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2. Theoretical Concepts of Lasers

2.1. Basics of Laser Modelling

Lasers are light sources with very narrow bandwidths, high output power and long
coherence lengths [HAK86]. They are, in some regards, completely different from
other light sources, that surround us every day. As opposed to the thermal radiation
of light bulbs, stars and the sun, or the fluorescence used in neon tubes, the photons
of a laser are mainly emitted through stimulated emission.
This section will explain the basic concepts of a laser and present a simple nu-

merical model to show some general laser dynamics.

2.1.1. Basic Concepts

When in the early 20th century the particle-like nature of light was discovered and
Niels Bohr formulated the famous Bohr model of the atom, two types of light-matter
interactions were soon understood. Firstly, spontaneous emission is the stochastic
decay of an excited electron, where a photon is emitted during the electrons tran-
sition from an upper state with energy E2 to a lower energetic state of energy E1.
Secondly, an incoming photon of matching energy �ω = E2 − E1 can be absorbed
while lifting the electron from the lower to the higher state.
However, Albert Einstein proposed the existence of an additional interaction,

namely stimulated emission, in 1917 [EIN17]. There, an incoming photon of match-
ing energy �ω = E2 − E1 is not absorbed, but encounters the electron in the upper
state and stimulates the decay into the lower state. Hence, a second photon is emit-
ted, which is identical in phase and direction to the first one. On a macroscopic
scale the light intensity is coherently amplified by this process. Figure 2.1 shows a
sketch of the three single-photon processes described above.
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Figure 2.1: Sketch of the three fundamental single-photon interactions of a two-level system.
For spontaneous emission (a), an electron (red) decays from the upper energetic state to
the lower energetic state, while emitting a photon (blue). Conversely, through stimulated
absorption (b) an electron is lifted into the upper state, while a photon is simultaneously
consumed. Lastly, stimulated emission (c) is the coherent emission of a second photon, by an
incoming photon that finds the electron in the upper state.
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Through simple calculus [HAK86] Einstein could also show that the light-matter
interaction coefficients, nowadays called in his honour Einstein-coefficients, had to
be identical for stimulated emission and absorption. Stimulated emission is there-
fore often seen as the reverse process of (stimulated) absorption. Followingly, a
net amplification of incoming light can only be achieved by stimulated emission, if
more electrons are available for stimulated emission than for absorption, ergo if the
population N of the upper state is higher than of the lower state, N2 > N1.
Yet, this state of ’population inversion’ is never reached in thermal equilibrium.

Mathematically, the Maxwell-Boltzmann-distribution only allows states with higher
energies to be filled more, if the temperature is set to a negative value [HAK86].
Population inversion is therefore sometimes also referred to as ’negative temper-
ature’, albeit macroscopic systems never reach negative temperatures as a stable
equilibrium state.
Hence, the system must be constantly driven out of thermal equilibrium to achieve

’population inversion’. This process called ’pumping’ can be achieved through var-
ious ways and depends on the system being used. It can be optically, electrically
or even chemically driven [HAK86]. Some pumping mechanisms will only provide
sufficient inversion for a very short time leading to pulsed lasers, while others allow
the emission of a continuous wave. Furthermore, even though only two energetic
levels are participating in the optical transition, all real-world lasers do incorporate
at least three different energy levels, often even four, and are congruently referred
to as three-level lasers and four-level lasers [ERN10b]. A sketch of the pumping and
lasing transitions of these systems is shown in Fig. 2.2.
The advantage of involving additional states for the electrons are easy to un-

derstand: While an optically driven two-level system can never reach population
inversion through optical pumping, as the absorption and stimulated emission bal-
ance each other out, the three-level system avoids this by indirect excitation. The
electrons are lifted from the lowest level of energy E1 to a level above the upper
level involved in the transition. In a suitable material, the electrons in this state of
energy E3 > E2 then quickly decay into the upper state of energy E2 of the lasing
transition. An effective pumping without disturbing level 2 is therefore possible.
Yet, to reach population inversion at least half of the population of level 1 would
still have to be excited. This strict requirement is lifted for the four-level laser.
In the four-level system of energies E1 < E2 < E3 < E4, the electrons are lifted

from the level 1 in to the level 4 through pumping, quickly decay into the metastable
level 3, where they are used for stimulated emission, similar to the three-level system.
However, in the optimal case the transition from energy level 2 to 1 is extremely fast,
leaving the level 2 constantly almost empty and followingly keeping a population
inversion between levels 2 and 3. Overall, the pumping requirements for lasing
operations are greatly reduced and hence four-level systems are common [ERN10b,
HAK85]. Figure 2.2 shows pumping and transition schemes for the three-level and
four-level system.
Quantum dot lasers can be seen as a four-level system, with the conduction band

and valence band acting as the highest and lowest level, while the quantum dot levels
encompass the optically active lasing transition. However, the complex scattering
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dynamics involved lead to a variety of additional effects, e.g. two-state lasing or
ground state quenching.
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Figure 2.2: Sketch of the pumping and energy level scheme for the three-level laser (a) and
four-level laser (b). Electrons (red) are raised by the pump to the highest energetic level, from
which they quickly decay into the upper state of the lasing transition. This state is ideally
metastable, so that electrons can accumulate there. For the three-level system (a), the lasing
transition then links this metastable state E2 to the ground level E1. The four-level laser
(b) possesses an additional level E2, that acts as the lower state for the lasing transition.
Because this level E2 is short lived, it is almost always empty, leaving the E3-E2 transition
easily inverted.

