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Foreword V

Foreword

Semiconductor lasers are very small and cost efficient optical light sources that
already entered into numerous parts of our daily lives. For the past 30 to 40 years,
they have been used as experimental platforms for investigating new and interesting
phenomena in physics and mathematics, and on the other hand as easy-to-handle
test-beds for nonlinear dynamical phenomena occurring in a much wider context.
This thesis deals with the light emission characteristics of quantum-dot lasers,

i.e., semiconductor lasers that contain pyramid-shaped nanostructures (quantum
dots) coupled to a surrounding 2-dimensional layer of semiconductor material. Due
to their multiple confined states these lasers can show multimode emission which
is interesting for two reasons. At first it allows to study fundamental aspects of
complex nonlinear dynamical system and second it may lead to technological ap-
plications in modern telecommunication where there is a need for multi-wavelength
data transmission.
The microscopic modelling approach used within the thesis contains sophisticated

microscopic modelling of the internal scattering processes and thus allows to quan-
titatively describe the light emission from the ground and the first excited state. As
also observed in experiments, different operation modes are possible ranging from
single mode operation to simultaneous two-state lasing or to a current depending
ground state quenching. Especially the last phenomena, i.e., a shutdown of the
ground state emission during an increase of the electric pump current, crucially de-
pends on the internal scattering processes and is discussed in depth in the thesis.
Supported by analytic approximations it is possible to predict the parameter regimes
for ground state quenching and to identify the asymmetry in the electron and hole
charge carrier populations as the driving force for the quenching.
The electrical modulation properties of a two-mode device can be significantly

better than those of purely ground state emitting quantum-dot lasers. It is shown
that an abrupt improvement is observed shortly behind the excited state emission
threshold.
The thesis presents new results on the light emission characteristics of two-mode

quantum dot lasers and suggests operation conditions for innovative and fast de-
vices. This has considerable application potential, since quantum-dot lasers are
very promising candidates for telecommunication applications and high-speed data
transmission. Further the thesis gives new fundamental insights into the interplay
between internal carrier scattering timescales and optical modulation properties by
combining numerical solutions of nonlinear laser differential equations and analytical
approximations methods.

Berlin, January 2015 Kathy Lüdge and Eckehard Schöll
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1 Introduction 1

1. Introduction

1.1. History

The 20th century saw the appearance of many new man-made materials, of which
many never existed on earth before either in quantity or quality. Apart from puri-
fied radioactive elements used in atomic weapons or nuclear fission reactors and the
petroleum derived polymer chemistry, semiconductor material sciences are among
the most defining technologies shaping the later half of the last century [ELI14].
They not only gave rise to solar cells, diodes, LEDs and super-sensitive photodetec-
tors, but grew to become the backbone of modern information technology since the
first fabrication of a transistor by Shockley, Bardeen and Brattain in 1948. Silicon
based microchips and controllers are used in smartphones, TVs, cars, planes, and
even satellites and are therefore virtually omnipresent in our every day lives. The
theoretical description of semiconductors had to match the rapid advancement made
possible by ever more sophisticated fabrication techniques and the history of solid
states physics is intrinsically linked with the development of quantum mechanics.
The concept for a semiconductor laser was first published by Basov et al. [BAS61]

in 1961, only one year after the first experimental realisation of a laser by T. H.
Maiman at Bell Laboratories in 1960 [MAI60]. But as opposed to this optically
driven ruby laser, Basov et al. described a scheme for an electrically driven laser by
recombination of charge carriers injected across a p-n junction. After some initial
success, when in 1962 three independent groups produced the first semiconductor
lasers, progress was slow [CHO99]. This was due to the fact that existing semicon-
ductor technology was based solely on silicon. Silicon, however, does not exhibit a
direct bandgap and is therefore not suited for use in laser systems. On the other
hand, compound semiconductors were less well understood and fabrication was hard,
so that the first lasers were only operable at cryogenic temperatures and only for a
short pulse [BIM12]. For a more detailed history of the diode laser see Ref. [ELI14]
and references therein.
The principle of an electrically driven semiconductor laser is shown in Fig. 1.1

(from [CHO99]). Here, the lower edge of the conduction band and the upper edge of
the valence band is sketched together with the equilibrium electron density (shaded
areas). With no voltage applied (a) the Fermi-energy is constant throughout the
device and there are no regions where electrons could relax into unoccupied valence-
band states. However, when a bias is applied in forward direction (b), electron-hole
recombination becomes possible in the plane of the p-n junction.
This basic design is still used today in all electrically driven semiconductor lasers,

commercial or otherwise. Among which there now exists a wide variety of different
kinds, e.g. quantum well (QW) or quantum dot (QD) lasers. The great advantages
of semiconductor lasers are not only low threshold currents and continuous wave (cw)
output, but especially their small size, high temperature stability, room temperature
operation and relatively cheap fabrication, all of which paved their way towards the
wide use they are seeing today [BIM12].
This work will focus on a specific subset of semiconductor lasers, namely quantum

dot lasers with two simultaneous lasing emissions. The stability of these lasing

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7_1, © Springer Fachmedien Wiesbaden 2015
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Figure 1.1: Energy band sketch of a p-n
junction perpendicular to the junction plane
(figure redrawn from Semiconductor-Laser
Fundamentals by W. Chow and S. Koch,
Springer (1999) [CHO99]). Without a volt-
age applied (a) the electrons (shaded areas)
relax below the global Fermi-energy μ. For
applied voltage in forward bias (b) electrons
and holes can recombine at the p-n junction,
enabling lasing.

states, originating from the ground state and excited state of the quantum dot,
will be investigated temporally and parametrically. Especially the current induced
appearance of excited state emission and subsequent quenching of ground state
emission will be studied numerically and analytically. The suitability of these types
of quantum dots for optical data transmission will also be touched upon, before the
results of an experiment performed by the group of Prof. Woggon will be presented,
numerically reproduced and interpreted.

1.2. Quantum Well and Quantum Dot Lasers

In 1963 Herbert Kroemer proposed [KRO63] to use a sandwich-like structure for the
p-n junction. The charge carriers should be injected through an outer material layer
with a high bandgap, while the active zone for the lasing should be fabricated from
a smaller bandgap compound. The carrier density in this narrow region could then
exceed the carrier densities of the injectors, which is impossible for a homogeneous
structure. This enhances conversion of electrons into light and should be usable to
reach higher quantum efficiencies and therefore lower threshold currents. There was,
however, no sample fabricated at that time.
Independent of this, Charles Henry, who was working at Bell Laboratories, noticed

that wave-guiding technology, which was used at that time to control the dominant
direction of emitted laser light, could also be used to guide electron waves. The
thickness, however, needed to be reduced below the de-Broglie wavelength of the
electrons, so that the confinement became effective. A prototype was fashioned
together with R. Dingle, exhibiting greatly reduced threshold currents. In 1976 a
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patent was filed, detailing the principle of quantum confinement for enhancing laser
operations [DIN76].
When calculating the density of states of this structure, Henry obtained the

remarkable result that it was not the known square-root dependence of three-
dimensional structures, but a stepwise function due to discrete energy levels caused
by the confinement in one direction (see Fig. 1.2). He concluded that this finite
density of states, even for the lowest attainable energy, greatly enhanced laser oper-
ation. As only carriers of these lowest energies are participating in the electron-hole
recombination, their increase in numbers leads to a higher optical gain and hence
laser output for lower injection currents.
Obviously, charge carriers can be confined in more than one dimension, if different

semiconductor heterostructures are grown. If the dimension is smaller than the de-
Broglie wavelength in two directions, the resulting object is called a nanowire. When
charge carriers are confined in all three dimensions, the structure was originally
called quantum box and is nowadays called a quantum dot (QD). The resulting
density of states is shown in Fig. 1.2. Each additional confinement increases the
density of states at the lowest energy, and is followingly expected to increase laser
performance.

E

D
(E

)

3D

E

D
(E

)

2D

E

D
(E

)

1D

E

D
(E

)

0D
Figure 1.2: Density of states versus energy
for electronic states with different dimen-
sions. Lasing recombination usually involves
the carriers of lowest energy, so the finite den-
sity of states even for the lowest occupiable
state in the 2D case is favourable for laser
operation. Going to even lower dimensions
further strengthens this effect.

Quantum dots (QDs) even display a discrete spectrum of energy states. As this
resulting spectrum, both for holes and electrons, is very similar to the discrete
eigenstates of atoms, they are labelled in the same fashion: The lowest energy
state is called ground state (GS), the next higher state the ’first excited state’
(ES) and so forth. Generally, the number of confined states depends on the size
of the quantum dot. Due to fabrication processes the confinement in reality is less
than perfect. Therefore, the eigenstates of the quantum dots are usually modelled
within a parabolic potential, however more advanced modelling approaches also exist
[SCH07f]. Figure 1.3 shows a sketch of the energy bands and localised states for a
quantum dot.
Confinement also gives rise to a zero-point energy, so that the energy separation
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Figure 1.3: Energy sketch of valence
and conduction band of a quantum dot
for a parabolic potential. The QD is
fabricated from a lower-bandgap ma-
terial than the surrounding bulk ma-
terial, the confinement in all three di-
mensions giving rise to discrete energy
levels. Due to their similarity to atomic
states, they are labelled ground state
(GS), first excited state (ES) and so
forth.

between electrons and holes for the GS of the nanostructure is not simply given by
the band gap of the material. Hence, the resulting optical transition of frequency ω
possesses the energy �ω = Ebandgap + E0. As in the quantum mechanical example
of a particle in a box, this zero-point energy E0 is size-dependent. This effect is
present in quantum wells, wires and dots and is often exploited for changing the
wavelengths of emitted light by changing the confinement size L. Naturally, there
are limits for tuning the wavelength like this, as structures can neither grow too big
nor too small, and followingly there is still a wide variety of material systems used
today for obtaining lasers from infrared to ultraviolet.
Now, several theoretical groups predicted during the 1980s, that quantum dots

would exceed even quantum wells in their performance [ARA82, ASA86], so that
the attention was shifted towards fabricating these new types of nanostructures.
QDs have yet to fulfil these promises, as it turned out that carrier injection into the
quantum dot is a limiting factor for lasing operation and thus they remain a topic
of major industrial and scientific interest even today.
This work will focus on typical self-assembled InGaAs quantum dots, though

many of the findings presented here should also be valid for other material sys-
tems. Self-assembled InGaAs quantum dots are produced by Stranski-Krastanov
growth either in molecular-beam epitaxy (MBE) or metal-organic vapour-phase epi-
taxy (MOVPE). In the critical step of this procedure, indium arsenide is grown on
gallium arsenide in a thin layer, ranging from one to three monolayers. As Gal-
lium arsenide and indium arsenide have a lattice mismatch of 7%, this leads to a
highly stressed surface. During this stage and possibly during a short heating phase
applied thereafter, the indium arsenide surface breaks open and reassembles itself
into pyramidic structures. These pyramids are energetically more favourable, due
to their tops being less stressed, for a certain temperature range during the growth
process.
Afterwards, these QDs are overgrown with another layer of gallium arsenide,

to form a dot-in-a-well structure [KOV03], which shifts the output wavelength to



1 Introduction 5

1.3μm. As the creation process is stochastic, the sizes and shapes of the QDs are
statistically distributed. Together with the inability to predict the exact spot where
a QD will appear, this is arguably one of the the main disadvantages of contempo-
rary QD technology. Their emission spectrum is broadened by their different sizes
and compositions, and only a part of the QD ensemble is able to participate in the
lasing process [BIM99, LUE11a, RAF11].
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2. Theoretical Concepts of Lasers

2.1. Basics of Laser Modelling

Lasers are light sources with very narrow bandwidths, high output power and long
coherence lengths [HAK86]. They are, in some regards, completely different from
other light sources, that surround us every day. As opposed to the thermal radiation
of light bulbs, stars and the sun, or the fluorescence used in neon tubes, the photons
of a laser are mainly emitted through stimulated emission.
This section will explain the basic concepts of a laser and present a simple nu-

merical model to show some general laser dynamics.

2.1.1. Basic Concepts

When in the early 20th century the particle-like nature of light was discovered and
Niels Bohr formulated the famous Bohr model of the atom, two types of light-matter
interactions were soon understood. Firstly, spontaneous emission is the stochastic
decay of an excited electron, where a photon is emitted during the electrons tran-
sition from an upper state with energy E2 to a lower energetic state of energy E1.
Secondly, an incoming photon of matching energy �ω = E2 − E1 can be absorbed
while lifting the electron from the lower to the higher state.
However, Albert Einstein proposed the existence of an additional interaction,

namely stimulated emission, in 1917 [EIN17]. There, an incoming photon of match-
ing energy �ω = E2 − E1 is not absorbed, but encounters the electron in the upper
state and stimulates the decay into the lower state. Hence, a second photon is emit-
ted, which is identical in phase and direction to the first one. On a macroscopic
scale the light intensity is coherently amplified by this process. Figure 2.1 shows a
sketch of the three single-photon processes described above.

Spontaneous
Emission

Stimulated
Absorption

Stimulated
Emission

Upper
State

Lower
State

Photon

Electron
Figure 2.1: Sketch of the three fundamental single-photon interactions of a two-level system.
For spontaneous emission (a), an electron (red) decays from the upper energetic state to
the lower energetic state, while emitting a photon (blue). Conversely, through stimulated
absorption (b) an electron is lifted into the upper state, while a photon is simultaneously
consumed. Lastly, stimulated emission (c) is the coherent emission of a second photon, by an
incoming photon that finds the electron in the upper state.

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7_2, © Springer Fachmedien Wiesbaden 2015
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Through simple calculus [HAK86] Einstein could also show that the light-matter
interaction coefficients, nowadays called in his honour Einstein-coefficients, had to
be identical for stimulated emission and absorption. Stimulated emission is there-
fore often seen as the reverse process of (stimulated) absorption. Followingly, a
net amplification of incoming light can only be achieved by stimulated emission, if
more electrons are available for stimulated emission than for absorption, ergo if the
population N of the upper state is higher than of the lower state, N2 > N1.
Yet, this state of ’population inversion’ is never reached in thermal equilibrium.

Mathematically, the Maxwell-Boltzmann-distribution only allows states with higher
energies to be filled more, if the temperature is set to a negative value [HAK86].
Population inversion is therefore sometimes also referred to as ’negative temper-
ature’, albeit macroscopic systems never reach negative temperatures as a stable
equilibrium state.
Hence, the system must be constantly driven out of thermal equilibrium to achieve

’population inversion’. This process called ’pumping’ can be achieved through var-
ious ways and depends on the system being used. It can be optically, electrically
or even chemically driven [HAK86]. Some pumping mechanisms will only provide
sufficient inversion for a very short time leading to pulsed lasers, while others allow
the emission of a continuous wave. Furthermore, even though only two energetic
levels are participating in the optical transition, all real-world lasers do incorporate
at least three different energy levels, often even four, and are congruently referred
to as three-level lasers and four-level lasers [ERN10b]. A sketch of the pumping and
lasing transitions of these systems is shown in Fig. 2.2.
The advantage of involving additional states for the electrons are easy to un-

derstand: While an optically driven two-level system can never reach population
inversion through optical pumping, as the absorption and stimulated emission bal-
ance each other out, the three-level system avoids this by indirect excitation. The
electrons are lifted from the lowest level of energy E1 to a level above the upper
level involved in the transition. In a suitable material, the electrons in this state of
energy E3 > E2 then quickly decay into the upper state of energy E2 of the lasing
transition. An effective pumping without disturbing level 2 is therefore possible.
Yet, to reach population inversion at least half of the population of level 1 would
still have to be excited. This strict requirement is lifted for the four-level laser.
In the four-level system of energies E1 < E2 < E3 < E4, the electrons are lifted

from the level 1 in to the level 4 through pumping, quickly decay into the metastable
level 3, where they are used for stimulated emission, similar to the three-level system.
However, in the optimal case the transition from energy level 2 to 1 is extremely fast,
leaving the level 2 constantly almost empty and followingly keeping a population
inversion between levels 2 and 3. Overall, the pumping requirements for lasing
operations are greatly reduced and hence four-level systems are common [ERN10b,
HAK85]. Figure 2.2 shows pumping and transition schemes for the three-level and
four-level system.
Quantum dot lasers can be seen as a four-level system, with the conduction band

and valence band acting as the highest and lowest level, while the quantum dot levels
encompass the optically active lasing transition. However, the complex scattering
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dynamics involved lead to a variety of additional effects, e.g. two-state lasing or
ground state quenching.

E

E

E E

E

E

E

Fast Decay Fast Decay

Fast Decay

Pump Pump

1

2

3 4

3

2

1

Three-Level System Four-Level Systema) b)

Laser
Transition

Laser
Transition

Figure 2.2: Sketch of the pumping and energy level scheme for the three-level laser (a) and
four-level laser (b). Electrons (red) are raised by the pump to the highest energetic level, from
which they quickly decay into the upper state of the lasing transition. This state is ideally
metastable, so that electrons can accumulate there. For the three-level system (a), the lasing
transition then links this metastable state E2 to the ground level E1. The four-level laser
(b) possesses an additional level E2, that acts as the lower state for the lasing transition.
Because this level E2 is short lived, it is almost always empty, leaving the E3-E2 transition
easily inverted.

From an engineering perspective, the laser converts the energy injected into the
system via pumping, e.g. the injection current in a semiconductor laser, into coher-
ent light. One can therefore easily formulate conversion efficiencies by measuring
the output versus input power. Electrically driven semiconductor lasers are among
the most efficient lasing systems [CHO99].
Mathematically, the amplification of an incoming electro-magnetic wave is often

measured as gain g. In a simple model the electric field amplitude E will increase
exponentially over time with gain g:

d

dt
E = gE. (2.1)

Gain is therefore quantified in units of [1/s]. Microscopically, the gain of a medium
is related to its population inversion:

g ∼ N2 −N1, (2.2)

where N2 and N1 are the populations of the upper and lower electronic level.
When the lower level is more populated, the gain g becomes negative and instead of
amplifying the incoming wave, the medium becomes absorbing. Gain g can therefore
also be seen as an inverse absorption coefficient. The interplay of gain and light will
be discussed in more detail in the following section.

2.1.2. Cavity and Active Medium

The two principal components of every laser are the optical cavity and the optically
active gain medium [HAK85] contained inside. The cavity is a confined space in
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which certain standing electromagnetic waves can exist. These ’cavity modes’ have a
discrete set of eigenfrequencies and can be excited via injection of photons. Typically
the edge of the cavity will be a mirror or another reflecting surface, so that photons
of the cavity modes are reflected. The light then passes through the gain medium
multiple times before being absorbed or escaping the cavity. The gain medium is
a material, which amplifies light through the process of stimulated emission in the
manner described in the previous section. When placed in a cavity, it will be exposed
to its own amplified emission and create a coherent, intensity amplified standing
wave. This is the origin of the name laser, an acronym for ’Light Amplification by
Stimulated Emission of Radiation’.
However, the gain medium does not enhance all optical frequency equally, but

possesses a gain profile. This gain profile usually corresponds to the spontaneous
emission spectrum of the optical transition that is used for amplification, e.g. a
Gaussian shape with its natural line width. For lasers there are usually many cavity
modes lying within the peak of the gain spectrum, so that the laser, in principle,
could operate on many different modes. Hence, further mode selections becomes
necessary.
One easy way of mode selection is to use a Fabry-Perot resonator, as proposed by

Schawlow and Townes [SCH58] in 1958. There, only modes along the principal axis
of the resonator are enhanced. It consists of two parallel mirrors and significantly
reduces the number of modes remaining inside the gain spectrum for optical ampli-
fication. A sketch of a Fabry-Perot type laser with all integral components can be
seen in Fig. 2.3. Additionally, the coherent light has to be coupled out of the cavity
for further use. This is achieved by using a high-reflectivity mirror on one side, and
a low reflectivity mirror on the other. Light will then be mainly exiting through the
low reflective end of the cavity.

optical cavity

gain medium

pump

light

mirror A mirror B

Figure 2.3: Sketch of a Fabry-Perot type laser. The cavity, also called optical resonator,
consists of two planar parallel mirrors. The reflectivity of mirror B is lower than of mirror A,
so that light mainly leaves the cavity on this side. Inside is the gain medium, which is kept in
a state of inversion via pumping. Stimulated emission leads to the appearance of one stable
coherent standing wave mode inside the resonator.

In this work the focus lies on the Fabry-Perot type of devices, and it will be as-
sumed that only one lasing mode exists, corresponding to the mode with the highest
optical amplification. Excluding the multi-mode dynamics not only decreases com-
putational costs and complexity, but is also consistent with most fabricated QD laser
structures, e.g. those with distributed Bragg-reflectors (DBRs). Usually, the end
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of the semiconductor sample is simply cleaved and the resulting air-bulk material
interface is used as a mirror, resulting in a Farby-Perot type cavity. The alignment
is automatically generated by splitting both ends among the same crystallographic
plane.

2.1.3. Laser Rate Equations

There are many ways of mathematically describing a laser, suited for different ma-
terial systems, time scales and types of lasers. However, some laser properties are
universal and can hence be understood with even the simplest model approach.
Before the semiclassical laser-equations will be derived in the next section, a simple

two-variable rate-equation model shall be heuristically motivated and studied here.
The specific set of differential equations are taken from T. Erneux and P. Glorieux
[ERN10b] and represent such a minimal laser model. They are given by:

d

dt
I =ID − I

1

γ

d

dt
D =(A−D)−DI, (2.3)

where I is the light intensity and D is the inversion of the gain medium. Both
dynamic variables are normalised, to have as few parameters remaining as possible.
As can be seen, the time evolution of the light intensity d

dt
I contains a normalised

decay term −I, which models the loss of light due to absorption and transmission at
the mirrors. Furthermore, the product term ID simulates the stimulated emission,
which is stronger for more light and higher population inversion and hence linear in
both I and D.
This increase in light intensity translates into a loss of inversion D, as stimulated

emission uses up excited carriers. Therefore, −ID enters the time evolution of D as
a loss term. Additionally, the inversion is being externally driven towards a static
value, prescribed by the pump parameter A. The specific nature of the pump is not
further specified - it is simply assumed that through some mechanism the inversion
of the gain medium can be excited. Lastly, γ is a parameter describing the time
scale separation between carrier and light dynamics, usually in the range of 10−2 to
10−6 [ERN10b].
Now, it is easy to find the steady states of this simplified system by solving the

equations:

ID − I =0

(A−D)−DI =0. (2.4)

There are two sets of steady states fulfilling these conditions. The first is given
by:
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Ioff =0

Doff =A. (2.5)

With the light intensity I at zero and the inversionD at pump level, this represents
an ’off’-state. No intensity is produced and carriers are dominated by the external
pumping A. Conversely, the second steady state solution of Eq. (2.4) yields the
’on’-state:

Ion =A− 1

Don =1. (2.6)

Here, the light intensity I is proportional to the pump parameter A, caused by
the conversion of injected energy into lasing light. Simultaneously the inversion is
constant with Don = 1. This effect is called gain clamping and is a result of the
stimulated emission dominating the system. As can be seen from the differential
equation for I, D = 1 is the transparent state of the system, where the stimulated
emission and optical losses cancel each other out.
Now, a linear stability analysis of the system can be calculated. The Jacobian J

of Eq. (2.3) is given by:

J =

[
D − 1 I
γD γ(−1− I).

