
Chapter 4

Optimization models and complexity
analysis

In this chapter, we will present optimization models for the three problems that were out-
lined in the previous chapter. Furthermore, we will judge the complexity of the problems.
In Section 4.1, we discuss the suitability of an integrated approach and of an alterna-
tive hierarchical planning approach for the three problems, i.e., for the project selection
problem, the workforce assignment problem, and the utilization leveling problem. The
hierarchical approach comprises three stages—one for each problem. We conclude that
the hierarchical approach is preferable and present the corresponding optimization models
for the three problems in Sections 4.2, 4.3, and 4.4, respectively. For our key problem of
assigning workers to projects and allocating project workload, we will discuss limitations
of our modeling approach in detail and point out potential remedies in Section 4.3. Addi-
tionally, we will present an integrated, monolithic optimization model in Section 4.5. The
optimization models are mathematically precise statements of the problems. Each model
features one objective function, various sets of constraints, and different sets of decision
variables. The constraints define the solution space and allow to check if a solution, which
is defined by the values of the decision variables, is feasible. The objective function allows
to compare two solutions and to decide which of these two solutions is better. Finally,
we will elaborate on the complexity of our three problems of the hierarchical planning
approach in Section 4.6. The optimization models together with the evaluation of their
complexity serve as a basis for the solution methods that will be presented in the next
chapter.

4.1 An integrated approach vs. a hierarchical planning
approach

In this section, we will briefly discuss two alternative approaches to tackle the three prob-
lems that were outlined in Sections 3.2–3.4. The first approach tries to simultaneously
solve the three problems by formulating an integrated, monolithic optimization model.
The second approach formulates separate optimization models, orders these models hier-
archically, and solves one at a time. The separate models are only partially integrated.
We will argue that the second approach is preferable for our problems and outline a
three-stage hierarchical planning approach, which is partially integrated.
The first approach for our three problems, a monolithic model, integrates all decision

variables into a single model. To integrate the three objectives of maximizing portfolio

M. Walter, Multi-Project Management with a Multi-Skilled Workforce, Produktion
und Logistik, DOI 10.1007/978-3-658-08036-5_4, © Springer Fachmedien Wiesbaden 2015

54 Chapter 4 Optimization models and complexity analysis

benefit, minimizing average team size, and leveling working times into this single model,
alternative roads can be selected (cf. Ehrgott, 2005; Neumann and Morlock, 2002, pp. 135–
142; Domschke and Drexl, 2007, pp. 55-59). Two roads that are often selected are as
follows. The first alternative associates a weight with each objective and considers the
weighted sum of the objectives in a one-dimensional objective function. The second
alternative considers a vector whose components are one-dimensional objective functions.
For such a vector, a set of pareto-optimal solutions can be determined. The decision
maker can select a solution out of this set of pareto-optimal solutions. For his selection,
he must trade off the objectives against each other. For example, the decision maker
could select the solution that offers the best leveled working times with an average team
size of at most six workers per team and a portfolio benefit of at least 100.
In general, an integrated approach has two main disadvantages, which also become

important in our case. First, an integrated approach tries to generate a detailed master
plan and must, hence, process an enormous amount of data and information. In our
case, a monolithic model would become very complex due to the high number of decision
variables (cf. Günther, 1989, pp. 9–10). Second, a solution for the monolithic model fixes
even those decision variables that lie in the distant future, although the situation in the
distant future tends to be uncertain.
To overcome these two disadvantages of the first approach, the second approach struc-

tures the planning process hierarchically. The planning process is divided into several
stages. The monolithic model is split into smaller problems, each problem is allocated to
one stage of the planning process. The solution to a problem of a higher stage defines or
constrains the solution space for problems at subordinated stages (cf. Schneeweiß, 1992,
p. 13). An illustrative example of a hierarchical planning approach for a staffing problem
is given by Grunow et al. (2004).
The hierarchy of planning problems often follows the importance of the corresponding

decisions or the time horizon for which these decisions are made. The time horizon of a
decision and its importance tend to be closely related: A long-term decision is usually
a very important decision, i.e., a strategic decision, whereas short-term decisions, which
affect only the near future, tend to have less impact on a firm. Accordingly, long-term or
strategic planning, mid-term or tactical planning, and short-term or operational planning
are distinguished.
Compared to an integrated approach, a hierarchical planning approach has advantages

and drawbacks. On the one hand, a hierarchical planning approach is computationally
better tractable and enables to postpone decisions of subordinate stages to times when
uncertainty about data is resolved. On the other hand, a hierarchical approach requires
the decision maker to rank the problems according to their importance before solutions
to the problems will be generated. Here, the decision maker cannot trade off conflicting
objectives as well as with the integrated approach. For instance, if the portfolio benefit is
maximized first and the average team size is minimized afterwards, it may not be possible
at the second stage to find a solution that offers an average team size of at most six
workers per team.
For our three problems, however, a ranking of objectives in order of their importance

stands out clearly. The decision about the project portfolio is the most important one
for the firm, because selecting those projects which generate the highest total benefit
is what matters most. For a given portfolio of projects the firm may wish an efficient

4.1 An integrated approach vs. a hierarchical planning approach 55

execution of projects. An efficient execution is facilitated by small project teams and
by not scattering workers across a great number of projects. Therefore, minimizing the
average size of project teams is the second most important objective. Finally, the aim of
leveling hours worked by department members can be pursued when the other two goals
have been achieved.
A ranking of objectives according to the time horizon of the corresponding decisions

leads to the same order as a ranking in order of importance. The decision about the project
portfolio affects the complete planning horizon {1, . . . , T} unless the set Pongoing∪Pmust∪P̃
of projects can be partitioned into two non-empty subsets P̂1 and P̂2 such that there exists
a period t ∈ T \ {T} with t ≥ tfinish

p for all p ∈ P̂1 and t < tstart
p for all p ∈ P̂2 that divides

the planning horizon into two separate planning horizons {1, . . . , t} and {t + 1, . . . , T}.
The decision of assigning workers to projects affects also the complete planning horizon
if the set P of projects cannot be partitioned into two sets P1 and P2, as just explained.
Though, while the decision about the portfolio is almost irreversible, it is relatively easy
and inexpensive to change the composition of the team for a project at later points in
time, even after the start of the project. Hence, we can conclude that the time span that
is affected by decisions about project teams is actually shorter than the time span that is
affected by the decision about the project portfolio.
The time span that is affected by the problem of leveling hours worked by allocating

departmental workload is shorter than the time spans affected by the decisions made for
selection and team formation. The leveling problem must be solved for each department
in each period t ∈ T , hence, it is a short-term decision problem. At the time of project
selection, the utilization of workers in a later period t is uncertain. Thus, it is reasonable
to solve the leveling problem when utilization can be estimated more exactly, maybe two
weeks before period t starts. It is not reasonable to solve this problem at the time when
projects are selected, e.g., 10 months before period t starts.
In regard to the advantages of the hierarchical approach in general, and in regard to

its suitability for our problems, we propose the following three-stage planning process. At
the first stage, we solve the problem of selecting a project portfolio. At the second stage,
we seek for the minimum number of assignments of workers to those projects that were
selected at the first stage. Finally, we level the hours worked by department members in
each period t ∈ T immediately before period t begins.
Although we have separated the solution process for our three problems into three

stages, the problems are not fully separated but partially integrated. Here, partial integra-
tion means that we take into account subordinate problems when a problem of a superior
stage is solved. When we solve the problem of project selection at the first stage, we take
into account the availabilities of the workers who must accomplish the projects. We en-
sure that the requirements of the selected projects comply with the workers’ availabilities.
Furthermore, we take into account that sufficient availability remains for accomplishing
departmental workloads. Also at the second stage, we take departmental workloads into
account. For instance, at the time of project selection, the management of the firm may
know that department d is busy with preparing a report every first month of a quarter
and that department d′ must prepare an exhibition appearance in period t = 10. These
pieces of information can be integrated into the decision about the project portfolio.
In the subsequent sections we will present optimization models for the problem on

each stage of our three-stage planning approach.

56 Chapter 4 Optimization models and complexity analysis

4.2 A model for the project selection problem
For a neat presentation of the model for project selection, we will introduce one further
identifier. Recall that the set P̂suit

k is a subset of the union of the sets Pongoing, Pmust,
and P̃ and contains those projects p that are suitable for worker k. Let P̂suit

k (t) ⊆ P̂suit
k ,

t ∈ T , denote the set of projects that are suitable for worker k and that are executed
in period t. In other words, P̂suit

k (t) contains those projects p of the set P̂suit
k for which

tstart
p ≤ t ≤ tfinish

p holds.
Now, our problem of selecting projects can be modeled by (4.1)–(4.7). Model (4.1)–

(4.7) is a mixed-integer linear programming (MIP) model with binary decision variables zp,
p ∈ P̃ , that indicate whether project p is selected or not, and with non-negative continuous
decision variables ŷkpst, k ∈ K, p ∈ P̂suit

k , s ∈ Smatch
kp , t ∈ Tp, that represent the workload

that worker k performs for project p and skill s in period t.

Max.
∑
p∈P̃

bpzp (4.1)

s. t.
∑
k∈Ks

(lksŷkpst) = rpstzp
p ∈ Pongoing ∪ Pmust ∪ P̃ ,

s ∈ Sp, t ∈ Tp

(4.2)

∑
p∈P̂suit

k (t)

∑
s∈Smatch

kp

ŷkpst ≤ Rkt k ∈ K, t ∈ T (4.3)

∑
k∈Kd

⎛
⎝Rkt −

∑
p∈P̂suit

k (t)

∑
s∈Smatch

kp

ŷkpst

⎞
⎠ ≥ rddt d ∈ D, t ∈ T (4.4)

zp = 1 p ∈ Pongoing ∪ Pmust (4.5)

zp ∈ {0, 1} p ∈ P̃ (4.6)

ŷkpst ≥ 0
k ∈ K, p ∈ P̂suit

k ,

s ∈ Smatch
kp , t ∈ Tp

(4.7)

Objective function (4.1) maximizes the benefit of the project portfolio. Constraint
set (4.2) ensures that each requirement rpst of project p is satisfied if project p is selected.
The requirement rpst for skill s in period t is satisfied by contributions of workers who
master skill s. The coefficient lks takes into account that the workers k ∈ Ks master skill s
at different levels.
Constraint set (4.3) guarantees that a worker k does not spend more time for projects

in a period t than the time he is available in this period. Constraint set (4.4) assures
that the workers of every department have enough remaining availability to accomplish
the departmental workload in every period. On the left-hand side of Constraint (4.4), we
calculate for each worker k ∈ Kd of department d the time that remains of his initial avail-
ability Rkt in period t when contributions to projects are considered. The total remaining
time of all workers of department d must be large enough to cover the departmental
workload.
Constraint set (4.5) fixes the variables zp, p ∈ Pongoing∪Pmust, to 1, because we have to

4.2 A model for the project selection problem 57

include these projects in the portfolio. Constraint sets (4.6) and (4.7) state the domains
of the actual decision variables.
By variables ŷkpst in conjunction with Constraints (4.2)–(4.4), we model the allocation

of workload and the availabilities for each worker explicitly. This is necessary because we
consider cases where at least two workers master more than one skill each and where for at
least one of these skills different levels are distinguished. Otherwise, i.e., especially if only
homogeneous skill levels were considered, it would be possible to aggregate the capacity of
the workers and to spare all variables ŷkpst. Though, such an aggregation would lead to a
model of exponential size in the number of skills S (cf. Grunow et al., 2004, Section 3.3).
Grunow et al. (2004, Section 3.3) and Grunow et al. (2002, Section 4.2) show how

capacities of multi-skilled resources can be aggregated if skill levels are homogenous. In
the instances of their problems, the number of skills must have been relatively small so
that model size did not became critical. We will give an example that shows how their
aggregation could be applied in our case if skill levels were not differentiated. In this
example, we also show why this aggregation is not applicable in the case of heterogeneous
skill levels.

