same time l.U2D ∈ {101, 111}, this
represents a head-on collision situation in section l.

Using the bit vector representation has the advantage that some transition
rules and safety properties can be expressed efficiently using arithmetic bit-wise
operations on the occupancy statuses, as shown in Sections 3.5 and 3.6.

Section Modes. For each section e, there is a variable e.MODE representing the
mode of e: FREE(0), EXLCK(1) (the section is exclusively locked for a route),
or IN-USE(2) (the element is occupied by a train).

Route Modes. For each route r, a variable r.MODE is used to represent the
current mode of that route. A route can be in one of the following modes:
FREE(0), MARKED(1), ALLOCATING(2), LOCKED(3), or IN-USE(4). The
use of these modes will be explained further below, in connection with Fig. 5.

Initial State. The initial state s0 is the (safe) state in which all points are
in PLUS position and requested to be so, all virtual signals are CLOSED and
requested to be so, all detection sections are vacant and FREE, and all routes
are FREE. With the state representation introduced above, this means that s0
is the state in which all variables are evaluated to 0. In propositional form, this

Model Checking and Model-Based Testing in the Railway Domain 95

is expressed by

I ≡
∧

s∈Signal

s.ACT = s.CMD = 0 ∧
∧

p∈Point

p.POS = p.CMD = p.S2PM = p.P2S = p.M2S = p.MODE = 0 ∧
∧

l∈LSection

l.D2U = l.U2D = l.MODE = 0 ∧
∧

r∈Route

r.MODE = 0

Transition Relation. The transition relation R ⊆ S × S is represented in
propositional form by Φ(s, s′) as explained above. Below we explain how Φ is
constructed.

The general principle is as follows: First propositions (also called transition
rules) for basic transitions are defined. They take the form guard ∧ effect , where
guard is a proposition over the variables in V and effect is a proposition over free
variables from V ∪V ′. Then these propositions are combined. If two propositions
φ and ψ are describing transitions that have the same priority, their combined
behaviour is described nondeterministically by the proposition φ ∨ ψ. If the
transitions of φ have higher priority than those described by ψ, their combined
behaviour (for which we use the notation φ [>] ψ) is described by the proposition
φ∨(¬gφ∧ψ), where gφ is the disjunction of the guards of the transition rules in φ.
Hence, in this combination, transitions in ψ can’t happen, when some transitions
in φ are enabled.

To follow the principle explained above, we first divide the transitions in the
model into four classes, such that the transitions in each class have the same
priority, and for each class we define a proposition describing the combined
behaviour of the transitions in that class. The classes and their propositions are
as follows:

1. Φd for the combination of all route dispatching transitions (as done by the
interlocking system).

2. Φi for the combination of all other route control transitions (as done by the
interlocking system).

3. Φelements for the combination of all transitions switching the actual position
of points (as done by point machines) and all transitions transmitting virtual
signals to trains so the virtual signals change their actual aspects (done by
radio communication over a radio block centre).

4. Φtrains for the combination of all transitions changing the section occupancy
status for train detection sections (due to train movements).

With these considerations, we define

Φ = Φd ∨ (Φi [>] (Φelements [>] Φtrains))

96 A.E. Haxthausen, J. Peleska

Route dispatching as expressed by Φd can happen at any time in a nondeter-
ministic way. The internal transitions Φi of the route controller happen much
faster than the transitions involving state changes in track elements. Therefore
Φi has higher priority than the transitions involving track elements. The latter
are again faster than train movements along the routes, so Φelements has higher
priority than Φtrains. This prioritisation allows us to abstract from physical time,
while excluding unrealistic transition sequences that could never happen due to
physical constraints.

In the following paragraphs, we outline the transition rules for the transitions
in the four classes above.

FREE MARKED ALLOCATING

IN-USE LOCKED

(1)
dispatch(r)

(2)
allocate(r)

(3)
lock(r)

(4)
use(r)

(5)
release(r)

(b)∨
e∈path(r) releaseElement(r, e)

(a)∨
e∈path(r) useElement(r, e)

Fig. 5: Life-cycle of the route controller for route r, showing how the value of
r.MODE is changed.

FREE EXLCK IN-USE

Fig. 6: Life-cycle of the mode e.MODE of a section e.

Transition Rules for the Interlocking System. The interlocking system
has a route controller for each route r in the interlocking table. Fig. 5 shows
the “life-cycle” of a route controller for a route r. It goes through five modes
represented by r.MODE as follows.

(0) Initially the route mode is FREE.

Model Checking and Model-Based Testing in the Railway Domain 97

(1) dispatch(r): If the route controller is in mode FREE and receives a request
to set the route, the route is dispatched, i.e. its mode is set to MARKED.

(2) allocate(r): In the MARKED mode, the route controller continuously checks
the status of different track-side elements to detect conditions for starting
the allocation of the route: it checks whether (1) the sections of the path and
the overlap of the route are vacant, (2) none of the conflicting routes r′ are in
mode ALLOCATING or in mode LOCKED, and (3) each section in the path
of the route is in mode FREE, each section in the overlap of the route is in
mode FREE or in mode EXLCK, and each protecting point is in mode FREE
or in mode EXLCK and locked in the required position. This condition check
is performed as an atomic action, so that route controllers of conflicting
routes cannot come to the simultaneous conclusion that their route can
be allocated. This is reflected in the transition relation by a disjunctive
structure over all routes. When these conditions are met, the route controller
commands the protecting signals of the route to close and it commands
points used by the route to be switched to their required positions as stated
in the interlocking table. It changes the mode to EXLCK for each section e
in r’s path, and the route mode of r is set to ALLOCATING.

(3) lock(r): In the ALLOCATING mode, the route controller constantly moni-
tors the status of the track-side elements. When the signals and points have
changed their actual states as commanded in the previous step, the source
signal of the route is commanded to OPEN, allowing a train to enter the
route, and the route mode is set to LOCKED.

(4) use(r): In the LOCKED mode, when the actual aspect of the source signal
of the route has changed to OPEN and a train enters the route, the source
signal of the route is commanded to be CLOSED preventing other trains
from entering, and the route mode is set to IN-USE.

(5) release(r): In the IN-USE mode, the sections of the route are sequentially
being used (transition (a)) and released again (transition (b)) as explained
further below. The route is released, i.e. the route mode is set to FREE,
when the train has finished using the route, i.e. the train has passed the
destination marker board, or the train has come to standstill in front of this.

While the route controller is executing, each of the sections e of the route goes
through a life cycle with three modes as shown in Fig 6. Initially the mode is
FREE. In transition (2) in Fig. 5 the mode of e is changed to EXLCK. When the
route controller is in mode IN-USE and the train enters section e, the mode of
e is changed to IN-USE (by transition (a)), and when the train leaves section e,
the section is released (by transition (b)), so the mode of e is changed to FREE.
Hence, the sections of the route are sequentially used and sequentially released
as the train moves along the route.

For each of the transitions ((1) – (5), (a) and (b)) explained above there is
a proposition (see the labels on the arrows in Fig. 5) specifying the transition.
Transition (1), for example, has the proposition dispatch(r) specified by

r.MODE = FREE ∧ r.MODE′ = MARKED

98 A.E. Haxthausen, J. Peleska

It states that a route can be dispatched arbitrarily when its mode is FREE. This
is an over approximation (on the safe side): in the real world, a route can only
be dispatched when requested by an approaching train.

Transition Rules for Points. For each point p there are two transition rules
for switching the actual position of the point:

p.POS �= p.CMD ∧ p.POS �= INTERMEDIATE∧ p.POS′ = INTERMEDIATE

and
p.POS = INTERMEDIATE ∧ p.POS′ = p.CMD

The first states that when the actual position of the point p differs from the
requested position and is not the intermediate position, the point is switched to
the intermediate position, and the second states that when it is in intermediate
position, it switches to the requested position.

Transition Rules for Virtual Signals. For each virtual signal s there is one
transition rule Φs for changing the actual aspect (as seen by the train):

s.ACT �= s.CMD ∧ s.ACT′ = s.CMD

It states that when the actual aspect s.ACT of a signal s differs from the com-
manded aspect s.CMD, the actual aspect of the signal is set to the commanded
aspect.

Transition Rules for Train Movements. Trains do not occur as explicit
state components of our model. Instead, train movements are implicitly modelled
via changes in the occupancy status of train detection sections, inspired by the
“rubber-band” model described in [1]. This implicit model is advantageous when
compared to the explicit one, because it covers an arbitrary number of trains
of arbitrary length. In the implicit model of train movements, train length – in
terms of numbers of sections that a train occupies – may vary as trains move.
This variation reflects the actual view of interlocking systems of the train length:
although trains have fixed geometric length, their length – in terms of the number
of sections that they occupy – as seen by the interlocking systems is not fixed.

It is out of the scope to show all the transition rules for changing the oc-
cupancy status of track sections. Here we will just mention that there are rules
expressing conditions and effects of the following kinds of events: the front or
the rear of a train enters a boarder section, leaves a boarder section, or leaves
one section and enters the next section in the travel direction of the train. The
transition rules reflect the following assumptions about train behaviour:

– Trains enter/leave only the network at/from boarder sections.
– Trains have a driving direction which is not changed while using a route.

Model Checking and Model-Based Testing in the Railway Domain 99

– Trains follow the tracks (without jumping) and move in their given travel
direction.

– Trains do not pass boarder marks for which the actual aspect of the associ-
ated virtual signal is CLOSED.

– Trains do not split.

3.5 Generated Safety Conditions

x
(a) Head-on collision.

x
(b) Rear-end collision.

x
(c) Derailment.

Fig. 7: Cases of hazardous situations.

Given a domain-specific description D, the verification conditions genera-
tor returns a state invariant condition φ which is a proposition over the state
variables given in Section 3.4.

The proposition expresses conditions for a state to be safe, i.e. it expresses
that there are no hazardous situations that can lead to train collisions and train
derailments. Fig. 7 shows three types of hazardous situations:

(a) Head-on collision: the case where two trains are approaching each other on
the same track section,

(b) Rear-end collision: the case where two trains are following each other on the
same track section, and

(c) Derailment: the case where a train enters a point which is not in right posi-
tion for the train movement or the point switches while the train is driving
through the point.

The state invariant φ is of the form

φ = ¬(
∨

l:Linear

Hazard l ∨
∨

p:Point

Hazardp) (3)

where Hazard l and Hazardp are propositions specifying conditions for hazards
to occur on a linear section l and a point p, respectively. These propositions are
disjunctions of sub-propositions expressing hazards of the types stated above:

Hazard l = HeadOnCollision l ∨ RearCollision l (4)

Hazardp = HeadOnCollisionp ∨ RearCollisionp ∨Derailmentp (5)

100 A.E. Haxthausen, J. Peleska

The sub-propositions are expressed in terms of the track occupancy variables.
For instance:

HeadOnCollision l = l.D2U · l.U2D > 0 (6)

As l.D2U·l.U2D > 0 iff l.D2U > 0 and l.U2D > 0, the formula expresses that the
section is occupied in both down-to-up (l.D2U > 0) and up-to-down (l.U2D > 0)
directions.

3.6 Invariant Strengthening

Given a domain-specific description D, the verification conditions generator also
returns a state invariant condition (proposition) ψ for invariant strengthening as
explained in Section 2.1. ψ is the conjunction of many propositions expressing
properties that must hold in reachable states. ψ has been chosen such that it is
false for unreachable states for which the k-induction with k=1 fails. An example
of such strengthening properties is given in the following.

Train Integrity. Some states of the variables expressing the train occupancy
status of the track sections are not feasible as they correspond to situations that
are not physically possible. An example of an infeasible state is one in which the
variables express that a section e is occupied in one direction by a train without
the front being on the section, but the next section in that travel direction is
unoccupied.

The train integrity conditions can be formalised as a conjunction of formulas
over the track occupancy variables. For each travel direction (up and down),
there is a formula for each section e that has a next section in the given travel
direction. The pattern of such a formula depends on the other sections the current
section is connected to in the given travel direction. For instance, for travel
direction up and a linear section l that has a linear section l′ as neighbour in
travel direction up, the formula will take the following form:

(l.D2U & 0b101) = 0b001 iff (l ′.D2U & 0b011) = 0b001 (7)

where & is the bit-wise and operator. This formula expresses that section l is
occupied by a train in direction up (the O bit of l.D2U is 1) without the front
being on the section (the F bit of l.D2U is 0), if and only if section l′ is occupied
by a train in direction up (the O bit of l ′.D2U is 1) without a rear being on
the section (the R bit of l ′.D2U is 0). Formula (7) shows the expressiveness of
our state encoding, allowing properties to be efficiently represented in compact
formulas.

3.7 Verification Experiments

We have used the tool-chain to verify the safety properties Gφ for model in-
stances of a number of railway networks, ranging from a trivial toy network to a
large station (Køge) extracted from the early deployment line of the new Danish

Model Checking and Model-Based Testing in the Railway Domain 101

Table 3: Verification results for different cases of networks.

Case Linears Points Signals Routes States Time Memory

Branch 6 1 6 4 1032 2 63
Junction 8 2 8 10 1055 9 137
Station 6 2 8 12 1053 11 128
Gadstrup-Havdrup 21 5 24 33 10156 146 626
Køge 57 23 60 73 10429 3868 4457

Branch, Junction and Station are invented networks (of which Station is the example
of the typical smaller station shown in Fig. 3), while Gadstrup-Havdrup and Køge are
stations extracted from the early deployment line in the Danish Signalling Programme.
Time is given in seconds and memory in MB.

signalling systems. In all cases it was sufficient to make k-induction with k = 1,
when using the invariant strengthening explained in Section 3.6. An example
where k-induction was applied with k > 1 can be found in [26].

Table 3 shows the results of these verification experiments. For each case, the
table gives the size of a network in terms of the number of linear sections, points,
signals, and routes in the configuration, and the approximate number of gener-
ated states in the corresponding model instance. The two last columns show the
approximate accumulated verification time and memory usage. All experiments
have been performed on Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz, 8GB
RAM, Ubuntu 14.04 LTS, Linux 3.14.1-031401-generic x86 64 kernel.

We also injected errors into models. Counter examples for these were nor-
mally found in relatively short time. This appears to be a general trend when
dealing with interlocking systems [22]. In a few cases, it took long time to find
counter examples. Such examples usually represent very subtle errors in the
model or the configuration data, which may be easily overlooked by inspection.

4 Model-based Testing

4.1 Model-based Testing Terminology

Test cases, oracles and procedures. The dynamic testing activities for a
given test campaign are called test suites, and these are structured into sequences
of test cases. A test case is a specification fragment serving a test objective, that
is, a goal to examine a specific aspect of SUT behaviour. Test cases are associated
with

– specification of inputs to the SUT that are suitable for investigating the test
objective under consideration,

– specification of the expected behaviour of the SUT in response to these
inputs, and

– references to the SUT requirements that are (partially) tested by these in-
puts.

102 A.E. Haxthausen, J. Peleska

When testing reactive systems, inputs usually consist of input traces, that is,
finite sequences of timed input vectors, each vector stimulating the SUT at a
certain point in time of the test execution. The execution of one or more test
cases is performed by test procedures. The relations between requirements, test
cases, test procedures and results are called traceability data.

Model-based testing (MBT) is a variant of dynamic testing, where the SUT
is executed, and its behaviour is checked against the expected behaviour spec-
ified by a test model. These checkers are usually called test oracles. Models are
associated with a behavioural semantics from which the set of computations,
that is, infinite paths of consecutive model states that can be visited during
a model execution, can be calculated. Using links to syntactic model elements
or to property specifications identifying sets of computations, requirements are
associated with these computation sets. Links to syntactic elements can also be
represented by property specifications. A suitable logic for specifying properties
is, for example, Linear Temporal Logic (LTL) [9], because the models of LTL
formulas are computations.

Since requirements R are linked to sets of model computations, and the lat-
ter are characterised by properties φ, it is possible to derive requirements-based
test cases from the model in an automated way: a symbolic test case for R is a
property ψ satisfying ψ ⇒ φ. This means, that the property ψ characterising the
symbolic test case specifies a subset of the computations representing require-
ment R in the model. A finite computation prefix satisfying ψ is then a concrete
test case; restricting the computation to its input vectors results in the input
data to be used when executing this case.

Alternatively, properties can be used to specify symbolic structural test cases,
whose witnesses cover specific syntactic model portions, such as

– interfaces,
– state machine transitions, or
– operations.

Test data calculation. Calculating witnesses from symbolic test cases can be
performed in analogy to the BMC technique introduced in Section 2: formula

tc ≡ path(s0, k + 1) ∧G(s0, . . . , sk) (8)

with path(s0, k) defined by Equation (1) specifies all paths of length k of the
model that start in s0, perform k transitions and end in some state sk, such that
the witness s0, . . . , sk also fulfils proposition G(s0, . . . , sk) which encodes the test
objective associated with the test case under consideration. In the BMC verifi-
cation described in Section 2, witnesses for propositions similar to tc represented
model errors indicating violations of safety or user requirements. When generat-
ing test cases tc, however, witnesses denote concrete test cases, from which the
input traces can be extracted, to be sent to the SUT during test execution.

Formula G encodes the symbolic test case in propositional form. When using
LTL formulas φ to represent symbolic test cases, the finite BMC encoding of LTL
formulas described in [5] can be used to transform φ into propositional form G.

Model Checking and Model-Based Testing in the Railway Domain 103

Automation. One of the most attractive features of the MBT approach is that
it can be fully automated, once a test model is available. (1) Exploiting the model
references to requirements, test cases related to requirements can be automat-
ically identified and refined, using strategies like equivalence class partitioning
and boundary value testing. Concrete test data can be calculated for abstract test
cases, using the BMC witness generation principle, supported by SMT solvers.
(3) Test oracles can be automatically created, since the model already specifies
the expected behaviour of the SUT. (4) Test procedures executing concrete test
data against the SUT and checking its reactions by means of test oracles can
be automatically generated and executed. (5) Traceability data can be auto-
matically compiled by exploiting the known relationships between requirements,
model elements, test cases, procedures and results. For the purposes discussed in
this chapter, the RT-Tester model-based testing tool has been applied for both
BMC and testing. Its automation capabilities are discussed in [25], and special
test case generation strategies implemented in RT-Tester are described in [21].
Examples of industrial-size models that can be efficiently handled by the tool
have been presented in [23, 27].

Development model versus test model. Model-based testing can be applied
in two different ways. If – for example by verification via model checking –
the correctness of the reference model is ensured, then code and tests can be
developed from this model. The objective of testing is then only to verify the
consistency between the hardware/software integration and the model. Note that
this includes the verification of the object code and of the additions performed
by linkers and loaders. This scenario is depicted in Fig. 8.

If, however, there are doubts about the completeness and correctness of the
development model, it is advisable to have a second, redundant, model developed
by the V&V team, and this is a proper test model. The associated scenario is
shown in Fig. 9. The test execution now verifies the consistency of the SUT be-
haviour with the test model. This allows for detecting errors in the development
model as well. On the other hand, the effort of this V&V approach is higher,
since a separate test model has to be developed. Moreover, debugging the causes
of failed test executions has to take into account the potential errors in the test
model, in addition to errors in development model and code.

For more details about the topics introduced in this section see [25].

4.2 Overall Test Objectives for the Railway Application

For testing our railway control system application, the model verification dis-
cussed in the sections above suggests a one-model MBT approach as described
in Fig. 8: it can be assumed that the model of the railway network, the specified
routes and their associated tables, as well as the control algorithm applied by
the interlocking system is complete and correct. The main test objective is to
verify the consistency of the integrated HW/SW system with the model portion
specifying the required behaviour of the interlocking system. This model portion

104 A.E. Haxthausen, J. Peleska

Development
and Test Model

SUT
Integrated HW/

SW System

Code

Test Engine

Test
Procedures

Manually developed
or automatically generated
from model

Automatically generated
from model

HW/SW integration tests
check consistency of SUT
with model

Fig. 8: MBT with joint development and test model.

Development
Model

SUT
Integrated HW/

SW System

Code

Test Engine

Test
Procedures

Manually developed
or automatically generated
from development model

Automatically
generated
from test model

HW/SW integration tests
check consistency of SUT
with test model

Test Model
Redundant model
developed from
requirements by
the V&V team

Model created by the
development team

Fig. 9: MBT with separate development and test models.

Model Checking and Model-Based Testing in the Railway Domain 105

is represented by the route controller introduced above. The overall test objec-
tive is to verify that the integrated HW/SW-system realising the route controller
behaves in all situations – that is, in all possible combinations of the network
status and for all possible combinations of simultaneous route requests sent to
the controller – as its formal sub-model specified above.

4.3 Semantic Domain: I/O State Transition Systems

The V&V activities performed by means of bounded model checking described
above used Kripke Structures for modelling the behavioural semantics of the
interlocking system (more precisely, its route controller component) and its op-
erational environment, the railway network. This is a closed system in the sense
that for every interface, both communication partners (readers and writers) were
part of the system model. As a consequence, no explicit notion of input and out-
put was needed: the complete system just performed state transitions according
to the underlying Kripke Structure’s transition relation. For hardware-in-the-
loop testing, however, the SUT – that is, the route controller – is stimulated
by a test engine simulating the SUT’s operational environment and at the same
time observing the SUT reactions to the stimulations. To this end, we use a
very general semantics that is related to the Kripke Structure semantics used
for model checking, but streamlined for testing purposes.

A state transition system (STS) is a triple S = (S, s0, R) with state space
S, initial state s0 ∈ S and total transition relation R ⊆ S × S. Obviously, every
Kripke Structure is an STS, but with the additional availability of a labelling
function mapping states to sets of atomic propositions. Next, we restrict the STS
under consideration to those possessing a notion of variable valuations, input,
and output: For test purposes, we need to stimulate certain variables of the SUT
input interface, and observe SUT reactions at its output interface. At the same
time, the SUT may process some internal state variables that cannot be observed
during black-box testing.

An input/output state transition system (IOSTS) is an STS S = (S, s0, R)
where states s ∈ S are valuation functions s : V → D as introduced in Section 2
for Kripke structures, such that in addition, the variable space V can be parti-
tioned into disjoint sets V = I ∪M ∪O called input variables, (internal) model
variables, and output variables, respectively.

In the exposition below, variable symbols are enumerated with the naming
conventions I = {x1, . . . , xt}, M = {m1, . . . ,mp}, O = {y1, . . . , yq}. The cross
product of the input domains is abbreviated by DI = Dx1

× · · · ×Dxt
; DM and

DO are defined analogously. Application of a state valuation function s to the
input vector is written by s(x) = (s(x1), . . . , s(xt)), expressions s(m) and s(y)
are defined in the same way. By s ⊕ {x �→ c}, c ∈ DI we denote the state s′

which coincides with s on all variables from M ∪O, but maps the input vector to
valuation s′(x) = c. For (s1, s2) ∈ R we also use the shorter expression R(s1, s2).
Restricting a state s to variable symbols from a set U ⊆ V is denoted by s|U .
This function has domain U and coincides with s on this domain.

106 A.E. Haxthausen, J. Peleska

IOSTSs have the most general semantic model for SUTs where variables with
non-trivial data types have to be considered. A “trivial data type” would be one
whose elements correspond to a finite enumeration.6 IOSTSs can be extended
to Kripke Structures in a natural way: define a set of atomic propositions AP
as a subset of

A(V) = {p | p is an atomic proposition with free variables in V }
For example, v = d with v ∈ V and d ∈ Dv is an element of A(V); for variables
v, v1, v2 ∈ V with numerical domains also v < d, v ≤ d, v > d, v ≥ d, v1 < v2,
and atomic propositions involving arithmetic expressions, such as v21 +3 · v2 ≤ v
are elements of A(V). The labelling function is then specified in a natural way
by

∀s ∈ S : L(s) = {p ∈ AP | s |= p}
where s |= p (“s is a model of p”) means that proposition p, after replacing every
free variable occurrence v by its valuation s(v), evaluates to true.

Since we are dealing with safety-critical interlocking system controllers, we
only consider deterministic IOSTSs. This means that for every pair of traces
s0.s1 . . . sn, s0.s

′
1 . . . s

′
n with equal length,

(s0|I).(s1|I) . . . (sn|I) = (s0|I).(s′1|I) . . . (s′n|I) ⇒
(s0|O).(s1|O) . . . (sn|O) = (s0|O).(s′1|O) . . . (s′n|O)

This formula expresses the fact that identical input sequences lead to identical
output sequences. Two states of S are called I/O-equivalent if applying the same
sequence of inputs to both states results in the same sequence of outputs from
both states. Two IOSTSs are I/O-equivalent, if their initial states are.

A test case for an IOSTS can be expressed by means of an input sequence
ι ∈ D∗

I and an output sequence ρ ∈ D∗
O of the same length as ι specifying the

outputs expected when applying ι to the initial state. If the resulting observable
state sequence (s0|I∪O).(s1|I∪O) . . . (sn|I∪O) fulfils some LTL formula ψ with free
variables in I ∪O, then this test case traces back to every requirement specified
by some formula φ over free variables in I ∪O, such that ψ ⇒ φ.

Observe that the Kripke structure M modelling the interlocking system in
Section 3 provided a nondeterministic safe over-approximation of the interlock-
ing system to be realised: for example, route dispatching was interleaved with
interlocking control activities and network transitions in a nondeterministic way.
The objective of the IOSTS-based test suite is to show that the SUT behaviour
conforms to a deterministic refinement of M .

4.4 Complete Testing Strategies

Dijkstra’s famous statement that tests can only prove the presence of bugs but
not their absence has to be clarified. It is indeed possible to prove the absence of

6 If all SUT data types were trivial, the SUT semantics could be represented even
simpler by means of Mealy or Moore automata: these operate on finite input and
output alphabets, and possess finite internal state [2].

Model Checking and Model-Based Testing in the Railway Domain 107

bugs in the SUT by testing, as long as certain hypotheses of the true behaviour
of the SUT can be assumed to be valid. In the field of model-based testing, a
well-adopted approach to capture such hypotheses is to introduce fault models
F = (S,�,D). Each F consists of a reference model S, a conformance relation
�, and a fault domain D [29]. S specifies the expected behaviour of the SUT,
� specifies a relation between models of the same semantic domain as S, and
D consists of a (usually infinite) set of models S ′ from this domain, that may
conform to the reference model (S ′ � S) or not. A test suite is called complete
with respect to F , if and only if all tests of the suite will pass for every S ′ ∈ D
conforming to S, and at least one test will fail when executed against a non-
conforming member of D.

Dijkstra’s statement is still valid in the sense that for black box testing, no
test suite can be universally complete for every possible implementation of a ref-
erence model, because it cannot be determined whether the SUT has additional
internal states that were not covered by the test suite under consideration. An
implementation created by a malicious agent could contain a counter variable c,
so that the implementation behaviour conforms to the reference model, as long
as the number of processing cycles recorded in c is less then some maximum
which is unknown to the tester. After c has reached this maximum, erroneous
behaviour is shown. Such a malicious error seed inside an application is called a
time bomb.

We will now consider failure models F = (S,�,D) over IOSTSs. The refer-
ence model S is a deterministic IOSTS with finite state space (|S| ≤ n ∈ N),
variable space V = I ∪M ∪O as described above, and as conformance relation
� we choose I/O-equivalence. Since the latter is an equivalence relation and
therefore symmetric, we will use the symbol ∼ for specifying equivalent states
or IOSTSs from now on. As fault domains we use

D = D(m) =
{S ′ | S ′ is a deterministic IOSTS over variables from V , and |S′| ≤ m},
m ≥ |S|

The following theorem establishes a well-known fact about the existence of
finite complete test suites, adapted to the context of IOSTSs. Other variants of
this theorem play an important role for deriving complete finite test suites in the
semantic domain of timed automata [31], and for showing that bounded model
checking can globally prove the absence of safety violations in the model, if the
BMC instance (8) is unrolled for a sufficient number k of steps [5].

Theorem 1. Given fault model F = (S,�,D(m)),m ≥ n = |S| as specified
above, define the following test suite.

1. If the initial outputs (s0|O), (s′0|O) of reference model S and SUT S ′, respec-
tively, differ already, set the test to FAILED.

2. Otherwise perform a breadth-first search over the state space of S to a depth
(that is, up to a length of input sequences) of m×n. (Observe that this leads
to S-states being visited more than once.)

108 A.E. Haxthausen, J. Peleska

3. For every state s reached during the search by means of input sequence ι ∈
D∗

I , define test cases
ι.c

for each possible input valuation c ∈ DI . (Observe that when doing breadth-
first search to a depth of m× n, the maximal length of ι is m× n− 1.)

4. For every test case ι.c, use the outputs produced by S when applying this
input sequence to the initial state s0 as test oracle.

Then the resulting test suite is complete for F .

Proof. Consider the product IOSTS constructed from S and an arbitrary mem-
ber S ′ ∈ D(m). Apply an input sequence τ.c ∈ D∗

I with length #τ ≥ m × n to
the initial state (s0, s

′
0). Since the product IOSTS has at most m× n reachable

states, applying τ to (s0, s
′
0) will lead to re-visiting a state pair (s1, s

′
1) ∈ S×S′

that was already reached by a test case with a shorter input sequence ι,#ι < #τ ,
and from there all inputs c had already been exercised and compared to the ex-
pected behaviour modelled by S. Therefore it is unnecessary to exercise test case
τ.c. �

This result is quite interesting from the theoretical point of view. In practise,
however, its application is often infeasible, due to the large size of the state spaces
involved, or due to the impossibility to identify a reliable estimate for m ≥ n:
given m and n, the size of the test suite is |DI |n×m. Let us apply this size formula
to the route controller for illustration purposes. For each route, the controller
executes a life cycle state machine as shown in Fig. 5. Ignoring the additional
states caused by sequential release, such a state machine has 5 states. With r
routes to manage, the internal controller state space has therefore size 5r. Let
us focus on the normal behaviour case, so that feed backs from track elements
are always well-determined by the state of the routes. Then the input vectors
can be restricted to each possible combination of route allocation requests (1 =
route is requested, 0 = route is not requested), so |DI | = 2r. This results in a
total controller state space size of n = 2r × 5r > 23r. Assuming that m = n,
the product IOSTS built from reference specification and implementation has
state space size m × n > 26r. Let us now assume that r = 10, then this results
in more than (210)(2

60) = 2(10×260) test cases. This number of test cases is far
beyond any practical feasibility. As a consequence, it is necessary to elaborate a
plausible heuristics for selecting a very small subset of these test cases which is
still trustworthy as a HW/SW integration test.

4.5 Test Requirements Enforced by Standards

When complete testing strategies cannot be applied to an SUT, the standards
for safety-critical systems – in our case the EN50128:2011 [13] – set up rules how
to decide whether a test strategy is acceptable for the SUT. The infeasibility to
perform a complete strategy on system level is redeemed by performing tests on
different levels of abstraction (see [13, Figure 4]).

Model Checking and Model-Based Testing in the Railway Domain 109

– All software requirements have to be tested during the software validation
phase.

– All aspects of software architecture, design, and interfaces have to be tested
during the software integration phase.

– All components (functions, methods, . . .) have to be tested during the com-
ponent testing phase.

All test cases have to be traced back to the functional, structural, or non-
functional requirements they (partially) verify [13, Table A.5, 5.]. The software
code covered by these tests has to be identified. Different testing techniques have
to be applied:

– Functional black-box tests are used to test against functional requirements
on all levels identified above.

– Structural tests have to be performed in order to cover both software archi-
tecture and local control structures in software units.

– Performance tests are performed to demonstrate that the available resources
(CPU power, memory, etc.) are adequate to realise the functional require-
ments.

– Avalanche tests are performed to investigate the stability of the SUT in
overload situations.

– All interfaces have to be exercised.
– Boundary value tests have to be performed on all interfaces.
– Equivalence classes have to be identified for all systems whose state domains

are too large to be enumerated. It has to be justified that the classes are
sufficiently fine-grained.

– Input partition testing based on these equivalence classes has to be applied
for all input (sub-) vectors whose value domains cannot be enumerated.

Furthermore, it is recommended to assess the resulting test suite strength,
that is, its capability to uncover errors in the SUT, has to be assessed. This
can be achieved, for example, by error seeding : the SUT software is mutated by
introducing errors into the software code. It is then checked whether the test
strength suffices to uncover these mutations [13, D.21].

4.6 Generic Domain-specific Test Strategy

As we have seen in Section 2.2, interlocking control systems are generic in the
sense that a control algorithm performing route allocation is designed once and
for all. Then, following the product line paradigm, concrete interlocking system
control components – in our case, the route controller – are instantiated or con-
figured by associating the generic algorithm with concrete network descriptions
N and interlocking tables T , as has been illustrated in the case study described
in Section 3.

In Fig. 10 the interface and internal state variables of the route controller
are shown. The controller inputs route requests from trains, the actual signal
aspects, point positions, and the vacancy status of linear track sections and

110 A.E. Haxthausen, J. Peleska

Route Controller

Static Internal State:
interlocking tables

Dynamic Internal State:
route/element modes

Input
variables

Output
variables

s ∈ Signal : s.ACT

p ∈ Point : p.POS

e ∈ Section : e.vacancy status

s ∈ Signal : s.CMD

p ∈ Point : p.CMD

r ∈ Route : request(r)

Fig. 10: Route controller interface and internal state.

points.7 The controller writes to the signal interfaces in order to switch signal
aspects, and it writes to the input interfaces of points, in order to change their
position as required by the routes to be allocated.

It is typical for systems built according to the generic product line paradigm,
that requirements also exist already on the generic level and are instantiated
together with the concrete system configuration. A detailed analysis of test ob-
jectives on the generic level has been presented in [24, Section 5.2]. The generic
user requirements can be summarised as follows.

UR-01 All routes specified in the interlocking table can be allocated.
UR-02 Every subset of non-conflicting routes can be allocated in parallel.

The generic safety requirements are

SR-01 It can never be the case that linear track sections or points that are part
of conflicting routes r1, r2 are simultaneously allocated for both r1 and r2.

8

7 The interface e.vacancy status is just an abstraction of the occupancy status in-
troduced in Section 3: e.vacancy status = VACANT if and only if the sum of all
occupancy statuses associated with e is zero. Otherwise it is OCCUPIED.

8 Observe that for the case where sequential release is disallowed, this requirement
simplifies to “It can never be the case that two conflicting routes are simultaneously
allocated”. In presence of sequential release, however, it may be the case that routes
r1, r2 share, for example, a single point tij , and that tij has already been passed by
a train riding along route r1, so that all elements from the start of r1 up to, and
including tij have been released. In that case, r2 can also be allocated concurrently
to r1, and tij is in state “allocated for r2”.

Model Checking and Model-Based Testing in the Railway Domain 111

SR-02 Whenever a route is locked, all route elements including overlaps are
vacant, and all points and signals are in the states required for this route
according to the interlocking table: the points are in the position specified
for the route in the table, the route’s entry signal is in state OPEN, and all
other signals associated with the route are CLOSED.

SR-03 Whenever a track element which is part of an allocated route is se-
quentially released, there is no train on this route which is still to pass this
element.

SR-04 Whenever a route is marked as free, all of its elements have been se-
quentially released.9

The above safety requirements are completed by specifying robust behaviour
(safety robustness requirements (SRR)):

SRR-01 Whenever a signal fails to assume the requested aspect CLOSED, the
system transits into safe state, that is, all operative signals are switched to
CLOSED.

SRR-02 Whenever a point that has been locked before fails to keep up the
requested position, the system transits into safe state.

Since we have already shown by model checking that the interlocking tables
specify safe behaviour of trains and track elements for the network under con-
sideration, the safety requirements SR-01,. . . ,SR-04 and SRR-01, SRR-02 imply
the validity of the safety requirements

SR-05 Whenever a route is locked or already in use, its flank protection is
ensured.

SR-06 Head-on collisions can never occur.
SR-07 Rear-end collisions can never occur.
SR-08 Derailment due to erroneous point positions can never occur.

The final generic safety requirement

SR-09 Derailment due to overspeeding can never occur.

identified in [24, Section 5.2] does not have to be handled in the context anal-
ysed in this article, because we are dealing with safe control decisions of the
interlocking system, while SR-09 is a safety requirement delegated to the trains’
on-board controllers responsible for automated train protection (ATP). Indeed,
the European Vital Computer – this is the name of the on-board controller of
ETCS systems – supervises the conformance of train velocity with the restric-
tions imposed in any system state along each route. For this so-called ceiling
speed supervision, it is even possible to design and execute a complete test suite;
this has been elaborated in [8, 7].

Typically, the generic requirements are formally specified as formulas Gφ,
where φ is a conjunction over certain configuration elements. Formalising, for

9 In this case it follows from SR-03, SR-04 that no train resides on the route anymore.

112 A.E. Haxthausen, J. Peleska

example, requirement SR-02 introduced above, leads to

SR-02 ≡ GφSR-02

φSR-02 ≡
∧

r∈Route

(r.MODE = LOCKED ⇒

((
∧

e∈path(r)∪
overlaps(r)

vacant(e)) ∧

(
∧

p∈points(r)

p.POS = p.CMD ∧ p.CMD = req(r, p)) ∧

(
∧
mb∈

signals(r)−src(r)

s.ACT = s.CMD ∧ s.CMD = CLOSED) ∧

(src(r).CMD = OPEN)))

“Re-translating” this back to natural language, this means “In every reachable
state, whenever some route r is locked, all associated track elements (including
overlaps) are vacant. All points associated with this route are in the position
requested by the command issued from the interlocking system to the point, and
this command is the same as the required point state req(r, p) for p if allocated in
this route. Moreover, the entry signal src(r) for this route has been commanded
to show aspect OPEN, while every other signal s referenced for this route has
aspect CLOSED.”.

When instantiating to a concrete system, these formulas lead to concrete
test cases, by specialising to the routes and track elements occurring in the
system configuration. The symbolic test cases for testing requirement SR-02, for
example, when instantiating a concrete system with routesRoute = {r1, . . . , rn}
have symbolic input specifications

TC-02-i ≡ FψTC-02-i, i = 1, . . . , n

ψTC-02-i ≡ ri.MODE = LOCKED

which means “Generate a sequence of inputs to the route controller, so that
finally route ri is put into mode LOCKED by the controller”. If such a state has
been reached during test execution, the expected results of test case TC-02-i are
checked as specified in SR-02 by verifying the validity of proposition

TC-EXP-02-i ≡ ψTC-EXP-02-i

ψTC-EXP-02-i ≡ (
∧

e∈path(ri)∪
overlaps(ri)

vacant(e)) ∧

(∧
p∈points(ri)

p.POS = p.CMD ∧ p.CMD = req(ri, p))
) ∧

(
∧
s∈

signals(ri)−src(ri)

s.ACT = s.CMD ∧ s.CMD = CLOSED) ∧

(src(ri).CMD = OPEN)

Model Checking and Model-Based Testing in the Railway Domain 113

While the n symbolic test cases specified above are obviously sufficient to
show that requirement SR-02 has been implemented in the concrete SUT, there
are very many computations fulfilling FψTC-02-i. As a consequence, it has to be
decided how many different witnesses – i.e. concrete test cases – of FψTC-02-i have
to be generated in order to say that the requirement has been tested in sufficient
depth. A well-founded answer to this questions leads to the investigation of
boundary values and equivalence classes.

4.7 Functional Decomposition and Equivalence Classes

One of the most widely used heuristics to reduce test suite size is based on func-
tional decomposition. Functions that justifiably do not affect each other can be
tested separately. In the railway control application considered here this decom-
position can be performed along certain route allocation states: for example,
locking a completely allocated route does not affect the route’s (sequential) re-
lease, because these two activities never happen at the same time for the same
route. We therefore illustrate the design of equivalence class testing strategies
by means of the locking function. Its basic behaviour is sketched in Fig. 11.

Allocating Locked

Other functions

allocate(r)

[gAL]/

r.MODE := 3;

src(r).CMD = OPEN

[gLHS]/

r.MODE := −1;

H := 1;

[gLHP]/
r.MODE := −1;
H := 1;

[gLHV]/
r.MODE := −1;
H := 1;

[gLU]/

r.MODE := 4;

src(r).CMD := CLOSED

Fig. 11: State transitions related to the route locking function.

The locking functionality is activated after the allocation of a given route
r has been completed. This completion condition gAL (“guard condition for

114 A.E. Haxthausen, J. Peleska

transition from allocation state to locked state”) is specified by proposition

gAL ≡ s act ∧ p req ∧ e vac ∧ e lck

s act ≡
∧

s∈signals(r)

s.ACT = CLOSED

p req ≡
∧

p∈points(r)

p.POS = req(r, p)

e vac ≡
∧
e∈

path(r)∪
overlaps(r)

vacant(e)

e lck ≡
∧

e∈path(r)

e.MODE = EXLOCK

This means that the locked state is entered when (1) all signals associated with
route r according to the interlocking table show the CLOSED aspect, (2) all
points are in the position required for r according to this table, (3) all track
elements along the route, including its overlap, are vacant, and (4) all elements
associated with r are in locked mode. The transition into the locked state is
accompanied by setting the internal route controller state to LOCKED(3) and
by commanding the OPEN aspect for the route’s entry signal src(r).

While the locking function is active, one normal behaviour and three excep-
tional behaviour transitions are specified: (a) If the train which allocated r enters
the route, the locking function terminates successfully, and the route controller
transits into the IN-USE state for this route. This is expressed formally by guard
condition

gLU ≡ (¬vf) ∧ (¬sf) ∧ s act1 ∧ p req ∧ e vac1 ∧ e lck

vf ≡ vacant(first(r))

sf ≡ (src(r).ACT = CLOSED)

s act1 ≡
∧
s∈

signals(r)−
{src(r)}

s.ACT = CLOSED

e vac1 ≡
∧
e∈

(path(r)−{first(r)})∪
overlaps(r)

vacant(e)

Exiting the LOCKED state for r is then accompanied by switching the entry
signal back to CLOSED.

Each of the three exceptional behaviour transitions leaving the lock state
sets the hazard indication H := 1 which leads to switching all signal aspects
to CLOSED, while the route controller assumes the safe mode denoted here
by output H := −1. The identified hazards are (a) detection of a non-vacant
element which is part of the route (guard condition gLHV), (b) detection of an
illegal point position (guard gLHP), and (c) detection of an illegal signal aspect

Model Checking and Model-Based Testing in the Railway Domain 115

(guard gLHS). These guards are defined by

gLHV ≡ (¬e vac1) ∧ s act1 ∧ p req ∧ e lck

gLHP ≡ (¬p req) ∧ e vac1 ∧ s act1 ∧ e lck

gLHS ≡ (¬s act1) ∧ e vac1 ∧ p req ∧ e lck

The above state machine model showing control states, transitions, guard
conditions, and associated actions can be used to derive a propositional represen-
tation of the transition relation specifying the behaviour of the function under
consideration. The transition relation can be used to identify I/O-equivalence
classes: this equivalence relation partitions the state space in such a way that
for every pair of states residing in the same class, the functional behaviour will
be the same when applying the same sequence of inputs from each state. Having
identified the I/O-equivalence classes, the associated input equivalence classes
can be derived. Any pair of an I/O-equivalence class C and an input equivalence
class X is logically connected in the following way.

There exists an I/O-equivalence class C ′ = C ′(C,X), such that for all
s ∈ C, c ∈ X, the input c applied to state s results in the same output
and leads to a transition into C ′.

The details of this construction have been elaborated in [21]. There it has
been shown that for given fault domains depending on the number of I/O-
equivalence classes and on the granularity of input equivalence classes in the
SUT, complete finite test suites in the sense explained above can be constructed.
While these suites are significantly smaller than the ones resulting from The-
orem 1, they would still be too large to be executed for the complete route
controller in practise. Restricting, however, the strategy application to single
functions, such as the locking functionality discussed here, meaningful and tech-
nically feasible test suites can be generated. The generation procedure according
to [21] has been implemented in the model-based testing tool RT-Tester [8, 7].

Examples for I/O-equivalence classes of the locking function for route r are
specified by the following propositions.

C1 ≡ r.MODE = ALLOCATING ∧ sf ∧ (¬s act1) ∧ p req ∧ e vac1 ∧ vf ∧ e lck

C2 ≡ r.MODE = LOCKED ∧ s act1 ∧ p req ∧ e vac1 ∧ vf ∧ e lck

.

Class C1 comprises all route controller states where route r is currently being
allocated, the whole route is vacant and all points are set into the required
position, but there are still some signals associated with the route that have
to change their aspect to CLOSED – this is expressed by (¬s act1). Class C2

specifies all stable controller states in locked mode, where the train has not yet
entered the route (vf still evaluates to true).

116 A.E. Haxthausen, J. Peleska

Examples for input equivalence classes are characterised by the following
propositions.

X1 ≡ sf ∧ (¬s act1) ∧ p req ∧ e vac1 ∧ vf ∧ e lck

X2 ≡ sf ∧ s act1 ∧ p req ∧ e vac1 ∧ vf ∧ e lck

X3 ≡ (¬sf) ∧ s act1 ∧ p req ∧ e vac1 ∧ vf ∧ e lck

X4 ≡ (¬sf) ∧ s act1 ∧ p req ∧ e vac1 ∧ ¬(vf) ∧ e lck

.

The effect of applying input vectors from the input equivalence classes Xi to
states from the I/O-equivalence classes Cj is specified in the Mealy automaton
depicted in Fig. 12.

Safe states after
hazard detection

IN-USE and subsequent
route states

C1 C2
X2/

r.MODE := 3;

src(r) := OPEN;

X1/

Xi/ . . .

Other states
with control
mode ALLOCATING

Xj/ . . .

Xk/ . . .

X3/

Xi/H := 1; . .

X1/H := 1; . . .

X4/

r.MODE := 4;

src(r) := CLOSED;

Fig. 12: Mealy machine abstraction of the route locking function.

Input equivalence class X1 specifies all input vectors (see Fig. 10) where the
entry signal for route r shows aspect CLOSED, all points are in r-position, and r
is vacant, but at least one other signal associated with r is still open. Input class
X2 has fixed all inputs related to r in a way that allows to enter the LOCKED
state, but note that there are numerous components of the input vector that
are not determined by these requirements: all points, signals, and track sections
that are unrelated to r can be set in an arbitrary manner.

When in any state of C1, applying any input vector from X1 leads back
to a C1 state, and no output changes occur during this transition. Applying,
however, an X2 input to a C1 state leads to a transition to a stable C2 state

Model Checking and Model-Based Testing in the Railway Domain 117

representing the LOCKED mode. Applying X1-inputs to any C2-state triggers a
robustness transition accompanied by setting the hazard indication: some of the
signals associated with r do not remain stably in their CLOSED state. Applying
an X4-input to any C2-state, triggers a transition into an IN-USE state, and this
terminates the locking function for r.

4.8 Further Test Reduction Heuristics

Even when using equivalence class partitioning, the resulting complete test suites
may be too large to be executed within acceptable time. Therefore it is interesting
to investigate further heuristics explaining how to select subsets of complete test
suites that have promising test strength. One of these heuristics suggests to
reduce the robustness tests, while completely exploring the normal behaviour
tests. A closer analysis of complete test suites shows that these contain very
many robustness test steps: in each stable system state, every possible input (or
a representative of its input equivalence class) should be exercised in order to
show that the SUT is not affected by “unwanted” inputs in the current state.
In contrast to this, normal behaviour test steps stimulate transitions leaving the
current stable state or performing self-loops accompanied by new output actions.
Experience shows that errors occur more frequently when transiting from a stable
state than when having to ignore unwanted inputs in such a state. This suggests
to reduce the number of robustness test steps in each stable state by selecting a
small number of them in a random manner, but including boundary values that
should still keep the system stable.

5 Conclusion

In this chapter we have described domain-specific aspects of formal modelling,
bounded model checking, and model-based testing in the railway domain. It has
been shown how the generic nature of interlocking systems gives rise to generic
proof obligations expressing both user and safety requirements. Moreover, test
strategies can be expressed already on the generic level. Instantiation of concrete
systems is performed by configuring the generic software with concrete data
structures specifying the railway network and the interlocking tables describing
the routes through this network, to be controlled by the interlocking system.

It has been shown how the system instantiation process is accompanied by
instantiation of proof obligations and test cases. The safety of control algorithms,
when operating on the concrete configuration data, can be globally verified using
a combination of bounded model checking and k-induction. As a consequence, the
behavioural model induced by the configuration data can be regarded as being
complete and correct, so that any implementation conforming to the model will
also be completely safe and fulfil all user requirements. It has been motivated
that finite complete system integration test strategies exist; these are capable of
detecting every deviation of the integrated HW/SW system from the expected
behaviour modelled by the concrete system configuration. In practice, however,

118 A.E. Haxthausen, J. Peleska

the resulting number of test cases would be too large to be executed within
acceptable time. Therefore heuristics are applied to further reduce the size of
the test suites.

Acknowledgments The first author has been supported by the RobustRailS
project10 funded by the Danish Council for Strategic Research. A major objective
of RobustRailS is to support the ongoing development, verification, and valida-
tion of the novel Danish high-speed train network from an scientific angle. The
second author has been partially supported by the openETCS project11 funded
by the European ITEA2 organisation. Both projects stimulated the work pre-
sented in this chapter. The case study described in Section 3 has been conducted
in collaboration with Linh Hong Vu, who is a PhD student of the authors.

References

1. M. Aanæs and H. P. Thai. Modelling and Verification of Relay Interlocking Sys-
tems. Master’s thesis, Technical University of Denmark, DTU Informatics, E-mail:
reception@imm.dtu.dk, 2012.

2. István Babcsányi. Equivalence of Mealy and Moore Automata. Acta Cybernetica,
14:541–552, 2000.

3. Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Météor:
A successful application of b in a large project. In J. Wing, J. Woodcock, and
J. Davies, editors, FM’99 – Formal Methods, volume 1708 of Lecture Notes in
Computer Science, pages 369–387, Berlin Heidelberg, 1999. Springer.

4. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In Rance Cleaveland, editor, Tools and Algorithms
for Construction and Analysis of Systems, 5th International Conference, TACAS
’99, Held as Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceed-
ings, volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer,
1999.

5. Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor Schuppan.
Linear encodings of bounded LTL model checking. Logical Methods in Computer
Science, 2(5), November 2006. arXiv: cs/0611029.

6. Dines Bjørner. New Results and Current Trends in Formal Techniques for
the Development of Software for Transportation Systems. In Proceedings of
the Symposium on Formal Methods for Railway Operation and Control Systems
(FORMS’2003), Budapest/Hungary. L’Harmattan Hongrie, May 15-16 2003.

7. Cécile Braunstein, Anne E. Haxthausen, Wen ling Huang, Felix Hübner, Jan Pe-
leska, Uwe Schulze, and Linh Hong Vu. Complete model-based equivalence class
testing for the ETCS ceiling speed monitor. In S. Merz and J. Pang, editors, Pro-
ceedings of the ICFEM 2014, volume 8829 of Lecture Notes in Computer Science,
pages 380–395. Springer Berlin Heidelberg, November 2014.

10 http://www.robustrails.man.dtu.dk
11 http://openetcs.org

Model Checking and Model-Based Testing in the Railway Domain 119

8. Cécile Braunstein, Wen-ling Huang, Jan Peleska, Uwe Schulze, Felix Hübner,
Anne E. Haxthausen, and Linh Hong Vu. A SysML test model and test suite
for the ETCS ceiling speed monitor. Technical report, Embedded Systems Testing
Benchmarks Site, 2014-04-30. Available under http://www.mbt-benchmarks.org.

9. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, Cambridge, Massachusetts, 1999.

10. Leonardo De Moura, Harald Rueß, and Maria Sorea. Bounded Model Checking
and Induction: From Refutation to Verification. In Computer Aided Verification,
pages 14–26. Springer, 2003.

11. Ulrich W. Eisenecker and Krzysztof Czarnecki. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

12. ERTMS. Annex A for ETCS Baseline 3 and GSM-R Baseline 0, April 2012.

13. CENELEC European Committee for Electrotechnical Standardization. EN
50128:2011 – Railway applications – Communications, signalling and processing
systems – Software for railway control and protection systems. 2011.

14. Alessandro Fantechi. Twenty-Five Years of Formal Methods and Railways: What
Next? In Steve Counsell and Manuel Núñez, editors, Software Engineering and
Formal Methods, volume 8368 of Lecture Notes in Computer Science, pages 167–
183. Springer, 2014.

15. Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and Alessandro Fantechi.
Model Checking Interlocking Control Tables. In Eckehard Schnieder and Géza
Tarnai, editors, FORMS/FORMAT 2010 – Formal Methods for Automation and
Safety in Railway and Automotive Systems, pages 107–115. Springer, 2010.

16. A. E. Haxthausen and J. Peleska. Formal Development and Verification of a Dis-
tributed Railway Control System. IEEE Transaction on Software Engineering,
26(8):687–701, 2000.

17. Anne E. Haxthausen. Automated Generation of Formal Safety Conditions from
Railway Interlocking Tables. International Journal on Software Tools for Tech-
nology Transfer (STTT), Special Issue on Formal Methods for Railway Control
Systems, 16(6):713–726, 2014.

18. Anne E. Haxthausen, Marie Le Bliguet, and Andreas A. Kjær. Modelling and
Verification of Relay Interlocking Systems. In Christine Choppy and Oleg Sokol-
sky, editors, 15th Monterey Workshop: Foundations of Computer Software, Future
Trends and Techniques for Development, number 6028 in Lecture Notes in Com-
puter Science, pages 141–153. Springer, 2010. Invited paper.

19. Anne E. Haxthausen and Jan Peleska. Efficient Development and Verification of
Safe Railway Control Software. In Railways: Types, Design and Safety Issues,
pages 127–148. Nova Science Publishers, Inc., 2013.

20. Anne E. Haxthausen, Jan Peleska, and Sebastian Kinder. A Formal Approach for
the Construction and Verification of Railway Control Systems. In Formal Aspects
of Computing, volume 23, pages 191–219. Springer, 2011.

21. Wen-ling Huang and Jan Peleska. Complete model-based equivalence class testing.
International Journal on Software Tools for Technology Transfer, pages 1–19, 2014.

22. Phillip James and Markus Roggenbach. Automatically Verifying Railway Inter-
lockings Using SAT-based Model Checking. In Electronic Communications of the
EASST, volume 35. EASST, 2011.

23. Helge Löding and Jan Peleska. Timed moore automata: test data generation and
model checking. In Proc. 3rd International Conference on Software Testing, Veri-
fication and Validation (ICST’10). IEEE Computer Society, 2010.

120 A.E. Haxthausen, J. Peleska

24. Kirsten Mewes. Domain-specific Modelling of Railway Control Systems with In-
tegrated Verification and Validation. PhD thesis, University of Bremen, 2010.
http://www.dr.hut-verlag.de/978-3-86853-359-0.html.

25. Jan Peleska. Industrial-Strength Model-Based Testing - State of the Art and Cur-
rent Challenges. In Alexander K. Petrenko and Holger Schlingloff, editors, Pro-
ceedings 8th Workshop on Model-Based Testing, Rome, Italy, volume 111 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 3–28. Open Publishing
Association, 2013.

26. Jan Peleska, Daniel Große, Anne E. Haxthausen, and Rolf Drechsler. Automated
verification for train control systems. In E. Schnieder and G. Tarnai, editors,
Formal Methods for Automation and Safety in Railway and Automotive Systems,
Braunschweig, Germany, December, 2004, pages 252–265. Technical University of
Braunschweig, ISBN 3-9803363-8-7, 2004.

27. Jan Peleska, Artur Honisch, Florian Lapschies, Helge Löding, Hermann Schmid,
Peer Smuda, Elena Vorobev, and Cornelia Zahlten. A real-world benchmark model
for testing concurrent real-time systems in the automotive domain. In Burkhart
Wolff and Fatiha Zaidi, editors, Testing Software and Systems. Proceedings of the
23rd IFIP WG 6.1 International Conference, ICTSS 2011, volume 7019 of LNCS,
pages 146–161, Heidelberg Dordrecht London New York, November 2011. IFIP
WG 6.1, Springer.

28. Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated test case gener-
ation with SMT-solving and abstract interpretation. In Mihaela Bobaru, Klaus
Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, Nasa Formal Methods,
Third International Symposium, NFM 2011, volume 6617 of LNCS, pages 298–312,
Pasadena, CA, USA, April 2011. Springer.

29. A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Fault models for testing in
context. In Reinhard Gotzhein and Jan Bredereke, editors, Formal Description
Techniques IX – Theory, application and tools, pages 163–177. Chapman&Hall,
1996.

30. Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety properties
using induction and a SAT-solver. In Jr. Hunt, Warren A. and Steven D. Johnson,
editors, Formal Methods in Computer-Aided Design, volume 1954 of Lecture Notes
in Computer Science, pages 127–144. Springer Berlin Heidelberg, 2000.

31. J.G. Springintveld, F.W. Vaandrager, and P.R. D’Argenio. Testing timed au-
tomata. Theoretical Computer Science, 254(1-2):225–257, March 2001.

32. Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. A Domain-Specific Language
for Railway Interlocking Systems. In Eckehard Schnieder and Géza Tarnai, editors,
FORMS/FORMAT 2014 - 10th Symposium on Formal Methods for Automation
and Safety in Railway and Automotive Systems, pages 200–209. Institute for Traffic
Safety and Automation Engineering, Technische Universität Braunschweig, 2014.

33. Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. Formal Modeling and Verifi-
cation of Interlocking Systems Featuring Sequential Release. In Formal Techniques
for Safety-Critical Systems, volume 476 of Communications in Computer and In-
formation Science. Springer International Publishing Switzerland, 2015.

Model Checking and Model-Based Testing in the Railway Domain 121

Modeling Unknown Values
in Test and Verification

Bernd Becker, Matthias Sauer, Christoph Scholl, and Ralf Wimmer

Albert-Ludwigs-Universität Freiburg, Germany
{becker | sauerm | scholl | wimmer}@informatik.uni-freiburg.de

Abstract. With increasing complexities and a component-based design
style the handling of unknown values (e. g., at the interface of components)
becomes more and more important in electronic design automation (EDA)
and production processes. Tools are required that allow an accurate
modeling of unknowns in combination with algorithms balancing exactness
of representation and efficiency of calculation. In the following, state-of-
the-art approaches are described that enable an efficient and successful
handling of unknown values using formal techniques in the areas of Test
and Verification.

1 Introduction

Unknown (X) values increasingly emerge in different phases of the design and
production process, and have to be handled by corresponding electronic design
automation (EDA) tools. Examples include unspecified inputs or black boxes
in the design, uncontrolled sequential elements, clock domain crossings or A/D
boundaries. In all of these cases, the logic value of a signal is not defined and
hence, only partial information on the circuit is available.

In the following, we describe current state-of-the-art approaches that enable
(in principle) an exact handling of such unknown values using formal techniques
in two fundamental areas of the design process, i. e., Test and Verification. In
addition, efficient methods to trade off quality and computation times of the
analysis are reported.

1.1 Unknown Values in Circuit Test

Logic simulation, fault simulation and test pattern generation are fundamental
techniques in electronic design automation with applications, e. g., in validation,
test and also product quality estimation.

Automatic test pattern generation (ATPG) algorithms for stuck-at faults
either compute a pattern that detects a given fault or prove its untestability. They
are typically based on structural methods such as the D-algorithm [1], PODEM
[2] or FAN algorithm [3], or on Boolean satisfiability (SAT) reasoning [4–7].

However, depending on the circuit and test method, a very high fraction of
signals may have X-values (see e. g., [8], [9]) that have to be taken into account

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_5, © Springer Fachmedien Wiesbaden 2015

during the test pattern generation process. Such X-sources include non-finalized
parts in early design steps. But also during operation and test application, X-
values may be caused by uncontrolled sequential elements, at clock domain
crossings, or A/D boundaries. Additional X-sources are introduced by specific
test methods such as faster-than-at-speed testing [10] or the consideration of
complex fault models (e. g., open fault models [11]).

Different extensions of the basic two-valued Boolean circuit logics have been
proposed to model signal states in the circuit in presence of X-values (e. g.,
[12–14]). However, all of them lead to pessimism of forward implication in test
generation as reconverging X-values that depend on each other cannot be modeled
accurately (cf. Section 3.1). To improve accuracy, restricted symbolic simulation
[15] extends the number of symbols to distinguish different X-states and their
inversion. This allows to reduce the pessimism [16], unless multiple X-states from
different X-sources converge at a gate.

In general, the limited number of symbols does not allow to reflect all correla-
tions between X-valued signals and at reconvergencies, where X-canceling may
occur, the accurate output value cannot be computed any more. Test generation
algorithms based on n-valued logic cannot prove the untestability of faults in the
support of X-valued signals and may not be able to find a detecting pattern for
all testable faults.

Therefore, design techniques that remove the impact of X-values on the circuit
have been proposed and are specifically employed in the context of so-called build-
in-self-test (BIST) schemes. X-canceling [17] or X-masking [18] allows to increase
the number of detected faults at the cost of additional hardware structures. The
overestimation of X-values in classical algorithms leads to unnecessary effort
invested in such X-avoidance techniques.

The accurate computation of signal states in a circuit in presence of X-values
can be achieved by formal reasoning for register-transfer and gate level simulation
[19–21]. The methods used rely on symbolic computation by Boolean satisfiability
(SAT), quantified Boolean formula (QBF) reasoning, or binary decision diagrams
(BDDs).

More accurate or even fully accurate fault simulation can be performed
even for large circuits by a combination of heuristics and SAT reasoning and
allows a significant increase of fault coverage [22–24]. In principle, both logic and
fault simulation in presence of X-values are NP-complete problems. And also
deterministic test pattern generation for stuck-at faults in presence of X-values
is at least an NP-hard problem [24].

In contrast to propositional formulae used for SAT, quantified Boolean formu-
lae [25], where variables are existentially or universally quantified, allow a succinct
representation for all possible X-values. The recent advances in the performance
of QBF solvers, for example conflict driven learning [26], resolution and expansion
based algorithms [27], or preprocessing [28] enable exact reasoning about fault
testability in presence of Xs even for larger circuits. Doing this, an efficient
stuck-at fault test generation algorithm able to prove testability or untestability

Modeling Unknown Values in Test and Verification 123

of faults in presence of X-values can be realized as outlined in greater detail in
Section 3.

1.2 Unknown Values in Verification

Unknown values in circuit verification can occur, for instance, when a circuit is
only partially available. Partially available means that for some of the circuit’s
components only their interface is known, i. e., the signals entering and leaving
the components, but neither their internal structure nor the computed function.
These missing parts are called black boxes. The actual values at their outputs are
unknown. Verification has to take this into account.