From an engineering perspective, the laser converts the energy injected into the
system via pumping, e.g. the injection current in a semiconductor laser, into coher-
ent light. One can therefore easily formulate conversion efficiencies by measuring
the output versus input power. Electrically driven semiconductor lasers are among
the most efficient lasing systems [CHO99].
Mathematically, the amplification of an incoming electro-magnetic wave is often

measured as gain g. In a simple model the electric field amplitude E will increase
exponentially over time with gain g:

d

dt
E = gE. (2.1)

Gain is therefore quantified in units of [1/s]. Microscopically, the gain of a medium
is related to its population inversion:

g ∼ N2 −N1, (2.2)

where N2 and N1 are the populations of the upper and lower electronic level.
When the lower level is more populated, the gain g becomes negative and instead of
amplifying the incoming wave, the medium becomes absorbing. Gain g can therefore
also be seen as an inverse absorption coefficient. The interplay of gain and light will
be discussed in more detail in the following section.

2.1.2. Cavity and Active Medium

The two principal components of every laser are the optical cavity and the optically
active gain medium [HAK85] contained inside. The cavity is a confined space in
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which certain standing electromagnetic waves can exist. These ’cavity modes’ have a
discrete set of eigenfrequencies and can be excited via injection of photons. Typically
the edge of the cavity will be a mirror or another reflecting surface, so that photons
of the cavity modes are reflected. The light then passes through the gain medium
multiple times before being absorbed or escaping the cavity. The gain medium is
a material, which amplifies light through the process of stimulated emission in the
manner described in the previous section. When placed in a cavity, it will be exposed
to its own amplified emission and create a coherent, intensity amplified standing
wave. This is the origin of the name laser, an acronym for ’Light Amplification by
Stimulated Emission of Radiation’.
However, the gain medium does not enhance all optical frequency equally, but

possesses a gain profile. This gain profile usually corresponds to the spontaneous
emission spectrum of the optical transition that is used for amplification, e.g. a
Gaussian shape with its natural line width. For lasers there are usually many cavity
modes lying within the peak of the gain spectrum, so that the laser, in principle,
could operate on many different modes. Hence, further mode selections becomes
necessary.
One easy way of mode selection is to use a Fabry-Perot resonator, as proposed by

Schawlow and Townes [SCH58] in 1958. There, only modes along the principal axis
of the resonator are enhanced. It consists of two parallel mirrors and significantly
reduces the number of modes remaining inside the gain spectrum for optical ampli-
fication. A sketch of a Fabry-Perot type laser with all integral components can be
seen in Fig. 2.3. Additionally, the coherent light has to be coupled out of the cavity
for further use. This is achieved by using a high-reflectivity mirror on one side, and
a low reflectivity mirror on the other. Light will then be mainly exiting through the
low reflective end of the cavity.

optical cavity

gain medium

pump

light

mirror A mirror B

Figure 2.3: Sketch of a Fabry-Perot type laser. The cavity, also called optical resonator,
consists of two planar parallel mirrors. The reflectivity of mirror B is lower than of mirror A,
so that light mainly leaves the cavity on this side. Inside is the gain medium, which is kept in
a state of inversion via pumping. Stimulated emission leads to the appearance of one stable
coherent standing wave mode inside the resonator.

In this work the focus lies on the Fabry-Perot type of devices, and it will be as-
sumed that only one lasing mode exists, corresponding to the mode with the highest
optical amplification. Excluding the multi-mode dynamics not only decreases com-
putational costs and complexity, but is also consistent with most fabricated QD laser
structures, e.g. those with distributed Bragg-reflectors (DBRs). Usually, the end
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of the semiconductor sample is simply cleaved and the resulting air-bulk material
interface is used as a mirror, resulting in a Farby-Perot type cavity. The alignment
is automatically generated by splitting both ends among the same crystallographic
plane.

2.1.3. Laser Rate Equations

There are many ways of mathematically describing a laser, suited for different ma-
terial systems, time scales and types of lasers. However, some laser properties are
universal and can hence be understood with even the simplest model approach.
Before the semiclassical laser-equations will be derived in the next section, a simple

two-variable rate-equation model shall be heuristically motivated and studied here.
The specific set of differential equations are taken from T. Erneux and P. Glorieux
[ERN10b] and represent such a minimal laser model. They are given by:

d

dt
I =ID − I

1

γ

d

dt
D =(A−D)−DI, (2.3)

where I is the light intensity and D is the inversion of the gain medium. Both
dynamic variables are normalised, to have as few parameters remaining as possible.
As can be seen, the time evolution of the light intensity d

dt
I contains a normalised

decay term −I, which models the loss of light due to absorption and transmission at
the mirrors. Furthermore, the product term ID simulates the stimulated emission,
which is stronger for more light and higher population inversion and hence linear in
both I and D.
This increase in light intensity translates into a loss of inversion D, as stimulated

emission uses up excited carriers. Therefore, −ID enters the time evolution of D as
a loss term. Additionally, the inversion is being externally driven towards a static
value, prescribed by the pump parameter A. The specific nature of the pump is not
further specified - it is simply assumed that through some mechanism the inversion
of the gain medium can be excited. Lastly, γ is a parameter describing the time
scale separation between carrier and light dynamics, usually in the range of 10−2 to
10−6 [ERN10b].
Now, it is easy to find the steady states of this simplified system by solving the

equations:

ID − I =0

(A−D)−DI =0. (2.4)

There are two sets of steady states fulfilling these conditions. The first is given
by:
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Ioff =0