]
(2.7)

With this Jacobian, the time evolution of small perturbations δI and δD around
the steady states can be described:

δI = I − Ion,off

δD = D −Don,off

d

dt

(
δI
δD

)
= J

(
δI
δD

)
+O (

δI2, δD2
)
, (2.8)

where a vector notation was used for δD and δI. The linear differential Eq. (2.8)
can be solved with a two-exponential ansatz:

(
δI
δD

)
=

(
a1
a2

)
eλ1t +

(
b1
b2

)
eλ2t, (2.9)

where a and b are coefficients for the initial value, and λ1,2 are the eigenvalues
of the Jacobian J . Now, when the steady state variables Ion,off and Don,off are
inserted, the eigenvalues of the resulting matrix can be easily calculated. For the
off -state they are:
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λoff
1 =A− 1

λoff
2 =− γ. (2.10)

For values of A < 1, both eigenvalues are negative. Following Eq. (2.9) this means
that all small perturbations δI and δD decay exponentially, so that the steady state
is stable. Conversely, for values of A > 1, hence for stronger pumping, the off -state
becomes unstable. The eigenvalues for the on-state are given by:

λon
1,2 =− γ

A

2
±
√

γ2A2/4− γ(A− 1), (2.11)

for which the plus-combination changes sign. For A < 1 the on-state is unstable,
while for A > 1 it is stable. Figure 2.4 shows the steady state solutions of Eq. (2.5)
and Eq. (2.6). The off -state and on-state exchange stability in a transcritical bifur-
cation at A = 1.
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Figure 2.4: Steady states of the rate equation model, (a) intensity I and (b) inversion
D against pump parameter A. The stable solutions (solid lines) switch in a transcritical
bifurcation at A = 1. For A < 1 the laser is turned off (I = 0) and inversion increases linear
with the pump A. The on-state is stable for A = 1, and D = 1 is gain-clamped.

As the lasing intensity (a) is zero before, and increases linearly afterwards, A = 1
is called the lasing threshold and is a typical feature of laser dynamics. On the
lasing threshold the system undergoes a change of stability and the state of the
system is qualitatively different afterwards. For this simple two-variable rate equa-
tion approach here the intensity is zero below threshold and this drastic transition
is followingly quite obvious, but even in more complex systems with spontaneous
emission included, a pump current corresponding to the lasing threshold can be
identified [ERN10b]. It marks the transition towards stimulated emission and the
onset of coherent light emission.
Figure 2.4 (b) also shows the gain clamping of the inversion and visualises the las-

ing threshold in terms of carrier dynamics. So while for A < 1 the inversion increases
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linearly with pump A, which is the result of more electrons getting excited through
the pumping mechanism, this rise is suddenly stopped at the lasing threshold A = 1.
As mentioned, for D = 1 the stimulated emission cancels out the decay of intensity
I, so that the lasing intensity is stable. If the system were to reach a state of D > 1,
this would result in an amplification of I through stimulated emission. However,
an increased lasing intensity I also increases the losses that the stimulated emission
term −DI represents for the time evolution of D in Eq. (2.3). So while the lasing
intensity goes up, inversion is consumed simultaneously. Followingly, there are no
steady states with D > 1, as any excess inversion is always converted into increased
light intensity.
Gain clamping above the lasing threshold is a key feature of all lasing systems.

If enough carriers get excited, the stimulated emission will start to dominate the
system. This always suppresses the participating inversion to a state of transparency,
where stimulated emission and optical losses cancel each other out.
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Figure 2.5: Turn-on time
series for the set of rate equa-
tions obtained by numerical
integration. For pump pa-
rameter A = 5.1 and γ =
10−1 relaxation oscillations
are clearly visible, caused by
the periodic interaction of in-
tensity I (red) and inversion
D (blue).

Lastly, for γ < 1 the eigenvalues of Eq. (2.11) turn into a pair of complex con-
jugated eigenvalues. So the on-state is actually a stable focus. This gives rise
to relaxation oscillations, which is the periodic exchange of energy between gain
medium and light field during turn-on. Figure 2.5 plots the turn-on for the rate
equation model above threshold (A = 5.1) for γ = 10−1. Both the inversion D and
intensity I clearly overshoot and then exhibit damped oscillations before converging
towards their steady state values.
The frequency ωosc and damping Γ of the relaxation oscillations is given by the

real and imaginary part of the eigenvalue of Eq. (2.11):

Γ = γ
A

2
. (2.12)
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The damping increases linearly with pump A, while the frequency can be expanded
for small γ to [ERN10b, OTT14]:

ωosc =
√
−γ2A2/4 + γ(A− 1),

�
√
γ(A− 1) +O(γ3/2). (2.13)

Hence, relaxation oscillations are slowest at the threshold A = 1, but also least
damped. This result once again is also true for more complex laser systems[LUE11].
Semiconductor lasers also exhibit relaxation oscillations, which can be used for the
generation of short pulses by gain-switching[SCH88j]. However, the relaxation os-
cillations of QD semiconductor lasers as studied in this work are often so strongly
damped [ERN10b], that they are not even visible. This is important for a range of
properties, e.g. their stability against perturbations and modulation dynamics.
Overall, such a simple rate-equation model is useful for outlining and visualising

a variety of general laser properties. However, two-state lasing quantum dots are
not reproducible, as one needs to include more carrier reservoirs and lasing fields.
Furthermore, a theoretical description should be derived from first principles, to
ensure that all important aspects are taken into account and experiments can be
accurately modelled. Therefore, the next section will cover the semiclassical laser-
equations.

2.2. Semiclassical Laser Theory

2.2.1. Field Equations

To accurately model a semiconductor laser, equations of motions for the electric field
and the internal states of the gain medium must be derived from first principles.
Because the number of photons is very large, it is sufficient [LIN11b, MEY91] to
treat the field equations classically for most applications, while the gain medium is
treated in the framework of quantum mechanics. This leads to the Maxwell-Bloch
equations of semiclassical laser theory.
First, the field dynamics shall be derived. As a starting point, Maxwell’s equation

in matter are given by [HAK86]:

divD = ρ, (2.14)

divB = 0, (2.15)

rotE = −Ḃ, (2.16)

rotH = j + Ḋ. (2.17)

Here B and E are the magnetic induction and electric field strength. ρ is the
density of free electric charge carriers, j the corresponding current density. The
dielectric displacement D is connected to E via

D = ε0E + Pall, (2.18)
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where ε0 is the vacuum permittivity and Pall the polarization of the medium. The
polarization will now be split into a resonant part Pr and an off-resonant background
polarization Pbg:

Pall =Pr + Pbg. (2.19)

While the resonant polarization Pr will need to be modelled microscopically, the
off-resonant polarization Pbg is assumed to act linearly during laser operation:

Pbg = ε0χbgE, (2.20)

and will be absorbed into εbg = 1 + χbg. For non-magnetic materials, the magne-
tizing field H is given by

B = μ0H . (2.21)

With no free charge carriers ρ = 0 and no free current j = 0 the Equation for the
electric field can be derived as:

ΔE − n2

c2
Ë = μ0P̈ , (2.22)

where the subscript of Pr has been suppressed and the relation n2c−2 = (ε0εbgμ0)
1/2

was used. Here, c denotes the vacuum speed of light, while n =
√
εbg is the refractive

index of the medium and Δ = ∂2
x + ∂2

y + ∂2
z denotes the Laplace-operator.

To further simplify, it will now be assumed that the electric field E can be ap-
proximated as a plane wave in z-direction with frequency ω, wave number k and
envelope amplitude function E(t). This is justified, as the laser possesses a domi-
nant direction and inside the resonator standing waves are formed. A corresponding
approach is taken for the polarization P :

E(z, t) = êxE(t) exp [i (kz − ωt)] (2.23)

P (z, t) = êxP (t) exp [i (kz − ωt)] (2.24)

Here, êx denotes a constant unit vector in the direction of polarization and E(t) is
the time-dependent electric field amplitude. After inserting Eq. (2.23) and Eq. (2.24)
into Eq. (2.22) the following equation for E and P is obtained:

k2E − n2

c2
(Ë − 2iωĖ − ω2E) =− μ0

(
P̈ − 2iωṖ − ω2P

)
. (2.25)
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Now the dispersion relation in matter is used:

k2 =
ω2n2

c2
, (2.26)

which leads to the following equation of motion for the envelope function of po-
larization P and electric field E:

Ë(t)− 2iωĖ = − 1

ε0εbg

(
P̈ (t)− 2ωṖ − ω2P (t)

)
(2.27)

Now, the slowly varying envelope approximation (SVEA) will be applied [HAK85],
which uses the fact that the envelope function does not change significantly during
one period Topt of the fast optical oscillation,

|Ė| � ω|E| = 2π

Topt

|E|, (2.28)

so that only the terms of lowest order dominate Eq. (2.27) and the other can be
neglected. The equation for the electric field amplitude E then is:

dE

dt
=

iωΓ

2ε0εbg
P, (2.29)

Figure 2.6: Sketch of the confine-
ment factor used in calculating the
mode volume in a semiconductor
laser. The confinement factor quan-
tifies the overlap between electric
field (red area) and active medium
(blue layers).

where the confinement factor Γ was include. The confinement factor is a phe-
nomenological addition and quantifies the fraction of the electric field overlapping
with the gain medium in the laser (see Fig. 2.6), because in a semiconductor laser the
extent of the standing electric field is usually bigger than the active region, i.e. the
QD layer. Higher confinement leads to a more concentrated electric field profile and
can be achieved by wave guiding. This results in a stronger interaction between the
QDs and the light, but can also damage the semiconductor material, if intensities
surpass the damage threshold of the material.
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2.2.2. Matter Equations

After the field equations could be derived, the light-matter interaction and internal
dynamics of the gain medium need to be described. To do so, it is necessary to
derive the macroscopic polarization P as a function of the internal state of the gain
medium [HAK85, CHO99]. On a fundamental level, the electric field is interacting
with an optical transition, which needs to be inverted to facilitate lasing. This
optical transition is in the most basic form a two-level system of electronic states,
between which a transition is possible.
This can be described in the framework of quantum mechanics, of which the

representation in second quantization will be used here. Furthermore, the electric
field E is still described classically and not in the form of quantum electrodynamics.
Without derivation, the Hamiltonian Ĥ for such a system is given by [CHO99]:

Ĥ = H0 +Hs =
∑
αj

εαj
a†αj

aαj
+
∑
βj

εβj
b†βj

bβj

−
∑
αj ,βj

(μαjβj
a†αj

b†βj
+ μ∗

αjβj
aαj

bβj
)Re(E(t)e−iωt). (2.30)

It consists of two parts, the single-state energiesH0 and the interactionHs. αj and
βj are sets of suitable quantum numbers for the upper and lower electronic levels,
e.g. spin or wave number k. Then, aαj

is the creation operator for an electron
in the upper state and the hermitian conjugate a†αj

the corresponding annihilation

operator. Conversely, bβj
and b†βj

are the creation and annihilation operator for holes
in the lower state.
The number operators a†αj

aαj
and b†βj

bβj
count the number of electrons and holes,

respectively. Together with the single particle state energies εαj
and εβj

the first
two terms of Eq. (2.30) account for the energy of all occupied states. The last term
describes the interaction with the electric field of amplitude E and frequency ω.
Here, μαjβj

denotes the transition matrix element between state αj and βj and μ∗
αjβj

its complex conjugate.
From these quantummechanic operators some observables can be derived [CHO99].

They are linked to the expectation value 〈.〉 and read:

ρe,αj
:=

〈
a†αj

aαj

〉
(2.31)

ρh,βj
:=

〈
b†βj

bβj

〉
(2.32)

p̃αj ,βj
:=

〈
bβj

aαj

〉
=

〈
a†αj

b†βj

〉
∗, (2.33)

where ρe,αj
(ρh,βj

) is the average electron (hole) occupation probability in state
αj (βj) and p̃αj ,βj

is the microscopic dipole polarization amplitude for the optical
transition αj-βj. The time evolution can now be obtained either in the Heisenberg
representation of quantum mechanics or through the Ehrenfest theorem, for details
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see Ref. [SCU97]. The expectation value of an operator ô then changes according
to:

∂

∂t
〈ô〉 = i

�

〈[
Ĥ(t)ô(t)

]〉
= Ĥ(t)ô(t)− ô(t)Ĥ(t). (2.34)

With [.] denoting the commutator as shown above. Hence, for the time evolution
of the observables in Eq. (2.33) the commutator with the Hamiltonian has to be
evaluated. This is a tedious calculation, which will not be shown here, where the
anticommutator relation for fermions has to be used several times:

{
a†m, an

}
:= a†man + ana

†
m = δmn. (2.35)

At the end, the following differential equations are obtained:

dp̃αjβj

dt
=− iωαjβj

p̃αjβj
− i

�
μαjβj

Re
(
E(t)e−iωt

) (
ρe,αj

+ ρh,βj
− 1

)
(2.36)

dρe,αj

dt
=

dρh,βj

dt
=− i

�

(
μ∗
αjβj

p̃∗αjβj
− μαjβj

p̃αjβj

)
Re

(
E(t)e−iωt

)
, (2.37)

where ωαjβj
is the frequency of the transition αj-βj. Then, the microscopic po-

larization p̃αjβj
amplitude can be transformed into a new variable pαjβj

, describing
the slowly varying amplitude in a rotating frame with the same frequency ω as the
incoming electric field:

p̃αjβj
=: pαjβj

e−iωt. (2.38)

And the time evolution of this new variable is given by:

dp̃αjβj

dt
=

dpαjβj

dt
e−iωt − iωpαjβj

e−iωt. (2.39)

This can now be used together with the expansion of Re (E(t)e−iωt):

Re
(
E(t)e−iωt

)
=

1

2

(
E(t)e−iωt + E∗(t)eiωt

)
, (2.40)

and inserting Eq. (2.39) and Eq. (2.40) into Eq. (2.37), while using the definition
of pαjβj

yields:

dpαjβj

dt
=− i

(
ωαjβj

− ω
)
pαjβj

− i

2�
μαjβj

(
E(t) + E∗(t)ei2ωt

) (
ρe,αj

+ ρh,βj
− 1

)
(2.41)

dρe,αj

dt
=

dρh,βj

dt
=− i

2�

(
μ∗
αjβj

p∗αjβj
eiωt − μαjβj

pαjβj
e−iωt

) (
E(t)e−iωt + E∗(t)eiωt

)
.

(2.42)
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These equations now contain terms oscillating with frequency 2ω. As the intrinsic
time scales of the polarization amplitude p(t) and electric field amplitude E(t) are
several orders of magnitude larger, these fast oscillating terms can be neglected. On
these long time scales, they average out to zero. Additionally, the Rabi-frequency
Ωαjβj

is introduced as:

Ωαjβj
(t) =

μαjβj
E(t)

�
, (2.43)

so that the semiconductor-Bloch-equations are finally derived:

dpαjβj

dt
=− i

(
ωαjβj

− ω
)
pαjβj

− iΩαjβj

2

(
ρe,αj

+ ρh,βj
− 1

)− 1

T2

pαjβj

(2.44)

dρe,αj

dt
=

dρh,βj

dt
=− Im

(
Ωαjβj

p∗αjβj

)
+Rm

sp +Rm
scat (2.45)

Here, some additional phenomenological terms have been added. In addition to
the coherent dynamics as derived from the Hamiltonian, the polarization amplitude
p decays with the dephasing time T2, accounting for the decay due to scattering
processes such as carrier-carrier scattering [KOC00] and carrier-phonon scattering.
Furthermore, the carrier densities ρe,αj

and ρh,βj
are subject to losses due to spon-

taneous emission Rsp and input and output Rscat by carrier scattering. The final
forms for these terms used in this works will be shown later.
But first, the notation will be simplified to more closely match the two-state lasing

quantum dots. Therefore, the indeces αj and βj will be replaced by m ∈ {GS,ES},
sorting everything into QD excited state (ES) and ground state (GS) variables.
Furthermore, it will be assumed that only these two transitions are active, so that
μαjβj

= 0 and pαjβj
= 0 for all other recombination processes. The notation then

reads:

pm :=pαjβj

ρme :=ρe,αj

ρmh :=ρe,βj

Ωm :=Ωαjβj
=

μmEm(t)

�
(2.46)

Now, the polarization dynamics in QD lasers are very fast [CHO99, BIM08a].
Hence, for the description on time-scales larger than the microscopic dephasing
time, they can be adiabatically eliminated. It will therefore be assumed, that the
polarization relaxes at all times to a value as given by the other variables. By setting
the time evolution of the complex conjugated pm∗ to zero,

0 =
dpm∗

dt
=
iΩm∗

2
(ρme + ρmh − 1)− 1

T2

pm∗, (2.47)
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and solving for the value of pm∗,

pm∗ = iT2Ω
m∗ (ρme + ρmh − 1) , (2.48)

the semiconductor Bloch-equations can be reduced to the two differential equa-
tions for ρm and their final form can be obtained:

dρmb
dt

=− Im (Ωm∗pm∗) +Rsp +Rscat

=T2
|μm|2
�2

|Em|2 (ρme + ρmh − 1) +Rsp +Rscat (2.49)

Finally, the result for the steady state of pm∗ given in Eq. (2.48) can be used to
calculate the macroscopic polarization Pm:

Pm(t) = μmZQDpm(t). (2.50)

Here ZQD denotes the number of quantum dots in the active medium, while
μm is, as before, the microscopic polarization of the transition. The macroscopic
polarization Pm is the dynamic variable that was missing in the description of the
electric field dynamics given in Eq. (2.29). When inserting, the electric field equation
is obtained as:

dEm

dt
=

iωΓ

2ε0εbg
Pm

=
ωΓT2νmZ

QD|μm|2
2ε0εbg�

Em (ρme + ρmh − 1)

=gEm (ρme + ρmh − 1) , (2.51)

where the prefactor g denotes the optical gain. However, this only models the
stimulated emission, and followingly the addiion of a spontaneous emission term
will be covered in the next section.

2.2.3. Modelling of Spontaneous Emission

For the carrier occupation probabilities ρme and ρmh , the loss by spontaneous re-
combination of electron-hole pairs can be modelled deterministically by using the
Einstein-coefficients for spontaneous emission Wm:

Rm
sp = −Wmρ

m
e ρ

m
h . (2.52)

Followingly, photons are emitted at the same rate. But not all photons that are
spontaneously emitted, are emitted in the right direction or polarization, so that
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many of them do not add to the number of photons Nph in the lasing mode. Only
the fraction β [HAK86] is emitted to further the lasing process, therefore Eq. (2.52)
has to be modified accordingly for calculating the spontaneous emission contribution
∂tN

ph,m
sp to the photon number:

∂tN
ph,m
sp = νmβZ

QDWmρ
m
e ρ

m
h . (2.53)

Here, ZQD denotes the number of quantum dots that are emitting and νm is
the degeneracy of the level m. The rate of photon creation in Eq. (2.53) now has
to be converted into electric field amplitude change. This is done by assuming
energy conservation, for which the conversion between photons Nph and electric
field amplitude E is given by:

Vmode

2
ε0εbg∂t|Esp|2 = �ω∂tN

ph
sp , (2.54)

where Vmode denotes the spatial extent of the electric field mode:

Vmode =
Ahal
Γ

, (2.55)

and A is the in-plane area of the active medium, e.g. the quantum dot layer, h
is the height of one active medium layer, al is the number of layers and Γ is the
confinement factor.
Accordingly, the change of energy in the mode has to be the same for both photons

and electric field, so that:

∂tN
ph,m
sp = βνmWmρ

m
e ρ

m
h =

Vmodeε0εbg
2�ω

∂t|Esp|2, (2.56)

where Eq. (2.53) was used. This can now be reshuffled to yield an expression for
∂t|Esp|2:

∂t|Esp|2 = νmβZ
QDWGSη

2
GSρ

GS
e ρGS

h , (2.57)

describing the time evolution due to spontaneous emission of the amplitude square
|Esp|2, where η2m is the conversion factor between electric field amplitude and photon
number Nph, which is given by:

η2m =
(2�ωm)

(Vmodeεbgε0)
. (2.58)

In a last step, the derivative for the intensity ∂t|E|2 has to be converted into
electric field amplitude change [FLU07]:
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∂tE =
E

2|E|2∂t|E|2 (2.59)

Thus, the resulting spontaneous emission term is:

∂tEsp = βZQDWGSη
2
GSρ

GS
e ρGS

h

EGS

|EGS|2 . (2.60)

This can now be added to the field equation of Eq. (2.51). The complete set of
rate equations will be presented in the next section.

2.3. Model of a Quantum Dot Laser

2.3.1. Dynamical Equations

After the full matter and electric field equations have been derived in the previous
section, their final form shall be presented here. Although there exists a wide variety
of more complex modelling approaches [CHO13], e.g. taking the k-distribution of
carriers in the QW-reservoir into account [LIN11b], previous studies [LIN10] have
shown that a simple rate equation approach is sufficient for the scope of this work.
The numerical model used is based on previous works [MAJ11, LIN13, LIN14]. It
includes the ground state (GS) and excited state (ES) variables for the electric field
Em, electron ρme and hole occupation probability ρmh , with m ∈ {GS,ES}. The
reservoir carrier densities we and wh for holes and electrons are modelled as well.
In addition to the semiclassical laser equations derived from light-matter inter-

action of the previous section, some phenomenological terms have been added to
account for additional processes, e.g. spontaneous emission, which will be explained
in the following.
First, another feature of QDs must be taken into account: As of today no set

of self-assembled QDs consists of identically shaped and sized QDs. Due to the
nature of the growth process they exhibit a stochastic distribution of sizes, which
in turn changes their confinements and spectral parameters [BIM08a]. This can be
measured as a broadening of the collective spectrum, referred to as ’inhomogeneous
broadening’ (see Fig. 2.7), as compared to the natural linewidth of a single quantum
dot (called ’homogeneous broadening’). Yet, only the spectral fraction of QDs with

Table 1: Dynamical variables of the numerical model

Symbol Values Meaning

E [GS,ES] ∈ C Slowly varying electric field amplitude for GS/ES

ρ
[ES,GS]
[e,h] 0.0− 1.0 ES/GS electron/hole occupation probability for active QDs

ρ
[ES,GS]
[e,h],inact 0.0− 1.0 ES/GS electron/hole occupation probability for inactive QDs

w[e,h] ≥ 0 Electron/hole 2D-density in reservoir
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spectrum of an ensemble of QDs.
Due to the self-assembled growth
process sizes and therefore transi-
tion energies are statistically dis-
tributed. To model the effect of
this, the ensemble is divided into
fact active QDs centered around
the main transition energy �ω and
f inact inactive QDs.

the highest density will end up lasing [BIM08a]. As a first and proven valid [LIN14]
approximation, the QDs are divided into a fraction of fact optically active and
1 − fact = finact optically inactive QDs (coloured parts in Fig. 2.7). Therefore, a
second set of occupations (ρme,inact and ρmh,inact) is included to account for optically
inactive QDs.
The resulting equations for the slowly varying electric field amplitude are:

d

dt
EGS =

[
gGS

(
ρGS
e + ρGS

h − 1
)− κ

]
EGS

+ βZQDfactWGSη
2
GSρ

GS
e ρGS

h

EGS

|EGS|2 , (2.61)

d

dt
EES =

[
gES

(
ρES
e + ρES

h − 1
)− κ

]
EES

+ βZQDfactWESη
2
ESρ

ES
e ρES

h

EES

|EES|2 . (2.62)

The first term accounts for the stimulated emission in accordance with the deriva-
tion in Sec. 2.1, where a decay term κEm was added, accounting for the continuous
loss of light intensity at the mirrors and by off-resonant absorption. The linear
optical gain g[GS,ES] and decay rate κ are measured in units of [1/ps]. The second
term deterministically models spontaneous emission. The number of QDs ZQD, the
Einstein-coefficient for spontaneous emission W[GS,ES] and the β-factor are without
unit. The β-factor is equal to the fraction of spontaneously emitted photons that
enter the lasing mode of the resonator, whereas the majority usually is lost.
The final form of the matter equations for the active quantum dots with b ∈ {e, h}

are:

d

dt
ρGS
b =− gGS

νGSZQDfact

(
ρGS
e + ρGS

h − 1
) |EGS|2

η2GS

−WGSρ
GS
e ρGS

h

+ SGS,cap
b,in

(
1− ρGS

b

)− SGS,cap
b,out

(
ρGS
b

)
+ Srel

b,in

(
1− ρGS

b

)
ρES
b − Srel

b,outρ
GS
b

(
1− ρES

b

)
, (2.63)
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d

dt
ρES
b =− gES

νESZQDfact

(
ρES
e + ρES

h − 1
) |EES|2

η2ES

−WESρ
ES
e ρES

h

+ SES,cap
b,in

(
1− ρES

b

)− SES,cap
b,out

(
ρES
b

)
− 1

2

[
Srel
b,in

(
1− ρGS

b

)
ρES
b − Srel

b,outρ
GS
b

(
1− ρES

b

)]
. (2.64)

Inactive QDs experience identical scattering rates, but lack any contribution by
stimulated emission. They still emit spontaneously, though most of their emission
light leaves the cavity quickly and is then lost:

d

dt
ρGS
b,inact =−WGSρ

GS
e,inactρ

GS
h,inact

+ SGS,cap
b,in

(
1− ρGS

b,inact

)− SGS,cap
GS,out

(
ρGS
b,inact

)
+
[
Srel
b,in

(
1− ρGS

b,inact

)
ρES
b,inact − Srel

b,outρ
GS
b,inact

(
1− ρES

b,inact

)]
, (2.65)

d

dt
ρES
b,inact =−WESρ

ES
e,inactρ

ES
h,inact

+ SES,cap
b,in

(
1− ρES

b,inact

)− SES,cap
b,out

(
ρES
b,inact

)
− 1

2

[
Srel
b,in

(
1− ρGS

b,inact

)
ρES
b,inact − Srel

b,outρ
GS
b,inact

(
1− ρES

b,inact

)]
. (2.66)

2D-reservoir variables we and wh are measured in units of [1/nm2] and count
charge carriers per area. The reservoir is filled with a constant influx of carriers by
the current density J and decays at a rate of RW

loss, which models all radiative and
non-radiative loss processes. The scattering processes are weighted according to the
area density of QDs NQD given and the degeneracy of the levels (2 for GS, 4 for
ES):

d

dt
wb =+ J −RW

losswewh (2.67)

− 2NQDfact
[
SGS,cap
b,in (1− ρGS

b )− SGS,cap
b,out (ρGS

b )
]

− 4NQDfact
[
SES,cap
b,in (1− ρES

b )− SES,cap
b,out (ρES

b )
]

− 2NQD(1− fact)
[
SGS,cap
b,in (1− ρGS

b,ia)− SGS,cap
b,out (ρGS

b,ia)
]

− 4NQD(1− fact)
[
SES,cap
b,in (1− ρES

b,ia)− SES,cap
b,out (ρES

b,ia)
]
,

(2.68)

For visualization, a sketch of the energy band structure and scattering processes
of the QD model is shown in Fig. 2.8. The energy spacing for electrons and holes is
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Figure 2.8: Sketch of the energy band struc-
ture, scattering processes and optical transi-
tion of the QD model. J denotes the pump
current, ρmb are occupation probabilities and
wb are the 2D-reservoir densities. There is
an asymmetric energy spacing for electrons
(e) and holes (h). The excited state (ES)
has a degeneracy of two. c©(2015) IEEE.
Reprinted, with permission, from [ROE14]

different, enabling asymmetric carrier dynamics. Injection current J only enters the
system in the 2D-reservoir densities wb. Recombination of GS electron-hole pairs
and ES electron-hole pairs are the two lasing transitions described by the numerical
model with EGS and EES. Spin degeneracy is generally suppressed, but the ES level
is assumed to be twice degenerate in comparison to the GS.