There are different reasons for considering such partial (or incomplete) circuits:
Errors in a circuit design should be detected as early as possible; the later errors
are corrected the higher are the incurred costs. Therefore it is desirable to apply
verification techniques already in an early stage of the design process when not
all parts of a circuit have been implemented yet.

A further reason for considering incomplete circuits is that some modules like
multipliers are notoriously hard to verify: If the property to be checked is expected
to be independent of such a module, the module can be removed from the circuit,
and instead it is checked whether the property under consideration holds for all
possible replacements of the missing part. If this is the case, then the property
also holds for the complete circuit. Otherwise either the remaining circuit is
faulty or the removed module and the property interact in some unexpected way.

Considering incomplete circuits can also be beneficial for error diagnosis during
debugging. Assume that an error is contained in one of the circuit’s modules, but
it is not known in which one. If, after removing one module, verification yields
that there is an implementation of the removed part such that the considered
property holds, then it is likely that the error is contained in the removed module.

If error diagnosis and error rectification are performed late in the design
cycle when already a lot of efforts have been made to perform logic synthesis
or even place & route steps for the complete design, then the question will be
whether the design can be rectified by changing locally confined black boxes only,
without introducing new connections to global signals leading to enormous costs
for re-synthesis. A similar situation occurs in case of Engineering Change Order
(ECO, small changes of specification late in the design cycle) where only locally
confined parts (black boxes) should be replaced in order to satisfy the changed
specification without sacrificing too much of the design efforts. In this case it is
particularly important to preserve the interface of the black boxes.

The synthesis of digital controllers [29, 30] that ensure certain properties of
the system at hand can also be considered as a black-box verification problem:
The controller to be synthesized is the black box, and one asks whether there is
an implementation such that the given property holds.

Depending on the application there are two different problem classes that are of
interest: On the one hand, realizability asks whether there is an implementation
of the black boxes such that the given property holds. On the other hand,

124 B. Becker, M. Sauer, C. Scholl, R. Wimmer

validity asks whether the property holds for all possible implementations. Since
validity and realizability are dual properties—a property ϕ is valid iff ¬ϕ is not
realizable—we concentrate in the following on realizability problems.

The problem whether an incomplete combinational circuit can be completed
such that it becomes equivalent to a given specification (partial equivalence
checking, PEC) was first considered in [31] where several approximate and exact
methods to solve the PEC problem have been presented. If an approximate
algorithm reports that there is no implementation for the black boxes such
that the specification holds, the desired specification is indeed not realizable.
However, if such an algorithm is not able to prove non-realizability, this can be
due to the approximate nature of the method, and the desired functionality may
nevertheless be not realizable. The algorithms in [31] are based on solving SAT or
QBF formulations of PEC. The SAT formulations are efficient to solve, but also
rather inaccurate due to a coarse approximation. Their accuracy is improved in
several steps, leading to a QBF formulation that can solve PEC for a single black
box exactly. In [31] additionally an exact characterization of realizability of PEC
for multiple black boxes has been proposed (based on the decomposability of a
certain Boolean relation). However, no feasible algorithmic method for solving
the problem has been given.

Nevertheless, [31] was the first paper to consider an exact solution of the
PEC problem taking into account that the interfaces of the black boxes in the
incomplete circuit have to be preserved. Apart from the approach in [32, 33],
the diagnosis and rectification problem respecting local interfaces has not been
addressed in the literature so far. In [34, 35], e. g., rectifications are computed,
but they are allowed to depend on arbitrary signals in the circuit. (Moreover,
in contrast to [35], [34] uses a SAT formulation to compute rectifications for
a given set of counterexamples only, without considering correctness for all
possible inputs.) The approach of [32, 33] solves the PEC problem exactly, but it
is restricted to problem instances of moderate sizes, since the black boxes are
replaced by function tables using an exponential number of Boolean variables.
A more efficient complete approach, based on solving dependency quantified
Boolean formulas (DQBFs) was presented in [36].

We have extended the application of realizability checking to sequential
circuits which are specified by a set of properties (safety properties or more
general properties formulated in Computation Tree Logic (CTL [37]). Here the
question is whether an incomplete sequential design may be extended by black
box implementations such that a set of given properties is satisfied. Also the
problem of deciding validity is considered. We developed various approaches for
solving the realizability problem either in an approximate or an exact manner.
In the following we discuss some representative approaches: In [38], we provided
a series of approximate methods with different precision and costs for deciding
the realizability of CTL properties using symbolic methods. The approximations
are based on different methods to model the effect of the unknowns at the black
box outputs to the overall circuit. Moreover, [38] presents an exact method
for deciding realizability for incomplete circuits with several black boxes under

Modeling Unknown Values in Test and Verification 125

the assumption that the black boxes may contain only a bounded amount of
memory. This exact method is based on introducing an exponential number of
new variables and is therefore only suitable for small problem instances. In [39]
similar approximation methods are applied in the context of realizability checking
of safety properties based on bounded model checking techniques (BMC—here a
sequential circuit is “unrolled” for a number of time frames). This approximate
approach leads to SAT or QBF problems. Here, the precision of modeling is not
given by the user, but it is adapted automatically based on the difficulty of the
problem. The approach is guided by proofs that non-realizability can not be shown
using the weaker methods, independently from the number of BMC unrollings,
i. e., independently from the length of a counterexample which does not depend
on the implementation of the black boxes. [39] has been enhanced later on by [40]
which provides proofs based on inductive arguments that non-realizability can
not be shown even by our most exact QBF based methods (also independently
from the number of BMC unrollings). The approach of [40] provides an exact
decision procedure for realizability in the case that the design contains exactly
one black box which is allowed to read all input signals (which means that it has
“complete information”).

In Section 4 we sketch some of the state-of-the-art techniques to solve the
realizability problem of incomplete circuits.

1.3 Minimization/Maximization in Test and Verification

We finish this introductory remarks by mentioning an interesting application of
unknowns to optimize the quality of patterns. More details can be found in the
papers referenced.

Modeling of unknown values can be used to generalize results by forcing a
target property to hold while, at the same time, requiring a maximal number
of unknown values. Such a solution is helpful as only a minimal set of informa-
tion needed to guarantee the property is computed and hence the solution is
generalized.

A well-known instance of such an optimization problem in the test domain is
the problem of finding a test pattern for a given fault requiring only a minimal
set of inputs to be defined. In the verification domain, a likewise problem is
finding a generalized trace that leads to an (unwanted) error state.

Both problems can be solved (optimally) using maximization techniques such
as [41, 42]. They work on top of the encoding techniques presented in this book
chapter by requiring a certain primary property (e. g., the detection of a fault)
to hold, while at the same time maximizing secondary objectives such as the
number of inputs set to X.

2 Basics

In this section, we provide an overview on the underlying formal methods consid-
ered in the chapter as well as the handling and encoding of Boolean circuits.

126 B. Becker, M. Sauer, C. Scholl, R. Wimmer

2.1 Boolean Satisfiability and Extensions

The following two subsections provide a brief overview on the satisfiability problem
(SAT) and on quantified Boolean formula (QBF). The interested reader is referred
to [25] for more details.

Deciding the satisfiability of a propositional Boolean formula (SAT) is an NP-
complete problem [43]. The formula is typically provided in conjunctive normal
form (CNF). A CNF is a conjunction of clauses, and a clause is a disjunction of
literals, e. g., (a ∨ ¬b) with the Boolean variables a and b.

Many SAT-related formalisms have been introduced in recent decades. A
prominent extension to the Boolean satisfiability problem is the Maximum Satis-
fiability problem (MaxSAT), an optimization problem, which is used e.g. for the
applications referenced in Subsection 1.3. Intuitively, in a MaxSAT problem we
try to satisfy as many clauses as possible in ϕ. In this context the clauses are also
called soft clauses. There are several natural extensions of MaxSAT like Weighted
MaxSAT and Partial MaxSAT. In the former extension the clauses are labeled
with non-negative weights and the goal is to maximize the sum of the weights
of the satisfied clauses. In the latter extension there are additional so-called
hard clauses, which must be satisfied, whereas the soft clauses are treated as
in MaxSAT. Likewise SAT, one obtains a model which indicates the MaxSAT
objective: the number of soft clauses (or the sum of the clause weights) which
are satisfied simultaneously.

2.2 Quantified Boolean Formulas

A quantified Boolean formula (QBF) is a propositional formula in which the
variables are quantified or bounded by existential (∃) or universal (∀) quanti-
fiers. A QBF can be transformed into the prenex normal form (PCNF) ψ =
Q1X1Q2X2 . . .QnXnϕ, with Qi ∈ {∃, ∀} and Xi disjoint sets of Boolean vari-
ables. In a PCNF all quantifiers are grouped together in a so-called prefix and
precede a quantifier-free propositional formula in CNF, called the matrix ϕ. We
define the quantifier level by the number of quantifier alternations (i. e., from ∃ to
∀ or vise versa), reading the prefix from left to right. Without loss of generality,
we assume that level 0 is always existential.

As an example, a QBF in PCNF ψ with three quantifier levels is satisfied if
and only if: there exists an assignment for all variables on quantifier level 0 such
that for every assignment for all variables on quantifier level 1, an assignment
for all variables on quantifier level 2 exists, such that the matrix is satisfied.

Modern QBF solvers are also able to provide a model for free (unbounded)
variables of the QBF. Semantically these free variables are similar to variables
quantified at level 0. To increase readability, we write in the following that we
extract the model for the variables on level 0 instead of using the terminology of
free variables.

The complexity of QBF satisfiability is determined by the number of quantifier
alternations between existential and universal quantifiers and vice versa in the
prenex form. The general problem of QBF satisfiability is a PSPACE-complete
problem [44].

Modeling Unknown Values in Test and Verification 127

2.3 Dependency Quantified Boolean Formulas

Dependency quantified Boolean formulas (DQBF) are a generalization of QBF.
In QBF, each existential variable depends on all universal variables on lower
quantification levels. DQBF relaxes this restriction and allows existential variables
to depend on arbitrary sets of universal variables.

This section mainly follows the descriptions in [36, 45].
Let ϕ be a Boolean formula over the Boolean variables x1, . . . , xn, y1, . . . , ym,

andD1, . . . , Dm ⊆ {x1, . . . , xn} sets of Boolean variables. A dependency-quantified
Boolean formula (DQBF) ψ has the form:

ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ.

The sets Di are called dependency sets of yi and the formula ϕ is ψ’s matrix.
We denote V ∃ = {y1, . . . , ym} as the set of existential variables and V ∀ =

{x1, . . . , xn} the set of universal variables. If yi ∈ V ∃
ψ is an existential variable with

dependency set Di, a Skolem function for yi is a function syi,Di : ADi → {0, 1}.
In this case, ϕ[syi,Di

/yi] denotes the expression resulting from ϕ by replacing
each occurrence of yi by a Boolean expression for the Skolem function syi,Di

.
For a variable x ∈ Di we denote by syi,Di|x=0 the Skolem function syi,Di\{x} :

ADi\{x} → {0, 1} which results from syi,Di
by setting the variable x constantly

to 0. Accordingly for syi,Di|x=1.
Let ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ be a DQBF. ψ

is satisfied (written � ψ) if and only if there are Skolem functions syi,Di
for

i = 1, . . . ,m such that ϕ[syi,Di
/yi ∀yi ∈ V ∃] is a tautology.

First solver implementations for DQBF are already available. We refer the
reader to, e. g., [45, 46] for more information on solving DQBFs.

Every QBF can be understood as a DQBF: the QBF Ψ := ∀X1∃Y1 . . . ∀Xn∃Yn :
ϕ, where Xi ⊆ {x1, . . . , xn} and Yi ⊆ {y1, . . . , yn} are disjoint sets of variables,
is equivalent to the DQBF

ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ

where Dyj
=
⋃k

	=1 X	 if Yk is the unique set with yj ∈ Yk.

2.4 From Circuits to Formulas

By using a Tseitin encoding [47], a SAT instance (as CNF representation) ΦC of
a circuit C can be generated, whose size is linear in the circuit size. A Tseitin
encoding of a circuit defines a Boolean variable for each line. These variables are
used to represent the function of each gate based on its inputs using a two-valued
logic (01-logic).

For instance, an AND gate with the inputs a and b and the output g is
characterized by g ↔ (a ∧ b). The corresponding encoding Φg for this gate g
would be

Φg :=
{{a,¬g}, {b,¬g}, {¬a,¬b, g}}.

128 B. Becker, M. Sauer, C. Scholl, R. Wimmer

In extension to the two-valued Tseitin encoding of a circuit, the three-valued
01X-encoding based on [14] is often used to represent unknown (X) values.

The 01X-logic consists of three values {0, 1, X}, which are encoded using two
Boolean variables as follows: 0 = (1, 0), 1 = (0, 1), X = (0, 0). The combination
(1, 1) is not allowed.

The 01X-encoding for the same AND gate g, Φg, would be

Φg :=
{{¬a1, g1}, {¬b1, g1}, {a1, b1,¬g1}, {a2,¬g2}, {b2,¬g2}, {¬a2,¬b2, g2}}.

In comparison to a standard Tseitin encoding, the support for the X-symbol
leads to larger SAT instances and hence usually harder instances but at the
same time allows reasoning about unknown values. A drawback of this formu-
lation is its pessimism that may incorrectly predict unspecified values on path
reconvergencies.

3 Unknown Values in Circuit Test

As already mentioned an unknown (X) value models an unknown binary state of
a signal. This excludes undefined values that are not binary resulting for example
from undefined voltage levels. Signals at which unknown values originate are
called X-sources. Of course, depending on the circuit structure these unknown
values may imply further unknown values within the circuit, and an efficient and
effective determination of signals with unknown values turns out to be of major
interest with respect to test algorithms.

Logic and fault simulation as well as solving the ATPG problem are essential
techniques in electronic design automation. The accuracy and therefore effec-
tiveness of standard algorithms is compromised by unknown or X-values. As
demonstrated in the following, using standard three-valued 01X logic this results
in a pessimistic overestimation of X-valued signals in the circuit and a pessimistic
underestimation of fault coverage.

3.1 Standard X-Logic Simulation

Standard X-logic simulation algorithms are based on n-valued logic systems with
a limited number of symbols to denote the signal states in the simulation (i. e.,
three-valued 01X logic). Not all X-states, and the correlations between them, are
represented accurately. The result may either underestimate the number of X-
values as in the case of logic simulation using Verilog models [48], or pessimistically
overestimate their number.

Example 1. Fig. 1 shows a circuit with three gates and three inputs. The simula-
tion result of pattern (a, b, c) = (1,X, 1) with a standard 3-valued logic simulator
is annotated to the circuit lines. The signals d, e, and f are evaluated to the
unknown value X by the simulator. However, exhaustive simulations assuming
b = 0 and b = 1 would show that the output f has the logic value 1 in both cases
as the signals d and e always have opposite logical values. Hence, three-valued
simulation overestimates the number of signals with an unknown value.

Modeling Unknown Values in Test and Verification 129

a

b

c

d

e

f

1

1

X

X

X

X

Fig. 1. Pessimistic simulation result with a 3-valued logic simulator.

For fault simulation like the parallel pattern single fault (PPSFP) or the
concurrent algorithm [49], [50], [51], [52] this leads to the fact that they either
pessimistically underestimate the number of detected faults or vice versa, the
number of potentially detected faults is overestimated and count a fraction of
potentially detected faults as detected [53]. Both inaccuracies impact product
quality and may increase test overhead and cost.

3.2 Accurate Logic Simulation

Removing the pessimism of classical n-valued fault simulation requires to solve
the problem of distinguishing reconverging X-values (as present in Fig. 1) that
depend on each other.

FEX REX

Random Assignments to
X-sources

FEX
candidates

SAT-based classification of
remaining REX/FEX candidates

H
eu

ris
tic

 a
na

ly
si

s
Fo

rm
al

 a
na

ly
si

s

G
at

e
pr

oc
es

si
ng

 in

to
po

lo
gi

ca
l o

rd
er

Pattern-parallel
2-valued logic simulation

Restricted symbolic
simulation of p

Fig. 2. Exact fault free simulation for a pattern p [24].

In [24] an accurate logic simulation algorithm based on solving a sequence of
SAT-instances is proposed.

It consists of two consecutive steps as depicted in Fig. 2. In the first heuristic
analysis step a restricted symbolic simulator and a 2-valued logic simulator are
used as heuristics to classify a high number of REXs (Real X), FEXs (False X)
and FEX candidates at low computational cost. In the second formal analysis
step, the set of FEX candidates is formally analyzed. For the formal proof whether

130 B. Becker, M. Sauer, C. Scholl, R. Wimmer

a FEX candidate is a REX or not, the state-of-the-art incremental SAT solver
antom [54] is utilized. The details of the steps are described in the folowing.

Heuristic Analysis In the heuristic analysis the pattern p is simulated using
restricted symbolic simulation (RSS, [15]) and 2-valued pattern-parallel simulation
of randomized assignments to the X-sources to classify as many signals as REX,
FEX and FEX candidates as possible. The gates of the circuit are processed in
topological order and for each gate, RSS and 2-valued simulation are performed.
The identified FEX candidates are later classified using SAT reasoning.

In RSS, for each X-value at the X-sources a unique symbol Xi is introduced in
addition to the two symbols for logic-0 and logic-1. Hence, X-values from different
X-sources are distinguishable. Furthermore, each X-symbol can be negated. This
allows the correct evaluation of simple local reconvergences of X-valued signals
and increases accuracy compared to 3-valued simulators. For the example in Fig. 1,
RSS correctly computes the output value at f as logic-1, since the symbol Xb

introduced at X-source b is correctly tracked at d as ¬Xb and at signal e as Xb.
Hence, the reconvergence is exactly evaluated to logic-1. Thus, RSS identifies
a subset of FEXG(p). In the proposed algorithm, the resulting value of RSS of
signal s and pattern p is stored in vG(p, s).

A subset of REXG(p) is efficiently found by a 2-valued pattern-parallel logic
simulation. 64 random patterns are generated by assigning randomized values
to the X-sources. The signal values are computed in one simulation run. One
64-bit integer v = [v0, . . . , v63] is used to represent the values of each signal. For
input i, vi is derived from the simulated pattern p and set to vi = [0, . . . , 0] or
vi = [1, . . . , 1] if i is logic-0 or logic-1, respectively. At X-source q, a randomized 64-
bit integer is generated and assigned to vq = [v0q , . . . , v

63
q], vkq ∈ {0, 1}, 0 ≤ k ≤ 63.

vq is used for the evaluation of the direct fanout of q.
After finishing both simulations, each signal is classified as logic-0, logic-1 or

REX, FEX or FEX candidate. If RSS derived a logic value, the signal does not
need to be considered in the subsequent steps. If an unknown value is calculated
for s, the values of vs = [v0s , . . . , v

63
s] of the pattern-parallel simulation are taken

into account. If at least one pair of values vks , v
l
s(0 ≤ k, l ≤ 63) has complementary

values, the signal s belongs to REXG(p). If all vks bit are equal, s is marked as
FEX candidate. The classification of these signals is done with an incremental
SAT-solver as explained in the next section.

Classification of Remaining FEX Candidates The FEX candidates are
exactly classified by use of an incremental SAT solver. Input to the SAT solver is
a Boolean formula in conjunctive normal form (CNF) which maps the classification
of a signal to a Boolean satisfiability problem.

For each FEX candidate s it is already known that all 64 random assignments
to the X-sources force s to value vks (0 ≤ k ≤ 63) of either logic-0 or logic-
1. Signal s is a FEX, if and only if it can be proven that s cannot have the
complementary value ¬vks for any assignment to the X-sources. Thus, the Boolean
formula is constructed such that it is satisfiable, if and only if s can be driven to

Modeling Unknown Values in Test and Verification 131

¬vks . If the formula is satisfiable, s depends on the X-sources and is classified as
REX. Otherwise s is independent of the X-sources and classified as FEX.

The FEX candidates are evaluated starting from the X-sources in topological
order. To increase efficiency, the SAT instance is extended incrementally for each
FEX candidate exploiting the result from the simulation step as well as learnt
knowledge from analysis of previous FEX candidates.

To check whether s can be driven to ¬vks , the characteristic equations of the
gates in the adjustment cone, resp. transitive fanin, of s are translated into CNF
and added to the SAT instance using the Tseitin transformation (c.f. 2.4. The
size of the resulting SAT instance is reduced by only considering the gates which
have been classified as REX or FEX candidate for pattern p.

This SAT instance is extended by a temporary unit clause with only one
literal (called assumption) for FEX candidate s which constrains the value of s
in the search process of the SAT solver. If the value of s in the pattern parallel
simulation was vs = [0, . . . , 0], the assumption {s} is added to constrain the SAT
search to assignments to the X-sources which imply s to logic-1. If the instance is
satisfiable, s belongs to the set REX. Otherwise s is a FEX with value logic-0 and
vG(p, s) is updated. In the latter case, the unit clause {¬s} is added permanently
to the SAT instance to reduce runtime for subsequent calculations of the SAT
solver. Correspondingly, if the value of s in the pattern parallel simulation was
vs = [1, . . . , 1], the assumption {¬s} is added.

For the classification of the next FEX candidate s′ in topological order, the
CNF instance is extended incrementally to include the adjustment cone of s′,
i. e.,, only the clauses for gates which are not yet Tseitin transformed are added.

During exact simulation, the algorithm maintains a lookup table derived from
the result of the RSS step. The table contains the information if a symbol for an
X-state assigned to signals during RSS is a logic-0, a logic-1 or a REX. Before
analyzing a FEX candidate s using the SAT technique, a fast lookup is performed
to check whether the corresponding symbol Xs has already been computed. If
the classification for Xs is already known, s is set to the corresponding state.
Otherwise, s is classified as described above. This effectively restricts the use of
the SAT solver to signals at which REX values converge.

3.3 Accurate Fault Simulation

We distinguish definite detection (DD) and potential detection (PD) of a fault.
A fault f is definitely detected (DD) if an observable output o exists where the
fault effect is visible independent of the logic value assignment to the X-sources.
Let the functions vG(p, s) and vf (p, s) return the logic value of signal s under a
pattern p in the fault free and faulty case in presence of unknown values.

The definite detection of a stuck-at-φ fault f (φ ∈ {0, 1}) at line l under a
pattern p is given as

DDf (p) := ∃o ∈ O : vG(p, o), vf (p, o) ∈ {0, 1} ∧ vG(p, o) �= vf (p, o), (1)

where O is the set of output signals of the circuit. If f is not definitely detected,
f is potentially detected (PD) if the fault is activated and an observable output o

132 B. Becker, M. Sauer, C. Scholl, R. Wimmer

exists where the fault effect can be deterministically measured for at least one
logic value assignment to the X-sources:

PDf (p) := ¬DDf (p) ∧ vG(p, l) = ¬φ ∧
∃o ∈ O : vG(p, o) ∈ {0, 1} ∧ o ∈ REXf(p). (2)

Note that 3-valued fault simulation underapproximates the number of defi-
nitely detected faults since three-valued simulation overestimates the number of
signals with X-values. Consequently, the number of potentially detected faults
provides an overapproximation.

The exact simulation classifies a set of target faults as definitely detected (DD),
potentially detected (PD) or undetected for a test set in presence of unknowns.
An overview of the fault simulation of a pattern p is given in Fig. 3. 3-valued
fault simulation is used to mark as many target faults as possible as DD. For the
remaining faults, an exact analysis is conducted.

Restricted symbolic
simulation of p

Pattern-parallel
2-valued logic simulation

DD PD

Random Assignments to
X-sources

Exact SAT-based fault classification

H
eu

ris
tic

an

al
ys

is

3-valued fault simulation of p

Exact logic simulation of p to compute fault activation

OPD

Potential det.
OPossDD

Poss. def. det.
OPossPD

Poss. potent. det. O
ut

pu
t

cl
as

si
fic

at
io

n

G
at

e
pr

oc
es

si
ng

 in

to
po

lo
gi

ca
l o

rd
er

Fig. 3. Exact fault simulation for a pattern p and classification as definitely detected
(DD) or potentially detected (PD) [24].

The exact analysis starts with the exact logic simulation of the fault free
circuit for pattern p to compute the set of activated faults. These faults are then
analyzed serially. For the fault simulation of an activated fault f , f is injected
into the circuit model. The algorithm then proceeds in two phases similar to the
fault free approach: A heuristic simulation and an exact calculation step. During
the simulation step the behavior of the faulty circuit is simulated in event-driven
manner by RSS and 2-valued pattern-parallel logic simulation which evaluates
random assignments to the X-sources. If the results of the simulations allow
the fault classification as DD or undetected, a further analysis is not required.
Otherwise, the SAT solver is invoked for analysis of the outputs of the faulty
circuit. Internal signals in the faulty circuit do not need to be considered since
the values at observable outputs are sufficient to reason about fault detection.

Modeling Unknown Values in Test and Verification 133

3.4 Accurate Test Pattern Generation (X-ATPG)

The ATPG framework from [55] is able to prove the testability of stuck-at faults
in presence of X-values. Fig. 4 shows the complete flow which combines accurate
fault simulation (c.f. Section 3.3), incremental SAT-based test generation with a
classical three-valued encoding and accurate QBF-based reasoning to efficiently
analyze the faults.

Target
faults 1) No X-dep. 2) Some

Outputs
3) Some
Inputs

4) All Inputs

Hybrid two- and three- valued
SAT- based ATPG

UntestableAborted

QBF-based ATPG

Accurate fault simulation

D
et

ec
tin

g
pa

tte
rn

 fo
un

d

P
ro

ve
n

un
te

st
ab

le

Pure two-value
encoded CNF Hybrid CNF

Topological
untestability

check

Definite
Detection

Potential
Detection

Fig. 4. Overview of the ATPG flow.

Using a topological analysis, the faults under analysis are partitioned into
four groups w. r. t. their relation to the X-sources in the circuit (cf. Fig. 4):

1. No structural dependence on the X-sources: Neither the justification cone of
the fault, nor its propagation cone depend on X-sources.

2. A subset of the outputs in the propagation cone depends on X-sources. The
justification cone and at least one output in the propagation cone do not
depend on X-sources.

3. A subset of the inputs in the justification cone of the fault depends on
X-sources. At least one input in its justification cone is a controllable input.

4. The justification cone is driven exclusively by X-sources.

Afterwards the faults of each group are processed using the most suitable
algorithms to keep the runtime as low as possible – while guaranteeing an accurate
classification. First, all faults without X-dependency are processed by the hybrid
SAT-based algorithms based on a pure two-valued signal encoding. In case a
constructed formula is satisfiable, a test pattern is extracted and accurately
simulated to implement fault dropping and to mark faults as potentially detected
(cf. Section 3.2). Otherwise, the fault is untestable.

134 B. Becker, M. Sauer, C. Scholl, R. Wimmer

All faults for which some outputs or some inputs depend on X-sources are
subsequently processed by the SAT-based ATPG using a hybrid two- and three-
valued encoding. In case a constructed formula is satisfiable, a test pattern is
extracted and simulated. Otherwise, the SAT-based approach only allows to prove
the untestability, if the fault site itself does not depend on X-sources and fault
activation is not possible. For all other faults which may still be detectable, a QBF
is constructed and analyzed using a QBF solver for the final classification. Faults
for which all inputs depend on X-sources and which have not been classified
as untestable by a topological untestability check are also analyzed using the
QBF-based approach.

Finally, each fault classified as untestable is analyzed again for potential
detection by the QBF solver (cf. Section 3.3).

QBF-based Detection of Stuck-at Faults The construction of the QBF is
split into the generation of the matrix and the quantification of the variables.

Construction of the Matrix The matrix of the QBF in CNF is constructed similar
to a classical two-valued SAT-based ATPG instance. The state of each signal is
modeled by a single binary variable. X-values are not explicitly specified in the
matrix but modeled by universal variable quantification.

To construct the matrix for a fault f , all necessary gates for the fault-free
circuit representation CG and the propagation cone Cf

P of the fault f in the
faulty circuit are modeled as formulae in CNF. Additionally, D-chains are added
to encode propagation paths from the fault site to the outputs and to guide the
search for a test pattern. For the D-chains, d-variables are added for each signal
in the propagation cone of the fault. If the signal s has complementary values in
CG and Cf

P , ds evaluates to 1.

Finally, a single clause D :=
∨

o∈O do is added to ensure that at least one
d-literal of a circuit output is logically 1. This leads to the following propositional
formula in CNF:

CUT = CG ∧ Cf
P ∧ (D-chain clauses) ∧ D.

Variable Quantification All variables used in the matrix need to be properly
quantified to guarantee a valid test in case the formula is satisfiable – or otherwise
to serve as a proof that a test pattern does not exist. It is important to respect
the scope of quantification, i. e., the sequence of quantifier alternations.

For fault detection, we search for one test pattern that satisfies the matrix for
all possible assignments to the X-sources. Thus, the variables representing the
circuit inputs are existentially quantified on level 0 and precede the universally
quantified variables representing the X-sources on level 1.

The internal signals S and the d-variables used for the D-chains are subse-
quently existentially quantified at level 2. This results in the following QBF:

Modeling Unknown Values in Test and Verification 135

∃ I︸︷︷︸
Controllable

inputs

X-sources︷︸︸︷
∀X ∃S ∃D︸ ︷︷ ︸

Int. signals,
D-chain variables

CUT.

This QBF is satisfiable if and only if there exists an input assignment which
excites an observable difference at at least one (not necessarily the same) output
for each possible assignment to the X-sources.

Enforcing Definite Detection at Circuit Outputs: To establish definite detection
according to Equation (1), the solution space is constrained by limiting the
detecting outputs to a single fixed one. That is, for all possible assignments to
the X-sources, the fault effect must be observable at one particular output.

This constraint is implemented by additional variables oi for the outputs in
the propagation cone which only evaluate to 1 if the fault effect is observable at
output i for all assignments to the X-sources. The clause (o1∨o2∨. . .∨on) enforces
that at least one of the variables oi evaluates to 1 and thus, the fault is always
observable at at least one output. To guarantee that the observable output is fixed
for all possible X-values, the variables in O = {oi | 1 ≤ i ≤ n} are existentially
quantified at quantifier level 0 preceding the universal quantification of the X-
sources on level 1. The relation between oi and the D-chains are established by
adding one implication per output (oi → di) to the matrix:

∃O ∃ I ∀X ∃S ∃D
(
CUT ∧

∨
i

oi ∧
∧
i

(oi → di)
)
.

This enforces a fixed detecting output over all assignments to X-sources.
However, the observable difference, i. e., the signal values in the fault-free and
faulty circuit at that output is still allowed to be one of the four possibilities
(0/1), (1/0), (xi,¬xi), (¬xi, xi). The latter two cases correspond to situations
where an output always shows complementary states in the fault-free and faulty
circuit for all assignments to the X-sources, but the value in the fault-free and
faulty circuit are not stable for all assignments to X-sources. In these cases, it
is not possible to distinguish between a fault-free and a faulty circuit during
testing.

Enforcing Known Binary Values at Circuit Outputs: A known binary value at
the observing output in the fault-free circuit is enforced by adding two variables
v0i , v

1
i per output to represent its stable value in the fault-free case when it detects

the fault. This automatically constrains the faulty case as well. If v0i (v1i) is true,
output i has the stable value 0 (1) in the fault-free circuit. The two implications
(v0i → ¬si) and (v1i → si) for output i establish that relation, assuming that
si ∈ S is the signal variable representing the value of output i in the fault-free
circuit. In the formula φStable output, the implication (oi → (v0i ∨v1i)) ensures that
output i has a stable value if oi is asserted:

φStable output :=
∧
i

(
(oi → (v0i ∨ v1i)) ∧ (v0i → ¬si) ∧ (v1i → si)

)
.

136 B. Becker, M. Sauer, C. Scholl, R. Wimmer

With the existential quantification of the variables v0i , v
1
i ∈ V on level 0 we

obtain the following QBF:

DD := ∃O ∃V ∃ I ∀X ∃S ∃D(
CUT∧

∨
i

oi ∧
∧
i

(oi → di) ∧ φStable output

)

This QBF is satisfiable if and only if a fault is testable according to the
definite detection condition of Section 3.3. If the formula is not satisfiable, it is
proven that no test pattern exists for definite detection.

Taken together, we depicted a complete ATPG flow able to prove testability
or untestability of stuck-at faults in presence of unknown values. The algorithm
combines incremental 2- and 3-valued SAT-based test pattern generation, accurate
fault simulation in presence of unknown values, and QBF-based test generation.

4 Unknown Values in Verification

In the following we turn to the formal verification digital circuits in the presence
of unkowns. We first define partial circuits and validity and realizability of a
property regarding a partial circuit. Then we present approaches how partial
circuits can be analyzed.

4.1 Incomplete Circuits

An incomplete (or partial) circuit is a combinational or sequential circuit con-
taining so-called black boxes (BBs). A black box is a module of a circuit whose
interface is known but not its internal structure. A partial sequential circuit is
sketched in Fig. 5. The circuit contains m black boxes BB1, . . . ,BBm, shown as
black rectangles. Their input signals are denoted by I1, . . . , Im and their output
signals by Z1, . . . ,Zm. The primary inputs of the circuit are x = (x0, . . . , xn),
the current state is given by the signals s = (s0, . . . , sr). The input cones of
the black boxes compute the functions Ii = F i(x, s,Z1, . . . ,Zi−1). We thereby
assume that there are no cyclic dependencies between the black boxes and that
they are topologically ordered, i. e., BBi only depends on the values computed
by BB1, . . . ,BBi−1. To simplify notation, we assume w. l. o. g. that no black box
output is directly connected to a black box input, i. e., Zi is disjoint from Ij

for all i, j. If this is not the case, we insert a buffer between the corresponding
black boxes, which does not modify the functionality of the circuit. Finally the
output y and the next state s′ of the circuit are given by the Boolean functions
(y, s′) = R(x, s,Z1, . . . ,Zm).

We assume that the contents of the black boxes are combinational circuits.
If we allow the black boxes to contain an arbitrary amount of memory, the
interesting decision problems (see below) become undecidable [56]. The case
of black boxes with a bounded amount of memory can be reduced to the case

Modeling Unknown Values in Test and Verification 137

BBi−1

BBi

Zi

F i(x, s,Z1, . . . ,Zi−1)

Ii

•
•Zi−1

Ii−1

•

...

R(x, s,Z1, . . . ,Zm)

...
...

...

•

Memory

x

s

s′

y

Fig. 5. Notations for an incomplete sequential circuit

of combinational black boxes by adding the memory of the black boxes to the
surrounding circuit such that these memory cells are read and written only by
the corresponding black box.

For a given property ϕ two questions regarding a partial circuit are of interest:
On the one hand, realizability asks whether there is an implementation of the
black boxes such that the complete circuit satisfies ϕ. On the other hand, validity
asks whether ϕ is satisfied for all possible implementations. Since validity of ϕ is
given iff ¬ϕ is not realizable, we restrict ourselves in the following to realizability
problems.

For partial combinational circuits we assume that the property ϕ is given
as a circuit. The resulting realizability problem is known as the partial equiv-
alence checking problem (PEC) [31]. We combine the property circuit and the
partial circuit into a single miter circuit: corresponding inputs are connected,
corresponding output are combined via an XOR gate; in case of several outputs,
the outputs of the XOR gates are combined via an OR gate. The resulting circuit
has the property that its single output is 1 for an assignment of the primary
inputs and an implementation of the black boxes iff the specification ϕ and the
implementation compute the same output values. Realizability means then: Are
there implementations of the black boxes such that the output of the miter circuit
is constantly 1?

For partial sequential circuits we consider invariant properties: Given a
Boolean formula inv(x, s,y), which describes the states of the circuit that satisfy

138 B. Becker, M. Sauer, C. Scholl, R. Wimmer

the invariant, are there implementations of the black boxes such that inv(x, s,y)
is satisfied in each step of the circuit? For more general classes of properties like
arbitrary CTL properties, we refer the reader to [57, 38, 58].

4.2 Incomplete Combinational Circuits

We will first show how the PEC problem can be solved for combinational circuits.
We extend the methods known from the previous sections, starting with SAT-
based symbolic 01X simulation, which were already used in the previous sections.
Finally, we extend these methods to DQBF-based formulations which constitute
a complete decision method for PEC.

SAT-based Approximations SAT-based methods use symbolic {0, 1, X} sim-
ulation: The outputs of the black boxes carry unknown values and are therefore
assigned the value X, while the primary inputs are forced to be either 0 or 1.
Realizability is refuted if an input pattern can be found which leads to value 0
at the primary output of the miter circuit. Realizability is proven if all input
patterns lead to output value 1.1 However, a third case is possible, namely that
the unknown value X propagates to the primary output for some input patterns.
In this case, no statement can be made regarding realizability.

To decide whether there exists an input pattern that refutes realizability,
a SAT-formulation can be used. To encode the three-valued logic we use the
encoding introduced in Section 2.4 and force the output y of the miter circuit to
be zero by adding appropriate unit clauses. The result is a Boolean formula in
CNF whose satisfiability proves that the design is not realizable.

While this method is efficient in practice, it has the drawback that it consti-
tutes a rather coarse approximation: If the unknown value X propagates to the
output, no statement about the realizability can be made.

QBF-based Approximations The quality of the approximation can be im-
proved by universal quantification over the possible input values: For all possible
values at the inputs, there have to be values of the black box outputs such that
the desired property is satisfied (i. e., the output of the miter circuit is 1). This
yields QBF formulations for deciding PEC. We first show how to derive the
matrix of the QBF formula and then define an appropriate quantifier prefix.

In contrast to circuit test applications where unknown values typically appear
at the primary or secondary inputs of the circuit, we have to take into account
here that black boxes are not necessarily directly connected to the primary inputs,
but to internal signals. In this case not all possible combinations of values may
arrive at the inputs of the black boxes. Since we use universal quantification for
the black box inputs we have to ensure that the matrix of our formula is satisfied
if the value of the black box inputs Ii deviates from the values obtained as a

1 Note that in this case also validity holds.

Modeling Unknown Values in Test and Verification 139

function F i(x,Z1, . . . ,Zi−1). This leads to the following formula:

ϕ :=
(
I1 �≡ F 1(x)

) ∨ · · · ∨ (Im �≡ Fm(x,Z1, . . . ,Zm−1)
) ∨R(x,Z1, . . . ,Zm).

By applying Tseitin transformation [47], which introduces auxiliary variables
H = (h1, . . . , hp) for the internal signals of the circuit, one can obtain a CNF ϕ′

that is satisfiability equivalent to ϕ and whose size is linear in the size of ϕ. The
variables in H are existentially quantified in the quantifier prefix.

As we will see later when we consider complete decision procedures for PEC,
QBF is—like the SAT-based method described above—only an approximation in
case that the design contains more than one black box. However, we can give both
under- and over-approximations: If an over-approximating QBF is unsatisfied,
we can conclude the unrealizability of the PEC. If an under-approximating
QBF is satisfied, this implies the realizability of the PEC. The other outcomes
do not allow a statement regarding the realizability of the PEC. Over- and
under-approximations only differ in their quantifier prefix.

For a QBF prefix Q1V1 Q2V2 . . . QkVk with variables V = V1 ∪ · · · ∪ Vk and
quantifiers Qi ∈ {∃, ∀} such that Qi �= Qi+1 for all i = 1, . . . , k − 1, we say that
a variable u ∈ V is in the scope of variable w ∈ V if Vi, Vj are the unique sets
with u ∈ Vi, w ∈ Vj and j < i holds. We write w ≺ u if u is in the scope of w.
We extend this to vectors U ,W of variables such that U ≺ W iff u ≺ w for all
u ∈ U and w ∈ W .

For an over-approximating quantifier prefix we have to take care that each
black box output is (at least) in the scope of the (primary and black box) inputs
which are directly or indirectly read by the black box. For an under-approximating
prefix, each black box output is allowed to be at most in the scope of these
variables.

Formally spoken, the requirement on the quantifier order can be translated
as follows: Each over-approximating QBF prefix has to satisfy the constraint

∀i = 1, . . . ,m : Ii ⊆ {v ∈ V | v ≺ Zi}, (3)

while for each under-approximation we have

∀i = 1, . . . ,m : Ii ⊇ {v ∈ V | v ≺ Zi}. (4)

Since the Tseitin variables H are implied by the gate’s inputs, they are added as
the right-most existential quantifier block.

Example 2. An over-approximation is given by ∀I1 . . . ∀Im∃Z1 . . . ∃Zm∀x∃H :
ϕ′, an under-approximation by ∃Z1 . . . ∃Zm∀x∀I1 . . . ∀Im∃H : ϕ′.

Over- and under-approximating prefixes are not unique, and the choice of the
prefix can influence the truth value of the formula. It is therefore desirable to
make the approximation as strong as possible, i. e., having the black box outputs
in the scope of as few (many) universal variables as possible. An approximation
is exact if it is both an over- and an under-approximation, or equivalently, if (3)
and (4) are satisfied with equality. In general, such an exact QBF formulation
does not need to exist if the circuit contains more than one black box.

140 B. Becker, M. Sauer, C. Scholl, R. Wimmer

Example 3. Consider an incomplete circuit with a single black box, i. e., m = 1.
Then

∀I1∃Z1∀x∃H : ϕ′

is an exact QBF formulation, i. e., it is satisfiable if and only if the PEC is
realizable.

Complete Methods The QBF method provides more accuracy than the 01X-
approximation. However, in case the design contains more than one black box,
QBF is still not powerful enough to express realizability exactly, because there is
typically no QBF prefix that expresses the dependencies of the black box outputs
from the corresponding inputs exactly.

Example 4. Consider a design with two black boxes BB1 and BB2. The input
of BB1 is x1, its output y1, the input of BB2 is x2 and its output y2. There are
three admissible QBF prefixes: ∀x1∀x2∃y1∃y1, ∀x1∃y1∀x2∃y2, and ∀x2∃y2∀x1∃y1.
None of these is exact: in the first, both black box outputs depend on both inputs,
in the second prefix, BB2 depends on both inputs, and in the third this holds for
BB1.

In order to be able to express the dependencies correctly, one has to resort to
DQBF ([36], see also Section 2.3). It is able to express arbitrary dependencies
and therefore constitutes a complete decision method for arbitrary incomplete
combinational circuits.

We specify the quantifier prefix of the DQBF; the matrix is the same as
for the QBF approximations. The primary inputs x and the black box inputs
I1, . . . , Im are again universally quantified, all other variables are existentially
quantified. The dependency set of black box output zi,j contains exactly the
inputs Ii of BBi. Hence, the resulting DQBF is:

ψ := ∀x∀I1 . . . ∀Im∃Z1(I1) . . . ∃Zm(Im)∃H(x, I1, . . . , Im) : ϕ′.

The formula ψ is satisfied if and only if we can replace all Zi with Skolem
functions fZi,Ii such that ϕ′ becomes a tautology. The Skolem functions fZi,Ii

exist if and only if there are implementations for the black boxes BBi of the PEC,
such that the specification is realized. Therefore the Skolem functions constitute
implementations of the black boxes that satisfy the specification.

4.3 Incomplete Sequential Circuits

We have extended the application of realizability checking to sequential circuits
which are specified by a set of properties (safety properties or more general
properties formulated in Computation Tree Logic (CTL [37]). In [38], e. g., we
provided a series of approximate methods with different precision and cost
for deciding the realizability of CTL properties using symbolic methods. The
approximations were based on different methods to model the effect of the
unknowns at the black box outputs to the overall circuit and also an exact

Modeling Unknown Values in Test and Verification 141

· · ·

· · ·

......

x0
0 ... x0

n

Z0
0

.

.

.

Z0
l

y0
0 ... y0

m

black
box

· · ·

· · ·

...

x1
0 ... x1

n

Z1
0

.

.

.

Z1
l

s10

s1r

y1
0 ... y1

m

black
box

· · ·

· · ·

...

xk−1
0 ... xk−1

n

Zk−1
0

.

.

.

Zk−1
l

sk−1
0

sk−1
r

black
box

s20

s2r

...· · ·
sk0

skr

s00

s0r

TT T

I ¬P

yk−1
0 ... yk−1

m

Fig. 6. Encoding of the BMC Problem for Incomplete Designs [40].

method was presented for deciding realizability for incomplete circuits with
several black boxes under the assumption that the black boxes may contain only
a bounded amount of memory. In this overview however, we restrict our attention
to realizability checking of safety properties based on bounded model checking
techniques (BMC) [39, 40].

BMC for Incomplete Designs BMC for incomplete designs aims to refute
the realizability of a property, that is, it tells the designer, no matter how the
unknown parts of the system will be implemented, the property will always fail.
To put it in other words, the error is already in the implemented system. If
this is the case, then we call the property P unrealizable. Here we restrict the
properties to invariants. In a first formulation we make use of QBF modeling
where the variables representing the black box outputs are universally quantified.
We allow black box replacements to have arbitrary sequential behavior, that is,
the black box can produce different output values for the same input values at
different time steps. To encode the BMC problem of incomplete designs we are
naming the variables as shown in Fig. 6. We use an upper index to specify the
time instance of a variable. sji denotes the i-th state bit in the j-th unfolding

(let sj = sj0, . . . , s
j
r). The same holds for the primary inputs xj = xj

0, . . . , x
j
n, the

primary outputs yj = yj0, . . . , y
j
m, and the black box outputs Zj = Zj

0 , . . . , Z
j
l .

The next state variables sj+1 depend on the current state, the primary inputs
and the black box outputs. The whole circuit is transformed according to [47]
using additional auxiliary variables Hj for each unfolding depth j. The predicate
describing the initial states is given by I(s0). Since we assume a single initial
state in this paper, the initial state I(s0) is encoded by unit clauses, setting
the respective state bits to their initial value. The transition relation of time
frame i is given by T (si−1,xi−1,Zi−1, si). The invariant P (sk) is a Boolean
expression over the state variables2 of the k-th unfolding. Using this information,
the quantifier prefix (and the matrix) for the unrealizability problem results in the

2 In general the property can also check the primary outputs, but for sake of convenience,
we omit details here.

142 B. Becker, M. Sauer, C. Scholl, R. Wimmer

QBF formula (5). For the sake of simplicity we include the variables representing
the primary outputs of unfolding depth j into Hj .

BMC (k) := ∃ s0 x0 ∀ Z0 ∃ H0

∃ s1 x1 ∀ Z1 ∃ H1

...
∃ sk−1 xk−1 ∀ Zk−1 ∃ Hk−1

∃ sk

I(s0) ∧
k∧

i=1

T (si−1,xi−1,Zi−1, si) ∧ ¬P (sk) (5)

The semantics following from the prefix corresponds to the following question:

Does there exist a state s0 = s00, . . . , s
0
r and an input vector x0 =

x0
0, . . . , x

0
n at depth 0 such that for all possible values of the black box

outputs Z0 = Z0
0 , . . . , Z

0
m there exists an assignment to all auxiliary

variables H0 (resulting in a next state s1 = s10, . . . , s
1
r) and an input

vector x1 = x1
0, . . . , x

1
n at depth 1, etc. such that the property is violated?

The BMC procedure iteratively unfolds the incomplete circuit for k = 0, . . . ,K
until a predefined maximal unfolding depth K is reached. If a QBF solver finds
BMC (k) satisfiable, the unrealizability of the property P has been proven. In
that case the resulting system can reach a “bad state” after k steps, no matter
how the black box is implemented.

We can prove that, whenever BMC (k) is unsatisfiable, there is an implemen-
tation of the black box which is able to avoid error paths of length k as long as
the black box is allowed to read all primary inputs. However, if the black box in
the design at hand is not directly connected to all primary inputs, (i. e., if the
black box does not have “complete information”), such an implementation does
not need to exist. Thus, for black boxes having “incomplete information” the
property may be unrealizable although BMC with QBF modeling is not able to
prove this. In this case, DQBF is necessary to express the actual dependencies of
the black boxes on their inputs.

In the following we give an example illustrating the approach:

Example 5. Consider the incomplete circuit shown in Fig. 7. The state bits s0
and s1 depend on the current state, the primary input x, and the black box
outputs Z0 and Z1, respectively, and are computed by the transition functions
s′0 = x+Z0 and s′1 = x ·Z1 + s0 · ¬Z1. Let the invariant property P = ¬(s0 ∧ s1)
state that s0 and s1 must never be 1 at the same time. Let the initial state of
the system be defined as s00 = s01 = 0. After checking for an initial violation of
the property, the BMC procedure unfolds the system once, and tries to find an
assignment to x0 such that for all possible assignments to Z0

0 and Z0
1 the state

(1, 1) can be reached. Indeed, x0 = 1 implies s0 = 1 for all assignments to the
black box outputs, however, for Z0

1 = 0 s1 = 1 can not be obtained (neither by

Modeling Unknown Values in Test and Verification 143

s0

s1

x

clk

black
box

Z0

Z1

Fig. 7. Example Incomplete Design [40].

setting x0 = 0 nor x0 = 1). Thus, BMC (1) is unsatisfiable and BMC continues
by adding a second copy of the transition relation to the problem. If x0 = 1, the
current state bit s10 at the second unfolding evaluates to 1 as well. Furthermore,
if x1 is set to 1, the next state bits s20 and s21 evaluate to 1 for all values of Z1

0

and Z1
1 . Hence, when applying the input pattern x0 = x1 = 1, a state violating P

can be reached after two steps for all actions of the black box and thus, BMC (2)
is satisfiable and P is unrealizable.

SAT-based Approximations and 01X-Hardness As already shown in previ-
ous sections, QBF can be approximated using 01X-logic. In the previous example,
e. g., it is not necessary to use QBF encoding for Z0. When applying Z0 = X,
unrealizability still can be proven by applying x0 = x1 = 1.

Since the problem instances using 01X-modeling are typically easier to solve,
we are using the following verification flow:

Given an incomplete design and an invariant, we start the BMC process with
a pure 01X-modeling, that is we extend Boolean logic by a third value ‘X’ which
then is applied to all black box outputs. Using the two-valued encoding proposed
by Jain (cf. Section 2.4), the BMC unfoldings still yield SAT problems which
can be solved by a state-of-the-art SAT solver. However, 01X-modeling may be
too coarse to prove unrealizability leading to unsatisfiable BMC instances for
every unfolding depth (we call such verification problems 01X-hard). In [39] we
presented a method based on Craig interpolation to classify 01X-hard problems
on-the-fly along the BMC process, thus preventing the solver running into
unsatisfiable instances forever. Additionally, the computed Craig interpolants
provide information about the origin of the 01X-hardness and a subset of the black
box outputs which have to be modeled more precisely using QBF is heuristically
determined. Now a QBF-based BMC tool processes the information gathered
from the Craig interpolants and uses one universally quantified variable for
each black box output which needs a more precise modeling. Using a combined
01X/QBF-modeling (or a pure QBF-modeling) the BMC unfoldings yield QBF

144 B. Becker, M. Sauer, C. Scholl, R. Wimmer

formulas. In that way, the precision of modeling is not given by the user, but it
is adapted automatically based on the difficulty of the problem.

QBF-based Approximations and QBF-hardness However, even when us-
ing the more precise QBF modeling technique to model the unknown behavior
of the black box, no result is guaranteed. At this point an extension given in
[40] is introduced into the workflow. Similar to 01X-hardness for 01X-modeled
incomplete designs, a QBF modeled BMC problem can now be classified as
QBF-hard, if BMC would continuously run into unsatisfiable unfoldings.

As already discussed above, under certain conditions (black boxes having
“incomplete information”) the BMC procedure using a QBF formulation is not
able to prove unrealizability even if the property is indeed unrealizable. In
this sense the QBF formulation is a sound but incomplete approximation (just
as 01X-modeling which is also an approximation, but is strictly coarser). If
unrealizability can not be proven due to the approximative nature of the method
or if the property is really realizable, then the BMC procedure described above
would produce unsatisfiable QBF formulas for all unfoldings and would never
return a result.

The idea of proving QBF-hardness is as follows: The QBF-based BMC proce-
dure classifies a property as unrealizable, iff there exist input sequences of some
length k such that independently from the black box actions the property will be
violated after k steps. Conversely, the QBF-based BMC procedure is not able to
prove unrealizability with an unfolding of length k or smaller, if for each input
valuation in each time frame there is an action of the black box such that the
property is fulfilled after k steps, and additionally all states on these paths also
fulfill the property. Furthermore, if we can prove for this scenario that after at
most k steps every state has already been visited before, we can be sure that
the QBF-based BMC procedure will never produce a satisfiable instance, since
for every input pattern it is possible to determine at least one realization of the
black box leading to a state which does not violate the property, independently
from the length of the unfolding.

This concept is illustrated in Fig. 8. Let s 0 = σ0
1 be the initial state which

fulfills P . Next, the graph branches for all possible assignments ξ01, . . . , ξ
0
m to the

primary inputs x0. For each of these values ξ0i there exists an action of the black
box outputs Z0 = ζ0

i leading to next states s1 = σ1
i which all fulfill P . Once

a state is equivalent to a state which was visited before (which is indicated by
a dashed backward arrow in Fig. 8 stating that σ1

1 = σ0
1, σ

2
1 = σ1

2, σ
2
m = σ0

1,
respectively), this branch does not need to be further explored. If at some depth
all so far explored states point back to already visited states, then the black box
outputs are set in a way that the system remains in “good states” forever, i. e.,
we are in the situation sketched above and we can be sure that the QBF-based
BMC procedure will never produce a satisfiable instance, independently from
the length of the unfolding. Thus, determining whether a graph fulfilling the
aforementioned properties exists answers the question of whether a design is
QBF-hard.

Modeling Unknown Values in Test and Verification 145

�s 0=�σ0
1

�s 1=�σ1
2

�Z0=�ζ02

�x0

�x1

�Z0=�ζ01
�Z0=�ζ0m

�Z1=�ζ11
�Z1=�ζ12

�Z1=�ζ1m

�s 1=�σ1
1

...

...
�s 2=�σ2

1 �s 2=�σ2
m

k = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k = 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ξ01 �ξ02

�ξ0m

�ξ11 �ξ12

�ξ1m

Fig. 8. QBF-Hardness Graph [40].

In [40] it has been shown that the existence of a QBF-hardness graph can be
checked using a series of QBF formulas. Once the QBF-hardness of the design
under verification is proven, two options are considered. In case of a combined
01X/QBF-modeling an abstraction refinement procedure will identify more black
box outputs for QBF-modeling (in an extreme case yielding a pure QBF-modeled
problem) and repeat the QBF-based BMC procedure. If all black box outputs are
already QBF-modeled, the design is passed to a BMC tool supporting DQBF with
Henkin quantifiers providing the next level of accuracy of black box modeling.
Fig. 9 illustrates the complete verification flow.

5 Conclusion

In this paper, we have seen that unknown values appear at several points in
the design process of a digital circuit. We have presented different methods for
modeling such unknown values: (1) 01X-logic, which is efficient, but pessimistic
and over-estimates the set of signals which carry an unknown value, (2) quantified
Boolean formulas, which constitute an accurate formalism for modeling many
problems arising in the test of digital circuits, and (3) dependency-quantified
Boolean formulas, which are accurate if partial knowledge has to be taken into
account, e. g., when black boxes in a circuit design have only access to a subset
of the circuit’s signals.

References

1. Roth, J.P.: Diagnosis of automata failures: A calculus and a method. IBM J. Res.
Dev. 10(4) (1966) 278–291

2. Goel, P.: An implicit enumeration algorithm to generate tests for combinational
logic circuits. In: Proc. Fault Tolerant Computing Symposium. (1980) 145–151

146 B. Becker, M. Sauer, C. Scholl, R. Wimmer

partial
design

invariant

SAT-based BMC tool
using Craig interpolation

01X-modeling

01X-hard?

SAT?

unrealizability
proven

heuristically identify
black box outputs for

QBF-modeling

partial
design

invariant

QBF-based BMC tool

combined
01X/QBF-
modeling

set of black
box outputs

QBF-hard?

Henkin-based BMC tool

SAT?

Fig. 9. Workflow.

3. Fujiwara, H., Shimono, T.: On the acceleration of test generation algorithms. IEEE
Trans. on Computers C-32(12) (1983) 1137 –1144

4. Larrabee, T.: Test pattern generation using Boolean satisfiability. IEEE Trans. on
Computer-Aided Design 11(1) (1992) 4–15

5. Stephan, P., Brayton, R., Sangiovanni-Vincentelli, A.: Combinational test generation
using satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems 15(9)
(1996) 1167–1176

6. Czutro, A., Polian, I., Lewis, M., Engelke, P., Reddy, S.M., Becker, B.: Thread-
parallel integrated test pattern generator utilizing satisfiability analysis. Interna-
tional Journal of Parallel Programming 38(3-4) (2010) 185–202

7. Eggersglüß, S., Drechsler, R.: Atpg based on Boolean satisfiability. In: High Quality
Test Pattern Generation and Boolean Satisfiability. Springer (2012) 59–70

8. Wohl, P., Waicukauski, J., Neuveux, F.: Increasing scan compression by using
X-chains. In: Int’l Test Conference (ITC). (2008) 1–10

9. Ramdas, A., Sinanoglu, O.: Toggle-masking scheme for X-filtering. In: European
Test Symposium (ETS). (2012) 1–6

10. Ahmed, N., Tehranipoor, M.: A novel faster-than-at-speed transition-delay test
method considering IR-drop effects. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems 28(10) (2009) 1573–1582

11. Hillebrecht, S., Polian, I., Engelke, P., Becker, B., Keim, M., Cheng, W.T.: Ex-
traction, simulation and test generation for interconnect open defects based on
enhanced aggressor-victim model. In: Int’l Test Conference (ITC). (2008) 1–10

12. Muth, P.: A nine-valued circuit model for test generation. IEEE Trans. on
Computers C-25(6) (1976) 630–636

13. Flores, P., Neto, H., Marques Silva, J.: An exact solution to the minimum size
test pattern problem. In: IEEE Int’l Conf. on Computer Design (ICCD). (1998)
510–515

Modeling Unknown Values in Test and Verification 147

14. Jain, A., Boppana, V., Mukherjee, R., Jain, J., Fujita, M., Hsiao, M.: Testing,
verification, and diagnosis in the presence of unknowns. In: IEEE VLSI Test
Symposium (VTS). (2000) 263–268

15. Carter, J., Rosen, B., Smith, G., Pitchumani, V.: Restricted symbolic evaluation is
fast and useful. In: IEEE/ACM Int’l Conf. on Computer Aided Design (ICCAD).
(1989) 38 –41

16. Kundu, S., Nair, I., Huisman, L., Iyengar, V.: Symbolic implication in test generation.
In: Proc. Conference on European Design Automation. (1991) 492–496

17. Touba, N.: X-canceling MISR : An X-tolerant methodology for compacting output
responses with unknowns using a MISR. In: Int’l Test Conference (ITC). (2007)
1–10

18. Tang, Y., Wunderlich, H., Engelke, P., Polian, I., Becker, B., Schloffel, J., Hapke,
F., Wittke, M.: X-masking during logic BIST and its impact on defect coverage.
IEEE Trans. on Very Large Scale Integration (VLSI) Systems 14(2) (2006) 193–202

19. Elm, M., Kochte, M.A., Wunderlich, H.J.: On determining the real output Xs by
SAT-based reasoning. In: IEEE Asian Test Symposium (ATS). (2010) 39–44

20. Chou, H.Z., Chang, K.H., Kuo, S.Y.: Accurately handle don’t-care conditions in
high-level designs and application for reducing initialized registers. IEEE Trans. on
Computer-Aided Design 29(4) (2010) 646–651

21. Wilson, C., Dill, D., Bryant, R.: Symbolic simulation with approximate values. In
Hunt, W., Johnson, S., eds.: Int’l Conf. on Formal Methods in Computer Aided
Design (FMCAD). Vol. 1954 of LNCS. Springer (2000) 507–522

22. Kochte, M.A., Elm, M., Wunderlich, H.J.: Accurate X-propagation for test appli-
cations by SAT-based reasoning. IEEE Trans. on Computer-Aided Design 31(12)
(2012) 1908–1919

23. Hillebrecht, S., Kochte, M.A., Wunderlich, H.J., Becker, B.: Exact stuck-at fault
classification in presence of unknowns. In: European Test Symposium (ETS). (2012)
1–6

24. Erb, D., Kochte, M.A., Sauer, M., Hillebrecht, S., Schubert, T., Wunderlich, H.J.,
Becker, B.: Exact logic and fault simulation in presence of unknowns. ACM Trans.
on Design Automation of Electronic Systems (TODAES) 19(3) (2014)

25. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds. Frontiers in Artificial
Intelligence and Applications 185. In: Handbook of Satisfiability. IOS Press (2009)

26. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: IEEE/ACM Int’l Conf. on Computer Aided Design (ICCAD). (2002)
442–449

27. Biere, A.: Resolve and expand. In: Int’l Conf. on Theory and Applications of
Satisfiability Testing (SAT). Vol. 3542 of LNCS, Springer (2005) 59–70

28. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor for
QBFs based on equivalence reasoning. In: Int’l Conf. on Theory and Applications
of Satisfiability Testing (SAT). Vol. 6175 of LNCS. Springer (2010) 85–98

29. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety
specs. In: Int’l Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI). Vol. 8318 of LNCS, Springer (2014) 1–20

30. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-based methods
for circuit synthesis. In: Int’l Conf. on Formal Methods in Computer Aided Design
(FMCAD), IEEE (2014) 31–34

31. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In:
ACM/IEEE Design Automation Conference (DAC), ACM Press (2001) 238–243

148 B. Becker, M. Sauer, C. Scholl, R. Wimmer

32. Jo, S., Matsumoto, T., Fujita, M.: SAT-based automatic rectification and debugging
of combinational circuits with LUT insertions. In: IEEE Asian Test Symposium
(ATS), Niigata, Japan, IEEE Computer Society (2012) 19–24

33. Jo, S., Gharehbaghi, A.M., Matsumoto, T., Fujita, M.: Debugging processors
with advanced features by reprogramming LUTs on FPGA. In: Int’l Conf. on
Field-Programmable Technology (FPT), Kyoto, Japan, IEEE (2013) 50–57

34. Smith, A., Veneris, A.G., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging
using boolean satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems
24(10) (2005) 1606–1621

35. Sülflow, A., Fey, G., Drechsler, R.: Using QBF to increase accuracy of SAT-based
debugging. In: Int’l Symposium on Circuits and Systems (ISCAS), Paris, France,
IEEE (2010) 641–644

36. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified Boolean formulae. In: IEEE
Int’l Conf. on Computer Design (ICCD), Asheville, NC, USA, IEEE Computer
Society (2013) 396–403

37. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite–State
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. on Pro-
gramming Languages and Systems 8(2) (1986) 244–263

38. Nopper, T., Scholl, C.: Symbolic model checking for incomplete designs with flexible
modeling of unknowns. IEEE Trans. on Computers 62(6) (2013) 1234–1254

39. Miller, C., Kupferschmid, S., Lewis, M.D.T., Becker, B.: Encoding techniques, craig
interpolants and bounded model checking for incomplete designs. In: Int’l Conf.
on Theory and Applications of Satisfiability Testing (SAT). Vol. 6175 of LNCS,
Springer (2010) 194–208

40. Miller, C., Scholl, C., Becker, B.: Proving QBF-hardness in bounded model checking
for incomplete designs. In: Int’l Workshop on Microprocessor Test and Verification
(MTV), IEEE Computer Society (2013)

41. Sauer, M., Reimer, S., Polian, I., Schubert, T., Becker, B.: Provably Optimal Test
Cube Generation Using Quantified Boolean Formula Solving. In: Asia and South
Pacific Design Automation Conference (ASPDAC). (2013) 533–539

42. Reimer, S., Sauer, M., Schubert, T., Becker, B.: Using maxbmc for pareto-optimal
circuit initialization. In: Int’l Conf. on Design, Automation & Test in Europe
(DATE), IEEE (2014) 1–6

43. Cook, S.A.: The complexity of theorem-proving procedures. In: Annual ACM
Symposium on Theory of Computing (STOC), ACM (1971) 151–158

44. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (prelimi-
nary report). In: Annual ACM Symposium on Theory of Computing (STOC), New
York, NY, USA, ACM (1973) 1–9

45. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Int’l Conf. on Design, Automation &
Test in Europe (DATE), Grenoble, France, IEEE (2015)

46. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Intl. Workshop on Pragmatics of SAT (POS), Vienna, Austria (2014)

47. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic Part 2 (1970) 115–125

48. Turpin, M.: The dangers of living with an X (bugs hidden in your Verilog). In:
Boston Synopsys Users Group Meeting. (2003) 1–34

49. Ulrich, E.G., Baker, T.: The concurrent simulation of nearly identical digital
networks. In: Papers on Twenty-five years of electronic design automation. 25 years
of DAC (1988) 318–323

Modeling Unknown Values in Test and Verification 149

50. Waicukauski, J., Eichelberger, E., Forlenza, D., Lindbloom, E., McCarthy, T.: Fault
simulation for structured VLSI. VLSI Systems Design 6(12) (1985) 20–32

51. Antreich, K., Schulz, M.: Accelerated fault simulation and fault grading in com-
binational circuits. IEEE Trans. on Computer-Aided Design 6(5) (1987) 704 –
712

52. Lee, H., Ha, D.: An efficient, forward fault simulation algorithm based on the
parallel pattern single fault propagation. In: Int’l Test Conference (ITC). (1991)
946–955

53. Rudnick, E., Patel, J., Pomeranz, I.: On potential fault detection in sequential
circuits. In: Int’l Test Conference (ITC). (1996) 142–149

54. Schubert, T., Lewis, M., Becker, B.: Antom—solver description. SAT Race (2010)
55. Hillebrecht, S., Kochte, M.A., Erb, D., Wunderlich, H.J., Becker, B.: Accurate

QBF-based test pattern generation in presence of unknown values. In: Int’l Conf.
on Design, Automation & Test in Europe (DATE). (2013) 436–441

56. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Annual Symposium on Foundations of Computer Science, IEEE Computer Society
(1990) 746–757

57. Miller, C., Nopper, T., Scholl, C.: Symbolic CTL model checking for incomplete
designs by selecting property-specific subsets of local component assumptions. In:
Workshop “Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen” (MBMV), Universitätsbibliothek Berlin, Germany
(2009) 87–96

58. Nopper, T., Scholl, C.: Approximate symbolic model checking for incomplete
designs. In: Int’l Conf. on Formal Methods in Computer Aided Design (FMCAD).
Vol. 3312 of LNCS, Springer (2004) 290–305

150 B. Becker, M. Sauer, C. Scholl, R. Wimmer

Specification of Parametric Monitors

Quantified Event Automata versus Rule Systems

Klaus Havelund1� and Giles Reger2

1 Jet Propulsion Laboratory, California Inst. of Technology, USA
2 University of Manchester, UK

Abstract. Specification-based runtime verification is a technique for
monitoring program executions against specifications formalized in for-
mal logic. Such logics are usually temporal in nature, capturing the re-
lation between events occurring at different time points. A particular
challenge in runtime verification is the elegant specification and efficient
monitoring of streams of events that carry data, also referred to as para-
metric monitoring. This paper presents two parametric runtime verifica-
tion systems representing two quite different approaches to the problem.
qea (Quantified Event Automata) is a state machine approach based on
trace-slicing, while LogFire is a rule-based approach based on the Rete
algorithm, known from AI as being the basis for many rule systems. The
presentation focuses on how easy it is to specify properties in the two ap-
proaches by specifying a collection of properties gathered during the 1st
International Competition of Software for Runtime Verification (CSRV
2014), affiliated with RV 2014 in Toronto, Canada.