Doff =A. (2.5)

With the light intensity I at zero and the inversionD at pump level, this represents
an ’off’-state. No intensity is produced and carriers are dominated by the external
pumping A. Conversely, the second steady state solution of Eq. (2.4) yields the
’on’-state:

Ion =A− 1

Don =1. (2.6)

Here, the light intensity I is proportional to the pump parameter A, caused by
the conversion of injected energy into lasing light. Simultaneously the inversion is
constant with Don = 1. This effect is called gain clamping and is a result of the
stimulated emission dominating the system. As can be seen from the differential
equation for I, D = 1 is the transparent state of the system, where the stimulated
emission and optical losses cancel each other out.
Now, a linear stability analysis of the system can be calculated. The Jacobian J

of Eq. (2.3) is given by:

J =

[
D − 1 I
γD γ(−1− I).

]
(2.7)

With this Jacobian, the time evolution of small perturbations δI and δD around
the steady states can be described:

δI = I − Ion,off

δD = D −Don,off

d

dt

(
δI
δD

)
= J

(
δI
δD

)
+O (

δI2, δD2
)
, (2.8)

where a vector notation was used for δD and δI. The linear differential Eq. (2.8)
can be solved with a two-exponential ansatz:

(
δI
δD

)
=

(
a1
a2

)
eλ1t +

(
b1
b2

)
eλ2t, (2.9)

where a and b are coefficients for the initial value, and λ1,2 are the eigenvalues
of the Jacobian J . Now, when the steady state variables Ion,off and Don,off are
inserted, the eigenvalues of the resulting matrix can be easily calculated. For the
off -state they are:
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λoff
1 =A− 1

λoff
2 =− γ. (2.10)

For values of A < 1, both eigenvalues are negative. Following Eq. (2.9) this means
that all small perturbations δI and δD decay exponentially, so that the steady state
is stable. Conversely, for values of A > 1, hence for stronger pumping, the off -state
becomes unstable. The eigenvalues for the on-state are given by:

λon
1,2 =− γ

A

2
±
√
γ2A2/4− γ(A− 1), (2.11)

for which the plus-combination changes sign. For A < 1 the on-state is unstable,
while for A > 1 it is stable. Figure 2.4 shows the steady state solutions of Eq. (2.5)
and Eq. (2.6). The off -state and on-state exchange stability in a transcritical bifur-
cation at A = 1.
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Figure 2.4: Steady states of the rate equation model, (a) intensity I and (b) inversion
D against pump parameter A. The stable solutions (solid lines) switch in a transcritical
bifurcation at A = 1. For A < 1 the laser is turned off (I = 0) and inversion increases linear
with the pump A. The on-state is stable for A = 1, and D = 1 is gain-clamped.

As the lasing intensity (a) is zero before, and increases linearly afterwards, A = 1
is called the lasing threshold and is a typical feature of laser dynamics. On the
lasing threshold the system undergoes a change of stability and the state of the
system is qualitatively different afterwards. For this simple two-variable rate equa-
tion approach here the intensity is zero below threshold and this drastic transition
is followingly quite obvious, but even in more complex systems with spontaneous
emission included, a pump current corresponding to the lasing threshold can be
identified [ERN10b]. It marks the transition towards stimulated emission and the
onset of coherent light emission.
Figure 2.4 (b) also shows the gain clamping of the inversion and visualises the las-

ing threshold in terms of carrier dynamics. So while for A < 1 the inversion increases
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linearly with pump A, which is the result of more electrons getting excited through
the pumping mechanism, this rise is suddenly stopped at the lasing threshold A = 1.
As mentioned, for D = 1 the stimulated emission cancels out the decay of intensity
I, so that the lasing intensity is stable. If the system were to reach a state of D > 1,
this would result in an amplification of I through stimulated emission. However,
an increased lasing intensity I also increases the losses that the stimulated emission
term −DI represents for the time evolution of D in Eq. (2.3). So while the lasing
intensity goes up, inversion is consumed simultaneously. Followingly, there are no
steady states with D > 1, as any excess inversion is always converted into increased
light intensity.
Gain clamping above the lasing threshold is a key feature of all lasing systems.

If enough carriers get excited, the stimulated emission will start to dominate the
system. This always suppresses the participating inversion to a state of transparency,
where stimulated emission and optical losses cancel each other out.
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Figure 2.5: Turn-on time
series for the set of rate equa-
tions obtained by numerical
integration. For pump pa-
rameter A = 5.1 and γ =
10−1 relaxation oscillations
are clearly visible, caused by
the periodic interaction of in-
tensity I (red) and inversion
D (blue).

Lastly, for γ < 1 the eigenvalues of Eq. (2.11) turn into a pair of complex con-
jugated eigenvalues. So the on-state is actually a stable focus. This gives rise
to relaxation oscillations, which is the periodic exchange of energy between gain
medium and light field during turn-on. Figure 2.5 plots the turn-on for the rate
equation model above threshold (A = 5.1) for γ = 10−1. Both the inversion D and
intensity I clearly overshoot and then exhibit damped oscillations before converging
towards their steady state values.
The frequency ωosc and damping Γ of the relaxation oscillations is given by the

real and imaginary part of the eigenvalue of Eq. (2.11):

Γ = γ
A

2
. (2.12)
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The damping increases linearly with pump A, while the frequency can be expanded
for small γ to [ERN10b, OTT14]:

ωosc =
√
−γ2A2/4 + γ(A− 1),

�
√
γ(A− 1) +O(γ3/2). (2.13)