Example 4.1 Assume an instance A with K = S = 2, T = {t} and several projects that
can be selected. Let Sk1 = {s1} and Sk2 = {s1, s2} with lks = 1, k ∈ K, s ∈ Sk, and let
Rkt = 10, k ∈ K. Furthermore, assume that there is no departmental workload at all.1
Let us denote the demand of the projects for skill s ∈ S that must be satisfied in period t
by rst where rst :=

∑
p∈Pongoing∪Pmust∪P̃ | t∈Tp rpstzp. For instance A, Constraint sets (4.2)

and (4.3) can then be replaced by the following constraints, which ensure that the skill
requirements of all selected projects are satisfied and that the availabilities of all workers
are regarded: rs1t ≤ 20, rs2t ≤ 10, and rs1t + rs2t ≤ 20. In general, we would require that
the following Constraint set must hold, where S ′ represents any non-empty subset of S:∑

s∈S′

rst ≤
∑

k|Sk∩S′ 	=∅

Rkt S ′ ⊆ S, S ′
= ∅, t ∈ T (4.8)

Since the number of non-empty subsets of S is equal to 2|S| − 1, Constraint set (4.8)
comprises an exponential number of constraints what makes this aggregation unattractive
when there is a large number of skills.
Now, let us turn to the case of heterogeneous skill levels. Consider an instance B

which is identical to instance A except that now Sk1 = Sk2 = {s1, s2} with lk1s1 = 0.5 and
lk1s2 = lk2s1 = lk2s2 = 1 holds. Here, the capacity of worker k1 depends on the skill that she
performs. We will consider two possibilities to adjust Constraints (4.8) to this situation.
As we will see, both possibilities do not work. One possibility is to replace the right-
hand side of Constraint set (4.8) by

∑
k|Sk∩S′ 	=∅ (Rkt ·maxs∈Sk∩S′ lks). Then, we obtain

the constraints rs1t ≤ 15, rs2t ≤ 20, and rs1t + rs2t ≤ 20. According to these constraints,
a project portfolio with rs1t = 15 and rs2t = 1 is a feasible solution of the selection
problem, but there exists no corresponding feasible solution for the variables ŷkpst, i.e.,
there exists no feasible disaggregation. A second possibility is to replace the right-hand
side of Constraint set (4.8) by

∑
k|Sk∩S′ 	=∅ (Rkt ·mins∈Sk∩S′ lks). This replacement yields

the constraints rs1t ≤ 15, rs2t ≤ 20, and rs1t + rs2t ≤ 15. These constraints render the
1This assumption is no loss of generality because we could interpret the requirements of each department
as a project, as explained in Subsection 4.3.2 on page 64.

58 Chapter 4 Optimization models and complexity analysis

solution rs1t = rs2t = 10 infeasible, although there exists a disaggregation leading to
feasible values for the variables ŷkpst. �

As Example 4.1 indicates, capacities of workers cannot be aggregated when skill levels
are heterogeneous because the capacity of a worker depends on the skill or, to be more
precise, on the skill mix which he performs. However, this skill mix is not known in ad-
vance, i.e., not before the model is solved. Hence, we must explicitly model the allocation
of workload and the availabilities for each worker.

4.3 Models for the workforce assignment problem and
their limitations

In this section, we consider models for the problem of assigning workers to projects and al-
locating project workload to workers. In Subsection 4.3.1, we will present two MIP models
for this problem. The two models are alternative fomulations of the workforce assignment
problem. Since this problem is in the focus of this thesis, we point out limitations of the
models in Subsection 4.3.2 and outline potential extensions that mitigate these limitations.

4.3.1 Two alternative models for the workforce assignment problem
In this subsection, we will present two MIP models for the problem of assigning workers to
projects and allocating project workload to workers. The first model is termed standard
model, it can be intuitively derived from the problem definition in Section 3.3. The second
model is named network model, because it implies for each period t ∈ T a network flow
model. In such a network flow model, working time is assumed to flow from workers to
projects and departments in order to cover their requirements.
To obtain a sparse formulation of both MIP models, we introduce one further identifier,

analogously to the previous section. Remember that the set Psuit
k ⊆ P includes those

projects p that are suitable for worker k due to matching skills. Let Psuit
k (t) ⊆ Psuit

k ,
t ∈ T , denote the set of projects that are suitable for worker k and that are carried out
in period t. Put another way, Psuit

k (t) contains those projects p of the set Psuit
k for which

tstart
p ≤ t ≤ tfinish

p holds.
The standard model is given by (4.9)–(4.16). The decision variables of the standard

model are the binary variables xkp, k ∈ K, p ∈ P suit
k , which indicate whether worker k

is assigned to project p or not, and the non-negative continuous variables ykpst, k ∈ K,
p ∈ Psuit

k , s ∈ Smatch
kp , t ∈ Tp, which record the workload that worker k accomplishes for

project p and skill s in period t.

Min.
∑
k∈K

∑
p∈Psuit

k

xkp (4.9)

s. t.
∑
k∈Ks

(lksykpst) = rpst p ∈ P , s ∈ Sp, t ∈ Tp (4.10)

∑
s∈Smatch

kp

ykpst ≤ Rktxkp

p ∈ P , k ∈ Ksuit
p \ Kassigned

p ,

t ∈ Tp

(4.11)

4.3 Models for the workforce assignment problem and their limitations 59

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst ≤ Rkt k ∈ K, t ∈ T (4.12)

∑
k∈Kd

⎛
⎝Rkt −

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst

⎞
⎠ ≥ rddt d ∈ D, t ∈ T (4.13)

xkp = 1 p ∈ Pongoing, k ∈ Kassigned
p (4.14)

xkp ∈ {0, 1} p ∈ P , k ∈ Ksuit
p \ Kassigned

p (4.15)

ykpst ≥ 0
k ∈ K, p ∈ Psuit

k ,

s ∈ Smatch
kp , t ∈ Tp

(4.16)

Objective function (4.9) minimizes the total number of assignments of workers to
projects and, thus, the average team size. The total number of assignments includes the
assignments that have already been made for ongoing projects. Constraints (4.10) ensure
that the requirement rpst, p ∈ P , s ∈ Sp, t ∈ Tp, is satisfied by contributions from workers
who master skill s. The coefficient lks takes into account that these workers k ∈ Ks master
skill s at different levels.
Constraints (4.11) link the variables xkp and ykpst. These constraints guarantee that

worker k can only contribute to project p if he is assigned to project p. A contribu-
tion ykpst > 0 for any skill s ∈ Smatch

kp in any period t ∈ Tp requires xkp = 1. Simul-
taneously, Constraints (4.11) force xkp = 1 if worker k contributes to project p for any
skill s ∈ Smatch

kp in any period t ∈ Tp. Hence, if worker k contributes to project p, he is
automatically assigned to project p.
Constraints (4.11) are so called “big-M constraints”, which allow to model logical

conditions (cf. Bosch and Trick, 2005, pp. 77–78; Williams, 1999, pp. 154–160). In a
general form, the right-hand side of Constraints (4.11) would be written as Mxkp, where
M is a sufficiently large constant. We chose Rkt for M , as Rkt is an upper bound for∑

s∈Smatch
kp

ykpst and, hence, sufficiently large.
Constraints (4.12) take care that the working time which worker k spends for projects

in period t does not exceed his availability Rkt. Constraints (4.13) ensure for each de-
partment d ∈ D that the remaining availabilities of all workers of department d are large
enough in every period t ∈ T to accomplish the departmental workload rddt.
For each ongoing project p ∈ Pongoing, a team Kassigned

p of workers exists already. For
each member k of this team, Constraint set (4.14) fixes the corresponding variable xkp

to 1. Constraint sets (4.15) and (4.16) state the domains of the actual decision variables.
Let us briefly discuss the big-M constraints (4.11). We could have replaced Con-

straints (4.11) by

ykpst ≤ Rktxkp p ∈ P , k ∈ Ksuit
p \ Kassigned

p , s ∈ Smatch
kp , t ∈ Tp (4.17)

or by

∑
s∈Smatch

kp

∑
t∈Tp

ykpst ≤

⎛
⎝∑

t∈Tp

Rkt

⎞
⎠ xkp p ∈ P , k ∈ Ksuit

p \ Kassigned
p . (4.18)

60 Chapter 4 Optimization models and complexity analysis

To assess the three alternatives (4.11), (4.17), and (4.18), we scrutinize the number
of constraints resulting from each constraint set and the tightness of each constraint set
for the linear programming (LP) relaxation of the corresponding MIP. The LP relaxation
of the standard model is obtained when the binary variables xkp ∈ {0, 1} are replaced by
continuous variables xkp ∈ [0, 1]. This relaxation is commonly used to solve the model
by branch-and-bound or branch-and-cut methods. The higher the number of constraints
which define the feasible region of the LP relaxation, the more time is generally required
for solving the LP relaxation. The tighter the relaxation, the closer does the feasible
region of the relaxation come to the convex hull of feasible integer points of the MIP.
The tightness of the relaxation is vitally important and more important than the number
of constraints. In general, the drawback of additional constraints is outweighed by far if
these constraints tighten the relaxation (cf. Williams, 1999, pp. 190–197).
The largest number of constraints exhibits Constraint set (4.17). It comprises |Smatch|

times as much constraints as Constraint set (4.11), where |Smatch| denotes the average
number of matching skills between a project p ∈ P and a worker k ∈ Ksuit

p \Kassigned
p . The

smallest number of constraints are contained in Constraint set (4.18), where a constraint
for project p covers the whole duration of project p. Constraint set (4.11) has |T proj| times
as much constraints as Constraint set (4.18), where |T proj| denotes the average duration
of a project p ∈ P .
We will use the following example to gain insight in the tightness of the three constraint

sets:

Example 4.2 Consider worker k and project p with Smatch
kp = {s1, s2}, Tp = {t1, t2},

Rkt1 = 50, and Rkt2 = 100. Let ykps1t1 = ykps2t1 = 25 and ykps1t2 = ykps2t2 = 0 be a feasible
solution for the MIP. Then xkp ≥ 1 satisfies (4.11), xkp ≥ 0.5 satisfies (4.17) and xkp ≥ 1

3

satisfies (4.18) in the LP relaxation of the corresponding MIP. �

In Example 4.2, Constraint set (4.11) is the tightest out of the three alternatives.
Indeed, Constraint set (4.11) is always at least as tight as Constraint sets (4.17) and
(4.18) and tighter than (4.17) and (4.18) in general.
From our considerations we concluded that Constraint set (4.11) is the best choice.