Table 2: Parameters for the QD model.

Symbol Value Meaning
�ωGS 0.952eV GS transition energy
�ωES 1.022eV ES transition energy
aL 15 number of QD layers
l 1mm device length
d 2.4μm device width
h 4nm height of one layer
Γ 0.05 confinement factor
εbg 14.2 background permittivity
ηGS 9.157× 10−7V/nm electric field conversion factor (GS)
ηES 9.51× 10−7V/nm electric field conversion factor (ES)

The optical transitions for the GS has an energy of �ωGS = 0.952 eV, while the
ES has �ωES = 1.012 eV. With the device assumed to have length l = 1 mm,
width d = 2.4 μm and 15 active layers of height h = 4 nm, the mode volume can
be calculated to Vmode = 2.88 × 10−15 m3 for a confinement factor Γ = 0.05. The
permittivity of GaAs is εbg = 14.2, so that the conversion factors between photon
number and electric field amplitude can be calculated. The results are given in
Tab. 2, together with the parameters used in the calculation.
Now only the scattering rates need to be described, as is done in the next section.
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2.3.2. Scattering Rates

Calculating the scattering rates for a semiconductor is a difficult task, as there are
many possible recombination and transition processes in a semiconductor[SCH89].
The scattering rates S used in this work were calculated by a microscopic approach in
previous works [MAL07, MAJ11, MAJ12]. The carrier-carrier interactions are mod-
elled by a Born-Markov approximation, while the phonon-scattering is neglected.
This leaves room for future improvements, as the phonon-assisted carrier capture
might be especially important when an extra ES is included. A typical nonlinear fit
of the scattering rates is given by:

SGS,cap
e,in =

(A1w
2
e + A2w

2
h)exp(C1we + C2wh)

1−B1wh/we +B2we +B3wh −B4w2
e +B5w2

h +B6wewh

. (2.69)

The constants Ai, Bi and Ci are given in App. A.1. The corresponding out-
scattering rate is calculated by the detailed balance condition: In thermal equilib-
rium, when in and out-scattering cancel each other, the occupation probabilities of
the participating energy levels ρ1 and ρ2 are given by the Fermi-distribution:

ρ1 =
1

exp(E1−EF

kbT
) + 1

, (2.70)

ρ2 =
1

exp(E2−EF

kbT
) + 1

, (2.71)

where E2 > E1 are the potential energy of the levels, T is the temperature, kB is
the Boltzmann-constant and EF is the Fermi-energy. The effective scattering terms
in Eq. (2.63) and Eq. (2.64) have to cancel each other:

Sin(1− ρ1)ρ2 = Sout(1− ρ2)ρ1. (2.72)

Inserting Eq. (2.71) and reshuffling yields the detailed balance condition in terms
of scattering amplitude:

Sout

Sin

=
(1− ρ1)ρ2
(1− ρ2)ρ1

=exp(−E2 − E1

kbT
), (2.73)

and hence:

Sout = Sinexp(−E2 − E1

kbT
) (2.74)
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So that only the energy difference E2 −E1 enters the detailed balance condition,
not the absolute energy. Out-scattering is faster for higher temperatures T and
smaller energy spacing, i.e. weaker confinement.
Furthermore, QDs of different sizes will later be investigated. To study them a size

scaling parameter r will be introduced and scattering rates are calculated for all of
the different QD ensembles. Because of computational limitations, only a linearised
fit of the microscopically calculated scattering rates is used. This linearised fit is
given in App. A.2. Detailed balance, on the other hand, is fully maintained.
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3. Modes of Operation of QD Lasers

3.1. Single Colour Laser

Before delving into the dual-colour or two-state lasing aspects of the QD laser model
introduced in the previous section, this section will shortly review the single-colour
dynamics of a QD laser. This is done by setting the ES gain gES = 0, so that only
GS lasing is achieved. Then, the ES simply acts as an intermediate reservoir for the
carriers.
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Figure 3.1: Light-current charac-
teristic for a single colour lasing QD
laser as simulated by the numerical
model introduced in section Sec. 2.3
with parameters as given in Tab. 3.
The vertical line marks the lasing
threshold JGS

th . After the onset GS
lasing intensity (red solid line), the
GS occupation ρGS

active = ρGS
e + ρGS

h

(green solid line) is clamped.

Figure 3.1 shows the light-current characteristic, i.e. the light intensity E2 versus
injection current J of such a device. The parameters used for numerical simulation
are derived from previous works [MAJ11, PAU12, LIN12a, LIN13] and are given in
Tab. 3. The resulting GS intensity (red line) exhibits a clear lasing threshold JGS

th ,
which is marked by the vertical line. This is similar to the results of the rate equation
approach presented in Sec. 2.1.3. Additionally, the green line in Fig. 3.1 denotes
the GS occupation of active dots ρGS

active = ρGS
e + ρGS

h . First, the occupation is rising
with injection current J , but then saturates for values above the lasing threshold
JGS
th . This is the already mentioned gain clamping and a fundamental feature of

lasing, caused by the interaction of carriers and electric field through stimulated
emission. Here, ρGS

active corresponds to the inversion D of the simple two-variable
model of Sec. 2.1.3.
The value of the inversion gain clamping can also be easily calculated by setting

the Eq. (2.61) for the time evolution of the GS electric field amplitude EGS to
zero. The spontaneous emission term can be neglected, due to its small contribution
during lasing operation, so that the following steady-state condition has to be solved:

0 =
[
gGS

(
ρGS
e + ρGS

h − 1
)− κ

]
EGS (3.1)

Obviously, there are at least two solutions for the set of dynamic variables ρGS
e ,

ρGS
h and EGS, similar to the simple rate equation model presented in Sec. 2.1.3: The

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7_3, © Springer Fachmedien Wiesbaden 2015
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Table 3: Parameters used in the calculations for the single colour laser.

Symbol Value Meaning
T 300K temperature
gGS 0.115ps−1 GS linear gain
gES 0.0ps−1 ES linear gain
κ 0.05ps−1 optical losses
β 2.2× 10−3 spontaneous emission factor

ZQD 1.5× 107 number of QDs
NQD 0.5× 103nm2 area density of QDs
fact 0.366 fraction of active dots
WGS 4.4× 10−4ps−1 GS spontaneous emission rate
WES 5.5× 10−4ps−1 ES spontaneous emission rate
RW

loss 0.09nm2ps−1 QW loss rate
ηGS 9.157× 10−7V/nm electric field conversion factor (GS)
ηES 9.51× 10−7V/nm electric field conversion factor (ES)

trivial off -state for EGS = 0 and a second solution if the term in brackets equals
zero:

0 =
[
gGS

(
ρGS
e + ρGS

h − 1
)− κ

]
ρGS
e + ρGS

h =
κ

gGS

+ 1. (3.2)

This is also the solution, which allows a non-zero electric field amplitude EGS and
therefore corresponds to the lasing state or on-state. With the use of the active
dot inversion definition ρGS

active = ρGS
e + ρGS

h and the parameters in Tab. 3, the gain
clamping can be calculated to lead to a saturation of inversion for ρGS

active � 1.43
for the single colour laser modelled in this section. This result is confirmed by the
steady state inversion above threshold in Fig. 3.1, where this value is reached.
Equation (3.2) for the gain clamping will be used several times throughout this

work, so a closer look to some of its implications will be discussed here. First, it is
obvious that the ratio of κ to gGS can reach a wide variety of values, e.g. κ/gGS � 0
and κ/gGS � 10 are both obtainable through choice of mirror and gain properties.
However, the inversion ρGS

active never falls below zero or goes beyond two, as it is the
sum of two occupation probabilities ρGS

active = ρGS
e + ρGS

h . So for optical loss rates
greater than the linear GS gain κ/gGS > 1, the on-state is never reached. This
corresponds to a laser with too low gain or too high losses, so that no continuous
wave operation is possible. Conversely, for high-quality cavities with low κ, lasing
is reached as soon as the inversion equals one.
Second, even though the inversion ρGS

active is clamped to a certain value, the indi-
vidual contributions of ρGS

e and ρGS
h can vary, i.e. the ratio of electrons and holes is

not determined. This is a feature of the non-excitonic approach taken in this work
and will be of importance later.
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Figure 3.2: Turn-on time series for
the single colour laser for J = 1 ·
10−5enm−2ps−1 � 2JGS

th . Param-
eters are given in Tab. 3. The
GS inversion ρGS

active = ρGS
e + ρGS

h

(green line) starts to rise almost
instantaneously, while GS intensity
|EGS |2 (red line) exhibits a turn-on
delay. Also visible are the highly
damped relaxation oscillations and
the steady state value for ρGS

active �
1.43.

Figure 3.2 shows a turn-on time series of the single colour laser. The parameters
were as given in Tab. 3 with J = 1 · 10−5enm−2ps−1, which is roughly 2JGS

th as can
be seen in Fig. 3.1. After the inversion (green line) rises for the first 1.5 ns, the GS
lasing intensity |EGS|2 (red line) also turns on. This delay is caused by the reliance
on stimulated emission, so that the intensity can only rise after the inversion reaches
the gain clamping threshold value (see Eq.(3.2)). In comparison to the turn-on of the
more simple two-variable rate equation system in Fig. 2.5 on page 13, the relaxation
oscillations are highly damped, as is generally the case for QD lasers [LUE09a].

3.2. Two-State Lasing

3.2.1. Experiments and Interpretation

As mentioned in Sec. 1, in general lasing occurs by the recombination of electrons
and holes in the ground state (GS) of the QD, lying at the intersection of a p-n
junction. When the recombination is of charge carriers in excited state (ES) lev-
els, lasing occurs at lower wavelengths [LUE12]. Simultaneous ES and GS lasing,
called two-state lasing, is also possible [GRU97] and has been experimentally ob-
served [MAR03a, SUG05b] for different QD materials (see Fig. 3 in [MAR03a]).
Furthermore, lasing of the second excited state has been observed experimentally in
three-state lasing devices(see Fig. 2 in [ZHA10a]).
The existence of two-state lasing devices is a proof of the finite time carrier dynam-

ics and an incomplete gain clamping [MAR03c]. These finite time carrier processes
are a special attribute of QDs and usually considered a disadvantage [BIM08a]. To
understand the significance of this incomplete gain clamping, one has to first take a
closer look at gain clamping in multi-level systems.
When the GS starts lasing, its carriers become clamped according to the gain

clamping condition as introduced in the previous section:
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ρGS
e + ρGS

h =
κ

gGS

+ 1. (3.3)

If one now assumes that the additional energetic levels in the system are linked
to this optically active GS by fast scattering processes, as is the case in a QW laser,
both the ES occupations ρES

b and reservoir densities wb will be determined by a
Fermi distribution corresponding to the gain clamped GS occupation. Followingly,
the ES will be less occupied than the GS, and the reservoir will be even emptier.
Any further increase of the carrier input, e.g. by raising the pump current J , will be
instantly redistributed throughout all levels. But the GS inversion cannot increase
further as any additional carriers added will be converted into GS lasing light and
the other populations are linked to this clamped GS inversions, so that in the end
no carrier population can rise. For fast scattering rates, the carrier population as a
whole is gain clamped.
However, if one includes a scattering rate that is slow, as is the case for a QD, the

situation changes. As the carriers are injected into the QW and only the GS level
is clamped, they accumulate in the ES and reservoir. This is of course dependent
on the pump current J , but the ES can reach a sufficient inversion for lasing if
enough carriers are injected. ES and reservoir dynamics are still subject to further
dynamics, even after the onset of GS lasing. Thus, in this case the carrier population
as a whole is not gain clamped.
Hence, a simultaneous emission on two different emission lines would be impossible

to achieve for quasi-instantaneous equilibration of carrier populations, as is the case
for QW lasers, so that the appearance of a second lasing line in the experiments is
a clear indicator for the finite-time scattering processes. It especially reveals that
ES occupations cannot be inferred from GS occupations, as the former is increasing
despite the latter being gain clamped. This is important to keep in mind, as in the
scope of this work it will later be shown that the reverse is possible.

3.2.2. Numerical Simulations

To verify these claims the numerical QD laser model of Sec. 2.3 is used for the
simulation of two-state lasing. Figure 3.3 shows the light-current characteristic of a
two-state laser for the parameters as given in Tab. 4. After the appearance of the GS
emission (red line) for the GS threshold current JGS

th , the ES also begins lasing (blue
dotted line). The GS occupation ρGS

active = ρGS
e +ρGS

h is clamped after the onset of GS
lasing, as can be seen by the horizontal course of the green solid line. However, the
microscopically calculated scattering rates used lead to an incomplete gain clamping
for the rest of the system. Therefore, ES occupation ρES

active = ρES
e +ρES

h (green dotted
line) is still increasing for increasing J and subsequently reaches sufficient levels to
facilitate ES lasing.
This is in very good agreement with the explanation given by Markus et. al.

(2003) of ’incomplete gain clamping’ and the LI-curve looks sufficiently similar to
be satisfactory. Now, however, as is only possible in numerical simulation, the
opposite shall also be investigated. Fig. 3.4 shows a simulation with the same
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Table 4: Parameters used in the calculations unless noted otherwise.

Symbol Value Meaning
T 300K temperature
gGS 0.115ps−1 GS linear gain
gES 0.23ps−1 ES linear gain
κ 0.05ps−1 optical losses

ΔEe 50meV ES-GS energy gap for electrons
ΔEh 20meV ES-GS energy gap for holes
β 2.2× 10−3 spontaneous emission factor

ZQD 1.5× 107 number of QDs
NQD 0.5× 103nm2 area density of QDs
fact 0.366 fraction of active dots
WGS 4.4× 10−4ps−1 GS spontaneous emission rate
WES 5.5× 10−4ps−1 ES spontaneous emission rate
RW

loss 0.09nm2ps−1 QW loss rate
ηGS 9.157× 10−7V/nm electric field conversion factor (GS)
ηES 9.51× 10−7V/nm electric field conversion factor (ES)
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Figure 3.3: Light-current charac-
teristic for a two-state lasing QD
laser as simulated by the numer-
ical model introduced in section
Sec. 2.3 with parameters as given
in Tab. 4. After the onset GS las-
ing intensity (red solid line), the
GS occupation ρGS

active = ρGS
e +ρGS

h

(green solid line) is clamped. Yet,
the ES occupation ρES

active (green
dashed line) is still rising, so that
ES lasing (blue solid line) appears
and two-state lasing is achieved.

parameters as Fig 3.3, but scattering rates increased by a factor of 100. The now
nearly instantaneous scattering suppresses any increase of the ES occupation ρES

active

(green dashed line) after the GS lasing threshold JGS
th and the system is fully gain

clamped. Hence, no ES lasing can appear.
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Figure 3.4: Light-Current Char-
acteristic for a two-state lasing QD
laser as simulated by the numer-
ical model introduced in section
Sec. 2.3 with parameters as given in
Tab. 4, but scattering rates speed
up by a factor of 100. After the
onset GS lasing intensity (red solid
line), the GS occupation ρGS

active =
ρGS
e + ρGS

h (green solid line) and
the ES occupation ρES

active (green
dashed line) are clamped. There-
fore no ES lasing appears and two-
state lasing is not achieved as the
system is fully gain clamped.

3.3. Ground State Quenching

3.3.1. Experiments and Description

In the first experimental measurement of two-state lasing by Markus et al. [MAR03a]
some of the devices exhibited a complete roll-over of GS intensity for increasing
currents (see Fig. 3 in [MAR03a], left panel or the schematic of Fig. 3.5). Since then
several experimental observations have been published (e.g. see Fig. 3 in [MAX13])
and have been the topic of a debate in the literature [KOR13a, GIO12]. This
paradoxical behaviour of a decreasing intensity for an increasing current has been
termed ’GS quenching’ and a description of its features known so far follows.
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Figure 3.5: Simulated light-current
characteristic for QDs exhibiting GS
quenching. The GS intensity starts to
decline after the onset of ES lasing,
while the slope of the overall inten-
sity stays roughly the same. c©(2015)
IEEE. Reprinted, with permission,
from [ROE14]

First, while two-state lasing has also been observed for InAs/InP QDs [VES07],
GS quenching is unique to self-assembled InAs/GaAs QDs as far as the author
knows. However, this is also caused by the small numbers of papers published on
this topic. From a pure performance perspective GS quenching might seem like a
defect, so some additional experimental observation might have been discarded or
not deemed publishable.
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Secondly, the principal course is always comparable: After the onset of ES lasing
at the ES lasing threshold JES

th the GS intensity starts to decrease, while the overall
intensity (GS + ES) increases further. The slope of the LI-curve is almost not
affected. This is an indicator that the numbers of QDs participating in lasing stays
constant throughout the entire current range. Otherwise an increase in the slope
could be expected, as the differential gain is higher when more QDs are used. For
the numerical model of this work introduced in Sec. 2.3 this means that the active
fraction fact of QDs (see Fig. 2.7) is composed of the same QDs in the GS and ES
spectral range, e.g. there are no purely ES lasing QDs.
Lastly, GS quenching is dependent on device length as already studied by Markus

et al. (see Fig. 3 in [MAR03a]). They found a critical length �, below which only
ES lasing was present, intermediate lengths with two-state lasing, and an increasing
threshold current for the ES lasing for larger devices. This has also been inde-
pendently confirmed in [CAO09] and [LEE11c] and the need of short cavities is also
mentioned in [VIK07a]. Furthermore, a study of lasing thresholds by Maximov et al.
[MAX13] has shown a background temperature and doping dependence.
Additional claims have been put forth, that GS quenching is absent in pulsed mode

[LEE11c], while others [JI10, VIK05] have observed a GS quenching even in pulsed
mode, though with increased thresholds. A further experimental investigation of
pulsed mode GS quenching is therefore required.

3.3.2. Mechanisms of Quenching in the Literature

Throughout the literature several attempts have been made to explain and model
this behaviour. They can be divided into three different approaches: self-heating,
increase of homogeneous broadening and electron-hole dynamics. This section will
introduce all three of them and compare them to available experimental evidence.
Self-heating, i.e. a pump-dependent T , was proposed by [MAR03c, JI10]. Due

to Joule heating the device will run at elevated temperatures in the active region,
while scattering processes may raise the temperature of the electron gas even further
and thus lead to a broadening of the Fermi-function of the equilibrium occupation
probability. This directly translates to faster out-scattering rates, caused by the
detailed balance condition (see Eq. 2.73). Because of its higher energy, the excited
state will usually be less occupied than the GS, but this difference will become less
pronounced and vanish in the limit of very high temperatures. Caused by its higher
degeneracy [LUE12], the ES gain gES is greater than the GS gain gGS. When both
levels have similar occupation numbers, the ES will therefore be the only state left
lasing. The GS occupation probabilities will be closely tied to the ES level, but
unable to reach sufficient inversion levels due to gain clamping.
This is in accordance with the observation in Ref. [LEE11c] that the GS does

not quench in pulsed mode, which the authors attributed to the lack of self-heating.
On the contrary, other sources report a GS quenching even while pulsing and either
refute the self-heating theory altogether [ZHU12a, VIK05] or extend it to the pulsed
regime as well [JI10]. Self-heating as the source of GS quenching is therefore still
controversial. Note, however, that self-heating should also lead to GS quenching in
InAs/InP-based two-state lasing QDs, where it has not been observed so far.
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The second mechanism was introduced by Sugawara et al. [SUG05b]. The
authors included the effects of a current dependent homogeneous broadening to
model a decrease of the maximum gain. Increasing the homogeneous broadening
leads to a decrease in the peak gain at the resonance frequency, thus for a high enough
broadening GS lasing becomes impossible. They could fit their experimental results
well, yet, as has already been pointed out [VIK05, GIO12, KOR13a], this effect may
not be as strong as was assumed by Sugawara et al. [SUG05b]. Additionally, this
effect should again also be applicable to InAs/InP-based QDs, where GS quenching
has not been observed [VES07, PLA05].
Lastly, Viktorov et al. focus on the different energy separation factors and different

transport time scales for holes and electrons [VIK05]. The asymmetric dynamics lead
to a competition for holes between GS and ES, and when hole occupation is low,
i.e. hole levels are depleted, the ES will win because of its higher degeneracy. The
same approach is also applied in the model of Gioannini [GIO12] and the analytical
solutions of Korenev et al. [KOR13, KOR13a].
This electron-hole asymmetry is highly dependent on the different energy spac-

ing and scattering dynamics for electrons and holes inside the QDs, but leads to GS
quenching when hole occupations are low. Thus, there must be a mechanism explain-
ing how the electron to hole fraction increases with pump current. GS quenching
can only appear if there was GS lasing to begin with. So there needs to exist a
transition to a state of hole depletion from a state where enough holes could be
supplied to facilitate GS lasing. Holes therefore have to get scarcer with increasing
pump current and cannot be scarce all the time. Other authors have either neglected
charge conservation [KOR13] and directly varied the capture rates to achieve this,
or added other energy levels for the holes to accumulate in outside of the lasing
states [GIO12].