1 Introduction

Ensuring the correctness or security of a software system is traditionally ap-
proached in two ways, with static analysis and with dynamic analysis. By static
analysis we shall broadly understand any approach that does not execute the
program using a traditional execution platform, in contrast to dynamic analysis,
where the program is executed. Static analysis techniques include for example
abstract interpretation, theorem proving and model checking. The distinction is
somewhat vague. Some techniques are difficult to classify, for example software
model checkers which execute a program using a specialized virtual machine.
Dynamic analysis includes testing, which is concerned with generating test in-
puts for the system, and applying test oracles (monitors) that can determine
whether a particular run is satisfactory. However, dynamic analysis can also
be applied after deployment of the software in the field, for example to profile
behavior, load, etc. under realistic conditions. The concept of cyber-physical sys-
tem (CPS) is receiving increased attention in the research community. A CPS is

� The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_6, © Springer Fachmedien Wiesbaden 2015

a system of collaborating computational elements controlling physical entities.
The correctness of such systems is extremely difficult to ensure statically. It is
therefore important to ensure that at least observed executions of such systems
satisfy certain properties.

Runtime verification [30, 41, 49] (RV) is a subfield of dynamic analysis focus-
ing on analyzing executions, including collections thereof, either during test (test
oracles), or after deployment. The field is not concerned with test case genera-
tion. Even though the field can appear rather narrow, by tradition it includes
the following sub-fields. Specification-based monitoring, the topic of this paper,
is concerned with checking a program execution against a formal specification of
one or more requirements, expressed in some form of logic, for example state ma-
chines, regular expressions, temporal logic, grammars, or rule-systems. That is,
given a program P , and a specification ψ, and an execution trace τ of P , an RV
system will be able to determine whether τ satisfies ψ, also formalized as: τ |= ψ.
Logics must be expressive and monitors must be efficient. In runtime analysis,
program executions are analyzed with specialized algorithms. Examples include
algorithms for detecting concurrency problems such as deadlock potentials and
data races. In fault protection, a monitored system will when violating a prop-
erty be brought from an unsafe state to a safe state. Specification learning covers
learning (mining) specifications from execution traces, which are then used for
either system comprehension, or fed back into a verification system for further
analysis, or used for monitoring future revisions of the software. Trace visualiza-
tion of execution traces serves the purpose of comprehending what the system
does. Finally, program instrumentation is concerned with how to instrument pro-
grams to emit events to a monitor, which then analyzes the event stream. For
example aspect-oriented programming can be used for this purpose to automat-
ically insert event emitting code at positions relevant for the properties being
verified. Static analysis can be used to minimize the number of instrumentation
points. RV technology can be stand-alone or incorporated into programming
languages, simple assertions being a standard example.

Monitor

Property

System

Instrumentation

verdict

observe feedback

Fig. 1. A typical monitoring infrastructure.

152 K. Havelund, G. Reger

Figure 1 shows a typical monitoring infrastructure, which supports the follow-
ing activities. Monitor creation: a monitor is created, potentially from a formal
property. Instrumentation: the system is instrumented to generate events for the
monitor. Execution: The system is executed, generating events that are observed
by the monitor. These events are either monitored online, as they are generated,
or they are stored in logs, which are later analyzed by the monitor. Responses:
the monitor produces for each consumed event a verdict indicating the status of
the property, depending on the event sequence seen so far. In the case of online
monitoring, the monitor may send feedback to the system, so that corrective
actions can be taken by the system.

In this paper we shall focus on specification-based runtime verification, and
in particular on what is referred to as parametric monitoring: the monitoring of
event streams where events can carry data. That is, say we are monitoring a file
system, then an event may have the form read(f) where f is a file identifier, a
parameter to the read event. Parametric monitoring is particularly challenging
as, for each incoming event, it involves the efficient lookup of information about
the previous part of the execution trace that is relevant for that event’s particu-
lar parameter (or set of parameters), in order to determine what the appropriate
action of the monitor should be. We shall describe and apply two parametric run-
time verification systems, representing two seemingly different main approaches
of organizing monitors. The systems will be demonstrated on four classes of
properties stemming from respectively the Java programming language API,
banking, planetary rovers, and finally concurrency in programming languages.
These properties were gathered during the 1st Intl. Competition of Software for
Runtime Verification (CSRV 2014), affiliated with RV 2014 in Toronto, Canada
[2], and also presented in [20]. Our focus is on specification, and we shall there-
fore assume that programs/systems to be monitored have been instrumented
appropriately to emit the necessary events.

The first system, qea (Quantified Event Automata) [4, 53], is a state-machine
logic based on a so-called trace-slicing approach, an approach that has shown
to yield extremely efficient monitors. The approach involves conceptually slic-
ing a trace into projections, a projection for each parameter combination. Fast
indexing makes this very efficient. The state of a monitor is abstractly seen as
a mapping from parameter values to monitor states. Note that trace slicing is
not to be confused with program slicing. The latter involves slicing a program
into projections. The second system, LogFire [40], is a rule-based system, in-
spired by rule systems as developed within the artificial intelligence community.
LogFire’s implementation is based on the Rete algorithm, often used for im-
plementing rule engines. A monitor consists of a set of rules, which abstractly
seen operate on a (structured) set of facts, where a fact is a named record
F (v1, . . . , vn). Here F is a name and v1, . . . , vn are values. A rule’s left-hand side
can check for the presence or absence of facts, and the right-hand side can add
or delete facts. In reality, however, facts are inserted into a network, the Rete
network (rete means “net” in Latin), making rule evaluation more efficient. qea

Specification of Parametric Monitors 153

is a so-called external DSL (Domain Specific Language), whereas LogFire is a
so-called internal DSL, an API in the Scala programming language.

The rest of the paper is organized as follows. Section 2 gives a brief survey
of specification-based runtime verification systems. Section 3 introduces the two
logics qea and LogFire. Sections 4, 5, 6, and 7 contain the specification in
the two logics of the Java API, banking, rover, and concurrency properties
respectively. Section 8 summarizes and discusses the specification experience.
Finally Section 9 concludes the paper.

2 Survey of specification-based runtime verification

Numerous runtime verification systems have been developed over the last 15
years, some of which will be mentioned here. We will only focus on specification-
based systems that verify whether program executions satisfy user-provided for-
mal specifications. As discussed in the introduction, the field is broader than
this. Initial specification-based systems could only handle propositional events.
These include for example Temporal Rover [26], Mac [48], and Java PathEx-
plorer [43, 42]. Later work has studied such propositional monitoring logics from
a more theoretic point of view, including notions such as 4-valued logics [15] and
monitorability [29]. During the last decade there has been an increasing focus on
systems for monitoring data parameterized events, so-called parametric moni-
toring. The first systems to handle parameterized events appeared around 2004,
and include such systems as Eagle [7], Hawk [21], Jlo [58], TraceMatches
[3], and Mop [18, 51]. Several systems have appeared since then. RV systems
usually implement specification languages which are based on formalisms such
as state machines [27, 34, 37, 18, 28, 9], regular expressions [3, 18], temporal logic
[48, 26, 43, 7, 59, 21, 58, 57, 18, 9, 13, 36, 14, 22], variations over the μ-calculus [7],
grammars [18], and rule-based systems [12, 40]. A few of these logics incorporate
time as a built-in concept, for example the metric first-order temporal logics in
the early TemporalRover [26] and in the more recent MFOTL [13]. If no
special concept of time is introduced, time observations can be considered as
just data, as is common in rule-based systems [12, 40].

In this paper we focus on two important approaches to parametric monitor-
ing, namely the trace-slicing approach, represented by qea, and the rule-based
approach, represented by LogFire. Two other important approaches based on
trace-slicing are TraceMatches [3] and Mop [18, 51]. Slicing-based approaches
are generally extremely efficient, but at the cost of lack of some expressiveness,
as pointed out in [4]. qea is an attempt to augment the expressiveness of slicing-
based approaches, without losing too much of the efficiency. Rule systems are
expressive.

The Rete-based LogFire is inspired by the Ruler system [11, 12, 1], itself
a rule-based system. Ruler, however, is not influenced by Rete. Ruler led
to the study of the Rete algorithm (in LogFire), in order to determine its
relevance for runtime verification. Ruler itself was inspired by MetateM [5]
and Eagle [7], a linear time μ-calculus for monitoring, with past time as well

154 K. Havelund, G. Reger

as future time operators. Although attractive, the implementation of Eagle
appeared complex, leading to the simpler implementation in Ruler. Another
derivative from Ruler is LogScope [10, 35, 8], which is a data parameterized
state machine oriented monitoring logic, implemented as a simplified rule-engine,
and applied to log files at Jet Propulsion Laboratory (JPL), for testing of the
Mars Curiosity rover. The qea formalism has similarities with LogScope. Other
rule-based systems include Drools [24], Jess [45] and Clips [19]. Standard rule
systems usually enable processing of facts, which have a life span. In contrast,
LogFire additionally implements events, which are instantaneous.Drools sup-
ports a notion of events, which are facts with a limited life span, inspired by the
concept of Complex Event Processing (CEP), described by David Luckham in
[50]. The Drools project has an effort ongoing, defining functional program-
ming extensions to Drools [25]. In contrast, by embedding a rule system in
an object-oriented and functional language, LogFire can leverage the already
existing host language features.

The classification of runtime verification frameworks into slicing-based and
rule-based is an idealization, and more research is needed in order to make a clean
classification. Some logics, for example, handle data as constraints, including the
first-order Linear Temporal Logic LTLFO [14], and the first-order linear temporal
logic based on SMT (Satisfiability Modulo Theories) solving described in [22].
Some systems based on Linear Temporal Logic (LTL) [52] apply rewriting of
LTL formulas, inspired by [33]. These include for example [26, 43, 7, 59, 58, 9, 36].

qea, like most of the logics mentioned above, is an external DSL, a stand-
alone “small” language equipped with its own customized parser. In contrast,
LogFire is an internal Scala DSL, essentially an API in Scala. Two other
rule-based internal DSLs for Scala exist:Hammurabi [32] andRooscaloo [55].
Hammurabi, which is not Rete-based, achieves efficient evaluation of rules
by evaluating these in parallel, assigning each rule to a different Scala actor.
Rooscaloo [55] is Rete based, but is not documented in any form other than
experimental code. Other internal Scala DSLs for monitoring include Trace-
Contract [9] and Daut (Data automata) [38, 39], both of which are based on
parameterized state machines. An embedding of LTL in Haskell is described in
[59]. MopBox [17] is a Java library for monitoring, offering a re-implementation
of the efficient trace-slicing algorithms contained in Mop [18, 51], but defining
the interface as an API.

3 Introduction to QEA and LogFire

This section introduces the two logics qea (Section 3.2) and LogFire (Section
3.3). The logics are illustrated using a file usage example, presented below.

3.1 The file usage example

Consider that we can monitor the following file usage events:

Specification of Parametric Monitors 155

– open(f,m, size): records that file f is being opened in mode m (R for read
and W for write), and size denotes the size of the file in bytes on opening.

– close(f): records closing file f .
– read(f): records reading a file f .
– write(f, b): records writing b bytes to file f .

The correct usage of the file system is captured by the following informal re-
quirements:

– A file starts closed and cannot be opened (closed) if already open (closed).
– A file if opened must eventually be closed.
– A file can only be read or written if it is open in the corresponding mode.
– No file can exceed 16MB.

We will use this example to illustrate qea and LogFire in the following two
sections.

3.2 Introduction to QEA

Quantified event automata (qea) [4, 53] is an automaton-based specification lan-
guage for monitoring parameterized events. It is based on the idea of parametric
trace-slicing [18], which is most prominently used by Mop. The theory behind
qea generalizes this previous notion of slicing in a number of ways that will be
discussed below. The MarQ tool [54] takes qea specifications and can monitor
them either online on Java programs or offline on recorded traces.

qea{
Forall(f)
accept next(closed){
open(f,’R’,_) -> readonly
open(f,’W’,size) -> writeonly

}
next(readonly){
read(f) -> readonly
close(f) -> closed

}
next(writeonly){
write(f,b) if [size+b <= 16000000]

do [size+=b] -> writeonly
close(f) -> closed

}
}

1 2

3

∀f
open(f,’R’,)

close(f)

read(f)

open(f,’W’,size)close(f)

write(f, b) size+b≤16000000
size+=b

Fig. 2. A qea model of the file usage property in both text and graphical formats.

Specification of file usage example in QEA. The qea specification of the
file usage property is given in Figure 2 in both a textual and a graphical repre-
sentation. In other work we have mainly used the graphical representation as we

156 K. Havelund, G. Reger

find it more readable. However, as it is not an input format, it is not appropriate
for discussing specification approaches and will use the textual format later.

A qea consists of some quantifications and an automaton. In this example
the quantification is Forall(f) stating that f is a universally quantified variable.
This quantifier list can also include Exists quantification and a global guard on
quantified variables introduced by the Where keyword.

The automaton has three states relating to the three states a file can be in. In
the textual format the first state defined is always taken to be the initial state.
States have a kind, either next or skip, which defines what should happen when
a transition cannot be taken; next means a next event is required, skip means
the next event will be skipped if no transition can be taken. The states here are
all next states i.e. from the closed state it is only possible to open a file as an
event is required to make a transition.

Only the start is state is an accept state. As defined later, a trace is
accepted if it has a path to an accepting state. The language also includes implicit
success and failure states which are skip states with no outgoing transitions
and where the former is an accept state.

In the writeonly state the write transition has a guard size+b <=
16000000 and assignment size+=b, which are used to ensure that the size
of the file does not exceed the limit, note how the size variable is given the
initial size when the file is opened. The if keyword introduces guards and the
do keyword introduces assignments.

Let us consider how we would monitor this property on the following trace:

open(A, ‘R’, 0).open(B, ‘W’, 15999900).write(B, 100).read(A).write(B, 100).close(B)

Here there are two files, A and B. The quantification ∀f tells us that we need
to slice the trace on these values. This gives us the following two trace slices
associated with bindings of f :

[f �→ A] �→ τ1 = open(A, ‘R’, 0).read(A)
[f �→ B] �→ τ2 = open(B, ‘W’, 15999900).write(B, 100).write(B, 100).close(B)

The trace slice τ1 should then be interpreted for the automaton with f re-
placed by A. In this case there is a path in the automaton from state closed
to state readonly. But, as this state is not accepting, any trace finishing in
this state is rejected. Similarly the trace slice τ2 should be interpreted on the
automaton with f replaced by B. Here we can capture the behavior through
the rewriting of a configuration containing the current state and binding of free
variable size:

〈1, []〉 open(B,‘W’,15999900)−−−−−−−−−−−−−→ 〈3, [size �→ 15999900]〉 write(B,100)−−−−−−−−→ 〈3, [size �→ 16000000]〉

After two events we reach state 3 (writeonly) but cannot take the write

transition as the guard size+b <= 16000000 does not hold. As the state is
labelled next this leads to failure as next states must be able to make a move
on the next event. This trace violates the property as at least one, in this case
both, of the trace slices are not accepted by the instantiated automaton.

Specification of Parametric Monitors 157

As we consider the trace slices τ1 and τ2 separately, we would have had the
same result for any interleaving of τ1 and τ2. This interleaving can be restricted
if two trace slices contain the same ground event, as the slices must ‘synchronize’
on an occurrence of this event in the full trace.

Defining qea acceptance through trace-slicing. qea has been formally
defined elsewhere [4, 53], here we give a flavor of the structures and notion of
trace acceptance. We begin with the basic definitions. An event in the alphabet
Σ(X,Y) is of the form e(z) where z ∈ (X ∪ Y ∪ Val)∗ for values Val and dis-
joint variable sets X and Y . We separate the variables into those that will be
quantified X and those that will remain free Y ; this distinction will be clarified
below. An event is ground if z ∈ Val∗. A trace is a finite sequence of ground
events. A binding is a map (partial function with finite domain) from variables
to values. Bindings can be applied to events to rewrite their variables. A guard
is a predicate on bindings. An assignment is a (partial) function on bindings.
An event e(z) matches a ground event e(v) if there is a binding θ such that
θ(e(z)) = e(v) and match(e(z), e(v)) is the minimal such binding with respect
to the sub-map relation (if such a binding exists, undefined otherwise).

An event automaton (EA) is a (potentially non-deterministic) finite state
machine with alphabet Σ(X,Y) where transitions can be labelled with guards
and assignments. Recall that states can be either next or skip as described
above. An EA can be grounded with a binding with domain X. A grounded EA
has an acceptance relation for traces (over its alphabet) defined for configurations
(pairs of states and bindings). We do not give this relation here but it is the
standard transition relation extended for guards, assignments and the notion of
next and skip states. For an EA E and a grounding binding θ, the acceptance
relation defines a ground language L(θ(E)) over Σ(θ(X),Val) as the set of all
traces that can reach a configuration with an accepting state. Note that free
variables (Y) are replaced by Val as they can take any value that is acceptable
to the transition relation i.e. satisfies the guard and assignment structures.

For example, the automaton in Fig. 2 has alphabet Σ({f}, {size, b}). The
grounded language for binding [f �→ A] would contain traces such as

open(A, ‘R’, 0).read(A).close(A).open(A, ‘R’, 0).read(A).close(A)
open(A, ‘W’, 12000).write(A, 100).write(A, 100).close(A)

as they reach an accepting state and satisfy all guards.

A qea is a pair consisting of a quantifier list Λ(X) and an EA over alphabet
Σ(X,Y). The quantifier list consists of universal and existential quantification
over variables X, can include a global guard over X and can be negated. The
domain of a quantified variable x ∈ X is given as those values that can be bound
to x when matching events from the EA’s alphabet with events in the trace i.e.

D(τ, x) = {match(e(z), e(v))(x) | e(z) ∈ Σ(X,Y), e(v) ∈ τ}

158 K. Havelund, G. Reger

In the previous section we extract the domain D(τ, f) = {A,B} as, for example,

match(open(A, ‘R‘, 0), open(f, ‘R‘, size)) = [f �→ A, size �→ 0]
match(close(B), close(f)) = [f �→ B]

The notion of trace acceptance is defined using trace-slicing. We first consider
pure universal quantification. Given a qea with Λ = ∀x1...∀xn and EA E , the
trace τ is accepted if for every binding θ such that θ(xi) ∈ D(τ, xi) the trace
τ ↓Σ(θ(X),Y) is in L(θ(E)) where the slicing (projection) operation ↓A is defined
as

ε ↓A = ε

τ.e(v) ↓A =
τ ↓A .e(v) if ∃e(z) ∈ A such that matches(e(z), e(v))
τ ↓A otherwise

i.e. for the binding θ we slice the trace to give only events relevant to θ, then
we check if that trace slice is accepted by the EA grounded with θ. This can be
appropriately modified for existential and alternating quantification. For exam-
ple, the quantifier alternation ∃x∀y says that there is a value d ∈ D(τ, x) such
that τ ↓Σ(θ(X),Y) is in L(θ(E)) for every binding θ where θ(x) = d.

Note that this slicing can place ground events in multiple slices i.e. if we had
an alphabet {create(c, i), update(c), use(i)} for quantified c and i, the event
create(A) would be relevant to bindings [c �→ A, i �→ 1] and [c �→ A, i �→ 2].
Also free variables are ignored for slicing, so an event in the trace matching an
event using only free variables would be relevant to all bindings.

Monitoring algorithm. Whilst the above gives a reasonable definition of trace
acceptance, this is not a pragmatic method for runtime monitoring as it requires
multiple passes of the trace. Instead, an incremental notion of acceptance has
been introduced [4, 53] which maintains a map from bindings of quantified vari-
ables to sets of configurations. As not all information is available at the start
it is necessary to track partial bindings of quantified variables, which requires
careful treatment to preserve the semantics described above. The introduction of
this map from bindings to configurations lends itself to forms of indexing, which
is what has made tools that use trace-slicing, such as Mop, highly efficient.
MarQ implements a symbol-based form of indexing that uses the alphabet of
each (partially) instantiated EA to locate the relevant configurations.

Free versus quantified variables. One aspect of qea that deserves clarifica-
tion is the difference between quantified and free variables. Recall that an EA
has two sets of variables, X and Y , and the quantifications range of X, leaving
those in Y free. The qea in Figure 2 has one quantified variable f and two free
variables b and size. As we saw in the earlier examples, we use values for f to
slice the trace and then fix this value when evaluating the trace. The variables
b and size are rebound whenever they match a new value and can be checked in
guards and updated in assignments.

Specification of Parametric Monitors 159

class FileUsage extends Monitor {
"r1" -- ’open(’f, ’m, ’size) & not(’Open(’f, ’_, ’_)) |->
insert(’Open(’f, ’m, ’size))

"r2" -- ’Open(’f, ’_, ’_) & ’open(’f, ’_, ’_) |-> fail()
"r3" -- ’Open(’f, ’_, ’_) & ’close(’f) |-> remove(’Open)
"r4" -- ’Open(’f, ’m, ’_) & ’read(’f) |-> ensure(’m.string == "R")
"r5" -- ’read(’f) & not(’Open(’f, ’_, ’_)) |-> fail()
"r6" -- ’Open(’f, ’m, ’size) & ’write(’f, ’b) |-> {
ensure(’m.string == "W" && ’size + ’b <= 16000000)
update(’Open(’f, ’m, ’size + ’b))

}
"r7" -- ’write(’f) & not(’Open(’f, ’_, ’_)) |-> fail()

hot(’Open)
}

Fig. 3. An LogFire model of the file usage property.

Actual guards and assignments. Whilst the qea language theoretically sup-
ports arbitrary guards and assignments, the MarQ monitoring tool currently
only supports those relating to arithmetic and sets. For arithmetic we have the
standard comparison operations (i.e. =,≤), arithmetic operators (i.e. +,×) and
update operations (i.e. +=,++). For sets we have set definition, addition and
removal, and the contains (in) predicate.

3.3 Introduction to LogFire

LogFire [40] is a rule-based specification language specifically developed for
monitoring streams of parameterized events. It is developed as an internal Scala
DSL (an API in Scala), allowing a user to freely mix rule programming with
traditional programming. It is based on the Rete algorithm [31], specifically
as described in [23]. The Rete algorithm is the basis for various rule-based
systems. LogFire augments it with a distinction between facts and events and
implements an indexing algorithm for optimizing rule evaluation. LogFire can
be used for online as well as offline monitoring, although offline monitoring (log
analysis) has been the main focus. In the case of online monitoring, the tool
would have to be connected to the application via some instrumentation tool,
such as AspectJ [46].

Specification of file usage example in LogFire The LogFire specification
of the file usage property is given in Fig. 3. LogFire only provides a textual
language. One could imagine a graphical notation for rule-based systems, similar
to (but yet different from) the visualization of qea models, as illustrated in
Figure 2. However, this is not explored in this work. A LogFire monitor is
defined as a Scala class that extends (is a sub-class of) the class Monitor,
which defines all the LogFire primitives (constants, variables and functions),
which allows one to write rules. A monitor extending this class must define zero
or more rules, each of the form:

"name" -- ’cond1 & ... & condn |-> action

160 K. Havelund, G. Reger

A rule has a name (a string), followed by a left-hand side, which is a list of
conditions separated by conjunction (‘&’); and a right-hand side following the
arrow (|->), this is the action. The state of a monitor at any time during the
evaluation of an event stream is conceptually (simplified) a set of facts of the
form F (v1, . . . , vn), where F is a name and v1, . . . , vn is a list of ground values.
This set is referred to as the fact memory. Observed events are also facts, which,
however, only exist a brief moment when observed. By convention, names of
observed events consist of all small letters, whereas names of internally generated
facts start with a capital letter. A condition in a rule’s left-hand side can check for
the presence or absence of a particular fact (including events), and the action on
the right-hand side of the rule can add or delete facts, produce error messages, or
cause other side effects. Generally, an action can be any Scala code. Left-hand
side matching against the fact memory usually requires unification of variables
occurring in conditions. In case all conditions on a rule’s left-hand side match
(become true), the right-hand side action is executed. This model is very well
suited for processing data rich events, and is simple to understand by nature of
its very operational semantics. It is interesting to note that finite-state machines
can be mapped into rule systems.

The monitor in Figure 3 should be understood as follows. The monitor op-
erates with one fact: Open(f,m, size), representing the fact that file f has been
opened in mode m, and currently has size size. There are seven rules, named
r1 . . . r7. Rule r1 states that upon the occurrence of an open(f, m, size)
event, if the file has not been opened yet (there is no fact in the fact memory
that matches the pattern Open(f, ,)), then an Open(f, m, size) fact
is inserted into the fact memory. Free identifiers on the left-hand side, appearing
as Scala quoted symbols, such as ’size, are bound when matched against
facts, including events. Rule r2 states that if a file has been opened, an open
event will cause a failure to be reported. Rule r3 handles the closing of a file,
causing the fact matching Open(f, ,) to be removed from the fact memory.
Rule r4 ensures that a file can only be read if it has been opened in read-mode.
An alternative, also allowed, formulation of this rule would have been:

"r4" -- ’Open(’f, "W", ’_) & ’read(’f) |-> fail()

Rule r5 states that reading a file that is not open is reported as a failure.
Rule r6 captures writing to a file, and ensures that the file has been opened in
write-mode, and that the new size does not exceed the upper allowed bound. In
addition, the Open fact is updated to record the increased size. Rule r7 states
that it is illegal to write to a non-opened file. Finally, the fact Open is recorded
to be a so-called hot fact, which is equivalent to a non-acceptance state in a
state machine. When monitoring terminates there should be no hot facts in the
fact memory. Figure 4 shows how the fact memory evolves as the events are
consumed in the previous trace used to illustrate qea.

Implementation of LogFire In the presentation above, the configuration of
LogFire was described as being a set of facts, those active at any moment during
monitoring. Facts can be added or deleted from this set. This explanation is valid

Specification of Parametric Monitors 161

{} open(A,‘R’,0)−−−−−−−−→
{Open(‘A’, ‘R’, 0)} open(B,‘W’,15999900)−−−−−−−−−−−−−→
{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 15999900)} write(B,100)−−−−−−−−→
{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 16000000)} read(A)−−−−−→
{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 16000000)} write(B,100)−−−−−−−−→ error

Fig. 4. Evolution (simplified) of LogFire fact memory.

Open(f,m,size)

join

open(f,_,_)

r2 join

close(f,)

r3 join

read(f)

r4 join

write(f,b)

r6 join

Open(f,m,size) facts

empty

fail remove(Open) ensure(m=R) ensure(m=W && size+b <= 16000000);
update(Open(f,m,size+b))

Fig. 5. Rete network for rules r2, r3, r4, and r6.

for understanding specifications. However, such a set implementation would be
potentially inefficient when evaluating rules against an incoming event. Consider
for example the configuration:

{Open(‘A’, ‘R’, 0), Open(‘B’, ‘W’, 15999900)}
and the incoming event write(B, 100). We could now (i) evaluate all the seven
rules, one by one, and for each we would (ii) scan the set above to examine if it
contains a relevant fact Open(‘B’, ‘W’, . . .). To avoid this, LogFire implements
the Rete algorithm, which optimizes (i). In addition, LogFire augments this
algorithm with indexing into this set, which optimizes (ii). The Rete algorithm
stores rules and facts as a network, which “glues” rules together that have com-
mon prefixes of left-hand sides.

A Rete network for rules r2, r3, r4, and r6 is shown in Figure 5. Sup-
pose rule r1 fires and adds an Open(f,m,size) fact. This will enter the upper
left so-called alpha memory. Newly added facts (including events) are added to

162 K. Havelund, G. Reger

alpha memories (white boxes). The top join node will be activated and merge
the incoming fact with previous facts, of which there are none (the initial so-
called beta memory, the upper right grey box, is empty). The result is stored
in a new beta memory. Each of these beta memories represents a prefix of the
conditions in a rule. They contain all facts matching a corresponding condition
with pointers back to facts in preceding beta memories, establishing a collection
of chains of facts. Since Open(f,m,size) occurs as the first condition of rules r2,
r3, r4, and r6, these now are connected to this beta memory. For example, in
the case of a write(B, 100) event, the event is added to the right-most alpha
memory, whereafter rule r6’s join node is activated, corresponding to firing of
rule r6. Thereby we avoid evaluating all the other rules, corresponding to the
optimization of case (i) above.

Concerning optimization (ii), recall that a beta memory contains all facts
matching a corresponding condition. It can for example be the set above con-
taining the two facts: Open(‘A’, ‘R’, 0) and Open(‘B’, ‘W’, 15999900). On the ob-
servation of a write(B, 100) event, rule r6’s join node will now have to search
for an Open(‘B’, . . . , . . .) fact in this set. With a large number of facts, this can
be costly. To optimize this search, the beta memory is organized as an index
from file identifiers to sets of facts:

A �→ {Open(‘A’, ‘R’, 0)}
B �→ {Open(‘B’, ‘W’, 15999900)}

It is the join node’s responsibility to look up the relevant facts in the beta node
when it is activated with an event from an alpha node. The first argument to
the write(B, 100) event tells the join node to look up B in the index. As such
the implementation has some similarity with the slicing approach.

LogFire syntax It remains to briefly explain how rules are interpreted. Con-
sider for example rule r4. This rule is by the Scala compiler interpreted as the
following chain of method calls:

R("r4").--(C(’Open).apply((’f, ’m, ’_))).&(C(’read).apply(’f)).|->{
ensure(’m.string == "R")

}

Scala allows dots and parentheses around method arguments to be omitted in
calls of methods on objects. In the above expansion these have been inserted.
In addition, two so-called implicit functions R and C have been applied by the
Scala compiler. A user-defined implicit function from type T1 to type T2 is
applied by the compiler when a value of type T1 occurs in a place where a value
of type T2 is expected (the function must be unique). For example, R is defined as
follows, returning an (anonymous) object, which defines the method ‘--’, which
again returns an object defining the methods ‘&’ and ‘|->’.

implicit def R(name: String) = new {
def --(c: Condition) = new RuleDef(name, List(c))

}

class RuleDef(name: String, conditions: List[Condition]) {

Specification of Parametric Monitors 163

def &(c: Condition) = new RuleDef(name, c :: conditions)

def |->(stmt: => Unit) {
addRule(Rule(name, conditions.reverse, Action((x: Unit) => stmt)))

}
}

4 Specification of Java API properties

The first domain we consider is the task of checking compliance with the Java
library API. These properties are common examples in publications on runtime
verification, and some featured multiple times in the competition. In this case
they are all about collections but properties of sockets and streams have been
discussed elsewhere [53]. There has also been a systematic effort to formalize the
informal properties in the Java library documentation [47]. Properties about
programming APIs, specifically object-oriented languages like Java, have com-
mon characteristics. Typically they are about a small set of objects, and if more
than one object is targeted then the objects are typically connected in some way
i.e. one is created from another.

4.1 HasNext

This property applies to every java.util.Iterator object, and requires that
hasNext() be called before next() and that hasNext() returns true. Two events
are monitored: hasNext(i, r) is triggered when hasNext is called on Iterator i
with result r and next(i) is triggered when next is called on Iterator i.

QEA specification. The specification defines a safe and unsafe state; a
next event is only allowed in the safe state, which is reached by hasNext

returning true.

qea {
Forall(i)
accept skip(unsafe){
hasnext(i,r) if [r = true] -> safe
next(i) -> failure

}
accept skip(safe){
next(i) -> unsafe

}
}

LogFire specification. The monitor uses one fact, Safe(i), to record when
hasnext has been called returning true. It is required by next, as a guard,
and then removed. The monitor, as subsequent LogFire monitors, is named M
in order to keep naming brief. Similarly, rule names are kept short.

class M extends Monitor {
"r1" -- ’hasnext(’i, true) |-> insert(’Safe(’i))
"r2" -- ’Safe(’i) & ’next(’i) |-> remove(’Safe)
"r3" -- ’next(’i) & not(’Safe(’i)) |-> fail()

}

164 K. Havelund, G. Reger

4.2 Counting iterator

If a java.util.Iterator object is created from a collection of size s then
we can only call next on that iterator at most s times. Two events are relevant:
iterator(i,s) records the creation of iterator i from a collection of size s; and
next(i) records call next on iterator i. As iterators are Java objects they can
only be created once.

QEA specification. This qea saves the size of the iterator and decreases this
size on each next event whilst it is safe to do so. As the iterate state is a
next state, a failure will occur if a next event occurs and the guard csize >
0 cannot be satisfied.

qea{
Forall(i)
accept skip(start){ iterator(i,csize) -> iterate }
accept next(iterate) { next(i) if [csize > 0] do [csize--] -> iterate }

}

LogFire specification. The monitor uses one fact, Iterate(i,csize), to
record that there are csize elements left in the collection that iterator i is
derived from. It is decreased on each observation of a next.

class M extends Monitor {
"r1" -- ’iterator(’i, ’csize) |-> ’Iterate(’i, ’csize)
"r2" -- ’Iterate(’i, ’csize) & ’next(’i) |-> {
if (’csize > 0)
update(’Iterate(’i, ’csize - 1))

else
fail()

}
}

4.3 UnsafeMapIterator

If a collection is created from a java.util.Map object (via calls to values
or keySet) and then an java.util.Iterator object is created from that
collection, then the iterator cannot be used after the original map has been
updated. Four events are relevant: create(m,c) records the creation of collection
c from map m; iterator(c,i) records the creation of iterator i from collection
c; update(m) records m being updated; and use(i) records the usage of iterator
i. As collections and iterators are Java objects they can only be created once.

QEA specification. This qea specifies the path to failure i.e. the sequence
of events that reach a non-accepting state. Note that quantification is over all
maps, collections and iterators. A naive monitoring algorithm would create all
such bindings, even for unrelated objects - this is an inherent inefficiency in trace-
slicing that must be avoided through careful implementation and extension of
the theory. Note the use of skip states to ignore irrelevant events.

Specification of Parametric Monitors 165

qea{
Forall(m,c,i)
accept skip(start){ create(m,c) -> hascol }
accept skip(hascol){ iterator(c,i) -> hasit }
accept skip(hasit){ update(m) -> updatedm }
accept skip(updatedm){ use(i) -> failure }

}

LogFire specification. The monitor uses three facts: HasCol(m,c) to record
when collection c has been created from a map m; HasIt(m,i) to record that
iterator i has been created from a collection created from map m; and finally
UpdateM(i) to record that the map that iterator i is derived from has been
updated, and hence no further iteration (use) is allowed.

class M extends Monitor {
"r1" -- ’create(’m, ’c) |-> insert(’HasCol(’m, ’c))
"r2" -- ’HasCol(’m, ’c) & ’iterator(’c, ’i) |-> insert(’HasIt(’m, ’i))
"r3" -- ’HasIt(’m, ’i) & ’update(’m) |-> insert(’UpdateM(’i))
"r4" -- ’UpdateM(’i) & ’use(’i) |-> fail()

}

4.4 Hashing persistence

Objects placed in a hashing structure, such as a HashSet or HashMap, should
have persistent hash codes whilst in the structure for the usage to be sound.
Otherwise we may have the situation where we add an object and then get the
result false when checking for its presence. Three events are relevant: add(c,o,h),
observe(c,o,h) and remove(c,o,h) respectively record the addition, observation
and removal of object o on hashing collection c using hash code h.

QEA specification. We have chosen not to quantify over collections in this qea
as it is possible to specify the property by quantifying over objects only. Note that
monitoring complexity depends on the number of bindings, which can be, in the
worst case, exponential in the number of quantified variables. This specification
works by tracking how many collections the object is in and ensuring that the
hash code remains persistent whilst this is non-zero. This assumes that the add
event only occurs when the object did not previously exist in the collection, and
remove only occurs when it did. If these assumptions cannot be enforced (via
instrumentation) then the specification would need to quantify over c.

qea{
Forall(o)
accept skip(out){
add(c,o,h) do [count:=1;] -> in

}
accept next(in){
add(c,o,h2) if [h = h2] do [count++] -> in
observe(c,o,h2) if [h = h2] -> in
remove(c,o,h2) if [count > 1 and h = h2] do [count--] -> in
remove(c,o,h2) if [count = 1 and h = h2] -> out

}
}

166 K. Havelund, G. Reger

LogFire specification. The monitor uses one fact, In(c,o,h), to record that
collection c contains object o, which had hash code h when first added. This
should remain the hash code as long as the object is in that collection.

class M extends Monitor {
"r1" -- ’add(’c, ’o, ’h) |-> insert(’In(’c, ’o, ’h))
"r2" -- ’In(’c, ’o, ’h1) & ’observe(’c, ’o, ’h2) |-> ensure(’h1.i == ’h2.i)
"r3" -- ’In(’c, ’o, ’h1) & ’add(’c, ’o, ’h2) |-> ensure(’h1.i == ’h2.i)
"r4" -- ’In(’c, ’o, ’h1) & ’remove(’c, ’o, ’h2) |-> {
ensure(’h1.i == ’h2.i)
remove(’In)

}
}

5 Specification of banking properties

The next application domain we consider is that of banking. The following prop-
erties are concerned with accounts and transfers. There is a focus on timed prop-
erties i.e. ensuring that an action occurs within a given timeframe. In both logics
time is modeled as time stamps, which are just data.

5.1 Unique accounts

An account approved by the administrator may not have the same account num-
ber as any other already existing account in the system. The event approve(id)
indicates that an account with id has been approved.

QEA specification. To specify this property in a pure trace-slicing style we
would quantify over ids and record a failure if two events occur with the same
quantified id.

qea{
Forall(id)
accept skip(start){ approve(id) -> once }
accept skip(once) { approve(id) -> failure }

}

However, with qeas we can also maintain a set S of previously seen account
ids. This is more like the fact-based approach taken by LogFire. It does not
utilize the trace-slicing mechanisms but will be more efficient for this very simple
property as trace-slicing, and the associated indexing, is not required.

qea{
accept next(safe){ approve(id) if[not(id in S)] do[S.add(id)] -> safe }

}

LogFire specification. The monitor uses one fact, Approved(id), to record
that account id has been approved.

class M extends Monitor {
"r1" -- ’approve(’id) |-> insert(’Approved(’id))
"r2" -- ’Approved(’id) & ’approve(’id) |-> fail()

}

Specification of Parametric Monitors 167

5.2 Greylisting

Once grey-listed, a user must perform at least three incoming transfers be-
fore being white-listed. There are three relevant events. greyList(user) and
whiteList(user) indicate that user was grey and white-listed respectively and
transfer(user) records the fact that user performed a transfer.

QEA specification. This specification has two states indicating the status of
the user. The number of transfers are counted in the grey state (and zeroed on
a greyList event) so that this count can be checked at a whiteList event.

qea{
Forall(u)
accept skip(white){
greyList(u) do [count:=0] -> grey

}
accept next(grey){
transfer(u) do [count++] -> grey
greyList(u) do [count:=0] -> grey
whiteList(u) if [count >= 3] -> white

}

}

LogFire specification The monitor uses one fact, Grey(u,count), to record
that user u has been grey-listed, and since then has had count incoming money
transfers, initially 0.

class M extends Monitor {
"r1" -- ’greyList(’u) & not(’Grey(’u, ’_)) |-> insert(’Grey(’u, 0))
"r2" -- ’Grey(’u, ’_) & ’greyList(’u) |-> update(’Grey(’u, 0))
"r3" -- ’Grey(’u, ’count) & ’transfer(’u) |-> update(’Grey(’u, ’count + 1))
"r4" -- ’Grey(’u, ’count) & ’whiteList(’u) |-> {
if (’count < 3)
fail()

else
remove(’Grey)

}
}

5.3 Reconciling accounts

The administrator must reconcile accounts every 1000 attempted external money
transfers or an aggregate total of one million dollars in attempted external trans-
fers. There are two events: reconcile is a propositional event that indicates that
all accounts have been reconciled; and transfer(amount) indicates that amount
was transferred. Invalid traces have two forms. The first is where there are more
than 1000 events between reconcile events and the second is where the sum of
amounts exceeds one million dollars.

168 K. Havelund, G. Reger

QEA specification. Here the safe state indicates some safe amount has been
transferred and we can only stay in this state if each transfer is safe. To ensure
this a running count and total is kept.

qea{
accept next(start){
transfer(amount) do[count:=1; total:=amount] -> safe

}
accept next(safe){
transfer(amount) if[count < 1000 and total < 1000000]

do[count++; total += amount] -> safe
reconcile do[count:=0; total:= 0] -> safe

}
}

LogFire specification The monitor uses one fact, Sums(count,total), car-
rying two sums: count, which is the number of transfers since the last recon-
ciliation, and total, which is the total sum of money transferred since the
last reconciliation. An initial Sums(0,0) fact is added to the fact memory
(addFact(’Sums)(0,0)) before monitoring starts.

class M extends Monitor {
"r1" -- ’Sums(’_, ’_) & ’reconcile() |-> update(’Sums(0, 0))
"r2" -- ’Sums(’count, ’total) & ’transfer(’a) |-> {
if (’count + 1 > 1000 || ’total + ’a > 1000000)
fail()

else
update(’Sums(’count + 1, ’total + ’a))

}

addFact(’Sums)(0,0)
}

The monitor above purely uses rules to implement the property. However, we
can, as in the qeamonitor, use global variables count and total. This is shown
in the following version, illustrating how LogFire monitors can mix rules and
programming:

class M extends Monitor {
var count: Int = 0
var total: Int = 0

"r1" -- ’reconcile() |-> {count = 0; total = 0}
"r2" -- ’transfer(’a) |-> {
if (count + 1 > 1000 || total + ’a > 1000000)
fail()

else {
count += 1; total += ’a

}
}

}

5.4 Maximum withdrawals

The number of withdrawal operations performed within 10 minutes before a
customer logs off is less than or equal to the allowed limit of 3. It is assumed
that a trace records the activities of a single user. A user is not required to
log off. There are two events of interest: withdraw(time) records the time that

Specification of Parametric Monitors 169

a customer made a withdrawal and logoff(time) records the time that the
customer logged off.

QEA specification. This QEA can be read as ‘we do not reach failure’ as
it is a negated QEA accepting invalid traces. The QEA is non-deterministic,
creating a new configuration per time window. A failure is detected if one of these
configurations reaches the success state, as the specification is negated. The
combination of non-determinism and negation is required as a trace is accepted
if at least one path reaches an accepting state, therefore we use this approach if
we want failure when all paths are required to reach an accepting state.

On each withdraw event a new configuration is created in the safe state
with count 1. On each subsequent withdraw event (within the time window) this
count is increased until it reaches 3 and the configuration is transferred to the
unsafe state. Any logoff occurring within the time window for a configuration
in the unsafe state will lead to failure. Note that, due to the use of next
states, configurations will be removed if an event occurs that does not satisfy
any transitions i.e. one that happens outside of that configuration’s time window.

qea{
Negated
skip(start){
withdraw(t1) do[count:=1] -> safe
withdraw(_) -> start

}
next(safe){
withdraw(t2) if[t2-t1 <= 10 and count < 3] do [count++] -> safe
withdraw(t2) if[t2-t1 <= 10 and count = 3] do [count++] -> unsafe

}
next(unsafe){
withdraw(t2) if[t2-t1 <= 10] -> unsafe
logoff(t2) if[t2-t1 <= 10] -> success

}
}

LogFire specification The monitor uses one fact, Count(time,count),
which is created upon each withdrawal event, using the same form of non-
determinism as used in the qea specification. It tracks the number of with-
drawals since (and including) that withdrawal, should a logoff occur. It carries
two pieces of data: time, which is the time of the withdrawal, and count, which
is the number of withdrawals since then.

class M extends Monitor {
"r1" -- ’withdraw(’time) |-> insert(’Count(’time, 1))
"r2" -- ’Count(’time, ’count) & ’withdraw(’time2) |-> {
if (’time2 - ’time <= 10)
update(’Count(’time, ’count + 1))

else
remove(’Count)

}
"r3" -- ’Count(’time, ’count) & ’logoff(’time2) |-> {
ensure(’time2 - ’time > 10 || ’count <= 3)
remove(’Count)

}
}

170 K. Havelund, G. Reger

5.5 Transaction limit reporting

The property requires that a client’s executed transactions must be reported
within at most 5 days if the transferred amount exceeds a given threshold of
$2,000. A transaction only occurs once. The event trans(c, t, a, ts) denotes that
the client c performs transaction t, transferring the amount a at timestamp ts.
The report(t, ts) event denotes that transaction t is reported at timestamp ts.

QEA specification. In this specification, making a transfer for an amount
more than 2000 moves us into an unsafe state for a transaction. A report

event within 5 days takes us to a safe state. To ensure that failures are captured
early, this specification only allows transfer events for other clients to occur
within the 5 day waiting period.

qea{
Forall(t)
accept skip(safe){ trans(t,a,ts1) if [a > 2000] -> unsafe }
skip(unsafe){
trans(_,_,ts2) if[ts2-ts1 > 5] -> failure
report(t,ts2) if[ts2-ts1 <= 5] -> success

}
}

LogFire specification The monitor uses one fact, Unsafe(t,ts), represent-
ing the fact that a transaction t occurred at time ts of more than 2, 000 dollars.
This fact is declared hot, meaning that monitoring should not terminate with
such a fact in the fact memory – it has to eventually be reported (and within 5
days).

class M extends Monitor {
"r1" -- ’transfer(’t, ’a, ’ts) |-> {
if (’a > 2000) insert(’Unsafe(’t, ’ts))

}
"r2" -- ’Unsafe(’t, ’ts1) & ’report(’t, ’ts2) |-> {
ensure(’ts2 - ’ts1 <= 5)
remove(’Unsafe)

}

hot(’Unsafe)
}

5.6 Transaction limit authorization

The property requires that executed transactions of any customer must be au-
thorized by some employee before they are executed if the transferred money
exceeds a given threshold of $2,000. Authorization only lasts for 21 days and
a transaction must be authorized at least 2 days before it is made. A transac-
tion can only occur once. The trans(t,a,ts) indicates transaction t occurred at
time ts for amount a. The event auth(t, ts), indicates the authorization of the
transaction t at timestamp ts.

Specification of Parametric Monitors 171

QEA specification. In the unauth state transactions can only be below 2,000.
The auth event takes us to the auth state, where any transaction can occur as
long as we are inside the authorized period.

qea{
Forall(t)
accept skip(unauth){
trans(t,a,_) if [a < 2000] -> success
trans(t,a,_) if [a >= 2000] -> failure
auth(t,auth_ts) -> auth

}
accept skip(auth){
trans(t,a,ts) if [ts-auth_ts >= 2 and ts-auth_ts < 21] -> success
trans(t,a,ts) if [ts-auth_ts < 2 and ts-auth_ts > 21] -> failure
auth(t,auth_ts) -> auth

}
}

LogFire specification The monitor uses one fact, Auth(t,ts), representing
the fact that transaction t has been authorized at time ts. Note how autho-
rizations are updated in case such exist.

class M extends Monitor {
"r1" -- ’auth(’t, ’ts) & not(’Auth(’t, ’_)) |-> insert(’Auth(’t, ’ts))
"r2" -- ’Auth(’t, ’_) & ’auth(’t, ’ts) |-> update(’Auth(’t, ’ts))
"r3" -- ’Auth(’t, ’ts1) & ’trans(’t, ’a, ’ts2) |-> {
ensure(’a < 2000 || (’ts2 - ’ts1 >= 2 && ’ts2 - ’ts1 < 21))
remove(’Auth)

}
"r4" -- ’trans(’t, ’a, ’_) & not(’Auth(’t, ’_)) |-> {
ensure(’a < 2000)

}
}

5.7 Report approval

The property represents an approval policy for publishing business reports within
a company. The property requires that any report must be approved prior to its
publication. Furthermore, the property asks that the person who publishes the
report must be an accountant and the person who approves the publication must
be the accountants manager at the time of the approval. Finally, the approval
must happen within at most 10 days before the publication.

The event publish(a, f, ts) denotes the publication of the report f by the
accountant a at timestamp ts. The event approve(m, f, ts) denotes the publish-
ing approval of the report f by the manager m at timestamp ts. The event
mgr S(m, a) marks the time when m starts being manager of accountant a,
and the event mgr F(m, a) marks the corresponding finishing time. Analogously,
acc S(a) and acc F(a) mark the starting and finishing times when a is an ac-
countant

QEA specification. This specification keeps track of the current managers
of accountant a in set M. There are then two states: nota and isa indicate
that the accountant is not approved or is. Then ts app tracks the most recent

172 K. Havelund, G. Reger

time at which the report was legitimately approved so that this can be checked
on a publish event. In QEA it is assumed that sets are empty on their first
occurrence. The defined predicate is true if a variable has been given a value.

qea{
Forall(f,a)
accept next(nota){
mgr_S(m,a) do [M.add(m)] -> nota
mgr_F(m,a) do [M.remove(m)] -> nota
approve(m,f,ts_app) if [m in M] -> nota
acc_S(a) -> isa

}
accept next(isa){
mgr_S(m,a) do [M.add(m)] -> isa
mgr_F(m,a) do [M.remove(m)] -> isa
approve(m,f,ts_app) if [m in M] -> isa
acc_F(a) -> nota
publish(a,f,ts_pub) if [defined(ts_app) and ts_pub - ts_app < 10] -> isa

}
}

LogFire specification The monitor uses the following facts: Mgr(m,a) to
record that manager m is manager of accountant a; Acc(a) to record that a is
an accountant; and finally Appr(a,f,ts) to record that accountant a at time
ts has been approved by one of his/her managers to publish report f. Note
how a Appr(a,f,ts) fact is generated for each accountant a that a manager
is manager of when he/she approves a report f. Note also how approvals are
updated in case such exist.

class M extends Monitor {
"r1" -- ’mgr_S(’m, ’a) |-> ’Mgr(’m, ’a)
"r2" -- ’Mgr(’m, ’a) & ’mgr_F(’m, ’a) |-> remove(’Mgr)
"r3" -- ’acc_S(’a) |-> ’Acc(’a)
"r4" -- ’Acc(’a) & ’acc_F(’a) |-> remove(’Acc)
"r5" -- ’approve(’m, ’f, ’ts) & ’Mgr(’m, ’a) & not(’Appr(’a, ’f, ’_)) |->
insert(’Appr(’a, ’f, ’ts))

"r6" -- ’Appr(’a, ’f, ’_) & ’approve(’m, ’f, ’ts) & ’Mgr(’m, ’a) |->
update(’Appr(’a, ’f, ’ts))

"r7" -- ’publish(’a, ’_, ’_) & not(’Acc(’a)) |-> fail()
"r8" -- ’publish(’a, ’f, ’_) & not(’Appr(’a, ’f, ’_)) |-> fail()
"r9" -- ’Appr(’a, ’f, ’ts1) & ’publish(’a, ’f, ’ts2) |-> ensure(’ts2 - ’ts1 <= 10)

}

5.8 Withdrawal limit

The property is rooted in the domain of fraud detection. The property requires
that the sum of withdrawals of each user in the last 28 days does not exceed
the limit of $10,000. The event withdraw(u, a, ts) denotes the withdrawal of the
amount a by the user u at timestamp ts.

QEA specification. This is another specification of the form ‘there does not
exist a path to failure’. This time we capture the behavior required to perform
a bad withdraw. On each withdraw event we create a new configuration that
represents the start of a new 28 day period.

Specification of Parametric Monitors 173

qea {

Negated
Exists(u)

skip(start){
withdraw(u,a,_) -> start
withdraw(u,a,ts) do[s:=a] -> withdrawn
withdraw(u,a,_) if[a > 10000] -> success

}
next(withdrawn){
withdraw(u,a,ts2) if[ts2-ts < 28 and s+a > 10000] -> success
withdraw(u,a,ts2) if[ts2-ts < 28 and s+a <= 10000]

do[s+=a] -> withdrawn
}

}

LogFire specification The monitor uses one fact, Withdrawn(u,a,ts), to
record that user u withdrew a dollars at time ts (not including amounts greater
than 10, 000). Such a fact is produced for each withdrawal, and is used to monitor
the next 28 days from that point, accumulating the withdrawn amounts.

class M extends Monitor {
"r1" -- ’withdraw(’u, ’a, ’ts) |-> {
if (’a <= 10000)
insert(’Withdrawn(’u, ’a, ’ts))

else
fail()

}
"r2" -- ’Withdrawn(’u, ’sum, ’ts1) & ’withdraw(’u, ’a, ’ts2) |-> {
if (’ts2 - ’ts1 <= 28) {
val newSum = ’sum + ’a
if (newSum <= 10000)
update(’Withdrawn(’u, newSum, ’ts1))

else
fail()

} else remove(’Withdrawn)
}

}

6 Specification of rover properties

In this set of properties we consider the operation of planetary rovers. The
first two properties consider communication and the last three consider internal
resource management.

6.1 Rover coordination

This property relates to the self-organization of communicating rovers and cap-
tures the situation where (at least) one rover is able to communicate with all
other (known) rovers. The property states that there exists a leader (rover) who
has pinged every other (known) rover and received an acknowledgement. The
events ping(from,to) and ack(to,from) indicate that from pinged to and to ac-
knowledged from respectively. The leader does not need to have pinged itself.
The set of known rovers are those that ping/ack or have been pinged/acked.

174 K. Havelund, G. Reger

QEA specification. This specification uses quantifier alternation to capture
the property that there is one rover r1 that sends ping and receives an ack from
every other different rover r2. The Join declaration indicates that the domains
of r1 and r2 should be joined i.e. if a value is considered for r1 it should also
be considered for r2 and vice-versa.
qea{
Exists(r1) Forall(r2) Where(r1!=r2) Join(r1,r2)
skip(start) { ping(r1,r2) -> pinged }
skip(pinged){ ack(r2,r1) -> success }

}

LogFire specification. The monitor uses the following facts: Ping(r1,r2)
to record that rover r1 pings rover r2; Node(r) to record that r is a node;
Reach(r1,r2) to record that node r1 has pinged node r2, and that r2 has
acknowledged back; Cand(r) to record that rover r is a candidate as leader, all
nodes are declared as candidates; and finally End() records the end of the trace,
at which point the final computation is performed. At that point candidates are
removed if there is some node they do not reach. If no candidates are left at
some point an error is reported, there is no leader.
class M extends Monitor {
"r1" -- ’ping(’r1, ’r2) |-> {
insert(’Node(’r1))
insert(’Node(’r2))
insert(’Ping(’r1, ’r2))

}
"r2" -- ’ack(’r1, ’r2) |-> {
insert(’Node(’r1))
insert(’Node(’r2))

}
"r3" -- ’Node(’r) |-> {
insert(’Cand(’r))
insert(’Reach(’r, ’r))

}
"r4" -- ’Ping(’r1, ’r2) & ’ack(’r2, ’r1) |-> {
insert(’Reach(’r1, ’r2))
remove(’Ping)

}
"r5" -- ’end() |-> ’End()
"r6" -- ’End() & ’Cand(’r1) & ’Node(’r2) & not(’Reach(’r1, ’r2)) |->
remove(’Cand)

"r7" -- ’End() & not(’Cand(’_)) |-> fail()
}

The LogFire specification is clearly more complicated than the qea au-
tomaton. In LogFire we are limited since we cannot directly model a universal
quantifier nested under an existential quantifier as in the following quantified lin-
ear temporal logic formula: ∃leader • ∀n • ♦(ping(leader, n) ∧ ♦ack(n, leader)),
where ♦ψ has the classical meaning: eventually ψ for some temporal formula ψ.

6.2 Command nesting

If a command with identifier B starts after a command with identifier A has
started, then command B must succeed before command A succeeds (last issued
– first to succeed). A command can only be started and succeed once. The events
com(id) and suc(id) record the issuing and success of command id respectively.

Specification of Parametric Monitors 175

QEA specification. This specification captures the property that command
c2 is nested inside command c1. Note that, due to the symmetry of c1 and
c2, for every two values there will be two instances of the qea considering each
command being nested inside the other. As the trace is considered after instan-
tiation, the events com(c1) and com(c2) are distinct as they will be instantiated
with different values. The states capture different stages in each command. Note
that the events com(c2) and suc(c2) on the initial state are necessary if c2 is
not nested inside c1. Similarly, the finishedEarly state is entered if c2 only
occurs after c1 succeeds.

qea{
Forall(c1,c2)
accept next(none){
com(c2) -> none; suc(c2) -> none
com(c1) -> startedOne

}
accept next(startedOne){
com(c2) -> startedTwo
suc(c2) -> finishedEarly

}
accept next(startedTwo){
suc(c2) -> finishedTwo

}
accept next(finishedTwo){
suc(c1) -> finished

}
accept next(finishedEarly){
com(c2) -> finishedEarly; suc(c2) -> finishedEarly

}
accept next(finished){}

}

LogFire specification. The monitor uses the following facts: Com(x) to record
that command x has been issued (this fact is never deleted); Suc(x) to record
that command x has succeeded (this fact is never deleted); and finally Ord(x,y)
to record that command y has been issued after command x, and therefore must
succeed before command x.

class M extends Monitor {
"r1" -- ’com(’x) |-> insert(’Com(’x))
"r2" -- ’Com(’x) & ’com(’x) |-> fail()
"r3" -- ’Com(’x) & ’suc(’x) |-> insert(’Suc(’x))
"r4" -- ’suc(’x) & not(’Com(’x)) |-> fail()
"r5" -- ’Suc(’x) & ’suc(’x) |-> fail()
"r6" -- ’Com(’x) & not(’Suc(’x)) & ’com(’y) |-> ’Ord(’x, ’y)
"r7" -- ’Ord(’x, ’y) & ’suc(’y) |-> remove(’Ord)
"r8" -- ’Ord(’x, ’y) & ’suc(’x) |-> fail()

}

6.3 Resource lifecycle

This property represents the lifecycle of a resource with respect to a task, as
managed by a planetary rover’s internal resource management system - or any
resource management system in general. The lifecycle goes as follows:

– A resource may be requested by the task

176 K. Havelund, G. Reger

– A requested resource may be denied or granted to the task
– A granted resource may be rescinded or cancelled
– A resource may only be requested by a task if that task does not currently

hold the resource
– A granted resource must eventually be cancelled

We use the events request(t, r), deny(t, r), grant(t, r), rescind(t, r) and cancel
for a task t and resource r.