Numerical tests supported our conclusion. These numerical tests are presented in Sec-
tion 7.3.2
The network model is an alternative way to represent the same problem as the standard

model. Since the properties of network structures can often be exploited to design efficient
solution methods, it seems worthwhile to pursue this alternative approach. The network
model regards in each period t ∈ T each worker k ∈ K as a source of working time. This
source is represented by a node in the network model that supplies an amount of Rkt hours
of working time. Projects and departments are regarded as sinks, i.e., as nodes that ask
for working time. Project p asks for rpst hours of working time for each skill s ∈ Sp in
period t. Department d demands rddt hours of working time in period t. In the network
of period t, working time can flow from source nodes along arcs via intermediate nodes to
the sinks which represent the demand nodes. In any period t ∈ Tp, working time can flow
from worker k ∈ Ksuit

p to project p only if worker k is assigned to project p. Our aim is to
determine the minimum number of assignments of workers to projects that allow a flow
of working time which satisfies all demands of projects and departments in every period.

2For a tighter formulation of the big-M Constraints (4.11) and (4.17) see Subsection 6.1.1.

4.3 Models for the workforce assignment problem and their limitations 61

The underlying network of a period is sketched in Figure 4.1, which also depicts
additional flow variables, which are required for the network model. For Figure 4.1, we
assume that projects p1 and p2 are executed in period t and that workers k1 and k2 belong
to department d1. Furthermore, we assume that worker k1 and k2 master the skills s1 and
s2, which are required by project p1. Note that Figure 4.1 illustrates only a section of the
total network of period t in order to clarify the concept. A demand for working time is
represented by a negative supply.

Stage 1 Stage 2 Stage 3 Stage 4

k1t

Rk1t

k2t

Rk2t

...

k1tp1

k1tp2
...

· · ·

k2tp1

k2tp2
...

· · ·

f
proj
k1p1t

k1tp1s1

k1tp1s2
...

· · ·

k2tp1s1

k2tp1s2
...

· · ·

yk1p1s1t
lk1s1

lk2s1

p1s1t
...

−rp1s1t

d1t
...

−rdd1t

lk1s1yk1p1s1t

f
dep
k1t

Key: node i
supplyi

node j
supplyj

gainij
flowij gainij · flowij

Figure 4.1: Section of the underlying network flow model for period t

Like the network of period t in Figure 4.1, the network of each period t ∈ T comprises
four stages, with supply nodes at the first stage and demand nodes at the fourth stage. At
the first stage of the network, the source nodes represent the workers k ∈ K, who supply
a flow of Rkt hours of working time. This flow from worker k is divided into flows fproj

kpt to
projects p ∈ Psuit

k (t) at the second stage and into a flow fdep
kt to the department to which

worker k belongs.
The flow fproj

kpt to project p is split up into flows ykpst, s ∈ Smatch
kp , to project demand

nodes on the final stage. Before the flow ykpst reaches the sink node that represents the
project requirement rpst, the flow is multiplied by a gain of lks. This gain weights the
time that worker k spends for skill s of project p with his skill level lks. Since lks
= 1 is
possible, we obtain a network with gains (cf. Ahuja et al., 1993, pp. 566–568; Bertsekas,
1998, pp. 360–365). Problems on networks with gains are termed generalized network
problems.

62 Chapter 4 Optimization models and complexity analysis

The network model requires two types of additional variables, which have already
been introduced in Figure 4.1. First, variable fproj

kpt ∈ R≥0, k ∈ K, p ∈ Psuit
k , t ∈ Tp,

records the flow between stage 1 and 2 from worker k to project p in period t. Second,
the variable fdep

kt ∈ R≥0, k ∈ K, t ∈ T , represents the flow between stage 1 and 4 from
worker k to his department d in period t.
For each worker k ∈ K and all projects p ∈ Psuit

k , the flow variables fproj
kpt of all

periods t ∈ Tp and hence the networks of all these periods are coupled by the binary
decision variable xkp. Each variable fproj

kpt , t ∈ Tp, must equal 0 if worker k is not assigned
to project p, i.e., if xkp = 0.
Although additional variables are required for the network model, it is worthwhile

to consider this model, because underlying network structures can often be exploited by
specialized network algorithms. These algorithms facilitate an efficient solution of the
underlying problems (cf. Ahuja et al., 1993, pp. 402–403, for example).
The network model is given by (4.19)–(4.29). The decision variables of the network

model are the binary variables xkp, k ∈ K, p ∈ P suit
k , which indicate whether worker k

is assigned to project p or not, and the non-negative continuous variables ykpst, k ∈ K,
p ∈ Psuit

k , s ∈ Smatch
kp , t ∈ Tp, which record the workload that worker k performs for

project p and skill s in period t. Auxiliary variables are the non-negative continuous
variables fproj

kpt , k ∈ K, p ∈ Psuit
k , t ∈ Tp, which represent the flow from worker k to

project p in period t, and the non-negative continuous variables fdep
kt , k ∈ K, t ∈ T , which

represent the flow from worker k to his department in period t.

Min.
∑
k∈K

∑
p∈Psuit

k

xkp (4.19)

s. t. Rkt = fdep
kt +

∑
p∈Psuit

k (t)

fproj
kpt k ∈ K, t ∈ T (4.20)

fproj
kpt =

∑
s∈Smatch

kp

ykpst k ∈ K, p ∈ Psuit
k , t ∈ Tp (4.21)

∑
k∈Ks

(lksykpst) = rpst p ∈ P , s ∈ Sp, t ∈ Tp (4.22)

∑
k∈Kd

fdep
kt ≥ rddt d ∈ D, t ∈ T (4.23)

fproj
kpt ≤ Rktxkp p ∈ P , k ∈ Ksuit

p \ Kassigned
p , t ∈ Tp (4.24)

xkp = 1 p ∈ Pongoing, k ∈ Kassigned
p (4.25)

xkp ∈ {0, 1} p ∈ P , k ∈ Ksuit
p \ Kassigned

p (4.26)

fproj
kpt ≥ 0 k ∈ K, p ∈ Psuit

k , t ∈ Tp (4.27)

fdep
kt ≥ 0 k ∈ K, t ∈ T (4.28)
ykpst ≥ 0 k ∈ K, p ∈ Psuit

k , s ∈ Smatch
kp , t ∈ Tp (4.29)

Objective function (4.19) minimizes the total number of assignments and, hence, the
average team size. The total number of assignments includes the assignments that have
already been made for ongoing projects.

4.3 Models for the workforce assignment problem and their limitations 63

Constraints (4.20)–(4.22) are flow conservation constraints. Constraints (4.20) demand
that the flow of working time from worker k to his department and to projects in period t
must equal the supply Rkt of working time in period t. Constraints (4.21) ensure that
the working time which worker k spends for all skills s ∈ Smatch

kp of project p in period t
equals the flow from worker k to project p in period t. Constraints (4.22) assure that
requirement rpst of project p for working time concerning skill s in period t is covered by
contributions from suitable workers k. Their contributions are weighted with their skill
levels lks.
Constraints (4.23) guarantee that the flow of working time from those workers who

belong to department d ∈ D to their department d in period t is sufficiently large to cover
the requirement rddt. Constraint set (4.23) allows that an excessive supply of working time
is absorbed by the departments. As a consequence, the variable fdep

kt does not specify the
departmental workload that worker k must accomplish in period t, but is only an upper
bound on the departmental workload that must be accomplished by worker k in period t.
Constraints (4.24) link the variables xkp and fproj

kpt . These constraints guarantee that
worker k can only contribute to project p if he is assigned to project p. A contribu-
tion fproj

kpt > 0 in any period t ∈ Tp and, hence, a contribution ykpst > 0 for any
skill s ∈ Smatch

kp requires xkp = 1. Simultaneously, Constraints (4.24) force xkp = 1 if
worker k contributes to project p in any period t ∈ Tp. Thus, if worker k contributes to
project p, he is automatically assigned to project p.
For each ongoing project p ∈ Pongoing, a team Kassigned

p of workers exists already. For
each member k of this team, Constraint set (4.25) fixes the corresponding variable xkp

to 1. Constraint sets (4.26)–(4.29) state the domains of the actual decision variables. The
decision variables whose domains are defined in (4.27) and (4.28) can be considered as
auxiliary variables, which are required to model the network flows in each period t ∈ T .
Constraints (4.24) are big-M constraints. They are equivalent to the big-M Con-

straints (4.11) of the standard model. Constraint set (4.24) can also be replaced by
Constraint sets (4.17) or (4.18).

4.3.2 Limitations of the assignment models and potential remedies
and extensions

We have already discussed limitations of our approach to project selection in Section 3.2
and limitations of our approach to leveling hours worked by allocating departmental
workload in Section 3.4. Now, we will elaborate on limitations of the two models that
we introduced in the previous Subsection 4.3.1. Both models have identical scope and
seek for a solution to the same problem. They search for an assignment of workers to
projects and for an allocation of project workload to workers. Since this problem is in
the focus of this thesis, we dedicate a separate subsection to limitations of our models for
this problem. The limitations that we discuss are the neglect of overtime, the neglect of
learning effects3, the neglect of the role of project managers, and the neglect of worker
compatibility.
In many firms, workers are allowed to work overtime. If a worker works overtime,

his regular availability is exceeded. Usually, the amount of extra hours per period is

3The consideration of learning effects would result in dynamic skill levels.