Table 5: Numerical models used to study GS quenching. (SH = self-heating; HB = homoge-
neous broadening; EH = electron-hole asymmetry)

Author excitonic charge # of Quenching
conserv. subgroups mechanism

Markus et al. (2003) [MAR03c] Yes Yes 1 SH
Sugawara et al. (2005) [SUG05b] Yes Yes 801 HB
Viktorov et al. (2005) [VIK05] No No 1 EH
Kim et al. (2010) [KIM10f] No Yes Several SH+HB
Ji et al. (2010) [JI10] Yes Yes 1 SH
Gioannini (2012) [GIO12] No Yes 2 EH
Korenev et al. (2013) [KOR13a] No No 1 EH
This work [ROE14] No Yes 2 EH

Since GS quenching and the above mentioned mechanisms touch on central topics
like heating, energy spacings and homogeneous broadening, but are also, as will be
shown, influenced by scattering rates, they deserve to be studied more deeply. Even
after nearly two decades of QD research many fundamental questions are still open.
Understanding GS quenching is therefore helpful in constraining parameters and



36 3 Modes of Operation of QD Lasers

gaining deeper insight into the non-excitonic carrier dynamics.
Table 5 lists numerical simulations of GS quenching and their attributes. Note

that electron-hole asymmetry is not reproduceable with excitonic models.
Section 4.1 will present a novel analytical approach to study all of these mecha-

nisms in a unified framework. But for the numerical part, electron-hole asymmetry
is the mechanism leading to GS quenching in this work. This is due to the authors
firm believe, that it’s mainly the scattering dynamics and energy spacings that set
apart the InAs/InP and InAs/GaAs material systems. The theory for the homo-
geneous broadening increase has not seen any further theoretical development and
lacks a motivation from first principles, while self-heating is assumed to only play a
minor role in GS quenching.
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4. Understanding QD Laser Regimes of Operation

4.1. Analytical Approximations

4.1.1. Derivation

Understanding GS-quenching is made difficult, by the high dimensionality of the
system and the many experimentally not accessible variables. When described in a
non-excitonic picture, one needs to at least include four different carrier reservoirs
and two electric field amplitudes. Korenev et al. [KOR13a] have analytically solved
a somewhat reduced representation of this system, by assuming a common hole GS
level and neglecting charge conservation. They are able to derive GS-quenching
light-current characteristics by assuming that holes are less likely to enter the QD
than electrons. Yet they lack an explicit modelling of the current dependence.
The model used in the scope of this work contains six carrier levels and includes

microscopically motivated scattering rates, which allows the realistic modelling of
current dependent carrier dynamics. However, general analytical solutions, even
of the steady states, do not exist. Nonetheless, an analytical approximation shall
be derived in this section, which visualizes the different explanations given in the
previous section. A quantitative discussion of the order of magnitude of these effects
is also possible, once some general assumptions about the device are made.
The GS occupation will now be derived as the equilibrium occupation as given by

the ES occupations for vanishing stimulated emission. Assuming that the carriers
in the GS are mainly dominated by relaxation from the ES, all but these terms can
be neglected in the time evolution of Eq. (2.63):

d

dt
ρGS
b = Srel

in,bρ
ES
b

(
1− ρGS

b

)− Srel
out,bρ

GS
b

(
1− ρES

b

)
. (4.1)

This assumption is valid for the scattering rates as derived for self-assembled
InGaAs-QDs in [LIN13, LIN14] as used for this work, as direct capture into the
GS is slower than the cascade scattering from reservoir to ES and then into the GS.
However, this assumption is not obviously valid in general for other material systems.
Furthermore, a different electronic structure even if fabricated from InGaAs, e.g.
nanorods or asymmetric QDs, could also potentially invalidate this precondition.
Solving Eq. (4.1) for the steady state of d

dt
ρGS
b = 0 yields:

ρGS
b =

1

1 +
(

1
ρES
b

− 1
)

Srel
out,b

Srel
in,b

, (4.2)

The ratio of in to out scattering rates can be determined by the detailed balanced
relation of Eq. (2.73):

Srel
out,b

Srel
in,b

= e
−ΔEb

kbT , (4.3)

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7_4, © Springer Fachmedien Wiesbaden 2015



38 4 Understanding QD Laser Regimes of Operation

Here, ΔEb is the energy difference between GS and ES for b ∈ e, h. Hence, the
GS occupation is given by:

ρGS
b =

1

1 +
(

1
ρES
b

− 1
)
e
−ΔEb

kbT

, (4.4)

by which the system can be reduced to the excited state occupations ρES
b . Because

the stimulated emission terms of Eq. (2.73) have been neglected, Eq. (4.4) can yield
GS occupations that are above the GS gain clamping, which is unphysical. These
can be interpreted as GS lasing states, so that the gain clamping equation turns into
a threshold conditions and the lasing condition is therefore given by:

ρGS
e + ρGS

h − 1 ≥ κ

gGS

. (4.5)

After inserting the analytical approximation of Eq. (4.4) into Eq. (4.5) and reshuf-
fling, the lengthy equation

ρES
h ≥ (gGS + κ)

(
1− ρES

e

)
+ ρES

e κe
ΔEe
kbT

(gGS + κ) (1− ρES
e ) + (gGS − κ) ρES

e e
ΔEe+ΔEh

kbT + κρES
e

(
e

ΔEe
kbT + e

ΔEh
kbT

)
− κe

ΔEh
kbT

(4.6)

is obtained. This Eq. (4.6) expresses the lasing condition for the GS in terms
of ES occupations. It is only valid for steady states, when the GS reservoirs have
equilibrated with their ES counterparts. It only depends on a few key parameters:
Linear gain gGS, optical decay rate κ, energy spacing between levels ΔEb and ther-
mal energy kbT . Their influence and meaning shall be discussed in the following
section. By assuming that GS occupations can be inferred from ES occupations, the
dimensionality of the system was reduced.
Lastly, expressing the ES gain clamping in terms of ES occupations is trivial,

but enables the description of both ES and GS lasing thresholds in the plane of
ES occupation probabilities ρES

b . Hence, the ES is lasing if ES occupations reach
sufficient values:

ρES
e + ρES

h − 1 =
κ

gES

. (4.7)

4.1.2. Parameter Dependent Lasing Thresholds

Analytical expressions for both the ES gain clamping (Eq. (4.7)) and the GS lasing
threshold (Eq. (4.5)) have now been obtained. For the parameters as given in Tab. 6
they are plotted in Fig. 4.1. Here, the x-axis is the ES electron occupation probability
ρES
e , while the y-axis is ES hole occupation probability ρES

h . Yellow marks the
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Figure 4.1: ES gain clamping and
GS lasing regime vs. excited state
electron and hole occupations. When
the ES is lasing, the inversion is
clamped at ρES

e + ρES
h − 1 = κ/gES

(Eq. (4.7), black line). Calculating the
GS occupation probabilities through
instant quasi-equilibrium yields the
condition for GS lasing expressed in
terms of ES occupations (Eq. (4.5),
yellow area). The overlap of both cor-
responds to two-state lasing. Further-
more, low occupations lead to no las-
ing (white area). The ES occupation
can never exceed ES gain clamping,
hence the shaded area is inaccessible
as a steady state solution. Parameters
given in Tab. 6.

Table 6: Parameters used in the calculations of this section unless noted otherwise.

Symbol Value Meaning
T 300K temperature
gGS 0.115ps−1 GS linear gain
gES 0.23ps−1 ES linear gain
κ 0.05ps−1 optical losses

ΔEe 70meV ES-GS energy gap for electrons
ΔEh 10meV ES-GS energy gap for holes

region where Eq. (4.5) is fulfilled and GS lasing is apparent, from here on called the
’GS lasing regime’, whereas similarly the black line represents the limit of ES gain
clamping (Eq. (4.5)), denoted as ’ES lasing regime’.
Thus, when reservoir densities are not relevant and the light intensity for ES and

GS is only distinguished between lasing and non-lasing, the state of the system can
be entirely represented by a point in ρES-phase space. Generally, ES-occupations
can lie anywhere between zero and one, but are additionally bounded by the ES
gain-clamping line. The shaded area of Fig 4.1 is therefore inaccessible. The region
where the GS lasing regime and the ES lasing regime intersect, i.e. where the black
line lies inside the yellow area, two-state lasing is present.
However, despite this helpful visualisation of two-state lasing, current-dependent

steady states are not calculable in this semi-analytical approach. They have to be
calculated separately and can then be compared to the analytical approximations
and boundaries in the ρES

b -plane as later done in Sec. 4.2. But studying the extent
and parameter dependence of the different lasing regimes can nevertheless yield
valuable insights for the underlying mechanics of GS quenching.
Generally, Eq. (4.6) suggests that the position of the GS lasing regime and the

extent of the overlap region indicating two-state lasing can be changed by changing
the gain g or losses κ, the temperature T or the energy structure ΔEe/ΔEh. This
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is reflected in some of the GS quenching mechanisms already suggested in the lit-
erature, e.g. self-heating or gain suppression by homogeneous broadening increase,
but has not been discussed coherently. Therefore, a variety of parameter sets and
the implications for two-state lasing shall be discussed in this section.
For the set of parameters as taken in Fig. 4.1, there is an overlap of GS and ES-

lasing regimes. This ’two-state lasing regime’ marks the dual-emitting state of the
QD laser. Additionally, for low hole occupations, the ES gain clamping is outside the
GS lasing regime bounds and solitary ES lasing is apparent. If the current dependent
scattering dynamics of the laser lead to a transition from the two-state lasing regime
to the solitary ES lasing regime, a quenching of the GS can be observed.
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Figure 4.2: ES gain clamping and
GS-lasing regime vs. ES electron
and hole occupations for lower con-
finement ΔEe = 15meV and ΔEh

= 5meV (other parameters given in
Tab. 6). The ES gain clamping line
(Eq. (4.7), black line) lies entirely out-
side of the GS-lasing regime (Eq. (4.5),
yellow area). There is no overlap and
therefore no two-state lasing regime.

The two-state lasing regime can be entirely absent for different parameters, when
the GS lasing regime lies at too high ρES to facilitate GS lasing. Figure 4.2 shows
the analytical lasing regimes for lower electric confinement ΔEe = 15meV and ΔEh

= 5meV. Here, the GS lasing regime lies entirely in the inaccessible part above the
ES gain clamping line (shaded areas). This corresponds to a QD structure, where
charge carriers are easily escaping the GS and both confined states have similar
occupations. The ES will then be left lasing, because its higher degeneracy leads to
a larger optical gain. As can be seen, two-state lasing is impossible for such a device,
independent of the actual current-dependent dynamics, as the GS never turns on.
Consequently, increasing the confinement to ΔEh = 30meV will prevent any soli-

tary ES lasing. As seen in Fig. 4.3 the GS-lasing (yellow area) regime is covering
the entire extent of the ES gain clamping line (black), which means there is no
steady state of purely ES lasing. The system can and possibly will traverse the GS
lasing-regime for increasing currents and end up in a two-state lasing regime on the
gain clamping limit, but it has nowhere to go from there.
Note that the parameters given in Tab. 6 and the follow up examples all feature

significantly smaller energetic hole confinement ΔEh than electron confinement ΔEe.
On the one hand this is based on the microscopically calculated electronic structure
of real QD devices [SCH07f], but on the other hand this has emerged in the scope
of this analytical approach as a key feature of lasers exhibiting a GS-quenching
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Figure 4.3: ES gain clamping and
GS lasing regime vs. excited state
electron and hole occupations for
stronger hole confinement ΔEh =
30meV (other parameters given in
Tab. 6). No solitary ES-lasing
present, as the ES gain-clamping line
(black) lies entirely inside the GS-
lasing regime (yellow area).

behaviour. This is in accordance with the work of Viktorov et al. [VIK05], where
they proposed an asymmetry-based GS-quenching mechanism.
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in Tab. 6. c©(2015) IEEE. Reprinted,
with permission, from [ROE14]

The influence of this asymmetry is shown in Fig. 4.4. The electron confinement
ΔEe was changed from a symmetric case (dark red area) to an increasingly asym-
metric one. While for the symmetric case low electron occupations also lead to GS
quenching, only the hole depletion side retains solitary ES lasing for the asymmetric
energy structures (red, orange, yellow areas).
Next, reducing the depth of the confinement for both electrons and holes in

Eq. (4.6) is equivalent to increased increasing the temperatures. Figure 4.5 shows,
in accordance with the phenomenological explanation of carrier escape, that high
temperatures lead to a broader solitary ES lasing regime, until GS lasing becomes
altogether impossible (at 1030K, dark red area). Yet, the temperature differences
required to achieve a significant change in the analytical boundaries of the ρES-phase
space lie well outside of the experimentally feasible tens of Kelvins. The self-heating
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in Tab. 6. c©(2015) IEEE. Reprinted,
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mechanism, proposed in the literature to explain GS-quenching [MAR03c, JI10], is
therefore only a minor contributor in most cases. Every change in the electron-to-
hole ratio has a larger impact than realistic temperature differences. Nonetheless
self-heating can support the transition by widening the hole-depletion window for
GS-quenching.
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Lastly, the impact of the linear gain is shown in Fig. 4.6, where both the GS and
ES gain were multiplied with the same factor. This is equivalent to a decrease in the
optical losses κ (see Eq. (4.6)). Experimentally this corresponds to longer devices
or higher QD densities. The change of size for the GS-lasing regime and solitary
ES lasing regime is significant. While the low gain (gGS = 0.5gES = 0.07ps−1, red)
exhibits solitary ES lasing for a wide range of ES occupations, the high gain (gGS =
0.5gES = 0.25ps−1, orange) virtually suppresses the entire GS-quenching window in
the hole-depletion area. Yet despite a proposed gain decrease through homogeneous
broadening [SUG05b], which has been later questioned by follow up studies [GIO12,
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KOR13], the linear gain has to be treated as constant in our modelling approach.
Choosing a gain of the correct magnitude is obviously of high significance, if one
wants to facilitate two-state lasing, GS-quenching or solitary ES lasing. Yet, a
current dependent, variable gain will not be considered from here on.

0.0 0.2 0.4 0.6 0.8 1.0
ρES
e  (ES electron occupation) 

0.0

0.2

0.4

0.6

0.8

1.0

ρ
E
S

h
 (

E
S
 h

o
le

 o
c
c
u
p
a
ti

o
n
) 

hole depletion

GS lasing

no lasing

ES clamping (low gES)

ES clamping (medium gES)

ES clamping (high gES)

GS Lasing
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When the ES gain is treated as a free parameter, instead of being always the
double of the GS gain due to degeneracy, or if the ES and GS experience a different
cavity, e.g. through spectral coating [ARS14], the ES gain clamping line can be
easily moved relative to the GS-lasing regime. As seen in Fig. 4.7 high ES gain
(gES = 0.46ps−1, orange line) possesses a smaller two-state lasing regime and enables
solitary ES lasing, whereas this is absent for low ES gain (gES = 0.115ps−1, dark
red line). The intermediate gES = 0.23ps−1 is the reference gain assuming that
gES = 2gGS.
In summary, this semi-analytical approach allows to analyse the impact of param-

eter changes on the two-state lasing behaviour independent of the current-dependent
occupation dynamics. Assuming realistic QD electronic structures, the window for
GS-quenching is only present at low hole occupations. This is strong evidence that
hole-depletion for high currents is the dominating effect leading to GS quenching.
All other explanations as given in Sec. 3.3.1 play only a minor role.
The knowledge gained for choosing the right parameters will later be reflected in

Sec. 4.3, where varying optical losses κ, ES gain gES, electronic confinements and
temperatures T are investigated. These parametric studies are in good agreement
with the analytic results that high κ, γES and temperatures all favor solitary ES
lasing, whereas strong confinement leads to a broader GS-lasing regime.
When these analytical boundaries are combined with numerically calculated, cur-

rent dependent ES occupations ρES[J ], the steady states of the system can be traced
across the ρES-plane. This will be done at the end of the following Sec. 4.2.
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4.2. Numerical Simulation of GS Quenching

4.2.1. Modeling Approaches and Light-Current Characteristics

The numerical model introduced in Sec. 2.3 shall now be used to derive current-
dependent steady states. The parameters used are the same as in Sec. 3.2 in
Tab. 4. They were chosen based on previous works of Benjamin Lingnau [LIN14]
and Ref. [LUE09, LUE11a, LUE12]. However, with the scattering rates as derived
in Sec. 2.3.2, GS quenching is never reached. This can bee seen in the LI-curve of
Fig. 3.3 on page 32.
Three different modelling approaches corresponding to the three mechanisms ex-

plained in the literature in Sec. 3.3.1 will be applied to the numerical model: Homo-
geneous broadening, self-heating and hole depletion. From these three the homoge-
neous broadening induced decrease of the gain constants gGS and gES is the least
physically sound. With active and inactive dots already included in the model and
’spectral holeburning’ induced mechanics already approximated to a first order, any
further change of gain parameters seems arbitrary.
Nevertheless, for completeness a short reproduction of the findings of Sugawara

et al. [SUG05] shall be included. The gain of the GS and ES will be reduced with
increasing overall intensity, accounting for a further broadening of the spectral line
and an decreased overlap of QD ensemble and lasing wavelengths:

gm =
g0m

1 + ϕ(|EGS|2 + |EES|2) , (4.8)

with m ∈ {GS,ES} and g0m being the gain at zero intensity. The suppression
coefficient ϕ was set to 5 · 104[V/nm2]−1 to yield GS quenching. Fig. 4.8 shows
the resulting light-current characteristic. In agreement with expectations, the GS
quenching is observed. Reducing the gain is the most efficient way of suppressing
lasing activity, so the inclusion of an intensity-dependent gain will naturally lower
the GS gain until only ES lasing is stable. However, as neither the underlying
physical process nor the magnitude of the parameters can be satisfyingly deduced
from a first principle, an increase of homogeneous broadening will not be included
from here on.
Self-heating was included by increasing the out-scattering rates Sm,cap

b,out and SRel
b,out

according to the detailed balance condition:

Sout = Sine
−ΔEk

kbT , (4.9)

where ΔEk is the potential energy difference of the two energy levels involved in
the scattering process. The temperature itself was modelled to increase linearily
with pump current J , to account for the joule-heating of a device with constant
voltage applied [LUE12]:

T = 300K +DJ, (4.10)
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where the heating coefficient was chosen to be D = 35[K] · 104[e/nm2ps]−1. The
resulting GS-quenching light current characteristic is shown in Fig. 4.9. The tem-
perature (green) rises linearly with pump current J (x-axis), while the GS intensity
(red) starts to decline after the onset of ES lasing (blue). However, the temperature
at which GS quenching is occurring is T � 450K, which is higher than what most
devices are able to withstand.
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quenching caused by self-heating.
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elled to increase linearly with injection
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after the onset of ES lasing, while
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roughly the same. Parameters as
given in Tab. 4.

In favour of the self-heating hypothesis is the fact, that the carrier temperature
could potentially be higher than the surrounding device temperature, as the pump
current drives the system far away from thermal equilibrium. However, as already
mentioned in Sec. 3.3.1, this thermal evolution should not be unique to InAs/GaAs
QDs, but also be applicable to InP QDs, where GS quenching has not been observed.
This leads to the conclusion that self-heating is not playing a major role in the
appearance of solitary ES lasing and focuses the attention of this work on the third
mechanism mentioned.
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The electron-hole asymmetry leading to ’hole depletion’ as first mentioned by
Viktorov et al. [VIK05] shall now be reproduced. Subsequently, the scattering be-
haviour of our system was changed to achieve low hole densities by reducing the
hole capture scattering rates. SGS,cap

h,in and SES,cap
h,in were reduced to 5% of their mi-

croscopically calculated value. This is, of course, a great violation of the motivation
behind calculating scattering rates microscopically and can only be justified in two
ways: Either the real-world scattering rates still differ from the current microscopic
model due to some processes not being accounted for, e.g. non-parabolic wave-
functions [SCH07f] or Coulomb interaction of carriers, or the energy levels used as
initial preconditions for calculating the scattering dynamics are different from QDs
that exhibit GS quenching. Also, Gioannini (2012) [GIO12] has shown a convincing
alternative by introducing long transport times through an additional confinement
structure. Including more hole states for the modelling can also help, as then by
distributing the available charge carriers more evenly over the different states, the
occupation of a single state is reduced.
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Figure 4.10: Light-current charac-
teristic for self-assembled InAs/GaAs
QDs exhibiting GS quenching caused
by hole depletion. The GS inten-
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marked with vertical lines. Parame-
ters as given in Tab. 4, with micro-
scopically calculated scattering rates
as in App. A.1 with hole capture re-
duced to 5%. [Reference Param-
eter Set] c©(2015) IEEE. Reprinted,
with permission, from [ROE14]

Figure 4.10 shows the light-current characteristic for a hole-depletion induced GS
quenching. This will serve as a reference simulation from here on to further study the
hole-depletion mechanism in greater detail. As scattering rates and energy levels are
highly material sensitive, the process of hole depletion is arguably the only remaining
physical mechanism that sets different species of QDs apart. So, in accordance with
the findings of the most recent literature [GIO12, KOR13, KOR13a], electron-hole
asymmetry emerges as the major contributor for GS quenching. Therefore the rest
of this chapter shall be devoted to further studying the hole-depletion induced GS-
quenching mechanism.