QEA specification. The specification captures the three valid states for a
resource, with respect to a task, and the valid transitions for each state.

qea{
Forall(t,r)
accept next(free){
request(t,r) -> requested

}
accept next(requested){
deny(t,r) -> free
grant(t,r) -> granted

}
accept next(granted){
cancel(t,r) -> free
rescind(t,r) -> granted

}
}

LogFire specification. The monitor uses the following two facts: Req(t,r)
to record that resource r has been requested by task t; and Grant(t,r) to
record that resource r has been granted to task t.

class M extends Monitor {
"r1" -- ’request(’t,’r) |-> insert(’Req(’t,’r))
"r2" -- ’Req(’t,’r) & ’deny(’t,’r) |-> remove(’Req)
"r3" -- ’Req(’t,’r) & ’grant(’t,’r) |-> {
remove(’Req)
insert(’Grant(’t,’r))

}
"r4" -- ’Grant(’t,’r) & ’cancel(’t,’r) |-> remove(’Grant)
"r5" -- ’deny(’t,’r) & not(’Req(’t,’r)) |-> fail()
"r6" -- ’grant(’t,’r) & not(’Req(’t,’r)) |-> fail()
"r7" -- ’request(’t,’r) & ’Grant(’t,’r) |-> fail()
"r8" -- ’rescind(’t,’r) & not(’Grant(’t,’r)) |-> fail()
"r9" -- ’cancel(’t,’r) & not(’Grant(’t,’r)) |-> fail()

hot(’Grant)
}

6.4 Resource management

Every resource should only be held by at most one task at any one time. If
a resource is granted to a task it should be cancelled before being granted to
another task. This is therefore a mutual exclusion property. The event grant(t, r)
captures that task t is granted resource r, similarly cancel(t, r) captures that
task t releases resource r.

Specification of Parametric Monitors 177

(t, r)

QEA specification. This specification captures the notion of a bad grant. A
bad grant occurs when a resource has been granted to a task and is then granted
again to any task (including the task holding the resource). It also uses a guard
to ensure that the task granted the resource is the task that cancels the resource.

qea{
Forall(r)
accept next(free){ grant(t1,r) -> granted }
accept next(granted){
grant(_,r) -> failure
cancel(t2,r) if [t1 = t2] -> free

}
}

LogFire specification. The monitor uses one fact, Granted(t,r), repre-
senting that task t has been granted resource r.

class M extends Monitor {
"r1" -- ’grant(’t, ’r) & not(’Granted(’_, ’r)) |-> insert(’Granted(’t, ’r))
"r2" -- ’Granted(’_, ’r) & ’grant(’_, ’r) |-> fail()
"r3" -- ’Granted(’t, ’r) & ’cancel(’t, ’r) |-> remove(’Granted)
"r4" -- ’cancel(’t, ’r) & not(’Granted(’t, ’r)) |-> fail()

}

6.5 Resource conflict management

This property represents the management of conflicts between resources as man-
aged by a planetary rovers internal resource management system - or any re-
source management system in general. It is assumed that conflicts between re-
sources are declared at the beginning of operation. After this point resources
that are in conflict with each other cannot be granted at the same time. A con-
flict between resources r1 and r2 is captured by the event conflict(r1,r2) and a
conflict is symmetrical. Resources are granted and cancelled using grant(r) and
cancel(r) respectively.

QEA specification. The specification quantifies over two resources and has
two separate states representing each resource being granted (after being put
in conflict). Note the symmetry of the conflict events required to capture
the relationship. Elsewhere [53] this property has been specified differently with
efficiency in mind; an encoding of the property that would be more efficient to
monitor would replace the r2 quantification with a set that collects all resources
in conflict with r1. This would be more efficient as the monitoring algorithm is
exponential in the number of quantified variables.

qea{
Forall(r1,r2)
accept skip(start){
conflict(r1,r2) -> free
conflict(r2,r1) -> free

}
accept skip(free){
grant(r1) -> granted1
grant(r2) -> granted2

178 K. Havelund, G. Reger

}
accept next(granted1){
cancel(r1) -> free

}
accept next(granted2){
cancel(r2) -> free

}
}

LogFire specification. The facts used by the monitor: Conflict(r1,r2) to
record that there is a conflict between resources r1 and r2 – for each such conflict
added its symmetric fact is also added; Granted(r) to record that resource r
has been granted; and finally Locks(r1,r2) to record that resource r1 has
been granted, which is in conflict with r2, which therefore is locked from being
granted also. The Lock predicate is needed since LogFire currently does not
permit negation of conjunctions in conditions.

class M extends Monitor {
"r1" -- ’conflict(’r1, ’r2) |-> {
insert(’Conflict(’r1, ’r2))
insert(’Conflict(’r2, ’r1))

}
"r2" -- ’grant(’r) & not(’Granted(’r)) & not(’Locks(’_, ’r)) |->
insert(’Granted(’r))

"r3" -- ’Granted(’r) & ’grant(’r) |-> fail()
"r4" -- ’Locks(’_, ’r) & ’grant(’r) |-> fail()
"r5" -- ’Granted(’r1) & ’Conflict(’r1, ’r2) |-> ’Locks(’r1, ’r2)
"r6" -- ’Granted(’r) & ’cancel(’r) |-> remove(’Granted)
"r7" -- ’Locks(’r1,’r2) & ’cancel(’r1) |-> remove(’Locks)
"r8" -- ’cancel(’r) & not(’Granted(’r)) |-> fail()

}

7 Specification of concurrency properties

Finally we consider two properties related to concurrency and synchronization
via locks.

7.1 Lock nesting

A thread should release a lock as many times as it acquires the lock. Addition-
ally, locks taken within a call to a method should be released during that call.
This property therefore represents a double nesting of method calls and lock
taking. Abstractly this could be viewed as parenthesis matching for two kinds
of parenthesis. The four events of interest are begin(t) and end(t), which re-
spectively record the beginning and end of a method for thread t, and lock(t,l)
and unlock(t,l), which respectively record the locking and unlocking of lock l
by thread t.

QEA specification. This qea specifies paths to failure for a thread and lock
using the negated existential pattern seen earlier. The first path to the failed
state via the locked state is followed when the lock is held when exiting the

Specification of Parametric Monitors 179

method it was taken in. There also exists a set of paths that finish in the inside
or locked states when either a method is not exited or a lock not unlocked.
Finally, unlocking a lock that is not locked will also lead to failure. The behavior
is captured using the counter depth to track the depth of the thread’s call
stack. Each begin event creates a new configuration inside a method call; this
effectively attempts to find a failing path for each suffix of the trace starting
with a begin event. The count counter tracks the lock depth.

qea{
Negated
Exists(t,l)
skip(outside){

begin(t) do [depth:=1] -> inside
begin(t) -> outside

}
accept skip(inside){
begin(t) do [depth++] -> inside
end(t) if [depth = 1] do [depth:=0] -> finished
end(t) if [depth > 1] do [depth --] -> inside
lock(t,l) do [count:=1] -> locked
unlock(t,l) -> failed

}
skip finished {}
accept skip (locked){
lock(t,l) do [count++] -> locked
unlock(t,l) if [count > 1] do [c o u n t] -> locked
unlock(t,l) if [count =1] do [count:=0] -> inside
begin(t) do [depth++] -> locked
end(t) if [depth > 1] do [d e p t h] -> locked
end(t) if [depth = 1] -> failed

}
accept skip(failed){}

}

LogFire specification The monitor uses the following two facts: Inside(t,d)
to record that thread t is currently at a method activation depth of d (it
has called methods nested d times without returning from any of them); and
Locked(t,l,d,c) to record that thread t has taken lock l a total of c times
while at activation depth level d.

class M extends Monitor {
"r1" -- ’begin(’t) & not(’Inside(’t, ’_)) |-> insert(’Inside(’t, 1))
"r2" -- ’Inside(’t, ’d) & ’begin(’t) |-> update(’Inside(’t, ’d + 1))
"r3" -- ’Inside(’t, ’d) & ’end(’t) |-> {
if (’d.int > 1)
update(’Inside(’t, ’d - 1))

else
remove(’Inside)

}

"r4" -- ’Inside(’t, ’d) & ’lock(’t, ’l) & not(’Locked(’t, ’l, ’d, ’_)) |->
insert(’Locked(’t, ’l, ’d, 1))

"r5" -- ’Inside(’t, ’d) & ’Locked(’t, ’l, ’d, ’c) & ’lock(’t, ’l) |->
update(’Locked(’t, ’l, ’d, ’c + 1))

"r6" -- ’Inside(’t, ’d) & ’Locked(’t, ’l, ’d, ’c) & ’unlock(’t, ’l) |-> {
if (’c > 1)
update(’Locked(’t, ’l, ’d, ’c - 1))

else
remove(’Locked)

}
"r7" -- ’Inside(’t, ’d) & ’unlock(’t, ’l) & not(’Locked(’t, ’l, ’d, ’_)) |->

180 K. Havelund, G. Reger

fail()
"r8" -- ’Inside(’t, ’d) & ’Locked(’t, ’_, ’d, ’_) & ’end(’t) |-> fail()

hot(’Locked)
}

7.2 Lock ordering

This property represents a conservative deadlock-avoidance strategy that pre-
vents cycles between locks by enforcing a partial ordering on locks: a thread can
only take a lock L2 while holding a lock L1 if L1 precedes L2 in the partial order-
ing. The property states that for every two (different) locks, if they are taken in
one order in one part of the system, then they are not taken in the opposite order
in another part of the system. The events lock(t,l) and unlock(t,l) respectively
capture the locking and unlocking of lock l by thread t.

QEA specification. This specification quantifies over a pair of threads and a
pair of (distinct) locks. If the locks are taken by the first thread in one order,
then they cannot be taken in a different order by the second thread.

qea{
Forall(t1,t2,l1,l2)
Where(l1 != l2)

accept skip(start){ lock(t1,l1) -> lock1 }
accept skip(lock1){
unlock(t1,l1) -> start
lock(t1,l2) -> lock12

}
accept skip(lock12){ lock(t2,l2) -> lock122 }
accept skip(lock122){
unlock(t2,l2) -> lock12
lock(t2,l1) -> failure

}
}

LogFire specification The monitor uses the following two facts: Locked(t,l)
to record that thread t has taken lock l and not yet released it; and Edge(l1,l2)
to record that thread t at some point held lock l1, while nested acquiring lock
l2.
class M extends Monitor {
"r1" -- ’lock(’t, ’l) |-> insert(’Locked(’t, ’l))
"r2" -- ’Locked(’t, ’l) & ’unlock(’t, ’l) |-> remove(’Locked)
"r3" -- ’Locked(’t, ’l1) & ’lock(’t, ’l2) |-> insert(’Edge(’l1, ’l2))
"r4" -- ’Edge(’l1, ’l2) & ’Edge(’l2, ’l1) |-> fail()

}

8 Summary and discussion

In this section we summarize and discuss our experience specifying the various
properties in the two different logics. We reflect on the two logics from a linguistic
perspective and make suggestions for improvements to each logic. We also discuss
some issues relating to the pragmatic differences between the two methods.

Specification of Parametric Monitors 181

8.1 Relationship to temporal logic

Two approaches to specification of property monitors have been presented, qea
which is automaton-based, and LogFire, which is rule-based. From the point
of view of writability and readability it is clear that both logics are low-level
in the sense that specifications are somewhat verbose and can be hard to read.
The standard alternative approach is some form of temporal logic or regular
expressions. In many cases it is likely that these more abstract logics can make
specifications easier to write and read. However, note that some properties will
not benefit from the abstractions of these higher level logics. For example, the
resource lifecycle property in Section 6.3 is suited to a low-level specification
style and will likely have a highly convoluted specification in temporal logic.

Note that it is common folklore that temporal logic can be difficult for users to
write and read. However, we do believe that many properties can more easily be
stated in a combination of temporal logic and regular expressions, as for example
found in the Salt language [16], itself influenced by Psl [60]. Occasionally when
understanding a property we would draw a time line and plot in events on the
time line, not far from the time line notation proposed in TimeEdit [56].

The classical way of giving semantics to temporal logic within the model
checking community is to translate temporal formulas to automata [33, 44]. Sim-
ilarly, it has been shown how to translate temporal formulas (LTL) to rules [6].
Temporal logics for parametric monitoring are, however, typically not translated
into automata (or rules), but are rather interpreted over the structure of the for-
mulas, which evolve as events are consumed. One reason for this discrepancy in
approach within the model checking and runtime verification communities is in
part due to lack of automata concepts that involve data. Note that extended
state machines (state machines with variables that can be checked in transition
guards and updated in transition actions) are not sufficient since variables are
global, in contrast to qea where they are local to a slice. Both qea and LogFire
can be considered as target for translations from parametric temporal logic.

LTL (Linear Temporal Logic) is a more realistic candidate for such transla-
tions than CTL (Computation Tree Logic) since a single trace is linear. However,
one can imagine monitoring CTL on sets of traces. A transformation of LTL into
either logic (qea or LogFire) would be straightforward, assuming a version of
LTL with a finite-trace semantics, as RV is an activity carried out on finite traces
only.

In the case of LogFire, since it really is a Scala API, such translation can
be defined as templates in Scala, as described in [40]. This allows a mix of rule-
based programing and temporal logic (in addition to traditional programming).
A similar mix of state machines and temporal logic can be found in TraceCon-
tract [9] and Daut (Data automata) [38, 39]. Similarly, temporal logic can be
translated into qea. We believe that a combination of low-level automata/rules
and high-level temporal logic/regular expressions would be a convenient speci-
fication formalism. It is interesting to observe that if one allows states/facts to
be anonymous (un-named) one obtains systems much related to temporal logic.

182 K. Havelund, G. Reger

This corresponds to having transitions labelled with sequences of events, in con-
trast to just single events. This can be viewed as a basic abstraction mechanism.

8.2 A few notes on specification styles

Several qea automata have been stated in positive form: describing only valid
transitions. This is in contrast to a negative form, in which erroneous transitions
are called out explicitly, in qea by leading to a failure state and in LogFire
by leading to an error state. As an example, consider the introductory file
usage example. The qea specification in Figure 2 expresses that a read or write
operation is not allowed on a file unless it has been opened, by simply not
containing such a transitions out of the closed state. In contrast, the LogFire
specification in Figure 3 expresses this explicitly as two failure transitions (rules
r5 and r7). All properties in LogFire are stated in negative form since positive
form formulations are not possible. In qea one has a choice. It can be debated
which of the two forms (positive or negative) that in general is more readable.

Another difference is that qea supports negation of automata, i.e. the qea
specifies erroneous behavior as success with the understanding that this verdict
should be negated. This can be hard to read as one must translate success into
failure. The negation is needed for non-deterministic qea where no paths should
lead to failure, as the acceptance condition for the automaton is defined as:
there exists a path to an accepting state. In LogFire all paths must lead to an
acceptance state.

Neither qea nor LogFire support the specification of time as a built-in
concept. In both cases time is modeled as time stamps, which are just data like
any other data. This leads to a difficulty in determining when time bounds get
exhausted since it requires an event with a new time stamp. Time violations
are not necessarily detected as soon as they happen but rather when the next
event arrives. This is demonstrated in the transaction limit reporting property
in Section 5.5.

8.3 Expressiveness and complexity

The expressiveness and complexity of formalisms presented here have not been
formally studied at the time of writing. However, it seems plausible that both
formalisms are Turing complete, hence equally expressive, and able to express
any form of verifiable properties. We here consider LogFire without including
all of Scala for writing actions. Of course, if we allow any Scala code to be
executed the answer to this question is obvious.

The complexity of monitoring in general depends on the property being mon-
itored and the trace. In the worst case, the monitor may end up storing the entire
trace, and in each step search this. For this reason it is important that such search
is optimized. In general, however, a monitor stores an abstraction of the so-far
observed trace, as a function of the property monitored. This makes monitoring
pragmatically possible.

Specification of Parametric Monitors 183

In trace-slicing based techniques such as qea the number of bindings used
in trace-slicing is, in the worst case, exponential in the length of the trace. In
practice, values are reused and (for online monitoring) garbage collection (see
Sec. 8.5) reduces the set of bindings during monitoring. However, it is often
possible to define a specification with fewer quantified variables at the cost of
introducing additional guards and assignments. This can dramatically improve
the monitoring performance.

8.4 Comments on logics

QEA. One of qea’s main features is that it allows arbitrary interleaving of quan-
tifiers, universal as well as existential. For example, a universal quantification
can be nested underneath an existential quantification, which was specifically
useful in the specification of the rover coordination property in Section 6.1. An-
other useful feature of qea is its support for variables that are local to a slice.
LogFire also allows for declaration of variables (since LogFire is a Scala
API). However, these are global to the monitor. In LogFire variables local to
what corresponds to a slice are modeled as parameters to facts.

One significant drawback of the slicing-based approach of qea is that a guard
on a transition only can test on variables within one slice, and not across slices.
The consequence of this restriction is not clear. In LogFire all facts are visible
to all rules referring to them. A related disadvantage is that qea must declare a
finite quantifier list, making it difficult to specify either second-order properties
(i.e., for all subsets) or properties over a variable number of parameters (i.e., for
n rovers for variable n). Both kinds of properties can be handled by the more
flexible rule-based approach. Another minor drawback is that the automaton
approach in qea considers states to be distinct. This means that if some variables
need updating in several states, such update transitions are needed in all those
states, hence causing a repetition of specification. This issue does not occur in
LogFire.

During the specification exercise it was recognized that qea specifications
could be simplified by the introduction of pre-defined success and failure states.
Other possible modifications could include the following. qea specifications con-
tain many state modifiers. A choice could be to introduce defaults, such that
for example states by default were accept states. Similarly, one could choose
a default amongst the skip/next state modifiers. In TraceContract [9] for
example, by default all states are accept and skip states. As we have learned
from programming, an if-then-else construct would be useful in order to avoid
repeating conditions on transitions.

LogFire. LogFire allows a rule’s left-hand side conditions to refer to numer-
ous facts and negations thereof. This yields an expressive power, which in qea
can be partially emulated by introducing sets. Furthermore, LogFire supports
transitive closure on facts. The Rete engine will execute rules on a set of facts
until a fixed point is reached. This feature is not available in classical automata.

184 K. Havelund, G. Reger

It can be useful for expressing for example reachability properties. This is needed
for example if generalizing the lock order property in Section 7.2 to N threads,
where N is unknown before monitoring.

LogFire’s disadvantages include the following. Due to the fact that it is
an API in Scala, user-defined names (event names and fact names) are quoted
symbols. This is somewhat inconvenient, and is a consequence of names not being
first-class citizens in Scala, as they are not in most programming languages.
Finally, facts have to be removed explicitly, in contrast to state machines when
taking a transition out of a state.

During the specification exercise it was recognized that LogFire specifica-
tions could be simplified by the introduction of hot facts (non-accept facts).
Other possible modifications could include the following. A fact could be de-
clared as transient, meaning that if it occurs in a rule that fires it is removed.
LogFire currently does not allow conditions that are negations of conjunctions
of facts, as is allowed in the original Rete algorithm. This would be a useful
addition. Finally, also in LogFire would an if-then-else construct be useful. The
Ruler system [11, 12, 1] has hot and transient facts, as well as an if-then-else
construct.

8.5 Under the hood

With respect to implementations, both the slicing algorithm in qea and the aug-
mented Rete algorithm in LogFire use indexing to access states/facts relevant
for an incoming event. Future research will expose the exact relationship be-
tween the two approaches. Furthermore, there are three pragmatic issues related
to monitoring that we have not discussed in depth. They are instrumentation,
object identity, and garbage collection. We will briefly explain their relevance.
Instrumentation techniques must be used to extract events from running pro-
grams/systems; the extracted events might be passed directly to an online mon-
itor or recorded in log files for later processing. To deal with data values, they
must have a notion of object identity, i.e., an object such as an Iterator should
be consistently recorded using the same identifier. In languages such as Java
it is possible to use either an object’s reference identity (i.e., ==) or seman-
tic identity (i.e., equals). Usually a property is written with one in mind and
getting the correct verdict will depend on using the intended notion of identity.
The reference identity of an object is consistent over time, whilst the seman-
tic identify can change, i.e. the semantic identity of a collection may change as
its contents changes, making semantic identity inappropriate for monitoring in
some cases. Using reference identity requires storing the reference in the monitor
(as normally also does semantic identity, but one can get around it, see below).
Storing the references can be problematic in garbage-collected languages such as
Java, where storing (in the monitor) a reference to an object can prevent the
object from being garbage collected when the monitored application no longer
refers to it (introducing a memory leak). A monitor can, however, appropriately
clean its own data structures to prevent this, which can speed up monitoring.
One way to do this in Java is to use reference identity in combination with weak

Specification of Parametric Monitors 185

references. Alternatively, one can represent the monitored object by some new
object with the same semantic identity, and use semantic identity on this new
object thereafter.

9 Conclusion

We have presented two monitoring logics, qea, which is automaton-based, and
LogFire, which is rule-based. These logics can be used for writing monitors di-
rectly, or they can be the target of translations from temporal logics. The logics
are comparable. However, the distinguishing features of qea are that it allows
existential as well as universal quantification, arbitrarily mixed, as well as vari-
ables that are local to slices. The distinguishing features of LogFire are its rule
system, where rule conditions can refer to multiple facts and their negations,
and where a repeated fixed point evaluation strategy allows for rules to compute
the transitive closure, useful for expressing certain reachability properties. qea
is an external DSL whereas LogFire is an internal DSL (and API in Scala).
We showed the application of the two logics to the specification of properties ob-
tained from the 1st international runtime verification competition. Future work
includes fully understanding how the two monitoring algorithms relate to each
other; improvements on the notations; as well as merging these respective logics
with temporal logic.

Acknowledgements We would like to thank the organizers, Ezio Bartocci,
Borzoo Bonakdarpour, and Yliès Falcone, of the 1st International Competition
of Software for Runtime Verification (CSRV 2014), affiliated with RV 2014 in
Toronto, Canada [2]. In addition we would like to thank the participants con-
tributing the properties to the competition.

References

1. RuleR website.
http://www.cs.man.ac.uk/∼howard/LPA.html.

2. CSRV 2014. http://rv2014.imag.fr/monitoring-competition.
3. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,

O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble. Adding trace matching with
free variables to AspectJ. In OOPSLA’05. ACM Press, 2005.

4. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard. Quantified
Event Automata - towards expressive and efficient runtime monitors. In 18th
International Symposium on Formal Methods (FM’12), Paris, France, August 27-
31, 2012. Proceedings, volume 7436 of LNCS. Springer, 2012.

5. H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and R. Owens. Metatem: An
introduction. Formal Asp. Comput., 7(5):533–549, 1995.

6. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program monitoring with
LTL in Eagle. In Parallel and Distributed Systems: Testing and Debugging (PAD-
TAD’04), Santa Fee, New Mexico, USA, volume 17 of IEEE Computer Society,
April 2004.

186 K. Havelund, G. Reger

7. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

8. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files.
Journal of Aerospace Computing, Information, and Communication, 7(11):365–
390, 2010.

9. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis.
In 17th International Symposium on Formal Methods (FM’11), Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of LNCS, pages 57–72. Springer, 2011.

10. H. Barringer, K. Havelund, D. Rydeheard, and A. Groce. Rule systems for run-
time verification: A short tutorial. In Proc. of the 9th Int. Workshop on Runtime
Verification (RV’09), volume 5779 of LNCS, pages 1–24. Springer, 2009.

11. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time mon-
itoring: from Eagle to RuleR. In Proc. of the 7th Int. Workshop on Runtime
Verification (RV’07), volume 4839 of LNCS, pages 111–125, Vancouver, Canada,
2007. Springer.

12. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

13. D. A. Basin, F. Klaedtke, and S. Müller. Policy monitoring in first-order temporal
logic. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, Proceed-
ings, volume 6174 of LNCS, pages 1–18. Springer, 2010.

14. A. Bauer, J.-C. Küster, and G. Vegliach. From propositional to first-order mon-
itoring. In Runtime Verification - 4th Int. Conference, RV’13, Rennes, France,
September 24-27, 2013. Proceedings, volume 8174 of LNCS, pages 59–75. Springer,
2013.

15. A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but how
ugly is ugly? In Proc. of the 7th Int. Workshop on Runtime Verification (RV’07),
volume 4839 of LNCS, pages 126–138, Vancouver, Canada, 2007. Springer.

16. A. Bauer, M. Leucker, and J. Streit. SALT – structured assertion language for tem-
poral logic. In Z. Liu and J. He, editors, Formal Methods and Software Engineering,
volume 4260 of Lecture Notes in Computer Science, pages 757–775. Springer Berlin
Heidelberg, 2006.

17. E. Bodden. MOPBox: A library approach to runtime verification. In Runtime
Verification - 2nd Int. Conference, RV’11, San Francisco, USA, September 27-30,
2011. Proceedings, volume 7186 of LNCS, pages 365–369. Springer, 2011.

18. F. Chen and G. Roşu. Parametric trace slicing and monitoring. In Proceedings of
the 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’09), volume 5505 of LNCS, pages 246–261, 2009.

19. Clips website: http://clipsrules.sourceforge.net.
20. H. C. Cruz. Optimisation techniques for runtime verification. Master’s thesis,

University of Manchester, 2014.
21. M. D’Amorim and K. Havelund. Event-based runtime verification of Java pro-

grams. In Workshop on Dynamic Program Analysis (WODA’05), volume 30(4) of
ACM Sigsoft Software Engineering Notes, pages 1–7, 2005.

22. N. Decker, M. Leucker, and D. Thoma. Monitoring modulo theories. In E. Ábrahám
and K. Havelund, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 20th International Conference, TACAS 2014, Grenoble, France, April
7-11, 2014. Proceedings, volume 8413 of LNCS, pages 341–356. Springer, 2014.

23. R. B. Doorenbos. Production Matching for Large Learning Systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 1995.

Specification of Parametric Monitors 187

24. Drools website: http://www.jboss.org/drools.
25. Drools functional programming extensions website:

https://community.jboss.org/wiki/
FunctionalProgrammingInDrools.

26. D. Drusinsky. The temporal rover and the ATG rover. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS, pages 323–330. Springer, 2000.

27. D. Drusinsky. Modeling and Verification using UML Statecharts. Elsevier, 2006.
ISBN-13: 978-0-7506-7949-7, 400 pages.

28. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime verification of safety-
progress properties. In Proc. of the 9th Int. Workshop on Runtime Verification
(RV’09), volume 5779 of LNCS, pages 40–59. Springer, 2009.

29. Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce at
runtime? J Software Tools for Technology Transfer, 14(3):349–382, 2012.

30. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In
M. Broy and D. Peled, editors, Summer School Marktoberdorf 2012 - Engineering
Dependable Software Systems, to appear. IOS Press, 2013.

31. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17–37, 1982.

32. M. Fusco. Hammurabi - a Scala rule engine. In Scala Days 2011, Stanford Uni-
versity, California, 2011.

33. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembinski and M. Sredniawa, editors,
In Protocol Specification Testing and Verification (PSTV), volume 38, pages 3–18.
Chapman & Hall, 1995.

34. J. Goubault-Larrecq and J. Olivain. A smell of ORCHIDS. In Proc. of the 8th Int.
Workshop on Runtime Verification (RV’08), volume 5289 of LNCS, pages 1–20,
Budapest, Hungary, 2008. Springer.

35. A. Groce, K. Havelund, and M. H. Smith. From scripts to specifications: the
evolution of a flight software testing effort. In 32nd Int. Conference on Software
Engineering (ICSE’10), Cape Town, South Africa, ACM SIG, pages 129–138, 2010.

36. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts
with data. IEEE Transactions on Services Computing, 5(2):192–206, 2012.

37. K. Havelund. Runtime verification of C programs. In Proc. of the 1st TestCom/-
FATES conference, volume 5047 of LNCS, Tokyo, Japan, 2008. Springer.

38. K. Havelund. Data automata in Scala. In M. Leucker and J. Wang, editors,
8th International Symposium on Theoretical Aspects of Software Engineering,
TASE 2014, Changsha, China, September 1-3. Proceedings. IEEE Computer Soci-
ety Press, 2014.

39. K. Havelund. Monitoring with data automata. In T. Margaria and B. Steffen, edi-
tors, 6th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. Track: Statistical Model Checking, Past Present and
Future (organized by Kim Larsen and Axel Legay), Corfu, Greece, October 8-11.
Proceedings, volume 8803 of LNCS, pages 254–273. Springer, 2014.

40. K. Havelund. Rule-based runtime verification revisited. Software Tools for Tech-
nology Transfer (STTT), April 2014. Published online.

41. K. Havelund and A. Goldberg. Verify your runs. In Verified Software: Theories,
Tools, Experiments, VSTTE 2005, pages 374–383, 2008.

42. K. Havelund and G. Roşu. Efficient monitoring of safety properties. Software Tools
for Technology Transfer, 6(2):158–173, 2004.

43. K. Havelund and G. Rosu. Monitoring programs using rewriting. In 16th ASE
conference, San Diego, CA, USA, pages 135–143, 2001.

188 K. Havelund, G. Reger

44. G. J. Holzmann. The Spin Model Checker – Primer and Reference Manual.
Addison-Wesley, 2004.

45. Jess website: http://www.jessrules.com/jess.
46. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An overview of AspectJ. In J. L. Knudsen, editor, Proc. of the 15th European
Conference on Object-Oriented Programming, volume 2072 of LNCS, pages 327–
353. Springer, 2001.

47. C. Lee, D. Jin, P. O. Meredith, and G. Roşu. Towards categorizing and formalizing
the JDK API. Technical Report http://hdl.handle.net/2142/30006, Department
of Computer Science, University of Illinois at Urbana-Champaign, March 2012.

48. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance
based on formal specifications. In PDPTA, pages 279–287. CSREA Press, 1999.

49. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of
Logic and Algebraic Programming, 78(5):293–303, may/june 2008.

50. D. Luckham, editor. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, 2002.

51. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP
runtime verification framework. Software Tools for Technology Transfer (STTT),
14(3):249–289, 2012.

52. A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science, pages 46–57. IEEE Computer Society, 1977.

53. G. Reger. Automata Based Monitoring and Mining of Execution Traces. PhD
thesis, University of Manchester, 2014.

54. G. Reger, H. C. Cruz, and D. Rydeheard. MARQ: monitoring at runtime with
QEA. In Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’15), 2015.

55. Rooscaloo website: http://code.google.com/p/rooscaloo.
56. M. Smith, G. Holzmann, and K. Ettessami. Events and constraints: a graphical

editor for capturing logic properties of programs. In 5th Int Sym. on Requirements
Engineering, Toronto, Canada, volume 55(2), pages 14–22. 2001.

57. V. Stolz. Temporal assertions with parameterized propositions. In Proc. of the
7th Int. Workshop on Runtime Verification (RV’07), volume 4839 of LNCS, pages
176–187, Vancouver, Canada, 2007. Springer.

58. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th
Int. Workshop on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages
109–124. Elsevier, 2006.

59. V. Stolz and F. Huch. Runtime verification of concurrent Haskell programs. In
Proc. of the 4th Int. Workshop on Runtime Verification (RV’04), volume 113 of
ENTCS, pages 201–216. Elsevier, 2005.

60. M. Vardi. From Church and Prior to PSL. In O. Grumberg and H. Veith, editors,
25 Years of Model Checking, volume 5000 of Lecture Notes in Computer Science,
pages 150–171. Springer Berlin Heidelberg, 2008.

Specification of Parametric Monitors 189

Advances in Design Automation Techniques for
Digital-Microfluidic Biochips

Mohamed Ibrahim, Zipeng Li and Krishnendu Chakrabarty

Duke University, Durham, NC 27708, USA

Abstract. Due to their emergence as an efficient platform for point-
of-care clinical diagnostics, digital-microfluidic biochips (DMFBs) have
received considerable attention in recent years. They combine electron-
ics with biology, and they integrate various bioassay operations, such as
sample preparation, analysis, separation, and detection. In this chap-
ter, we first present an overview of digital-microfluidic biochips. We
next describe emerging computer-aided design (CAD) tools for the au-
tomated synthesis and optimization of biochips from bioassay protocols.
The chapter includes solutions for fluidic-operation scheduling, module
placement, droplet routing, and pin-constrained chip design. We also
show how recent advances in the integration of sensors into a DMFB
can be exploited to provide cyberphysical system adaptation based on
feedback-driven control.

Keywords: digital-microfluidic biochips, computer-aided design (CAD),
synthesis, cyberphysical design, testing, fault diagnosis.

1 Introduction

Microfluidic biochips, also referred to as lab-on-a-chip, are revolutionizing many
areas of biochemistry and biomedical sciences, such as high-throughput DNA
sequencing, point-of-care clinical diagnosis, protein crystallization, enzymatic
analysis, proteomic analysis, and environmental toxicity monitoring [1–3]. Most
traditional microfluidic biochips are based on a flow-based platform with mi-
crochannels, microvalves, micropumps, and addressable chambers. Using these
microdevices, various biochemical applications, including polymerase chain re-
action (PCR), DNA purification, and protein crystallization, can be performed
in an automated manner. A drawback of flow-based microfluidics is the lack of
reconfigurability. Therefore, flow-based microfluidic biochips are only suitable
for a narrow class of bioassays, and each chip is specific to a target application.

An alternative category of microfluidic biochips, referred to as digital mi-
crofluidic biochips (DMFBs) and based on the principle of electrowetting-on-
dielectric (EWOD) [3,4], is an attractive platform to overcome above limitations.
Fabricated DMFBs based on glass and PCB substrates are shown in. Fig. 1.

In this section, we provide an overview of DMFBs and the EWOD principle,
analyze basic fluidic operations of the DMFB, and provide motivation for design
automation (e.g., high-level synthesis, chip-level design, and fault modeling and
testing, etc.) for DMFBs.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_7, © Springer Fachmedien Wiesbaden 2015

Reagent 1

Sample 1 Reagent 2

Sample 2

Droplet

(a) (b)

Fig. 1. Fabricated digital microfluidic biochips: (a) glass substrate [5]; (b) PCB sub-
strate [6].

1.1 Overview of Digital Microfluidics

A DMFB is an example of a lab-on-a-chip that is capable of carrying out bio-
chemistry on a chip. A typical DMFB consists of a bottom layer and a top
layer [7]. For cyberphysical DMFBs, a photodetector (PD) for optical sensing
can also be integrated into the top plate of the DMFB [8]; see Fig. 2. An optical
fiber, pigtailed to the input optical waveguide, is used to launch the polarized
laser beam into the integrated optical system to realize sensing. A dielectric layer
is deposited on both surfaces of bottom and top plate to further increase the
hydrophobicity and insulativity. Because manipulated droplets with biological
samples are usually of micro-liter or nano-liter volume, in order to avoid the
evaporation of reagents, a filler medium (usually silicone oil) is used between
two plates. Manipulated using EWOD, droplets of samples and reagents can
be transported along the electrodes, and fluidic operations such as dispensing,
transporting, mixing, dilution and splitting can be carried out on the chip.

Fig. 2. A sideview of a two-layer digital microfluidic biochip with an integrated pho-
todetector (PD) [8].

Design Automation for Digital-Microfluidic Biochips 191

Compared with conventional benchtop procedures, a DMFB offers advan-
tages of lower cost, portability, less power consumption, easier system integra-
tion, and less human error. Hence, DMFBs are revolutionizing many biochemical
analysis procedures, including high-throughput DNA sequencing, point-of-care
clinical diagnosis, and protein crystallization [7, 9]. In recent years, with the in-
tegration of different types of sensors (such as capacitive sensors [10] and optical
sensors [8] in a cyberphysical platform), real-time feedback and software-based
control can be realized and DMFBs have become even more attractive.

1.2 Principle of Electrowetting-on-Dielectric (EWOD)

EWOD is a physical phenomenon where an electric field can influence the wetting
behavior of a conductive droplet in contact with a hydrophobic and insulated
electrode. When an electric voltage is applied between the liquid droplet and the
electrode, the electric charge changes the free energy on the dielectric surface.
Therefore, an electric field across the insulator is generated, which lowers the
interfacial tension between the liquid and the insulator surface (as illustrated in
Fig. 3) according to the Lippman-Young equation, see (1):

(a) (b)

Fig. 3. Principle of electrowetting on dielectric (EWOD). (a) Schematic configuration.
(b) EWOD demonstration [11].

γSL(V) = γSL(V = 0)− C

2
V 2 (1)

where γSL is the solid-liquid interfacial tension, C(F/m2) is the capacitance of
the dielectric layer, and V is the applied voltage. At the three-phase contact
line, Young’s equation describes the relationship between the contact angle and
interfacial tensions:

cos θ =
γSG − γSL

γLG
(2)

192 M. Ibrahim, Z. Li, K. Chakrabarty

where γSG is the solid-gas interfacial tension, and γLG is the liquid-gas interfacial
tension. Combining (1) and (2), the change in the contact angle can be described
by (3):

cos θ = cos θ0 − ε0ε

2γLGt
V 2 (3)

where θ0 is the equilibrium contact angle with no applied potential, ε0 is the
permittivity of vacuum, ε is the dielectric constant of the dielectric layer, and t
is the thickness of the dielectric layer.

1.3 Fluidic Operations on the DMFB

Fluidic operations, e.g., transportation, dispensing and storing, mixing, and
splitting and merging, can be achieved on a DMFB based on the principle of
EWOD.

Transportation. A liquid droplet on the DMFB can be transported by asym-
metrically changing the interfacial tension, i.e., by applying electric potential.
Details of droplet transportation can be found in [12]. Droplet velocities of 100
mm/s at 60 V have been reported for droplets ranging in volume from 1 μL to
1 nL [3].

Dispensing and Storing. Dispensing (droplet generation) is a critical flu-
idic operation for a DMFB, because it can be viewed as fluidic I/O and the
world-to-chip interface. Generally, droplet dispensing refers to the process of
generating small-volume liquid droplets on the unit electrode for manipulation
on the DMFB. Conversely, droplets can also be stored in the on-chip reservoir.

In order to dispense droplets from an on-chip reservoir, liquid needs to be
first pulled out of the reservoir and then be separated from the reservoir: these
steps can be seen in Fig. 4.

Fig. 4. Droplet dispensing from an on-chip reservoir [5].

Design Automation for Digital-Microfluidic Biochips 193

Splitting and Merging. The splitting and merging operations use three con-
secutive electrodes. In splitting, the outer two electrodes are turned on, and the
inner electrode is turned off. In general, the hydrophilic forces induced by the
two outer electrodes stretch the droplet while the hydrophobic forces in the cen-
ter pinch off the liquid into two small droplets [13]. In contrast, for the merging
operation, the inner electrode is turned on, and the outer two electrodes are
turned off. The steps involved in droplet splitting and merging can be seen in
Fig. 5.

Mixing. The mixing operation on the DMFB can either be used for pre-
processing, sample dilution, or for reactions between samples and reagents of
predefined volume. If we define the consecutive on and off of one electrode as
one cycle, mixing operations usually take around 1,000 cycles [3]. Creating tur-
bulent flow at mixing regions or creating multilaminates are two effective ways
to speed up the mixing operation [3].

1.4 Motivation for Automated Chip Design and Testing

As an emerging technology, the market for biochips is likely to grow rapidly, mo-
tivated by applications from the pharmaceutical and healthcare fields. Because
of the trend of increasing chip size and the integration of an increasing number
of on-chip devices, manual design for biochips is no longer feasible. In particular,
design-automation tools can reduce the difficulty of design and help to ensure
that manufactured biochips are versatile and reliable.

(a) (b)

Fig. 5. Sequential images of successful (a) splitting and (b) merging of droplets at 25
V (gap size d = 70 μm, electrode is 1.4 mm×1.4 mm, volume is 0.2 μl) [11].

194 M. Ibrahim, Z. Li, K. Chakrabarty

Therefore, there is a need to provide the same level of CAD support for
the biochip designer as in the semiconductor industry. With the help of these
CAD tools, biochip users, including chemists, nurses, doctors and clinicians, will
adapt more easily to this new technology, and conversely, designers can be freed
from cumbersome and labor-intensive work, and they can concentrate more on
improving chip reliability and reducing chip cost.

An illustration of an automated DMFB design flow is shown in Fig. 6. Design
automation for a DMFB includes synthesis (both architectural-level synthesis
and physical-level synthesis), chip-level design (control pin assignment and wire
routing), and fault modeling and testing (for structural testing and functional
testing). These design steps will be covered in detail throughout this chapter.

Researchers now envision an automated design flow and system operation
that will transform biochip use, in the same way as compilers and operating
systems revolutionized computing in the 60s and 70s, and design automation
revolutionized IC design in the 80s and 90s.

1.5 Motivation for Cyberphysical Chip Design

Biochemical experiments are inherently prone to randomness and lack of preci-
sion in their operations. Operational errors can potentially happen during droplet
manipulation, but error recovery based on the repetition of experiments leads to
wastage of expensive reagents and hard-to-prepare samples. One solution for this
problem is to use a statistical predictive model for error analysis [15], but this
approach is computationally expensive and does not leverage the reconfiguration
capability of digital-microfluidic biochips.

Input: Sequencing graph

Output:

of bioassay
Digital microfluidic

module library

Mixing components Area
2x2-array mixer
2x3-array mixer
2x4-array mixer
1x4-array mixer
Detectors

LED+Photodiode

4 cells
6 cells
8 cells
4 cells

1 cell

Design
specifications

Maximum array area
Amax: 20x20 array

Maximum number of
optical detectors: 4

Maximum bioassay
completion timeTmax:
50 seconds

Resource binding Schedule

O1
O2

O3
O4

0
1
2
3
4
5
6
7

Placement

O1Mix

Mix

Mix

Store

StoreO2

O3
O4

O5

O6

Detection

ResourceOperation
2x3-array mixer

2x4-array mixer

1x4-array mixer
Storage unit (1 cell)

LED+Photodiode

O1
O2
O3
O4
O5
O6

Storage unit (1 cell)

O1
O2

O3

O4

O5
O6

Biochip design results: Array area: 8x8 array Bioassay completion time: 25 seconds

 Unified Synthesis of Digital Microfluidic Biochip

Time
10 s
6 s
3 s
5s

30 s

Number of reservoirs: 3

Fig. 6. Illustration of automated DMFB design [14].

Design Automation for Digital-Microfluidic Biochips 195

With recent advances in the integration of biosensors in digital-microfluidic
biochips [47, 48], it is now feasible to develop “physical-aware” control systems
that can use sensor readouts at checkpoints and dynamically reconfigure the
biochip to recover from an error. This form of cyberphysical integration provides
higher guarantees for more robust bioassay execution within an autonomous
microfluidic platform. Cyberphysical design of digital-microfluidic biochips will
be covered in Section 5.

2 Architectural-Level Synthesis

The automated design and high-level synthesis of DMFBs have attracted con-
siderable interest in recent years. DMFB synthesis consists of two parts: archi-
tectural level synthesis and physical-level synthesis. In this section, we focus on
architectural-level synthesis.

2.1 Design Objectives

For architectural-level synthesis, the major goal is to schedule corresponding
operations and to bind each operation to a limited set of resources (e.g., di-
lution and mixing). With appropriate architectural-level synthesis, maximum
operation parallelism and minimum execution time can be achieved. Minimiz-
ing execution time is critical for bioassays due to the following reasons. First,
biological samples and chemical reagents are sensitive to the environment, there-
fore long execution time may lead to degradation. Second, long execution time
cannot meet the requirements of rapid time-to-result and point-of-care applica-
tions. Finally, long execution time means more electrode actuation, which may
result in the degradation of DMFBs. In the design flow of DMFBs, a bioassay
can be modeled as a directed, acyclic and polar sequencing graph. Each node
represents a fundamental operation (e.g., mixing, dilution, dispensing and de-
tection), and a direct edge represents the dependency relationship between two
operations. Once resource binding is accomplished, the completion time for each
operation can also be determined, and the corresponding sequencing graph can
be constructed.

For some critical bioassays, such as clinical diagnostics, it is important to
verify the correctness of on-chip fluidic operation results. Therefore, error recov-
ery can also be embedded in the architectural-level synthesis. We will cover this
topic in detail in Section 5. Here, we focus on conventional synthesis methods
that do not consider error recovery.

2.2 Synthesis Algorithms

Several algorithms, such as integer linear programming (ILP)-based synthe-
sis [16], Tabu-search-based synthesis [24] and priority scheduling algorithm [17]
have been proposed to handle architecture-level synthesis without error recovery.

196 M. Ibrahim, Z. Li, K. Chakrabarty

Su et al. proposed the first system-level method that attempted to apply
classical architectural-level synthesis techniques to the design of DMFBs. In their
work, architectural-level synthesis is viewed as the problem of scheduling assays
and resource binding for maximum parallelism. An ILP model is formulated to
obtain optimal scheduling results under resource constraints.

A clinical diagnosis procedure, namely in-vitro diagnosis, is used in their
work. The diagnosis protocol was mapped to a sequencing graph model (see
Fig. 7). The graph G(V,E) has the vertex set V in correspondence with the
set of operations, and the edge set E representing dependencies. Each node vi
is assigned a weight d(vi)) denoting the time taken for operation vi. It was
assumed that there are m types of physiological fluids for n types of enzymatic
measurements.

I1

S1

Input
operations:
2mn Nodes

I1 Im Im Im+nIm+1 Im+1 Im+n

M1 M1 Mm Mm

D1 Dn D1 Dn

NOP

NOP

Mixing
operations:
mn Nodes

Detection
operations:
mn Nodes

1
2mn

2mn+1 3mn

4mn3mn+1

S1 Sm Sm R1 Rn R1 Rn

Fig. 7. Sequencing graph model of a multiplexed biomedical assay [16].

The ILP-based model is formulated to minimize the assay completion time
under resource constraints. The objective function is to minimize completion
time C = {Sti + d(vi)}, where Sti is the starting time of operation vi and d(vi)
represents the duration time for vi.

Constraints consist of dependency constraints and resource constraints. De-
pendency constraints are of the following type: if operation vj depends on vi,
then constraint Stj ≥ Sti + d(vi) should be satisfied. There are three resource
constraints: reservoir port constraint, reconfigurable storage unit constraint and
optical detector constraint. A binary variable Xij is defined first to be 1 if op-
eration vi starts at time slot j, otherwise Xij is set to be 0. Reservoir port
constraint can be expressed to be

∑
i:vi∈Ik

Xij ≤ 1, 1 ≤ k ≤ m + n and 1 ≤
j ≤ T . Reconfigurable storage unit constraint is formulated to be Nmixer(j) +
0.25Nmemory(j) ≤ Na for 1 ≤ j ≤ T , where Nmixer(j) and Nmemory(j)

Design Automation for Digital-Microfluidic Biochips 197

is the number of mixer needed and the number of storage units needed at
time slot j. Nd detectors are assigned to each enzymatic assay. Without loss
of generality, Nd is set to 1, and the optical detector constraint is expressed as∑
i:vi∈D1

j∑
l=j−d(vi)

Xij ≤ 1, ...,
∑

i:vi∈Dn1

j∑
l=j−d(vi)

Xij ≤ 1 for 1 ≤ j ≤ T . Experimen-

tal results show that optimal solutions can be obtained using this ILP model for
small problem instances.

DMFB Synthesis (G,C,L)
1 < Ao, Bo >=InitialSolution(G,L)
2
∏o

=CriticalPath(G,Ao, Bo)
3 < A,B,

∏
>=TabuSearch(G,C,L,Ao, Bo,

∏o
)

4 < S,P >=ScheduleAndPlace(G,C,A,B,
∏

)
5 return

∏
=< A,B, S, P >

Fig. 8. Synthesis algorithm for DMFBs.

Two other algorithms, namely genetic algorithm (GA) and modified list
scheduling (M-LS), were also proposed in [16]. For bigger instances, both GA
and M-LS can generate good results. However, GA is more time-consuming when
compared with M-LS.

Maftei et al. proposed a Tabu Search-based synthesis approach that can de-
termine the allocation, resource binding, and scheduling of on-chip bioassays.
Their work can be formulated as follows. Given a biochemical application model
as a graph G(V,E), a biochip in the form of an m×n array, and a module library
L, it is possible to synthesize the implementation ψ =< A,B, S, P > (includ-
ing the allocation, binding, scheduling and placement), which can minimize the
completion time δG. This work also considered the movement of virtual devices
during their operation to reduce the application completion time.

A Tabu Search (TS) metaheuristic for architecture-level synthesis was used
in [24]. The synthesis algorithm for DMFBs is shown in Fig. 8. After binding and
allocation have been obtained by TS, List Scheduling (LS) heuristic was used
to determine the schedule S of operations. The priority

∏
for each operation is

also determined by TS.
Note that TS is a metaheuristic based on a neighborhood search technique

that uses design transformations applied to the current solution to generate a
set of neighboring solutions. A mixing stage of the polymerase chain reaction
(see Fig. 9(a)) and module library (see Fig. 9(b)) are used to illustrate how TS
works.

Consider a current solution as shown in Fig. 10(a). The current Tabu list
shown on the right contains recently performed transformations. Starting from
this solution, TS generates neighboring solutions. Three possible solutions are
presented in Fig. 10(b)-(d). Based on the completion time, TS will select the
movement in Fig. 10(b).

198 M. Ibrahim, Z. Li, K. Chakrabarty

Fig. 9. A PCR sequence graph and corresponding module library for experimental
evaluation in [24].

(a) Current solution (b) Rebind O5 to a 2×5 module

(c) Rebind O4 to a 1×3 module (d) Rebind O7 to a 1×3 module

Fig. 10. Demonstration of rebind process in an example of Tabu Search neighbor-
hood [24].

Design Automation for Digital-Microfluidic Biochips 199

Corresponding experimental results for two real-life examples, in-vitro di-
agnostics on human physiological fluids (IVD) and the mixing stage of PCR,
demonstrate that the proposed Tabu Search-based approach can obtain optimal
results using much less computing time when compared with the ILP method.

Ricketts et al. proposed a hybrid priority scheduling algorithm (HPA) to
perform scheduling for a resource-constrained DMFB [17]. For a system with
Sm samples and Rn reagents, the genetic encoding in [16] results in a search
space of (4SmRn)! possible solutions, while HPA results in a search space of
only SmRn candidates. This improvement is based on the realization that (1)
some operations do not directly conflict with each other, and (2) operations
(dispensing, mixing and detection) are performed independently, and a large
number of encoded chromosomes in the original 4SmRn priority scale will not
yield better solutions.

Therefore, they allocated the same priorities to all operations that are directly
interdependent, which removes the possibility of hold and wait due to unfulfilled
incoming edge requirements. In this way, while all the (SmRn)! combinations
are not tried, the experimental results demonstrate this is sufficient to achieve
near-optimal results.

3 Physical-Level Synthesis

Unlike architectural-level synthesis, physical-level synthesis addresses the place-
ment of resources and the routing of droplets to satisfy objectives such as
area minimization or throughput maximization. It creates the final layout of
the biochip, consisting of the placement of microfluidic modules such as mixers
and storage units [22–24], the routes that droplets take between different mod-
ules [28–30], and other geometrical details [20]. This is the reason why this step
is also known as geometry-level synthesis.

In addition, when two or more droplet routes intersect or overlap with each
other, it is likely that a droplet that arrives at a later clock cycle can be con-
taminated by the residue left behind by another droplet that passed through
at an earlier clock cycle, resulting in cross-contamination [21]. To avoid incor-
rect assay outcomes, wash operations (i.e., wash-droplet routing) should also be
incorporated in physical-level design.

In this section, we provide an overview of the key problems in physical-level
synthesis of DMFBs. We describe emerging CAD tools for automating module
placement, droplet routing, and cross-contamination avoidance in DMFBs.

3.1 Module Placement

Module placement is one of the key physical design problems for DMFBs. Based
on the results obtained from architectural-level synthesis described in Section 2
(i.e., a schedule of bioassay operation, a set of microfluidic modules, and the
binding of bioassay operations to modules), placement determines the locations
of each module on the microfluidic array [23].

200 M. Ibrahim, Z. Li, K. Chakrabarty

Design Objectives. The most important optimization objective in placement
is the minimization of chip area. Since solutions to the placement problem can
provide the designers with guidelines on chip footprint, area minimization frees
up more unit cells for other fluidic functions such as sample preparation and
collection [21]. During placement, some performance constraints, such as an up-
per limit on assay completion time and maximum allowable chip array, must be
satisfied.

Placement Algorithms. DMFBs enable dynamic reconfiguration of the mi-
crofluidic array during run-time, thus they allow the placement of different
modules on the same location during different time intervals. In [23], Su and
Chakrabarty modeled the placement of modules as a 3-D packing problem, as
shown in Fig. 11. Each microfluidic module is represented by a 3-D box, the
base of which denotes the rectangular area of the module and the height denot-
ing the time-span of its operation. Microfluidic biochip placement can now be
viewed as the problem of packing these boxes to minimize the total base area
while avoiding overlaps [23]. Since the microfluidic placement problem is shown
to be NP-complete [23], a heuristic simulated annealing (SA) algorithm is used
to solve it in a computationally efficient manner.

Fig. 11. Reduction from 3-D placement to a modified 2-D placement [23].

Motivated by simultaneous scheduling and placement in dynamically recon-
figurable FPGAs (DRFPGAs), Yuh et al. adopt a T-tree topological represen-
tation to solve the placement problem for DMFBs [22]. A T-tree is a 3-ary tree
used to represent a compact placement that is suitable for volume optimiza-

Design Automation for Digital-Microfluidic Biochips 201

tion, and thereby is more likely to generate solutions that are within a defined
3D cube. Consequently, given a set of m tasks, let Wi, Hi, and Ti denote the
width, height, and duration of each task, respectively, 1 ≤ i ≤ m. Based on the
three-dimentional space (X,Y ,T), the T-tree represents the geometric relation-
ship between two tasks as follows. If node nj is the left child of node ni, module
vj , must be placed adjacent to module vi in the T+ direction, i.e., tj = ti + Ti.
If node nk is the middle child of node ni, module vk must be placed in the Y +

direction of module vi, with the t-coordinate of vk equal to that of vi, i.e., tk = ti
and yk ≥ yi + Hi. If node nl is the right child of node ni, module vl must be
placed in the X+ direction of module vi, with the t- and y-coordinates equal
to those of vi, i.e., tl = ti and yl = yi. Figure 12 illustrates a compact place-
ment with its corresponding T-tree [22]. Based on this T-tree model, a simulated
annealing-based algorithm is also employed to perform placement [22].

Fig. 12. A compact placement and its corresponding T-tree [22].

Minimizing chip area is not the only objective of placement algorithms. Since
DMFBs are fabricated using standard microfabrication techniques [25], the array
may contain several defective cells [23]. Some defects that have been reported
for fabricated biochips include dielectric breakdown, shorts between adjacent
electrodes, electrode degradation, particle contamination and residue, and etch
variations. Therefore, reconfiguration techniques have been considered in [22,23]
to bypass faulty cells in order to tolerate defects. Finally, as a way of optimiz-
ing for the completion time of a biochemical application, Maftei et al. in [24]
proposed a Tabu Search metaheuristic algorithm for the synthesis of DMFBs
as discussed in Section 2. This includes a placement procedure that takes ad-
vantage of dynamic reconfigurability to achieve dynamic placement of modules,
even during their execution.

202 M. Ibrahim, Z. Li, K. Chakrabarty

3.2 Droplet Routing

A key problem in biochip physical design is droplet routing between modules,
and between modules and I/O ports (i.e., on-chip reservoirs) [20]. The dynamic
reconfigurability inherent in digital microfluidics allows different droplet routes
to share cells on the microfluidic array during different time intervals. In this
way, the routes in DMFBs can be viewed as virtual routes, which make droplet
routing different from the classical VLSI routing problem.

Design Objectives. The objective of any droplet routing method for DMFBs
is to minimize the number of cells used for routing, while satisfying constraints
imposed by fluidic properties. As resource sharing in a time-multiplexed fashion
is allowed in a DMFB, droplet routing can be modeled in three dimensions, where
z-axis is for time, which enables us to optimize geometric paths and temporal
schedules simultaneously. Cho and Pan created a graph model to visualize the
allowable movements of a droplet at (x,y,t) [26], as shown in Fig. 13(a). They also
used the 3-D space to visualize the fluidic constraints that need to be satisfied
to avoid unwanted mixing between droplets moving in parallel. Let di at (x

t
i,y

t
i)

and dj at (x
t
j ,y

t
j) denote two independent droplets at time t. Then, the following

constraints must be satisfied at any time t during routing:

1. Static constraint: |xt
i − xt

j | > 1 or |yti − ytj | > 1.

2. Dynamic constraint: |xt+1
i − xt

j | > 1 or |yt+1
i − ytj | > 1 or |xt

i − xt+1
j | > 1 or

|yti − yt+1
j | > 1.

Fig. 13. Graph model and fluidic constraints for DMFB design [26]: (a) a graph for
droplet routing models geometric paths as well as temporal schedules simultaneously;
(b) dynamic and static fluidic constraints prevent undesirable mixing of droplets during
movement.

The above constraints are visually illustrated in Fig. 13(b); there should not be
any other droplets in a cube centered by any droplet [26].

Typically, the fluidic route of a droplet can be modeled either as a 2-pin net
or a 3-pin net (for mixing). Each net is characterized by source port(s) and sink

Design Automation for Digital-Microfluidic Biochips 203

port. Since the routing problem is usually linked with the placement procedure
that gives the 2-D placement configurations of fluidic modules at different time
intervals, the droplet routing problem is decomposed into a series of subproblems.
A set of nets is considered for routing in each subproblem.

Droplet-Routing Algorithms. In [27], Böhringer used the concept of motion
planning of multiple moving robots to derive the paths of moving droplets over
the chip array. Paths are generated based on a prioritized A* search algorithm,
where the priority of each droplet can be assigned randomly or based on spe-
cific hardware guidelines, such as droplet volatility. Note that this approach is
time-consuming due to the time spent for searching through all feasible rout-
ing solutions; i.e., evaluating a large number of candidate routes. Moreover, as
a post-synthesis technique, routability is not always guaranteed. This was the
motivation for Xu and Chakrabarty to integrate droplet routing in the synthesis
flow in [28]. In their routing-aware synthesis approach, they attempt to achieve
high-routability mapping of bioassay protocols to the microfluidic array. Instead
of inferring accurate routability information based on post-synthesis routing, Xu
and Chakrabarty adopt simple estimates of routability based on the inter-module
distances; thus droplet routing can be flexibly incorporated in the previously
mentioned simulated annealing synthesis. Using a real-life a protein assay, Xu
and Chakrabarty show the benefits of incorporating routability information into
the synthesis framework on the assay completion time, as illustrated in Fig. 14.

Fig. 14. Assay completion times (with droplet transportation time included) for Su
and Chakrabarty [23] and for the routing-aware synthesis method in [28].

As a way of creating optimal solutions for droplet routes, Yuh et al. in [29]
proposed a network-flow based routing algorithm that can concurrently route
a set of non-overlapping nets. This method consists of three stages. The first
stage calculates the criticality of each net based on the available array cells
for each net. Global routing is considered in the second stage to identify a
set of non-overlapping nets and the resulting information is used in a min-cost

204 M. Ibrahim, Z. Li, K. Chakrabarty

max-flow (MCMF) algorithm to derive global-routing paths. In the third stage,
negotiation-based detailed routing iteratively routes each net in the decreasing
order of their criticality. Due to the iterative nature of the proposed algorithm, it
shows better performance compared with [23,27]. However, a significant bottle-
neck of the network-flow formulation is the distribution of blockages. To conser-
vatively guarantee the fluidic constraints discussed above, a channel with at least
three cells is considered in the network-flow formulation. Hence, if the width of
the channel between blockages is less than three cells (even though a droplet can
pass through it), the channel will not be utilized in the network-flow formulation,
resulting in suboptimal solutions in terms of routability.

All the approaches mentioned above consider the blockages to be present on
the grid during the entire routing time; this is usually not the case. Therefore,
Keszocze et al. provide a droplet routing solution that considers temporality of
blockages in [30]. In addition, to tackle the complexity of droplet routing, they
exploit the power of Satisfiability Modulo Theory (SMT) solvers to obtain an
exact routing solution. This approach has been shown to provide high-quality
results, but questions are still being raised regarding its scalability.

3.3 Cross-Contamination Avoidance

Cross-contamination potentially arises as a result of unrestricted sharing of unit
cells by various droplet routes. Cross-contamination occurs when the residue
left behind by one droplet transfers to another droplet with undesirable conse-
quences, such as misleading assay outcomes (false position, incorrect diagnosis,
etc.). As a result, the droplet routing problem for biochips must consider the
avoidance of cross-contamination during droplet transportation while satisfying
both timing goals and fluidic constraints.

Cross-contamination avoidance was first introduced in [31] by Zhao and
Chakrabarty. The goal of their proposal is twofold: 1) Avoiding cross contamina-
tion between different droplet routes. 2) Minimizing the time needed for droplet
routing. Therefore, for each subproblem, the set of droplet routes need to be dis-
joint to avoid paths intersections (i.e., paths sharing cells). By having a planar
undirected graph G =(V ,E) such that each vertex v ∈ V represents an electrode
in the array and each edge e ∈ E connects only two adjacent electrodes, the solu-
tion is obtained by applying the problem of finding disjoint paths (vertex-disjoint
or edge-disjoint) for pairs of vertices in the graph G.