64 Chapter 4 Optimization models and complexity analysis

limited. Firms prescribe extra hours to meet peak demands. Workers are compensated
for extra hours either by monetary means or by days off in other periods. If days off
are granted instead of monetary rewards, many employment contracts prescribe that the
average hours worked per period must not exceed the average regular availability per
period. This means that extra hours must be completely compensated in the course of a
year or so.
Our models (4.9)–(4.16) and (4.19)–(4.29) do not consider overtime. They regard the

regular availability Rkt of worker k in period t as a hard constraint, which must not be
violated. Hence, our modeling approach does not meet the conditions that prevail in
many firms.
In the project management literature, overtime is rarely considered in models. A

model that takes overtime into account is the model of Heimerl and Kolisch (2010a).
Heimerl and Kolisch (2010a) want to minimize costs for wages. They associate wage rates
with extra hours that are higher than wage rates for regular hours. In their model, extra
hours are explicitly registered by distinct variables.
The integration of overtime into our models is possible as well. If extra hours are

compensated by additional payments and need not be balanced over the planning horizon
but are limited for each period, then we would just have to increase the availability Rkt.
For example, assume that the regular availability of worker k in period t is given by
Rkt = 160 and that 20 extra hours are allowed for worker k in period t, then we would
set Rkt := 180. Since we do not consider variable costs, nothing else must be done. If we
want to take variable costs for overtime into account, additional variables are necessary
to record the extra hours of each worker in each period (cf. Heimerl and Kolisch, 2010a).
If extra hours must be compensated by days off in the course of the planning horizon,

our models require three changes. First, we have to increase Rkt, k ∈ K, t ∈ T , by the
number of extra hours that are allowed per period. For example, if the regular availability
of worker k is given by Rkt = 160 for each period t ∈ T and if 20 extra hours were allowed
per period, we would set Rkt := 180 for each period t ∈ T .
Second, a new set of constraints must be added to our models. These constraints must

demand that the number of hours worked by worker k ∈ K during the whole planning
horizon does not exceed the number of regular hours that the labor contract allows for
the planning horizon. In our example, worker k would not be allowed to work more than
160 ·T hours during the planning horizon T = {1, . . . , T}. Constraint (4.30) imposes this
limit on the total working time of worker k during the planning horizon.∑

t∈T

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst ≤ 160 · T (4.30)

Third, the workload of each department must be interpreted as a project. The first
two changes, which we presented for the standard model and the network model, are not
in line with Constraints (4.13) and Constraints (4.23), respectively, which ensure that
the remaining availability after project work is sufficiently large to cover departmental
workloads in each period. The issue is that Constraint (4.30) does not register the time
that worker k spends for departmental work. To fix this issue, the workload of each
department d ∈ D has to be interpreted as a project. This interpretation results in D ad-
ditional projects. The project that corresponds with department d has a requirement of
rddt man-hours in period t ∈ T . This workload can only be accomplished by members of

4.3 Models for the workforce assignment problem and their limitations 65

department d. Thus, department membership must be interpreted as a skill, resulting in
D additional skills. Such an additional skill is mastered only by the members of the corre-
sponding department. The skill level with which each member masters his departmental
skill is equal to 1. Additional binary assignment variables that indicate whether worker k
is assigned to the project that corresponds to his department or not, can be fixed to 1.
These three changes of our models would allow to integrate overtime that is compensated
by days off.
A consideration of overtime in a model raises the question how worked extra hours

should be taken into account in the objective function of the model. If a firm grants
monetary compensation for extra hours, it seems natural to minimize the payments for
overtime. Though it is difficult to integrate this cost objective and the objective of a
minimum average team size into a single objective function, because both objectives are
expressed in different units. Natural weights for the two objectives are not apparent.
Hence, it would make more sense to consider both objectives separately and to determine
a set of pareto-optimal solutions. If the firm compensates extra hours by days off, the
same difficulties arise if the firm wants to minimize the number of extra hours in order to
achieve leveled working times for its workforce. If the firm does not aim at minimizing
extra hours, extra hours need not be taken into account in an objective function.
We do not consider overtime in our models for two reasons. First, extra hours are

rather an ad hoc measure to cover unforeseen workload peaks. Although flexible working
time agreements have become more common, especially labor unions and works councils
urge the management of firms to stick to regular working times and are opposed to the
planned use of extra hours. Therefore, overtime is often not deemed a suitable way to
expand capacity or to form small teams. The second reason for neglecting overtime is
owed the novelty of our approach. Since this approach is the first of its kind, we restrict
our models to the most essential elements and parts of the underlying problem in order to
get good insight into basic properties of the problem. Effects that appear when input data
or solution methods are changed stand out more clearly in case of a plain and compact
model.
Furthermore, our models assume that the skill levels lks, k ∈ K, s ∈ Sk, are static. We

ignore that skill levels might change due to effects of learning and forgetting. Learning
and forgetting a skill is closely linked to performing the skill. When skill s is performed by
worker k, the learning effect increases the skill level lks. The increase can be derived from
a nonlinear learning curve (cf. Wright, 1936; Yelle, 1979). Forgetting appears when skill s
is not performed for some time and decreases the skill level (cf. Chen and Edgington,
2005, p. 287).
In the literature, models exist that incorporate learning and forgetting (cf. Wu and

Sun, 2006; Gutjahr et al., 2008, 2010; and Heimerl and Kolisch, 2010b, for example).
These models apply nonlinear expressions to integrate the concept of the learning curve.
The resulting models feature dynamic skill levels. Some of the models aim at allocating
workload such that targets for skill levels are met at the end of the planning horizon.
The integration of dynamic skill levels into our models would require significant

changes, which lead to nonlinear models. Though, in our opinion, the merit of con-
sidering dynamic skills is small in our case. We argue that the merit is small for two
reasons. First, it is difficult and cumbersome to derive learning rates for each worker
and each skill, especially because for some skills it can be costly to measure skill levels

66 Chapter 4 Optimization models and complexity analysis

at short intervals to construct a learning curve. Estimations of learning rates tend to be
error-prone. Secondly, the typical length of our planning horizon of one year is relatively
short compared to the duration of project tasks, which are quite complex and can last
several months. Thus, learning effects within some periods should be rather small, as the
number of units of output is small.4 That is why we recommend to use static skill levels
and evaluate skill levels once a year. Then, models for the next planning horizon can be
fed with updated skill levels. Periodically updates of skill levels are also used by Süer and
Tummaluri (2008).
If a firm aims at allocating project workload such that skills of workers are developed to

meet skill level targets at the end of the planning horizon, a model featuring dynamic skill
levels is advantageous. Nevertheless, if the firm wants that worker k gathers experience
in skill s, we could simply add a constraint to our models. Assume that worker k is
said to perform at least 100 hours of work for skill s during the planning horizon, then
Constraint (4.31) would guarantee this experience.∑

t∈T

∑
p∈Psuit

k (t) | s∈Sp

ykpst ≥ 100 (4.31)

The third limitation concerns the role of the project manager. Usually, each project
has one project manager. She is the head of the project team, coordinates the team
members, and is responsible for a successful implementation of the project (Kerzner,
2013, pp. 14–15).
While our models do not take the role of project managers into account, Yoshimura

et al. (2006) and Patanakul et al. (2007) published models that explicitly consider the
role of the project manager.
For our approach, we can imagine at least two ways to assign exactly one project

manager to each project. First, project managers might be assigned in advance, i.e.,
before the assignment model is solved that determines the project teams. Second, the task
of assigning one project manager to each project could be integrated into our assignment
models. We would define a set KPM

p ⊆ Ksuit
p , p ∈ P , of workers that are qualified to act

as project manager for project p. Then, Constraint (4.32) would ensure that at least one
worker out of the set KPM

p is selected for managing project p.∑
k∈KPM

p

xkp ≥ 1 (4.32)

If in a solution more than one worker out of the set KPM
p was assigned to project p,

one of them must be selected as project manager. If it is not deemed suitable to include
more than one potential project manager into a project team, we could demand that the
left-hand side of Constraint (4.32) must equal 1.
Project managers have to accomplish special tasks for their project, e.g., administra-

tive tasks. To model these requirements we could associate a distinct skill s with the

4It may even be difficult to define an appropriate unit of output. Though, a definition of a unit of
output is required to measure a learning rate. Such a definition is obvious for manufacturing firms (cf.
Nembhard and Uzumeri, 2000). For a software development organization, Boh et al. (2007) defined
completed modification requests and software releases as units of output, which were accumulated over
a time span of 14 years.

4.3 Models for the workforce assignment problem and their limitations 67

qualification to head a project team. Then, a requirement rpst for this special skill s
could model the tasks that must be accomplished by the project manager of project p in
period t.
Finally, we address the compatibility between workers. Compatibility between workers

means how well two workers cooperate. Compatibility is a complex matter, as it is affected
by various personality traits and the work situation (cf. Tett and Murphy, 2002).
Findings about the relationship between worker compatibility and team performance

are ambiguous. Intuitively, one would expect compatibility to be positively correlated to
performance, as found by Reddy and Byrnes (1972) in an experimental study. However,
Hill (1975) found in an empirical study of teams within an IT department that rather
incompatibility than compatibility is associated with performance and effectiveness. Hill
(1975) suggested that the nature of a task may impact the relation between worker com-
patibility and effectiveness: The more cooperation the task requires, the more important
is compatibility. Though, if “synergistic gains are not possible, incompatibility may lead
to higher total accomplishment through the channeling of energy into individual efforts”
(Hill, 1975, p. 218).
Our models do not take care of worker compatibility. We assume that workers are

equally compatible to one another, i.e., that they are indifferent to the selection of their
co-workers.
In the literature, models have been proposed that consider worker compatibility. For

example, Kumar et al. (2013) have formulated a MIP model for a problem where tasks
must be assigned to workers and where some tasks depend on other tasks. If task j
depends on task i, the workers that are assigned to these tasks must cooperate. The
more the workers are compatible with each other, the better is their cooperation and the
smoother is the corresponding work flow. The objective of the model of Kumar et al.
(2013) is to assign tasks to workers such that the total pairwise compatibility of workers
who must cooperate is maximized.
We could adopt the approach of Kumar et al. (2013) to modeling compatibility and

we could integrate compatibility into our models in two ways. First, we could integrate
compatibility into the objective function by adding a term that measures total pairwise
compatibility of an assignment of workers to project teams. Second, we could integrate
compatibility into the constraints of our models if we wish that total pairwise compatibility
within project teams does not fall below a certain level. Both ways imply terms that are
nonlinear in the decision variables xkp or ykpst, respectively. Alternatively, additional
binary variables would allow to stick to a linear model.
Measuring total pairwise compatibility of a solution to the assignment problem can be

done more or less detailed. We could merely consider the xkp variables to measure com-
patibility solely based on project team membership. Alternatively, we could consider the
ykpst variables to weight the compatibility of workers based on actual cooperation. If, for
example, worker k contributes to project p only in period t = 1, and worker k′ contributes
to project p only in period t = 2, the compatibility between k and k′ will not matter
much. Although worker k and worker k′ join the same project team, the ykpst variables
reveal that the need for face-to-face interaction between k and k′ is presumably small.
Considering compatibility would require a large quantity of personal data. It might be

difficult to obtain these data and to obtain correct data, because workers would have to