4.2.2. Carrier Dynamics in GS Quenching

To further illustrate the driving mechanism between the transition of different lasing
states, Fig. 4.11 plots the GS and ES occupations corresponding to Fig. 4.10 versus
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pump current. Here only the densities of the active subensemble are shown, as they
are most relevant to the lasing behavior.
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Electron occupations (Fig. 4.10, top panel) are generally higher than hole occupa-
tions (Fig. 4.10, middle panel). This is caused by their higher electronic confinement
of 50 meV, as opposed to only 20 meV for holes, resulting in smaller escape rates
and higher equilibrium densities.
In the regime with no lasing (J < JGS

th ), all occupations increase with injection
current J . This is caused by the overall increase of carriers and the resulting filling
of states inside the reservoir, GS and ES. When GS lasing is reached at the GS
threshold current J = JGS

th , the GS inversion is clamped at ρGS
e + ρGS

h = κ/gGS + 1
and will henceforth be constant (green solid line, bottom panel). Up until this point,
the dynamics mirror a conventional laser reaching its threshold. Yet, as described
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in Sec. 3.2, there is no gain clamping of the ES by the GS occupations. Naturally,
when extra charge carriers are added, many of them end up getting consumed by
stimulated emission and increase the the GS lasing intensity above threshold (see
Fig. 4.10, red line). But due to the incomplete gain clamping, carriers will also start
to fill the ES (dashed lines).
This has already been mentioned as a requirement for two-state lasing; relaxation

processes must not be too fast, as otherwise the GS and ES occupations would
always be close to equilibrium and the ES would also be clamped [MAR03a]. The
system needs to be allowed to retain extra charge carriers in the ES, while the GS
is lasing. Two-state lasing is only possible because of the ES occupations increasing
despite the GS inversion being already clamped.
However, with the increased complexity introduced through the non-excitonic

nature of the numerical model, an additional detail starts to emerge: It is mainly the
electron occupation probability ρES

e that is rising, whereas hole occupations do not
increase inside the GS lasing regime. This can only be interpreted in one way: The
GS holes are clamping the ES holes, but the ES electron occupation ρES

e is largely
independent of the corresponding GS occupation ρGS

e . The extra holes added to the
system are accumulating in the well wh and the resulting increase in the scattering
SGS,cap
h,in which should increase hole occupations is completely overcompensated by

an increased carrier recombination through stimulated emission.
The incomplete gain clamping appears to be caused by the electrons in the system,

while the hole occupations are much more closely tied to each other due to the smaller
energy separation ΔEh < ΔEe. This is also in agreement with approaches applied
previously in the literature: The analytical approximations made by Viktorov et al.
[VIK05] and Korenev et al. [KOR13, KOR13a], who both combined the hole GS and
ES into a common level, virtually achieve the same outcome. The numerical findings
of this work also resemble the instant-equilibrium approach for hole-densities applied
by Gioannini (2012) [GIO12].
When ES lasing starts at the ES threshold current J = JES

th , gain clamping occurs
for it as well (green dashed line in Fig. 4.11, bottom panel). This would leave an
excitonic model with no further degrees of freedom for the system, but in the non-
excitonic picture of this work the fraction of electrons to holes can still change.
Due to the higher scattering induced input, electron densities in the ES are still
rising (dashed line, top panel). ES Gain clamping will then symmetrically lower
ES hole occupation (dashed line, center panel) as ρES

h + ρES
e = const. Due to the

equilibrating relaxation scattering processes, the GS is always bound to the ES and
must follow the increasing electron fraction. Therefore, GS electrons are also rising
while GS holes are decreasing (Fig. 4.11, middle and top panel, solid lines). This
is exactly the behaviour that was assumed in the derivation of the analytical lasing
boundaries of Sec. 4.1, namely that the GS occupations can be inferred from their
ES counterparts.
With the increasing ES electron occupation ρES

e rising and constantly forcing
the GS electron occupation ρGS

e to follow it, ρGS
e soon reaches values above 0.99.

Then, at the GS quenching threshold current (J = JGS
Q ) electron occupations in

the GS are virtually filled
(
ρGS
e � 1

)
and can no longer increase with rising J .
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Simultaneously, GS holes are still depleting to follow the ES trend. At this stage,
the quasi-equilibrium occupations of the GS will fall below the inversion needed to
sustain lasing and thus force the GS to quench. The quenching is aided by the high
Boltzmann-factor for the electrons, which enables the ES electrons to increase even
further.
For high pump currents only solitary ES lasing remains. Holes deplete even fur-

ther towards higher currents, but do not alter the lasing regime. Thus, the carrier
dynamics shown in Fig. 4.11 and explained in the paragraphs above nicely exemplify
the underlying mechanics of the inequality given in Eq. (4.6).
To conclude, there is not only ’hole depletion’ but also a ’saturation of electrons’

that leads to GS quenching. The GS has to compete with the excited state for
carriers, and can only do so by holes, because GS electrons are saturated.

4.2.3. Comparison with Analytical Approach

The reference simulation with light-current characteristic in Fig. 4.10 on page 46
and density dynamics shown in Fig. 4.11 will now be visualized in a third way,
by combining the numerical results with the analytical approximations derived in
Sec. 4.1. The analytical lasing boundaries of Eq. (4.7) and Eq. (4.6) will be displayed
with the numerically calculated, current dependent ES occupations ρES[J ] of the
reference simulation. The steady states of the system can then be traced across
the ρES-plane and the crossing of the analytical lasing regime boundaries should
correspond to a change of lasing state in the numerics.

Figure 4.12: Analytically derived
lasing regimes from Eq. (4.6) and nu-
merically obtained steady state occu-
pations ρES

e and ρGS
h for increasing

pump current J . Numerical results
are colored according to the different
lasing states. No lasing on the or-
ange part of the line, red represents
solitary GS lasing. When the ex-
cited state inversion is reached (black
dashed line), two-state lasing happens
on the dark red line and solitary ES
lasing on the blue line. Parameters as
in Tab. 4 on page 32, with microscop-
ically calculated scattering rates as in
App. A.1 with hole capture reduced
to 5%. [Reference Parameter Set]
c©(2015) IEEE. Reprinted, with per-
mission, from [ROE14]

The steady states of the reference simulation in the ρES
e -ρES

h phase-space are shown
in Fig. 4.12. Because the J-dimension is lost in this representation, the numerically
derived line is color-coded according to the different lasing states.
The orange part of the line is below threshold, and as expected the numerical

occupation probabilities lie outside of the analytical lasing regimes. Transition to
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GS lasing (red line) is then observed as soon as the border of the GS lasing regime
(yellow area) is crossed at J = JGS

th . When the necessary excited state inversion
is reached (black dashed line), the numerics will lead to two-state lasing (dark red
line) at J = JES

th , and the system is hence forced to stay on the inversion given
by the gain clamping. The fraction of electrons to holes is now the only degree of
freedom left. Due to the low hole capture rates Sm,cap

h,in , the system approaches hole

depletion and leaves the analytical GS lasing regime (yellow area) at J = JGS
Q . This

coincides with the transition to solitary ES lasing and GS quenching (cyan line) in
the numerical simulation.
The agreement between analytical and numerical results in Fig. 4.12 is good,

even though GS roll-over occurs for slightly lower hole occupations in the numerical
model (barely visible in the plot). This can be explained by the direct capture
processes from the surrounding carrier reservoir to the QD ground state, not taken
into account in the analytical part. The direct capture processes slightly extend the
GS lasing regime beyond the analytical approximations.

Figure 4.13: Analytical two-state
lasing regime and numerical simula-
tions of the steady states vs. ex-
cited state occupations for different
hole capture scattering rates (differ-
ent colours). Red are 0.5% hole cap-
ture rates, blue is our reference scat-
tering and the pink line denotes a five
times faster direct hole capture pro-
cess (which is still only 25% of the
microscopical scattering rates). Dif-
ferent regimes are crossed and las-
ing transitions differ accordingly. Pa-
rameters as in Tab. 4 on page 32.
c©(2015) IEEE. Reprinted, with per-
mission, from [ROE14]

The reason why hole capture rates had to be reduced to facilitate GS quenching
will now be shortly highlighted, by changing the hole-capture rates and plotting the
resulting J-dependant steady states in the ρES

e -ρES
h phase-space. As simulated in

Sec. 3.2 for Fig. 3.3, with faster hole scattering rates GS quenching is absent as hole
depletion is never reached. This is caused by the steady states moving to higher ρES

h

and into the stable two-state lasing regime. To illustrate this, Fig. 4.13 displays the
results shown in Fig. 4.12 (cyan line) together with numerical simulations for slower
(red line) and higher (pink) hole capture rates.
For the very slow hole capture process (red line), the hole occupations are sup-

pressed so strongly that the GS lasing regime is never crossed. Consequently, the
corresponding light-current characteristic then exhibits no GS lasing. This ES only
lasing is similar to a high loss scenario, where light-current characteristics lack the
GS transition as well. On the other hand, when hole capture rates are high (Fig. 4.13,
pink line) - but still smaller than electron capture rates - the GS will never quench,
as the electron-hole ratio shrinks with increasing currents. The two-state lasing state
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is stable for all pump currents and GS lasing intensity will even increase after the
ES switch-on.
Looking at Fig. 4.13, one might ask the question for which magnitude of hole

in-scattering the hole fraction starts to reduce after the onset of two-state lasing.
Somewhere between the ’fast hole capture’ (pink) and ’reference hole capture’ (cyan)
should lie a critical scattering rate, which leads to a constant electron-to-hole frac-
tion. The derivation of this point could then possibly lead to some mathematical con-
dition between hole and electron scattering rates, if hole depletion is to be reached.
However, this was not achieved in the time of this work and it must therefore be
left for future investigations.
Overall the analytical approximation has shown itself to be very robust, owing to

the large difference between relaxation scattering and GS capture scattering magni-
tudes. This leads to a close tying of GS occupations to their ES counterparts, while
simultaneously the ES is able to avoid gain clamping by being exposed to the much
larger ES capture rates.

4.2.4. Turn-On Dynamics

Figure 4.14: Electric field intensity
turn on curves for ground and excited
state lasing. Even for currents be-
low the ES threshold (b), the ES is
lasing during turn-on transient, but
switches off again. During two-state
lasing (c), GS is slower to converge
as the ES levels fill up faster. For
currents higher than the GS quench-
ing threshold (d) GS lasing is shortly
visible during relaxation oscillations.
Parameters as given in Tab. 4, with
microscopically calculated scattering
rates as in App. A.1 with hole capture
reduced to 5%. [Reference Param-
eter Set] c©(2015) IEEE. Reprinted,
with permission, from [ROE14]

So far the time evolution of the electric field amplitude in the two optical modes
(GS and ES) was not addressed. In this section the turn-on dynamics of the reference
simulation shall be discussed for the different lasing regimes (see Fig. 4.10 for steady
states). Quantum dot lasers exhibit strongly damped relaxation oscillations, as
visible in Fig. 4.14 (a) for the GS turn-on inside the GS lasing regime.
However, during turn-on both optical transitions of GS and ES can be visible,

even if the corresponding steady states are outside of the two-state lasing regime.
As seen in Fig. 4.14 (b), ES lasing occurs temporarily for currents lower than the
ES lasing threshold. Accordingly, GS lasing takes longer to increase. This is due to
faster scattering into the ES levels, as well as due to the resulting slowly building
up of the GS inversion clamping.
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The turn-on delays of ES and GS can be analytically approximated from the
effective carrier lifetime of the level and the modal gain [SOK12]. For our scattering
rates and set of parameters the turn-on delay is equal for both ES and GS, so that
both turn on synchronously. Note that the correlation of the relaxation oscillations,
e.g. peaks coinciding in Fig. 4.14 for both lasing transitions, is caused by the fast
relaxation from ES to GS. Overall, the shape and timing of the simulation is in good
agreement with the experimental measurements of Ref. [DRZ10].
Inside the two-state-lasing regime at J = 1.15JES

th , the ES is again starting to lase
earlier (Fig. 4.14 (c)). Ground state lasing is also visible for currents greater than the
quenching threshold (Fig. 4.14 (d)). During turn-on oscillations, ES and quantum
well occupations will be higher than in the eventual steady state. This allows the
GS to be filled above its threshold and the transition is visible for several ns. In an
experimental setup this might be useful in finding a current range that is closest to
achieving two-state lasing, e.g. if ES lasing can only be started via external injection
or by introducing an additional feedback loop.
Strikingly, the overall intensity (black line (a)-(d)) converges significantly faster

than the individual contributions of GS and ES. Due to the time constraints of this
work the exact cause of this has not been found so far. However, from a purely
dynamical standpoint it is clear to say, that within the high-dimensional phase-
space of laser operation the system is highly damped transversal to the plane of
|EGS|2 + |EES|2 = const. But within this plane of constant overall-intensity the
convergence is much slower and the real-part of the corresponding eigenvalues is
supposedly closer to zero.
However, this explanation is lacking a physical mechanism explaining and quan-

tifying the important damping factors. One might formulate the hypothesis, that
charge carrier conservation forces the system to adjust its overall lasing-output to
the incoming electron and hole flux on relatively short time scales. This would
suggest that the damping of the overall relaxation is related to the traditional re-
laxation oscillation damping of single-state lasers, so that the usual calculus should
be applicable. Simultaneously, the competition between modes is, arguably, linked
to the difference of some ’effective gain’. Furthermore this behaviour is comparable
with the turn-on dynamics of multi-mode lasers [DOK12] and is likely caused by a
mechanism similar to that.

4.3. Lasing Regimes In Parameter Space

4.3.1. QD size and optical losses dependence

Inspired by the analytic results and the crucial role of the energy separations a sys-
tematic scan of the parameter space seems prudent. At first, the band structure will
be continuously scaled. To do that, a linear scaling factor r is introduced. Energy
spacing between levels are multiplied with r and new scattering rates are calculated
for the resulting energy structure (see also App. A.2). Lower r corresponds to a more
shallow energy structure, higher r for deeper QD levels (keeping the asymmetry).
By looking at different steady states as a function of r, a qualitative picture for the
two-state lasing behaviour of QD lasers with different sizes can be obtained.
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Secondly, the optical losses κ are also varied, while keeping gES = 2gGS = 0.23ps−1

for the moment. For a better comparison with experimental findings, these optical
losses can be converted into cavity lengths � via the relation [LUE08]:

2κ = (2κint − ln r1r2
2�

)
c√
εbg

(4.11)

Where � is the cavity length, r1, r2 are the facet reflection coefficients (r1 = r2 =
0.32 for a GaAs-air surface), c is the speed of light and εbg = 14.2 is the background
permittivity in the cavity. Internal losses of κint = 110m−1 in accordance with
Ref. [LUE08] were used. This formula is only valid for the Fabry-Perot type edge-
emitting lasers used in this work.
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Figure 4.15: Lasing regime for GS
(orange) and ES (blue) versus pump
currents and confinement scaling fac-
tor r (a) and optical losses κ (b)
obtained by numerical simulation.
The two-state lasing is visible (cross
hatched area). The reference las-
ing intensities for size r = 1 and
κ = 0.05ps−1 are seen in Fig. 4.10.
GS quenching is only observed for
some sizes r, others exhibit only ES
lasing (shallow dots), no ES lasing
(deep dots) or only a saturation of
the GS intensity. Also visible is the
decreased lasing threshold for lower
losses. Parameters not varied here
are given in Tab. 4, with microscop-
ically calculated scattering rates as in
App. A.2 with hole capture reduced to
5%. c©(2015) IEEE. Reprinted, with
permission, from [ROE14]

Fig. 4.15 (a) shows the lasing regimes for GS and ES for different QD confinement
and pump current. The parameters corresponding to the reference light curve of
Fig. 4.10 are marked by the white dashed line in the parameter-plots. White areas
correspond to no active lasing, while orange areas exhibit GS lasing and blue areas
ES lasing. The two lasing modes are also hatched differently, and their overlay is
visible as a mixing of colours and the overlap of the hatching schemes.
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As seen in Fig. 4.15 (a), for greater energy separation, e.g. higher r, no GS
quenching will be observed and ES lasing might not even start. This is due to the
high confinement leading to lower ES occupations, as the GS is energetically more
favourable. On the other hand, smaller energy spacing suppresses GS lasing and
enhances ES filling. As the ES has a higher gain, it will always dominate when
occupations of ground and excited state levels are similar. Hence the lower regions
of Fig. 4.15 (a) display pure ES lasing.
Figure 4.15 (b) shows the variation of optical losses κ. The white dashed line

again denotes the reference of Fig. 4.10 for κ = 0.05ps−1. As expected from the
analytic results shown in Fig. 4.6, the lasing threshold increases for higher losses,
e.g. shorter cavities, while the onset of two-state lasing decreases for higher losses.
Above a certain loss value κ � 0.06ps−1, only ES lasing can be observed, as the
GS gain gets too weak to counter the optical losses. This corresponds to the parts
of Fig. 4.6, where the GS lasing regime recedes further for lower gain, until only
solitary ES lasing is observed. Contrastingly, for low losses (long cavities), the
overlap between ES and GS lasing regime is so large, that the electron-hole ratio
never surpasses the critical value necessary for GS quenching. Followingly the upper
regions of Fig. 4.15 (b) exhibit stable two-state lasing.
As discussed in Sec. 3.3.1, this is in agreement with the experimental findings of

Ref. [MAR03a]. Long cavities have lower losses κ (see second y-axis in Fig. 4.15
(b)). They found a critical length �, below which only ES lasing was present, in-
termediate lengths with two-state lasing and an increasing threshold current for
the ES lasing for larger devices. This has also been independently confirmed in
Ref. [CAO09] and Ref. [LEE11c] and the need of short cavities is also mentioned
in Ref. [VIK07a]. This is nicely reproduced by the parameter studies of Fig. 4.15.
Additionally, Ref. [MAX13] shows the GS and ES threshold currents versus cavity
lengths as measured by Maximov et al. and this also exhibits a good agreement
with the numerical findings of this work. Higher cavity lengths favour GS lasing
and below a certain critical length, only ES lasing is present.

4.3.2. Influence of Doping

Doping has been shown to influence two-state-lasing behaviour [MAX13] and lasing
thresholds [TON06]. This will now be investigated further with the numerical model
and be compared to the undoped case.
Dopings within this work have been simulated with 10 extra charge carriers per

QD. Charge conservation is now maintained with an offset, accounting for the extra
electrons or holes added by doping [LUE10, KOR10]. Increased intrinsic losses RW

loss

for the QW or photons κint were not used, even though they could be introduced by
the higher defect rate in doped materials. Yet the focus shall be set on the charge
carrier dynamics, and not be complicated by changing more than one parameter at
a time.
When comparing the lasing regimes of Fig. 4.16 to the undoped Fig. 4.15, n-

doping increases the lasing threshold. This is in accordance with previous theoretical
results [TON06] and can be explained by the different hole and electron dynamics.
As seen in Fig. 4.11, electron states are always fuller than their hole counterpart. So
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Figure 4.16: Lasing regime for GS (orange)
and ES (blue) versus pump currents J and
confinement scaling factor r (a) and optical
losses κ (b) for n-doped QDs. The two-state
lasing is visible (cross hatched). The n-doped
QDs show a higher lasing threshold as com-
pared to undoped (Fig. 4.15) and a smaller
two-state lasing regime. Solitary ES lasing is
more common, as the high electron to hole
ratio needed for GS suppression is already
intrinsically present. Parameters as given in
Tab. 4, with microscopically calculated scat-
tering rates as in App. A.2 with hole capture
reduced to 5%. c©(2015) IEEE. Reprinted,
with permission, from [ROE14]
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Figure 4.17: Lasing regime for GS (orange)
and ES (blue) versus pump currents J and
confinement scaling factor r (a) and opti-
cal losses κ (b) for p-doped QDs. The two-
state lasing is visible (cross hatched). The
p-doped QDs exhibit a lower lasing thresh-
old as compared to undoped QDs (Fig. 4.15)
and a broader two-state lasing regime. GS
lasing is enhanced and the ES lasing thresh-
old is higher. Parameters not varied here are
given in Tab. 4, with microscopically calcu-
lated scattering rates as in App. A.2 with
hole capture reduced to 5%. c©(2015) IEEE.
Reprinted, with permission, from [ROE14]

naturally, adding more electrons does not significantly increase occupations in the
QD, but mostly in the well we. This leads to higher non-radiative loss processes,
which always also remove a hole from the system. Therefore, n-doping increases
losses without aiding lasing, which leads to an overall increase in the lasing threshold.
Somewhat counterintuitively, GS quenching is observed for a smaller range of

parameters. On first thought, one could suspect that the additional electrons in-
troduced by n-doping are aiding the hole-depletion process. So a broader range of
GS quenching could be expected. That this is not the case in Fig. 4.16 can be ex-
plained by the broader ES lasing regime. In general, doping becomes less important
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for high pump currents J , so that n-doped and undoped will converge to similar
electron-hole ratios far above lasing threshold. This is reflected by the fact that the
high -current right-hand sides of the n-doped Fig. 4.16 and the undoped Fig. 4.15
look the same. On the other hand, n-doping significantly influences the low current
dynamics. The n-doped samples already start with more electrons than holes and
will then start to lase directly in the ES, with no intermediate two-state lasing. GS
quenching is therefore not observed, because the GS already starts suppressed for a
broader parameter range.
Oppositely, adding additional holes via p-doping (Fig. 4.17) leads to a smaller

lasing threshold. Most holes that are intrinsically present will relax into the QD
GS and aid the onset of GS emission. As opposed to electron occupations, hole
occupations are far from saturation, so adding additional holes fills the GS faster.
P-doping also leads to higher GS output power and broader GS lasing regime. Op-

posite to the effects of n-doping, initial GS lasing and subsequent two-state lasing
is observed for a greater parameter range. This is once again caused by the doping-
carriers dominating the low-current region, where additional holes facilitate GS las-
ing. Subsequently, the steady state solutions converge to the undoped-cases when
injected carriers start to outweigh the doping carriers for high injection currents
J . Followingly, GS quenching is observed for a broad parameter range. P-doping
therefore enhances GS quenching.
The reduction of the GS lasing threshold by p-doping has also been theoretically

predicted by Ref. [JIN08] for some parameter sets. On the contrary, the experiments
of Ref. [ALE07] and [MIK05] show an increase of the lasing threshold for p-doping,
but this is attributed to the increased optical losses, so that the results of the
numerical simulation are confirmed by real world QD behaviour.

4.3.3. Temperature and ES gain dependence

Furthermore, the background temperature T and ES gain gES are also parametrically
studied. Here the degeneracy caused restriction of gES = 2gGS used so far is lifted
and the ES gain is treated as an independent parameter. On a microscopic level this
can compensate the effects of different electric dipole moments for the two possible
optical transitions and, on the other hand, can also model the scenario of different
mirror reflectivities for the GS and ES wavelengths.
The temperature enters the numerical simulations via the detailed balance condi-

tion, modifying the Fermi-function and hence the difference of in- and out-scattering.
A higher temperature will lead to a broader Fermi-distribution and therefore equalise
the GS and ES occupations, while a lower temperature leads to a concentration of
carriers in the GS. Also, there is no self-heating included in these simulations. Tem-
perature changes of more than 50 K would also significantly change the scattering
behaviour of the in-scattering rates, The ES gain variation directly influences the
ES lasing threshold, but has otherwise no direct effect on the system.
Figure 4.18 (a) shows the lasing intensities for GS (orange) and ES (blue) versus

pump current and background temperature for undoped QDs. In contrast to the
cavity length and QD size plots, the transition from two-state lasing to solitary ES
lasing is less pronounced in the temperature plots. Especially in the lower tempera-
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Figure 4.18: Lasing regime for GS
(orange) and ES (blue) versus pump
currents J and temperature T (upper
panel) and ES gain gES . The ES gain
was treated as an independent param-
eter, so that at gES = 0.115ps−1 (low-
est limit of (b)) it is equal to the GS
gain gGS . The reference lasing inten-
sities for size T = 300K and gES =
0.23ps−1 are seen in Fig. 4.10. GS
quenching is only observed for some
temperatures and gains, others exhibit
only ES lasing (high ES gain), no ES
lasing (low ES gain) or only a satura-
tion of the GS intensity (lower tem-
peratures). Also visible is the de-
creased lasing threshold for lower tem-
peratures. Parameters not varied here
are given in Tab. 4, with microscopi-
cally calculated scattering rates as in
App. A.2 with hole capture reduced to
5%.

ture regions (∼ 270K) GS lasing is sustained over a broad current range. Therefore,
changing the temperature significantly changes the extent of the two-state lasing
regime, with a faster GS quenching at higher temperatures. Low temperature de-
lays the onset of ES lasing as well and lowers GS lasing thresholds.
This is in good agreement with the experimental results of Maximov et al.. Fig. 4

of Ref. [MAX13] shows their experimental measurements of the threshold current
densities for the GS (circles) and ES (squares). They also measured p-doped QDs
and its effect on two-state lasing.
The ES gain dependence of Fig. 4.18 (b) is as expected: Higher gES enhances the

ES lasing intensity and reduces ES threshold currents, while lower gES delays the
onset of two-state lasing. Note, that on the lower border gES = gGS = 0.115ps−1

and that ES lasing is absent. Furthermore, it is visible that the GS lasing threshold
is independent of ES gain - as the border between GS lasing regime (red) and no
lasing (white) is vertical in (b).
So as done in the previous section, a p-doped and an n-doped QD ensemble is

also simulated for different temperatures and ES gains. Fig. 4.19 shows the p-doped
parameter plots. GS lasing is once again enhanced by the p-doping of QDs, as the
holes are the rare species of carriers. The additional holes in the system delay hole-
depletion, so that a wide array of parameters start to lase on the GS and then switch
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to the ES. ES lasing thresholds are greatly increased, which is in good qualitative
agreement with Fig. 4 of Ref. [MAX13], where the temperature dependence of a
p-doped sample was also compared to an undoped QD sample.
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Figure 4.19: Lasing regime for GS (orange)
and ES (blue) versus pump currents J and
Temperature T (a) and ES gain gES (b) for
p-doped QDs. In comparison to the undoped
case (see Fig. 4 of Ref. [MAX13]), ES lasing
is weakened and GS quenching happens for
a broader set of parameters. Also visible is
the overall decreased lasing threshold.
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Figure 4.20: Lasing regime for GS (orange)
and ES (blue) versus pump currents J and
Temperature T (a) and ES gain gES (b) for
n-doped QDs. In comparison to the undoped
case (see Fig. 4 of Ref. [MAX13]), ES las-
ing is enhanced and GS quenching happens
for fewer parameters. Also visible is the de-
creased lasing threshold for higher ES gains,
if and only if the ES is the first to lase.