To minimize the time needed for routing, the Lee algorithm is adopted to
obtain the shortest path between the net pins. Note that after any net has been
routed, the cells occupied by its path are marked as obstacles for the unrouted
nets to avoid cross-contamination. Therefore, the latter route is disjoint with
respect to all the previous routes. It is obvious that the routing order within
the subproblem is critical since it influences the routability of all the nets, such
ordering can be optimized based on a predefined priority equation. Note that
the routing of each net is based on an upper limit on the time that must not be
exceeded. Hence, timing violations introduces the need for scheduling washing
operations between successive droplet visits for cleaning.

Design Automation for Digital-Microfluidic Biochips 205

Since cross-contamination can also happen across two subproblems, the droplet
routes for the nets in the current subproblem should avoid sharing cells with the
routes in the predecessor sub-problem. Therefore, after droplet routing in one
subproblem, a wash operation needs to be introduced. In a wash operation, a
wash droplet is routed to traverse selected cells and remove residue. The delay
introduced by the wash operation is equivalent to the time needed to route the
wash droplet. For a subproblem that includes a follow-up wash operation, its
droplet-routes will not be treated as obstacles for the next subproblem.

Despite the novelity of Zhao and Chakrabarty’s work, their method de-
pends on interrupting the biochemical operations between successive subprob-
lems, which introduces a significant timing overhead. Huang et al. interleaved
functional droplet-routing steps with wash-droplet routing by introducing con-
tamination aware routing methods [32]. Instead of using the shortest path in
routing, they adopted a k-shortest path routing technique to minimize the con-
taminated spots within one subproblem. To convert the generated subprob-
lem routing paths from sequential to concurrent ones in order to obtain the
clock cycle corresponding each contaminationed spot, routing compaction by
dynamic programming was used. With this information, a minimum-cost cir-
culation (MCC) graph is adopted to simultaneously clean intra- and inter-
contaminations to minimize the used cells and the execution time. This work,
however, overlooked the order in which multiple cross-contamination spots are
considered. Therefore, Zhao and Chakrabarty followed up in [33] with a tech-
nique that synchronizes wash-droplet routing with sample/reagent droplet-routing
steps by controlling the arrival order of droplets at cross-contamination sites.

The effort spent on routing wash droplets depends on the placement topol-
ogy obtained from previous automation stages. This was illustrated by Lin and
Cheng in [34] through Fig. 15. Therefore, to cope with cross-contamination while
reducing the effort spent on wash operations, Lin and Cheng introduced an early
crossing reduction algorithm during placement. Crossing reduction was obtained
using a bipartite matching formulation. More details about the algorithm can
be found in [34].

4 Chip-Level Design

After fluidic-level synthesis, the control information for each electrode for per-
forming bioassay protocols can be obtained. In chip-level design, electrode ad-
dressing and wire routing impose constraints on the electrical connectivity and
signal planning. Therefore, chip-level design has been reported as the bottleneck
for fabrication of DMFBs, and it is directly related to manufacturing complexity
and fabrication cost [35]. In this part, we present an overview of automated chip-
level design for DMFBs that addresses electrode addressing and wire routing.

4.1 Architecture of DMFBs

DMFBs typically rely on EWOD-based actuator, and electric potential is used
to actuate electrodes by changing the wettability of droplets, such that droplets

206 M. Ibrahim, Z. Li, K. Chakrabarty

Fig. 15. Illustration of the fact that the minimum number of routing-path crossings is
determined by the placement topology, and this minimum number cannot be reduced
by routing or by compactness changes [34]. (a) Placement topology with zero routing-
path crossing. (b) Different placement topology that implements the same design as in
(a) but has at least one routing-path crossing. (c) Less compact placement result with
the same placement topology as in (b) and consequently the same minimum number
of routing crossings.

can be driven along the active electrodes [36]. A schematic view of a DMFB
chip can be seen in Fig. 16(a), a typical DMFB contains a patterned electrode
array, conduction wires, electrical pads, and a substrate [37]. A signal plan and
electrical connections between pins and electrical pads can be established in
a pin array (see Fig. 16(b)). As a result, research efforts on chip-level design
can be grouped into two main design steps: 1) electrode addressing and 2) wire
routing [38].

4.2 Electrode Addressing

Electrode addressing is a method whereby electrodes are addressed through con-
trol pins to identify input signals [38]. Direct addressing is an approach where
each electrode is directly addressed with an independent control pin [36]. Direct
addressing can maximize the flexibility of electrode controls. However, the num-

Design Automation for Digital-Microfluidic Biochips 207

Fig. 16. (a) Schematic view of a DMFB chip. (b) Design model on a 2D pin array [38].

ber of control pins is usually limited for DMFBs, especially for DMFBs with a
high-density electrode array.

Therefore, pin-constrained electrode addressing is used for solving this prob-
lem; a limited number of pins can be used to control a large number of electrodes
in DMFBs. Electrode actuation sequences, which store the droplet control infor-
mation, consist of a sequence of signal status (“1”(actuated), “0”(de-actuated),
or “X”(don’t-care)) of the electrode at each time step [39]. A don’t-care signal
“X” can be mapped to either “0” or “1”. Broadcast addressing in [39] focuses
on electrode grouping based on the compatibility of actuation sequences. If two
actuation sequences are compatible with each other, these two electrodes can be
connected to the same control pin to reduce the total number of pins. For ex-
ample, by replacing “X” in the actuation sequence of e4 with “1”, the actuation
sequences for electrodes e4 and e5 in Fig. 17(b) can be made to be compatible
with each other, therefore, these two electrodes can be controlled by only one
pin.

A compatibility graph is used for broadcasting addressing in [39]. As shown in
Fig. 18, each vertex represents an electrode and an edge between two electrodes
indicates that their actuation sequences are compatible with each other. Based on
the compatibility graph, electrode addressing is mapped to the clique partitioning
problem, which is known to be NP-hard [40].

Therefore, several heuristic algorithms have been proposed for electrode ad-
dressing. A partitioning algorithm based on “droplet trace”, which is extracted
from the scheduling and droplet routing results, has been proposed in [41]. In
combination with this partitioning algorithm, the “Connect-5 algorithm” is used
for efficient pin assignment. An ILP-based algorithm was proposed in [42], which
effectively minimizes the assay time and pin count. The work in [43] formulated
electrode addressing and power reduction into a minimum-cost and maximum-
flow (MCMF) network, and a progressive electrode-addressing scheme was pro-
posed for reducing design complexity.

208 M. Ibrahim, Z. Li, K. Chakrabarty

Fig. 17. (a) Electrodes for handling fluidic operations. (b) Scheduled fluidic functions
in the form of actuation sequences. (c) Electrode addressing using direct-addressing
scheme. (d) Electrode addressing using the broadcast-addressing scheme.

Fig. 18. (a) A compatibility graph. (b) Two possible electrode-grouping results.

4.3 Wire Routing

After electrodes have been addressed with control pins, wire routing is required
to establish the correspondence between control pins and signal pads. A con-
duction wire is used for the connection of inner pins to outer signal pads, which
is similar to the typical escape routing problem in VLSI design [44]. However,
in pin-constrained DMFBs, multiple-terminal pins sharing the same signal are
required to be routed together, which results in the interdependence between
electrode addressing and wire routing. This means that different electrode ad-
dressing solutions may lead to different wire-routing results. Therefore, if elec-
trode addressing and wire routing are not considered together, the quality of
the design may be adversely affected. For example, separate considerations of
electrode addressing and wire routing results in an infeasible routing result in

Design Automation for Digital-Microfluidic Biochips 209

Fig. 19(a), while the simultaneous consideration of electrode addressing and wire
routing results in a feasible routing solution (see Fig. 19(b)).

Fig. 19. Consideration of electrode addressing and routing [38]: (a) separately; (b)
simultaneously.

Very little work has considered the problem of automated wire routing for
DMFBs. The work in [46] proposed a pin-count-aware routing algorithm for
broadcast electrode-addressing DMFBs. The routing problem can be effectively
solved using two kinds of flow formulations, maximum-flow network and mini-
mum flow network, which result in lower pin count, higher routability and shorter
wirelength. The work in [45] proposed an ILP-based two-stage technique of global
routing and progressive routing. In the global routing stage, the pin count and
wirelength can be simultaneously minimized in a global manner. Then, pro-
gressive routing iteratively completes the addressing and routing steps using a
minimum-cost maximum-flow model.

5 Cyberphysical Design for Digital Microfluidics

During bioassay exection on a DMFB, the droplets are likely to encounter some
parametric changes or operational errors due to the nature of fluid-handling
operations (such as unbalanced droplets resulting from split operation) [49], or
due to the electric charge that gets trapped over time in the dielectric layer below
the electrodes [50]. With recent advances in sensing techniques for DMFBs (e.g.,
integrated waveguides [47], capacitive sensors [3], and droplet monitoring using
CCD cameras [48]), the design of physical-aware synthesis/control software is
now feasible. By physical-aware, we refer to the fact that the software can receive
information about the outcome (e.g., error-free, erroneous, and improper droplet
size) of fluid-handling operations based on feedback from the sensing system [50].
This information can be used in various forms to adapt the control software to
the new condition of the cyberphysical system. Figure 20 depicts the components
of a cyberphysical microfluidic platform.

210 M. Ibrahim, Z. Li, K. Chakrabarty

Fig. 20. Schematic of the cyberphysical digital microfluidic system [50].

In this section, we describe how the concept of cyberphysical systems can be
leveraged in designing adaptive synthesis tools for DMFBs. The following cases
will be analyzed: operation variability inherent from erroneous change in droplet
size, uncertainties that are inherent in the completion times of fluidic operations
such as mixing and thermal cycling, and erroneous execution of an operation
due to electrode breakdown.

5.1 Online Synthesis With Operation Variability

Under ideal conditions, when two droplets come together for a mixing operation,
the resulting droplet has a volume equal to the sum of the volumes of the input
droplets. After a split operation, the resulting droplets have volumes equal to half
of the larger merged droplet. However, the volume of a droplet can also vary due
to parametric faults, such as non-uniform electrode coating or unequal actuation
voltages [49]. Since biochemical applications have high accuracy requirements,
it is imperative to address the biochemical operation variability that results in
erroneous volume variations.

In [49], Alistar et al. proposed a biochemical application model that cap-
tures the sensing operations needed to detect an error, and the subgraphs that
have to be executed for recovery. Figure 21(b) shows the insertion of the sens-
ing operations O8 and O9 into the original protocol sequencing graph G(V,E).
During a sensing operation, the droplet is transported to an on-chip capacitive
sensor [3] to have its volume measured. Two outcomes are possible after a sens-
ing operation; success or failure. Alistar et al. adapted the application model to
this conditon by incorporating conditional edges that connect the sensing op-
eration to the corresponding successor operations, as shown in Fig. 21(c). The
edge labeled err corresponds to the case when the volume sensed was erroneous,
whereas the edge not err represents correct droplet volume. To recover from
an erroneous situation by incorrect droplet volume, it is necessary to provide
recovery subgraphs for each sensing operation even before starting execution,
such subgraph contains all operations needed to recover from a sensed erroneous
droplet volume. Figure 22 shows the recovery subgraphs for both O8 and O9.

Based on this application model, the goal is to determine an implementation
that minimizes the completion time in case no errors occur, and at the same

Design Automation for Digital-Microfluidic Biochips 211

Fig. 21. Biochemical application model [49]. (a) Original sequencing graph. (b) Inser-
tion of sensing operations. (c) A complete application graph with the consideration of
sensing outcomes.

time, is fault-tolerant to operation variability. Therefore, [49] followed a strategy
that has two components: (1) an offline synthesis algorithm is initially used to
synthesize the application while considering the minimization of the application
completion time, and (2) an online synthesis algorithm that is based on List-
Scheduling (LS) is employed to minimize the recovery time. The authors used
the Tabu Search (TS)-based approach for their offline synthesis, but they pro-
vided an LS-based online synthesis (ONS) approach that can better exploit the
actual biochip configuration; thus protocol execution can be adapted according
to sensing outcomes. The ONS is invoked whenever an error is detected, and the
associated subgraph is then employed for recovery.

5.2 Synthesis with Completion-Time Uncertainties

The precision of fluidic operations is vital for the accuracy of analytical bioas-
says. For example, in quantitative measurement for glucose concentration in
blood [51], accurate measurements cannot be obtained if the mixing time for
the blood sample and the enzymatic reagent is not controlled precisely. Due
to the inherent variability and randomness of biological/chemical processes, the

212 M. Ibrahim, Z. Li, K. Chakrabarty

Fig. 22. Recovery subgraphs for O8 and O9 [49].

problem of completion-time uncertainties in fluidic operations remains even af-
ter careful characterization of a bioassay. To overcome this problem, Luo et al.
exploited the advantages of cyberphysical DMFBs to facilitate the precise im-
plementation of the essential operations such as droplet dispensing and mixing
without specifying a module library [52].

The basic idea is that some fluidic operations are frequency-sensitive. For
example, the rate at which a droplet is transported or dispensed is proportional
to the clock frequency; thus the higher the frequency, the faster the completion.
However, in order to avoid electrode degradation due to increasing switching
activity [53], it is necessary to choose an appropriate clock frequency. Therefore,
Luo et al. suggested running different categories of operations at different clock
frequencies. This was achieved by scheduling transportation/dispensing opera-
tions and dilution/mixing operations at different time segments. The time seg-
ment to implement droplet transportation is defined as the transportation phase
(T phase), and the segment to implement dilution/mixing operations is defined
as the dilution/mixing phase (D/M phase) [see Fig. 23(a)]. For each phase, only
transportation operations or the dilution/mixing operations are carried out on
the chip.

At runtime, the biochip operates under clock frequency fT in the T phase.
Output droplets of previous steps and droplets dispensed from reservoirs are
moved to the modules where the subsequent dilution/mixing operations are to be
carried out. After all the droplets arrive at their destination modules, the biochip
enters the D/M phase. The dilution/mixing operations that are scheduled in the
same phase start together, and they are carried out under clock frequency fD/M .
When the feedback from sensors indicates all the dilution/mixing operations

Design Automation for Digital-Microfluidic Biochips 213

Fig. 23. (a) Droplet transportation and dilution/mixing operations are scheduled in
different phases. (b) Start and end time of a D/M phase. [52].

have already been completed, the D/M phase ends and the biochip enters the
next T phase, as shown in Fig. 23(b). In this way, based on sensor feedback,
the biochip switches between the T phase and the D/M phase with different
clock frequencies. This approach can be implemented either using a tunable
frequency-divider implemented on the field-programmable gate array (FPGA)
of the cyberphysical system or by controlling the output frequency of the signal
generator using the control software [52]. In this case, the time spent on each
dilution/mixing operation is determined based on the sensor feedback.

In their work, Luo et al. described synthesis software that can determine
the schedule and module-placement for the operations on a level-by-level basis
by considering the operations dependencies. This approach was introduced for
sequencing graphs with a directed-tree structure, as shown in Fig. 24(a). In the
example shown in Fig. 24(a), operations 1, 2, and 6 are three mixing operations.
Here, 1 and 2 are the lowest-level operations and their outputs are the inputs of 6,
hence, 1 and 2 must be completed before 6 starts. Based on the interdependency
relationship, operations 1 and 2 are implemented in the same D/M phase, while
operation 6 is schedule to be implemented in the next D/M phase, as shown in
Fig. 24(b). Next, mixing operations 1 and 2 are mapped to two mixers on the
biochip. Since the inputs of mixing operation 6 are the outputs of operations
1 and 2, the authors refer to the region that overlaps with the modules for 1
and 2 as the execution region of operation 6, as shown in Fig. 24(c). After the
mixing operation has been completed for each mixer, the product droplet stays
inside the mixer until the end of the D/M phase, i.e., part of the mixer works
as a storage unit. Note that there is no module-to-module transportation in this
case.

For sequencing graphs that are not directed trees, the synthesis results can
be derived by a means of graph partitioning, thus converting the sequence graph
into a set of directed trees [52].

214 M. Ibrahim, Z. Li, K. Chakrabarty

Fig. 24. (a) Sequencing graph with a tree structure [52]. (a) Droplet transportation
and dilution/mixing operations are scheduled in different phases. (b) Scheduling results
for mixing operations 1, 2, and 6. (c) Module-placement for 1, 2, and 6. (d) Storage
units S1 and S2 inside the modules assigned for operations 1 and 2.

5.3 Synthesis with Error Recovery

A DMFB device is said to have a failure if its operation does not match its spec-
ified behavior. In order to detect defects using electrical methods, fault models
that efficiently represent the effect of physical defects at some level of abstrac-
tion have been described in [55, 56]. These models can be used to capture the
effect of physical defects that produce incorrect behavior. Faults can be caused
by manufacturing imperfections, or by degradation during use as electrodes are
actuated. Possible causes of defects are dielectric breakdown due to high volt-
ages, degradation of the insulator because of long actuation periods for the elec-
trode, short-circuited electrodes, and open in the metal connection between the
electrode and the control source. These defects result in a failure in electrode
activation for droplet transportation.

The correctness of bioassay outcomes can be determined by utilizing on-chip
detectors. In addition, physical-aware control software can be used in a DMFB
platform to implement an error-recovery method. In this subsection, we discuss
some methods that consider embedding error recoverability in the synthesis of
DMFBs. More analysis from the perspective of design space parameters for error
recovery can be found in [56].

Resynthesis for Error Recovery. In [50], Luo et al. introduced a reliability-
driven reconfiguration method that can dynamically respond to error signals
from the underlying hardware. Utilizing two different sensing approaches (CCD
camera-based sensor or integrated optical detector), the proposed system can
adapt to the new situation by deriving new schedules, module placement, and
droplet routing pathways with minimum impact on the time-to-response. Thus
a dynamic resynthesis approach is considered.

To leverage the advantages of dynamic resynthesis, additional intermediate
product droplets must be stored in specially designated locations of the chips
to facilitate recovery in a manner that will be explained later. These droplets

Design Automation for Digital-Microfluidic Biochips 215

are defined as backup droplets. Also, additional droplets of samples and reagents
must be dispensed from reservoirs for error recovery.

Characterizing the response of the control system when an error occurs de-
pends on the type of erroneous fluid-handling operations. Therefore, fluidic-
handling operations are formally categorized as follows [50]. Category I: this is
the set of all reversible operations that can be simply re-executed when an error
is detected, such as dispensing operations. Category II: this includes the set of
nonreversible operations for which immediate predecessors can provide backup
droplets. Operations in this category can also be simply re-executed because their
input droplets are stored on chip. Category III: this corresponds to the set of
nonreversible operations for which their immediate predecessors cannot provide
backup droplets. If an error occurs in an operation in this category, we not only
need to re-execute the operation itself but also to backtrace to its predecessors.
Figure 25(a) clarifies the above-mentioned classification on a typical sequencing
graph. Figure 25(b) shows that some electrodes on the boundary of the biochip
are reserved for storage of backup droplets. The algorithm used to determine the
recovery sequence for operation opti is shown in Fig. 26. Note that the operator
Pr is defined as Pr : O → ⋃

i=O1,O2,...Ok
{opti, optj |optj ∈ pred(opti) ∀ j}.

Fig. 25. (a) Example of a sequencing graph corresponding to a bioassay protocol. (b)
Layout of a biochip with reserved area for error recovery [50].

Besides the initial synthesis (which is also known as offline date preparation
[50]), the control software is also responsible for monitoring the execution of
the bioassay and performing resynthesis if an error is detected. The resynthesis
process is tightly coupled with the category to which the erroneous operation
belongs as discussed above. All operations that need to be rescheduled are placed
in a priority queue Q based on topological order. These operations include error
recovery operations and all successors of the erroneous operation. The algorithm
that is used for dynamic resynthesis of a bioassay is shown in Fig. 27.

216 M. Ibrahim, Z. Li, K. Chakrabarty

Recovery Backtrace (opti)
1 Classify operations into Category I, Category II, and Category III;
2 Initialization of Ri : Ri = opti;
3 Initialization of intermediate variable Re : Re = Pr(Ri);
4 while (RE −Ri) ∩ { Set of operations in Category III } �= φ do
5 Update Ri : Ri = Pr(Ri);
6 Update Re : Re = Pr(Ri);
7 end while
8 Ri = Re;
9 Ri is the set of recovery operations for opti;

Fig. 26. Pseudocode for determining the recovery operations for opti [50].

Dynamic Resynthesis ()
1 Localize the erroneous operation according to the feedback at checkpoints;
2 Determine the operations which need to be adjusted and store them into a priority
queue Q;
3 Delete all initial synthesis results for operations in Q;
4 while Q �= φ do
5 Search available resource for operation q0 which has the highest priority in Q;
6 Remove q0 from Q;
7 end while

Fig. 27. Pseudocode for dynamic resynthesis of a bioassay [50].

Dictionary-Based Error Recovery. Even though dynamic resynthesis is able
to leverage the advantages of chip integration in cyberphysical systems, its reac-
tion time for error recovery still represents a bottleneck for several biochemical
application that require highly precise time-control in each step of chemical syn-
thesis, such as flash chemistry. To overcome this drawback, Luo et al. proposed
a dictionary-based hardware-assisted error-recovery method [54].

The key idea in this method is to precompute and store recovery actua-
tion sequences for all errors of interest that can occur during a bioassay. When
an error is detected by on-chip sensors during the execution of a bioassay, the
cyberphysical system can simply look up the recovery solution in the dictio-
nary rather than performing online resynthesis using an in-the-loop computer.
This dictionary-based solution therefore reduces response time and enables flash
chemistry [54].

The dictionary-based error recovery approach can be implemented using the
finite-state machine (FSM) shown in Fig. 28. The control signals for the biochip
are determined by the current state of the FSM; the state transition of the
FSM is triggered by the analog feedback indicating that an error has occurred.
The error dictionary plays the role of a precomputed database that links each
possible state to the corresponding outputs. Entries in the dictionary record all
possible errors and the resynthesis results, which include the corresponding error

Design Automation for Digital-Microfluidic Biochips 217

recovery operations. When an error occurs, the cyberphysical system can utilize
the dictionary and load the precomputed synthesis results.

Fig. 28. The finite-state machine control system implementation of the cyberphysical
system. The FSM runs on the microcontroller or the FPGA, and its current state
determines control signals applied on the biochip. A state transition of the FSM is
triggered by the detection of error(s) [54].

Since the error dictionary needs to store resynthesis solutions for errors of
interest, the data volume can be high. Consider a typical protein dilution bioas-
say with 103 fluidic operations. If we limit ourselves to errors involving at most
two operations, the memory required for storage of the error dictionary without
compaction can be as high as 28.75 MB. However, the memory on a low-cost
FPGA is typically limited. For example, according to the datasheet of several
widely-used FPGAs (which cost less than $50), the capacities of their on-chip
memories are less than 1 MB. External memory devices can increase the size of
total memory, however, their prices can be as high as the low-cost FPGAs. There-
fore, the above solutions are not compatible with the goal of low-cost biochip
platforms that can be used for field deployment and point-of-care clinical di-
agnostics. To address this problem, Luo et al. further proposed a compaction
procedure for an error dictionary, which includes resynthesis solutions for all the
possible error combinations in bioassay [54]. Then, the vectors (i.e., actuation
matrices) stored in the dictionary are compacted in a lossless manner. The size
of compacted dictionary in the above example can be reduced to only 0.96 MB.
Figure 29 shows the components of the dictionary-based error-recovery system.
Note that no software execution is needed for online error recovery, thus the
need for a computer and the related interfaces can be eliminated.

Experimental Case Study. Recently, Hu et al. implemented a hardware-
assisted error recovery platform [55]. Errors in droplet transportation on a chip
array are detected using a capactive sensor. The schematic of the control system

218 M. Ibrahim, Z. Li, K. Chakrabarty

Fig. 29. Modules and their interconnections for the dictionary-based error recovery
system [54].

setup is shown in Fig. 30 [55, 56]. The hardware/software interface is realized
through seamless interaction between control software, an off-the-shelf micro-
controller, a shift register for synchronous actuation of 32 chip electrodes, and a
frequency divider implemented on an FPGA. The intermediate microcontroller
provides the following functionalities: 1) communication with the desktop appli-
cation via a USB link, 2) a parallel-to-serial conversion for the 32-bit electrode
actuation vector provided by the desktop and injecting the serial data into the
shift register, 3) metering the signal frequency received from the FPGA to in-
terpret the capacitive sensing readout.

Desktop
Application

Microcontroller
(Arduino) Firmware

Shift Register /
Switches

Frequency
Divider (FPGA)

DMFB

USB

Electrode
Addressing Capacitive

Sensing

Software

HW/SW
Interface

Hardware

Fig. 30. Illustration of the control system loop [55].

Design Automation for Digital-Microfluidic Biochips 219

On the hardware side, some electrodes are equipped with the sensing cir-
cuit; these electrodes are designated as checkpoints. For effective error recovery,
a number of such checkpoints must be incorporated [55]. However, precise lo-
calization of errors is not possible with this sensor technology because the only
information available to us is that a droplet is stuck within a region between
two checkpoints. Therefore, to ensure reliability whenever an error is detected,
region-level bypassing is employed during control-software rollback to recover
from the error. Based on this scenario, the chip array is divided into several re-
gions with a checkpoint associated with each region. When a “missing droplet”
error is detected at a checkpoint, it can be inferred that the defect lies on the
path between this checkpoint and the previous checkpoint on the designated
droplet route, thus rollback is initiated. A droplet under test retraces its path
from the current checkpoint to the previous checkpoint. Note that the rollback is
deemed to have been successful when the previous checkpoint once again reports
the presence of a droplet (after a known number of clock cycles). If retracing
fails, i.e., the previous checkpoint does not report a droplet, we conclude that the
droplet is irreversibly stuck [55]. As a result, a new droplet needs to be dispensed
and the cells between the two checkpoints have to be permanently discarded for
reliability.

In this setup, Hu et al. used a 32-electrode chip. The chip was divided into
four regions. The positions of checkpoints are determined to ensure that each
region has exactly one checkpoint. From the pre-computed activation sequences,
the arrival time for a droplet at a checkpoint is known. Hence, based on the
sensor readout, the control software decides whether a droplet has arrived as
expected. If a droplet reaches a checkpoint as planned, the experiment will be
continued and the droplet will enter the next region. If not, the reconfiguration
steps will be triggered automatically, a backup route will be generated in real-
time and the new electrode activation sequences will be immediately fed into the
biochip.

Hu et al. carried out several experimental runs using the fabricated chip,
sensing hardware, the hardware/software interface, and the control software de-
scribed before [55]. Videos illustrate successful re-routing of droplets and by-
passing of faults whenever an error is detected [57].

6 Conclusion

We have presented a survey of research on design automation for digital microflu-
idic biochips. We first provided an overview of the digital-microfluidic platform
showing the principle of operation based on the electrowetting phenomenon. Ad-
vances and techniques from different research groups around the world in both
architectural as well as physical-level synthesis have been illustrated. The use
of current advances in biosensor technology for designing cyberphysical digital-
microfluidic biochips has been highlighted. We have presented three applications
to show how cyberphysical integration can be used. Finally, demonstration of a
laboratory experiment for error-recovery based on the cyberphysical integration

220 M. Ibrahim, Z. Li, K. Chakrabarty

is now a door-opener for the deployment and use of biochips in the emerging
marketplace.

References

1. Schulte, T., Bardell, R. L., Weigl, B. H.: Microfluidic technologies in clinical diag-
nostics. Clinica Chimica Acta 321, 1–10 (2002)

2. Guiseppi-Elie, A., Brahim, S., Slaughter, G., Ward, K. R.: Design of a subcutaneous
implantable biochip for monitoring of glucose and lactate. IEEE Sensors Journal 5,
345–355 (2005)

3. Fair, R. B.: Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and
Nanofluidics 3, 245–281 (2007)

4. Berthier, J.: Micro-drops and digital microfluidics. William Andrew (2012)

5. Srinivasan, V., Pamula, V. K., Fair, R. B.: Droplet-based microfluidic lab-on-a-chip
for glucose detection. Analytica Chimica Acta 507, 145–150 (2004)

6. Chen, X., Cui, D., Liu, C., Li, H., Chen, J.: Continuous flow microfluidic device for
cell separation, cell lysis and DNA purification. Analytica chimica acta 584, 237–243
(2007)

7. Chang, Y.-H., Lee, G.-W., Huang, F.-C., Chen, Y.-Y., Lin, J.-L.: Integrated poly-
merase chain reaction chips utilizing digital microfluidics. Biomedical Microdevices
8, 215–225 (2006)

8. Luan, L., Evans, R. D., Jokerst, N. M., Fair, R. B.: Integrated optical sensor in a
digital microfluidic platform. IEEE Sensors Journal 8, 628–635 (2008)

9. Sista, R., Hua, Z., Thwar, P., Sudarsan, A., Srinivasan V., Eckhardt, A., Pollack,
M., Pamula, V.: Development of a digital microfluidic platform for point of care
testing. Lab on a Chip 8, 2091–2104 (2008)

10. Hu, K., Hsu, B.-N., Madison, A., Chakrabarty, K., Fair, R. B.: Fault detection,
real-time error recovery, and experimental demonstration for digital microfluidic
biochips. Proc. DATE, 559–564 (2013)

11. Cho, S. K., Moon, H., Kim, C.-J.: Creating, transporting, cutting, and merging
liquid droplets by electrowetting-based actuation for digital. microfluidic circuits.
IEEE Journal of Microelectromechanical Systems 12, 70–80 (2003)

12. Mugele, F., Baret, J.-C.: Electrowetting: from basics to applications. Journal of
Physics: Condensed Matter 17, R705 (2005)

13. Berthier, J., Clementz, Ph., Raccurt, O., Jary, D., Claustre, P., Peponnet, C., Fouil-
let, Y.: Computer aided design of an EWOD microdevice. Sensors and Actuators
A: Physical 127, 283–294 (2006)

14. Su, F., Chakrabarty, K.: Unified high-level synthesis and module placement for
defect-tolerant microfluidic biochips. Proc. DAC, 825–830 (2005)

15. Baranyi, J., Csernus, O., Beczner, J.: Error analysis in predictive modelling demon-
strated on mould data. International Journal of Food Microbiology 170, 78–82 (2014)

16. Su, F., Chakrabarty, K.: Architectural-level synthesis of digital microfluidics-based
biochips. Proc. ICCAD, 223–228 (2004)

17. Ricketts, A., Irick, K., Vijaykrishnan, N., Irwin, M.: Priority scheduling in digital
microfluidics-based biochips. Proc. DATE, 329–334 (2006)

18. Zhao, Y., Xu, T., Chakrabarty, K.: Integrated control-path design and error re-
covery in the synthesis of digital microfluidic lab-on-chip. ACM J. Emerg. Technol.
Comput. Syst 6, 11 (2010)

Design Automation for Digital-Microfluidic Biochips 221

19. Zhao, Y., Xu, T., Chakrabarty, K.: Online synthesis for error recovery in digital
microfluidic biochips with operation variability. Proc. DTIP, 53–58 (2012)

20. Chakrabarty, K., Fair, R.B., Zeng, J.: Design Tools for Digital Microfluidic
Biochips: Toward Functional Diversification and More Than Moore. IEEE Trans.
on CAD of Integrated Circuits and Systems 29, 1001–1017 (2010)

21. Ho, T.-Y., Chakrabarty, K., Fair, R.B., Pop, P.: Digital microfluidic biochips: Re-
cent research and emerging challenges. Proc. CODES+ISSS, 335–343 (2011)

22. Yuh, P.-H., Yang, C.-L., Chang, Y.-W.: Placement of Defect-Tolerant Digital Mi-
crofluidic Biochips Using the T-tree Formulation. ACM J. Emerg. Technol. Comput.
Syst 3, 13:1–32 (2007)

23. Su, F., Chakrabarty, K.: Module placement for fault-tolerant microfluidics-based
biochips. ACM Trans. Design Automation of Electronic Systems 11, 682–710 (2006)

24. Maftei, E., Pop, P., Madsen, J.: Tabu Search-Based Synthesis of Dynamically Re-
configurable Digital Microfluidic Biochips. Proc. CASES, 195–203 (2009)

25. Fair, R. B. et al.: Electrowetting-based on-chip sample processing for integrated
microfluidics. Proc. IEDM, 32.5.1–32.5.4 (2003).

26. Cho, M., Pan, D.Z.: A High-Performance Droplet Routing Algorithm for Digital
Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 27,
1714–1724 (2008)

27. Böhringer, K.F.: Modeling and Controlling Parallel Tasks in Droplet-Based Mi-
crofluidic Systems. IEEE Trans. on CAD of Integrated Circuits and Systems 25,
334–344 (2006)

28. Xu, T., Chakrabarty, K.: Integrated Droplet Routing and Defect Tolerance in the
Synthesis of Digital Microfluidic Biochips. ACM J. Emerg. Technol. Comput. Syst
4, 11:1–23 (2008)

29. Yuh, P.-H., Yang, C.-L., Chang, Y.-W.: BioRoute: A Network-Flow-Based Routing
Algorithm for the Synthesis of Digital Microfluidic Biochips. IEEE Trans. on CAD
of Integrated Circuits and Systems 27, 1928–1941 (2008)

30. Keszocze, O., Wille, R., Drechsler, R.: Exact routing for digital microfluidic
biochips with temporary blockages. Proc. ICCAD, 405–410 (2014)

31. Zhao, Y., Chakrabarty, K.: Cross-Contamination Avoidance for Droplet Routing
in Digital Microfluidic Biochips. Proc. DATE,1290–1295 (2009)

32. Huang, T.-W., Lin, C.-H., Ho, T.-Y.: A Contamination Aware Droplet Routing
Algorithm for Digital Microfluidic Biochips. Proc. ICCAD, 151–156 (2009)

33. Zhao, Y., Chakrabarty, K.: Synchronization of Washing Operations with Droplet
Routing for Cross-Contamination Avoidance in Digital Microfluidic Biochips. Proc.
DAC, 635–640 (2010)

34. Lin, C.C.-Y, Chang, Y.-W.: Cross-Contamination Aware Design Methodology for
Pin-Constrained Digital Microfluidic Biochips. IEEE Trans. on CAD of Integrated
Circuits and Systems 30, 817–828 (2011)

35. Su, F., Chakrabarty, K., Fair, R.: Microfluidics-based biochips: technology issues,
implementation platforms, and design-automation challenges. IEEE Trans. on CAD
of Integrated Circuits and Systems 25, 211–223 (2006)

36. Pollack, M., Shenderov, A., Fair, R.: Electrowetting-based actuation of droplets
for integrated microfluidics. Lab Chip 2, 96–101 (2002)

37. Gong, J., Kim, C.: Direct-referencing two-dimensional-array digital microfluidics
using multilayer printed circuit board. Journal of Microelectromechanical Systems
17, 257–264 (2008)

38. Huang, T., Lin, Y., Chang, J., Ho, T.: Chip-level design and optimization for digital
microfluidic biochips. Proc. MWSCAS, 1–4 (2011)

222 M. Ibrahim, Z. Li, K. Chakrabarty

39. Xu, T., Chakrabarty, K.: Broadcast electrode-addressing for pin-constrained multi-
functional digital microfluidic biochips. Proc. DAC, 173–178 (2008)

40. Gross, J., Yellen, J.: Graph theory and its applications. CRC press (2005)
41. Xu, T., Chakrabarty, K.: Droplet-trace-based array partitioning and a pin assign-

ment algorithm for the automated design of digital microfluidic biochips. Proc.
CODES+ISSS, 112–117 (2006)

42. Lin, C., Chang, Y.: ILP-based pin-count aware design methodology for microfluidic
biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 29, 1315–1327
(2010)

43. Huang, T., Su, H., Ho, T.: Progressive network-flow based power-aware broadcast
addressing for pin-constrained digital microfluidic biochips. Proc. DAC, 741–746
(2011)

44. Alpert, C., Mehta, D., Sapatnekar, S.: Handbook of algorithms for physical design
automation. CRC press (2008)

45. Huang, T., Ho, T.: A two-stage ILP-based droplet routing algorithm for pin-
constrained digital microfluidic biochips. Proc. DAC, 201–208 (2010)

46. Huang, T., Yeh, S., Ho, T.: A network-flow based pin-count aware routing al-
gorithm for broadcast electrode-addressing EWOD chips. Proc. ICCAD, 425–431
(2010)

47. Jokerst, N. and others: Progress in chip-scale photonic sensing. IEEE Trans.
Biomed. Circuits Syst 3, 202–211 (2009)

48. Shin, Y.-J., Lee, J.-B.: Machine vision for digital microfluidics. Review of Scientific
Instruments 81, 014 302:1–7 (2010)

49. Alistar, M., Pop, P., Madsen, J.: Online synthesis for error recovery in digital
microfluidic biochips with operation variability. Proc. DTIP, 25–27 (2012)

50. Luo, Y., Chakrabarty, K., Ho, T.-Y.: Error Recovery in Cyberphysical Digital-
Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 32,
59–72 (2013)

51. Hadwen, B., Broder, G., Morganti, D., Jacobs, A., Brown, C.: Programmable large
area digital microfluidic array with integrated droplet sensing for bioassays. Lab
Chip 12, 33053313 (2012)

52. Luo, Y., Chakrabarty, K., Ho, T.-Y.: Biochemistry Synthesis on a Cyberphysi-
cal Digital Microfluidics Platform Under Completion-Time Uncertainties in Fluidic
Operations. IEEE Trans. on CAD of Integrated Circuits and Systems 33, 903–916
(2014)

53. Huang, L., Koo, B., Kim, C. J.: Evaluation of anodic Ta2O5 as the dielectric layer
for EWOD devices. Proc. IEEE MEMS, 428–431 (2012)

54. Luo, Y., Chakrabarty, K., Ho, T.-Y.: Real-time error recovery in cyberphysical
digital-microfluidic biochips using a compact dictionary. IEEE Trans. on CAD of
Integrated Circuits and Systems 32, 1839–1852 (2013)

55. Hu, K., Hsu, B.-N., Madison, A., Chakrabarty, K., Fair, R.: Fault detection,
real-time error recovery, and experimental demonstration for digital microfluidic
biochips. Proc. DATE, 559–564 (2013)

56. Ibrahim, M., Chakrabarty, K.: Error recovery in digital microfluidics for personal-
ized medicine. Proc. DATE, (2015) [accepted for publication]

57. http://microfluidics.ee.duke.edu/Published Videos/2013 DATE/

Design Automation for Digital-Microfluidic Biochips 223

Intuitive Interaction with Robots - Technical
Approaches and Challenges

Elsa Andrea Kirchner1,2, Jose de Gea Fernandez2, Peter Kampmann2, Martin
Schröer1, Jan Hendrik Metzen1, and Frank Kirchner1,2

1Robotics Group, University of Bremen, Robert-Hooke Strasse 1, 28359 Bremen,
Germany

2Robotics Innovation Center, German Research Center for Artificial Intelligence
(DFKI GmbH), Robert-Hooke Strasse 1, 28359 Bremen, Germany

elsa.kirchner@dfki.de

http://robotik.dfki-bremen.de

Abstract. A challenging goal in human-robot interaction research is
to build robots that are intuitive interaction partners for humans. Al-
though some research does focus on building robots which look and be-
have exactly like a human, even simple toylike robots can be accepted as
adequate and intuitive interaction partners. However, for complex inter-
action tasks, intelligent support, or cooperative behavior more advanced
and ”on board” solutions have to be developed, that still support nat-
ural interaction behavior between human and robot. This chapter will
discuss some relevant research in the field of human-robot interaction
which is fundamental for more complex but still intuitive interaction.
The focus is to convey the complexity of research that is required and
to point out different research areas which are relevant to achieve the
goal of developing robots that can be natural interaction partners for
humans.

Keywords: inherent safety, compliant actuator, embedded system, ver-
ification, FPGA, model checking, interface, gesture, speech, embedded
brain reading, physiological computing, imitation learning, skill learn-
ing, transfer learning, active learning

1 Introduction

Today, personal computers can be found in almost every household. Prerequisite
for their entry into everyday life was not only that they became smaller in size
and affordable but that their user interfaces became more intuitive to enable easy
interaction and usage. But how about robots? Having a robotic companion to
clean the house or garden is a well-accepted wish of many of us. However, the idea
to utilize robotic systems for tasks that involve direct and close interaction with
humans does not always meet approval. An introduction of technical systems for
close interaction does often go along with social and ethic discussions, similar to

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_8, © Springer Fachmedien Wiesbaden 2015

discussions about the permanent availability when using mobile communication
devices. Such discussions are especially taking place with respect to the usage
of robotic systems to take over tasks and roles which are socially explicitly re-
served for humans, like the personal care of elderly people or the education of
our children. Often, a highly debated question is whether robotic systems shall
substitute for humans and human-human interaction and whether the utilization
of robotic systems may lead to a social impoverishment. In these discussions a
robotic system is seen as a technical system that takes over ”jobs” which other-
wise would be in the responsibility of other humans. Moreover, robotic systems
are in these discussions either often seen as insufficient interaction partners that
will not fulfill the demands of a human on an interaction partner or they are seen
as intruders that may even prohibit a human to interact with other humans or
to learn to interact appropriately. Both views are however far away from today’s
reality.

Robotic systems as they are applied today can carry out only a limited
amount of jobs that would otherwise be carried out by humans. Such jobs, like
working in an industrial environment on the production line and repeatedly
performing the same task, are often jobs that require no interaction with humans
and are willingly delegated to robotic systems. To introduce robotic systems into
highly interactive and social environments is a future challenge that arises fast
due to demographic changes. Besides above mentioned important ethic and social
discussions, questions about the requirements for everyday and intuitive human-
robot interaction have to be stated and answered. This chapter will address
mainly two important questions:

1. How must a robotic system be designed to allow safe human-robot interac-
tion?

2. How must a robotic system be designed to become an accepted interaction
partner?

While this chapter cannot present the final answers to these questions it
will, however, give an introduction to some relevant research topics. Moreover,
it will hopefully show that a broad field of research areas must be addressed
to enable safe and intuitive human-robot interaction and to design and build
robotic systems that will be accepted as interaction partners. Whether such
robotic systems may ever become social interaction partners cannot be answered
here although the quality of achievable human-robot interaction is an important
prerequisite for the discussion of the possible social role of robotic systems.

The chapter is structured as follows: In Section 2 relevant aspects for safe
human-robot interaction such as inherent safety, concepts for required onboard
sensor systems, and processing as well as challenges and opportunities, that come
from the possibility to apply formal verification methods to proof safe human-
robot interaction, are discussed. The focus of Section 3 is on aspects that are
relevant for the design of robots which can be accepted as human interaction
partner. Approaches such as intuitive interfaces, the usage of implicitly trans-
ferred information and the recognition of human intention as well as the role of

Intuitive Interaction with Robots 225

learning from humans are discussed. Finally, in Section 4 the chapter is briefly
summarized.

2 Safe Human-Robot Interaction in Changing
Environments

In current industrial applications an absolute separation of robots’ and humans’
workspace can be found in most cases. Robots work in cages while humans may
only enter the robots’ workspace when the robot is turned off. Such applications
require no cooperative human-robot interaction and allow the application of
conventional industrial robots. If close and collaborative interaction between
robots and humans is required, as it is already the case for medical and service
robotics, safety has to be considered. Safety can be assured by design and/or
control as well as by verification. Robotic design and/or control is addressed by
the mechatronic development of safe robotic manipulators and the extensions of
their capabilities in sensing their environment and in detecting humans within
their workspace. Verifying the proper functioning of such systems is challenging
because it incorporates the interaction of a robotic system as a cyber physical
system not only with its physical environment but also with a biological system,
the human, which can both not fully be modeled. Before addressing this challenge
in Section 2.3, a short overview is given about relevant research in safe robotic
manipulators (see Section 2.1) and embedded sensor systems (see Section 2.2).

2.1 Inherent Safe Robotic Systems for Human-Centered Robotics

The performance of traditional industrial robots has usually been evaluated look-
ing at their speed, precision, payload, and reachable workspace. When consid-
ering robots in close cooperation with humans, another aspect of performance
needs to be considered: safety. In classical industrial robots, safety was achieved
by enclosing the robot within some fences and avoiding sharing the workspace
with humans. However, when exiting those controlled environments in which no
interaction with humans takes place, the design of the robot and its cell must
be reconsidered to ensure a safety level which enables human-robot interaction.
The safety mechanisms to be used will determine the allowed degree of inter-
action with a human. For example, by introducing sensors and software safety
mechanisms to monitor and control the manipulator and/or by covering the ma-
nipulator with soft materials to avoid abrasion injuries, a robot may be able
to share human spaces without possibly injuring the human. In case of robots
with large inertia (thus also weight), it might not be enough to cover a robot
with compliant material to really avoid injuries to a cooperating human since
the amount of covering that would be required would be too large. In the case
of control software based on the monitoring of some sensory signals, questions
arise on what happens in case of a software/electrical failure, or in the case of
a very fast impact to which the sensors/software might not be able to react on
time. Impacts are the most dangerous hazard when working with large inertia

226 E.A. Kirchner et al.

robots at high speed. In case of lightweight robots (see next paragraph), the most
dangerous situation is not the (free) impact per se, but the clamping between
the robot structure or between robot and a wall [77].

There are two main ways of providing safety while sharing a workspace be-
tween robot and human: (1) avoiding the possibility of contact events between
robot and human by both robot and workspace supervision or (2) enabling full
human-robot interaction (contacts) by designing a new generation of force and
power-limiting robots combining low weight and inertia with control algorithms
or mechatronic designs that limit the maximum forces the robots can exert.
The first option, workspace supervision, can be used for most of classical indus-
trial robots. Basically, it requires a supervision system that monitors the robot’s
workspace and ensures that a minimum distance between worker and robot is
maintained. This can be achieved by safety-rated sensors and software which
supervises both robot speed and distance between robot and human, and either
slows down or stops the robot in case that a minimum distance is violated. The
second option, force-limiting robots, has the potential of enabling fully human-
robot interaction by limiting robot’s power and force by inherent design. Power
and force limitation can be achieved by design of the manipulator or by using
control software mechanisms. Namely, by using low-inertia manipulators, choos-
ing suitable material for compliant covering and an appropriate geometry that
avoids pinch points and sharp edges, or by adding control functions such as safe
collision detection and safe supervision of the robot kinematics.

In recent years we have seen on the market a number of this new generation
of industrial (lightweight) robotic manipulators that enable different degrees of
interaction based on different control mechanisms and/or design criteria. Among
the dual-arm robots which incorporate some of the above mentioned safety fea-
tures are for example the ABB Yumi (available from Spring 2015)(Fig. 1(b)).
The ABB Yumi is an inherently safe system by limiting via design the maxi-
mum forces it can exert. However, as a trade-off, that limitation also limits the
maximum payload (likely to be around 500 g) which might be though enough
for applications such as small parts assembly. Another recent system is the dual-
arm Nextage-OPEN (previously known as HIRO) designed by Kawada Industries
which can handle around 2 kg (including gripper). In this case, the maximum
power of the motors is limited by design to 80W, a value which is based on the
requirements mentioned on a previous version (thus not anymore valid) of the
standard ISO 10218 to guarantee safety of an industrial robot. Another force
limiting robot by design is the Baxter robot from Rethink Robotics (Fig. 1(c))
which uses a further development of the series elastic actuators [1]. The company
Universal Robots is also developing force limiting robots (Fig. 1(d))which can
carry 5 and 10 kg based on measuring motor currents to estimate joint torques
(and a second redundant measurement of the torques using the position mea-
surements at both sides of the gear). In this case, the maximum force the robot
can exert is limited to 150N (as the 80W, a value of a previous version of the
standard ISO 10218, not anymore valid). Finally, the latest version of the well-
known KUKA lightweight robots, the KUKA iiwa (Fig. 1(a)), can lift 7 and

Intuitive Interaction with Robots 227

14 kg and makes use of the joint torque sensors to achieve compliant motion and
thus safe human-robot interaction.

In summary, many approaches in manipulator design are possible to enable
inherent safe human-robot interaction and to open a new field of cooperative
interaction which is today only starting to be developed. Cooperative interaction
between human and robot is highly relevant for future developments especially
in industrial environments which require high flexibility and short down times.
Inherent safety is the basis for human-robot interaction which can further be
improved as will be discussed in the upcoming chapters.

2.2 Embedded Sensor Systems for Onboard Self and Environment
Modeling

A robot that is equipped with a minimum of sensors that perceive contact forces,
e.g., torque sensors in each of its joint, can sense direct interaction with the en-
vironment and the interacting human. The usage of tactile sensors in human
robot interaction can therefore be regarded as safety-critical, as it prevents in-
juries and damage in the case a contact between the interaction partners cannot
be avoided. The upcoming challenges coming alongside full body artificial skins
with continuously increasing resolution and modalities are discussed present-
ing decentralized pre-processing as one solution towards tackling the problem of
handling the increasing amount of data.

To enhance safety, the environment is often supervised by, e.g., safety-rated
sensing capabilities. Keeping sensing capability in the environment is often suf-
ficient if interaction takes place in static and supervised areas. For robotic sys-
tems that interact with humans in changing environments this approach is not
applicable. This increase in requirements of the autonomy of robotic systems
demands for additional sensing capabilities to cope with unforeseen events. To
achieve this, the system has to be able to analyze the gathered information as
well as to model its system state as well as its environment online. Increasing
these capabilities in a robot is a challenge on integrating both sensors and the
processing units for the required processing power.

For human-robot interaction it is further advantageous if the robot could be
able to sense and model its environment in a similar fashion as a human can.
This would allow easier interaction, communication and cooperation as well as
easier adaptation to new environments since a common understanding about the
environment could be generated and used to share and exchange knowledge.

Besides visual and auditory capabilities the human skin is a very important
sensing system. Sensor cells that are integrated into the skin allow to measure
the increment and decrement of pressure, stretching of the skin, acceleration
of a pressure stimulus and local pressure and deformation. By these sensors,
the human can feel its environment and detect changes in its environment and
especially during manipulation in much higher detail and broadness than simple
torque sensors could. Integrating broad tactile sensing capabilities into a robotic
manipulator is challenging since sensors that sense contact with the environment

228 E.A. Kirchner et al.

(a) (b)

(c) (d)

Fig. 1. (b) KUKA-iiwa (KUKA), (d) Yumi (ABB), (a) Baxter (Rethink Robotics), (c)
UR10 (Universal Robots)

Intuitive Interaction with Robots 229

need to be placed at the robots surface, which in case of multi-modal sensing is
a highly frequented area.

Nonetheless, several tactile sensing systems tackle the challenge of integrating
several modalities at the contact area of the robot. The attempt of [3] is to mimic
the capabilities of the human hand. Sensors for acquiring information about
texture, geometric and thermal properties are integrated in finger-shape sensor
modules. [2] and [4] focus more on the realization of sensor patches that can
be combined to cover a complete robotic system with optimized communication
and data acquisition.

The challenge of integrating such sensors into robotic end-effectors can be
observed from several examples. The hand systems developed by DLR [6, 5]
are highly integrated examples of robotic systems that strive to replicate the
kinematic capabilities of the human hand as closely as possible. It can be seen
that these systems are highly integrated without any space left relevant for tactile
skin sensors and its processing. [7] show another example of a five-fingered hand
with a tactile skin. Due to limited integration space, the tactile sensors have been
placed on top of the kinematic structure of the end-effectors without further
shielding and integration into the embedded processing units of the gripper.
Commercially available systems show a similar design. The Schunk SDH Hand
can be equipped with tactile sensors that thanks to their small dimensions can
be integrated into the gripper structure, although the actuators for the direct
drive of the joints share some of the integration space.

Regarding the development of the tactile sense in robotics towards highly
autonomous systems, perceiving as many modalities of touch as possible is a key
feature towards adding object properties like texture, geometry, and hardness
during exploration tasks. [8] summarized the sensing modalities for a robotic sys-
tem and the derived information to gather complete tactile information objects
in the contact area. The tactile information flow described comprises of using
force sensing arrays, measuring forces and torques as well as dynamic inputs
together with thermal properties and joint actuator efforts. By combining these
modalities, useful information about material hardness, texture properties, abso-
lute incoming forces and much more can be derived. The presented tactile sensor
modules are developments towards this goal, but either some of the information
is missing or is derived by sensors originally perceiving different modalities. One
example is measurement of overall incoming forces. One approach is to sum up
the information from the sensor modality that is responsible of measuring geo-
metric properties. Using this modality results in increased calibration effort, as
every sensing element of the required force sensing array needs to be calibrated
for measuring absolute forces. This approach is time-consuming, as these have
to be recalibrated, or does not lead to optimal results. Hence, the goal is to use
multi-modal information to allow to drive and adapt different kinds and levels
of interaction based on sensor data that is recorded from embedded sensors and
analysis.

The approach is thus to integrate separate force sensing modalities for mea-
suring dynamic, static and geometric properties at the contact area. Besides the

230 E.A. Kirchner et al.

aforementioned challenges of integrating the required sensors into the available
integration space, processing the perceived information is another issue. For in-
stance, the tactile sensing system presented in [9] consisting of more than 700
sensing elements generates - due to its camera-based acquisition system - more
than 300 Megabytes per second of sensory information. Approaches that sample
the sensor information in the end-effector and transmit the unprocessed data
to a high-level processing unit cannot be taken anymore to tackle this amount
of information. Therefore, approaches have to be developed that allow not only
to integrate multimodal sensors into a robotic systems but to also integrate in-
telligent and space saving analysis systems which requires to develop new and
decentralized analysis strategies.

Fig. 2. Highly integrated gripper system with multi-modal tactile force sensing capa-
bilities and embedded pre-processing.

An approach towards a robotic end-effector with a multi-modal tactile force
sensing system with decentralized pre-processing integrated into the system (2)
is presented in [10]. A three-fingered morphology using two opposable thumbs
has been chosen as a good compromise between the amount of realizable grasp
types using this setup and the mechanical complexity of the system (compare
[11]). Several force sensing modalities have been integrated into the system. For
measuring geometric properties, a fiber-optic measurement principle has been
selected. By combining the setup of this sensor together with an array of piezo-
electric material, both geometric properties and dynamic impacts can be mea-
sured by specialized modalities at the same contact area. The exterioceptive

Intuitive Interaction with Robots 231

sensing modalities are completed by three force-torque sensors, one is integrated
in each finger base. Together with proprioceptive information like joint angles
and applied actuation power measured from the actuation of the gripper, this
set of sensors fulfills the tactile force sensing requirements of the described tac-
tile information flow in [8]. Pre-processing of the sensor elements is realized as
early as possible in the gripper system itself. Therefore, a combination of eleven
field-programmable gate arrays (FPGAs), nine programmable system on chips
(PSoCs) and one digital signal processor (DSP) is handling the embedded pro-
cessing of the perceived information. This combination of specialized processing
units that are distributed in the overall gripper system allows the generation of
high-level information already in the end-effector thus enabling the implemen-
tation of local control loops like grasping an object or reacting to slippage of
objects without involving high-level processing systems outside the end-effector.
This approach enables fast reaction times to external stimuli and enables fur-
ther reduction of communication between the processing system in the gripper
and external processors. Extending this approach to more complex behaviors
implemented locally leads for example to the possibility to let the end-effector
control the manipulator arm where it is attached to, to follow a contour. The
implementation of such a behavior could result in a shift of control paradigms
where usually kinematic chains are controlled in a top-down manner by high-
level processing units. The shift of processing load and the resulting geometric
information of the followed contour delivered by the combination of the joint
movements combined with the kinematics of the manipulator arm further leads
to a reduction of data transferred to high-level processing units which is a key
feature towards robotic systems with increasing complexity due to increasing
autonomous capabilities.

By embedding sensing capability into robots, they can become independent
of predefined and supervised interaction environments and thus potentially able
to interact with humans in changing environments. To achieve such indepen-
dency requires research not only in the field of sensor technology but also in
the field of electronics. Following the definition of today’s big data discussion
which is based on the relationship of available processing power and the amount
of data that needs to be processed, the embedded processing architectures of
future robotic systems can be inspired by research from the field of big data
handling. Embedded sensing capabilities cannot only be used to replace safety-
rated sensing capabilities of a static interaction environment to enhance or even
facilitate safe human-robot interaction. It does enable a robot to share a common
understanding of the environment of the interacting human or to even analyze
the human’s behavior or intention as will be discussed in Section 3.

2.3 Formal Verification of Human-Robot Interaction

In robotic application fields where a robot takes over or substitutes for parts
of the human’s body function safety becomes most relevant. However, in such
applications like robotic rehabilitation the functioning and control of a robot as
a partly autonomous system often depends on many influencing aspects like the

232 E.A. Kirchner et al.

context of interaction, the human’s behavior, and the human’s general or current
capabilities. Quite often the robot must adapt to changing situations or changes
in the human’s capabilities. This is for example highly relevant for patients with
disabilities. Here support might depend on the patient’s capability to be able to,
e.g., move a body part by herself or himself or not. The more directly a robotic
system, like an orthosis or exoskeleton as a rehabilitation device, interferes with
the human’s behavior and the more its functionality depends on conditions which
are determined by the interacting human and environment, the more complex it
becomes to even describe the functionality or to guarantee proper and reasonable
functioning. While the formal verification of autonomous robots for functional
safety is already a complicated task [12], complex human-robot interaction can
per se be seen as a challenging field for the implementation of formal descriptions
and formal verification methods. To apply verification methods to applications
with intense human-robot interaction is especially interesting since the imple-
mentation of complex interaction increases the vulnerability of such approaches
for errors that might otherwise not easily be found. There are many reasons
for hidden errors in complex interaction. A most important one arises from the
human ability to automatically and unconsciously compensate for minor inaccu-
racies. Formal description and verification could support the detection of such
errors. A first step is to assure correct functioning of complex systems with re-
spect to specified application conditions. Even by developing a formal model
for an approach which must not necessarily be yet a model that can directly
be verified by standard verification methods can help to detect errors within
specific applications which would otherwise (due to their low impact on overall
functioning or due to given dependencies) not easily be found or hidden [13].

However, new approaches are required that allow to formally describe com-
plex human-machine interaction, i.e., to model the human or human data like
physiological data and the interacting cyber-physical system(s) as well as the
applied human-machine interfaces (as part of the robot or as independent de-
vices, see Section 3.1). To verify their correct functioning is a very challeng-
ing task since today’s solutions to formally describe such complex systems and
human-machine interaction are not suitable to be directly applied. A rigorous
specification of all parts and interfaces might help to break the complex problem
down, since verifying complex systems may fail due to their complexity itself as
faulty dependencies between or interplay of processes are easily overseen when
addressing the system as a whole. Thus, a possible solution is to focus on the
basic functions and processes of the system or interaction and to verify them in
themselves, before addressing the formal verification of their interplay in a sec-
ond iteration. Here, techniques such as model checking [14] seem to be suitable
to be applied. However, further development and extensive research in this field
is required to solve this challenge.

Intuitive Interaction with Robots 233

3 Robots as Accepted Interaction Partner

Besides designing and building robotic systems that allow safe interaction, robots
must be provided with further qualities that are common for humans. Highly
relevant for satisfying human-human interaction is that the interaction is intu-
itive, i.e, that none of the partners has to constantly think of what and how to
say or to do something in a certain way and that common interaction pathways
can be used (see Section 3.1). This might not always be the case. For example,
when people of different cultures interact with each other, mimic, body language
and of course language might differ and prohibit intuitive interaction. Moreover,
for easy interaction it is relevant that the intention of the interaction partner
can be inferred and addressed (see Section 3.2). This is even more relevant for
cooperative interaction where it is relevant to infer what the cooperating partner
wants to do next to solve a task together. In the long run a robotic system will
not be accepted as natural, human-like interaction partner in case it does not
learn by itself and during interaction how to improve interaction. A good strat-
egy is to directly learn from the interaction partner, i.e., the human. Therefore,
the approach of imitation learning for improving human-robot interaction will
be discussed at the end in Section 3.3.

3.1 Intuitive Interfaces and their Application Focus

To interact with technical systems interfaces are required. Such interfaces can be
stand-alone interfaces, they can be embedded into the interaction environment,
worn by the human interaction partner or can be part of the cyber-physical
system, e.g., the robot. Most interfaces serve purely as input device, i.e., as
possibility to transfer commands to a technical system. Such interfaces can be
quite simple, like a mouse or keyboard. Other systems are more than input
devices. For example, an Automatic Virtual Environment (CAVE) is a complex
interaction environment. It is an immersive virtual reality facility that allows
interaction within spatially engaging environments but also with robotic systems
or their simulations (see Fig. 3 for an example). While a mouse or keyboard
belongs to the type of interfaces that allow a human to translate commands
into input that a computer or other technical systems can understand, a CAVE
system allows the human to interact more intuitively and to receive complex
feedback.

Interfaces that enable intuitive interaction become more and more relevant.
They often allow to make use of communication pathways that are used for hu-
man to human interaction and communication. For example, speech is a highly
efficient communication channel for humans. Speech interfaces were developed
early in the 20th century. Joseph Weizenbaum (1923−2008) developed the com-
puter program ELIZA [15]. He discovered that this simple natural language
processing system, which was able to carry out humanlike conversations but
was actually not able to understand the meaning of human language, could be
applied to substitute a human partner. This secondary finding of his research
was of high interest for psychiatrists, who even suggested to apply the program

234 E.A. Kirchner et al.

Fig. 3. Immersive virtual multi-robot control using a CAVE supported by embedded
brain reading.

ELIZA as an acceptable substitute for human therapy [16]. The given example
shows that interfaces for speech generation and understanding that may even
imitate the learning of human’s speech [15, 17–20] has a high relevance for inter-
action and that robots equipped with such an interface can easily be accepted
as interaction partner.

Another communication channel that is increasingly used for interaction with
robots is body language. Especially gesture is used for explicit interaction, and
allows the intuitive control of a robot [21–23]. Gestures can be used to transfer
complex commands by often simple movements of the limbs, usually the upper
limb of the human. They are to some degree restricted, since they can only be
used for predefined commands which have to be learned by the human. However,
by making use of a hierarchical gesture control concept which utilizes different
levels of input states and differentiates between command modes and options
(see Fig. 4), it is not only possible to greatly ease the process of learning those
gestures and their meaning for humans; the same simple gestures can furthermore
be used several times while communicating different commands to the robot.

The hierarchical gesture control concept is achieved mainly by separating
commands into modes and options (see Fig. 4), i.e., the user would first issue a
gesture to select a desired operation mode, e.g. exploration and then is able to
set options, e.g. the desired exploration mode (if not default behavior is wanted)
for the selected mode by issuing additional gestures. This way, even a reduced
set of available gestures can be used to issue a variety of different commands,
i.e., by using certain gestures for mode selection and the same gestures for option
selection as well.