68 Chapter 4 Optimization models and complexity analysis

reveal the quality of their working relationship to colleagues and are likely to give biased
judgements.
If we only want to avoid that two workers k and k′ are assigned to the same project,

because they are likely to impede project work due to interpersonal conflicts, Constraint
set (4.33) can be added to our models. Constraints (4.33) ensure for each project p ∈
Psuit

k ∩ Psuit
k′ that at most one worker of the pair (k, k′) is assigned to project p.

xkp + xk′p ≤ 1 p ∈ Psuit
k ∩ Psuit

k′ (4.33)

If, on the other hand, worker k and worker k′ are an inseparable team and neither of
them can work without the other, Constraints (4.34) can be added to our models. For
each project for which both k and k′ are suitable, Constraints (4.34) guarantee that either
both are assigned to this project or neither of them.

xkp = xk′p p ∈ Psuit
k ∩ Psuit

k′ (4.34)

4.4 Two alternative models for the utilization leveling
problem

At the last stage of our three-stage hierarchical planning approach, we want to level the
hours worked for the members of each department d ∈ D in each period t ∈ T . The hours
worked by employee k in period t comprise the time that he spends for projects and the
time that he devotes to his department. At the last stage, the time that worker k will spend
for projects in each period t ∈ T is already known and given by

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp
ykpst.

The time ydkt that worker k must work for his department in a period t is yet to be
determined such that the hours worked by worker k and his colleagues are leveled in this
period.
In leveling problems, loads must be determined such that the loads are as equal as pos-

sible. Various objective functions for leveling problems have been proposed and considered
in the literature, e.g., (1) minimizing the sum of squared loads (cf. Burgess and Killebrew,
1962), (2) minimizing the weighted sum of underloads and overloads (cf. Shanker and
Tzen, 1985), (3) minimizing the maximum load (cf. Berrada and Stecke, 1986), (4) mini-
mizing the absolute deviations between desired loads and planned loads (cf. Easa, 1989),
(5) minimizing the difference between maximum and minimum load (cf. Guerrero et al.,
1999), and (6) minimizing the total pairwise difference of loads or the average pairwise
difference of loads (cf. Jang et al., 1996; and Kumar and Shanker, 2001, respectively).
Objective functions (1), (2), (4) and (6) are suitable for our problem. We will consider
two typical objective functions: a quadratic one, which follows (1), and a linear one, which
follows (6).
A quadratic objective function for leveling problems sums the squares of the loads

that are to be leveled. In our case loads are hours worked. The sum of loads has to be
minimized. Loads that are disproportionately large are punished in the objective function
by squaring.

Example 4.3 Assume that department d has two workers k1 and k2 whose project con-
tributions in period t are 0. Let rddt = 4 and let yd2

k1t
+ yd2

k2t
be the objective function,

4.4 Two alternative models for the utilization leveling problem 69

which must be minimized. Then ydk1t = ydk2t = 2 is the optimal solution with an ob-
jective function value of 8. An allocation with ydk1t = 1 and ydk2t = 3, which is less
balanced, would result in an objective function value of 10. �

For a quadratic objective function, our problem of allocating departmental workload
is given by (4.35)–(4.38). The aim of model (4.35)–(4.38) is to level the total workload
of workers who belong to department d in period t. This model has to be solved for each
department d ∈ D in each period t ∈ T , i.e., it has to be solved D ·T times. The decision
variables of the quadratic leveling model are the non-negative continuous variables ydkt,
k ∈ Kd, which represent the departmental workload that is allocated to worker k in
period t.

Min.
∑
k∈Kd

⎛
⎝ydkt +

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst

⎞
⎠

2

(4.35)

s. t.
∑
k∈Kd

ydkt = rddt (4.36)

ydkt ≤ Rkt −
∑

p∈Psuit
k (t)

∑
s∈Smatch

kp

ykpst k ∈ Kd (4.37)

ydkt ≥ 0 k ∈ Kd (4.38)

Objective function (4.35) minimizes the sum of squared working times of workers
from department d in period t. Constraints (4.36) ensure that the entire departmental
workload is distributed among department members. Constraints (4.37) guarantee that
the time that worker k spends for his department and for projects does not exceed his
availability Rkt. Constraints (4.38) state the domains of the decision variables.
Model (4.35)–(4.38) can be transformed into an LP by linearizing the quadratic ob-

jective function (cf. Williams, 1999, pp. 136–142). Objective function (4.35) is separa-
ble, because it can be stated as a sum of terms dependent on a single variable. Each
quadratic term yd2

kt, k ∈ Kd, of the objective function can be approximated by a piece-
wise linear function. Introducing such a piecewise linear function to the model requires
additional variables to represent the line segments of the piecewise linear function: For
n line segments, n+ 1 continuous variables are required; for each line segment, two vari-
ables correspond to the endpoints of the interval for which the line segment approximates
the quadratic function. Since objective function (4.35) is convex and we minimize this
function, the sketched way of linearization, which leads to a linear program, works (cf.
Williams, 1999, pp. 139-140). This means that the linearized model matches every feasible
value of a variable ydkt with the correct point on the correct line segment.
An optimal solution to the linearized model can deviate from an optimal solution to

the original quadratic model. In general, the finer the approximation, i.e., the more line
segments are used to describe a quadratic function, the closer the solution of the LP comes
to the solution to the original problem.5

5If all load variables ydkt, k ∈ Kd, were restricted to integer values, an exact linearization would be
possible, though, it would result in a MIP (cf. Rieck et al., 2012).

70 Chapter 4 Optimization models and complexity analysis

For our problem, it is also possible to apply a linear objective function, which minimizes
the total absolute difference between the working times of all pairs (k, k′) of workers,
k ∈ Kd, k′ ∈ Kd \ {k}. The absolute difference between working times of two workers k
and k′ can be calculated by the absolute value function. The absolute value function is
not a linear function but can be linearized. This linearization is exact, in contrast to the
linearization described for the quadratic model. Before we turn to the linearization of the
absolute value function, let us consider an example that shows how the absolute value
function evaluates different allocations of departmental workload. Our example takes up
Example 4.3.

Example 4.4 Assume that department d has two workers k1 and k2 whose project con-
tributions in period t are 0. Let rddt = 4 and let

∣∣ydk1t − ydk2t

∣∣ be the objective function,
which must be minimized. Then ydk1t = ydk2t = 2 is the optimal solution with an ob-
jective function value of 0. An allocation with ydk1t = 1 and ydk2t = 3, which is less
balanced, would result in an objective function value of 2. �

Let us consider the absolute value function from Example 4.4 to demonstrate how an
absolute value function can be linearized. For linearization of the function |ydkt − ydk′t|,
we have to introduce a variable Δkk′ ∈ R≥0. If we require Δkk′ ≥ ydkt − ydk′t and
Δkk′ ≥ ydk′t − ydkt, then minimizing Δkk′ is equivalent to minimizing |ydkt − ydk′t|.
Now, the linear leveling model can be formulated. It is given by model (4.39)–(4.44).

The aim of model (4.39)–(4.44) is to level the total workload of workers who belong to
department d in period t. This model has to be solved for each department d ∈ D in
each period t ∈ T , i.e., it has to be solved D · T times. The decision variables are the
non-negative continuous variables ydkt, k ∈ Kd, t ∈ T , which represent the departmental
workload that is allocated to worker k in period t. Auxiliary variables are the non-negative
continuous variables Δkk′ , k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd, k′ > k, which represent the absolute

difference between the hours worked by workers k and k′. Here, k|Kd| denotes that worker
of department d whose index k is the largest among all department members.

Min.
∑

k∈Kd\
{
k|Kd|

}

∑
k′∈Kd | k′>k

Δkk′ (4.39)

s. t. Δkk′ ≥ ydkt +
∑

p∈Psuit
k (t)

∑
s∈Smatch

kp

ykpst

−

⎛
⎜⎝ydk′t +

∑
p∈Psuit

k′ (t)

∑
s∈Smatch

k′p

yk′pst

⎞
⎟⎠ k ∈ Kd \

{
k|Kd|

}
,

k′ ∈ Kd, k
′ > k

(4.40)

Δkk′ ≥ ydk′t +
∑

p∈Psuit
k′ (t)

∑
s∈Smatch

k′p

yk′pst

−

⎛
⎝ydkt +

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst

⎞
⎠ k ∈ Kd \

{
k|Kd|

}
,

k′ ∈ Kd, k
′ > k

(4.41)

∑
k∈Kd

ydkt = rddt (4.42)

4.5 A monolithic model for all three problems 71

ydkt ≤ Rkt −
∑

p∈Psuit
k (t)

∑
s∈Smatch

kp

ykpst k ∈ Kd (4.43)

ydkt ≥ 0 k ∈ Kd (4.44)

Objective function (4.39) minimizes the sum of pairwise absolute differences between
working times of members of department d in period t. Constraints (4.40) assure that the
difference in working times is registered for each pair (k, k′), k > k′, where worker k works
more hours than worker k′. Constraints (4.41) register the difference in working times for
each pair (k, k′), k > k′, where worker k works less than worker k′. Constraints (4.42)
ensure that the entire departmental workload is distributed among department members.
Constraints (4.43) guarantee that the time worker k spends for his department and for
projects does not exceed his availability Rkt. Finally, Constraints (4.44) state the domains
of the decision variables ydkt. The domains of the auxiliary variables Δkk′ are implicitly
defined in Constraints (4.40) and (4.41).
An optimal solution for the quadratic model is also optimal for the linear model and

vice versa. Hence, both models are equivalent. Though, from a computational point of
view, the linear model seems preferable.