Finally, n-doping increases thresholds and enhances ES lasing as shown in Fig. 4.20.
The independence of the GS lasing threshold from the ES gain gES can also be seen
in (b), where the overall lasing thresholds is only increased if and only if the ES is
the first to lase. As soon as the ES lasing regime (blue) borders the no-lasing regime
(white), the threshold currents starts to decrease with increasing ES gain. There
also appears to be a region in temperature space, where a reappearance of the GS
can be observed. The initial n-doping must be suppressing the hole fraction to such
a low value, that it actually recovers for higher values. This would, in any experi-
ment, probably be completely washed out by the high fraction of defects introduced
through doping and not be observable.
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To conclude these numerical parameter studies, it has become clear that GS
quenching is a transition phenomenon in parameter space. GS quenching is the
specially tuned case of parameters that lie inbetween the regions of purely ES las-
ing and purely GS lasing devices. A stable two-state lasing over a broad current
range can be achieved by the right choice of parameters and might be of interest for
anybody who wishes to fabricate two-state lasing devices. As opposed to QD size
and ES gain, the cavity length and operation temperature can be changed during
experimental operation and the numerical results presented in this section are in
good agreement with the published experimental data.
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5. Modulation Response

This chapter covers the modulation response of two-state quantum dot lasers, a
quantity that can be easily measured and that is of crucial importance for commu-
nication applications [GRE13, LIN12, GIO11].

5.1. Data Transmission with Semiconductor Lasers

Semiconductor lasers are widely and commmonly used in optical data communica-
tion networks [GIO11, LIN12, GRE13], among other things as amplifiers [MEU09,
SCH12e] or as mode-locked devices [ARS13]. As part of the ever expanding optical
fiber networks, they are on the verge of becoming the backbone of modern informa-
tion technology. Not only are all major parts of the long-distance connections, all
submarine cables, no longer based on electronic transmission through copper lines,
but optical fibers nowadays are also being used for internet access in private homes;
in what the industry has termed ’fiber-to-the-home’ connections [BON11].
Lasers based on self-assembled QDs possess a variety of advantages over other

semiconductor systems and make them especially suited for these kinds of applica-
tions [BIM08]. They can emit at wavelengths of 1.3 μm and 1.5 μm, both of which
are important as they represent minimum-loss cases for the currently installed op-
tical fiber systems. With low threshold currents, high efficiency and long life times,
QD lasers are among the most energy efficient lasers that are available. Addition-
ally, temperature stability is very high caused by the discrete set of electronic states
confined inside the QD box-like potential.
However, the most important factor is, of course, the maximum data transmission

rate that can be achieved. In that regard QDs, at least in a Fabry-Perot-type device
with no additional fabrication, do not reach as high of a modulation response as was
theoretically predicted with simplified models in the 1980’s [DIN76, ARA82, ASA86]
as the finite time scattering processes limit the maximum carrier modulation that
can be induced via varying the injection current [BIM08]. Current devices are able
to reach error-free rates of up to 15 GHz [ARS14] as also theoretically described in
[LIN12, LUE10a, LUE12].
Future improvements include vertical-cavity surface-emitting lasers, where a set

of distributed Bragg-reflectors increases the reflectivity of the laser-cavity mirrors
to above 99.9%. Here modulation rates of over 40 GBit/s [HOF11](Zitat) were
achieved. Yet, out-coupling efficiencies and lasing intensities are low for such devices,
as the high reflectivity leads to the concentration of lasing intensity only inside the
active zone. Also actively being developed are electro-optical modulators, which
offer a different approach. No longer relying on the carrier dynamics of the QD,
the electriec field intensity is modulated directly, e.g. through voltage dependent
absorption via the quantum-confined stark-effect, and even higher frequencies might
be reached [WEG14].
Two-state lasing has so far not been in the focus of modulation-response related

work. Only the modulation response of the ES has been compared to the GS [GIO06,
VES07, ARS14], but no thorough current-dependent analysis has been published so
far. This will be done by numerical simulation in the following sections.

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7_5, © Springer Fachmedien Wiesbaden 2015
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5.2. Modelling of Modulation

When talking about modulation response, one has to make a distinction between a
small-signal analysis and the larger modulation used for actually transmitting digital
data. While the first is closely linked to perturbation induced relaxation oscillations
and mimics a linear stability analysis, the latter includes more complex dynamics.
In large signal analysis hysteretic effects can destroy the signal transmission at high
frequency [LUE10a].
The small-signal modulation response of a QD device can be easily calculated

with the numerical model. In experiments devices are fed a periodically modulated
signal in the injection current. This can be included in the model by making the
injection current J time dependent

J(t) = J0 +ΔJ sin (2πft), (5.1)

with a base current J0, modulation amplitude ΔJ and modulation frequency f .

Figure 5.1: GS intensity
(red) and active QD inver-
sions ρmact = ρme + ρmh for GS
(green) and ES (blue) versus
time. The injection current
was modulated via J(t) =
J0+ΔJ sin (2πf) and the re-
sulting modulation of lasing
field and carriers is shown for
2πf = 5 GHz, J0 = 4 ×
10−5enm−2ps−1 and ΔJ =
0.5 × 10−6enm−2ps−1. This
is a large modulation used to
visualize the effect of a peri-
odically varied injection cur-
rent. Parameters as in table
4.

Figure 5.1 shows the resulting modulation of GS and ES electric field for 2πf =
0.5 GHz, J0 = 4× 10−5enm−2ps−1 and ΔJ = 5× 10−6enm−2ps−1. A periodic inten-
sity fluctuation of the GS mode (red line) is achieved, while the relative fluctuation
in carrier density is smaller. Even though the median ES intensity (blue line) is
smaller, it is more strongly modulated by the injection current. This difference in
the response is caused, in parts, by the faster capture channel for the ES carriers
and the resulting stronger modulation of the ES inversion ρES

act = ρES
e + ρES

h .
For visualization of this, Fig 5.2 shows the modulation response for identical

parameters, but changed scattering rates. Here, the relaxation process Srel
b was set

to zero. To compensate for the loss of GS carrier input, GS capture SGS,cap
b was

multiplied with a factor of 6. Detailed balance relations, however, were constantly
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Figure 5.2: GS intensity
(red) and active QD inver-
sions ρmact = ρme + ρmh for GS
(green) and ES (blue) versus
time for identical parameters
as in Figure 5.1, but changed
scattering rates. The re-
laxation scattering, meaning
the direct exchange of car-
riers between ES and GS,
was turned off and GS cap-
ture was speed up by a fac-
tor of six in this simula-
tion. This illustrates the in-
fluence of the ’directness’ of
the carrier capture process
on the resulting lasing inten-
sity modulation. With GS
capture now roughly twice
as fast as ES capture, both
resulting modulation ampli-
tude are comparable in size.

maintained. As a result, the GS response is on the same order of magnitude as
the ES response, illustrating that a direct, fast channel to the carrier reservoir is
preferable to increase the amplitude of the modulated lasing intensity.
However, the fact that the GS capture has to be almost twice as fast as ES-capture

also highlights that ES-amplitude is intrinsically stronger. While the scattering
rates S determine how fast a given state equilibrates with the thermal distribution
in the other carrier states, the equilibrium occupation ρeq itself also changes with
injection current. As the Fermi distribution is less prone to perturbations for energies
far from the Fermi-energy Ef , steady-state ES-carrier occupations have a stronger
current-dependence. When the injection current is varied, this leads to higher carrier
fluctuations than the GS, even if scattering time scales are the same.
The current-modulation amplitude ΔJ used here was rather large, to illustrate

the effect of a sinusoidal signal on the injection current. In the following section,
where frequency dependent amplitude responses will be calculated, a smaller ΔJ
will be used, which is more in line with a small signal analysis.

5.3. Modulation Response Curves

The modulation response curve visualises the ability of the laser system to transfer
a signal of the injection current into light intensity. As in the previous section
the pump current was varied with J(t) = J0 + ΔJ sin (2πft), and the resulting
intensity response ΔIm = Δ‖Em‖2 with m ∈ {GS,ES} is evaluated as a function
of modulation frequency f . An example for parameters as in Tab. 4 and J =
1× 10−5enm−2ps−1 is shown in Fig. 5.3.
The modulation response is normalized with respect to the intensity response at

low frequency (f = 20 MHz in this case). Which corresponds to the system relax-
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Figure 5.3: Normalised
modulation response versus
frequency f obtained by
numerical simulation. The
GS (red) and ES (blue)
amplitude responses were
normalized with respect to
their low-frequency response.
Where the relative strength
of the light-intensity modu-
lation drops below ∼ 0.5 lies
the 3dB-cut-off frequency
fm
3dB . Modulation responses
can exhibit a resonance-
feature, like the ES response
in this picture, or simply di-
minish for high frequencies,
like the GS here. Param-
eters as in Tab. 4, J0 =
1 × 10−5enm−2ps−1 and
ΔJ = 2× 10−7enm−2ps−1.

ing to a steady state during each part of the modulation cycle; Im|J=J0−ΔIm =
Im|J=J0−ΔJ . Contrarily, in the limit of very high frequencies (f > 100GHz in
Fig. 5.3) the system is far from reaching a steady state during one period of the
modulation. Fluctuations are too fast for carrier populations to rise or fall. The
system experiences only the median current J0 and modulation is very weak. There-
fore, the modulation strength is constant for the range of low frequencies and drops
towards high frequencies.
For the right choice of parameters the lasing system can exhibit relaxation os-

cillations. These are tied to the eigenvalues of the system of differential equations.
As the small-signal modulation disturbs the system only slightly, a linearisation of
the system around the stable fix point for J = J0 is a good approximation. There-
fore, the damping and frequency of the relaxation oscillations are closely tied to the
modulation response [LIN12].
In Fig. 5.3 this is visible for the ES in the shape of a resonance feature. For

frequencies of about 1 GHz, the modulation response is exhibiting a maximum.
By resonant excitation of relaxation oscillations the system’s response is therefore
greatly enhanced. Furthermore, this feature enhances the performance for faster
modulation. The most important figure of merit in that regard is the ’3dB-cut-off
frequency’ fm

3dB. It is defined as the frequency where the relative strength of the light-
modulation drops by 3 dB, which translates to a factor of −3dB = 10−0.3 � 0.5. As
a first estimate, this corresponds to the maximum frequency where almost error-free
data transmission is still possible. Because the GS exhibits no relaxation oscillations
and followingly lacks the resonance feature of the ES, the GS cut-off-frequency fGS

3dB

is lower than the ES cutoff fES
3dB (see Fig. 5.3, vertical lines).

Modulation response curves are often measured experimentally, as the amplitude
of light intensity modulations can be easily obtained [GRE13, LIN12, GIO11]. They
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are used in characterising a grown semiconductor laser sample and many publica-
tions, PhD theses and work groups are dealing with the right growth parameters
for optimizing the laser performance, which usually means they try to reach as high
values of the 3dB-cut-off frequency f3dB as possible.

Figure 5.4: Normalised
modulation response of
we, ρGS

e and ρES
e versus

frequency obtained by
numerical simulation. The
excited state electrons
(blue) exhibit a resonance
feature, while both QW
electrons and GS electrons
exhibit none. Parame-
ters as in Tab. 4, J0 =
1 × 10−5enm−2ps−1 and
ΔJ = 2× 10−7enm−2ps−1.

For further study, Fig. 5.4 plots the normalised modulation response of QW elec-
trons we, GS electrons ρGS

e and ES electrons ρES
e versus frequency f . Defined anal-

ogously to intensity fluctuation, these carrier modulation responses are usually not
readily available in experiments, but can be easily obtained in numerical simulations.
The resonance feature of ES electrons matches the resonance of ES light intensity
in Fig. 5.3. This is clear evidence of its relaxation-oscillation caused origin, as these
oscillations stem from the periodic energy transfer between electron-hole pairs and
photons. Furthermore, no resonance is visible for the two other electronic state
occupations, which in turn do also exhibit strongly damped relaxation oscillations.
While the GS carrier dynamics are more complex, the shape of the we-modulation

response is simply caused by the interplay of carrier-decay Rw
loss and the periodic

injection current [LIN12], with the ES being additionally dominated by its resonance
features. The analytic form for these response curves, which can be seen as an
approximation of first order for all state variables, shall shortly be derived here.
Let z ∈ C denote a state variable and furthermore let its time evolution be

described by three terms: First, a linear decay with time constant T ; Second, an
internal oscillation with frequency ωint, e.g. modelling the periodic energy exchange
with photons; Third, a time-dependant injection current J(t) = J0+ΔJ × eiωt with
external modulation frequency ω as a source. Thus, the differential equation for z
is a driven harmonic oscillator:

ż = − z

T
+ iωintz + J0 +ΔJ × eiωt. (5.2)
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The steady state z0 without modulation can then be derived via:

0 =− z0
T

+ iωintz0 + J0

z0 =
J0T

1− iωintT
(5.3)

The time-dependant dynamics can be written as the steady state solution z0 and
a small time-dependant perturbation δz(t). Inserting z(t) = z0+δz(t) into Eq. (5.2)
yields:

˙(z0 + δz) =− z0 + δz

T
+ iωint(z0 + δz) + J0 +ΔJeiωt

ż0 + δż =− z0
T

+ iωintz0 + J0 − δz

T
+ iωintδz +ΔJeiωt

δż =− δz

T
+ iωintδz +ΔJeiωt. (5.4)

With the simple ansatz that z oscillates with the same frequency as the injection
current, δz = Δzeiωt, Eq. (5.4) becomes:

iωΔzeiωt =− Δz

T
eiωt + iωintΔzeiωt +ΔJeiωt, (5.5)

from which, after a short reshuffling, the complex modulation response Δz/ΔJ
can be extracted:

Δz

ΔJ
=

T

1 + i(ω − ωint)T
, (5.6)

and taking the absolute value yields:

|Δz

ΔJ
| = T√

1 + (ω − ωint)2T 2
, (5.7)

which is the approximate shape for the modulation response curves. The drop-off
towards high currents is furthermore given by:

lim
ω→+∞

|Δz

ΔJ
| = T

ω
, (5.8)

which, in a double logarithmic plot, returns a straight line of slope −1.
Figure 5.5 shows we, ρ

GS
e and ρES

e modulation response curves together with fits
obtained via Eq. (5.7). The agreement for QW densities is good, which is also
what can be expected as the reservoir carriers are directly modulated and their time
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Figure 5.5: Normalised
modulation response of
we, ρGS

e and ρES
E versus

frequency obtained by
numerical simulation, and
analytical fits with Eq. (5.7).
The fit for the directly
modulated we-reservoir
is shown by black dotted
line, while the ES carriers’
response is shown in light
blue. No fit for the GS
response could be obtained.
Parameters for the numerical
simulation as in Tab. 4, J0 =
1 × 10−5enm−2ps−1 and
ΔJ = 2 × 10−7enm−2ps−1;
Fit parameters given in
legend.

evolution most closely resembles the differential equation for z given in Eq. (5.2).
However, the we decay rate of the numerical model in Eq. (2.68) is proportional
to not only we, but also wh. Which on a side note highlights, that the entirety of
non-excitonic dynamics was not taken into account in the derivation of the fit of
Eq. (5.7).
Despite this limitation, ES occupation-probability modulation ΔρES

e can be ap-
proximately reproduced with this fit. The resonance feature is weaker, yet overall
agreement is good up to frequencies of f � 50 GHz. At that point ES response
is decaying even faster towards higher frequencies and is deviating from the pre-
viously predicted slope of −1 for high injection currents. As a result of previous
works in the group of the author, it has been shown that this is linked towards the
breakdown of carrier transport via scattering. Modulations do no longer propagate
fast enough towards the confined QD states, but are kept within the QW-reservoir
level. This can also be seen by the fact, that the we-response does not exhibit this
scattering-related modulation break-down, as it is directly modulated via J .
Lastly, the ρGS

h modulation response of Fig. 5.5 was not reproduced. The dynamics
here are clearly more complex than the simplistic approximations used for the fit.
This is most probably related to the scattering dynamics, especially the strong
dependence on ES occupations through the cascade scattering process QW-ES-GS.
However, the modulation response drop-off at high frequencies can also be observed
for the GS.

5.4. Cut-off-Frequencies and Two-State Lasing

After obtaining individual modulations and evaluating the response amplitudes,
modulation response curves were introduced in the previous section. The 3dB-cut-
off-frequency was introduced as the key figure of merit, often used in experiments to
describe the maximum data transmission capacity of the device. Followingly, in this
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section modulation response curves will be numerically calculated and their cut-off-
frequencies be obtained as a function of pump current J , among other parameters.
Of special interest for this work is the interaction of modulation response with two-

state lasing and GS quenching. The literature has not covered this topic extensively,
and experimental verification of the predictions made here is therefore still lacking.

Figure 5.6: 3dB cut-off-
frequencies for GS (red) and
ES (blue) versus pump cur-
rent obtained by numerical
simulation. Light-current
characteristic of the simula-
tion shown in dashed lines.
Parameters for the numeri-
cal simulation as in Tab. 4,
ΔJ = 2 × 10−7enm−2ps−1

and nonlinear scattering
rates as in App. A.1.

Figure 5.6 shows the 3dB cut-off-frequencies for GS fGS
3dB and ES fES

3dB as a function
of pump current J . Also plotted as a reference is the light-current characteristic with
dashed lines. There is clearly a connection between lasing thresholds and modulation
response, as cut-off-frequencies obviously react when approaching lasing states. The
individual details will be discussed in the following paragraphs.
The sub-threshold ES (blue solid line) cut-off-frequency reaches relatively high

values with fES
3dB > 2GHz, yet as the ES is not lasing at this injection current,

this is not useful for data transmission. As the ES lasing threshold is approached,
modulation response is slowed down and reaches a minimum at J = JES

th . This can
be partly tied to the relaxation oscillations slowing down at the threshold and partly
attributed to the long effective carrier lifetime at threshold. The cut-off-frequency
increases for injection currents and then saturates in agreement with previous works
of QDs with only one confined state [GIO11, LUE12].
The GS dynamics in Fig. 5.6 exhibit a similar shape. Below GS threshold, GS

modulation response is slow, reaches a minimum for J = JGS
th and increases non-

linear afterwards. However, the most striking feature is an almost vertical increase
in the cut-off-frequency by a factor of two, when two-state lasing starts at J = JES

th .
This is a phenomenon for which experimental verification is not available as of yet.
Hence, from here on ’GS-modulation enhancement’ will denote this sudden increase
in the cut-off-frequencies for GS fGS

3dB at the ES threshold. For high currents, the GS-
modulation enhancement diminishes again and the GS cut-off-frequency approaches
a static value (see also Fig. 5.12 for high-current behaviour).
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5.5. Ground State Modulation Enhancement

Investigating this ES-lasing-induced GS-modulation enhancement is not finished and
further research is necessary. Investigations are made difficult by the fact, that re-
laxation oscillations are almost nowhere present in the parameter ranges studied so
far, as is generally the case for QD-based devices [BIM08a]. Numerically evaluating
their damping and frequency, however, could have given a first clue towards the na-
ture of this modulation enhancement. A drastic increase of GS relaxation oscillation
frequency at the ES threshold current could explain the abrupt enhancement of the
3dB-cut-off-frequency.

Fr
e
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e
n
cy

Pump Current

JJ
thth

GS ES

Figure 5.7: Relaxation oscillation frequency
versus pump current as calculated by Abuusa
et al. in [ABU13], schematically redrawn here.
The drastic increase in the frequency coincides
with the start of two-state lasing. Only a com-
mon frequency for both ES and GS was calcu-
lated.

However, an analytical approximation for the frequency of relaxation oscillations
in two-state lasing lasers was published by Abuusa et al. in 2013 [ABU13]. They
predict an increase of relaxation oscillation frequency for currents above the ES
lasing threshold. The relevant figure from their work is schmetically redrawn here
in Fig. 5.7.
However, it is questionable whether their analytical derivation is valid for the

QDs simulated for this thesis. They only calculated a common relaxation oscillation
frequency for both GS and ES, as they found no dynamical difference between both
modes. This is in clear contrast with the rich dynamics seen in Fig 5.6, where GS
and ES are clearly reacting differently. This could be caused by Abuusa et al. in-
vestigating mainly ’free’ relaxation oscillations, which appear during turn-on, while
the modulation response is ’driven’ by an external source. Furthermore, their fre-
quency always increases with current. Yet, the GS-modulation enhancement seen in
Fig 5.6 seems to vanish for high currents, where cut-off-frequencies saturate. This
suggests that the relaxation oscillation damping factor is at least as important as the
frequency itself, as damping would have to increase strongly to suppress resonances.
A closer look to the injection current region of Fig. 5.6 in question also reveals

that the resonance frequency does not shift. This can be seen in Fig. 5.8, where the
absolute modulation response is shown for GS (red) and ES (blue) versus frequency.
For the panel on the left the device was simulated at a current slightly below ES
threshold J < JES

th , so the GS is lasing, while the ES is not. Correspondingly, ES
absolute modulation response is weak in comparison to GS response, as ES intensity
is purely caused by spontaneous emission (cf. the light-current characteristic in
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Figure 5.8: Absolute modulation response (not normalised) versus frequency f obtained by
numerical simulation. ES (blue) and GS(red) modulation response is plotted on the same scale
for currents J < JES

th (left) and J > JES
th (right.) Parameters for the numerical simulation as

in Tab. 4, ΔJ = 2× 10−7enm−2ps−1 and nonlinear scattering rates as in App. A.1.

Fig. 5.6). Both response curves exhibit no clear maximum, and ES cut-off frequency
is relatively low at fES

3dB < 1 GHz.
Figure 5.8 (right) shows the absolute modulation responses, in exactly the same

scaling as on the left, for a current slightly above ES lasing threshold J � 1.1JES
th .

With the ES intensity being greatly enhanced by stimulated emission, absolute
modulation is similarly strengthened. Contrary to this, the high frequency flank
of the GS modulation response is almost left unchanged. For frequencies around
f = 1 GHz a resonance peak can be seen. This feature is ’revealed’ by the receding
low-frequency side of the GS modulation response curve. There, the absolute GS
modulation is slightly weaker as compared to the lower injection currents in Fig. 5.8
(a), despite the fact that GS lasing intensity has risen. This is most pronounced for
the flat part of the modulation response curve towards low frequencies f < 0.1 GHz.
This is also the reason, why no normalisation was used for Fig. 5.8. The low-

frequency modulation response is always used as the baseline when normalising. This
would result in a ’lifting’ of the response curve, and the resonance feature appears to
’grow’ out of the modulation response curve, as opposed to the low-frequency side
receding and the resonance feature being left standing. Due to this renormalisation
the cut-off-frequency for the GS fGS

3dB is so greatly enhanced in Fig 5.6: The cut-off
frequency is defined as the modulation frequency for which response intensity has
dropped to � 0.5 compared to the low-frequency modulation response, so when only
the low-frequency modulation response is reduced, the cut-off frequency shifts to
higher values.
Interpreting the observations told in the previous paragraphs, however, is not

straight-forward. It seems that ES lasing is suppressing the low-frequency modula-
tions in the GS; possibly by preventing carrier differences to propagate through the
relaxation scattering channel. However, fast modulations are able to reach GS levels
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regardless of the ES lasing state. Further investigations will therefore be presented.