Hence, relaxation oscillations are slowest at the threshold A = 1, but also least
damped. This result once again is also true for more complex laser systems[LUE11].
Semiconductor lasers also exhibit relaxation oscillations, which can be used for the
generation of short pulses by gain-switching[SCH88j]. However, the relaxation os-
cillations of QD semiconductor lasers as studied in this work are often so strongly
damped [ERN10b], that they are not even visible. This is important for a range of
properties, e.g. their stability against perturbations and modulation dynamics.
Overall, such a simple rate-equation model is useful for outlining and visualising

a variety of general laser properties. However, two-state lasing quantum dots are
not reproducible, as one needs to include more carrier reservoirs and lasing fields.
Furthermore, a theoretical description should be derived from first principles, to
ensure that all important aspects are taken into account and experiments can be
accurately modelled. Therefore, the next section will cover the semiclassical laser-
equations.

2.2. Semiclassical Laser Theory

2.2.1. Field Equations

To accurately model a semiconductor laser, equations of motions for the electric field
and the internal states of the gain medium must be derived from first principles.
Because the number of photons is very large, it is sufficient [LIN11b, MEY91] to
treat the field equations classically for most applications, while the gain medium is
treated in the framework of quantum mechanics. This leads to the Maxwell-Bloch
equations of semiclassical laser theory.
First, the field dynamics shall be derived. As a starting point, Maxwell’s equation

in matter are given by [HAK86]:

divD = ρ, (2.14)

divB = 0, (2.15)

rotE = −Ḃ, (2.16)

rotH = j + Ḋ. (2.17)

Here B and E are the magnetic induction and electric field strength. ρ is the
density of free electric charge carriers, j the corresponding current density. The
dielectric displacement D is connected to E via

D = ε0E + Pall, (2.18)
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where ε0 is the vacuum permittivity and Pall the polarization of the medium. The
polarization will now be split into a resonant part Pr and an off-resonant background
polarization Pbg:

Pall =Pr + Pbg. (2.19)

While the resonant polarization Pr will need to be modelled microscopically, the
off-resonant polarization Pbg is assumed to act linearly during laser operation:

Pbg = ε0χbgE, (2.20)

and will be absorbed into εbg = 1 + χbg. For non-magnetic materials, the magne-
tizing field H is given by

B = μ0H . (2.21)

With no free charge carriers ρ = 0 and no free current j = 0 the Equation for the
electric field can be derived as:

ΔE − n2

c2
Ë = μ0P̈ , (2.22)

where the subscript of Pr has been suppressed and the relation n2c−2 = (ε0εbgμ0)
1/2

was used. Here, c denotes the vacuum speed of light, while n =
√
εbg is the refractive

index of the medium and Δ = ∂2
x + ∂2

y + ∂2
z denotes the Laplace-operator.

To further simplify, it will now be assumed that the electric field E can be ap-
proximated as a plane wave in z-direction with frequency ω, wave number k and
envelope amplitude function E(t). This is justified, as the laser possesses a domi-
nant direction and inside the resonator standing waves are formed. A corresponding
approach is taken for the polarization P :

E(z, t) = êxE(t) exp [i (kz − ωt)] (2.23)

P (z, t) = êxP (t) exp [i (kz − ωt)] (2.24)

Here, êx denotes a constant unit vector in the direction of polarization and E(t) is
the time-dependent electric field amplitude. After inserting Eq. (2.23) and Eq. (2.24)
into Eq. (2.22) the following equation for E and P is obtained:

k2E − n2

c2
(Ë − 2iωĖ − ω2E) =− μ0

(
P̈ − 2iωṖ − ω2P

)
. (2.25)
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Now the dispersion relation in matter is used:

k2 =
ω2n2

c2
, (2.26)

which leads to the following equation of motion for the envelope function of po-
larization P and electric field E:

Ë(t)− 2iωĖ = − 1

ε0εbg

(
P̈ (t)− 2ωṖ − ω2P (t)

)
(2.27)

Now, the slowly varying envelope approximation (SVEA) will be applied [HAK85],
which uses the fact that the envelope function does not change significantly during
one period Topt of the fast optical oscillation,

|Ė| � ω|E| = 2π

Topt

|E|, (2.28)

so that only the terms of lowest order dominate Eq. (2.27) and the other can be
neglected. The equation for the electric field amplitude E then is:

dE

dt
=

iωΓ

2ε0εbg
P, (2.29)

Figure 2.6: Sketch of the confine-
ment factor used in calculating the
mode volume in a semiconductor
laser. The confinement factor quan-
tifies the overlap between electric
field (red area) and active medium
(blue layers).

where the confinement factor Γ was include. The confinement factor is a phe-
nomenological addition and quantifies the fraction of the electric field overlapping
with the gain medium in the laser (see Fig. 2.6), because in a semiconductor laser the
extent of the standing electric field is usually bigger than the active region, i.e. the
QD layer. Higher confinement leads to a more concentrated electric field profile and
can be achieved by wave guiding. This results in a stronger interaction between the
QDs and the light, but can also damage the semiconductor material, if intensities
surpass the damage threshold of the material.
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2.2.2. Matter Equations

After the field equations could be derived, the light-matter interaction and internal
dynamics of the gain medium need to be described. To do so, it is necessary to
derive the macroscopic polarization P as a function of the internal state of the gain
medium [HAK85, CHO99]. On a fundamental level, the electric field is interacting
with an optical transition, which needs to be inverted to facilitate lasing. This
optical transition is in the most basic form a two-level system of electronic states,
between which a transition is possible.
This can be described in the framework of quantum mechanics, of which the

representation in second quantization will be used here. Furthermore, the electric
field E is still described classically and not in the form of quantum electrodynamics.
Without derivation, the Hamiltonian Ĥ for such a system is given by [CHO99]:

Ĥ = H0 +Hs =
∑
αj

εαj
a†αj

aαj
+
∑
βj

εβj
b†βj

bβj

−
∑
αj ,βj

(μαjβj
a†αj

b†βj
+ μ∗

αjβj
aαj

bβj
)Re(E(t)e−iωt). (2.30)

It consists of two parts, the single-state energiesH0 and the interactionHs. αj and
βj are sets of suitable quantum numbers for the upper and lower electronic levels,
e.g. spin or wave number k. Then, aαj

is the creation operator for an electron
in the upper state and the hermitian conjugate a†αj

the corresponding annihilation

operator. Conversely, bβj
and b†βj

are the creation and annihilation operator for holes
in the lower state.
The number operators a†αj

aαj
and b†βj

bβj
count the number of electrons and holes,

respectively. Together with the single particle state energies εαj
and εβj

the first
two terms of Eq. (2.30) account for the energy of all occupied states. The last term
describes the interaction with the electric field of amplitude E and frequency ω.
Here, μαjβj

denotes the transition matrix element between state αj and βj and μ∗
αjβj

its complex conjugate.
From these quantummechanic operators some observables can be derived [CHO99].

They are linked to the expectation value 〈.〉 and read:

ρe,αj
:=

〈
a†αj

aαj

〉
(2.31)

ρh,βj
:=

〈
b†βj

bβj

〉
(2.32)

p̃αj ,βj
:=

〈
bβj

aαj

〉
=

〈
a†αj

b†βj

〉
∗, (2.33)

where ρe,αj
(ρh,βj

) is the average electron (hole) occupation probability in state
αj (βj) and p̃αj ,βj

is the microscopic dipole polarization amplitude for the optical
transition αj-βj. The time evolution can now be obtained either in the Heisenberg
representation of quantum mechanics or through the Ehrenfest theorem, for details



18 2 Theoretical Concepts of Lasers

see Ref. [SCU97]. The expectation value of an operator ô then changes according
to:

∂

∂t
〈ô〉 = i

�

〈[
Ĥ(t)ô(t)

]〉
= Ĥ(t)ô(t)− ô(t)Ĥ(t). (2.34)

With [.] denoting the commutator as shown above. Hence, for the time evolution
of the observables in Eq. (2.33) the commutator with the Hamiltonian has to be
evaluated. This is a tedious calculation, which will not be shown here, where the
anticommutator relation for fermions has to be used several times:

{
a†m, an

}
:= a†man + ana

†
m = δmn. (2.35)

At the end, the following differential equations are obtained:

dp̃αjβj

dt
=− iωαjβj

p̃αjβj
− i

�
μαjβj

Re
(
E(t)e−iωt

) (
ρe,αj

+ ρh,βj
− 1

)
(2.36)

dρe,αj

dt
=

dρh,βj

dt
=− i

�

(
μ∗
αjβj

p̃∗αjβj
− μαjβj

p̃αjβj

)
Re

(
E(t)e−iωt

)
, (2.37)

where ωαjβj
is the frequency of the transition αj-βj. Then, the microscopic po-

larization p̃αjβj
amplitude can be transformed into a new variable pαjβj

, describing
the slowly varying amplitude in a rotating frame with the same frequency ω as the
incoming electric field:

p̃αjβj
=: pαjβj

e−iωt. (2.38)

And the time evolution of this new variable is given by:

dp̃αjβj

dt
=

dpαjβj

dt
e−iωt − iωpαjβj

e−iωt. (2.39)

This can now be used together with the expansion of Re (E(t)e−iωt):

Re
(
E(t)e−iωt

)
=

1

2

(
E(t)e−iωt + E∗(t)eiωt

)
, (2.40)

and inserting Eq. (2.39) and Eq. (2.40) into Eq. (2.37), while using the definition
of pαjβj

yields:

dpαjβj

dt
=− i

(
ωαjβj

− ω
)
pαjβj

− i

2�
μαjβj

(
E(t) + E∗(t)ei2ωt

) (
ρe,αj

+ ρh,βj
− 1

)
(2.41)

dρe,αj

dt
=

dρh,βj

dt
=− i

2�

(
μ∗
αjβj

p∗αjβj
eiωt − μαjβj

pαjβj
e−iωt

) (
E(t)e−iωt + E∗(t)eiωt

)
.

(2.42)
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These equations now contain terms oscillating with frequency 2ω. As the intrinsic
time scales of the polarization amplitude p(t) and electric field amplitude E(t) are
several orders of magnitude larger, these fast oscillating terms can be neglected. On
these long time scales, they average out to zero. Additionally, the Rabi-frequency
Ωαjβj

is introduced as:

Ωαjβj
(t) =

μαjβj
E(t)

�
, (2.43)

so that the semiconductor-Bloch-equations are finally derived:

dpαjβj

dt
=− i

(
ωαjβj

− ω
)
pαjβj

− iΩαjβj

2

(
ρe,αj

+ ρh,βj
− 1

)− 1

T2

pαjβj

(2.44)

dρe,αj

dt
=

dρh,βj

dt
=− Im

(
Ωαjβj

p∗αjβj

)
+Rm

sp +Rm
scat (2.45)