Furthermore, by using the concept of starting an interaction with a certain
simple gesture command which turns the robot from its previous, e.g., idle to
an ”attention” state (see Fig. 4), it can be clearly defined whether the human
does wish to communicate with the robot or not. This allows the human to
otherwise behave freely. He or she will not have to avoid movements of the, e.g.,
arms that would otherwise constitute a gesture. For easy and fluent interaction

Intuitive Interaction with Robots 235

Fig. 4. Simplified sketch of an hierarchical gesture control concept.

it is also comfortable to not to keep the limb in a certain position to drive a
responding behavior of the robot. It is a better option to generate a gesture
which starts a response of the robot that is performed until a new command is
given. Moreover, a very simple and intuitive gesture can be defined to stop any
behavior of the robot. Such a gesture makes sense especially in situations where
the human might not know what to do next and therefore needs some time to
think the situation over. In such situations it might be best that the robot is
just doing nothing.

Special applications for interfacing with robots can be found in the field of
rehabilitation. Here, a technical system or a robot must support a human by
restituting or substituting her or his capabilities. Early interfaces for reestab-
lishing communication or motor function were brain computer interfaces (BCIs)
that make use of brain activity [24–27]. Such interfaces like the so-called P300-
speller [24] are an alternative to physical interaction, since they allow subjects,
including paralyzed Locked-In syndrome patients [28], to communicate words,
letters, and simple commands. They even reenable physical interaction by con-
trolling a cyber-physical system, like a prothesis. Recently the usage of orthoses
or even exoskeletons in rehabilitation and assistance in daily life has become of
high relevance when combined with BCIs. Orthoses or exoskeletons which were
originally developed for military purposes to expand human capabilities, i.e., to
increase the force a human can apply [29], can combined with a BCI be used to
reenable a human to move her or his arms [30–32] or legs [33, 34] again. How-
ever, exoskeleton technology cannot only be used for the support of disabled

236 E.A. Kirchner et al.

persons but also for industrial applications. Exoskeletons can be a applied as a
very intuitive interface that allow to control complex robots in, e.g., tele-robotics
applications [35, 36].

As it was discussed for sensing capabilities (see Section 2.2), for the devel-
opment of interface technology it becomes more and more relevant that human-
robot interaction is not only intuitive but supported in any environment. How-
ever, the approach of equipping specific environments with intelligent interfaces,
as it is for example done for the support of people in their flats by making use of
approaches of assistive daily living [37], is limited to human-controlled environ-
ments. In contrast, the approach of equipping humans with wearable interfaces
(e.g., the myo1 wireless muscular activity sensor for issuing gesture commands)
can be applied to in principle any environment. In future, it will however be-
come more and more relevant for human-robot interaction to equip robots with
embedded interfaces to enable for example gesture recognition without the re-
quirements that either the interacting human or the environment is equipped
with sensing technology that interprets her or his posture. Approaches which will
be discussed in Section 3.3 can be applied to read the human’s overt behavior.
However, before explaining the relevance of behavior recognition and learning
of motor behavior from humans for successful human-machine interaction the
relevance of intention recognition will be discussed next.

3.2 The Relevance of Implicit Information and Human Intention
Recognition

To build robots that are accepted by humans as interaction partner, it is not
sufficient that they can be explicitly controlled via intuitive interfaces. The more
and better a robot is cooperating with a human the more the interacting hu-
man will expect humanlike behavior of the robot. To achieve this, it is relevant
that not only explicit information (i.e., a control command) is transferred be-
tween human and robot, but that implicit information is transferred as well.
Implicit information is transferred between humans rather passively. It tells the
interaction partner something about, e.g., the emotional state, involvement, or
mental load. Studies showed that it is highly relevant that explicit and implicit
information do match. Is for example gesture used to implicitly support explicit
information transferred by speech it was found that a human interaction partner
will not trust information given explicitly by speech in case that the implicitly
transferred information does not match [38]. On the other hand, a human in-
teraction partner will more likely accept a system as interaction partner in case
that explicitly and implicitly transferred information does match. Therefore, to
improve human-robot interaction a robot could be enabled to transmit implicit
information by, e.g., gesture or facial expression, like a human [39–41]. In turn the
robot or interface must be enabled to analyze the human by decoding implicitly
sent information.

1 https://www.thalmic.com/en/myo/

Intuitive Interaction with Robots 237

everyday situation

⦁ movement preparation detection
⦁ possible motion trigger

⦁ prediction of user's desire
⦁ motion path estimation
⦁ possible motion trigger in
very early rehabilitation phase
after brain lesion

⦁ user assistance / control
⦁ movement planning (fwd. kinematics)
⦁ active movement execution
⦁ force feedback application

⦁ physical movement detection
⦁ confirmation of EEG-based motion prediction
⦁ movement pattern prediction
⦁ possible motion trigger in later rehabilitation phase

⦁ full virtual immersion
⦁ visual feedback
⦁ force feedback computation
⦁ semantic control and supervision

Exoskeleton

Virtual scenario

Eye-tracking

EMGEEG

Fig. 5. Multimodal data analysis for embedded brain reading in robotic rehabilitation
using exoskeleton technology for active support.

As mentioned afore two of the first fields of robotic applications in which
robots directly cooperate with humans were logistics and surgery. Especially the
development of surgical assistive devices is already very advanced. They allow to
support humans by, e.g., enhancing the speed of specific tasks performed during
surgery, like tying a knot [42], by taking over complicated tasks like catheter
guidance [43], or by executing ”superhuman” performance by adopting the best
behavior from several surgeons [44]. However, studies did also show that the
prediction of the surgeon’s intention is essential to further improve a system’s
response [45]. This is especially relevant for the support of complicated surgi-
cal procedures. Is a robot able to infer the intention of a human it can chose an
appropiate behavior that matches the situation and intention of the human inter-
action partner. The ability to infer a suitable behavior from even incomplete hu-
man instructions is discussed to be one prerequisite for future robotic agents [46].
Besides analyzing (incomplete) explicit information with respect to the possible
intention of a human interaction partner, intentions can also be inferred from
implicitly transferred information (e.g., from gesture or facial expression) or from
physiological data. Physiological measures like electrodermal activity or galvanic
skin response, blood pressure, respiratory patterns, the electrooculogram (EOG)
and the measurement of pupillary responses, the electromyogram (EMG), the
electrocardiogram (ECG) and the electroencephalogram (EEG) can be used to
passively gain implicit information about the human.

While behavior for explicit interaction and behavior like gestures that trans-
fer implicit information, can be counted as overt data which can be observed
without extra devices for recording and analysis physiological measures are

238 E.A. Kirchner et al.

IC
support of

human-machine
interaction

S

concept
error-free

functioning

Efo
rm

al
iz

at
io

n
F

I

fo
rm

al
iz

at
iotiotiotiotio

n
f

C
support of

human-machine
interaction

S

concept
error-free

functioning

E

supsuppporporp tt support ofof of
humhumh an-an macmachinhine e human-machine

interaction interaction

concept
fo

rm
al

iz
at

io
n

F

Fig. 6. Concept for embedded brain reading for the support of human-machine inter-
action based on the context of interaction and inferred intentions.

covert data that require specific recording devices and analysis to make them vis-
ible. At the first moment this sounds like a restriction for their usage. However,
covert data has the advantage to continuously be available and to be highly reli-
able, i.e., even more reliable than information gained from overt behavioral data
as shown in [47] where the reliability of overt behavioral data was compared with
covert EEG data as source of information. Another advantage of using covert
physiological data is that for its usage a systems’ user does not have to perform
any additional task nor a higher mental or cognitive engagement is required,
since it can passively be acquired.

Physiological data is for example used for biocybernetic adaptation. Biocy-
bernetic adaptation is an application of physiological computing [48]. It is used
to enhance or enrich interaction by transforming physiological signals into real-
time computer input to change the functionality of a system regarding, e.g.,
fatigue or frustration levels of a user. It can enable greater control over complex
systems [49]. Such implicit decoding of physiological data does not increase the
workload but can subjectively reduce it, while the humans’ performance [50] and
task engagement [51] are increased.

A special physiological measure is the human brain activity since the brain
is controlling most of the human’s behavior. Thus, human-machine interfaces
that make use of brain activity were always of high interest (see for example its
usage for BCI in Section 3.1). Since the brain is not only controlling but also
planning behavior, analyzing brain activity is in principle an approach to uncover

Intuitive Interaction with Robots 239

preconscious intention like early, preconscious movement intention [52, 53]. The
analysis of brain activity can therefore serve as a window into the human mind
or brain [54]. There are different measures for brain activity, the most often used
one is the electroencephalogram as a direct measure of the brain’s electrical
activity. The EEG is comparatively easy and cheap to be recorded. However,
the human EEG is a very complex signal that consist of overlaying activity and
is easily disturbed by external noise and noise generated by the human body.
Thus, even by applying advanced signal processing and classification methods (as
they are available by open source software frameworks like pySPACE [55]) the
outcome of EEG analysis cannot be 100% correct. Therefore, it is very important
to supervise the usage of brain activity as source of covert information about
the human. By embedded brain reading (eBR) [56], it is possible to use brain
activity to either adapt interaction, e.g., with respect to workload in a complex
robot control scenario (see Fig. 3) or to even drive interaction, e.g., for robotic
rehabilitation purposes (see Fig. 5), by passively reading brain activity while
controlling for correct interpretation of it. To supervise correctness is enabled
by using brain activity in the context of interaction and by inferring upcoming
interaction behavior which can then be detected and used as a control signal or
by using other modalities like technical data of the interacting system, behavioral
data, or other physiological data [57] of the interacting human to control for the
correctness of the predicted brain state. The later, i.e., the usage of multimodal
data, e.g., EEG, EMG, eye-tracking and exoskeleton data (see Fig. 5), is most
relevant for the application in robotic rehabilitation where a robotic system,
like an exoskeleton, is used to substitute human behavior based on inferred
intentions.

For future research especially the field of robotic rehabilitation will become a
target for new approaches of verification methods (see Section 2.3) to guarantee
safety and correct behavior of such systems. Although there are first attempts
to apply formal verification approaches to human-robot interaction [13], the re-
search in this field has just started. However, to apply such approaches in com-
plex human-robot interaction seems to be a promising approach and is therefore
part of eBR for human-robot interaction (see Fig. 6).

3.3 Improved Interaction based on Learning from Humans

Robots that are situated in complex and unknown environments cannot have a
predefined behavior for every possible situation. Thus, robots need an efficient
and versatile way of acquiring new behavior that is appropriate for new and un-
foreseen situations. Machine learning (ML) is a popular approach for this as it is
data-driven and thus allows often to cope even with unforeseen situations. ML
approaches enable the system to learn models of itself and its environment and
to adapt them if required. In the ideal case, learning of knowledge and utiliza-
tion of the learned knowledge are not conducted strictly sequential, which would
require separate training and deployment phases, but are integrated in a contin-
uous, life-long learning approach [59, 60]. ML approaches developed for learning
in autonomous robots allow for instance to acquire human-like behavior [39, 61,

240 E.A. Kirchner et al.

62] and are in principle also suitable for improving interaction between robots
and humans and to cope with inter- and intra-individual variances in human
behavior. Different kinds of ML can be applied in robot learning, for exam-
ple imitation learning [63–65], which allows learning behavior based on human
demonstrations, reinforcement learning [58, 75], which allows learning based on
trial-and-error, and transfer learning [69, 70], which aims at reusing and adapt-
ing behaviors that have already been acquired for similar situations. In the fol-
lowing, we discuss imitation learning and the required techniques for recording
and analysis of human behavior; these methods fit naturally in situations where
human-robot interaction is key.

To learn from humans and to improve interaction behavior requires not only
to analyze and model the environment; the robot must also gather data from a
human demonstrator and be able to analyze and model the human’s behavior.
For instance, human demonstrations of complex behavior can be broken down
into simpler behavioral building blocks which are easier to learn by imitation and
more reusable. For this decomposition of behavior, unsupervised machine learn-
ing methods for behavior segmentation can be applied [74]. Different techniques
can be used for data acquisition in the context of human demonstrations, e.g.,
motion capturing, which potentially pose their own challenges within the context
of imitation learning. For example, while motion capturing is often appropriate
for recording a human’s whole body posture, the recording of complex, detailed
manipulations, like grasping an object, introduces new issues: for instance, the
manipulated object may be concealed to the system by the manipulator’s hands.
To cope with those issues, motion capturing has to be extended by other tech-
niques, specifically fitting for the issues that arise from the task to record human
behavior instead of plain motion. For example, Fig. 7 shows a setup used for
such recordings: the upper image shows an environment for human behavior
recording, the lower two images display a hybrid capture technique in which
motion capture and visual tracking approaches are combined, i.e., to cope with
the above mentioned problem of concealed objects.

Moreover, in order to apply ML approaches for improving interaction, the
robot must be able to recognize by itself that learning is required. To enable
this, it must “understand” that a specific behavior of a human is relevant for
interaction. Furthermore, the robot must infer what kind of behavior would be
appropriate to solve a collaborative task and whether it has already learned a
behavior that can be transferred as a solution to the unexpected and unknown
situation. Thus a robot must be able to store and reuse as well as combine learned
behaviors, which suggests using a hierarchical representation of behavior and an
explicit mapping from situation to behavior. Recent advances in reinforcement
learning in the area of contextual policy search are promising candidates in this
direction [75, 76]. Moreover, a robot must be able to autonomously identify sit-
uations in which it requires further data to acquire a reliable behavior, either in
the form of human demonstrations or by further trial-and-error. Active learn-
ing [71] is a promising approach for this, which has recently shown encouraging
results when combined with contextual policy search [72, 73].

Intuitive Interaction with Robots 241

Fig. 7. Motion capture setup for recording human behaviors.

While offline analysis and learning is suitable for skill acquisition from human
demonstrations [61, 63–65], life-long learning and learning during an ongoing in-
teraction require the application of online learning methods [66–68]. This also
implies that the analysis of the human behavior must also be performed online,
which requires that either the environment, the human interaction partner, or
the robot are equipped with hardware and software solutions for behavior anal-
ysis and ideally also with solutions for intention recognition (see Section 3.2).
The preferred approach would be to equip the robot with adequate hardware
and software, since by relying on the usage of systems that are installed in the
environment like motion tracking systems (see Fig. 7), interaction would again
be limited to technically equipped environments. To equip the interacting human
with respective hardware is also not desirable since only humans that are wearing
the respective devices could interact with the robot. Thus, equipping the robot
with the required hardware and analysis devices would in principle be the best
solution but does enhance the demands on embedded solutions as discussed in
Section 2.2. Therefore, to develop online learning methods for the improvement
of human-robot interaction and for learning appropriate interaction behavior,
two approaches might at first be chosen or combined: (1) the usage of specific
tracking devices in the environment, like environments equipped with motion
tracking and visual tracking devices that allow the easy tracking of human and
manipulated object (see Fig. 7) and (2) the usage of specific wearable devices
that record changes in human posture, like a motion capturing suit (e.g., like

242 E.A. Kirchner et al.

synertial2 motion capturing suits) or an exoskeleton which cannot only be used
to drive movements of the human (as sketched in Fig. 5) but can also be used
to passively record posture and changes of it.

4 Summary and Conclusion

To enable intuitive, adaptive human-robot interaction in unknown environments
with robotic systems that a human can accept as interaction partner, many as-
pects in different fields of research have to by considered like: (1) intrinsic safety
to avoid any kind of injury of interacting persons by the robot, (2) embedded sen-
sor and analysis capabilities to enable the robot to understand its environment
and the interacting human to learn from her or him and to optimize interaction
behavior, (3) new approaches that allow to verify the correct functioning of the
robot as well as the proper interaction to increase safety especially in domains
of human-robot interaction where the correct functioning is highly relevant as
in rehabilitation robotics, (4) intuitive interfaces that can easily be used for
implicit and explicit interaction, (5) approaches that are able to infer the inten-
tions of an interacting human by the analysis of overt behavioral as well as cover
physiological data to predict upcoming interaction behavior that can jointly be
performed, (6) behavior analysis and learning methods that enable a robot to
identify relevant situations and behavior, to learn from human and to improve
behavior online.

While this list does not claim to be complete, it should allow to infer that
human-robot interaction cannot be solved with research in a single research do-
main instead it does require the combination of different research and research
solutions. This inherent complexity makes human-robot interaction a very chal-
lenging but also interesting field of research that does not only have to consider
the interaction of cyber-physical systems with a real and complex physical envi-
ronment. It also has to consider the interaction of a cyber-physical system with a
biological system, the human. Hence, in an even broader view also psychological
aspects have to be investigated and ethic questions have to be answered.

This chapter might create the impression that robots as they exist today
are still far away from copying humans as interaction partners. However, many
challenges are understood and already under research to generate solutions that
in their combination can lead to robots which will in future be accepted by
humans as humanlike interaction partner.

References

1. Pratt, G. A. and Williamson, M. M. (1995). Series elastic actuators. Proceedings.
1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95,
pages 399-406.

2. Mittendorfer, P. and Cheng, G. (2011). Humanoid multimodal tactile-sensing mod-
ules. Robotics, IEEE Transactions on, 110.

2 http://www.synertial.com/

Intuitive Interaction with Robots 243

3. Wettels, N., Fishel, J., and Loeb, G. (2014). Multimodal Tactile Sensor. The Human
Hand as an Inspiration for Robot Hand Development, Springer Tracts in Advanced
Robotics (STAR) Series, (0912260), 120.

4. Maiolino, P., Maggiali, M., Cannata, G., Metta, G., and Natale, L. (2013). A Flex-
ible and Robust Large Scale Capacitive Tactile System for Robots, IEEE Sensors
Journal, vol. 13, no. 10, pp. 3910-3917.

5. Grebenstein, M., Albu-Schaffer, A., Bahls, Thomas, Chalon, M., Eiberger, O.,
Friedl, W., Gruber, R., Haddadin, S., Hagn, U., Haslinger, R., Hoppner, H., Jorg,
S., Nickl, M., Nothhelfer, A., Petit, F., Reill, J., Seitz, N., Wimbock, T., Wolf, S.,
Wusthoff, T., and Hirzinger, G. (2011). The DLR hand arm system. Robotics and
Automation (ICRA), 2011, 31753182.

6. Liu, H., Wu, K., Meusel, P., Seitz, N., Hirzinger, G., Jin, M. H., and Chen, Z.
P. (2008). Multisensory five-finger dexterous hand: The DLR/HIT Hand II. 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, 36923697.
doi:10.1109/IROS.2008.4650624.

7. Kawasaki, H., Komatsu, T., and Uchiyama, K. (2002). Dexterous anthropomorphic
robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions
on Mechatronics, 7(3), 296303. doi:10.1109/TMECH.2002.802720.

8. Cutkosky, M. R., Howe, R. D., and Provancher, W. R. (2007). Handbook of robotics,
Chapter 19, Force and tactile sensors. Sensors (Peterborough, NH).

9. Kampmann, P. and Kirchner, F. (2012). A Tactile Sensing System for Underwa-
ter Manipulation. Proceedings of the workshop on: Advances in Tactile Sensing
and Touch based Human-Robot Interaction to be held in conjunction with the 7th
ACM/IEEE International Conference on Human-Robot Interaction (HRI 2012),
Boston, Massachusetts, USA, o.A., 3/2012.

10. Kampmann, P. and Kirchner, F. (2014). Towards a fine manipulation system with
tactile feedback for deep-sea environments. Robotics and Autonomous Systems.

11. Kapandji, I., Tubiana, R., and Honore, L. (2007). The Physiology of the Joints:
The upper limb, The Physiology of the Joints, Churchill Livingstone.

12. Täubig, H., Frese, U., Hertzberg, C., Lth, C., Mohr, S., Vorobev, E., and Walter,
D. (2012). Guaranteeing Functional Safety: Design for Provability and Computer-
Aided Verification. In Autonomous Robots, 32 (3), pp. 303331

13. Kirchner, E. A. and Drechsler, R. (2013). A Formal Model for Embedded Brain
Reading. Industrial Robot: An International Journal, 40(6):530–540.

14. Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. MIT
Press.

15. Weizenbaum, J. (1966). Eliza - a computer program for the study of natural lan-
guage communication between man and machine. Communications of the ACM,
9(1):36–45.

16. Weizenbaum, J. (1976). Computer Power and Human Reason: From Judgment to
Calculation. W. H. Freeman & Co.: New York, NY, USA.

17. Wahlster, W. (2000). Mobile Speech-to-Speech Translation of Spontaneous Dialogs:
An Overview of the Final Verbmobil System. In Wahlster, W., editor, Verbmobil:
Foundations of Speech-to-Speech Translation., pages 3–21. Springer: Berlin, Heidel-
berg.

18. Nöth, E., Batliner, A., Kieling, A., Kompe, R., and Niemann, H. (2000). Verbmobil:
the use of prosody in the linguistic components of a speech understanding system.
IEEE Transactions on Speech and Audio Processing, 8(5):519–532.

19. Herzog, G. and Wazinski, P. (1994). Visual translator: Linking perceptions and
natural language descriptions. Artificial Intelligence Review, 8(2-3):175–187.

244 E.A. Kirchner et al.

20. Dindo, H. and Zambuto, D. (2010). A probabilistic approach to learning a visually
grounded language model through human-robot interaction. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2010, pages 790–
796.

21. Van den Bergh, M., Carton, D., de Nijs, R., Mitsou, N., Landsiedel, C., Kuhnlenz,
K., Wollherr, D., Van Gool, L. J., and Buss, M. (2011). Real-time 3D hand gesture
interaction with a robot for understanding directions from humans. In RO-MAN,
2011 IEEE, pages 357–362.

22. Kim, D., Lee, J., Yoon, H.-S., Kim, J., and Sohn, J. (2013). Vision-based arm
gesture recognition for a long-range human-robot interaction. The Journal of Su-
percomputing, 65(1):336–352.

23. Ma, B., Xu, W., and Wang, S. (2013). A robot control system based on gesture
recognition using kinect. TELKOMNIKA Indonesian Journal of Electrical Engineer-
ing, 11(5):2605–2611.

24. Farwell, L. and Donchin, E. (1988). Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials. Electroencephalography
and Clinical Neurophysiology, 70(6):510–523.

25. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain-computer interfaces for communication and control. Clinical
Neuro- physiology, 113(6):767–791.

26. Guger, C., Harkam, W., Hertnaes, C., and Pfurtscheller, G. (1999). Prosthetic
control by an EEG-based brain-computer interface (BCI). Proceedings of the 5th
European Conference for the Advancement of Assistive Technology (AAATE 5th).

27. Pfurtscheller, G. (2000) Brain oscillations control hand orthosis in a tetraplegic.
Neuroscience Letters, 292(3):211–214.

28. Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., and Birbaumer, N. (2001).
Brain-computer communication: unlocking the locked in. Psychological Bulletin,
127(3):358–375.

29. Karlin, S. (2011). Raiding iron mans closet. IEEE Spectrum, 48(8):25–25.

30. Nef, T., Colombo, G., and Riener, R. (2005). Armin. Roboter für die Bewegungs-
therapie der oberen Extremität. Automatisierungstechnik, 53(12):597–606.

31. Mihelj, M., Nef, T., and Riener, R. (2007). ARMin II - 7 DoF rehabilitation robot:
mechanics and kinematics. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 4120–4125.

32. Housman, S. J., Kelly, L., Scott, M., and Reinkensmeyer, D. J. (2009). A Ran-
domized Controlled Trial of Gravity-Supported, Computer-Enhanced Arm Exercise
for Individuals With Severe Hemiparesis. Neurorehabilitation and Neural Repair,
23:505–514.

33. Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., and Sankai, Y. (2007).
Intention- based walking support for paraplegia patients with Robot Suit HAL.
Advanced Robotics, 21(12):1441–1469.

34. Zoss, A., Kazerooni, H., and Chu, A. (2006). Biomechanical design of the Berkeley
lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatron-
ics, 11(2):128–138.

35. Folgheraiter, M., Bongardt, B., Albiez, J., and Kirchner, F. (2008). A bio-inspired
haptic interface for tele-robotics applications. In IEEE International Conference on
Robotics and Biomemetics (ROBIO 2008), pages 560–565, Bangkok.

36. Folgheraiter, M., Kirchner, E. A., Seeland, A., Kim, S. K., Jordan, M., Wohrle,
H., Bongardt, B., Schmidt, S., Albiez, J., and Kirchner, F. (2011). A multimodal

Intuitive Interaction with Robots 245

brain-arm interface for operation of complex robotic systems and upper limb mo-
tor recovery. In Vieira, P., Fred, A., Filipe, J., and Gamboa, H., editors, Proceed-
ings of the 4th International Conference on Biomedical Electronics and Devices
(BIODEVICES- 11), pages 150–162, Rome. SciTePress.

37. Autexier, S., Hutter, D., and Stahl, C. (2013). In: Juan Carlos Augusto; Reiner
Wichert (Hrsg.). Proceedings of the Fourth International Joint Conference on Ambi-
ent Intelligence. International Joint Conference on Ambient Intelligence (Aml-2013),
December 3-5, Dublin, Ireland, Springer-Verlag, CCIS.

38. Bergmann, K., Kahl, S., and Kopp, S. (2013). Modeling the semantic coordina-
tion of speech and gesture under cognitive and linguistic constraints. In Aylett, R.,
Krenn, B., Pelachaud, C., and Shimodaira, H., editors, Intelligent Virtual Agents,
volume 8108 of Lecture Notes in Computer Science, pages 203–216. Springer: Berlin,
Heidelberg.

39. Sadeghipour, A. and Kopp, S. (2011). Embodied gesture processing: Motor-based
integration of perception and action in social artificial agents. Cognitive Computa-
tion, 3(3):419–435.

40. Wimmer, M., MacDonald, B. A., Jayamuni, D., and Yadav, A. (2008). Facial ex-
pression recognition for human-robot interaction - a prototype. In Sommer, G. and
Klette, R., editors, RobVis, volume 4931 of Lecture Notes in Computer Science,
pages 139–152. Springer.

41. Giorgana, G. and Ploeger, P. G. (2011). Facial expression recognition for domes-
tic service robots. In Röfer, T., Mayer, N. M., Savage, J., and Saranli, U., edi-
tors, RoboCup, volume 7416 of Lecture Notes in Computer Science, pages 353–364.
Springer.

42. Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., and Schmidhuber, J.
(2006). A system for robotic heart surgery that learns to tie knots using recurrent
neural networks. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 543–548.

43. Riga, C., Bicknell, C., Cheshire, N., and Hamady, M. (2009). Initial clinical appli-
cation of a robotically steerable catheter system in endovascular aneurysm repair.
Journal of Endovascular Therapy, 16(2):149–153.

44. Van den Berg, J., Miller, S., Duckworth, D., Hu, H., Wan, A., Fu, X.-Y., Goldberg,
K., and Abbeel, P. (2010). Superhuman performance of surgical tasks by robots us-
ing iterative learning from human-guided demonstrations. In IEEE International
Conference on Robotics and Automation (ICRA), 2010, pages 2074–2081.

45. Weede, O., Monnich, H., Muller, B., and Worn, H. (2011). An intelligent and
autonomous endoscopic guidance system for minimally invasive surgery. In IEEE
International Conference on Robotics and Automation (ICRA), 2011, pages 5762–
5768.

46. Tenorth, M. and Beetz, M. (2013). KnowRob–A Knowledge Processing Infrastruc-
ture for Cognition-enabled Robots. Part 1: The KnowRob System. International
Journal of Robotics Research (IJRR), 32(5):566–590.

47. Gerson, A. D., Parra, L. C. and Sajda, P. (2006). Cortically-coupled computer
vision for rapid image search. IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, 2(14):174–179.

48. Allanson, J. and Fairclough, S. (2004). A research agenda for physiological com-
puting. Interacting with Computers, 16(5):857–878.

49. Woods, D. D. (1996). Decomposing Automation: Apparent Simplicity, Real Com-
plexity, chapter 1, pages 3–17. CRC.

246 E.A. Kirchner et al.

50. Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., and Pope, A. T.
(2000). A closed-loop system for examining psychophysiological measures for adap-
tive task allocation. The International Journal of Aviation Psychology, 10(4):393–
410.

51. Freeman, F., Mikulka, P., Prinzel, L., and Scerbo, M. (1999) Evaluation of an
adaptive automation system using three EEG indices with a visual tracking task.
Biological Psychology, 50(1):61–76.

52. Libet, B., Gleason, C. A., Wright, E. W., and Pearl, D. K. (1983). Time of conscious
intention to act in relation to onset of cerebral activity (readiness-potential). The
unconscious initiation of a freely voluntary act. Brain, 106(Pt 3):623–642.

53. Shibasaki, H. and Hallett, M. (2006). What is the Bereitschaftspotential? Clinical
Neurophysiology, 117(11):2341–2356.

54. Coles, M. (1989). Modern Mind-Brain Reading: Psychophysiology, Physiology, and
Cognition. Psychophysiology, 26(3):251–269.

55. Krell, M. M., Straube, S., Seeland, A., Wohrle, H., Teiwes, J., Metzen, J. H., Kirch-
ner, E. A., and Kirchner, F. (2013). pySPACE - a signal processing and classification
environment in Python. Frontiers in Neuroinformatics, 7(40).

56. Kirchner, E. A. (2014). Embedded Brain Reading, University of Bremen, Bremen,
Germany, http://nbn-resolving.de/urn:nbn:de:gbv:46-00103734-14.

57. Kirchner, E. A., Tabie, M., and Seeland, A. (2014). Multimodal movement predic-
tion - towards an individual assistance of patients. PLoS ONE, 9(1):e85060.

58. Kober, J. and Peters, J. (2012). Reinforcement learning in robotics: A survey. In
Wier- ing, M. and Otterlo, M., editors, Reinforcement Learning, volume 12 of Adap-
tation, Learning, and Optimization, pages 579610. Springer: Berlin, Heidelberg.

59. Thrun, S. and Mitchell, T. M. (1995). Lifelong robot learning. In: L. Steels (ed.)
The Biology and Technology of Intelligent Autonomous Agents, 144, pp. 165–196.
Springer Berlin Heidelberg.

60. Silver, D. L. and Yang, Q., Li, L. (2013). Lifelong machine learning systems: Beyond
learning algorithms. In: 2013 AAAI Spring Symposium Series.

61. Metzen, J. H., Fabisch, A., Senger, L., de Gea Fernández, J. and Kirchner, E. A.
(2013). Towards learning of generic skills for robotic manipulation. KI - Kunstliche
Intelligenz, pages 1–6.

62. Dindo, H., Chella, A., Tona, G. L., Vitali, M., Nivel, E. and Thórisson, K. R. (2011).
Learning problem solving skills from demonstration: An architectural approach. In
Schmidhuber, J., Thórisson, K. R., and Looks, M., editors, AGI, volume 6830 of
Lecture Notes in Computer Science, pages 194–203. Springer.

63. Argall, B. D., Chernova, S., Veloso, M. and Browning, B. (2009). A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483.

64. Schaal, S. (1997). Learning from demonstration. In Advances in Neural Information
Processing Systems 9. MIT Press.

65. Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences 358(1431), 537–547.

66. Ito, M. and Tani, J. (2004). On-line Imitative Interaction with a Humanoid Robot
Using a Dynamic Neural Network Model of a Mirror System. Adaptive Behavior
12(2), 93–115.

67. Leòn, A., Morales, E. F., Altamirano, L., and Ruiz, J. R. (2011). Teaching a Robot
to Perform Task through Imitation and On-line Feedback. Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes
in Computer Science, 7042, 549-556.

Intuitive Interaction with Robots 247

68. Poubel, L. P., Sakka, S., Cehajic, D., and Creusot, D. (2014). Support changes
during online human motion imitation by a humanoid robot using task specification.
In: IEEE International Conference on Robotics and Automation (ICRA), 1782-1787.

69. Taylor, M. and Stone, P. (2009). Transfer learning for reinforcement learning do-
mains: A survey. Journal of Machine Learning Research, 10(1):16331685.

70. da Silva, B. C., Konidaris, G., and Barto, A. G. (2012). Learning parameterized
skills. In: Proceedings of the 29th International Conference on Machine Learning
(ICML 2012). Edinburgh, Scotland.

71. Ruvolo, P. and Eaton, E. (2013). Active task selection for lifelong machine learning.
In: Twenty-Seventh AAAI Conference on Articial Intelligence.

72. da Silva, B., Konidaris, G., and Barto, A. (2014). Active Learning of Parameterized
Skills. In: Proceedings of the 31st International Conference on Machine Learning
(ICML 2014).

73. Fabisch, A. and Metzen, J. (2014). Active Contextual Policy Search. Journal of
Machine Learning Research, 15:3371-3399.

74. Senger, L., Schröer, M., Metzen, J., and Kirchner, E. A. (2014). Velocity-Based
Multiple Change-point Inference for Unsupervised Segmentation of Human Move-
ment Behavior. In: Proceedings of the 22nd International Conference on Pattern
Recognition (ICPR 2014).

75. Deisenroth, M. P., Neumann, G., and Peters, J. (2013). A survey on policy search
for robotics. Foundations and Trends in Robotics 2(12), 328373.

76. Daniel, C., Neumann, G., and Peters, J. (2013). Learning Sequential Motor Tasks.
In: Proceedings of 2013 IEEE International Conference on Robotics and Automation
(ICRA).

77. Haddadin, S., Albu-Schffer, A., and Hirzinger, G. (2009). Requirements for safe
robots: Measurements, analysis and new insights. In: The International Journal of
Robotics Research (IJRR), 28(11–12), 1507–1527.

248 E.A. Kirchner et al.

Physical Safety in Robotics

Sami Haddadin

Institute of Automatic Control (IRT)
Leibniz Universität Hannover

Appelstr. 11 D-30167 Hannover, Germany
haddadin@irt.uni-hannover.de

WWW: http://www.irt.uni-hannover.de

Abstract. Over the last decade, safe physical Human-Robot Interaction
(pHRI) has been made possible due to significant advances in mechatron-
ics, control, and planning. One result of these developments were fully
integrated safer lightweight robots that are equipped with sophisticated
interaction control capabilities. These new robots have even opened up
novel and unforeseen application domains, in which human and robot
are sought to work and interact with each other. For this, safe physical
interaction is prime. This chapter gives a brief overview on two of its
central aspects: human safety from an injury and standards standpoint,
and control for physical interaction with focus on interaction control and
collision handling.

Keywords: robot safety, physical human-robot interaction, injury anal-
ysis, collision handling

1 Introduction

Robotics is currently undergoing a fundamental paradigm shift, both in research
and real-world applications. Classically, it was dominated for the last decades
by possibly dangerous position controlled rigid robots carrying out typical au-
tomation tasks such as positioning and path tracking in various applications.
Recently, a new generation of mechatronic robots has appeared on the land-
scape, including novel concepts in general robot design within the soft-robotics
context. These trends bring us closer to the long-term goal of safe, seamless
pHRI in the real domestic and professional world.

Recent advances in physical Human-Robot Interaction, including the vast
progress of 3D perception, have shown the potential and feasibility of robot
systems for active and safe workspace sharing and collaboration with humans.
The fundamental breakthrough was the human-centered design of robot mechan-
ics and control (soft-robotics), which also induced the novel research stream of
intrinsically elastic robots (Series Elastic Actuation (SEA) or its generalization
Variable Impedance Actuation (VIA)). By considering the physical contact of the
human and the robot in the design phase, possible injuries due to unintentional
contacts can be considerably mitigated. Furthermore, taking into account the

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_9, © Springer Fachmedien Wiesbaden 2015

human’s intention and preferences will enable the realization of human-friendly
motions and interaction behavior. Some of the most advanced systems that were
developed are now entering industrial markets. These technologies serve both
industrial and service oriented domains. Possible future applications of these
novel devices developed for close interaction with humans are depicted in Fig.
1. They range from industrial co-workers and mobile servants over robots in the

Fig. 1. Application examples for pHRI, ranging from shop floor logistics and manipu-
lation, over professional service robots and assistive devices for the disabled, to service
robots in domestic applications.

professional service sector, assistive devices for physically challenged individuals,
to service robots for support of general household activities. All of these appli-
cations share the common requirement of close, safe and dependable physical
interaction between human and robot in a shared workspace. Therefore, such
robots need to be carefully designed for human-friendliness. That is, they have
to be able to safely sense, reason, learn, and act in a partially unknown world
inhabited by humans.

2 Human Safety

Providing safety in pHRI is a multi-faceted challenge and requires an analysis
on various levels of abstraction. pHRI aims at the coexistence of humans and
robots in a common workspace and at extending their communication modes
by physical means. This spatial proximity leads to a variety of potential threats,
determined by the current state of the system of interest, which consists of the
human(s), the robot(s) and their surrounding environment. Understanding the
respective threats, in particular regarding potential human injury originating

250 S. Haddadin

from physical robot-human contacts, and embedding the insights into according
safety standards/regulations is one of the major challenges of nowadays robotics.

2.1 Human Injury in Robotics

Constrained impact

Clamping in robot structureUnconstrained Contact scenarios

Partially con trained impact

 impact

Secondary impact

Fig. 2. Robot-human impact scenario classes. Unconstrained and constrained impacts
are considered the two main scenarios.

Impact Scenarios In order to quantify human injury that may occur in the
context of pHRI, one needs to understand how mechanical forces may cause
injury in principle. Figure 2 depicts relevant robot-human impact scenarios.
These may involve unconstrained impacts, clamping in the robot structure, con-
strained impacts, partially constrained impacts, and resulting secondary impacts
[1]. Apart from such situational definitions, the most urgent question is how to
quantify human injury level that might occur due to a collision between hu-
man and robot. The understanding of human injury has been treated in the
fields of injury biomechanics and forensics for several decades and the respective
studies served for the early work on human injury in robotics. In fact, various
injury measures from biomechanics and forensics were applied to human injury
analysis in robotics [2], [3],[4], [5], [1], [6], [7]. An overview on the most impor-
tant existing injury classification metrics and biomechanical injury measures can
be found in [8]. The most important results from biomechanics, forensics, and
robotics literature are briefly reviewed now.

Overview Biomechanics Literature In order to derive the injury character-
istics of different body parts for direct collisions with an impactor, which is the

Physical Safety in Robotics 251

Table 1. Selected impact experiments from biomechanics and robotics literature.

Body part Impactor type Impactor
parameters

Collision
case

Subject Mass [kg] Velocity [m/s] Reference

Flat circular
Maxilla, Zygoma,
Frontal, Temporo-
Parietal, Mandible

14.3 mm radius DC Cadaver 1.08 - 3.82 2.99 - 5.97 [9], [10]

Temporo-Parietal 12.7 mm radius DC Cadaver 10.6 2.7 [11]
Nose 14.3 mm radius DC Cadaver 3.2 1.56 - 3.16 [12]
Frontal 35 mm radius DU Cadaver 14.3 3.37 - 6.99 [13]
Edge
Nose 12.5 mm radius DU Cadaver 32, 64 2.77 - 6.83 [14]

Head Maxilla, Zygoma,
Frontal

10 mm radius DC Cadaver 14.5 2.4 - 4.2 [15]

Frontal 12.7 mm radius DPC Cadaver ∞ (human
falling on
impactor)

2.23 - 3.14 [16]

Cuboid
Temporo-Parietal 50 mm length,

100 mm width
DC Cadaver 12 4.3 [11]

Frontal size not speci-
fied, padded

DPC Cadaver 5.31 - 5.97 3.56 - 9.6 [17]

Frontal size not speci-
fied

DPC Cadaver ∞ (human
falling on
impactor)

2.23 - 3.87 [16]

Sphere
Frontal 120 mm radius DU,

QSC,
DPC

Hybrid III
dummy

4, 67, 1980 0.2 - 4.2 [18]

Frontal 203.2, 76.2 mm
radius

DPC Cadaver ∞ (human
falling on
impactor)

2.87 - 3.5 [16]

Flat circular
Thorax 76.2 mm radius,

12.77 mm edge
radius

DU, DC Cadaver 1.6 - 23.6 4.34 - 14.5 [19], [20]

Thorax 76 mm radius,
rubber padded

DU Volunteer 10 2.4 - 4.6 [21]

Thorax 76.2 mm radius,
12.77 mm edge
radius

DU Cadaver 19.27 4.0 - 10.6 [22]

Torso Abdomen 12.7 mm radius DU Cadaver 32, 64 4.9 - 13.0 [23]
Sphere
Thorax 120 mm radius DU, QSC Hybrid III

dummy
4, 67, 1980 0.2 - 4.2 [18]

Abdomen 5, 12.5 mm
radius

DC Pig tissue 2 - 10 0.5 - 4.0 [7]

Edge
Abdomen 45◦ angle, 200

mm length, 0.2
mm edge radius

DC Pig tissue 2 - 10 0.5 - 4.0 [7]

Edge
Forearm 12.5 mm radius,

angle 0◦
DC Cadaver 9.48 3.63 [24]

Upper ex-
tremities

Forearm size not speci-
fied

DC Cadaver 9.75 2.44, 4.23 [25]

Shoulder, upper
arm, forearm

5 mm edge
radius, 30◦
angle

DC Volunteer 4.16, 8.65 0.45 - 1.25

Flat circular
Forearm, hand size not speci-

fied
QSC Cadaver ∞ (veloc-

ity control)
25 mm/min [26]

Lower ex-
tremities

Sharp see Fig. 3 (e) DC Pig tissue,
volunteer

4 0.16 - 0.8 [6]

252 S. Haddadin

most relevant case for robotics, countless experiments and publications have been
produced over the last 50 years. The investigated impactors used in robotics and
biomechanics experiments vary significantly in size and shape. However, from
the test setups one can identify and cluster principal geometric primitives. The
main primitives and their parameters are depicted in Fig. 3. The z-axis of the
coordinate frame associated to each primitive defines the direction of impact u.

z

x

y

R
A
D
IU

S

y

x

z

(a) Sphere

z

yx

ANGLE

ED
G
E
R
A
D
IU
S

z

xy

LENGTH

(b) Edge

z

x

y

ED
G
E
R
A
D
IU
S

y

x

z

L
E
N
G
T
H

WIDTH

(c) Cuboid

z

x

y

ED
G
E
R
A
D
IU
S

y

x

z

R
A
D
IU

S

(d) Flat circular (e) Sharp tools

Fig. 3. Typical impactor primitives with according parameters.

Numerous relevant impact experiments with cadavers, volunteers, crash test
dummies, and biological tissue for the head, neck, and chest were generated,
see Tab. 1. There, for all selected experimental campaigns the collision scenario,
impacted body part, impact parameters according to Fig. 3, subject, and impact
velocity are listed. For describing the collision scenario, we use following abbre-
viations: D: dynamic, QS: quasi-static, U: unconstrained, C: constrained, PC:
partially constrained. A collision experiment denoted by DU is thus dynamic
unconstrained, while quasi-static constrained impacts are labeled QSC (see also
Sec. 2.1). The respective impactor type and parameters are listed for comparison.

Next, some essential characteristics of human-robot impacts are elaborated
for a more general understanding of the underlying dynamics.

Robot-Human Impacts

Robot Collision Modeling Let us assume that of a serial chain rigid robot
consisting of n joints there is at most a single link involved in a collision. Let

ẋc =

[
vc

ωc

]
=

[
Jc,lin(q)
Jc,ang(q)

]
q̇ = Jc(q)q̇ ∈ R

6 (1)

Physical Safety in Robotics 253

be the stacked (screw) vector of linear velocity at the contact point and angular
velocity of the associated robot link, with an associated (geometric) contact
Jacobian Jc(q) that is a function of the joint angle q. Accordingly, the Cartesian
collision wrench, being the stacked vector of collision force fext and collision
moments mext, is denoted by

Fext =

[
fext

mext

]
∈ R

6. (2)

When such a collision occurs, the robot dynamics becomes

M(q)q̈ +C(q, q̇)q̇ + g(q) + τF = τ + τext, (3)

where M(q) ∈ R
n×n is the symmetric and positive definite joint space inertia

matrix, C(q, q̇)q̇ ∈ R
n is the centripetal and Coriolis vector, and g(q) ∈ R

n

is the gravity vector. τ ∈ R
n is the motor torque and τF ∈ R

n the dissipative
friction torque. τext ∈ R

n is the typically unknown external joint torque given
by

τext = JT
c (q)Fext. (4)

The effective mass mu of a robot acting in the instantaneous collision direc-
tion u, which has to be consistent to Jc(q), can be deduced from M(q) via the
Cartesian kinetic energy matrix Λ(q). This is defined as

Λ(q) = (Jc(q)M(q)−1Jc(q)
T)−1, (5)

where the inverse of Λ(q) is based on the decomposition of the kinetic energy
matrix:

Λ(q)−1 =

[
Λv(q)

−1 Λvω(q)
Λvω(q)

T Λω(q)
−1

]
, (6)

with Λvω(q) = Jc,lin(q)M(q)−1Jc,ang(q)
T . Finally, mu is found to be

mu = [uTΛv(q)
−1u]−1. (7)

It should be noted that the Jacobian has to be the center of mass Jacobian.
Otherwise, the entire inverse of the Cartesian inertia tensor has to be used and
not only its translational component block. More details can be found in [27].
We assume the local impact curvature in u-direction to be denoted cu.

Characteristic Robot-Human Impact Force Profile A physical collision
between robot and human is typically characterized by a distinct force profile
that is composed by two consecutive phases1, see Fig. 4.

1. Phase I is characterized by a very short impact, governed by the robot and
human reflected dynamics.

1 Note that for unconstrained soft-tissue collisions these two phases can simplify into
a single Phase I impact.

254 S. Haddadin

Fig. 4. Typical robot-human collision force profiles.

2. Phase II is characterized by a quasi-static contact event. Without clamping
this is a pushing force, whereas if the human is clamped it is a crushing force.

Phase I can be treated from a pure impact physics point of view, i.e. it is
determined by the reflected inertia, velocity, and impact curvature cu of the
robot together with the characteristics of the respective body part that is being
struck. The maximum contact force is denoted FI .

Phase II, on the other hand, has to be further subdivided into either clamping
or no clamping incident. In case of no clamping, the maximum force is FIIA,
for clamping the maximum force is FIIB . In particular, Phase II is highly robot
control and design dependent and is especially important in case of clamping.

– Phase IIA: no clamping
Typically, for free impacts at robot velocities > 0.3 m/s, FIIA is significantly
smaller than FI . Otherwise, FI is smaller than FIIA and is governed by the
robot actuator torques (active quasi-static pushing) and the reaction of the
human body that is mainly governed by its reflected impedance.

– Phase IIB: clamping
In case of clamping the final maximum force FIIB is limited by the maximum
motor torques τmax of the robot via Fext = JT#

c τmax, where JT#
c is the

contact Jacobian pseudoinverse. If the robot is powerful enough to generate
active contact forces that penetrate or break human tissue/structure, the
contact force is of course limited by the human maximum tissue resistance2.

Next, the influence of robot mass and velocity for the unconstrained impact
are described. This analysis is particularly important to understand Phase I.

2 Please note that singularities need careful treatment, which however, goes beyond
the scope of the chapter.

Physical Safety in Robotics 255

Influence of Robot Mass and Velocity Assume a simple mass-spring-mass
model for the impact between human and robot.MH is the reflected inertia of the
human3. KH is the contact stiffness which is in case of a rigid robot mainly the
effective stiffness of the human contact area. ẋ0

re is the relative impact velocity
between the robot and human. Solving the corresponding differential equation
leads to the maximum contact force

Fmax
ext =

√
mu MH

mu +MH

√
KH ẋ0

re. (8)

The dependency of frontal bone contact force on the robot mass and velocity is
depicted in Fig. 5 (upper). It can be observed that collision force (which is a well
known bone fracture indicator) generally increases with velocity. For increasing
mass, however, a saturation effect takes place. After a certain robot mass has
been reached (mu ≈ 20 kg in Fig. 5), additional weight has only negligible
influence on collision force. This inertial saturation effect can also be observed
for other impact locations such as contacts with the chest, see Fig. 5 (lower).

If the robot mass is significantly larger than the human head mass, i.e. mu �
MH , equation (8) reduces to

Fmax
ext (mu >> MH) =

√
KHMH ẋ0

re. (9)

This shows that for a robot with significantly larger reflected inertia than the
human head, only the contact stiffness, the impact velocity, and the mass of the
human head are relevant but not the robot mass.

Table 2. Impact data for the lateral surface of the right upper arm.

Impact Max.
impact

force (N)

Impact
area

(mm2)

Displacement
(m)

Tissue
stiffness
(N/m)

Stress σ
(N/mm2)

Impact
velocity
(m/s)

Kinetic
energy (J)

Energy
density

(J/mm2)

AO VAS

1 9.5 966 0.03 316.7 0.001 0.2 0.08 0.0001 IC1MT1NV1 0
2 19 966 0.037 513.5 0.002 0.44 0.36 0.0007 IC1MT1NV1 0
3 38.1 966 0.044 865.9 0.039 0.65 0.80 0.0016 IC1MT1NV1 0
4 59.6 966 0.055 1083.6 0.062 0.88 1.45 0.003 IC1MT1NV1 0
5 81.4 966 0.058 1403.4 0.084 1.11 2.31 0.005 IC1MT1NV1 1
6 103.5 966 0.060 1725 0.107 1.34 3.37 0.007 IC1MT1NV1 1.5
7 128.1 966 0.064 2001.6 0.133 1.55 4.50 0.009 IC1MT1NV1 2
8 154.1 966 0.069 2233, 3 0.16 1.76 5.81 0.012 IC1MT1NV1 3
9 186.4 966 0.069 2701.4 0.193 2.03 7.73 0.016 IC1MT1NV1 3
10 224.5 966 0.069 3253.6 0.253 2.24 9.41 0.019 IC1MT1NV1 4
11 272.2 966 0.077 3535.1 0.282 2.55 12.2 0.025 IC1MT1NV1 6

Human-Robot Impact Voluntary Testing The behavior of human tissue
during collisions is complex. Consequently, surrogates cannot reveal the entire
diversity. Accordingly, the conduction of human voluntary experiments is nec-
essary to fully understand human injury and pain dynamics in robotics. The
following experimental test, which was carried out by the author, was the first

3 Assuming a simplifying decoupling of the head from the torso, which holds for the
short duration of the impact. For the post-impact phase, neck stiffness and body
inertia have to be considered, which complicates the analysis considerably.

256 S. Haddadin

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4

Frontal collision force [kN]

mass [kg]

ve
lo
ci
ty

[m
/
s]

1

2

3

4

5

6

7

8

20 40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

2.5

3

3.5

4

Chest collision force [kN]

mass [kg]

ve
lo
ci
ty

[m
/
s]

0.5

1

1.5

2

2.5

3

3.5

Fig. 5. Mass-velocity dependency for human head and chest contact force. A mass-
spring-mass model is used for collisions against the head, where the head mass MH is
4.5 kg and the approximate contact stiffness of the frontal bone KH = 1000 N/mm
[15]. For the chest, the model proposed in [28] is used.

Physical Safety in Robotics 257

Fig. 6. Flow-chart depicting the basic experimental steps (left). Collision trajectory
with subject (right).

systematic analysis in this direction. The voluntary experiments were conducted
with a healthy young adult in the year 2011. The collision experiments were
performed with the KUKA/DLR LWR and following approaches to injury and
pain analysis were carried out: injury severity analysis according to AO4, biome-
chanical analysis, pain, and imaging methods. The setup and experiment steps
are depicted in Fig. 6. The robotic system allows to conduct controlled robot-
human collisions in order to analyze input parameters and their effect on output
parameters such as pain and injury. Measured impact characteristics and quan-
tities included impact force, impact area, tissue displacement, tissue stiffness,
stress, impact velocity, kinetic energy and energy density. The reflected inertia
was kept constant at mu = 3.75 kg for every test. The used impactor for the
resulting Tab. 2 was a sphere with radius of 12.5 mm.

The injury was defined using the AO-classification [29] directly after each test
series. Each impact series was carried out at the same location on the human
body at increasing impact velocity until the participant initiated a controlled
system stop during the experiment. The impact areas were then imaged with a
magnetic resonance imaging (MRI) after a time interval of about 4-5 hours. The
remaining tissue did not show any pathological signs. Compared to an equivalent
drop test in [7] with abdominal pig tissue (large sphere, 4.2 kg, 2.5 m/s), the
voluntary experiments provide similar results in terms of injury severity. The
maximum velocity of 2.55 m/s is at the border of inducing a contusion. Where

4 AO stands for “Arbeitsgemeinschaft für Ostheosynthesefragen” [29].

258 S. Haddadin

there were no marks immediately after impact, a mild contusion formed at day
1. For the pain tolerance at a VAS of 6/10 an impact force of F = 272.2 N was
measured. The energy density appears to have the most significant correlation
to pain.

Quasi-static loading

Constrained Unconstrained

Blunt contact Sharp contact

Near-singular configuration

Blunt contact Sharp contact

Non-singular configuration

Blunt contact Sharp contact

No injury

Blunt injury

1. Fractures
2. Secondary injuries*

3. Shearing*

P
I

W
C
F

W
C
R

IM

1

F, CC, AO

Soft-tissue injury

1. Laceration (cut)*
2. Laceration (stab)*

P
I

W
C
F

W
C
R

IM

2

F, σ, AO

Blunt injury

1. None
2. Fractures

3. Secondary injuries*

τmax

P
I

W
C
F

W
C
R

IM

3

F, CC, AO

Soft-tissue injury

1. Laceration (cut)*
2. Laceration (stab)*

τmax

P
I

W
C
F

W
C
R

IM

4

F, σ, AO

Soft-tissue injury

1. None
2. Laceration (cut)*

τmax

P
I

W
C
F

W
C
R

IM

5

F, σ, AO

Dynamic loading

Constrained

Blunt contact Sharp contact

Unconstrained

Blunt contact Sharp contact

Blunt injury

1. Fractures
2. Internal injuries

3. Shearing*
4. Secondary injuries*
5. Laceration (crush)*
6. Laceration (gash)*

vR mR τmax

P
I

W
C
F

W
C
R

IM

6

F, CC, eA, AO

Soft-tissue injury

1. Laceration (cut)*
2. Laceration (stab)*

3. Abrasion*

vR mR

τmax

P
I

W
C
F

W
C
R

IM

7

E, F, σ, AO

Blunt injury

1. None
2. Fractures

3. Secondary injury*
4. Laceration (crush)*
5. Laceration (gash)*

vR mR

P
I

W
C
F

W
C
R

IM

8

F, CC, eA, AO

Soft-tissue injury

1. Laceration (cut)*
2. Laceration (stab)*

3. Abrasion*

vR mR

τmax

P
I

W
C
F

W
C
R

IM

w

9

E, F, σ, AO

PI: Possible injury

WCF: Worst-case factors
WCR: Worst-case range

IM: Injury measures

τmax: Maximum joint torque
vR: Robot speed
mR: Robot mass

Tool

Robot stiffness

Distance to
singularity

F: Force
E: Energy

eA: Energy density
CC: Compression Criterion
σ: stress

AO: AO-classification

Physical contact

Fig. 7. Safety Tree showing possible injury (PI), major worst-case factors (WCF) and
the possible worst-case range (WCR). * indicates still ongoing topics of research. Ad-
ditionally, relevant injury criteria are given for the head, chest, and soft-tissue injuries.

Synopsis An overview of the potential injury threats depending on the current
state of the robot and the human, a classification of these mechanisms, governing
factors of the particular process and possible injuries are depicted in Fig. 7.

Physical Safety in Robotics 259

Physical contact can be divided into two fundamental subclasses: quasi-static
and dynamic loading. Fundamental differences in injury severity and mechanisms
are observed as well if a human is (partially) constrained or not, leading to the
second subdivision. For the quasi-static case it is differentiated between near-
singular and non-singular clamping as already outlined. The last differentiation
separates injuries caused by blunt contact from the ones induced by tools or
sharp surface elements.

Each class of injury is characterized by possible injuries (PI), worst-case fac-
tors (WCF) and their worst-case range (WCR). WCF are the main contributors
to the worst-case, such as maximum joint torque, the distance to singularity or
the robot speed. The worst-case range indicates the maximum possible injury
depending on the worst-case factors. In addition to the classification of injury
mechanisms for each such class, suggestions for injury measures (IM) are given
as well. They are specific injury measures which are appropriate, useful for the
classification and measurement of injury potentially occurring during physical
Human-Robot Interaction5.

For example 1© represents blunt clamping in the near-singular configuration,
see Fig. 7. Even for low-inertia robots this situation could become dangerous
and is therefore a possible serious threat with almost any robot on a fixed base
within a (partially) confined workspace. Possible injuries are fractures and sec-
ondary injuries e.g. caused by penetrating bone structures or an injured neck
if the trunk is clamped but the head is free. This would mean that the robot
pushes the head further while the trunk remains in its position. Another possi-
ble threat is shearing off a locally clamped human along an edge. Appropriate
indices are e.g. the contact force and the Compression Criterion (CC) [30]. 3©
represents the clamped blunt impact in non-singular configuration. The injury
potential is defined by the maximum actuation torque τmax and can range from
no injury to severe injury or even death for high-inertia (and torque) robots.
The robot stiffness does not contribute to the worst-case since a robot without
collision detection would simply increase the motor torque to follow the desired
trajectory. Therefore, robot stiffness only contributes to the detection mecha-
nism by enlarging the detection time. Also, the contact force and CC are well
suited to predict occurring injury. 8© denotes the unconstrained impact which
was the first injury mechanism investigated in the robotics literature. This pro-
cess is governed by the impact velocity and (up to a saturation value) by the
robot mass. As shown in [4] even a robot of arbitrary mass cannot severely injure
a human head by means of impact related criteria from the automobile industry
like the head injury criterion (HIC). However, fractures e.g. of facial bones are
likely to occur but not all would be classified as a serious injury. Laceration by
means of crushes and gashes are worth to be evaluated, especially with respect

5 Please note that the list of injury measures is not necessarily complete, but these
ones are certainly suitable to be applied to a more granular robotics injury analysis.
This does not mean that criteria such as the well known Head Injury criterion (HIC)
do not provide general insights, they are just not necessarily optimal to understand
injury on a more differentiated lower-injury scale.

260 S. Haddadin

to service robotics. The contact force and CC are well suited severity criteria
for this class and in order to evaluate lacerations the energy density has to be
considered.

The preceding overview is intended as a worst-case analysis for the described
contact cases. The next step is to ask which actions can be taken against each
particular threat. [1] discusses this thoroughly. At this point, however, it shall
be noted that instead of quantifying injury in terms of a measurable injury
criterion, injury evaluation by a medical expert e.g. via the AO-classification
can always be applied and would presumably result in a more exhaustive and
precise judgement.

2.2 Safety Standards for Human-Robot Interaction

Robotics standardization made significant progress to establish the underlying
regulations for co-working cells in the real world. Safety for industrial robots is
addressed in a variety of general standards [31], [32], [33]. The most important in-
dustrial robotics standards is the ISO 10218. It was established in recognition of
the particular hazards that industrial robots and industrial robot systems pose.
The machinery concerned and the extent to which hazards, hazardous situations
and events are covered, is indicated in the scope of ISO 10218. In recognition
of the variable nature of hazards with different uses of industrial robots, ISO
10218 is divided into two parts. It provides a detailed analysis of mechanical
hazards such as impacts (movements of any part of the robot arm), crushing
(movement of any part of the robot arm), shearing (movement of additional
axes), entanglement (rotation of wrist or additional axes), drawing-in or tapping
(between robot arm and any fixed object), cutting or severing (movement or
rotation creating scissors action), and contact of persons with live parts (direct
contact) [34]. In particular, the introduction of collaborative robots has been a
major acknowledgment to the advances made in robotics research in pHRI over
the last decade. The recent updates to ISO 10218 (safety requirements for in-
dustrial robots) lead to the development of the new TS 15066. It is regarded as
a complementary information that concretizes the content of ISO 10218. Gener-
ally, ISO/TS 15066 provides guidance for collaborative robot operation where a
robot and a person share the same workspace. The TS 15066 considers collabora-
tive modes and requirements such as minimum separation distances, safety-rated
monitored stops, speed and separation monitoring, and power and force limiting.
In collaborative operations the integrity of the safety-related control system is of
major importance, particularly when process parameters such as speed and force
are being controlled. A comprehensive risk assessment is required to assess not
only the robot system itself, but also the environment in which it is placed, i.e.
in the workplace. A key process in the elimination of hazards and reduction of
risks is the design of the collaborative robot system and the associated cell lay-
out. Various considerations about the access and clearance of the collaborative
workspace are provided. During the design of a robotic system, the maximum
space and the restrictions of the collaborative robot system have to be consid-
ered. Furthermore, the need for clearances around obstacles and the accessibility

Physical Safety in Robotics 261

for operators should influence the design. The intended contact(s) between por-
tions of the robot system and an operator play a major role towards a possibly
intrinsically safe design. In order to identify the risks resulting from the collab-
orative action, an appropriate set of collision incidents that can occur during
the collaborative work activities and foreseeable misuse has to be determined.
This has to include affected body regions and the involved collision areas of the
robot. The limit values that may not be exceeded during the collision incident
depend on the affected body regions. The geometry of the involved areas of the
robot and the biomechanical properties of the affected body regions influence
the forces occurring during the collision incident. Therefore, the ISO/TS 15066
describes injury severity criteria that consist of maximum allowable limit values
on individual body regions. These limit values are established to prevent the oc-
currence of skin/tissue penetrations that are accompanied by bleeding wounds,
fractures or other skeletal damage [35].

In addition to the industrial standardization efforts in the pHRI domain,
the ISO 13482 [36] is the first non-industrial robot safety standard that al-
lows/regulates close pHRI. This international standard specifies requirements
and guidelines for the inherent safe design, protective measures, and informa-
tion for use of so called personal care robots. It focuses on three types of personal
care robots (mobile servant robots, physical assistant robots and person carrier
robots). These robots typically perform tasks to improve the quality of life of
intended users irrespective of age or capability. The standard describes hazards
associated with the use of these robots and provides requirements to eliminate
or reduce the risks associated with these hazards to an acceptable level. Signifi-
cant hazards are presented and this standard describes how they are to be dealt
with for each personal care robot type. Robotic devices used in personal care
applications are also covered by this standard and are to be treated as personal
care robot.