Figure 5.9: 3dB cut-off-
frequencies for GS (red) and
ES (blue) versus pump cur-
rent obtained by numerical
simulation. ES optical losses
κES were increased to pre-
vent the ES from lasing.
Consistently, Light-current
characteristic of the simula-
tion shown in dashed lines.
Parameters for the numeri-
cal simulation as in Tab. 4,
ΔJ = 2 × 10−7enm−2ps−1,
κES = 1.0ps−1 and non-
linear scattering rates as in
App. A.1.

To verify, that it is really the onset of ES lasing that triggers this GS-modulation
enhancement, Fig. 5.9 shows the GS and ES cut-off-frequencies and light-current
characteristics with high optical losses in the ES. By setting κES = 1.0ps−1, the ES
was prevented from achieving a lasing state. As a result no sudden GS-modulation
enhancement is visible after the onset of GS lasing, so it is clear that ES photons
must play an important role in the GS-modulation enhancement.
On a side note, the sudden increase of ES modulation at GS threshold, already

seen in the first figure of cut-off-frequencies Fig. 5.6, is still visible. But with no ES
lasing threshold present, there is no minimum in the ES cut-off-frequency, as was
seen for J = JES

th in Fig. 5.6, just a decline towards higher frequencies. So there
certainly seems to be also a modulation enhancement in reverse direction, albeit the
ES is not lasing at that point.
For further investigation, Fig. 5.10 shows the 3dB cut-off-frequencies for GS (red)

and ES (blue) versus pump current, similar to Fig. 5.6. Here, however, GS capture
rates were turned off, SGS,cap

b,in/out = 0. Therefore, with any direct interaction between
GS and QW prevented, any modulation reaching the GS must have been transmitted
through the cascade scattering chain QW-ES-GS, and therefore ultimately through
the ES as an intermediate reservoir.
The similarities between Fig. 5.10 and Fig. 5.6, however, suggest that direct GS

capture processes play no major role. The sudden enhancement of the GS modula-
tion response at the onset of ES lasing is still present. Furthermore, the fact that
almost nothing else changes can be attributed to the nature of the microscopically
calculated scattering rates, i.e. the resulting GS capture rates are always slower
than the cascade-scattering channel consisting of ES capture and relaxation.
Now, the opposite approach is shown in Fig. 5.11, where the relaxation scattering

was turned off, Srel = 0. This leads to a decoupling of the GS and ES and they
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Figure 5.10: 3dB cut-off-
frequencies for GS (red) and
ES (blue) versus pump cur-
rent obtained by numerical
simulation. As opposed to
Fig. 5.6, direct scattering
from GS to QW were turned
off. Light-current character-
istic of the simulation shown
in dashed lines. Parame-
ters for the numerical simu-
lation as in Tab. 4, ΔJ =
2 × 10−7enm−2ps−1 and lin-
earised scattering rates as in
App. A.2, with SGS,cap

b,in/out = 0.

only indirectly interact through the reservoir carrier densities wb. The strong GS-
modulation enhancement feature is not present in this simulation. The overall shape
of the cut-off-frequency curve is in agreement with simulations of QDs including only
a single confined state [GIO11, LUE12].
Yet, there still remains some cross-influence between GS and ES. The ES cut-off

frequency is clearly enhanced once the GS lasing threshold is crossed JGS
th < J <

JES
th , just like in the previous simulations of Fig. 5.6, 5.9 and 5.10. Furthermore,

there seems to be a drastic enhancement of GS modulation, for a current in between
GS and ES thresholds. This is, however, not the feature linked to the appearance
of the ES. The individual modulation response curves (not shown here) look clearly
different to Fig. 5.8.
To conclude this section, the anomalous GS cut-off-frequency increase was inves-

tigated. It has been shown to be linked to the onset of ES lasing and dependent
on the relaxation scattering process, while it is not dependent on the direct capture
from the QW. To the contrary, turning off the relaxation leads to the disappearance
of this modulation enhancement.
From modulation response curves below and above ES thresholds, one can deduce

that the ES acts like a high-pass filter, blocking only the low-frequency modulations
from reaching the GS. This leads to the appearance of a resonance feature, enhancing
the cut-off-frequency. It therefore seems that ES photons are acting as a buffer that
reduce the modulation propagated to the GS.

5.6. Change of Cut-Off-Frequency with Carrier Loss Rates

Apart from the ES-lasing induced GS modulation enhancement studied in the pre-
vious section, there are other ways of increasing the maximum data transmission
rate of QD-based devices. Two of these will shortly be covered in this section.
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Figure 5.11: 3dB cut-off-
frequencies for GS (red) and
ES (blue) versus pump cur-
rent obtained by numerical
simulation. Light-current
characteristic of the simula-
tion shown in dashed lines.
Relaxation from ES to GS
was turned off, so that both
carrier states are directly fed
from the well. Parame-
ters for the numerical simu-
lation as in table 4, ΔJ =
2 × 10−7enm−2ps−1 and lin-
earised scattering rates as in
App. A.2, with Srel = 0.

Figure 5.12: 3dB cut-off-
frequencies for GS (red) and
ES (blue) versus pump cur-
rent obtained by numerical
simulation. Light-current
characteristic of the simula-
tion shown in dashed lines.
Scattering rates were speed
up by a factor of three, re-
sulting in an increase of the
cut-off-frequencies. Note
the different scaling com-
pared to previous figures,
showing high-current dy-
namics where cut-off fre-
quencies approach a con-
stant value. Parameters
for the numerical simulation
as in Tab. 4, ΔJ = 2 ×
10−7enm−2ps−1 and nonlin-
ear scattering rates as in
App. A.1, multiplied with a
factor of 3.
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The most straight-forward way when simulating is by simply increasing the scat-
tering rates. Fig. 5.12 shows the 3dB cut-off-frequencies for GS (red) and ES (blue)
versus pump current obtained by numerical simulation for all scattering rates three
times as fast. Note the different axis scaling compared to Fig. 5.6. The modulation
response is faster, while all features are maintained. Also shown is the high-current
range, for which both ES and GS cut-off-frequencies approach a constant value.
However, scattering rates cannot be simply increased in experiments, where they

depend on QD shape, device structuring and material [BIM08], all of which have
to already be controlled to yield correct telecommunication wavelengths and leave
little room for further adjustments.

Figure 5.13: 3dB cut-off-
frequencies for GS (red) and
ES (blue) versus pump cur-
rent obtained by numerical
simulation. Light-current
characteristic of the simula-
tion shown in dashed lines.
. Parameters for the numer-
ical simulation as in Tab. 4,
ΔJ = 2 × 10−7enm−2ps−1,
Rw

loss = 0.59nm2ps−1 and
nonlinear scattering rates as
in App. A.1.

The interplay of carrier lifetime, mostly given by the combined loss term Rw
loss

in the numerical model, with modulation response is complex [LIN12]. However,
in the parameter range of this thesis, an increase of losses is predicted by Ling-
nau et al. to yield higher cut-off-frequencies. The results of a simulation with
Rw

loss = 0.59nm2ps−1 is shown in Fig. 5.13. In accordance with the prediction,
cut-off-frequencies are increased by ∼ 25% in the GS and ∼ 40% in the ES. How-
ever, this comes at the cost of higher threshold injection currents for both GS and
ES.

5.7. Outlook for Modulation Response

To end this chapter, a last simulation shall be presented, highlighting the need for
further work in this area. Figure 5.14 shows the cut-off-frequencies for GS and ES.
Here, scattering rates were changed to lead to hole depletion and subsequent GS
quenching by reducing hole capture rates to 5% as has been done in Sec. 4.2. The
resulting cut-off-frequencies display rich dynamics. The individual modulation re-
sponse curves for all currents were individually checked, to assure that no numerical
error caused this behaviour.
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Figure 5.14: 3dB cut-off-
frequencies for GS (red)
and ES (blue) versus pump
current obtained by numer-
ical simulation. Scattering
rates were changed to yield
hole-depletion induced GS
quenching. Light-current
characteristic of the simula-
tion shown in dashed lines.
Parameters for the numeri-
cal simulation as in Tab. 4,
ΔJ = 2 × 10−7enm−2ps−1

and linearised scattering
rates as in App. A.2, hole
captures reduced to 5%.

For one, the GS modulation cut-off frequency is not increased once two-state lasing
starts, but apart from a small peak decreased. Additionally, overall performance
has been greatly degraded with cut-off-frequencies well below 2GHz for most of the
current range. However, the turned-off GS displays strong increase in the cut-off
frequency for currents well above the GS quenching thresholds (f � 4.5GHz), not
seen in any other simulation so far. However, the GS is already turned off at that
point.
Understanding all of these features, linking them to real and artificial causes of the

parameters chosen, and examining the ones useful for data transmission is a topic
suited for future research. In addition to pure numerical simulation of modulation
response curves for even other scattering and parameter sets, there are several other
points of interest.
The ES-lasing-induced GS modulation enhancement needs a verification of its

suitability for data transmission. As seen form the individual modulation response
curves, it is a suppression of low-frequency response that increases the 3dB cut-off-
frequency. The high-frequency flank, however, stays almost constant when measured
in absolute terms. This begs the question, whether a large signal analysis would
actually yield decodable bits and needs to be studied.
Second, apart from the purely numerical study done here, a deeper, more physical

understanding of the phenomenon needs to be developed. A good beginning could
be deriving an analytical approximation. One might approximate the system as
coupled, damped harmonic oscillators, of which only one is driven. Furthermore,
the low-frequency range can probably be studied with steady-state simulations.
Lastly, the non-monotonous shape of cut-off-frequencies might be useful in de-

signing experiments. As it appears that the GS modulation enhancement with ES
lasing is linked to the relaxation scattering channel, it might be used to determine the
strength of this scattering process in real QDs. Furthermore, if the cut-off frequency
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shape shown here for hole-depletion induced GS quenching can be generalised for a
broad variety of parameters, measurements of the modulation responses could also
be used to unambiguously determine the cause of GS quenching experimentally.
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6. Pump-Probe Experiments

In this chapter two sets of experiments with a two-state QD device shall be described
and their respective behaviour will be reproduced by the numerical QD model. The
experiments were carried out by the work group of Prof. Woggon (TU Berlin), in
particular Yuecel Kaptan and Bastian Herzog.

6.1. Pump-Probe Setup

A principal investigative tool that can be used to measure carrier lifetimes in a
semiconductor device is the so called pump-probe setup. It will be explained in this
section. Basically, two different optical pulses of predefined shape, wavelength and
amplitude are injected into the sample that is to be studied. One of these is called
the ’pump pulse’ and is meant to prepare the system in a specific state, e.g. revert
the system to optical transparency, while the second pulse is called the ’probe’ and is
captured after it has travelled through the sample. Then analysing this probe pulse
yields information about the state of the system. Additionally, a tunable time delay
is introduced between the pump and the probe pulse, which allows a time-resolved
measurement of the systems response to the perturbation caused by the pump pulse.
A sketch is presented in Fig. 6.1.

probe pulse

pump pulse

semiconductor sample

detection &
characterisation

delay time 

Figure 6.1: Sketch of a pump-probe experiment. Two pulses of predefined shape, wavelength
and energy are injected into the sample that is to be studied. The ’pump pulse’ (blue) prepares
the state of the system, while the ’probe pulse’ is analysed after it has travelled through the
prepared sample. By varying the time-delay Δτ between pump and probe pulse the time
evolution of the system can be extracted.

This technique has been used successfully by the AGWoggon in the past [DOM07,
GOM08, GOM10, MAJ11] and with the current level of sophistication they were able
to produce pulses with wavelengths between 900 and 2000 nm, spectral full-width-
at-half-maximum of 10-15 nm and achieve a time resolution of 250 fs.

6.2. Two-State Device Description

The device studied consists of 5 layers of self-assembled In(Ga)As QDs grown by
molecular beam epitaxy, which were overgrown each with another layer of InGaAs to
form a dot-in-a-well structure. The device was then processed with p and n-contacts,
and etched into a 1.33 mm long and 6 μm wide ridge wave-guide structure.

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7_6, © Springer Fachmedien Wiesbaden 2015
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The front facet of the Fabry-Perot type resonator was simply cleaved and left
unaltered, while the back facet was further processed in Israel by the group of Prof.
Eisenstein at the Israel Institute of Technology. It was covered in a dichroic coating,
which has a high reflectivity in the ES wavelength range and acts as an anti-reflective
coating for the GS.

Figure 6.2: Simulated light-current
characteristic of the device. Because
of the dichroic coating, only ES las-
ing is achieved. Parameters as given
in Tab. 4, with κGS = 1.0ps−1,
RW

loss = 0.1nm2ps−1 and J = 5 ·
10−5enm−2ps−1.

Therefore, the device behaves like a semiconductor optical amplifier on the GS,
but is also able to achieve lasing on the ES. Fig. 6.2 shows the simulated light-current
characteristic of the device (details of the simulation are explained in the following
Sec. 6.3). Only ES lasing is achieved, while high GS losses prevent all GS lasing.
For this sample, the GS amplified spontaneous emission spectrum was centered

around 1250 nm, while the ES lasing line was located at 1180 nm. The device
was specifically designed for a variety of possible time-resolved and current depen-
dent experiments to investigate the connection and scattering pathways of carriers
between GS and ES.

6.3. First Experiment: Ground State Gain Recovery

In a preparatory step the different sub-ensembles of the inhomogeneously broadened
GS spectrum were investigated. As the ES lasing line is sharp in contrast to the GS
emission spectrum, it is clear that not all QDs participate in the ES lasing process.
Yet, which parts of the broadened GS spectrum correspond to the active QDs is
not easily accessible. The team of Prof. Woggon therefore initiated a series of dual-
colour pump probe experiments: The pump pulse was centered at the peak of ES
lasing intensity, while the probe pulse was stepwise varied from 1230 to 1300 nm.
With no injection current applied, the pump pulse would always be partially ab-

sorbed, increase the ES population and result in an increase in the GS population by
scattering. The resulting change of absorption (= negative gain) was then measured
with the probe pulse, centered on a specific part of the GS spectrum. The rise time
of this GS gain increase was extracted for the different wavelength samples and a
resonance was found. For the GS ensemble centered at 1270 nm response times were
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fastest and these QDs therefore correspond to the ES lasing subensemble. This cor-
responds to the optically active fraction of dots fact in the numerical model of the
QDs (see Sec. 2.3 for the description). They also deduced that the QDs centered at
1255 nm were sufficiently far away to be considered ’off-resonant’, which translates
to the inactive part of the QDs f inact in the model.
In a second step this optically active GS QD ensemble at 1270 nm and the off-

resonant QDs at 1255 nm were studied in more detail. A pump probe experiment was
carried out for different injection currents with both pulses matching the respective
wavelength. Time traces for this single-colour pump-probe experiment can be seen
in Fig. 6.3. As can be expected, the gain recovery is faster for higher injection
currents, because the scattering processes get faster and 2D reservoir occupations
are higher.

Figure 6.3: Time-resolved GS gain recovery (symbols) as measured by the work group of
Prof. Woggon. These experimental GS gain curves were obtained via a single-colour pump-
probe setup for a wavelength of 1255 nm. The time difference between pump and probe pulse
is listed on the x-axis, while the gain response has been normalized. The fits were made by
a sum of two exponential functions. The gain recovers faster for higher injection currents
(different colours). See Fig. 6.4 for a simulated response. Redrawn after [KAP14b]

These curves were fitted with a two-exponential function with offset, correspond-
ing to three different identified time domains. Y. Kaptan et al. attribute the sub-fs
gain recovery time τ1 to polarization dynamics. The second time scale τ2 is on the
order of several picoseconds and corresponds to the carrier-carrier scattering from ES
and 2D-reservoir into the GS. Lastly, a long time scale was identified, with recovery
times on the order of several nanoseconds. This was attributed to a refilling of an
additional, only indirectly accessible carrier reservoir still above the well structure,
e.g. sometimes called a separate confinement heterostructure (often abbreviated as
SCH).
A simulation of such a pump-probe experiment is presented in Fig 6.4. To model

the dichroic coating, the optical decay rate κ was split into two different decay rates.
The GS light is subject to a high decay rate of κGS = 1.0ps−1, accounting for the
antireflective properties of the dichroic coating. Correspondingly the ES optical
decay rate κES was kept at the previous value of 0.05ps−1 to enable lasing. For a
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Figure 6.4: Simulated GS inversion
ρGS
act (green line) versus time when a

pump pulse has been injected on the
GS (red dotted line). No probe pulse
is needed for the simulation, as all
state variables are easily extractable
at all times. Only the recovery on
the time scale of several picoseconds
was modelled, as the polarization has
been adiabatically eliminated and no
separate confinement heterostructure
is included. Parameters as given in
Tab 4, except κGS = 1.0ps−1, κES =
0.05ps−1, RW

loss = 0.1nm2ps−1 and
J = 5 · 10−5enm−2ps−1.

better agreement between experiment and simulation the bulk loss rate was changed
to RW

loss = 0.1nm2ps−1. Furthermore, to account for the spectral width of the pump-
pulse a stimulated emission term is added to the inactive QD GS-Eq. (2.65) with gain
gGS,ia = 0.0575ps−1. No GS lasing is ever achieved with this choice of parameters,
so there is no interaction of inactive and active QDs through GS light intensity and
the distinction between these two subgroups is maintained on the basis of ES lasing.
Within the model used in this work only the picosecond time-scale was reproduced

as both the ultrafast polarization dynamics and the long-term separate confinement
heterostructure are not included. Note, that a perfect fit for this experiment was
not attempted as the interpretation of the results led to a second set of experiments
(see Sec. 6.4) and a closer collaboration between the AG Woggon and AG Schöll.

Figure 6.5: GS recovery time for single-colour pump-probe experiments carried out by Y.
Kaptan et al. (TU Berlin). The time resolved response curves as seen in Fig. 6.3 were
fitted with a two-exponential ansatz and the second time constant τ2 was extracted. The
subensembles participating in ES lasing (red squares) and the off-resonant QDs (blue circles)
react identically to perturbations, even above the ES lasing threshold (vertical line). This
time-scale corresponds to the intradot and/or QD-QW scattering processes. Redrawn after
[KAP14b]
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Fig. 6.5 shows the experimentally extracted time scales τ2 versus injection cur-
rents. Opposite to their initial expectations, Y. Kaptan et al. found no difference
between the off-resonant (1255 nm) and resonant (1270 nm) subensemble of the
QDs. Additionally, they had hoped to identify the dominating scattering path for
the GS recovery. The two possible pathways are either a direct QW-QD capture
(SGS,cap

b,in in the numerical model) or a cascade from QW to ES and then GS (corre-

sponding to Srel
b,in and SGS,cap

b,in in the model). Yet, a numerical simulation with the
model presented in this work proved, sadly, that distinguishing these processes was
not possible with the type of experiment employed by Y. Kaptan et al..
A simulation of GS recovery for different currents and scattering schemes was

performed and the results are shown in Fig. 6.6. For the first scattering scheme, the
direct capture was turned off via setting SGS,cap

b,in = 0, so that all carriers reach the
GS through the cascade scattering process QW-ES-GS. The rest of the scattering
rates were left as presented in Sec. 2.3.2 and shown in App. A.2 (red line in Fig. 6.6).
Secondly, the direct capture was turned back on and the full set of microscopically
calculated scattering equations was used, corresponding to a mixed capture (green
line in Fig. 6.6). Lastly, the direct capture channels SGS,cap

b,in were sped up by a

factor of 5, and the cascade participating scattering rates Srel
b,in and SGS,cap

b,in slowed
down to 20%, resulting in a direct-capture dominated scattering scheme(black line
in Fig. 6.6).

Figure 6.6: Simulated GS inversion
recovery time scales τ (solid lines) ver-
sus normalized injection current j and
light intensity of the ES (dashed blue
line). Three different sets of scat-
tering rates were used. Green: lin-
earised scattering rates as calculated
in Sec. 2.3.2 and shown in App. A.2.
Red: Direct capture SGS,cap

b,in was
turned off. Black: Direct capture
SGS,cap
b,in speed up by a factor 5 and the

cascade process (Srel
b,in and SGS,cap

b,in )
was slowed down to 20%. Note:
magnitude can be tuned as a whole
to reproduce experimentally measured
time constants (seen in Fig.6.5). Pa-
rameters as given in Tab. 4, with
κGS = 1.0ps−1, RW

loss = 0.1nm2ps−1

and J = 5 · 10−5enm−2ps−1.

Figure 6.6 shows the resulting time scales versus normalized pump currents. The
individual magnitude of the three curves is of small importance, as each of them
could be tuned as a whole without changing the scattering pathways by multiply-
ing all scattering channels by a constant factor. The overall shape, however, nicely
reproduces the experimental findings seen in Fig. 6.5. The underlying process can,
unsurprisingly, be summed up as ’higher injection current increases the gain recov-
ery’. Yet, there is no qualitative difference between the different scattering schemes
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(red, green and black curves) and therefore distinguishing which pathway is active
is not possible from the experimental data obtained.
Furthermore, the onset of ES lasing (see blue dotted line in Fig. 6.6) is never clearly

visible in the recovery time scales τ , not even for the pure cascade scattering scheme
(red line). The dominating scattering pathway could therefore not be identified. The
numerical model, however, proved capable of reproducing the experimental findings.
Additionally, while studying the response dynamics of the system via simulation,

an intriguing feature was observed: Through cascade scattering processes the per-
turbation of the GS population gets translated into a perturbation of ES carriers. So
when the GS loses population by amplifying the incoming pump pulse, ES carriers
are also decreasing. Naturally, this leads to a drop in the ES lasing intensity and in-
duces relaxation oscillations in the ES intensity while recovering. These oscillations
become especially pronounced close to the ES lasing threshold.
Having already envisioned a similar idea, the group of Prof. Woggon set out to

try and reproduce this numerically predicted behaviour. This was done in a second
experiment and will be presented in the following section.

6.4. Second Experiment: Excited State Intensity Recovery

After the injection of the pump pulse on the GS, the perturbation of GS carriers
is ultimately transformed into a drop of ES intensity. Figure 6.7 shows the ES
intensity versus time as simulated by the numerical model, after a GS pulse reduced
GS inversion back to transparency at τ = 0. The recovery of this ES intensity
appears on the order of several hundred picoseconds and is greatly delayed when
compared to the carrier recovery seen in Fig. 6.4, which takes less than 20 ps.
Furthermore, the ES intensity first drops by about 30% and then overshoots while
recovering. The strength and time scale of this oscillatory behaviour is dependent
on the injection current and strongest in the vicinity of the ES lasing threshold.
The experimental setup was changed to study the ES intensity. Instead of using a

probe pulse, the outgoing ES intensity was constantly monitored by a streak camera
with temporal resolution of 30 ps. With this time-resolved measurement the ES-
intensity recovery-curves were obtained.
Figure 6.8 (a) shows the ES intensity drop and recovery curves for different injec-

tion currents J . The solid lines are the experimentally measured data, whereas the
dotted lines are the best fit obtained with the numerical model by changing Rw

loss,
gES, κES and NQD, all of which are parameters which are different from device to
device and therefore have to be inferred or measured. To account for the temporal
resolution, the simulation was convoluted with a Gaussian profile with a full-width-
at-half-maximum of 30 ps. The threshold current of the device was about 190 mA
and the injection current of the simulation was normalised with respect to this value.
The black sample represents the only sub-threshold measurement.
Just as predicted by the numerical simulations, the ES recovers on the order

of several hundred picoseconds. Thanks to some assistance provided by Benjamin
Lingnau, the fit agrees almost perfectly with the experimental data. The parameters
are given in Tab. 7.
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Figure 6.7: Reaction of ES
intensity versus time, after a
pulse is injected on the GS at
τ = 0. The ES intensity first
drops by about 30% and then
overshoots while recovering.
Note the larger time scales
compared to Fig. 6.4. Pa-
rameters as given in Tab. 4,
except κGS = 1.0ps−1,
κES = 0.05ps−1, RW

loss =
0.1nm2ps−1 and J = 5 ·
10−5enm−2ps−1.