Here, some additional phenomenological terms have been added. In addition to
the coherent dynamics as derived from the Hamiltonian, the polarization amplitude
p decays with the dephasing time T2, accounting for the decay due to scattering
processes such as carrier-carrier scattering [KOC00] and carrier-phonon scattering.
Furthermore, the carrier densities ρe,αj

and ρh,βj
are subject to losses due to spon-

taneous emission Rsp and input and output Rscat by carrier scattering. The final
forms for these terms used in this works will be shown later.
But first, the notation will be simplified to more closely match the two-state lasing

quantum dots. Therefore, the indeces αj and βj will be replaced by m ∈ {GS,ES},
sorting everything into QD excited state (ES) and ground state (GS) variables.
Furthermore, it will be assumed that only these two transitions are active, so that
μαjβj

= 0 and pαjβj
= 0 for all other recombination processes. The notation then

reads:

pm :=pαjβj

ρme :=ρe,αj

ρmh :=ρe,βj

Ωm :=Ωαjβj
=

μmEm(t)

�
(2.46)

Now, the polarization dynamics in QD lasers are very fast [CHO99, BIM08a].
Hence, for the description on time-scales larger than the microscopic dephasing
time, they can be adiabatically eliminated. It will therefore be assumed, that the
polarization relaxes at all times to a value as given by the other variables. By setting
the time evolution of the complex conjugated pm∗ to zero,

0 =
dpm∗

dt
=
iΩm∗

2
(ρme + ρmh − 1)− 1

T2

pm∗, (2.47)
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and solving for the value of pm∗,

pm∗ = iT2Ω
m∗ (ρme + ρmh − 1) , (2.48)

the semiconductor Bloch-equations can be reduced to the two differential equa-
tions for ρm and their final form can be obtained:

dρmb
dt

=− Im (Ωm∗pm∗) +Rsp +Rscat

=T2
|μm|2
�2

|Em|2 (ρme + ρmh − 1) +Rsp +Rscat (2.49)

Finally, the result for the steady state of pm∗ given in Eq. (2.48) can be used to
calculate the macroscopic polarization Pm:

Pm(t) = μmZQDpm(t). (2.50)

Here ZQD denotes the number of quantum dots in the active medium, while
μm is, as before, the microscopic polarization of the transition. The macroscopic
polarization Pm is the dynamic variable that was missing in the description of the
electric field dynamics given in Eq. (2.29). When inserting, the electric field equation
is obtained as:

dEm

dt
=

iωΓ

2ε0εbg
Pm

=
ωΓT2νmZ

QD|μm|2
2ε0εbg�

Em (ρme + ρmh − 1)

=gEm (ρme + ρmh − 1) , (2.51)

where the prefactor g denotes the optical gain. However, this only models the
stimulated emission, and followingly the addiion of a spontaneous emission term
will be covered in the next section.

2.2.3. Modelling of Spontaneous Emission

For the carrier occupation probabilities ρme and ρmh , the loss by spontaneous re-
combination of electron-hole pairs can be modelled deterministically by using the
Einstein-coefficients for spontaneous emission Wm:

Rm
sp = −Wmρ

m
e ρ

m
h . (2.52)

Followingly, photons are emitted at the same rate. But not all photons that are
spontaneously emitted, are emitted in the right direction or polarization, so that
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many of them do not add to the number of photons Nph in the lasing mode. Only
the fraction β [HAK86] is emitted to further the lasing process, therefore Eq. (2.52)
has to be modified accordingly for calculating the spontaneous emission contribution
∂tN

ph,m
sp to the photon number:

∂tN
ph,m
sp = νmβZ

QDWmρ
m
e ρ

m
h . (2.53)

Here, ZQD denotes the number of quantum dots that are emitting and νm is
the degeneracy of the level m. The rate of photon creation in Eq. (2.53) now has
to be converted into electric field amplitude change. This is done by assuming
energy conservation, for which the conversion between photons Nph and electric
field amplitude E is given by:

Vmode

2
ε0εbg∂t|Esp|2 = �ω∂tN

ph
sp , (2.54)

where Vmode denotes the spatial extent of the electric field mode:

Vmode =
Ahal
Γ

, (2.55)

and A is the in-plane area of the active medium, e.g. the quantum dot layer, h
is the height of one active medium layer, al is the number of layers and Γ is the
confinement factor.
Accordingly, the change of energy in the mode has to be the same for both photons

and electric field, so that:

∂tN
ph,m
sp = βνmWmρ

m
e ρ

m
h =

Vmodeε0εbg
2�ω

∂t|Esp|2, (2.56)

where Eq. (2.53) was used. This can now be reshuffled to yield an expression for
∂t|Esp|2:

∂t|Esp|2 = νmβZ
QDWGSη

2
GSρ

GS
e ρGS

h , (2.57)

describing the time evolution due to spontaneous emission of the amplitude square
|Esp|2, where η2m is the conversion factor between electric field amplitude and photon
number Nph, which is given by:

η2m =
(2�ωm)

(Vmodeεbgε0)
. (2.58)

In a last step, the derivative for the intensity ∂t|E|2 has to be converted into
electric field amplitude change [FLU07]:
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∂tE =
E

2|E|2∂t|E|2 (2.59)

Thus, the resulting spontaneous emission term is:

∂tEsp = βZQDWGSη
2
GSρ

GS
e ρGS

h

EGS

|EGS|2 . (2.60)

This can now be added to the field equation of Eq. (2.51). The complete set of
rate equations will be presented in the next section.