3 Control for Physical Interaction

For soft and safe pHRI the question arises how to gently handle physical con-
tact in robotics from a controls point of view. As impedance control [37] became
the most popular interaction control paradigm in the pHRI world, this particu-
lar scheme will be one focus of this section. Its generalization to multi-priority
impedance control laws allows the realization of sophisticated robot compliance
with multiple objectives via active control. A major advantage of impedance con-
trol is that discontinuities like contact-non-contact, do not create stability prob-
lems as they occur, for example, with hybrid force control [38]. Its extension to
impedance and feed-forward learning and adaptation, for which first works can
be found in [39, 40], is discussed after introducing the concept of multi-priority
impedance control. Apart from nominal interaction control, a robot sharing its
workspace with humans and physically interacting with its environment should
be able to quickly detect collisions and safely react to them. In the absence of
external sensing, relative motions between robot and environment/human are

262 S. Haddadin

unpredictable and unexpected collisions may occur at any location along the
robot arm. The state-of-the-art schemes for collision detection and reflex reac-
tion are introduced.

3.1 Interaction Control

Originally developed for robust and compliant object manipulation, impedance
and the related admittance control form a paradigm to treat robotic systems
from an energetic point of view such that motion and force can be controlled in
a unified manner. They offer the advantage over standard hybrid force-motion
controllers to provide a framework independent from kinematic work space con-
straints. These control types popularized by [37] are also especially advantageous
in terms of uncertainties and disturbances in unknown environments due to their
inherently robust nature [41]. The terms impedance and admittance are derived
from electrical system theory where they describe the relationship between volt-
age and current as input/output pairs. To generalize impedance and admittance
such pairs can be defined domain-independently as effort and flow variables. For
robotics, the mechanical analogies, i.e. mechanical impedance and admittance
are of particular interest.

More details on the conceptual basics of impedance and the dual admittance
control can e.g. be found in [42],[43].

The mostly used version of impedance control is to impose a second order
dynamics of a mass-spring-damper system (so-called target impedance [37]) on
the closed-loop equations. Typically, the control objective is expressed in Oper-
ational space coordinates x as

Mx
¨̃x+Dx

˙̃x+Kxx̃ = Fext, (10)

where x̃ := x − xd is the position error and xd is called equilibrium position.
Mx denotes the desired inertia, while Dx and Kx are the according closed-
loop damping and stiffness matrices in Operational space. Assuming rigid body
dynamics, the control law to obtain the aforementioned behavior is

τC = g(q) + J(q)T (Λ(q)ẍd + μ(ẋ,x))

−J(q)T (Λ(q)M−1
x (Kxx̃+Dx

˙̃x)) + J(q)T (Λ(q)M−1
x − I)Fext.(11)

In order to fully implement this scheme, a wrist force torque sensor is neces-
sary for the inertia shaping part. In [44] a modified impedance controller was
designed that uses angle/axis representations for the rotational components of
the Operational space. For its derivation, energy contributions with physical
interpretation are considered and the end-effector orientation displacement rep-
resentation is chosen to be in terms of a unit quaternion to avoid singularities.

For redundant robots, it is typically desired to also control the nullspace
behavior in order to embed other control objectives τN,i into a stacked hierarchy
of tasks. For the case of a single nullspace controller τN this torque has to be

Physical Safety in Robotics 263

projected via the nullspace projector matrix N(q) into the nullspace of the task,
leading to the overall control law

τ = τC +N(q)T τN . (12)

The nullspace projection matrix can be chosen in different ways. The simplest
case is N(q) = I−J(q)#J(q), where J(q)# denotes the Moore-Penrose pseudo
inverse. Alternatively, one may chose the dynamically consistent generalized
pseudoinverse

J(q)# = M(q)−1J(q)TΛ(q). (13)

In particular in the pHRI domain, a multitude of different subtasks τN,i are
meaningful to be executed simultaneously. These may e.g. involve

– safety (collision anticipation & avoidance, self-collision avoidance, . . .)
– physical constraints (joint limits, geometric task constraints)
– task execution (tracking control, . . .)
– posture primitives (in particular for humanoids)

To realize consistent behaviors, task hierarchies are constructed such that certain
tasks are prioritized over others [45]. In [46] a hierarchy is realized by null space
projection techniques, which also prevents discontinuities concerning unilateral
constraints by smoothing out transitions.

Extensions to the basic schemes for flexible joint dynamics [47], [48], [49] and
for the SEA case [50] were developed as well. Furthermore, Cartesian impedance
control has been applied to grasping und multiple-arm robotic systems in [51].

3.2 Collision Handling

One of the core problems in pHRI is the handling of collisions between robots
and humans, with the primary motivation of limiting possible human injury due
to physical contacts. Various monitoring signals can be used to gather context
independent information about the event.

The collision detection phase, whose binary output denotes whether a robot
collision occurred or not, is characterized by the transmission of contact wrenches,
often for very short impact durations. The occurrence of a collision, which may
happen anywhere along the robot structure, shall be detected as fast as possi-
ble. A major practical problem is the selection of a threshold on the monitoring
signals, so as to avoid false positives and achieve high sensitivity at the same
time. A rather intuitive approach is to monitor the measured currents in robot
electrical drives, looking for fast transients possibly caused by a collision [52],
[53]. Another proposed scheme compares the actual commanded torques (or mo-
tor currents) with the nominal model-based control law (i.e., the instantaneous
torque expected in the absence of collision), with any difference being attributed
to a collision [54]. This idea has been refined by considering the use of an adaptive
compliance control [55], [56]. However, tuning of collision detection thresholds in
these schemes is difficult because of the highly varying dynamic characteristics
of the control torques.

264 S. Haddadin

Knowing which robot part (e.g., which link of a serial manipulator) is involved
in the collision is an important information that can be exploited for robot
reaction. Collision isolation aims at localizing the contact point xc, or at least
which link ic out of the n-body robot collided. One way to obtain both collision
detection and isolation is to use sensitive skins [57], [58], [59], [60]. However, it
is obviously more practical and reliable to detect and possibly isolate a collision
without the need of additional tactile sensors. On the other hand, the previously
mentioned monitoring signals used in [52], [53], [54], [55], [56] are in general
not able to achieve reliable collision isolation (even when robot dynamics is
perfectly known). In fact, they either rely on computations based only on the
nominal desired trajectory, or compute joint accelerations by inverting the mass
matrix and thus spreading the dynamic effects of collision on a single link, or use
acceleration estimates for torque prediction and comparison, which inherently
introduces noise (due to double numerical differentiation of position data) and
intrinsic delays. The common drawback of these methods is that the effect of a
collision on a link propagates to other link variables or joint commands due to
robot dynamic couplings, affecting thus the isolation property.

Other relevant quantities about a collision that are deduced during the colli-
sion identification phase are the directional information and the intensity of the
generalized collision force, either in terms of the acting Cartesian wrench Fext(t)
at the contact, or of the resulting joint torque τext(t) during the entire physi-
cal interaction event. This information characterizes (in some cases, completely)
the collision event. The first method that achieved simultaneously collision de-
tection, isolation, and identification was proposed in [61]. The basic idea was to
view collisions as faulty behaviors of the robot actuating system, while the de-
tector design took advantage of the decoupling property of the robot generalized
momentum p = M(q)q̇ [62], [63].

During the collision reaction phase the robot should react purposefully in
response to a collision event, i.e., taking into account available contextual infor-
mation. Because of the fast dynamics and high uncertainty of the problem, the
robot reaction should be embedded in the lowest control level. For instance, the
simplest reaction to a collision is to stop the robot. However, this may possibly
lead to inconvenient situations, where the robot is unnaturally constraining or
blocking the human [1]. To define better reaction strategies, information from
collision isolation, identification and classification phases should be used. Some
examples of successful collision reaction strategies have been given in [64], [64],
[65].

Collision Detection and Identification A recent overview on standard tech-
niques to estimate τext can be found in [8]. In this chapter, we focus on the main
method, namely the monitoring scheme based on the observation of the gener-
alized momentum that was introduced in [61]. The scheme, which is regarded as
the standard algorithm, was motivated by the desire of avoiding the inversion
of the robot inertia matrix, decoupling the estimation result, and also eliminat-
ing the need of an estimate of joint accelerations. Note that from now on, an

Physical Safety in Robotics 265

estimate of a generic vector x will be denoted by x̂. The according disturbance
observer based estimator dynamics is defined as

r(t) = KO

(
p̂(t)−

∫ t

0

(
τ − β̂(q, q̇) + r

)
ds− p̂(0)

)
, (14)

with p̂ = M̂(q)q̇, β̂(q, q̇) = ĝ(q)+Ĉ(q, q̇)q̇− ˙̂
M(q)q̇, andKO = diag{kO,i} > 0

being the diagonal gain matrix of the observer. In ideal conditions, M̂ = M and
β̂ = β, the dynamic relation between the external torque τext and r is

ṙ = KO(τext − r). (15)

In other words, r is a stable, linear, decoupled, first-order estimation of the
external collision torque τext. Large values of kO,i give small time constants
TO,i = 1/kO,i in the transient response of that component of r which is associ-
ated to the same component of the external joint torque τext. In the limit, we
obtain

KO → ∞ ⇒ r ≈ τext. (16)

Collision Reflex Reactions After a collision has been detected, suitable colli-
sion reflex reaction is needed. Four basic context-independent joint level collision
reflexes are discussed next. They lead to significantly different reflex behavior
after a contact was detected. In the third and fourth scheme the directional in-
formation on contact torques provided by suitable identification schemes such
as (14) may be used to safely drive the robot away from the collision location.

Robot Stop The most obvious strategy to react to a collision is to stop the robot.
This behavior can e.g. be obtained by setting qd = q(tc), where tc is the instant
of collision detection or by simply engaging the robot’s brakes. More elaborate
braking strategies can be found in [66].

Torque Control with Gravity Compensation One may also react to a collision
by switching the controllers. Typically, prior to the collision incident the robot
moves along a desired trajectory with a position reference based controller (e.g.
position or impedance control). After detection the control mode is switched
to a compliance based controller that ignores the previous task trajectory. A
particularly useful variant is to switch to torque control mode with gravity com-
pensation τ = g(q). Note that this strategy does not explicitly take into account
any information about τ ext.

Torque Reflex This strategy extends the torque control based strategy by explic-
itly incorporating the estimation or measurement of τ ext into the motor torque
τ via

τ = g(q) + (I −Kr)τext, (17)

266 S. Haddadin

where Kr = diag{kr,i} > I. It can be shown that such a law is equivalent to
scaling of the robot dynamics by K−1

v . The closed loop dynamics become

K−1
v M(q)︸ ︷︷ ︸
M ′(q)

q̈ +K−1
v C(q, q̇)q̇ + τext = 0, (18)

where M(q) > M ′(q) holds component wise.

Admittance Reflex Reference trajectory modification via an admittance type
strategy that uses the measurement or estimation of τext can easily e.g. be real-
ized via

qd(t) = −
∫ T

tc

Kar dt, (19)

where Ka = diag{ka,i} > I. With this scheme that requires no control switching
the robot quickly drives away from the external torque source and decreases the
contact forces till they decay to zero.

4 Conclusion

Physical safety in robotics has become a central discipline in pHRI over the last
decade. This is due to the significant progress made in the fields of mechatronics,
interaction control, motion planning, and 3D sensing towards highly integrated
and sensorized lightweight systems that are able to physically interact with their
surrounding. Clearly, the rise of a new generation of commercial robots capable
of safe physical interaction has also contributed to the large interest in the field.
The robotics research and industrial community expects these systems to open
up new markets and to push robotics further towards domestic applications that
may also involve even more complex and possibly mobile manipulators. How-
ever, despite this recent success in research and also in the commercialization
of assistance robots, there are many open research questions that need to be
tackled before this class of systems can become a commodity not only in early
adopter industrial applications but also on a broader scale: in particular contin-
uing the road towards safe robotics by tightly coupling injury biomechanics and
safe interaction control with lightweight and compliant robot design will further
push the boundaries and build the foundation of pHRI.

Acknowledgment

I would like to thank Simon Haddadin, Alessandro De Luca, Alin Albu-Schäffer,
and Nico Mansfeld for their highly valued collaboration over the last years. Parts
of this chapter summarize previously published joint work.

Physical Safety in Robotics 267

References

1. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Requirements for safe robots: Mea-
surements, analysis & new insights. Int. J. of Robotics Research 28(11-12) (2009)
1507–1527

2. Bicchi, A., Tonietti, G.: Fast and soft arm tactics: Dealing with the safety-
performance trade-off in robot arms design and control. IEEE Int. Conf. on
Robotics and Automation Mag. 11 (2004) 22–33

3. Zinn, M., Khatib, O., Roth, B.: A new actuation approach for human friendly
robot design. Int. J. of Robotics Research 23 (2004) 379–398

4. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safety evaluation of physical
human-robot interaction via crash-testing. Robotics: Science and Systems Con-
ference (2007) 217–224

5. Oberer, S., Schraft, R.D.: Robot-dummy crash tests for robot safety assessment.
In: IEEE Int. Conf. on Robotics and Automation. (2007) 2934–2939

6. Haddadin, S., Albu-Schäffer, A., Haddadin, F., Roßmann, J., Hirzinger, G.: Study
on soft-tissue injury in robotics. IEEE Robotics Automation Mag. 18(4) (2011)
20–34

7. Haddadin, S., Haddadin, S., Khoury, A., Rokahr, T., Parusel, S., Burgkart, R.,
Bicchi, A., Albu-Schäffer, A.: On making robots understand safety: Embedding
injury knowledge into control. Int. J. of Robotics Research 31 (2012) 1578–1602

8. Haddadin, S.: Towards Safe Robots - Approaching Asimov’s 1st Law. Volume 90
of Springer Tracts in Advanced Robotics. Springer (2014)

9. Schneider, D., Nahum, A.: Impact studies of facial bones and skull. SAE Paper
No.720965, Proc. 16th Stapp Car Crash Conference (1972) 186–204

10. Nahum, A.M., Gatts, J.D., Gadd, C.W., Danforth, J.: Impact tolerance of the
skull and face. In: SAE Paper No.680785, Stapp Car Crash Conf. (1968)

11. Allsop, D., Perl, T.R.and Warner, C.: Force/deflection and fracture characteristics
of the temporo-parietal region of the human head. SAE Trans. (1991) 2009–2018

12. Cormier, J., Manoogian, S., Bisplinghoff, J., Rowson, S., Santago, A., McNally, C.,
Duma, S., Bolte Iv, J.: The tolerance of the nasal bone to blunt impact. In: Annals
of Advances in Automotive Medicine/Annual Scientific Conference. Volume 54.
(2010) 3

13. Delye, H., Verschueren, P., Depreitere, B., Verpoest, I., Berckmans, D., Van-
der Sloten, J., Van Der Perre, G., Goffin, J.: Biomechanics of frontal skull fracture.
J. of Neurotrauma 24(10) (2007) 1576–1586

14. Nyquist, G.W., Cavanaugh, J.M., Goldberg, S.J., King, A.I.: Facial impact toler-
ance and response. SAE Paper No.861896, Proc. 30th Stapp Car Crash Conference
(1986) 733–754

15. Allsop, D., Warner, C., Wille, M., Schneider, D., Nahum, A.: Facial impact re-
sponse - a comparison of the Hybrid III dummy and human cadaver. In: SAE
Paper No.881719, Stapp Car Crash Conf. (1988) 781–797

16. Hodgson, V., Thomas, L.: Comparison of head acceleration injury indices in ca-
daver skull fracture. In: SAE Paper No710854, Stapp Car Crash Conf. (1971)
299–307

17. Nahum, A.M., Smith, R.W.: An experimental model for closed head impact injury.
In: SAE Paper No.760825, Stapp Car Crash Conf. (1976)

18. Haddadin, S., Albu-Schäffer, A., Frommberger, M., Rossmann, J., Hirzinger, G.:
The “DLR crash report”: Towards a standard crash-testing protocol for robot
safety - part I+II: Results & discussions. IEEE Int. Conf. on Robotics and Au-
tomation (2009) 280–287 + 2663–2670

268 S. Haddadin

19. Kroell, C.K., Schneider, D.C., Nahum, A.M.: Impact tolerance and response of the
human thorax I. In: SAE Paper No. 710851, Stapp Car Crash Conference. (1971)

20. Kroell, C., Scheider, D., Nahum, A.: Impact tolerance and response of the human
thorax II. In: SAE Paper No.741187, Stapp Car Crash Conference. (1974) 383–457

21. Patrick, L.: Impact force deflection of the human thorax. SAE Paper No.811014,
Proc. 25th Stapp Car Crash Conference (1981) 471–496

22. Nahum, A.M., Gadd, C.W., Schneider, D.C., Kroell, C.: Deflection of the human
thorax under sternal impact, sae technical paper 700400. In: Int. Automot. Saf.
Conf. (1970)

23. Cavanaugh, J., Nyquist, G., Goldberg, S., King, A.: Lower abdominal impact
tolerance and response. In: SAE Paper No.861878, Stapp Car Crash Conf. (1986)

24. Duma, S., Schreiber, P., McMaster, J., Crandall, J., Bass, C., Pilkey, W.: Dynamic
injury tolerances for long bones of the female upper extremity. Int. Research
Council on Biomechanics of Injury (IRCOBI1998) (1998) 189–201

25. Duma, S., Crandall, J., Hurwitz, S., Pilkey, W.: Small female upper extremity
interaction with the deploying side air bag. In: SAE Paper No.983148, Stapp Car
Crash Conf. (1998) 47–63

26. Spadaro, J., Werner, F., Brenner, R., Fortino, M., Fay, L., Edwards, W.: Cortical
and trabecular bone contribute strength to the osteopenic distal radius. J. of
Orthopaedic Research 12 (1994) 211–218

27. Khatib, O.: Inertial properties in robotic manipulation: An object-level framework.
Int. J. of Robotics Research 14(1) (1995) 19–36

28. Lobdell, T., Kroell, C., Scheider, D., Hering, W.: Impact response of the human
thorax. Symp. on Human Impact Response (1972) 201–245

29. Ruedi, T.P., Murphy, W.M., et al.: AO principles of fracture management. Vol-
ume 1. AO Publishing (2007)

30. Lau, I., Viano, D.: Role of impact velocity and chest compression in thoraic injury.
Avia. Space Environ. Med. 56 (1983) 16–21

31. ISO12100:2010: Safety of machinery – general principles for design – risk assess-
ment and risk reductions (International Organization for Standardization, Geneva
2010)

32. ISO13849-1:2006: Safety of machinery – safety-related parts of control systems –
part 1: General principles for design (International Organization for Standardiza-
tion, Geneva 2006)

33. ISO13855:2010: Safety of machinery – positioning of safeguards with respect to
the approach speeds of parts of the human body (International Organization for
Standardization, Geneva 2010)

34. ISO10218-1:2011: Robots and robotic devices – safety requirements for industrial
robots – part 1: Robots (International Organization for Standardization, Geneva
2011)

35. ISO/TS15066: Robots and robotic devices – Collaborative robots (International
Organization for Standardization, unpublished)

36. ISO13482:2014: Robots and robotic devices – safety requirements for personal care
robots (International Organization for Standardization, Geneva 2014)

37. Hogan, N.: Impedance control: An approach to manipulation: Part I - theory, Part
II - implementation, Part III - applications. J. of Dynamic Systems, Measurement
and Control 107 (1985) 1–24

38. Craig, J., Raibert, M.: A systematic method for hybrid position/force control of a
manipulator. IEEE Computer Software Applications Conf. (1979) 446–451

Physical Safety in Robotics 269

39. Yang, C., Gowrishankar, G., Haddadin, S., Parusel, S., Albu-Schäffer, A., Bur-
det, E.: Human like adaptation of force and impedance in stable and unstable
interactions. IEEE Trans. on Robotics 27(5) (2010) 918–930

40. Stemmer, A., Albu-Schäffer, A., Hirzinger, G.: An analytical method for the plan-
ning of robust assembly tasks of complex shaped planar parts. In: IEEE Int. Conf.
on Robotics and Automation. (2007) 317–323

41. Hogan, N.: On the stability of manipulators performing contact tasks. IEEE Int.
Conf. on Robotics and Automation 4(6) (1988) 677–686

42. Ott, C., Mukherjee, R., Nakamura, Y.: Unified impedance and admittance control.
In: IEEE Int. Conf. on Robotics and Automation. (2010) 554–561

43. Kurfess, T.R.: Robotics and Automation Handbook. CRC press (2010)
44. Caccavale, F., Natale, C., Siciliano, B., Villani, L.: Six-dof impedance control based

on angle/axis representations. IEEE Trans. on Robotics and Automation, 15(2)
(1999) 289–300

45. Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical
control of behavioral primitives. Int. J. of Humanoid Robotics (2005) 505–518

46. Dietrich, A., Wimböck, T., Albu-Schäffer, A.: Dynamic whole-body mobile ma-
nipulation with a torque controlled humanoid robot via impedance control laws.
In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. (2011) 3199–3206

47. Albu-Schäffer, A., Ott, C., Frese, U., Hirzinger, G.: Cartesian impedance control
of redundant robots: Recent results with the DLR-light-weight-arms. In: IEEE Int.
Conf. on Robotics and Automation. Volume 3. (2003) 3704–3709

48. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control frame-
work for position, torque and impedance control of flexible joint robots. Int. J. of
Robotics Research 26 (2007) 23–39

49. Zollo, L., Siciliano, B., De Luca, A., Guglielmelli, E., Dario, P.: Compliance control
for an anthropomorphic robot with elastic joints: Theory and experiments. J. of
Dynamic Systems, Measurement, and Control 127(3) (2005) 321–328

50. Platt Jr., R., Abdallah, M., Wampler, C.: Multiple-priority impedance control. In:
IEEE Int. Conf. on Robotics and Automation. (2011) 6033–6038

51. Stramigioli, S.: Modeling and IPC control of interactive mechanical systems: a
coordinate-free approach. Springer-Verlag New York, Inc. (2001)

52. Suita, K., Yamada, Y., Tsuchida, N., Imai, K., Ikeda, H., Sugimoto, N.: A failure-
to-safety “kyozon” system with simple contact detection and stop capabilities for
safe human - autonomous robot coexistence. In: IEEE Int. Conf. on Robotics and
Automation. (1995) 3089–3096

53. Yamada, Y., Hirasawa, Y., Huang, S., Umetani, Y., Suita, K.: Human-robot con-
tact in the safeguarding space. IEEE/ASME Trans. on Mechatronics 2(4) (1997)
230–236

54. Takakura, S., Murakami, T., Ohnishi, K.: An approach to collision detection and
recovery motion in industrial robot. In: Annual Conference of IEEE Industrial
Electronics Society. (1989) 421–426

55. Morinaga, S., Kosuge, K.: Collision detection system for manipulator based on
adaptive impedance control law. In: IEEE Int. Conf. on Robotics and Automation.
(2003) 1080–1085

56. Kosuge, K., Matsumoto, T., Morinaga, S.: Collision detection system for manip-
ulator based on adaptive control scheme. Trans. of the Soc. of Instrument and
Control Engineers 39 (2003) 552–558

57. Lumelsky, V., Cheung, E.: Real-time collision avoidance in teleoperated whole-
sensitive robot arm manipulators. IEEE Trans. on Systems, Man and Cybernetics
23(1) (1993) 194–203

270 S. Haddadin

58. Strohmayr, M.: Artificial Skin in Robotics. PhD thesis, Karlsruhe Institute of
Technology (2012)

59. De Maria, G., Natale, C., Pirozzi, S.: Force/tactile sensor for robotic applications.
Sensors and Actuators A: Physical 175 (2012) 60–72

60. Dahiya, R., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.: Directions toward
effective utilization of tactile skin: A review. IEEE Sensors J. 13(11) (2013) 4121–
4138

61. De Luca, A., Albu-Schäffer, A., Haddadin, S., Hirzinger, G.: Collision detection
and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. (2006) 1623–1630

62. De Luca, A., Mattone, R.: Actuator fault detection and isolation using generalized
momenta. In: IEEE Int. Conf. on Robotics and Automation. (2003) 634–639

63. Kuntze, H.B., Frey, C., Giesen, K., Milighetti, G.: Fault tolerant supervisory con-
trol of human interactive robots. In: IFAC Workshop on Advanced Control and
Diagnosis. (2003) 55–60

64. Haddadin, S., Albu-Schäffer, A., Luca, A.D., Hirzinger, G.: Collision detection &
reaction: A contribution to safe physical human-robot interaction. In: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. (2008) 3356–3363

65. Parusel, S., Haddadin, S., Albu-Schäffer, A.: Modular state-based behavior con-
trol for safe human-robot interaction: A lightweight control architecture for a
lightweight robot. In: IEEE Int. Conf. on Robotics and Automation. (2011) 4298–
4305

66. Mansfeld, N., Haddadin, S.: Reaching desired states time-optimally from equilib-
rium and vice versa for visco-elastic joint robots with limited elastic deflection. In:
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. (2014) 3904–3911

Physical Safety in Robotics 271

In-circuit Error Detection with Software-based
Error Correction – An Alternative to TMR�

Gökçe Aydos12

PhD advisor: Görschwin Fey

1 DLR, Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen Germany
2 University of Bremen, Institute of Computer Science,

Bibliothekstr. 1, 28359 Bremen Germany
goekce@cs.uni-bremen.de

Abstract. FPGAs are often utilized in space avionics. To protect the
FPGA application data against radiation effects in space, data redun-
dancy can be used. A well-known method is to triplicate the circuit and
eliminate the erroneous circuit output with a local voter (TMR). Alter-
natively, in-circuit error detection with software-based error correction
can be used, if the FPGA works as a co-module next to a processor run-
ning the mission software. In this work, we present an implementation of
this method on a commonly used spacecraft data handling architecture.

1 Introduction

Field-programmable gate arrays (FPGAs) are often utilized in space avionics.
FPGAs involved in mission critical applications implement fault tolerance mech-
anisms. One of the reasons is the ionizing radiation in space, which can flip stored
bits in flip-flops (FFs). In the best case, the flipped bits are masked and over-
written in next cycles, having no effect on the system. In the worst case, this
leads to catastrophic failures [4].

Tolerance against bitflips can be implemented using redundancy in space or
time, i.e., by instantiating multiple entities of one circuit (space), or repeating
the same operation for multiple clock cycles on one circuit (time), or also by
combining the both (spacetime) [3]. Mission critical FPGA applications often
use space redundancy, mostly in form of triple modular redundancy (TMR).

In TMR, a module, e.g. a FF or a whole circuit, is triplicated and the outputs
are connected to a voter, which drives the correct output value in case of a failure
in a single module. This facilitates correction of an error in the same clock cycle,
i.e., by only using space redundancy. In presence of tight space constraints, this
overhead can turn into a hurdle for fulfilling the design timing closure and area
requirements. Alternatively, if the overhead of time redundancy is feasible for
an application, the redundancy in space can be reduced and, in return, the
redundancy in time dimension can be increased. We propose an instantiation of

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_10, © Springer Fachmedien Wiesbaden 2015

OBDH Subsystem

Processor FPGA Subsystem
link links

Fig. 1. Simplified model of a typical OBDH architecture.

this approach where error detection is done in space, and error correction in time,
only in case of an error. In a system constellation with a processor and an FPGA,
the on-demand time redundancy can be easily implemented in software. We call
this method in-circuit error detection with software-based error correction. In
the following, a common spacecraft on-board data handling (OBDH) subsystem
architecture and an implementation of this method on this architecture will be
shown.

2 Application to a Typical OBDH Architecture

The OBDH subsystem of a spacecraft typically handles the communication from
the ground station to other subsystems. A simplified model of a typical OBDH
architecture is shown on Fig. 1.

The processor runs the mission software and the FPGA implements interface
protocol circuits required by various subsystems on board of a satellite. The
processor uses the FPGA for communicating with the subsystems.

The FPGA implements the memory-mapped interfaces for the subsystems.
Consequently, from the software point of view, the FPGA is a remote memory.
To access the remote memory, the software sends memory requests to the FPGA
and the FPGA replies every request with a response. If a particular request is
not responded (within a timeout), then the software can retry the last request.
There are two kinds of memory requests, write and read. Every request can
contain memory accesses to particular memory addresses.

In our model, the FPGA design to which the fault tolerance method is not
applied, consists of three circuits (A), (B) and (C), shown as white boxes in Fig.
2. (A) stores the requests from the software and responses sent from (B). (B)
transforms the requests from the software to actual memory signals for (C).

We assume that the processor, the subsystems, and the circuits (A) and (C)
are reliable, i.e., immune against bitflips. So, only (B) has to be hardened.

The gray boxes in Fig. 2 show the circuits for error detection and handling
after hardening the design. The error detection circuit checks for data integrity
in (B) to detect bitflips, e.g., by using concurrent error detection (CED) [2]. An
example for CED is to generate parity for every register in (B) and check for
data integrity in the next cycle. In case of detected bitflips, the error handling
module engages the countermeasures. In this implementation, the error handling

In-circuit Error Detection with Software-based Error Correction 273

FIFO

FIFO

Reliable
Circuit
(A)

Unreliable
Circuit
(B)

Error
Detection

Error
Handling

Mem.

Reliable
Circuit
(C)

error

data
read en.

output en.

data
read en.

address

data

data

read en.

write en.

output en.

reset

Fig. 2. In-circuit error detection applied on the unreliable circuit (B).

module masks the output signals of (B) and resets it. The masking occurs in one
clock cycle, so a fault in (B) does not propagate to the neighboring circuits, i.e.,
the circuit is isolated.

Through the specified timeout, the software is always aware of a failure in
(B). Upon failure of (B), a request is repeated and no request gets lost.

The shown hardening method is useful on circuits like protocol converters,
where the circuit acts as an intermediate module. If the circuit interface includes
control signals (e.g., write/read enable in Fig 2) which are maskable, then the
error can be masked using a relatively short path compared to correcting the
error by resetting the circuit.

Like TMR, the method can be applied after the behavioral synthesis on
the register transfer level, therefore it is transparent to the application. If the
communication protocol between the software and the circuit permits a timeout,
then the method is also transparent to the software.

This method concentrates on the circuit bits of an FPGA application and
not on the configuration bits, where the FPGA application itself is stored. It is
crucial to protect also the configuration bits from the ionizing radiation, if an
SRAM-based FPGA is used. If a flash-based FPGA is used, the bitflips on the
configuration are negligible [1].

References

1. Battezzati, N., Sterpone, L., Violante, M.: Reconfigurable Field Programmable Gate
Arrays for Mission-Critical Applications, chap. 7. Springer (2011)

2. Mitra, S., McCluskey, E.J.: Which concurrent error detection scheme to choose? In:
International Test Conference Proceedings. pp. 985–994. IEEE (2000)

3. Nicolaidis, M.: Time redundancy based soft-error tolerance to rescue nanometer
technologies. In: 17th IEEE VLSI Test Symposium. pp. 86–94 (1999)

4. Petersen, E.: Single Event Effects in Aerospace, chap. 1. John Wiley & Sons (2011)

274 G. Aydos

Behavior Driven Development for Tests and
Verification�

Melanie Diepenbeck
PhD advisor: Rolf Drechsler

Group of Computer Architecture, University of Bremen

Abstract. Nowadays, hardware is usually tested and verified at post-
design time. The bottom line is that more effort is spend in the validation
phases than in the implementation, because it is harder to fix bugs in
later design stages than during the implementation of the design. In
contrast, test-first approaches such as test driven development (TDD)
have become increasingly important for software development. Behavior
driven development (BDD) extends TDD by using natural language style
scenarios to describe tests. But both approaches miss formal verification
methods which are very important in hardware design. This research
project presents a new approach based on BDD that combines testing
and verification seamlessly.

1 Introduction

In traditional hardware design flows, testing and verifying the design is often
more time- and labour-consuming than the actual implementation. Historically,
testing and verification are usually applied after most of the design has been
implemented. The result is that mandatory major design changes due to serious
bugs lead to long design cycles so that time-to-market constraints cannot be
met. Hence, the validation of hardware designs should start as early as possible
to discover these bugs at design-time where they can be fixed easily.

In the software domain, test driven development (TDD, [1]) has become a
popular approach that enables short design cycles that includes validation right
from the start. Basically in TDD, testing and implementation take turns, whereas
after a new test case is introduced the implementation is extended to satisfy the
new test case. Behaviour driven development (BDD, [2]) enhances the idea of
TDD with tests written in natural language that are called scenarios. Step by
step these scenarios are associated with executable test code, thereby linking the
specification and the implementation.

Considering safety critical hardware design, testing is insufficient. Simulating
BDD scenarios rarely covers the whole input and state space. Therefore, some
bugs might be missed that could be detected with formal methods such as [3,
4]. However, formal methods experts are often needed to define these properties
since a high level of mathematical expertise is needed to understand and apply
properties to a design.

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_11, © Springer Fachmedien Wiesbaden 2015

Scenarios

Properties

Step
definitions

Test

Verify

Design

Given some constraint
When an event e occurs
Then ensure some result r(e)

Stage 1 Stage 2

im
pl.&check

im
pl
.

&

ch
ec
k

S
ta
g
e
3

next requirement

Fig. 1. Proposed Flow

The research project presented in this paper investigates a new hardware
design flow that completes the BDD method by complementing tests with formal
verification techniques in a flexible and agile way. The traditional test driven
flow is enhanced by integrating formal verification as a second driver of the
implementation.

2 New Design Flow

The contribution of this research, partly presented in [5, 6], consists of three
main ideas; (1) a customized BDD flow that is suitable for circuit design using
scenarios and properties alike, (2) generated properties from textual scenarios
that can be used for formal verification and (3) generated tests from textual
properties that are helpful in explaining complex properties. The advanced BDD
flow has three main stages, that are depicted in Figure 1 and are described in
the following sections.

Stage 1: Acceptance Tests and Properties

In Stage 1, the features of the individual hardware components are described by
scenarios or properties in natural language using the Given-When-Then sentence
structure as seen in Figure 1. Each sentence is called a step. Writing properties
additionally to acceptance tests allows keeping all requirements in a single con-
sistent document throughout the whole design flow [6].

Stage 2: BDD for Tests and Verification

The design is implemented in Stage 2. Following the test-first principle, the
implementation is developed iteratively by specifying step definitions for each
step of Stage 1 and then implementing the design parts that are required by
the steps. A step definition contains fragments of test code that describes the
behavior of a single step in a scenario. All steps of a scenario are used to compose
a testbench that drives the design under verification (DUV).

276 M. Diepenbeck

Stage 3: Generating Properties and Tests

BDD scenarios usually only consider few selected test input data and never
cover a scenario exhaustively. To cover the whole input space formal properties
come in handy. In order to ease the effort of writing properties, scenarios can
be automatically generalised to properties. The resulting property can then be
verified using existing state-of-art model checkers. The property is obtained by
capturing the verification intent of a scenario and map the underlying test code
using the Given-When-Then sentence structure to an implication property [5].

One widely acknowledged disadvantage of formal methods is that it can take
too long to find a solution. Furthermore, complex properties may be hard to
understand, so that examples are necessary. Therefore, this approach also allows
to generate scenarios from properties that can help explain the properties and
investigate the design further. The generated scenario consists mostly of existing
textual steps, such that the validation intent can be easily comprehended by
anyone involved in the design flow. Such a scenario is generated by creating a
witness for the verification intent of the original property. This witness is then
translated to a textual scenario using existing steps.

3 Conclusion

In this paper, a new BDD flow has been presented that complements testing
with verification in seamless manner. Furthermore, when tests are not sufficient
enough to check the design, they can be generalized to properties, and otherwise,
when formal properties do not result a solution in appropriate time, a human-
understandable scenario can be generated for further inspections of the design.

References

1. Beck, K.: Test Driven Development. By Example. Addison-Wesley Longman, Am-
sterdam (November 2003)

2. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. The Pragmatic Bookshelf (January 2012)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Tools and Algorithms for Construction and Analysis of Systems, Springer
(March 1999) 193–207

4. Bradley, A.R.: SAT-based model checking without unrolling. In Jhala, R., Schmidt,
D.A., eds.: VMCAI. Volume 6538 of Lecture Notes in Computer Science., Springer
(2011) 70–87

5. Diepenbeck, M., Soeken, M., Grosse, D., Drechsler, R.: Behavior driven develop-
ment for circuit design and verification. In: Int’l Workshop on High Level Design
Validation and Test Workshop (HLDVT). (Nov 2012) 9–16

6. Diepenbeck, M., Kühne, U., Soeken, M., Drechsler, R.: Behaviour driven develop-
ment for tests and verification. In: Tests and Proofs. Springer (2014) 61–77

Behavior Driven Development for Tests and Verification 277

Semantic Object Recognition Based on
Qualitative Probabilistic Spatial Relations�

Malgorzata Goldhoorn
PhD Advisor: Frank Kirchner

University of Bremen, Department of Computer Science,
Bibliothekstr. 1, 28359 Bremen, Germany

malgorzata.goldhoorn@informatik.uni-bremen.de

Abstract. Intelligent systems able to perform everyday tasks in human
living environments are going to play an important role in the future.
Especially service and assistive robots, which could take over tasks such
as fetch and carry, would be of great use. However, dealing with objects
in natural environments is not a trivial but rather very challenging task.
The robot has to extract the objects from noisy sensor data and give
them a meaningful and correct description. The goal of this thesis is to
develop an approach for robust semantic object recognition, which can
be used for such purposes. In our approach, we take advantage of the
spatial contextual information about objects’ co-occurrences to perform
a robust object recognition. Our approach is unique in that it uses spatial
semantics in a probabilistic manner. We also develop a new representa-
tion of this information, termed Spatial Potential Fields.

1 Introduction

In recent years, the development of low-cost depth-image sensors and new algo-
rithms for depth camera processing has contributed to the improvement of robot
perception systems significantly. Nevertheless, current approaches for robot per-
ception have their limitations, such as weakness against occlusions and are based
primarily on extracted object features to recognize the given object class. Our
goal is to develop a recognition system in which the contextual knowledge about
typical spatial relations between objects is used. This knowledge can help a robot
to recognize or classify an object reliably, even if the perception has a degree
of uncertainty. In this work we extend the qualitative spatial object relations
to probabilistics and introduce a new representation form for those contextual
relations. Additionally, we make use of very strong domain unspecific a priori
knowledge about the spatial relations in which objects are likely to be.

2 Related Work

Semantic object recognition and object search have become popular topics in
robotics recently. One of the current works in this field is the semantic labelling

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_12, © Springer Fachmedien Wiesbaden 2015

approach from Annand et al. [1]. The authors used contextual information about
geometrical object features and relations between them to perform labelling of
object classes. Adymir et al. [2] describe an approach for active visual search, in
which the topological relations between objects are used to create a search action
and find the objects. Similar to the work in [1] the next-best-view algorithm is
applied to deal with occlusion. Haider et al. [3] propose the use of a context
model to improve the detection result of other related objects in the scene. In
this approach object co-occurrence information is used to perform recognition of
the object category. However, most works do not take account of the diversity of
the possible objects’ relations and try to recognize the objects mostly exclusively
based on their appearance.

3 Semantic Object Recognition

In order to recognize objects in large human environments, the system must be
able to reason about possible object locations before the recognition process can
take place. To achieve this, we would like to equip the system with environmental
spatial semantics which can help the robot to optimise its search action. In our
method, a priori knowledge about general spatial object relations is used. This
knowledge can be understood as a (qualitative) spatial context for the object
recognition. Additionally, the spatial relations serve as a heuristic for the object
search.

3.1 Probabilistic Spatial Relations

The main contribution in our work is the method in which the typical knowledge
about qualitative spatial relations between objects is used in a probabilistic
manner to improve the semantic perception process. The probabilistic extension
of the relations should improve the recognition, which is often erroneous due to
the lack of knowledge or the presence of ambiguities. In the real environment an
object might be occluded or the data provided by the sensors might be noisy.
Moreover, as soon as part of the information is missing, the reasoning cannot
be done by using logic exclusively. Through probability it is possible to describe
that one specific object can be located on different places and can have several
relations to other objects with certain probabilities. What is more, given the
arrangement of the objects, spatial reasoning could tell the robot that the object
classified as a mug is more likely to be a computer mouse given its location to the
right of the flatscreen. The probability value may change according to the given
environment and the robot could learn this a priori knowledge from experience.
The relations have the general form:

β : ϕ× η × η → [0; 1] (1)

Where η = {η1, ..., ηn} describes a given object class and ϕ = {ϕ1, ..., ϕn} con-
tains the possible qualitative relations. Based on the equation (1) the probabilis-
tic qualitative spatial relations can be defined, as shown in examples (2-3).

β(on, table,mug) = 0.8, β(near, table, fridge) = 0.6 (2)

Semantic Object Recognition Based on Spatial Relations 279

Fig. 1. Left: two potential fields, each in form of three half-ellipsoids with different
field intensities and a sought object in the middle. Right: illustration of the spatial
potential field concepts for near and above relations (shown in 2D)

β(rightOf,mouse, screen) = 0.7, β(above, table, shelf) = 0.6 (3)

3.2 Spatial Potential Fields

The Spatial Potential Fields (SPFs) [4] are used to model and calculate the
qualitative topological relations in a probabilistic manner and represent this
information on the robot’s world model. Our idea was inspired by the potential
fields method which has been used in robot navigation for obstacle avoidance
[5]. The fields are geometrical spheroids which are aligned to the objects. They
may have different form depending on the relations type. An example of such a
field is shown in figure (Fig.1). By means of the SPFs, the degree of intensity
for a given qualitative relation can be calculated and, in turn, used to find the
location likely to contain the object.

References

1. Anand, A., Koppula, H.S., Joachims, T., Saxena, A.: Contextually guided semantic
labeling and search for three-dimensional point clouds. The International Journal
of Robotics Research (2012)

2. Aydemir, A., Sjoo, K., Folkesson, J., Pronobis, A., Jensfelt, P.: Search in the real
world: Active visual object search based on spatial relations. In: Robotics and
Automation (ICRA), 2011 IEEE International Conference on. (2011) 2818–2824

3. Ali, H., Shafait, F., Giannakidou, E., Vakali, A., Figueroa, N., Varvadoukas, T.,
Mavridis, N.: Contextual object category recognition for rgb-d scene labeling.
Robotics and Autonomous Systems 62 (2014) 241 – 256

4. Goldhoorn, M., Hartanto, R.: Semantic perception using spatial potential fields.
In: The 9th International Workshop on Cognitive Robotics (CogRob) of the 21st
European Conference on Artificial Intelligence (ECAI). (2014)

5. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE J. Robotics and Automation, 7 (1991) 278–288

280 M. Goldhoorn

Constraint-based Handling of
Component Networks�

Matthias Goldhoorn
PhD advisor: Frank Kirchner

University of Bremen, Department of Computer Science,
Bibliothekstr. 1, 28359 Bremen, Germany

Matthias.Goldhoorn@informatik.uni-bremen.de

Abstract. The ability to reconfigure running complex component net-
works in a robust manner is the next challenge in robotic software frame-
works. The increasing complexity of hard- and software leads to an in-
creasing systems’ complexity. The need to have a non-static version of a
collection of components that form a behaviour, for one point in time, is
caused not least by limiting resources of processing power. It is not pos-
sible to have all algorithms running at each point in time. Therefore, the
requirement to manage these component networks came up. This work
presents a new constraint-based approach to tackle the problem. The
aim of this work is to model a constraint-based system that is able to
handle state of the art robotic component networks, without increasing
the complexity for the system handling and system instantiation.

Keywords: component networks, reconfiguration, system behaviour, plan-
ning, robotics

1 Introduction

Robots are becoming more complex, from both a software and hardware point of
view. As hardware is getting more capable, more complex algorithms are being
developed. However, the drawback is that there is no single algorithm that can
handle all problems or requirements to control an autonomous robot system.
Therefore, one of the remaining big challenges is the integration of all these
single components and/or modules in a complex system (Fig. 1). Defining clean
and powerful interfaces can already be achieve by using frameworks like ROS
[1] or Rock [2], but the managing of those components is mostly still a open
question.

There are solutions available, but none of the known tools seems to be suitable
to satisfy the user’s needs, from our point of view. The known systems have
several drawbacks from either the engineering point of view (they are hard to
use), or they are limited in their capabilities, or both.

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_13, © Springer Fachmedien Wiesbaden 2015

fusion Driver

CPG

reflex-generator

CPG Knot
dataflow

Joystick
port=/dev/input/js0

threashold= 0.5

leg_offset= {1,2,3}
swing_time= 0.4
step_with=0.5

name=value

(parameterization)

a behaviour is formed by:
A Network of configured components

component network configured

Fig. 1. An abstract example of a component network

2 Related Work

There is a limited number of ongoing work that focuses on the handling of
component networks. There are, on the one hand, classical plan managers like
roby/syskit, mixed planners like T-Rex [3], and typical planners like the knowrob
[4] system. Each system has different advantages and drawbacks.

The most used solution for component based robotics systems seems to be
ROS. But its modularization capabilities are limited. Most of the ROS users
are following the task state pattern approach for system control [5] which is not
suitable to be used in future systems with growing complexity because there is
no way to reuse these realizations. This is caused by a missing abstraction layer.
Knowrob presents a planning based solution which tries to connect several data
sources to solve the symbol grounding problem [6]. But still the association to
concrete algorithms is unsolved or domain specifically hard wired.

3 Constraint-based Approach

In a robotic system there are often multiple algorithms that can fulfil a given
job like a trajectory follower. The problem is that often several sensors could
be used for these algorithms as data provider. The selection of the right ones is
part of the constraint checking process. In our work we are planning to develop a
clean constraint-based approach for modelling and handling robotic component
based systems. Our goal is to build a seamless integration of a constraint solver
for managing component networks. Instead of defining what effect a component
has, we are using the component itself as a symbol. The goal is to use components
as compositions similar to those described in [7].

The core concept of our work is, in contrast to syskit, the ability to handle
ambiguities. Instead of denying ambiguous solutions, we assume that each valid
solution is capable to fulfil a requirement. It is the job of the designer to limit the
usage by adding constraints to prohibit invalid solutions. This approach enables
a constraint solver to search for multiple solutions, and in case of failures, au-
tomatically switch to another solution where the failing component is excluded.

282 M. Goldhoorn

We do not have a symbol grounding problem in this kind of setup, each com-
ponent gets a clear symbol. The job of the constraint solver is to find a right
association for algorithms, instead of solving abstract goals. Each problem for
managing component networks could be transformed to a representation which
can be solved by constraint solvers.

References

1. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,
A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on open
source software. Volume 3. (2009) 5

2. o. V.: Rock, the Robot Construction Kit (2012) http://www.rock-robotics.org.
3. McGann, C.e.a.: A deliberative architecture for AUV control. IEEE International

Conference on Robotics and Automation (2008)
4. Tenorth, M., Beetz, M.: KnowRob – A Knowledge Processing Infrastructure for

Cognition-enabled Robots. International Journal of Robotics Research (IJRR) 32
(2013) 566 – 590

5. Lütkebohle, I.e.a.: Generic middleware support for coordinating robot software
components: The Task-State-Pattern. Journal of Software Engineering in Robotics
2 (2011) 20–39

6. Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenomena 42
(1990) 335 – 346

7. Joyeux, S., Albiez, J., et al.: Robot development : from components to systems. In:
Control Architecture of Robots. (2011) 1–15

Constraint-based Handling of Component Networks 283

Model-Based Testing Against
Complex SysML Models�

Christoph Hilken
PhD advisor: Jan Peleska

University of Bremen, Department of Mathematics and Computer Science,
Bibliothekstr. 1, 28359 Bremen, Germany
chilken@informatik.uni-bremen.de

Abstract. In recent years higher level of abstractions are considered to
cope with the complexity in today’s system design. Especially, modeling
languages such as SysML get increasingly popular in early design phases.
Model-based testing allows to use those models for test generation. Test
cases are derived from the model and not directly from the specification.
In this work a new proposed methodology will be implemented in an
existing model-based testing tool. Afterwards this methodology is used
to extend the tool to support activities as well as state machines and not
only state machines.

Keywords: SysML, Transition Relation, Model Checking, Model-based
Testing

1 Introduction

Development of embedded systems is a cumbersome task. Increasing number
of components, tighter hardware/software interaction, and the integration of
cyper-physical components such as sensors and actuators have led to a signifi-
cant complexity to be tackled. Verification, validation and testing of such sys-
tems is an important task in the development. Designers keep trying to cope
with this complexity by higher levels of abstraction such as Register Transfer
Level or the Electronic System Level. In the early phases of the design, modeling
languages like UML and its profiles SysML and MARTE become increasingly
popular. The OMG Systems Modeling Language (SysML [4]), for example, pro-
vides different descriptions means such as block definition diagrams (for the
structure of the system), activity diagrams (for the behavior of operations of the
system) or state machines (for control states of a system and their transitions)
for specifying the structure and behavior of a system prior to its implementa-
tion. Additionally, requirements can be provided as constraints in the Object
Constraint Language (OCL [5]). Therefore, SysML allows a precise description
of the system in an early phase of the development and that can be used for
model-based testing.

Instead of deriving test cases directly from the specification, which is a la-
borious task, especially if the specification or an implementation detail changes,
the test cases are derived from a model of the system under test and its envi-
ronment.
Model-based testing can be structured in the following steps:
� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_14, © Springer Fachmedien Wiesbaden 2015

Modeling: In a first step a model, which is an executable, partial description
of the system, usually derived from the specification, has to be created by
hand. For this purpose the SysML is used as modeling language.

Generation: Based on the model an abstract test suite and corresponding test
oracles are generated.

Compilation: The abstract test suite and test oracles are transformed into
executable tests.

Execution: Running the executable tests. Test oracles check test results during
and after the test.

The generation of the abstract test suite requires a formal encoding of the be-
havioral model semantics. This is typically achieved by generating initial state
conditions as well as the transition relation of the model. Since SysML provides
a multitude of alternative or complementary notations, this poses a significant
challenge to the development of corresponding tool support. In this work the
existing industrial-strength tool RttTgen [6] will be extended: A new methodol-
ogy for the generation is introduced to allow an easy extension of the supported
description means.

In the next section the proposed methodology is described. The paper closes
with a small conclusion and ongoing work.

2 Methodology

The translation from the model to its corresponding transition relation is a
cumbersome task, any error will spoil the verification or validation results. In
Addition, SysML provides many different description means and for each one a
translation to its corresponding transition relation has to be provided. Therefore,
a two-step approach is proposed for generating the corresponding transition re-
lation. First, a syntactic model-to-model transformation of the given behavioral
descriptions into a unified description of the system’s behavior and structure
is performed. The unified description consists only of operations with pre- and
post-conditions allocated in blocks. Because of this unification, there is only
one translation into a transition relation needed, namely the translation of op-
erations with pre- and post-conditions (called model-to-text transformation).
Additionally, many semantic variation points can be implemented in the model-
to-text transformation and so can be re-used. As a result adding support for
new description means is easy: Only the model-to-model transformation has to
be implemented.

Figure 1 shows an example of a model-to-model transformation. The behavior
of the system components in figure 1a is described by means of state machines.
These state machines are replaced by operations in figure 1b and attributes
are added to represent implicit informations of the corresponding description
means, in this case the active state of the state machine. For generation of the
corresponding pre- and post-conditions as well as a more detailed description of
the approach please refer to [2].

Besides test generation the transition relation can be used for verification of
the model, for example to prove that the specification is free of contradictory
requirements (see e.g. [1]) or to check for unwanted behavior to be avoided (see
e.g. [7]).

Model-Based Testing Against Complex SysML Models 285

BDD

block
Block B
attributes

operations

block
Block A
attributes

operations

block
Block C
attributes

operations

SM1 SM2 SM3

a Source structure

BDD

block
Block B
attributes

statesm2: State
operations

opsm2
t0

()

opsm2
t1

()
. . .

block
Block A
attributes

statesm1: State
operations

opsm1
t0

()

opsm1
t1

()
. . .

block
Block C
attributes

statesm3: State
operations

opsm3
t0

()

opsm3
t1

()
. . .

b Target structure

Fig. 1. Proposed model-to-model transformation.

3 Conclusion and Future Work

The proposed two-step approach on the one hand reduces the complexity of the
translation into corresponding transition relations, on the other hand new de-
scription means can easily be added. Afterwards, the resulting transition relation
is used for model-checking and test generation. A basic translation for activi-
ties(see [3]) and the proposed two-step approach are already finished. The next
step is full support of models consisting of both, state machines and activities.

References

1. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and conse-
quences in UML and OCL models. In: Tests and Proofs. pp. 90–104 (Jul 2009)

2. Hilken, C., Peleska, J., Wille, R.: A unified formulation of behavioral semantics for
sysml models. In: 3rd International Conference on Model-Driven Engineering and
Software Development (2015)

3. Hilken, C., Seiter, J., Wille, R., Kühne, U., Drechsler, R.: Verifying consistency be-
tween activity diagrams and their corresponding ocl contracts. In: Forum on Spec-
ification & Design Languages (2014)

4. Object Management Group: OMG Systems Modeling Language (OMG SysMLTM).
Tech. rep., Object Management Group (2010), OMG Document Number:
formal/2010-06-02

5. Object Management Group: OMG Object Constraint Language (OCL). Tech. rep.,
Object Management Group (2012), OMG Document Number: formal/2012-01-01

6. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings Eighth Workshop
on Model-Based Testing, Rome, Italy, 17th March 2013. Electronic Proceedings
in Theoretical Computer Science, vol. 111, pp. 3–28. Open Publishing Association
(2013)

7. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models. In:
Design, Automation and Test in Europe. pp. 1077–1082. IEEE Computer Society
(Mar 2011)

286 C. Hilken

Integrated Model-based Testing and Model
Checking with the Benefits of Equivalence

Partition Testing�

Felix Hübner
PhD advisor: Jan Peleska

University of Bremen, Department of Mathematics and Computer Science,
Bibliothekstr. 1, 28359 Bremen, Germany

felixh@informatik.uni-bremen.de

Abstract. In safety-critical systems the verification process is one of the
most important and most time-consuming tasks. Therefore automated
methods are needed to guide the verification process. Typical methods
for system verification are model checking and model-based testing. Both
methodologies have a lot in common. It seems promising to investigate
possible synergies of these two research areas. In this work, the possi-
bilities for the integration of model-based testing with model checking
will be investigated. Additionally, a novel model-based testing approach
based on equivalence class partitioning has been implemented recently.
In this paper a short overview of the implementation is given.

Keywords: Model-based Testing, Model Checking, Partition Testing

1 Introduction

Model-based testing and model checking offer different advantages and are used
for different purposes. Model checking can provide full correctness proofs through
exhaustive state exploration, but suffers from the state explosion problem. In
contrast to that, test suites are rarely able to prove the absence of any remain-
ing errors, but are always feasible, and they still represent the most important
verification method in practice. Model checking [1] is used to verify that a model
satisfies a specification, which is a set of properties that are often defined in
temporal logic, e.g. LTL. Model checking is able to prove (or disprove) that the
specification is satisfied globally by the system, which has to be a finite state
system in order to guarantee that the model checking algorithms terminate. But
in many cases the state explosion problem prevents the application of model
checking. In this case abstraction techniques can help to reduce the state space
in order to render the usage of model checking algorithms possible. Model-based
testing is the method to automatically extract a test suite from a model. This

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_15, © Springer Fachmedien Wiesbaden 2015

test suite is then applied to the real system (concrete hardware, software, em-
bedded system) and can be used for all kinds of systems, even if the state space
is infinite. The general problem of testing is, that neither all possible inputs and
combinations of the latter nor infinite behaviours can be checked.

However, in the context of finite state machines (FSM) a variety of complete1

test methods exist, e.g. [2]. These methods allow to proof the conformance of an
implementation to the model and hence allow a statement on the correctness of
an implementation by means of testing.

The main contributions of this work are as follows: 1. A novel model-based
testing approach has been implemented.2 This approach provides an automated
test data generation algorithm for SysML/UML state machines [4], that is com-
plete under certain restrictions. This leverages the incompleteness of model-
based testing by using data abstraction. The implementation is presented in the
following section. 2. As shown in the last section of this paper, future work will
focus on experimental evaluation of the test strength of the presented strategy.
3. The same equivalence abstraction will be applied to problems of model check-
ing. 4. An integrated framework for model-based testing and model checking will
be implemented to combine advantages of both methods.

2 Equivalence Class Partition Testing

This section serves as a brief overview about the implementation of the equiv-
alence class partition testing (ECPT) strategy as proposed in [5]. There it is
shown that it is possible to abstract the potentially infinite input domain of a
state transition system, in order to derive an FSM abstraction with finite input
alphabet. This FSM allows the generation of a finite, but still complete, test
suite with respect to a fault domain3.

Fig. 1 shows the flow of the test data generation for the ECPT approach. A
behavioural description of the System-Under-Test modelled by a SysML/UML
state machine is first transformed into an internal model representation expressed
by a state transition system. This first transformation facilitates the application
of the approach to other description languages, whose behavioural semantics can
be expressed by a state transition system. Next, an abstraction based on I/O
equivalence [7] is performed. This induces an FSM abstraction of the system. On
this FSM the well-known W-method [2] is applied, resulting in the test suite.
In [6] this novel approach has already been applied to a real-world example from
the European Train Control System (ETCS).

1 Completeness comprises soundness (every correct implementation is accepted) and
exhaustiveness (every erroneous implementation is rejected).

2 The implementation is integrated in the model-based testing component of the in-
dustrial strength tool RT-Tester [3].

3 The fault domain is a collection of systems that fulfill certain properties. The test
suite is proven to be complete with respect to this fault domain, i.e. the completeness
does only apply for systems that are part of the fault domain. For further information
please refer to [6].

288 F. Hübner

Fig. 1. Flow of the ECPT approach

3 Conclusion and Future Work

The presented ECPT approach is a novel model-based testing technique that
is able to automatically generate test suites from SysML/UML state machines,
that are complete for a well-defined fault domain. Hence this model-based testing
technique is able to allow a statement on the correctness of a System-Under-
Test (SUT), contrary to general testing. This statement is only valid, if it can
be guaranteed, that the SUT belongs to the fault domain. In general, especially
for blackbox tests, this cannot be decided. Hence future work will focus on
the experimental evaluation of the test strength of the approach for arbitrary
systems. Furthermore, the question how the equivalence classes have to be refined
to increase the fault domain (and improve the test strength) will be answered.
The use of the I/O equivalence data abstraction in the context of model checking
will be evaluated and may result in an integrated framework for model-based
testing and model checking.

References

1. Edmund M. Clarke, Orna Grumberg, and Lucent Technologies. Model Checking.
The MIT Press, Cambridge. Massachusetts, 1999.

2. T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng., 4(3):178–187, May 1978.

3. Jan Peleska. Industrial-strength model-based testing - state of the art and current
challenges. Electronic Proceedings in Theoretical Computer Science, 111:3–28, 2013.
arXiv: 1303.1006.

4. Object Management Group. OMG Unified Modeling Language (OMG UML), su-
perstructure, version 2.4.1. Technical report, 2011.

5. Wen-ling Huang and Jan Peleska. Exhaustive model-based equivalence class test-
ing. In Testing Software and Systems, number 8254 in Lecture Notes in Computer
Science, pages 49–64. Springer Berlin Heidelberg, 2013.

6. Cécile Braunstein, Anne E. Haxthausen, Wen-ling Huang, Felix Hübner, Jan Pe-
leska, Uwe Schulze, and Linh Vu Hong. Complete model-based equivalence class
testing for the ETCS ceiling speed monitor. In Formal Methods and Software
Engineering, number 8829 in Lecture Notes in Computer Science, pages 380–395.
Springer Berlin Heidelberg, 2014.

7. Wen-ling Huang and Jan Peleska. Complete model-based equivalence class testing.
International Journal on Software Tools for Technology Transfer, pages 1–19, 2014.

Integrated Model-based Testing and Model Checking 289

An SMT-based Approach to analyze Non-Linear
Relations of Parameters for Hybrid Systems

Xian Li
PhD advisor: Klaus Schneider

Embedded Systems Group, Department of Computer Science,
University of Kaiserslautern, Germany

Abstract. Deriving constraints over parameters to avoid unexpected
system behaviors is extremely important for parametric analysis of hy-
brid systems. In the long run, our project aims for an SMT-based ap-
proach to reveal non-linear relations between parameters for hybrid sys-
tems that are specified by parameterized formal models using standard
data types (reals, integers and booleans) and affine dynamics. The prob-
lem we address is undecidable since the underlying logic consists of
boolean combinations of propositional logic atoms as well as atoms from
non-linear arithmetic theories over integers and reals with quantifiers.
Currently, a symbolic simulation algorithm has been prototypically im-
plemented based on a new developed prototypical constraint solver.

Keywords: SMT, Constraints over Parameters, Parametric Analysis

The hybrid systems discussed in this paper are specified by parameterized formal
models supporting standard data types (reals, integers and booleans) and affine
dynamics, like Hybrid Quartz [1] or HyDI [2]. Our project aims for an SMT-based
approach to reveal non-linear relations of parameters for automatic analysis of
this kind of models. The problem we address leads to an undecidable satisfiability
problem. In [3], we described the satisfiability problem from both the logical and
the constraint problems’ [4] perspectives.

From the logical point of view, the satisfiability problem that we consider
consists of boolean combinations of propositional logic atoms as well as atoms
of non-linear arithmetic theories over integers and reals with ∃-quantifiers. It is
undecidable and strictly included in the combination of the first-order logic of
the structure (R, +, ·, Z, 0, 1, <) and propositional logic.

In the constraint problems’ perspective, if we get rid of the boolean variables,
then the remaining problem amounts to check whether there exists a solution
for a set of Mixed Integer Non-Linear Programming (MINLP) problems. The
MINLP problem is one of the most general modeling paradigms in optimization
and includes both Non-Linear Programming (NLP) and Mixed Integer Linear
Programming (MILP) as subproblems. Linear constraint problems are a subset
of NLP problems, while, MILP problems are a subset of MINLP problems.

As shown in Fig. 1, according to the constraint problems they could solve,
we classified various available tools for hybrid system analysis, e.g. HySAT [5],
MathSAT5 [6], CVC4 [7], Z3 [8], KeYmaera [9], IMITATOR [10], SpaceEx [11],

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_16, © Springer Fachmedien Wiesbaden 2015

NLP Problems:

KeYmaera, IMITATOR,
SpaceEx, QEPCAD,

Reduce, TReX,
dReal, Z3

Linear Problems:

HySAT

MILP Problems:

MathSAT5, CVC4,
Z3

MINLP Problems:

 iSAT, Bonmin

Fig. 1. Tool Classification in Constraint Problems’ Perspective

TReX [12], iSAT [13] and dReal [14], together with some algebraic computation
tools, e.g. QEPCAD [15], Reduce [16].