The recovery takes longest, when the current is close to the ES threshold JES
th

(190mA, brown curve in Fig. 6.8), where the relative drop in intensity is also the
most pronounced. To illustrate the behaviour, the current-dependent dynamics are
shown in Fig. 6.8 (b), where the ES minimum time (blue) and depth (red) are
plotted versus injection current J . The squares represent the values obtained from
the six experimentally studied recovery curves in (a), while the lines were obtained
by numerical simulation. The ES intensity recovery is slowest at the ES lasing
threshold, and speeds up towards the flanks. Below a critical pump current, the
simulation predicts an almost instantaneous ES drop off. However, for that current
range no experimental recovery was measured, due to the low ES intensity and
limited time-resolution of the streak-camera.
The overall shape of the ES recovery time scale and minimum depth is linked

to the dampening and frequency of relaxation oscillations. When the system is
perturbed by the pump pulse, it is driven out of the fixed point and relaxes back
to equilibrium once all of the GS pulse intensity has passed. This is similar to
a turn-on scenario, where the system also transiently approaches the steady state
and therefore also induces relaxation oscillations. Hence, the depth and timing of
the minimum are linked to the dampening and frequency of relaxation oscillations,
which in turn correspond to the real and imaginary part if the partaking eigenvalue.
As has been shown, the LI-curve with the onset of lasing can be modelled, in a

first approximation, by a transcritical bifurcation where the ’off’ and ’on’ solutions
exchange stability at the threshold current (see Sec. 2.1.3). The damping of the
relaxation oscillations is therefore weakest close to the threshold and increases for
values far away from it. The imaginary part, however, is not as easily obtained and
must be derived from a model with at least two state variables where the lasing
state is actually a stable focus.
To further underline the nature of these oscillations, Fig. 6.9 plots the ES intensity
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Figure 6.8: (a) ES inten-
sity reaction after a pump
pulse on the GS. Measured
data: Solid lines. Simulated
data: Dashed lines. The
curves are plotted with an
offset for different pump cur-
rents. Only the relative drop
in the ES intensity was mea-
sured and simulation results
were therefore normalized as
well. The time and rela-
tive depth of the minimum
were evaluated and are plot-
ted in (b). Squares repre-
sent the six experimentally
measured curves shown in (a)
and the solid line the numer-
ically simulated values. The
injection current was normal-
ized to the ES threshold cur-
rent JES

th . The parameters
are given in Tab. 7. Redrawn
after [KAP14b].

fluctuation together with the change of average electron number per QD Δne:

ne =
we

NQD
+ fact(2ρGS

e + 4ρES
e ) + f inact(2ρGS

e,ia + 4ρES
e,ia). (6.1)

The current is J = 200 mA. After an ultra-fast recovery shortly after the pump
pulse, the carrier number (green line) exhibits oscillatory behaviour on the same
time-scales as the ES intensity (blue line). This is a clear indicator for relaxation
oscillations and results from the interacting charge carriers and lasing fields periodi-
cally exchanging energy. Even for this current close to the threshold oscillations are
quite damped, as is typical for QD lasers [BIM99], so that no transient overshoot is
ever produced.
Additionally, Fig. 6.10 displays the results for an excitation of inactive QD subensem-

bles by shifting the GS pulse wavelength either to lower (red, 1230 nm) or higher
(blue, 1290) wavelengths. The resulting minimum is in both cases shallower than for
resonant excitation (green, 1260 nm) while the overall shape is maintained. Most
importantly, the timing of the minimum is nearly unchanged, indicating that the
underlying mechanics are the same as for resonant excitation and that relaxation
oscillations are induced in a similar fashion. This is also what is expected, as the
system redistributes charge carriers, even across the QW barrier, from inactive to
active subensembles on the time scales of several picoseconds. The dent in the
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Table 7: Parameters used in the calculations of the experimental fits. Parameters not given
here are the same as in Tab. 4.

Symbol Value Meaning
T 300K Temperature
gGS 0.05ps−1 GS linear gain, active QD
gGS 0.025ps−1 GS linear gain, inactive QD
gES 0.1ps−1 ES linear gain, active QD
κGS 1.0ps−1 Optical GS losses, anti-reflective
κES 0.068ps−1 Optical ES losses, reflective
β 1× 10−2 Spontaneous emission factor

ZQD 1.5× 107 Number of QDs
NQD 5× 1010cm−2 Area density of QDs
fact 0.5 Fraction of active dots
RW

loss 0.04nm2ps−1 QW loss rate

overall number of carriers is simply reduced by the fact that the inactive QDs are
spectrally more diverse and therefore absorb less of the GS pulse intensity. Hence,
the resulting recovery curve is identical in shape but smaller in amplitude to the
resonant excitation.
The simulation of this off-resonant excitation was achieved by setting the ES gain

of the active QDs to zero gGS = 0. The resulting time-dependent recovery curves
(Fig. 6.10, dotted lines) once again nicely reproduce the experimentally obtained
data (solid lines). Note, that apart from the gain and current J the same parameters
were used for all simulations of this experiment, highlighting that the numerical
model reproduces the devices dynamic over a broad range of experimental set-ups.
Overall, both experiments and the cooperation with the group of Prof. Woggon

have proven to be a great success. After a prediction by the numerical model the
behaviour was observed in the experiment. The subsequent modelling of the ES
intensity recovery-curves lead to a satisfactory result. Not only is each individual
curve in excellent agreement with the experiment, but the current dependence is also
nicely reproduced. It is therefore evident that the numerical model used is capable
of describing even such time-dependent dynamics for the interaction of GS and ES
carriers and light fields.
The experimental details and additional information for this section are published

in APL as part of Ref. [KAP14b].
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Figure 6.9: Simulated ES intensity (blue) and electron number per QD (green) reaction to
a pump pulse on the GS at τ = 0 for J = 200 mA. As typical for relaxation oscillations the
carrier recovery exhibits the same time-scale as the simultaneous intensity fluctuation on the
ES. The experimental trace of the ES minimum depth and timing of Fig. 6.8 (b) can therefore
be identified as resulting from the current dependence of the relaxation oscillation frequency
and damping. The parameters used are given in Tab. 7.

Figure 6.10: ES intensity
reaction after a pump pulse
on the GS for excitation
of resonant (’active’) QD
subensembles (green) and
non-resonant (’inactive’) QD
subensembles (red, blue) at
J = 200 mA. The measured
data (solid lines) were also
simulated with the numerical
model (dashed lines). Non-
resonant excitation was mod-
elled via setting gGS = 0, re-
sulting in no absorption of
the pump pulse by active
QDs. The rest of the param-
eters are given in Tab. 7.
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7. Summary and Outlook

In the scope of this work the dynamic properties of quantum dot (QD) lasers were
numerically simulated, with the focus on two-state devices. These types of semicon-
ductor lasers can simultaneously achieve lasing on two separate wavelengths, owing
to the discrete set of energy levels inside the QD. The lasing states are called ground
state (GS) lasing and excited state (ES) lasing, referring to the confined QD level
that is involved.
From semiconductor and general laser properties, the derivation of the semiclas-

sical laser-equations was presented. Based on previous works these laser equations
were modified to include GS and ES electric fields and carrier-carrier scattering rates
were taken as calculated by B. Lingnau and N. Majer.
After reproducing the known results of single-state lasing with this numerical

model, the first step in investigating two-state lasing was taken. The current-
dependent steady states of two-state lasing QD lasers were simulated and presented
in light-current characteristics. These were then compared to the experimental find-
ings of Markus et al. [MAR03, MAR03c] and the importance of incomplete gain
clamping could be seen.
As a next step, the GS quenching was investigated. After presenting the possible

explanations identified in the literature, namely homogeneous broadening increase,
self-heating and electron-hole dynamics, the numerical model was used to reproduce
these claims. However, after taking into account the latest experimental findings and
weighing in some of the arguments brought forward, the asymmetric electron-hole
dynamics emerged as the dominating cause. Based on this, an analytical approxi-
mation for the GS and ES lasing regimes was derived and applied, to visualize the
carrier dynamics during GS quenching.
As a result of the analytical derivations, the key parameters influencing GS

quenching were identified. Consequently, these parameters were used in 2D-plots of
the lasing regimes. GS quenching is strongly linked to the asymmetric electron-hole
dynamics and can only be reproduced by achieving hole depletion. Furthermore, it
always constitutes a transition region in parameter space, inbetween purely ES las-
ing devices and stable two-state lasing regions. This could potentially be exploited
when experimentally trying to find the GS quenching regions, and the few experi-
mental data available so far is in good agreement with the 2D-plots. On a side note,
the turn-on dynamics of GS quenching devices were also presented. GS lasing and
ES lasing can be temporarily observed even for currents outside their stable lasing
regimes.
Then, the modulation response of two-state lasing was simulated. As a result

of the interaction of both active lasing modes, a drastic increase in the GS cut-
off-frequency was observed. The origin of this striking feature could be traced to
the onset of ES lasing and the coupling of both GS and ES carriers through the
relaxation scattering. However, no experimental data on this type of device was
available and more work needs to be done in this direction.
Lastly, a pump-probe experiment of a two-state lasing device by the group of Prof.

Woggon was numerically reproduced. Furthermore, the predictions of the numerical

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7_7, © Springer Fachmedien Wiesbaden 2015
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model could be verified in a section set of experiments.
Overall, the numerical model has proven itself to be consistent with available data.

It is capable of describing the main features, including two-state lasing and ground-
state quenching. However, with the scattering scheme as currently calculated, no
hole-depletion was achieved. This could be rectified by recalculating the scattering
rates from a different setup of energy separations. Furthermore, one could also think
of including additional hole states to improve the set of differential equations even
further.

Part of this work was submitted as [ROE14] to IEEE Journal of Quantum Elec-
tronics.
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Appendices

A. Scattering Rates

A.1. Fully Non-Linear Rates

With charge carrier densities in the surrounding quantum well we and wh given in
[1015 m−2], the capture rates Sm,cap

b,in in [ps−1] with b ∈ {e, h} and m ∈ {GS,ES} are
given by:

Sm,cap
b,in =

(A1w
2
e + A2w

2
h)exp(C1we + C2wh)

1− B1wh/we +B2we +B3wh − B4w2
e +B5w2

h +B6wewh

. (A.1)

Table 8: GS capture scattering parameters

SGS,cap
e,in SGS,cap

h,in

Par. Value Par. Value
A1 0.00895343 A1 0.0000743182
A2 0.0000926157 A2 0.00177834
B1 -0.0439039 B1 -0.00545883
B2 0.211373 B2 0.0108673
B3 0.194881 B3 0.153377
B4 -0.00985679 B4 0.000844681
B5 0.00207208 B5 -0.000207441
B6 0.0170416 B6 0.00273418
C1 -0.0114633 C1 0.0162571
C2 0.0116515 C2 0.000169687

Table 9: ES capture scattering parameters

SES,cap
e,in SES,cap

h,in

Par. Value Par. Value
A1 0.055805 A1 0.00188448
A2 -0.000832346 A2 0.0127417
B1 -0.156698 B1 0.256447
B2 0.908605 B2 0.170684
B3 -0.069774 B3 0.448176
B4 -0.0184423 B4 0.00634063
B5 -0.00705115 B5 0.0121547
B6 0.0595145 B6 -0.00479526
C1 -0.0173271 C1 -0.000115901
C2 0.00999964 C2 0.00950479

A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers, BestMasters,
DOI 10.1007/978-3-658-09402-7, © Springer Fachmedien Wiesbaden 2015
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Relaxation scattering rates are given by:

SRel
b,in =

(A1we + A2wh)exp(C1we + C2wh)

1−B1wh/we +B2we +B3wh −B4w2
e +B5w2

h +B6wewh

. (A.2)

Table 10: Relaxation scattering parameters

Srel
e,in Srel

h,in

Par. Value Par. Value
A1 0.493054 A1 0.281967
A2 0.138407 A2 0.689836
B1 0.0401102 B1 -0.0124172
B2 0.0641796 B2 0.22247
B3 0.384811 B3 0.197314
B4 0.00835259 B4 -0.00197186
B5 0.00746199 B5 0.0035868
B6 0.0129023 B6 0.00255207
C1 -0.018721 C1 0.00295926
C2 0.0165946 C2 0.00306085
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A.2. Linearised Size-Dependent Scattering Rates

The size-dependent scattering rates were derived from the microscopically calculated
ones of the previous section. r is a scaling parameter ranging from 0.5 to 2, with
r = 1 aligned to the QDs with energy spacing as described in Sec. 2.3:

SGS,cap
e,in =0.016 · r−1.48we

SGS,cap
h,in =0.0108 · r−1.40wh

SES,cap
e,in =0.032 · r−1.50we

SES,cap
h,in =0.0186 · r−1.33wh

SRel
e,in =

0.88 · r−0.47we

0.93 · r1.3 + we

SRel
h,in =

2.2 · r−0.50wh/

2.27 · r0.87 + wh

(A.3)
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B. Deutsche Zusammenfassung und Ausblick

In dieser Arbeit wurden Quantenpunktlaser numerisch und analytisch untersucht.
Der Fokus lag dabei auf Quantenpunktlaser, die simultan auf zwei unterschiedlichen
Wellenlängen emittieren. Dies ist nur durch die besondere energetische Struktur der
Quantenpunkte möglich, deren diskretes Energiespektrum die gleichzeitige Inversion
von Grund- und erstem angeregten Zustand erlaubt.
Zunächst wurden grundlegende Laserbestandteile und Eigenschaften zusammen

mit eine kurzen Überblick ihrer Historie vorgestellt, von wo aus im weiteren Verlauf
die semiklassischen Lasergleichungen hergeleitet wurden. In diesem Differentialglei-
chungssystem werden die quantemechanischen Zustände des aktiven Lasermediums
mit den klassischen Maxwellgleichungen gekoppelt und mit ihm lassen sich eine
Fülle von Halbleiterlaserszenarien untersuchen. Die Ladungsträgermechanik wird
dabei neben der stimulierten Emission, auch von den Streuraten zwischen verschie-
denen Zuständen dominiert. Diese Streuraten wurden in früheren Arbeiten bereits
berechnet und die Ergebnisse von N. Majer und B. Lingnau wurden für diese Arbeit
aufgegriffen und verwandt.
Nachdem mit dem semiklassischen Lasermodell zur Modellvalidierung das Ver-

halten von Laser mit lediglich einem aktiven optischen Übergang reproduziert wur-
de, wurden zunächst die Fixpunkte und die Laserkennlinie für Zwei-Wellenlängen-
Quantenpunktlaser berechnet. Dabei zeigte sich, dass die berechneten Kennlinien
in gutem Einklang mit den bereits veröffentlichten Experimenten von Markus et
al. sind. Insbesonderen konnte nun auch die bereits heuristisch motivierte unvoll-
ständige Ladungsträgersättigung numerisch reproduziert werden, die es dem ener-
getisch höheren angeregten Zustand erlaubt Ladungsträger anzusammeln.
Im Folgenden wurde dann eine besondere Eigenschaft der Zwei-Wellenlängen-

Laser näher untersucht: der Grundzustandsintensitätsabfall für steigende Pump-
ströme. Dabei wurden die verschiedenen Mechanismen aus aktuellen wissenschaft-
lichten Publikationen vorgestellt, und mit Hilfe des numerischen Quantenpunkt-
modells reproduziert. Neben Selbsterhitzungsprozessen oder einer Vergrößerung der
homogenen Lininebreite, stellte sich jedoch im Laufe dieser Aufarbeitung heraus,
dass das asymmetrischen Elektron-Loch-Verhalten der treibende Faktor hinter die-
sem anormalen Intensitätsabfall ist. Darauf aufbauend wurden mit Hilfe einer ana-
lytischen Näherung die Laserbedingungen für den Grundzustand und angeregten
Zustand hergeleitet, die nachfolgend zur Visualiserung der Ladungsträgerprozesse
benutzt wurden.
Mit den Ergebnissen dieser analytischen Studien konnten dann die wichtigen Pa-

rameter identifiziert und deren Einfluss in 2D-Grafiken aufgetragen werden. Dabei
wurden insbesondere die Variation der Laserintensitäten mit den optischen Verlu-
sten, der Temperatur und der Quantenpunktgröße untersucht. Der Grundzustand-
sintensitätsabfall tritt dabei nur in einer relativ eng begrenzten Zone des hochdimen-
sionalen Parameterraums auf, und stellt ein Übergangsphänomen zwischen Laser,
die nur auf dem Grundzustand abstrahlen, und Lasern, die nur auf angeregten Zu-
stand abstrahlen, dar.
Im Folgenden wurden dann die Modulationseigenschaften dieser Quantenpunkt-
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laser simuliert, wie sie z.B. für die Datenübertragung von Bedeutung sind. Dabei
wurde ein deutlicher Geschwindigkeitszuwachs für den Grundzustand vorhergesagt,
sobald der angeregte Zustand ebenfalls aktiv wird. Der Ursprung dieses Übergängs
konnte dabei mit dem Relaxationsprozess der Ladungsträger in Verbindung gebracht
werden. Da aber jedoch bisher keinerlei experimentelle Daten zu diesem Thema
veröffentlich wurden, sind weitere Untersuchungen erforderlich.
Im letzten Abschnitt wurde dann in Kooperation mit der Arbeitsgruppe von Prof.

Woggon (TU Berlin) die Ladungsträgerdynamik experimentell untersucht. Dabei
konnte das Quantenpunktmodell nicht nur bereits aufgenommene Daten reproduzie-
ren, sondern auch aktiv Vorhersagen treffen, die dann in einem zweiten Experiment
bestätigt wurden.
Insgesamt hat sich das Modell als äußerst verlässlich erwiesen, sowohl was die

Kennlinien als auch die Zeitentwicklung des Systems angeht. Weitere Verbesserun-
gen könnte man erreichen, indem man zusätzliche angeregte Zustände, insbesondere
für die Löcher, integriert. Dabei könnten auch die Streuraten neu berechnet wer-
den und sowohl die Phonon-Streuung als auch nicht-parabolische Wellenfunktionen
berücksichtigt werden.



References 95

References

[ABU13] M. Abusaa, J. Danckaert, E. A. Viktorov, and T. Erneux: Intradot time
scales strongly affect the relaxation dynamics in quantum dot lasers, Phys.
Rev. A 87, 063827 (2013).

[ALE07] R. R. Alexander, D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hop-
kinson, and R. A. Hogg: Zero and controllable linewidth enhancement factor
in p-doped 1.3 μm quantum dot lasers, Jpn. J. Appl. Phys. 46, 2421 (2007).

[ARA82] Y. Arakawa and H. Sakaki: Multidimensional quantum well laser and
temperature dependence of its threshold current, Appl. Phys. Lett. 40, 939
(1982).
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Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,
Phys. Rev. Lett. 101, 256803 (2008).

[GOM10] J. Gomis-Bresco, S. Dommers-Völkel, O. Schops, Y. Kaptan, O. Dyatlova,
D. Bimberg, and U. Woggon: Time-resolved amplified spontaneous emission
in quantum dots, Appl. Phys. Lett. 97, 251106 (2010).

[GIO06] F. S. Giorgi, G. Lazzeri, G. Natale, A. Iudice, S. Ruggieri, A. Paparelli,
L. Murri, and F. Fornai: MDMA and seizures: a dangerous liaison?, Ann.
N. Y. Acad. Sci. 1074, 357–364 (2006).



References 97

[GIO11] M. Gioannini and M. Rossetti: Time-domain traveling wave model of quan-
tum dot DFB lasers, IEEE J. Sel. Top. Quantum Electron. 17, 1318–1326
(2011).

[GIO12] M. Gioannini: Ground-state quenching in two-state lasing quantum dot
lasers, J. Appl. Phys. 111, 043108 (2012).

[GRE13] D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević,
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self-contained phase dynamics in an optically injected quantum-dot laser, in
Semiconductor Lasers and Laser Dynamics V, Brussels, edited by K. Pana-
jotov, M. Sciamanna, A. A. Valle, and R. Michalzik (SPIE, 2012), vol. 8432
of Proceedings of SPIE, pp. 84321J–1.

[LIN13] B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge: Feedback and injection
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[LUE12] K. Lüdge and E. Schöll: Temperature dependent two-state lasing in quan-
tum dot lasers, in Laser Dynamics and Nonlinear Photonics, Fifth Rio De
La Plata Workshop 6-9 Dec. 2011, edited by (IEEE Publishing Services,
New York, 2012), IEEE Conf. Proc., pp. 1–6.

[MAI60] T. H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493
(1960).

[MAJ11] N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge,
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Langhorst, C. Schubert, G. Eisenstein, and D. Bimberg: Wide-range wave-
length conversion of 40-Gb/s NRZ-DPSK signals using a 1.3-μm quantum-
dot semiconductor optical amplifier, IEEE Photonics Technol. Lett. 24,
1163–1165 (2012).

[SCU97] M. O. Scully: Quantum Optics (Cambridge University Press, 1997).

[SOK12] G. S. Sokolovskii, V. V. Dudelev, E. D. Kolykhalova, A. G. Deryagin,
M. V. Maximov, A. M. Nadtochiy, V. I. Kuchinskii, S. S. Mikhrin, D. A.
Livshits, E. A. Viktorov, and T. Erneux: Nonvanishing turn-on delay in
quantum dot lasers, Appl. Phys. Lett. 100, 081109 (2012).

[SUG05b] M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama,
K. Otsubo, and Y. Nakata: spectra of 1.3-μm self-assembled InAs/GaAs
quantum-dot lasers: Homogeneous broadening of optical gain under cur-
rent injectionmodeling room-temperature lasing, J. Appl. Phys. 97, 043523
(2005).

[SUG05] M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama,
K. Otsubo, T. Yamamoto, and Y. Nakata: Recent progress in self-assembled
quantum-dot optical devices for optical telecommunication: temperature-
insensitive 10 Gbs directly modulated lasers and 40 Gbs signal-regenerative
amplifiers, J. Phys. D 38, 2126–2134 (2005).

[TON06] C. Z. Tong, S. F. Yoon, C. Y. Ngo, C. Y. Liu, and W. K. Loke: Rate Equa-
tions for 1.3- μm Dots-Under-a-Well and Dots-in-a-Well Self-Assembled
InAs-GaAs Quantum-Dot Lasers, IEEE J. Quantum Electron. 42, 1175–
1183 (2006).

[VES07] K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini,
and S. Loualiche: Analysis of the double laser emission occurring in 1.55
μm InAs−InP (113)B quantum-dot lasers, IEEE J. Quantum Electron. 43,
810–816 (2007).



102 References

[VIK05] E. A. Viktorov, P. Mandel, J. Houlihan, G. Huyet, and Y. Tan-
guy: Electron-hole asymmetry and two-state lasing in quantum dot lasers,
Appl. Phys. Lett. 87, 053113 (2005).

[VIK07a] E. A. Viktorov, M. A. Cataluna, L. O’Faolain, T. F. Krauss, W. Sibbett,
E. U. Rafailov, and P. Mandel: Dynamics of a two-state quantum dot laser
with saturable absorber, Appl. Phys. Lett. 90, 121113 (2007).

[WEG14] M. Wegert, D. Schwochert, E. Schöll, and K. Lüdge: Integrated quantum-
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