2.3. Model of a Quantum Dot Laser

2.3.1. Dynamical Equations

After the full matter and electric field equations have been derived in the previous
section, their final form shall be presented here. Although there exists a wide variety
of more complex modelling approaches [CHO13], e.g. taking the k-distribution of
carriers in the QW-reservoir into account [LIN11b], previous studies [LIN10] have
shown that a simple rate equation approach is sufficient for the scope of this work.
The numerical model used is based on previous works [MAJ11, LIN13, LIN14]. It
includes the ground state (GS) and excited state (ES) variables for the electric field
Em, electron ρme and hole occupation probability ρmh , with m ∈ {GS,ES}. The
reservoir carrier densities we and wh for holes and electrons are modelled as well.
In addition to the semiclassical laser equations derived from light-matter inter-

action of the previous section, some phenomenological terms have been added to
account for additional processes, e.g. spontaneous emission, which will be explained
in the following.
First, another feature of QDs must be taken into account: As of today no set

of self-assembled QDs consists of identically shaped and sized QDs. Due to the
nature of the growth process they exhibit a stochastic distribution of sizes, which
in turn changes their confinements and spectral parameters [BIM08a]. This can be
measured as a broadening of the collective spectrum, referred to as ’inhomogeneous
broadening’ (see Fig. 2.7), as compared to the natural linewidth of a single quantum
dot (called ’homogeneous broadening’). Yet, only the spectral fraction of QDs with

Table 1: Dynamical variables of the numerical model

Symbol Values Meaning

E [GS,ES] ∈ C Slowly varying electric field amplitude for GS/ES

ρ
[ES,GS]
[e,h] 0.0− 1.0 ES/GS electron/hole occupation probability for active QDs

ρ
[ES,GS]
[e,h],inact 0.0− 1.0 ES/GS electron/hole occupation probability for inactive QDs

w[e,h] ≥ 0 Electron/hole 2D-density in reservoir
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spectrum of an ensemble of QDs.
Due to the self-assembled growth
process sizes and therefore transi-
tion energies are statistically dis-
tributed. To model the effect of
this, the ensemble is divided into
fact active QDs centered around
the main transition energy �ω and
f inact inactive QDs.

the highest density will end up lasing [BIM08a]. As a first and proven valid [LIN14]
approximation, the QDs are divided into a fraction of fact optically active and
1 − fact = finact optically inactive QDs (coloured parts in Fig. 2.7). Therefore, a
second set of occupations (ρme,inact and ρmh,inact) is included to account for optically
inactive QDs.
The resulting equations for the slowly varying electric field amplitude are:

d

dt
EGS =

[
gGS

(
ρGS
e + ρGS

h − 1
)− κ

]
EGS

+ βZQDfactWGSη
2
GSρ

GS
e ρGS

h

EGS

|EGS|2 , (2.61)

d

dt
EES =

[
gES

(
ρES
e + ρES

h − 1
)− κ

]
EES

+ βZQDfactWESη
2
ESρ

ES
e ρES

h

EES

|EES|2 . (2.62)

The first term accounts for the stimulated emission in accordance with the deriva-
tion in Sec. 2.1, where a decay term κEm was added, accounting for the continuous
loss of light intensity at the mirrors and by off-resonant absorption. The linear
optical gain g[GS,ES] and decay rate κ are measured in units of [1/ps]. The second
term deterministically models spontaneous emission. The number of QDs ZQD, the
Einstein-coefficient for spontaneous emission W[GS,ES] and the β-factor are without
unit. The β-factor is equal to the fraction of spontaneously emitted photons that
enter the lasing mode of the resonator, whereas the majority usually is lost.
The final form of the matter equations for the active quantum dots with b ∈ {e, h}

are:

d

dt
ρGS
b =− gGS

νGSZQDfact

(
ρGS
e + ρGS

h − 1
) |EGS|2

η2GS

−WGSρ
GS
e ρGS

h

+ SGS,cap
b,in

(
1− ρGS

b

)− SGS,cap
b,out

(
ρGS
b

)
+ Srel

b,in

(
1− ρGS

b

)
ρES
b − Srel

b,outρ
GS
b

(
1− ρES

b

)
, (2.63)
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d

dt
ρES
b =− gES

νESZQDfact

(
ρES
e + ρES

h − 1
) |EES|2

η2ES

−WESρ
ES
e ρES

h

+ SES,cap
b,in

(
1− ρES

b

)− SES,cap
b,out

(
ρES
b

)
− 1

2

[
Srel
b,in

(
1− ρGS

b

)
ρES
b − Srel

b,outρ
GS
b

(
1− ρES

b

)]
. (2.64)

Inactive QDs experience identical scattering rates, but lack any contribution by
stimulated emission. They still emit spontaneously, though most of their emission
light leaves the cavity quickly and is then lost:

d

dt
ρGS
b,inact =−WGSρ

GS
e,inactρ

GS
h,inact

+ SGS,cap
b,in

(
1− ρGS

b,inact

)− SGS,cap
GS,out

(
ρGS
b,inact

)
+
[
Srel
b,in

(
1− ρGS

b,inact

)
ρES
b,inact − Srel

b,outρ
GS
b,inact

(
1− ρES

b,inact

)]
, (2.65)

d

dt
ρES
b,inact =−WESρ

ES
e,inactρ

ES
h,inact

+ SES,cap
b,in

(
1− ρES

b,inact

)− SES,cap
b,out

(
ρES
b,inact

)
− 1

2

[
Srel
b,in

(
1− ρGS

b,inact

)
ρES
b,inact − Srel

b,outρ
GS
b,inact

(
1− ρES

b,inact

)]
. (2.66)