4.5 A monolithic model for all three problems
After we presented models for each stage of the hierarchical planning approach, we will
show an integrated, monolithic model for our three problems. The monolithic model can
serve as a reference point, which enables us to assess the efficiency of the hierarchical
planning approach.
In Section 4.1 we outlined two roads to integrate multiple objectives into a mono-

lithic model. The first road was to consider a weighted sum of the single objectives; the
alternative was to optimize a vector of objective functions, where each single objective
constituted a component of the vector. The monolithic model that we present here fea-
tures an objective function that is a weighted sum of the objectives of our three problems.
Let w1, w2 and w3 denote the weights of our three objectives. Weight w1 corresponds

to the objective of selecting the most beneficial project portfolio. Weight w2 refers to the
goal of minimizing the number of assignments of workers to selected projects. Finally,
factor w3 weights the impact of the aim to level working times of workers.
Note that the weight ratios w1/w2 and w2/w3 must be carefully chosen to obtain desired

and sensible results. If the ratio w1/w2 is too low, the number of assignments might
be minimized by selecting no project at all. In the integrated model, working times
cannot only be leveled by allocating departmental workload, but also by allocating project
workload. If the ratio w2/w3 is too low, the working time could be balanced optimally by
allocating project workload to many workers leading to a high number of assignments. If
the weight ratios are sufficiently high, the three objectives are lexicographically ordered
as in the hierarchical approach.
The monolithic model is given by (4.45)–(4.57). Model (4.45)–(4.57) is a MIP model

that comprises two types of binary decision variables and three types of non-negative
continuous variables. Binary decision variables are the variables zp, p ∈ P̃ , which indicate
whether project p is selected or not, and the variables xkp, k ∈ K, p ∈ P̂suit

k , which

72 Chapter 4 Optimization models and complexity analysis

indicate whether worker k is assigned to project p or not. The first type of non-negative
continuous decision variables are the variables ŷkpst, k ∈ K, p ∈ P̂suit

k , s ∈ Smatch
kp , t ∈ Tp,

which represent the workload that worker k performs for project p and skill s in period t.
The second type of non-negative continuous decision variables are the variables ydkt,
k ∈ K, t ∈ T , which represent the departmental workload that is allocated to worker k in
period t. The third and last type of the non-negative continuous decision variables are the
auxiliary variables Δkk′t, k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd, k′ > k, d ∈ D, t ∈ T , which represent

the absolute difference in working times in period t between workers k and k′ who belong
to the same department d. Again, k|Kd| denotes that worker of department d ∈ D whose
index k is the largest among all members of department d.
With respect to the decision variables, there are three differences compared to the

hierarchical models: First, one set of variables obtains an additional index. All vari-
ables used in the hierarchical models are also used in the monolithic model except for
the variables Δkk′t. Because leveling cannot be done any longer for each period t ∈ T
separately, we must add a time index to the variables Δkk′ , resulting in the variables Δkk′t.
Both variables have the same meaning. They represent the absolute difference between
the hours worked by workers k and k′ in the considered period t. The second difference
is that the number of the variables xkp increased, because the number of projects that
come into question for staffing increased from |P| to

∣∣Pongoing ∪ Pmust ∪ P̃
∣∣. Finally, the

variables ŷkpst do not state the preliminary, but the final allocation of project workload.

Min. − w1

∑
p∈P̃

bpzp + w2

∑
k∈K

∑
p∈P̂suit

k

xkp + w3

∑
d∈D

∑
k∈Kd\

{
k|Kd|

}

∑
k′∈Kd | k′>k

∑
t∈T

Δkk′t (4.45)

s. t.
∑
k∈Ks

(lksŷkpst) = rpstzp
p ∈ Pongoing ∪ Pmust ∪ P̃ ,

s ∈ Sp, t ∈ Tp

(4.46)

∑
s∈Smatch

kp

ŷkpst ≤ Rktxkp

p ∈ Pongoing ∪ Pmust ∪ P̃ ,

k ∈ Ksuit
p \ Kassigned

p , t ∈ Tp

(4.47)

Δkk′t ≥ ydkt +
∑

p∈P̂suit
k (t)

∑
s∈Smatch

kp

ŷkpst

−

⎛
⎜⎝ydk′t +

∑
p∈P̂suit

k′ (t)

∑
s∈Smatch

k′p

ŷk′pst

⎞
⎟⎠ k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd,

k′ > k, d ∈ D, t ∈ T
(4.48)

Δkk′t ≥ ydk′t +
∑

p∈P̂suit
k′ (t)

∑
s∈Smatch

k′p

ŷk′pst

−

⎛
⎝ydkt +

∑
p∈P̂suit

k (t)

∑
s∈Smatch

kp

ŷkpst

⎞
⎠ k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd,

k′ > k, d ∈ D, t ∈ T
(4.49)

∑
k∈Kd

ydkt = rddt d ∈ D, t ∈ T (4.50)

4.6 Complexity analysis 73

ydkt +
∑

p∈P̂suit
k (t)

∑
s∈Smatch

kp

ŷkpst ≤ Rkt k ∈ Kd, t ∈ T (4.51)

zp = 1 p ∈ Pongoing ∪ Pmust (4.52)
xkp = 1 p ∈ Pongoing, k ∈ Kassigned

p (4.53)

zp ∈ {0, 1} p ∈ P̃ (4.54)

xkp ∈ {0, 1}
p ∈ Pongoing ∪ Pmust ∪ P̃ ,

k ∈ Ksuit
p \ Kassigned

p

(4.55)

ŷkpst ≥ 0
k ∈ K, p ∈ P̂suit

k ,

s ∈ Smatch
kp , t ∈ Tp

(4.56)

ydkt ≥ 0 k ∈ K, t ∈ T (4.57)

Objective function (4.45) minimizes the weighted sum of our three objectives. Note
that maximizing the weighted portfolio benefit is achieved by multiplying the weighted
portfolio benefit by −1 and by minimizing the resulting term.
Constraint set (4.46) ensures that each requirement rpst of project p is satisfied if

project p is selected. Constraints (4.47) link the variables xkp and ŷkpst. These constraints
guarantee that worker k can only contribute to project p if he is assigned to project p.
A contribution ŷkpst > 0 for any skill s ∈ Smatch

kp in any period t ∈ Tp requires xkp = 1.
Simultaneously, Constraints (4.47) force xkp = 1 if worker k contributes to project p for
any skill s ∈ Smatch

kp in any period t ∈ Tp. Hence, if worker k contributes to project p, he
is automatically assigned to project p.
Constraints (4.48) and (4.49) assure that the absolute difference in working times is

registered for each pair (k, k′) of workers within each department d in each period t.
Constraints (4.50) ensure that the entire departmental workload is distributed among
department members for each department d in each period t. Constraints (4.51) guarantee
that the time that worker k spends for his department and for projects in period t does
not exceed his availability Rkt.
Constraint set (4.52) fixes the variables zp, p ∈ Pongoing ∪Pmust, to 1, because we have

to include these projects in the portfolio. For each ongoing project p ∈ Pongoing, a team
Kassigned

p of workers exists already. For each member k of this team, Constraint set (4.53)
fixes the corresponding variable xkp to 1. Eventually, Constraint sets (4.54)–(4.57) state
the domains of the actual decision variables. The domains of the auxiliary variables Δkk′t,
which are required to obtain a linear term for the leveling goal in the objective function,
are implicitly defined in Constraints (4.48) and (4.49).

4.6 Complexity analysis
In this section, we will draw upon complexity theory and use its findings and methods
to judge whether our three problems are computationally easy or hard to solve. If we
can show that a problem can be classified as a hard problem according to complexity
theory, there is almost no hope to find an exact algorithm that solves any instance of
the problem to optimality in adequate time. Then, heuristic solution methods can be a
resort. Hence, the results of this section can guide our search for solution methods. We

74 Chapter 4 Optimization models and complexity analysis

will first introduce the key concepts of complexity theory in Subsection 4.6.1, before we
analyze each of our three problems in the following Subsections 4.6.2–4.6.4 separately.
The results are summarized in Subsection 4.6.5.

4.6.1 Basic concepts of complexity theory
In this subsection, we will give an overview of basic concepts of complexity theory. Com-
plexity theory deals with—among other things—the complexity of algorithms and the
complexity of problems. Algorithms can be classified according to their running time.
We will distinguish polynomial-time from exponential-time algorithms. Problems can be
assigned to different complexity classes according to their hardness. We will explain the
most common complexity classes and sketch how membership of a problem in these classes
can be proved.
Complexity theory comprises two main branches (cf. Garey and Johnson, 1979; We-

gener, 2003). The first branch addresses running times and memory requirements of
algorithms. The running time of an algorithm is also called its time complexity. The
second branch entails the hardness of problems. The hardness of problems is also called
its complexity. As we will see, both branches are related. The roots of complexity theory
lie in the areas of computer science, mathematics, and operations research and started to
flourish in the late 1960s (cf. Ahuja et al., 1993, p. 788).
It was said that the first branch of complexity theory addresses running times and

memory requirements of algorithms. Nowadays, often the running time of an algorithm is
in the spotlight, while memory requirements of an algorithm are less important, because
memory space has become abundant and cheap. Since fast solution processes can save
money and since algorithms can be enormously complex, the running time of an algorithm
remains an important issue, even though processor speed has drastically increased, while
processor prices have not increased in the recent decades.
With respect to running times of algorithms, complexity theory seeks to determine

the minimum, average, and maximum running time that is required by an algorithm to
solve any instance of a problem for which the algorithm was developed. For meaningful
statements, the time required is expressed in relation to the instance size (cf. Garey and
Johnson, 1979, p. 5). To compare different algorithms for the same problem, usually
the maximum time required is considered (cf. Ahuja et al., 1993, pp. 56–57; Wegener,
2003, pp. 25–27; Nemhauser and Wolsey, 1999, p. 119), i.e., comparisons are based on
worst-case time complexity.
The maximum time that an algorithm requires to solve instances of a given size is

represented by an upper bound O on the number of elementary computational operations
that are executed by the algorithm to solve such an instance. The upper bound O is
an asymptotic upper bound, which only holds when instance size approaches infinity
(Nemhauser and Wolsey, 1999, p. 119; Wegener, 2003, pp. 25–27, cf.). It is assumed that
every elementary operation takes one unit of time (cf. Wegener, 2003, p. 22; Schirmer,
1995, p. 3). The number of elementary operations is expressed as a function f of the
instance size or, in other words, as a function of the amount of information necessary to
represent the instance. The instance size is given by one or more parameters. For our
problem, the number of workers K and the number of projects P are parameters that
impact instance size.