Most of the tools cannot handle a single MINLP problem, except for iSAT
and some tools for MINLP problems, like Bonmin [17]. In general, a solution
for an individual MINLP problem cannot always be found. This might be due
to limitations of the tool itself or due to the fact that satisfiability of MINLP
problems is undecidable. No solution returned does not mean that no solution
exists. Moreover, iSAT and Bonmin are developed in different application areas.
It is still unclear which tool performs better to solve the satisfiability problem
that we consider.

Therefore, the dual-rail representation is used, where two BDDs represent
the three possible values (true, false or unknown) of a node that corresponds
to an individual MINLP problem. A new prototypical constraint solver has
been developed by integrating Bonmin with a BDD package implemented in
our Averest system (www.averest.org). Based on our new solver, we proposed
a counterexample-guided algorithm for symbolic simulation of hybrid systems
[3]. The algorithm has been prototypically implemented on top of our Averest
system. We benefit from our Averest system, since it offers a constantly evolving
infrastructure containing tools for compilation, analysis, synthesis, and different
techniques for formal verification. It provides algorithms that translate a Hybrid
Quartz program to a set of guarded actions [18]. The guarded actions are the
basis for the system’s symbolic representation [1].

The correctness of the prototypical constraint solver is assured by the BDD
package and by Bonmin. Its capability is restricted by the two tools as well. After
improving the efficiency of the prototypical tool integration, a comparison with
iSAT will be conducted by benchmark examples. Moreover, we plan to combine
abstraction and linearization techniques to reorganize the system’s symbolic rep-
resentation, so that either MILP problems or NLP problems can be generated
to simulate the original MINLP problems. In this way, we avoid the strict re-
quirements for the backend solver, so that various tools can be used, including
all those tools that are displayed in Fig. 1. Deriving constraints over parame-
ters to meet the system’s specifications could then be achieved by solving the
corresponding MILP problems or NLP problems, both of which are decidable.

Analyzing Non-Linear Relations of Parameters for Hybrid Systems 291

References

1. Bauer, K., Schneider, K.: From synchronous programs to symbolic representations
of hybrid systems. In Johansson, K., Yi, W., eds.: Hybrid Systems: Computation
and Control (HSCC), Stockholm, Sweden, ACM (2010) 41–50

2. Cimatti, A., Mover, S., Tonetta, S.: HyDI: A language for symbolic hybrid sys-
tems with discrete interaction. In: Software Engineering and Advanced Applications
(SEAA), 2011 37th EUROMICRO Conference on, IEEE Computer Society (2011)
275–278

3. Li, X., Schneider, K.: A counterexample-guided approach to symbolic simulation
of hybrid systems. In: Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen (MBMV), Chemnitz, Germany, In pro-
ceeding (2015)

4. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint
programming: A comparative survey. ACM Computing Surveys (CSUR) 38 (2006)

5. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model check-
ing of hybrid systems. Formal Methods in System Design (FMSD) 30 (2007) 179–198

6. Cimatti, A., Griggio, A., Joost Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
solver. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Volume 7795 of LNCS., Rome, Italy, Springer (2013) 93–107

7. CVC4. cvc4.cs.nyu.edu/web/
8. Z3. z3.codeplex.com/
9. Platzer, A.: Logical Analysis of Hybrid Systems – Proving Theorems for Complex

Dynamics. Springer (2010)
10. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: A tool for ana-

lyzing robustness in scheduling problems. In: Proceedings of the 18th International
Symposium on Formal Methods (FM’12). Volume 7436 of Lecture Notes in Com-
puter Science., Paris, France, Springer (2012) 33–36

11. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Computer Aided Verification (CAV). Volume 6806 of LNCS., Snowbird, Utah,
USA, Springer (2011) 379–395

12. Annichini, A., Bouajjani, A., Sighireanu, M.: TReX: A tool for reachability analysis
of complex systems. In: Computer Aided Verification (CAV). Volume 2102 of LNCS.,
Paris, France, Springer (2001) 368–372

13. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to
hybrid systems. In: Automated Technology for Verification and Analysis (ATVA).
Volume 5311 of LNCS., Seoul, South Korea, Springer (2008) 171–185

14. Gao, S., Kong, S., Clarke, E.: dReal: An SMT solver for nonlinear theories over the
reals. In: Conference on Automated Deduction (CADE). Volume 7898 of LNCS.,
Lake Placid, NY, USA, Springer (2013) 208–214

15. QEPCAD. http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html
16. Reduce. reduce-algebra.com/
17. Bonami, P., Biegler, L., Conn, A., CornuéJols, G., Grossmann, I., Laird, C., Lee,

J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for
convex mixed integer nonlinear programs. Discret. Optim. 5 (2008) 186–204

18. Schneider, K.: The synchronous programming language Quartz. Internal Report
375, Department of Computer Science, University of Kaiserslautern, Kaiserslautern,
Germany (2009)

292 X. Li

Analyzing and Simulating Time Descriptions
from UML/MARTE CCSL�

Judith Peters
PhD advisor: Rolf Drechsler

Institute of Computer Science, University of Bremen, Bremen 28359, Germany
jpeters@informatik.uni-bremen.de

Abstract. The complexity of modern embedded systems makes it in-
evitable to consider higher abstraction levels in the design process to
overcome problems in acceptable time and effort. In higher abstraction
levels, the utilization of functional requirements is quite advanced, while
the utilization of non-functional requirements like timing still is an open
problem. We aim to address this problem utilizing the timing definitions
from UML/MARTE CCSL.

Keywords: CCSL, UML, MARTE, SystemC, Formal Methods

1 Introduction

Modern embedded systems are growing to a huge complexity, making classical
design tasks error-prone and time-consuming. As a consequence, novel design
flows introduced several abstraction levels to overcome this problem. At this
stage, the classical level of highest abstraction is the Electronic Systems Level
(ESL), where SystemC and other high-level programming languages are used
to describe the system. But still, a big gap remains between textual specifica-
tion and ESL. In the last decade, modeling languages like the Unified Modeling
Language (UML, [2]) provided a “bridge” between the given specification and
its initial implementation [4]. In the design of embedded and cyber-physical sys-
tems, particularly theModeling and Analysis of Real-time and Embedded systems
profile (MARTE, [1]) finds considerable attention.

In this field, the utilization of non-functional requirements like timing is still
an open problem. MARTE provides a special language for timing specification:
the Clock Constraint Specification Language (CCSL), which relies on describing
clocks and instants. In our project we are going to utilize this language for
classical design tasks such as verification or code-generation.

2 Design and More – A Generic Representation of CCSL

To utilize the textual CCSL specification, we introduce a generic automaton
representation of it. A lot of approaches have already been proposed to directly

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_17, © Springer Fachmedien Wiesbaden 2015

A isPer iod i cOn B
per iod 2 . 0 ;

(a) CCSL constraints

{B} {A,B}

g : (cA = 2) ∨ ¬dA
u : (cA = 0) ∧ (dA = true)

g : cA < 2
u : cA++

g : cA < 2
u : cA++

V0 =
(cA = 0,
dA = false)

(b) Corresponding automaton

Fig. 1. Generic representation of CCSL constraints

transform the CCSL constraints to input for certain model checkers [5] or to
ESL descriptions [3]. We transform it to a more generic representation which
can be used for several tasks at the same time.

The main concept of our approach is the ticking set, which is the set of
clocks c ∈ C ticking in one simulation step. All clock behavior can be modeled
as a movement between these ticking sets, making the ticking sets states and
the movement between them the transitions. These transitions can be restricted
according to the CCSL constraints using guard functions over global variables.
These variables are manipulated using update functions.

For a more detailed explanation, consider the CCSL specification from
Fig. 1(a). It means that B is not restricted and can tick whenever it wants,
while A is a subclock of B. Thus, A cannot tick alone but has to tick coincidently
with B. For the resulting automaton, this gives the ticking sets {B} and {A, B}
(see Fig. 1(b)). Furthermore, as the period of A is 2.0, we can conclude that
the ticking set {A, B} can never be followed by itself, i. e. this transition is not
needed. Finally this leads to two states and three transitions (see Fig. 1(b)).

To enforce the periodicity, now a counter cA for the period is added and
additionally a Boolean variable dA to represent, if the subclock A has already
ticked. The initial values V0 are cA = 0 and dA = false. For every transition
leading to a state not containing A, cA is increased, while the other transition
resets the counter to zero and sets dA, representing, that A has ticked now and
the period starts again (see the conditions u in Fig. 1(b)). The transition to the
ticking set including A can only be taken if the counter is high enough, while
the other transitions can only be taken if it is low enough (see g in Fig. 1(b)).
Now, the resulting automaton can be used for various design tasks such as e. g.
verification or code-generation.

3 Generating SystemC

As the behavior and thereby the automaton and its analysis time is growing
exponentially in the clock number, we developed a faster way to simulate and
test the constraints together with SystemC applications [3]. This is an alternative
to the automaton approach especially for systems with high numbers of clocks
and, thus, long verification times. Our code generation scheme extends a given
functional implementation in SystemC with timing. To generate the behavior,
we extend the existing implementation by a TimeController as shown in Fig. 2.

294 J. Peters

SystemC CCSL Framework

Module1

Module2

Clock1

Clock2
TimeController

Fig. 2. Example SystemC implementation extended by CCSL Framework

CCSL constraints can be divided in two kinds: combination and future con-
straints. Combination constraints state, in what combinations clocks may or may
not tick, while future constraints define times in the future from a given moment
on, where other clocks have to tick or not to tick. To store the future constraint
information, we use ClockMonitor objects. One object for every clock stores,
which constraints it applies to other clocks and what restrictions are applied to
itself. The combination constraints are represented by Bind objects. Finally, the
TimeController uses lists of clocks that can, cannot or must tick in every step
to represent the behavior. These lists are updated according to the constraints,
until all clocks are distributed between must and cannot. The clocks in must
form finally the ticking set of that simulation step.

4 Conclusion and Future Work

In the recent past, we developed a generic representation of CCSL constraints in
terms of automata, which can represent the whole breadth of CCSL constraints.
As the analysis of these automata is time-consuming, we developed a simple and
fast code-generation scheme, which can be used for fast tests and simulations.
Now, we want to combine the two approaches to get better simulations (regarding
non-deterministic choices and clock-dependencies) and to improve the automa-
ton evaluation towards bounded model checking and symbolic representation to
make its use more feasible.

References

1. Object Management Group: UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems. Object Management Group (2011)

2. Object Management Group: OMG Unified Modeling Language TM (OMG UML)
Superstructure. Object Management Group (2011)

3. Peters, J., Wille, R., Drechsler, R.: Generating SystemC Implementations for Clock
Constraints Specified in UML/MARTE CCSL. International Conference on Engi-
neering of Complex Computer Systems (ICECCS), 116–125 (2014)

4. Drechsler, R., Soeken, M., Wille, R.: Formal Specification Level: Towards
Verification-driven Design Based on Natural Language Processing. Forum on Spec-
ification and Design Languages (FDL), 53–58 (2012)

5. Mallet, F., Yin, L.: Correct Transformation from CCSL to Promela for verification.
Institut National de Recherche en Informatique et en Automatique, (2012)

Analyzing and Simulating CCSL 295

Design and Synthesis of Reversible Circuits
using Hardware Description Languages�

Eleonora Schönborn
PhD advisor: Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
eleonora@informatik.uni-bremen.de

Abstract. Reversible computation recently gained a lot of interest due
to applications in areas like quantum computation and low power de-
sign. Due to its special properties, the established circuit design flow
cannot simply be applied to reversible logic. In this work, we consider
hardware description languages for the scalable design and synthesis of
reversible circuits. Two complementary directions are discussed, namely
(1) exploiting the conventional design flow and mapping the result to a
reversible circuit, and (2) developing an entirely new design flow, which
considers reversibility right from the beginning.

1 Reversible Computation

Nowadays, computational components are being embedded in more and more
objects of our everyday lives. In smartphones, cars, medical equipment, etc. these
components are linked closely to their physical environment using sensors and
actors. Connected via networks they form cyber-physical systems. The expecta-
tions on these integrated circuits are rising with their number of applications.
Especially low energy consumption has become a crucial design goal. While es-
tablished power management techniques are reaching their limits, technologies
alternative to CMOS are becoming more important day by day.

Many alternative technologies and applications currently investigated are
based on reversible computation. Examples include quantum computation [1],
low power design [2], and adiabatic circuits [3].

Reversible computation is a computing paradigm which only allows reversible
(i.e. bijective) operations. Thus, each gate in a reversible circuit represents a
bijection. Conventional gate libraries cannot be applied here, and new libraries
of reversible gates have been introduced. Furthermore, fanout and feedback are
generally not allowed in reversible circuits. As a consequence, design methods
cannot simply be transferred from conventional circuit design, but have to be
adapted or developed from scratch.

Most existing methods for reversible circuits work on the gate level, so almost
no support for reversible systems on the specification level, the electronic system
level, or the register transfer level exists yet. Moreover, most of the existing
approaches for synthesis only accept specifications provided in terms of Boolean

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_18, © Springer Fachmedien Wiesbaden 2015

function descriptions like truth tables or Boolean decision diagrams, making
them hardly scalable.

In this work, we investigate the use of hardware description languages (HDLs)
for the design and synthesis of reversible circuits. Two complementary directions
are discussed, namely (1) designing reversible circuits by exploiting the conven-
tional design flow first, and afterwards mapping the result to a reversible circuit,
and (2) applying an entirely new design flow to be developed, which considers
reversibility right from the beginning through all abstraction levels.

2 Exploiting the Conventional Design Flow

The design flow for conventional circuits has been continually improved over
decades and offers many powerful design tools and algorithms. Here, we consider
using these methods for the design of reversible circuits. To be precise, the first
steps of the design process follow the conventional design flow. The resulting
conventional design will then automatically be mapped to a reversible circuit
description by methods yet to be developed.

When following this direction, the most important questions are:

– At which abstraction level should the conventional design be mapped to a
reversible circuit description?

– What mapping method will create the best reversible circuits regarding cri-
teria like gate cost, delay, and number of signals?

– How can the mapping be done efficiently w.r.t. runtime and memory usage?

Mapping at a low abstraction level like the gate level can be realized straight-
forwardly. Each conventional gate is substituted by a template of reversible gates
realizing the same function or, in the case of irreversible functions, embedding
the function in a bijection using additional circuit lines. However, since each
gate is mapped individually without regarding global information, the resulting
circuits are usually far from optimal.

We consider an approach mapping from the register transfer level instead.
The mapping scheme is similar to the one described for the gate level, but instead
of single gates, complete modules have to be substituted. For this purpose, past
accomplishments in the design of reversible building blocks for various data flow
operations like adders, multipliers, etc. can be exploited. This way, circuit lines
and/or gate cost can be saved compared to the gate level mapping.

Mapping from an higher level of abstraction, like the HDL description, would
enable the use of even more global information and thus further reductions in
the resulting circuits. However, this would require a complex mapping scheme.

3 Developing a Specific Design Flow

The second direction aims for the development of an entirely new design flow
which considers reversibility from the specification and through all following ab-
straction levels. Special characteristics of reversible functions could be exploited

Design and Synthesis of Reversible Circuits 297

this way. Theoretically, there would be no need for embedding. On the downside,
the whole design flow has to be redeveloped.

For the specification of large and/or complex reversible systems, HDLs sup-
porting the characteristics of reversible logic have to be developed. Thus far,
only preliminary versions of such HDLs are available (e.g. [4, 5]).

These languages do not allow for direct assignments such as a=b as this
would be irreversible. Instead, reversible assignment operations are used, and
can be combined with not necessarily reversible expressions. Despite significant
differences like this between reversible and conventional HDLs, these languages
enable the design of complex systems in reversible logic as we showed in [6].

In [4] an algorithm was introduced which allows for the synthesis of a re-
versible circuit directly from the HDL description. In this algorithm, a statement
like c^=a*b is realized by cascading building blocks for the operations (multipli-
cation and XOR-assignment). Since non-reversible parts of the overall reversible
statement are synthesized separately, additional circuit lines are required for
embedding. Hence, this synthesis scheme suffers from similar problems as the
mapping methods discussed in Section 2. But in contrast, the initial reversible
description allows for un-computing temporary results and thus for saving some
of the additional lines, as we discussed in [7].

4 Conclusion

To efficiently design reversible logic, we need to investigate high abstraction levels
like HDL. In this work, two directions are considered: Exploiting the conventional
design flow and developing a new flow according to the properties of reversible
circuits. Which direction should be taken is not obvious and may depend on the
application. The goal of this work is to investigate both directions, develop new
methods as well as compare and improve existing ones.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press (2000)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:
Experimental verification of Landauer’s principle linking information and thermo-
dynamics. Nature 483 (2012) 187–189

3. Patra, P., Fussell, D.: On efficient adiabatic design of MOS circuits. In: Workshop
on Physics and Computation, Boston (1996) 260–269

4. Wille, R., Offermann, S., Drechsler, R.: SyReC: a programming language for syn-
thesis of reversible circuits. In: Forum on Specification & Design Languages. (2010)
184–189

5. Thomsen, M.K.: A functional language for describing reversible logic. In: Forum
on Specification & Design Languages. (2012) 135–142

6. Wille, R., Soeken, M., Große, D., Schönborn, E., Drechsler, R.: Designing a RISC
CPU in Reversible Logic. In: Int’l Symp. on Multiple-Valued Logic. (May 2011)
170–175

7. Wille, R., Soeken, M., Schönborn, E., Drechsler, R.: Circuit line minimization in
the HDL-based synthesis of reversible logic. In: IEEE Annual Symposium on VLSI.
(2012) 213–218

298 E. Schönborn

Dynamic Rebound Control and Human Robot
Interaction of a Ball Playing Robot�

Dennis Schüthe
PhD advisor: Udo Frese

University of Bremen, schuethe@informatik.uni-bremen.de

Abstract. Building a ball playing entertainment robot with the main
contribution of a task level optimal control which handles trajectory
planning and optimal control in a single controller and takes redun-
dancy and elasticity into account. For faster actuation the feedback
gain is used and the controller distributes into two parts. Human-Robot-
Interaction(HRI) completes the entertainment aspect.

1 Introduction

Playing ball games is challenging for humans of all ages, especially if the ball
should be played back precisely to an opponent. When children start learning it,
you see a lot of divergence at the target position. For a robot such a game is a
demanding task due its physical limitations and timing aspects. The controller
for this task is presented herein and how to interact with the audience for a more
lively scenery and more attractive robot for people.

2 The Physical System

The entertainment robot is called Doggy(c. f. Figure 1). It is an enhanced de-
velopment of the first version Piggy[4]. The head of Doggy is a 40 cm styrofoam
sphere added at the end of a carbon rod. The head is used as racket, this makes
the orientation of the head unimportant. The rod itself is attached to the third
Axis of the robot, which moves the head sidewards — for Doggy we use only
revolute joints. The second Axis holds Axis 3 to turn the head forward and back-
ward. Together with the head, Axes 2 and 3 describe a partial hollow sphere as
workspace, which is due to joint limitations. Both Axes are mounted on the first
Axis, which acts like a hip and can turn the workspace around. This results in
a redundant Degree of Freedom, see Figure 1. In upright position the robot is
2.1m tall. The axes of the robot are driven by DC-motors through tooth belts.
This leads to elasticity between motor and joint and has to be taken into account
by our controller.

Moreover, a stereo camera system is added to the robot at its hip. The system
is used to track balls[2] and calculating a position, where the balls intersact with
the robot’s workspace. For the HRI the cameras can also be used to track people.
Additionally, a stereo microphone is attached to the system to make the dog hear
and respond on noise.

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_19, © Springer Fachmedien Wiesbaden 2015

Fig. 1: (Left) The robot Doggy. (Right) Principle drawing of axes and interior.

3 Task Level Optimal Control

The most challenging part is the design of the controller. As we are talking about
ball games with accurate rebound we have to fulfill following conditions: Being
with the head at time T at position p with the velocity v. Moreover, we have
constraints given by the joint limitations and the physical motor limitations.

For that we use Task Level Optimal Control[6]. Compared to most imple-
mentations, we use the finite horizon linear quadratic regulator in an adapted
way, where the horizon is an additional input parameter, similar to [3]. In con-
trast to this work, we propagate the feedback gain for a number of steps instead
of an online computed control value for every step [5]. This leads to a faster
computation as we do not need to recalculate the feedback gain for every step.

We distribute the controller into two parts, a fast acting linear optimal and
a nonlinear optimal controller. The latter runs on a computer to calculate the
feedback gain for the linearized nonlinear model of the robot at an update rate of
50Hz given by the stereo camera system. For the linearization points we predict
our system behavior, where the starting point is the actual system state. The
state consists of motor and joint velocities and positions. The motor positions
and velocities can be measured directly, where the joint values have to be esti-
mated using inertia measurement units data. On a microcontroller we compute
input commands by the feedback gain, at rate of 1 kHz. A disturbance would
then be recognized and countered first on the microcontroller in a linear and
very fast behavior. Deviations from the calculated path would be recognized on
the computer at the next update step. This will recompute the linearized dy-
namics with the actual state as starting point. The controller adapts to the new
situation and the updated feedback gain is propagated to the Microcontroller.

300 D. Schüthe

A second advantage is to define a whole task instead of calculating a tra-
jectory and follow it by a controller. Therefore, we propagate T , p, and v to
the controller, which automatically decides the optimal way. Moreover, our def-
inition of optimality is to reach the desired p and v with lowest energy input
to the system, i. e. minimization of the input torque. The achievement of our
work is a controller that combines the regulation of the plant and the trajec-
tory planning in one optimal controller, which is more efficient than a seperated
implementation.

Furthermore, we want to include the physics of playing back the ball into the
optimization process, such that the target position is passed to the controller
and not the intersection position and velocity.

4 Human-Robot-Interaction

To complete the entertainment aspect, the robot interacts with the audience to
get their acceptance as an opponent player. First, there is the gaming scenario,
which is mainly to hit the ball back to the player who has thrown it. But there
could also be variations of this game. The robot could hit the ball to another
person which has been recognized by cameras. This would take more attention
of the audience, as the ball might be thrown to them. Furthermore, the detection
algorithm should recognize if a person is watching the game and can be included.

Another part is the acoustic. The robot should act on noise as a human would
do, i. e. react to noise which has not been there before by turning the head to
the source and adapt to the noise level in environments where a lot of people
talk or music is playing. A first version is able to handle these things and turns
the robots head towards the sound of interest[1].

References

1. Bartsch, M.: Sound of Interest. Ein Ballspielroboter hört stereo. Master’s Thesis
(2014)

2. Birbach, O., Frese, U.: A Precise Tracking Algorithm Based on Raw Detector Re-
sponses and a Physical Motion Model. In: Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 4746-4751. (2013)

3. Goretkin, G., Perez, A., Platt, R., Konidaris, G.: Optimal Sampling-Based Planning
for Linear-Quadratic Kinodynamic Systems. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 2429–2436. (2013)

4. Laue, T., Birbach, O., Hammer, T., Frese, U.: An Entertainment Robot for Playing
Interactive Ball Games. In: RoboCup 2013: Robot Soccer World Cup XVII, pp.171–
182. Springer (2013)

5. Mare J. B., De Don J. A.: Solution of the input-constrained {LQR} problem using
dynamic programming. In: Systems & Control Letters, pp. 342–348. (2007)

6. Schüthe, D., Frese,U.: Task Level Optimal Control of a Simulated Ball Batting
Robot. In: 11th International Conference on Informatics in Control, pp. 45–56.
SCITEPRESS (2014)

Dynamic Rebound Control of a Ball Playing Robot 301

Development of Consistent Formal Models�

Julia Seiter
PhD advisor: Rolf Drechsler

Institute of Computer Science, University of Bremen, Germany

Abstract. Formal models can be used in the system design process to
find design errors as soon as possible and to reduce the time-to-market
and the development costs. Several methods for the verification of such
models have been proposed in the past. However, developing such a for-
mal model usually requires several iterations in a so-called refinement
process. Between each of these steps, the consistency of the models’ be-
havior has to be ensured as new errors can be introduced. Additionally,
coverage metrics are necessary to determine if the model can be imple-
mented yet or requires further consideration. The major contributions
of this thesis are (1) a formally sound approach for the verification of
model refinements, (2) a technique to retrieve correct and formal rela-
tions between the iterations of the refinement, and (3) a coverage metric
for formal models.

1 Formal Modeling for Complex Systems

Modeling languages are well-established concepts in the field of software design.
Methodologies such as model-driven architecture (MDA, [7]) put their focus on
the development of abstract models which can be employed for various purposes.
The most prominent example for such a language is the Unified Modeling Lan-
guage (UML, [8]) which offers various diagrams for the specification of all kinds
of different aspects of a software system. However, not only the domain of soft-
ware design makes use of modeling languages. With the increasing complexity
of embedded systems, high-level descriptions become more and more important
for hardware systems or mixed hardware/software systems. Figure 1(a) shows
an example of a formal model in UML.

A formal model of a combined hardware/software system offers various ad-
vantages. It facilitates graphic documentation in a way that is understandable
for both, designers and stakeholders. Additionally, code generation techniques
can be applied to create a description in, for example, a hardware description
language. Finally, early validation and verification are rendered possible if the
model is constructed accordingly.

2 Verification of Formal System Models

The verification of formal models differs in certain aspects from the verifica-
tion of hardware designs. Usually, such models are not checked for particular
functional properties but for consistency, either of a single model instance or of

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_20, © Springer Fachmedien Wiesbaden 2015

Phone

credit: Integer

charge()

context Phone::charge()
post: credit > credit@pre

(a) Abstract model

RPhone

credit: Integer

charge(cr: Integer)

context RPhone::charge(cr: Integer)
post: credit = credit@pre + cr

(b) Refined model

Fig. 1. Example of a model and its refinement

the model’s dynamic behavior. Verification tasks for formal models may include
static consistency (a single state in which all global constraints are satisfied),
the reachability of a good/bad system state, or the executability of a single
operation.

3 Consistent Model Development

So far, we have considered single instances of formal models and their correct-
ness [11]. The development of a model which can be used for implementation,
however, is an iterative process in which detail is added to an abstract model to
make it more specific. This process is called refinement.

Refinement verification is very crucial as a correct refinement may save the
developer time and effort. If it can be proven that a refinement step preserves the
abstract model’s behavior in the refined model, then certain verification results
from the abstract model are preserved as well. However, with each refinement
step, new errors can be introduced and already proven properties may be ren-
dered invalid.

Until now, most approaches to refinement verification require manual inter-
action by employing for example theorem proving [1]. This demands a highly
specialized and experienced verification engineer. Additionally, it can be a very
time-consuming process. However, automatic techniques for the verification of
formal models do exist. By extending those approaches such that they become
applicable to more than one model, refinement verification is rendered possible.

As a basis, the relation between the abstract and the refined model has to be
formalized. Then, several correctness criteria can be defined on this relation to
ensure that the abstract behavior is preserved during the refinement. Figure 3
shows an example for a model refinement. The abstract model in Figure 1(a) has
been refined to the model in Figure 1(b) by the strengthening of an operation
constraint. The consistency of such a refinement can be proven by showing

1. that the initial states of the models match/are consistent and
2. that after the execution of a refined operation, the constraints of the abstract

operation are still valid.

We provide a more detailed description of the approach in [9]. Having proven
a refinement consistent, the remaining verification effort might be even further
reduced by the application of optimizations such as slicing where the model is
reduced based on the verification task [10].

Refinement, however, can also occur in another form in the design process.
Since the UML provides so many different diagram types for the specification

Development of Consistent Formal Models 303

from different viewpoints, it is also necessary to ensure consistency between
these different diagrams. In [6], we consider different diagram types to describe
structure on the one hand and behavior on the other, but both on the same level
of abstraction. By transforming the behavioral description into constraints and
the structural model, their consistency can be proven.

Unfortunately, all of these approaches are only applicable when the relation
between the models is known. Without a formal refinement relation, the verifica-
tion approach mentioned above cannot be used. Accordingly, methods to derive
such a relation from two models are required. In the past, several works have
considered how to retrieve traceability information, but most of them focus on
the structure and ignore the models’ behavior. Thus, we propose a fully auto-
mated retrieval methods for correct refinement relations, based on the criteria
presented in [9].

Last but not least, the question remains when the resulting model is ready
for implementation. In hardware verification, coverage metrics have been pro-
posed to measure the completeness of the verification or test process [2, 5, 3, 12].
However, since verification on formal models is very different from verification
on lower levels of abstraction, new metrics are required. In [4], we propose a
coverage metric for formal specifications which ensures the executability of all
operations. A second coverage metric in this work considers the relevance of the
constraints on the operations.

References

1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA (1996)

2. Bormann, J.: Complete functional verification. In: Formal Methods in Computer
Aided Design (FMCAD), Industrial Experience Report (2009)

3. Claessen, K.: A coverage analysis for safety property lists. In: Formal Methods in
Computer Aided Design (FMCAD). pp. 139–145. IEEE (Nov 2007)

4. Drechsler, R., Seiter, J., Soeken, M.: Coverage on the formal specification level.
In: Int’l Workshop on Design and Implementation of Formal Tools and Systems
(2014)

5. Große, D., Kühne, U., Drechsler, R.: Analyzing functional coverage in bounded
model checking. Computer-Aided Design of Circuits and Systems (TCAD) pp.
1–11 (2008), http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4544863

6. Hilken, C., Seiter, J., Wille, R., Kühne, U., Drechsler, R.: Verifying consistency
between activity diagrams and their corresponding ocl contracts. In: Forum on
specification and Design Languages (2014)

7. Object Management Group: Model driven architecture - mda guide rev. 2.0. Tech.
rep. (2014)

8. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language reference
manual. Addison-Wesley Longman, Essex, UK (Jan 1999)

9. Seiter, J., Wille, R., Kühne, U., Drechsler, R.: Automatic refinement checking for
formal system models. In: Forum on specification and Design Languages (2014)

10. Seiter, J., Wille, R., Soeken, M., Drechsler, R.: Determining relevant model ele-
ments for the verification of uml/ocl specifications. In: Design, Automation and
Test in Europe (2013)

11. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011.
p. 16 (2011)

12. Tasiran, S., Keutzer, K.: Coverage metrics for functional validation of hardware
designs. Design and Test of Computers 18, 36–45 (2001)

304 J. Seiter

Formal Verification of Robustness�

Niels Thole1,2

PhD advisor: Görschwin Fey

1 Institute of Computer Science, University Bremen, Germany
nthole@informatik.uni-bremen.de

2 Institute of Space Systems, German Aerospace Center, Germany

Abstract. Due to the decreasing size of transistors, the probability of
transient errors and the variability of the transistor’s characteristics in
electrical circuits are continuously increasing. These issues demand for
techniques to check the robustness of circuits and their behavior un-
der transient faults and variability. Furthermore, the implementation of
methods that provide robustness are prone to implementation errors.
Checks are needed to verify that the nominal behavior of the system did
not change due to modifications that are meant to provide robustness.
Solutions for both problems are presented in this work.

1 Introduction

New technology decreases the size and the energy consumption of transistors.
While this development enables to create more advanced systems, they become
more susceptible to transient faults. External noise like cosmic radiation can
produce glitches in the system, which can lead to erroneous behavior. If a fault
leads to observable erroneous behavior, an error occurs.

To prevent errors, several hardening techniques have been developed [1, 4].
A system that can prevent an error under a fault is called robust. All hardening
techniques cause additional costs. The used techniques are often complex and
implementation errors can arise. For this reason, the decision if, where, and how
hardening techniques are implemented, should be taken carefully. To support
the decision, an analysis of the robustness of the system is required. Based on
this analysis, qualified decisions about robustness can be made. After a system
has been modified to include hardening techniques, another analysis can be used
to verify the effects of the new implementation.

This procedure enables a systematic approach to locate critical locations
within the system and add hardening techniques without wasting resources by
implementing unneeded hardening techniques.

The presented PhD topic is the formal verification of robustness. Different
levels of abstractions are handled.

A part of the work describes the conservative analysis of a transient fault in a
circuit on gate level. This work considers logical, timing, and electrical masking
to provide a statement about the robustness of the circuit. If our algorithm
decides that a circuit is robust, the conservative examination ensures that this
decision is correct.

� This work was supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_21, © Springer Fachmedien Wiesbaden 2015

Fig. 1: Original Error Signals

0

1
faultyunknown unknown

nominal nominal

time

va
lu
e

Fig. 2: SET-Model using a three-valued fault signal

Another part provides a method for Equivalence Checking between two sys-
tems that are modeled as Finite State Machines (FSM). The work can be used to
verify that the added hardening techniques do not change the nominal behavior
of the system. The current implementation can verify the equivalence between
two C++ classes or provide a counterexample that shows that the models are
not equivalent.

Using both methods, we can verify that added hardening techniques lead to
a robust system and we can prove that the behavior remains the same.

2 Conservative Analysis of SETs

Some approaches for robustness checking use a coarse abstraction to enable the
use on larger circuits while others are very precise but are limited to smaller
circuits. Our work with Garcia-Ortiz [6] proposes a model that considers log-
ical, timing, and electrical masking as well as gate variability. We provide an
approach to determine if a Single Event Transient (SET) can lead to erroneous
behavior by modeling the circuit including the SET as SAT-formula. Our con-
servative approach aims to ensure that a circuit is robust even under variability
of parameters if the approach states that the circuit is robust.

In our work, we consider the circuit at gate level. This level cannot exactly
represent the behavior of a circuit like the transistor level. To ensure the conser-
vative analysis, we use three-valued logic to approximately describe the circuit’s
behavior.

At the physical level, signals have a voltage level in a continuous range which
is interpreted as 1 or 0 if the voltage level is above or below certain thresholds.
When the charge of a signal changes due to an SET, the voltage level of the
signal changes gradually. Due to random variations in the gates, the effect of a
soft error has a large variability as seen in Figure 1. To consider this uncertainty
without modeling the exact voltage level, we consider the value to be unknown
during that time and to be 0 or 1 otherwise like shown in Figure 2.

In our model, a signal is interpreted as a waveform, i.e., a vector of variables
and an offset value, similar to WAVEsat [3]. The offset value describes the offset
of the variables from timestep 0 while the different variables describe the change
of the signal over time. We iteratively compute the waveform for each gate. Each
waveform is further modified to include variable delays of the gates as well as
electrical masking. If the changed signal transmits into the sampling window of
an output, an error may occur and our approach returns this information.

Experiments were done to compare our algorithm with spice simulations and
to evaluate the performance. Whenever the spice simulation detected an error,
our algorithm found this error as well. Deciding the robustness within a time
limit of 120 minutes was possible for all circuits of ISCAS-85 [2] except for the
multiplier c6288 and few SETs in c7552 and c3540.

306 N. Thole

Fig. 3: Modifying the hypothesis

3 Equivalence Checking

Using the method for robustness checking, we can check a system for problematic
gates that require hardening and can verify the robustness afterwards. But we
cannot guarantee that the modified system behaves equivalently to the original
system.

In our work [5], two abstract FSMs that describe hardware modules are
checked for equivalence. The two models are equivalent if and only if the same
sequence of inputs on both models always leads to equivalent outputs. A de-
veloper usually has additional knowledge about the hardware. We exploit that
knowledge by formulating it as a hypothesis that approximates all equivalent
states of the two models. A good hypothesis increases the performance of the
equivalence check significantly.

Stepwise induction is used to prove the equivalence between the two models.
Thus, we try to prove that each pair of states that fulfills the hypothesis produces
equivalent output under equivalent input and the succeeding states also fulfill
the hypothesis. If the proof is successful, the equivalence of the models is proved.
Otherwise, the two models are not equivalent or the hypothesis is too weak. The
hypothesis is then modified until a decision is possible like shown in Figure 3.

The approach is implemented and tested for hardware described at the system
level by modeling a hardware module as a C++ class.

References

1. Black, J.D., Cressler, J.D., Mantooth, H.A.: Best practices in radiation hardening
by design: CMOS. In: Extreme Environment Electronics, pp. 475–483. CRC Press
(2013)

2. Bryan, D.: The ISCAS’85 benchmark circuits and netlist format. North Carolina
State University (1985)

3. Sauer, M., Czutro, A., Polian, I., Becker, B.: Small-delay-fault ATPG with wave-
form accuracy. In: Proceedings of the International Conference on Computer-Aided
Design. pp. 30–36 (2012)

4. Sterpone, L., Sonza Reorda, M., Violante, M., Kastensmidt, F., Carro, L.: Evaluat-
ing different solutions to design fault tolerant systems with SRAM-based FPGAs.
Journal of Electronic Testing pp. 47–54 (2007)

5. Thole, N., Fey, G.: Equivalence checking on system level using stepwise induction.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen. pp. 197–200 (2014)

6. Thole, N., Fey, G., Garcia-Ortiz, A.: Analyzing an set at gate level using a conserva-
tive approach. Accepted at Testmethoden und Zuverlässigkeit von Schaltungen und
Systemen (2015)

Formal Verification of Robustness 307

Pose and Posture Estimation
using Inertial Sensor Data�

Felix Wenk
PhD advisor: Udo Frese

German Research Center for Artificial Intelligence, Felix.Wenk@dfki.de

Abstract. This paper discusses the estimation of the position and ori-
entation, i.e. the pose, of a rigid body and the posture of a human using
inertial sensor data only, i.e. without absolute pose information. Since
this is impossible in general, specific assumptions as to the rigid body
motion and the skeleton’s structure are introduced. What to expect of
estimates obtained using such assumptions is also briefly covered.

1 Introduction

Pose and Posture estimation are at the heart of various cyber-physical systems.
A pose is the position and orientation of a rigid body. The relative poses of the
bodies of a skeleton, a system of rigid bodies, are the skeleton’s posture. Deter-
mining the posture of a human is the technical foundation to, for instance, let
characters in animation films move naturally, do motion analysis of athletes[3],
or measure stress on the skeleton of manual workers.

Poses are estimated whenever the orientation and position of a rigid body
are tracked over time. This could be a flying ball, the robot hand to catch it[1],
or the head of a person wearing virtual reality goggles[5].

My work’s contributions, which this paper provides a brief overview of, are
procedures to obtain an estimate of a rigid-body pose, which does not suffer from
unlimited drift, from inertial sensor and magnetometer data only and to estimate
postures of humans from inertial sensor data only, i.e. without magnetometers.

To estimate a pose or a posture, the rigid body or the skeleton is equipped
with different sensors, depending on the application. To determine the orien-
tation, magnetometers and inertial sensors, i.e. combinations of gyrometer and
accelerometer, are a common choice. Cameras or GPS are candidates to observe
the position.

To measure a human posture, the human in question typically wears a suit
equipped with a lot of markers filmed by cameras. Alternatively as in the project
SIRKA, whose objective is to build such a suit and which my work is part of,
inertial sensors and magnetometers may be used.

In SIRKA, external sensors are avoided, i.e. no GPS satellites, cameras or
mechanical sensors are allowed. This, for example, will enable us to estimate
the posture of workers of the Meyer Werft, a german shipyard, who will use the
estimates to identify and detect postures that potentially lead to occupational

� This work was supported by the BMBF project SIRKA and by the Graduate School
SyDe, funded by the German Excellence Initiative within the University of Bremen’s
institutional strategy.

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_22, © Springer Fachmedien Wiesbaden 2015

diseases. Because magnetic fields in ship bodies are constantly changing, the
SIRKA suit won’t use magnetometers.

2 Pose Estimation

Formally, estimating a pose of an object in a frame of reference, “world coordi-
nates”, means determining the coordinate transform from a coordinate system
attached to the object to world coordinates. This transform is made of an ori-
entation and a translation.

All it takes to estimate the pose is to find the orientation and translation that
are most probable given the inertial and magnetometer measurements. The main
difficulty is to identify the relationship between the pose and the sensor mea-
surements. This is reasonably easy for the gyrometer, which measures angular
velocity and thus relates two successive orientations in time.

It is not as easy for the accelerometer and magnetometer, which measure ac-
celeration and the magnetic field, respectively. The acceleration must be related
to the translation of the pose, because it is its second time derivative. Let the
object with the accelerometer attached lie on the floor. The translation clearly
does not change and its second time derivative, the acceleration, is zero. Inter-
estingly, the accelerometer does not measure zero. It measures the acceleration
exerted by the floor onto the sensor to counter gravity, preventing the object
with the sensor to fall through that floor. So if at rest, the accelerometer mea-
surement provides the direction of gravity, so it determines how much the sensor
and object are rolled and tilted.

The magnetometer measurements are analogous to the non-accelerating ac-
celerometer, but instead of the gravitational field, the magnetic field is measured.
Assuming that this is earth’s magnetic field, one also measures how much the
object is panned.

The accelerometer, magnetometer and gyrometer measurements can be prob-
abilistically fused into orientation estimates, even though the sensor measure-
ments are noisy and the object is moving, provided that on average the ac-
celerometer measures the negative gravity[2].

With that orientation estimate, gravity can be approximately be removed
from the accelerometer measurement to obtain the linear acceleration, which
may be integrated to a translation.

In contrast to the orientation, the inertial sensors provide no absolute mea-
surement of the object’s position, so there is no obvious way to compensate for
accumulating drift due to sensor noise, as there was for the orientation. The
key observation is that the orientation estimator only works because we only
consider cases in which the assumption holds, that the accelerometer on average
measures negative gravity. If we were to estimate the orientation of an object rel-
ative to a space station orbiting the earth, the orientation estimation approach
just explained would not work.

It turned out that there is a class of motions compatible with a different
assumption, on which an estimator for the complete pose can be built: If it is
known that the object stays at the same position on long-term average, one can
estimate the entire pose including short-term translations relative to the long-

Pose and Posture Estimation using Inertial Sensor Data 309

Fig. 1. Top-down view on two bodies (rectangles) connected over a joint (circle), each
equipped with an accelerometer (filled rectangles). The acceleration is measured by
both sensors on different axes, thus determining their relative orientation.

term average position. Readers interested in why that works and how this is
probabilistically modelled should read [4].

3 Posture Estimation

What makes the collection of bodies a skeleton is that the bodies are connected
to each other with joints. If displacements of the joints relative to fixed points on
the rigid bodies the they are attached to are known, which they approximately
are, then the poses of the bodies relative to each other can be determined by
estimating their relative orientations. With the orientations known, adding the
displacements vectorially yields the positions of (fixed points on) the bodies.

There is one catch. For the angle around the vertical, i.e. to tell where “for-
ward” is, the orientation estimator relies on a magnetometer, which does not
work in the environments the SIRKA posture estimator is to be used in.

For a skeleton’s posture, we’re interested only in the relative orientations
of its bodies. The relative orientation is obtainable without a magnetometer if
multiple bodies are considered at once. Let two bodies, as in figure 1, be subject
to a linear acceleration. This determines their relative orientation except for the
angle around the direction of the linear acceleration, which changes over time.

References

1. Birbach, O., Frese, U., Bauml, B.: Realtime perception for catching a flying ball with
a mobile humanoid. In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on. pp. 5955–5962. IEEE (2011)

2. Kraft, E.: A quaternion-based unscented Kalman filter for orientation tracking. In:
Proceedings of the Sixth International Conference of Information Fusion. vol. 1, pp.
47–54 (2003)

3. Roetenberg, D., Luinge, H., Slycke, P.: Xsens mvn: full 6dof human motion tracking
using miniature inertial sensors. Tech. rep., Xsens Motion Technologies BV (2009)

4. Wenk, F., Frese, U.: Pose Estimation from Inertial Sensor Data
and Prior Information. IEEE Transactions on Robotics (2014), under review

5. Yao, R., Heath, T., Davies, A., Forsyth, T., Mitchell, N., Hoberman, P.: Ocu-
lus VR Best Practices Guide. Oculus VR (2014), http://static.oculus.com/
sdk-downloads/documents/OculusBestPractices.pdf

310 F. Wenk

Reconfigurable Hardware-Based Acceleration for
Machine Learning and Signal Processing �

Hendrik Woehrle1

PhD Advisor: Frank Kirchner1,2

1 German Research Center for Artificial Intelligence, DFKI Bremen, Robotics
Innovation Center, Robert-Hooke-Str. 1, 28359 Bremen, Germany

hendrik.woehrle@dfki.de,
2 University of Bremen, Faculty 3 – Mathematics and Computer Science, Robotics

Lab, Robert-Hooke-Str.1, 28359 Bremen, Germany,

Abstract. Certain application areas of signal processing and machine
learning, such as robotics, impose technical limitations on the computing
hardware, which make the use of generic processors unfeasible. In this
paper we propose a framework for the development of dataflow accel-
erators as a possible solution. The approach is based on model based
development and code generation to allow a rapid development of the
accelerators and perform a functional verification of the overall system.

Keywords: Robotics, Embedded Systems, FPGA, Hardware Accelera-
tion, Dataflow

1 Introduction

Machine learning and signal processing methods are used for a wide range of
applications nowadays. Furthermore, we can currently observe two important
trends: the amount of data that has to be processed is constantly growing, while
mobile and robotic systems become increasingly important. They impose addi-
tional requirements, such as limited physical space, power consumption and real
time constraints, which make the usage of standard generic processors subopti-
mal. Here, combining a generic mobile CPU with application specific hardware
accelerators for high performance computations are a reasonable approach. Field
Programmable Gate Arrays (FPGAs) are a flexible possibility to implement such
hardware accelerators. FPGAs consist of logic elements that can be configured
to form specific circuits and implement an algorithm in hardware in order to
achieve significant performance improvements. FPGAs become more and more
important for applications such as digital signal processing, since vendors inte-
grate components such as DSP slices. However, a major problem is the design
complexity, which has prevented FPGAs from being widely used for machine
learning and signal processing. Several specific FPGA implementations for ma-
chine learning algorithms exist. However, most of them are usually not generic

� This work was supported by the German Federal Ministry of Economics and Tech-
nology (BMWi, grants FKZ 50 RA 1012 and FKZ 50 RA 1011).

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7_23, © Springer Fachmedien Wiesbaden 2015

or transferable. A generic framework for machine learning and robotics has been
proposed in [1], but it is only suitable for stationary high performance, but not
mobile, systems. In this paper, we propose the reconfigurable S ignal Processing
And C classification Environment (reSPACE) to overcome these problems. The
first author is the main designer and developer of the presented framework.

2 Accelerator Hardware Architecture

The proposed framework is based on the static heterogeneous synchronous data-
flow computing paradigm, which is popular for machine learning [2, 3]. In the
dataflow computing paradigm, data is streamed through a sequence of algo-
rithms, which are implemented as so-called nodes, and transformed on its way
through them [4]. It is possible to combine the different nodes to a heterogeneous
dataflow accelerator (DFA). Since the structure is pre-defined for a specific ap-
plication, it is a static DFA. In contrast to software dataflow concepts, the data
is shifted by one step through the flow on each clock tick of the system, result-
ing in a synchronous design. To implement a complete system, we provide two
different, model-based alternatives. Either a library of predefined, parametrizable
nodes can be used, that contains basic, widely used algorithms such as FIR and
IIR filters, direct current offset removal, standardization, etc.. They are provided
as directly usable nodes that can be combined to build up the DFA. Otherwise,
a customizable circuit generation for matrix-multiply based algorithms can be
used, which generates a node according to the specification given by a domain
specific language. The operations are mapped directly to the DSP slices to per-
form resource and power efficient parallel matrix operations. There are at least
two possibilities to use such DFAs: inside a System on Chip (SoC), where the
DFA is connected to a CPU via a bus system, or by direct access inside another
hardware system. In the in SoC setup, the DFA can be used to accelerate a
specific software task. Usually, an operating system like Linux is running on the
host CPU. Hence, to access the DFA from a software application, device drivers
are needed that interface with the DFAs and run as kernel modules. They can be
automatically generated according to meta-informations that describe the inter-
face of the DFA. It is also possible to generate interfaces to high-level languages,
e.g., Python, to integrate the DFA into frameworks such as pySPACE [3]. Still,
the design and implementation of DFAs can be a complex and error-prone task,
due to the FPGA properties, like cycle-accurate timing and numerical issues
due to fixed-point computations that need to be addressed. Therefore, reSPACE
supports the automatic generation of testbenches, which allow the verification
and evaluation of the DFA in simulation and directly on the target system.

3 Example Application: Biomedical Signal Processing

Exoskeletons can be used as an intuitive input device for the teleoperation of
robotic systems [5] or as rehabilitation devices [6]. To enhance the smoothness of
interaction with the exoskeleton, the joint control algorithms can be modulated

312 H. Woehrle

by integrating predictions of upcoming movements based on the online analysis
of the human operator’s EEG [7] using a movement prediction system, that can
be embedded in the exoskeleton. EEG data is high-dimensional, and the online
analysis requires a wide range of different computationally demanding signal
processing and machine learning operations. In this case, reSPACE can be used
to map the operations to FPGAs to provide the necessary computational power.
Further Applications: There are various application areas in machine learn-
ing, robotics and autonomous systems that would gain a substantial benefit from
FPGA-based accelerators. Examples are various image processing techniques or
enhancing the control of robots [8].

4 Conclusion and Future Work

In this paper, we proposed an holistic approach for the rapid development of
dataflow accelerators for machine learning and signal processing. The techniques,
i.e., model-based hardware development, software generation and functional ver-
ification, are bundled in the framework reSPACE. In future, we will apply it in a
wide range of different applications and provide the framework as open source.

References

1. Graf, H.P., Cadambi, S., Durdanovic, I., Jakkula, V., Sankaradass, M., Cosatto, E.,
Chakradhar, S.T.: A massively parallel digital learning processor. In: NIPS. (2008)

2. Zito, T., Wilbert, N., Wiskott, L., Berkes, P.: Modular toolkit for Data Processing
(MDP): a Python data processing framework. Frontiers in Neuroinformatics 2(8)
(2008)

3. Krell, M.M., Straube, S., Seeland, A., Wöhrle, H., Teiwes, J., Metzen, J.H., Kirchner,
E.A., Kirchner, F.: pySPACE - a signal processing and classification environment
in Python. Frontiers in Neuroinformatics 7(40) (2013)

4. Flagg, M.: Dataflow principles applied to real-time multiprocessing. In: COMP-
CON Spring’89. Thirty-Fourth IEEE Computer Society International Conference:
Intellectual Leverage, Digest of Papers., IEEE (1989)

5. Folgheraiter, M., Kirchner, E.A., Seeland, A., Kim, S.K., Jordan, M., Woehrle,
H., Bongardt, B., Schmidt, S., Albiez, J., Kirchner, F.: A multimodal brain-arm
interface for operation of complex robotic systems and upper limb motor recovery.
In: Proc. of the 4th International Conference on Biomedical Electronics and Devices
(BIODEVICES-11), Rome (2011)

6. Kirchner, E.A., Albiez, J., Seeland, A., Jordan, M., Kirchner, F.: Towards assis-
tive robotics for home rehabilitation. In Chimeno, M.F., Solé-Casals, J., Fred, A.,
Gamboa, H., eds.: Proceedings of the 6th International Conference on Biomedical
Electronics and Devices (BIODEVICES-13), Barcelona, ScitePress (2013)

7. Seeland, A., Woehrle, H., Straube, S., Kirchner, E.A.: Online movement prediction
in a robotic application scenario. In: 6th International IEEE EMBS Conference on
Neural Engineering (NER), San Diego, California (2013)

8. Langosz, M., von Szadkowski, K., Kirchner, F.: Introducing particle swarm opti-
mization into a genetic algorithm to evolve robot controllers. In: Proceedings of the
16th Annual Conference on Genetic and Evolutionary Computation. GECCO ’14,
ACM (2014)

Reconfigurable Dataflow for Machine Learning 313

Author Index

Aydos, Gökçe, 272

Becker, Bernd, 122

Chakrabarty, Krishnendu, 190

de Gea Fernandez, Jose, 224
Diepenbeck, Melanie, 275

Frehse, Goran, 50

Glesner, Sabine, 1
Goldhoorn, Malgorzata, 278
Goldhoorn, Matthias, 281

Hübner, Felix, 287
Haddadin, Sami, 249
Havelund, Klaus, 151
Haxthausen, Anne Elisabeth, 82
Herber, Paula, 1
Hilken, Christoph, 284

Ibrahim, Mohamed, 190

Kampmann, Peter, 224
Kirchner, Elsa Andrea, 224

Kirchner, Frank, 224

Li, Xian, 290
Li, Zipeng, 190

Mallet, Frédéric, 26
Metzen, Jan Hendrik, 224

Peleska, Jan, 82
Peters, Judith, 293

Reger, Giles, 151

Sauer, Matthias, 122
Schönborn, Eleonora, 296
Schüthe, Dennis, 299
Scholl, Christoph, 122
Schröer, Martin, 224
Seiter, Julia, 302

Thole, Niels, 305

Wenk, Felix, 308
Wimmer, Ralf, 122
Woehrle, Hendrik, 311

R. Drechsler, U. Kühne (eds.), Formal Modeling and Verification of Cyber-Physical Systems,
DOI 10.1007/978-3-658-09994-7, © Springer Fachmedien Wiesbaden 2015

	Preface
	Organization
	Table of Contents
	Verification of Embedded Real-time Systems
	1 Introduction
	2 Related Work
	2.1 Formal Verification of SystemC Designs
	2.2 Conformance Testing for Real-time Systems
	2.3 Automatic Test Generation for SystemC

	3 Preliminaries
	3.1 SystemC
	3.2 Uppaal Timed Automata

	4 VeriSTA
	5 Formal Semantics for SystemC
	6 Model Checking and Conformance Testing
	7 Evolutionary Generation of Timed Test Traces
	8 Experimental Results
	8.1 Results from the AMBA advanced high-performance bus
	8.2 Results from the ASR/ABS system

	9 Conclusion
	Acknowledgements
	References

	MARTE/CCSL for Modeling Cyber-Physical Systems
	1 Introduction
	2 Main Characteristics of CPS
	3 The UML Profile for MARTE
	3.1 Overview

	3.2 Time in MARTE
	3.3 Allocation in MARTE
	3.4 The Clock Constraint Specification Language

	4 Illustration
	4.1 Non-Functional Properties
	4.2 Heterogeneous modeling with explicit interactions
	4.3 Heterogeneous interconnects
	4.4 Hybrid models
	4.5 Safety critical

	5 Conclusion
	References

	An Introduction to Hybrid Automata, Numerical Simulation and Reachability Analysis
	1 Introduction
	2 Hybrid Automata
	2.1 Preliminaries
	2.2 Definition and Semantics

	3 Numerical Simulation
	3.1 Solving ODEs
	3.2 Computing Trajectories and Jumps
	3.3 Accounting for Nondeterminism
	3.4 Verification by simulation

	4 Reachability Analysis
	4.1 Reachability Algorithm
	4.2 Piecewise Constant Dynamics
	4.3 Piecewise Affine Dynamics
	4.4 Nonlinear Dynamics

	5 Conclusions
	References

	Model Checking and Model-based Testing in the Railway Domain
	1 Introduction
	2 Formal Verification
	2.1 Verification by Bounded Model Checking and k-Induction
	2.2 Formal Modelling
	2.3 Method Summary

	3 Interlocking System Verification – a Case Study
	3.1 The Novel Danish Interlocking Systems
	3.2 The Domain-specific Language for Interlocking Systems
	3.3 Framework Implementation
	3.4 Generated Models
	3.5 Generated Safety Conditions
	3.6 Invariant Strengthening
	3.7 Verification Experiments

	4 Model-based Testing
	4.1 Model-based Testing Terminology

	4.2 Overall Test Objectives for the Railway Application
	4.3 Semantic Domain: I/O State Transition Systems
	4.4 Complete Testing Strategies
	4.5 Test Requirements Enforced by Standards
	4.6 Generic Domain-specific Test Strategy
	4.7 Functional Decomposition and Equivalence Classes
	4.8 Further Test Reduction Heuristics

	5 Conclusion
	Acknowledgments
	References

	Modeling Unknown Values in Test and Verification
	1 Introduction
	1.1 Unknown Values in Circuit Test
	1.2 Unknown Values in Verification
	1.3 Minimization/Maximization in Test and Verification

	2 Basics
	2.1 Boolean Satisfiability and Extensions
	2.2 Quantified Boolean Formulas
	2.3 Dependency Quantified Boolean Formulas
	2.4 From Circuits to Formulas

	3 Unknown Values in Circuit Test
	3.1 Standard X-Logic Simulation
	3.2 Accurate Logic Simulation
	3.3 Accurate Fault Simulation
	3.4 Accurate Test Pattern Generation (X-ATPG)

	4 Unknown Values in Verification
	4.1 Incomplete Circuits
	4.2 Incomplete Combinational Circuits
	4.3 Incomplete Sequential Circuits

	5 Conclusion
	References

	Specification of Parametric Monitors Quantified Event Automata versus Rule Systems
	1 Introduction
	2 Survey of specification-based runtime verification
	3 Introduction to QEA and LogFire
	3.1 The file usage example
	3.2 Introduction to QEA
	3.3 Introduction to LogFire

	4 Specification of Java API properties
	4.1 HasNext
	4.2 Counting iterator
	4.3 UnsafeMapIterator
	4.4 Hashing persistence

	5 Specification of banking properties
	5.1 Unique accounts
	5.2 Greylisting
	5.3 Reconciling accounts
	5.4 Maximum withdrawals
	5.5 Transaction limit reporting
	5.6 Transaction limit authorization
	5.7 Report approval
	5.8 Withdrawal limit

	6 Specification of rover properties
	6.1 Rover coordination
	6.2 Command nesting
	6.3 Resource lifecycle
	6.4 Resource management
	6.5 Resource conflict management

	7 Specification of concurrency properties
	7.1 Lock nesting
	7.2 Lock ordering

	8 Summary and discussion
	8.1 Relationship to temporal logic
	8.2 A few notes on specification styles
	8.3 Expressiveness and complexity
	8.4 Comments on logics

	8.5 Under the hood

	9 Conclusion
	Acknowledgements
	References

	Advances in Design Automation Techniques for Digital-Microfluidic Biochips
	1 Introduction
	1.1 Overview of Digital Microfluidics
	1.2 Principle of Electrowetting-on-Dielectric (EWOD)
	1.3 Fluidic Operations on the DMFB
	1.4 Motivation for Automated Chip Design and Testing
	1.5 Motivation for Cyberphysical Chip Design

	2 Architectural-Level Synthesis
	2.1 Design Objectives
	2.2 Synthesis Algorithms

	3 Physical-Level Synthesis
	3.1 Module Placement
	3.2 Droplet Routing
	3.3 Cross-Contamination Avoidance

	4 Chip-Level Design
	4.1 Architecture of DMFBs
	4.2 Electrode Addressing
	4.3 Wire Routing

	5 Cyberphysical Design for Digital Microfluidics
	5.1 Online Synthesis With Operation Variability
	5.2 Synthesis with Completion-Time Uncertainties
	5.3 Synthesis with Error Recovery

	6 Conclusion
	References

	Intuitive Interaction with Robots -
Technical Approaches and Challenges
	1 Introduction
	2 Safe Human-Robot Interaction in Changing Environments
	2.1 Inherent Safe Robotic Systems for Human-Centered Robotics
	2.2 Embedded Sensor Systems for Onboard Self and Environment Modeling
	2.3 Formal Verification of Human-Robot Interaction

	3 Robots as Accepted Interaction Partner
	3.1 Intuitive Interfaces and their Application Focus
	3.2 The Relevance of Implicit Information and Human Intention Recognition
	3.3 Improved Interaction based on Learning from Humans

	4 Summary and Conclusion
	References

	Physical Safety in Robotics
	1 Introduction
	2 Human Safety
	2.1 Human Injury in Robotics
	2.2 Safety Standards for Human-Robot Interaction

	3 Control for Physical Interaction
	3.1 Interaction Control
	3.2 Collision Handling

	4 Conclusion
	Acknowledgment
	References

	In-circuit Error Detection with Software-based Error Correction – An Alternative to TMR
	1 Introduction
	2 Application to a Typical OBDH Architecture
	References

	Behavior Driven Development for Tests and Verification
	1 Introduction
	2 New Design Flow
	3 Conclusion
	References

	Semantic Object Recognition Based on Qualitative Probabilistic Spatial Relations
	1 Introduction
	2 Related Work
	3 Semantic Object Recognition
	3.1 Probabilistic Spatial Relations
	3.2 Spatial Potential Fields

	References

	Constraint-based Handling of Component Networks
	1 Introduction
	2 Related Work
	3 Constraint-based Approach
	References

	Model-Based Testing Against Complex SysML Models
	1 Introduction
	2 Methodology
	3 Conclusion and Future Work
	References

	Integrated Model-based Testing and Model Checking with the Benefits of Equivalence Partition Testing
	1 Introduction
	2 Equivalence Class Partition Testing
	3 Conclusion and Future Work
	References

	An SMT-based Approach to analyze Non-Linear Relations of Parameters for Hybrid Systems
	References

	Analyzing and Simulating Time Descriptions from UML/MARTE CCSL
	1 Introduction
	2 Design and More – A Generic Representation of CCSL
	3 Generating SystemC
	4 Conclusion and Future Work
	References

	Design and Synthesis of Reversible Circuits using Hardware Description Languages
	1 Reversible Computation
	2 Exploiting the Conventional Design Flow
	3 Developing a Specific Design Flow
	4 Conclusion
	References

	Dynamic Rebound Control and Human Robot Interaction of a Ball Playing Robot
	1 Introduction
	2 The Physical System
	3 Task Level Optimal Control
	4 Human-Robot-Interaction
	References

	Development of Consistent Formal Models
	1 Formal Modeling for Complex Systems
	2 Verification of Formal System Models
	3 Consistent Model Development
	References

	Formal Verification of Robustness
	1 Introduction
	2 Conservative Analysis of SETs
	3 Equivalence Checking
	References

	Pose and Posture Estimation using Inertial Sensor Data
	1 Introduction
	2 Pose Estimation
	3 Posture Estimation
	References

	Reconfigurable Hardware-Based Acceleration for Machine Learning and Signal Processing
	1 Introduction
	2 Accelerator Hardware Architecture
	3 Example Application: Biomedical Signal Processing
	4 Conclusion and Future Work
	References

	Author Index