2D-reservoir variables we and wh are measured in units of [1/nm2] and count
charge carriers per area. The reservoir is filled with a constant influx of carriers by
the current density J and decays at a rate of RW

loss, which models all radiative and
non-radiative loss processes. The scattering processes are weighted according to the
area density of QDs NQD given and the degeneracy of the levels (2 for GS, 4 for
ES):

d

dt
wb =+ J −RW

losswewh (2.67)

− 2NQDfact
[
SGS,cap
b,in (1− ρGS

b )− SGS,cap
b,out (ρGS

b )
]

− 4NQDfact
[
SES,cap
b,in (1− ρES

b )− SES,cap
b,out (ρES

b )
]

− 2NQD(1− fact)
[
SGS,cap
b,in (1− ρGS

b,ia)− SGS,cap
b,out (ρGS

b,ia)
]

− 4NQD(1− fact)
[
SES,cap
b,in (1− ρES

b,ia)− SES,cap
b,out (ρES

b,ia)
]
,

(2.68)

For visualization, a sketch of the energy band structure and scattering processes
of the QD model is shown in Fig. 2.8. The energy spacing for electrons and holes is
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Figure 2.8: Sketch of the energy band struc-
ture, scattering processes and optical transi-
tion of the QD model. J denotes the pump
current, ρmb are occupation probabilities and
wb are the 2D-reservoir densities. There is
an asymmetric energy spacing for electrons
(e) and holes (h). The excited state (ES)
has a degeneracy of two. c©(2015) IEEE.
Reprinted, with permission, from [ROE14]

different, enabling asymmetric carrier dynamics. Injection current J only enters the
system in the 2D-reservoir densities wb. Recombination of GS electron-hole pairs
and ES electron-hole pairs are the two lasing transitions described by the numerical
model with EGS and EES. Spin degeneracy is generally suppressed, but the ES level
is assumed to be twice degenerate in comparison to the GS.

Table 2: Parameters for the QD model.

Symbol Value Meaning
�ωGS 0.952eV GS transition energy
�ωES 1.022eV ES transition energy
aL 15 number of QD layers
l 1mm device length
d 2.4μm device width
h 4nm height of one layer
Γ 0.05 confinement factor
εbg 14.2 background permittivity
ηGS 9.157× 10−7V/nm electric field conversion factor (GS)
ηES 9.51× 10−7V/nm electric field conversion factor (ES)

The optical transitions for the GS has an energy of �ωGS = 0.952 eV, while the
ES has �ωES = 1.012 eV. With the device assumed to have length l = 1 mm,
width d = 2.4 μm and 15 active layers of height h = 4 nm, the mode volume can
be calculated to Vmode = 2.88 × 10−15 m3 for a confinement factor Γ = 0.05. The
permittivity of GaAs is εbg = 14.2, so that the conversion factors between photon
number and electric field amplitude can be calculated. The results are given in
Tab. 2, together with the parameters used in the calculation.
Now only the scattering rates need to be described, as is done in the next section.
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2.3.2. Scattering Rates

Calculating the scattering rates for a semiconductor is a difficult task, as there are
many possible recombination and transition processes in a semiconductor[SCH89].
The scattering rates S used in this work were calculated by a microscopic approach in
previous works [MAL07, MAJ11, MAJ12]. The carrier-carrier interactions are mod-
elled by a Born-Markov approximation, while the phonon-scattering is neglected.
This leaves room for future improvements, as the phonon-assisted carrier capture
might be especially important when an extra ES is included. A typical nonlinear fit
of the scattering rates is given by:

SGS,cap
e,in =

(A1w
2
e + A2w

2
h)exp(C1we + C2wh)

1− B1wh/we + B2we + B3wh − B4w2
e + B5w2

h + B6wewh

. (2.69)

The constants Ai, Bi and Ci are given in App. A.1. The corresponding out-
scattering rate is calculated by the detailed balance condition: In thermal equilib-
rium, when in and out-scattering cancel each other, the occupation probabilities of
the participating energy levels ρ1 and ρ2 are given by the Fermi-distribution:

ρ1 =
1

exp(E1−EF

kbT
) + 1

, (2.70)

ρ2 =
1

exp(E2−EF

kbT
) + 1

, (2.71)

where E2 > E1 are the potential energy of the levels, T is the temperature, kB is
the Boltzmann-constant and EF is the Fermi-energy. The effective scattering terms
in Eq. (2.63) and Eq. (2.64) have to cancel each other:

Sin(1− ρ1)ρ2 = Sout(1− ρ2)ρ1. (2.72)

Inserting Eq. (2.71) and reshuffling yields the detailed balance condition in terms
of scattering amplitude:

Sout

Sin

=
(1− ρ1)ρ2
(1− ρ2)ρ1

=exp(−E2 − E1

kbT
), (2.73)

and hence:

Sout = Sinexp(−E2 − E1

kbT
) (2.74)
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So that only the energy difference E2 −E1 enters the detailed balance condition,
not the absolute energy. Out-scattering is faster for higher temperatures T and
smaller energy spacing, i.e. weaker confinement.
Furthermore, QDs of different sizes will later be investigated. To study them a size

scaling parameter r will be introduced and scattering rates are calculated for all of
the different QD ensembles. Because of computational limitations, only a linearised
fit of the microscopically calculated scattering rates is used. This linearised fit is
given in App. A.2. Detailed balance, on the other hand, is fully maintained.
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