4.6 Complexity analysis 75

If only one parameter n specifies the size of an instance, Ahuja et al. (1993, p. 59)
define that “an algorithm is said to run in O(f(n)) time if for some numbers c and n0, the
time taken by the algorithm is at most cf(n) for all n ≥ n0”. As an example, consider the
time complexities O(n2), O(2n) and O(n!). For O(n2) the function f(n) is a polynomial
in n. An algorithm whose running time is bounded by a polynomial in the instance size
is called polynomial-time algorithm. If for some algorithm the function f(n) is not a
polynomial in n, as it is the case with O(2n) and O(n!), the algorithm is said to run in
exponential time and is termed exponential-time algorithm (cf. Garey and Johnson, 1979,
p. 6).
If more than one parameter describes the size of an instance, the definitions of the

previous paragraph apply analogously. As an example, let K and P define the instance
size of a problem. Running times of O(K+P 2) or O(KP) are called polynomial, whereas
running times of O(KP) or O(KP !) are called exponential.
The second branch of complexity theory addresses the hardness of problems and classi-

fies problems as computationally easy or hard to solve by assigning them to different com-
plexity classes. Before we outline the most important complexity classes for our work, we
will briefly distinguish decision problems from optimization problems and consider what
their difference implies for complexity analysis, because the division of problems into
different complexity classes is primarily done for decision problems, whereas our three
problems are optimization problems.
Decision problems are problems whose solution is either “yes” or “no” (cf. Garey and

Johnson, 1979, p. 18). For example, let us consider an instance of the problem of allocating
project workload to workers. The following questions state decision problems: Does a
feasible solution exist for the given instance? Does a feasible solution with an objective
function value of 5 or less exist for the given instance?
We are, however, concerned with optimization problems, which belong to the broader

class of search problems. We want to answer questions such as the following one: “Which
feasible allocation of project workload for a given instance requires the least number of
assignments of workers to projects?”
Before we explain how the hardness of a decision problem can be related to the hardness

of an optimization problem, we define two phrases that are used in the following:

(1) an optimization problem and its corresponding decision problem, and

(2) a decision problem and its corresponding optimization problem.

Let us define the phrases by examples in a rather informal way. For (1) assume that the
optimization problem “Max. (Min.) b subject to some constraints” is given. Then, the cor-
responding decision problem is defined as “Is there a feasible solution for the optimization
problem with b ≥ c (b ≤ c)?”. Vice versa, for (2) consider the following decision problem:
“Is there a solution with b ≥ c (b ≤ c) that observes all constraints of a given problem?”
Then, the corresponding optimization problem is defined as “Max. (Min.) b subject to all
constraints of the given problem”. Based on our definition, the corresponding optimiza-
tion problem of a decision problem is uniquely defined, while the corresponding decision
problem of an optimization problem is uniquely defined except for the value of c. Since
the value of c is not relevant for our purposes, we consider the corresponding decision
problem of an optimization problem as uniquely defined.

76 Chapter 4 Optimization models and complexity analysis

Garey and Johnson (1979, pp. 109–117) andWegener (2003, pp. 50–53) use the concept
of Turing reducibility, also called polynomial reducibility (cf. Schirmer, 1995, pp. 18–20),
to show how results for the complexity of a decision problem can be transferred to the
corresponding optimization problem. Later, we will consider this concept in more detail.
For now, we content ourselves with the fact that the concept of Turing reducibility allows
to conclude that an optimization problem is hard if its corresponding decision problem is
hard. Hence, we can examine the decision problems that correspond to our optimization
problems in order to obtain insights into the complexity of the optimization problems.
A focus of complexity theory is on the class NP (non-deterministic polynomial-time),

which contains all decision problems that can be solved by a non-deterministic algorithm
in polynomial time. Such an algorithm is a theoretical type of algorithm that decomposes
the process of solving a problem into two stages: a guessing stage and a checking stage.
At the first stage, a solution to the problem is guessed. The solution is also called
instance. This is the non-deterministic guessing stage. At the second stage, it is checked
in polynomial time if the solution is feasible (yes-instance) or not (no-instance). This is
the polynomial-time checking stage. The statement that a problem that is in NP can be
solved in polynomial time by this theoretical type of algorithm refers only to the checking
stage and only to the case where a yes-instance is checked (cf. Nemhauser and Wolsey,
1999, pp. 128–129). The decision problems that correspond to our three optimization
problems belong to the class NP what we will prove for each problem in the following
subsections.
A major contribution of complexity theory is the classification of decision problems

that belong to the class NP into three different subclasses. These three main subclasses
are the class P (deterministic polynomial-time) of “easy” problems, the class NPC (NP-
complete) of “hard” problems, and the class NPI (NP-intermediate) of problems whose
complexity is between the complexities of the classes P and NPC (cf. Garey and Johnson,
1979, pp. 154–161). Problems in class P can be solved by polynomial-time algorithms.
For problems of class NPC only exponential-time algorithms are known, but until now
it could not be ruled out that polynomial-time algorithms for these problems might be
developed. If a polynomial-time algorithm was found for one problem out of NPC, every
problem of the class NPC could be solved in polynomial time. This would imply P = NP.
Though, a majority of researchers supposes that the conjecture P
= NP is true. A proof
or a falsification of this conjecture, however, remains to be presented and is currently the
presumably greatest challenge in the field of complexity theory.
Among the problems that belong to the class NPC, there is a special type of problems

called number problems (cf. Garey and Johnson, 1979, pp. 90–106). Some of these number
problems are computationally better tractable than other number problems and non-
number problems. We will succinctly treat this special type of problems in order to be
able to draw potential conclusions for our problems.
Number problems are problems where the largest number that appears within the

instance data cannot be bounded by a polynomial in the instance size. As an example for
a number problem, consider the knapsack problem, where a subset from n items has to
be selected that has maximum total utility and a total weight not exceeding the knapsack
capacity c. An instance comprises n weights, n utility values and the capacity value c.
Without loss of generality, let c be the largest number of the instance. The instance
size, i.e., the amount of information necessary to represent the instance is bounded by

4.6 Complexity analysis 77

O(n log2 c) if numbers are encoded using the binary representation. Because the maximum
number c cannot be bounded by O(n log2 c), the knapsack problem is a number problem.
Another number problem, which also belongs to NPC, is the traveling salesman prob-

lem. In this problem, we seek a tour of minimum length through n cities. The distance
between any two cities cannot be bounded by a polynomial in the instance size.
In contrast, the minimum cover problem6, which also belongs to NPC, is not a number

problem, i.e., it is a non-number problem. In the minimum cover problem, a set C is
given consisting of sets Ci, i = 1, . . . , |C|, where each set Ci is a subset of a finite set F .
Additionally, a positive integer b ≤ |C| is given. The question is whether C contains
a cover of F that has a size of at most b, i.e., whether there is a subset C ′ ⊆ C with
|C ′| ≤ b such that every element of F is contained in at least one set Ci ∈ C ′ (cf.
Garey and Johnson, 1979, p. 222). The only and thus largest number that appears in
an instance of the minimum cover problem is the integer b. The instance size is bounded
by O(|C||F | + log2 b). Since b ≤ |C| holds by definition, b is bounded by a polynomial
in C and hence by a polynomial in the instance size. Consequently, the minimum cover
problem is not a number problem.
As for all NP-complete problems, no algorithms for number problems have been found

whose running time is bounded by a polynomial in the instance size. However, for some
number problems, algorithms exist whose running time is bounded by a polynomial in
the instance size and in the maximum number of the instance. These algorithms are
called pseudopolynomial-time algorithms. Those number problems that can be solved by
pseudopolynomial-time algorithms are better tractable than all other problems in NPC,
be it number problems or not.
As an example for a number problem that can be solved in pseudopolynomial time,

consider the knapsack problem. It can be solved by dynamic programming in O(nc) time
by filling in a table with nc cells (cf. Garey and Johnson, 1979, pp. 90–92; Martello and
Toth, 1990, p. 7). This time complexity implies that instances of the knapsack problem
can be solved in polynomial time with respect to instance size if the largest number c of
these instances is rather small such that c can be bounded by a polynomial in the number
of items n.
On the other side, there are number problems for which no pseudopolynomial-time

algorithm is known, e.g., the traveling salesman problem. Even if all numbers within an
instance of the traveling salesman problem are small, it takes exponential time to solve the
instance. Even if all intercity distances are either 1 or 2, for example, no polynomial-time
algorithm is known.
Due to the existence of these two types of number problems, the class NPC is further

divided. All problems that belong to the class NPC are called NP-complete. Number prob-
lems for which no pseudopolynomial-time algorithm is known and all non-number prob-
lems in NPC are called NP-complete in the strong sense and belong to the subclass sNPC
(strongly NP-complete) (cf. Garey and Johnson, 1979, p. 95). For instance, the traveling
salesman problem and the minimum cover problem are strongly NP-complete, whereas
the knapsack problem is only NP-complete.
The distinction of number problems from non-number problems is relevant for our

work, because arbitrarily large numbers can appear in instances of our three problems.
Consider the workforce assignment problem, for example. For the decision and opti-

6The minimum cover problem is also called set-covering problem.

78 Chapter 4 Optimization models and complexity analysis

mization version of this problem, instance size is bounded by O(KT log2(maxk,t Rkt) +
KS log2(maxk,s lks) + DT log2(maxd,t rddt) + PST log2(maxp,s,t rpst)). Thus, the worker
availabilities Rkt, the departmental requirements rddt, and the project requirements rpst
are not bounded by a polynomial in the instance size. Recall that we bounded the skill
levels lks by 2.
In the following three subsections we will prove that the decision problems that corre-

spond to our three optimization problems belong to P, NPC or even sNPC. To prove mem-
bership in the class P for a decision problem Π, it is sufficient to state a polynomial-time
algorithm which solves Π. For a detailed description of proving techniques with regard to
membership in the classes NPC and sNPC see Garey and Johnson (1979, pp. 63–74 and
95–106). We will only sketch how membership in these two classes is proved by giving
two formal proof definitions. Additionally, we briefly explain a proving technique called
restriction, which facilitates the application of the rather theoretical and formal proof
definitions.
To prove that a problem Π belongs to the class NPC, two steps are necessary. We

first have to show that Π belongs to NP. Finally, a problem ΠNPC that is known to
be in the class NPC must be polynomially transformed to Π such that a yes-instance
(no-instance) of ΠNPC is transformed into a yes-instance (no-instance) of Π. If such a
polynomial transformation exists and if an algorithm existed that would solve Π, this
algorithm would also solve ΠNPC. Since no polynomial-time algorithm exists for ΠNPC if
P
= NP is true, there exists no polynomial-time algorithm for Π and thus Π must belong
to NPC.
To prove that a number problem ΠNum belongs to the class sNPC, two alternative

ways are possible. Both ways are closely related to the way just outlined for proving
NP-completeness. The first alternative requires two steps. First, we have to restrict
problem ΠNum to a problem ΠNum

p where all numbers are bounded by a polynomial p
in the instance size. Second, we must show that this problem ΠNum

p is NP-complete.
The second alternative requires to show that ΠNum belongs to the class NP and that
a problem ΠsNPC that is known to be strongly NP-complete can be pseudopolynomially
transformed to ΠNum.7
To apply the proof definitions, which essentially rely on a transformation of one prob-

lem into another, proving techniques have emerged. A common technique for proving
that a problem Π is (strongly) NP-complete uses the principle of restriction (cf. Garey
and Johnson, 1979, pp. 63–66). If a (strongly) NP-complete problem exhibits a one-to-
one correspondence to the problem Π, it can be easily transformed to Π. Though, often
it is difficult to find such a (strongly) NP-complete problem. Then, it might be possi-
ble to restrict Π to a special case for which a transformation from a known (strongly)
NP-complete problem can easily be constructed. Restricting Π to a special case means
that Π is restricted to a proper subset of all its instances. If it can be shown that the
restricted problem is (strongly) NP-complete, so its generalization Π is, because there is
no algorithm that solves any instance of Π in (pseudo)polynomial time. We will apply
the principle of restriction in the following subsections.
The classes NP, P, NPC, and sNPC refer to decision problems only, but for optimization

problems a comparable classification is common. If a decision problem is NP-complete,
the corresponding optimization problem is called NP-hard, and if a decision problem is

7For the definition of a pseudopolynomial transformation see Garey and Johnson (1979, pp. 101–106).

4.6 Complexity analysis 79

strongly NP-complete, the corresponding optimization problem is called NP-hard in the
strong sense or just strongly NP-hard (cf. Schirmer, 1995, p. 20 and p. 26). The term
(strongly) NP-hard means that a (strongly) NP-hard optimization problem is at least as
hard as any decision problem that is (strongly) NP-complete.
To show that a (strongly) NP-hard optimization problem is at least as hard as any

(strongly) NP-complete decision problem, the aforementioned concept of Turing reducibil-
ity can be applied. A Turing reduction of a problem Π to a problem Π′ is similar to a
polynomial transformation except for the fact that a Turing reduction allows to solve
Π by repeatedly calling a subroutine to solve different instances of Π′ (cf. Garey and
Johnson, 1979, p. 111; Schirmer, 1995, pp. 118–120). An optimization problem Πopt is
(strongly) NP-hard if there is an NP-complete problem ΠNPC (strongly NP-complete prob-
lem ΠsNPC) that Turing-reduces to Πopt. Since any decision problem Turing-reduces to
its corresponding optimization problem, an optimization problem is (strongly) NP-hard if
the corresponding decision problem is (strongly) NP-complete. Hence, we can derive com-
plexity results for our optimization problems from the complexity results that we obtain
for their corresponding decision problems.

4.6.2 Complexity of the project selection problem
In this subsection, we prove that our project selection problem is NP-hard in the strong
sense.
The project selection problem was described in Section 3.2 and modeled in Section 4.2.

The corresponding decision problem asks whether there is a feasible portfolio with a total
benefit of at least b, b ∈ N \ {0}.
To simplify our presentation, we abbreviate our optimization problem as MPSWSopt

(multi-project skilled workforce selection problem) and its corresponding decision problem
as MPSWSdec. Additionally, let the vector z represent values for all variables zp, p ∈
Pongoing ∪ Pmust ∪ P̃ , and let the matrix ŷ represent values for all variables ŷkpst, k ∈ K,
p ∈ P̂suit

k , s ∈ Smatch
kp , t ∈ Tp.

Lemma 4.1 MPSWSdec ∈ NP. �

Proof Let (z, ŷ) be a (guessed) solution for an arbitrary instance ofMPSWSdec. We can
check in polynomial time if this solution is feasible and if the portfolio that is associated
with z has a total benefit of at least b. The feasibility check requires that we test whether
the solution satisfies Constraint sets (4.2)–(4.7). The number of constraints within these
sets is bounded by a polynomial in the instance size. �

Theorem 4.1 MPSWSdec is strongly NP-complete. �

Proof (Polynomial transformation from Minimum Cover)
Problem: Minimum Cover
Instance: Set C containing sets Ci, i = 1, . . . , |C|, where each set Ci is a subset of a finite
set F ; positive integer b ≤ |C|.
Question: Does C contain a cover of F that has a size of at most b, i.e., is there a
subset C ′ ⊆ C with |C ′| ≤ b such that every element of F is contained in at least one
set Ci ∈ C ′?

80 Chapter 4 Optimization models and complexity analysis

Minimum Cover is NP-complete in the strong sense even if |Ci| ≤ 3 holds for
all Ci ∈ C with |Ci| = 3 for at least one Ci (cf. Garey and Johnson, 1979, p. 222).
For this proof, we restrictMPSWSdec to the case where T = 1; Rkt = 1, k ∈ K, t = 1;

rddt = 0, d ∈ D, t = 1;
∣∣Pongoing

∣∣ = |Pmust| = 0 and
∣∣P̃∣∣ = K+1, i.e., where K+1 projects

can be selected.
We assume that the set of skills S is a union of two disjoint sets SF and Sunique with∣∣Sunique

∣∣ = K. Each unique skill s ∈ Sunique is mastered by exactly one worker and each
worker k ∈ K masters one unique skill s ∈ Sunique and between one and three additional
skills from SF . For each skill s ∈ S and each worker k ∈ K, we presume lks = 1.
From the set P̃ of projects, K projects are assumed to require only one skill, namely,

a unique skill s ∈ Sunique, but no two of these projects p, p = 1, . . . , K, require the same
unique skill, i.e., each unique skill s ∈ Sunique is required by exactly one project. For each
project p, p = 1, . . . , K, its requirement is given by rpst = 1, s ∈ Sp, t = 1, and the benefit
is given by bp = 1. The remaining project p = K + 1 requires all the skills s ∈ SF , but
no skill from Sunique. Let project p = K + 1 have requirements 0 < rpst ≤ 1

3
, s ∈ SF ,

t = 1, and a benefit bp = K+1. Note that our restriction ofMPSWSdec leads to problem
instances in which all numbers are bounded by a polynomial in the instance size.
To tie an instance of Minimum Cover to an instance of MPSWSdec, we associate

the set F with the set SF of skills that are required by project p = K + 1. Let each
subset Ci be associated with a worker k and let the elements in Ci correspond to the skills
in Sk ∩ SF that are mastered by the associated worker apart from his unique skill. Then
there exists a cover of F that has size b or less if and only if a feasible portfolio can be
selected with a total benefit of at least K + 1 + (K − b).
Note that a feasible portfolio with a total benefit of K + 1 + (K − b) necessitates

that K − b workers must spend their entire time to accomplish the project that requires
their unique skill s ∈ Sunique. This necessity leaves only b workers who can contribute to
project p = K + 1. Together with Lemma 4.1 our proof is complete. �

Corollary 4.1 MPSWSopt is strongly NP-hard. �

To be more precise, the proof has shown that MPSWSopt is strongly NP-hard if every
worker masters at least one unique skill and if at least one worker masters four skills or
more in total. By a second proof, we will show that not only instances where each worker
masters a unique skill and some other skills are strongly NP-hard but also instances where
each worker masters only one skill. In addition, the second proof points to a special case
that can be solved in pseudopolynomial time. Our second proof for Theorem 4.1 reads as
follows.

Proof (Pseudopolynomial transformation from Multidimensional Knapsack)
Problem: Multidimensional Knapsack (cf. Kellerer et al., 2004, pp. 235–238)
Instance: Set J of n items; set I of m dimensions such as weight, volume and concen-
tration; benefit pj, j ∈ J ; size wij, i ∈ I, j ∈ J , of item j with respect to dimension i;
positive integer ci, i ∈ I, that represents the capacity with respect to dimension i; positive
integer b.
Question: Is there a subset J ′ ⊆ J such that

∑
j∈J ′ wij ≤ ci, i ∈ I, and

∑
j∈J ′ pj ≥ b?

Multidimensional Knapsack is NP-complete, because it comprises the NP-
complete (one-dimensional) knapsack problem as a special case (m = 1). Multidi-
mensional Knapsack can be solved by dynamic programming in O (n (maxi ci)

m) time

4.6 Complexity analysis 81

by filling a table with n× c1 × c2 × · · · × cm cells (cf. Kellerer et al., 2004, pp. 248–252).
Hence, if the number of dimensions m is bounded by a constant, Multidimensional
Knapsack can be solved in pseudopolynomial time, but in general,Multidimensional
Knapsack is strongly NP-complete (cf. Kaparis and Letchford, 2008, p. 91).
To prove NP-completeness ofMPSWSdec by transformation fromMultidimensional

Knapsack, we restrictMPSWSdec to the special case where Pongoing = Pmust = ∅; T = 1;
rddt = 0, d ∈ D, t = 1; Sp = S, p ∈ P̃ ; and |Sk| = 1, k ∈ K, i.e., where each worker
masters only one skill. Additionally, we assume lks = 1, k ∈ K, s ∈ Sk.
Let each project p ∈ P̃ be associated with an item j and let each skill s out of the

finite set of skills be associated with a dimension i. Let for all projects p ∈ P̃ each
requirement rpst, s ∈ Sp, t = 1, be associated with the corresponding item size wij

and let the knapsack capacities ci, i ∈ I, correspond to the total workforce availability
with regard to the associated skill s given by

∑
k∈Ks

Rkt, t = 1. Then, an instance of
Multidimensional Knapsack is a yes-instance if and only if the associated instance
of MPSWSdec is a yes-instance. Together with Lemma 4.1 our proof is complete. �

Corollary 4.2 MPSWSopt is strongly NP-hard even if each worker masters only one out
of several skills. The special case of MPSWSopt that corresponds to the restricted decision
problem outlined in the second proof of Theorem 4.1 can be solved in pseudopolynomial
time for any fixed number of skills |S|. �

However, this special case ofMPSWSopt where only mono-skilled workers with homo-
geneous skill levels are considered is far off those practical cases that we are interested in.
The project selection problem that prevails in practice is NP-hard in the strong sense.

4.6.3 Complexity of the workforce assignment problem
In this subsection, we show that our optimization problem of assigning workers to projects
and allocating project workload to workers is NP-hard in the strong sense.
The problem was described in Section 3.3 and modeled in Subsection 4.3.1. The corre-

sponding decision problem asks whether there is a feasible allocation of project workload
that results in no more than b assignments of workers to projects, b ∈ N \ {0}.
To shorten our presentation, we abbreviate our optimization problem as MPSWAopt

(multi-project skilled workforce assignment problem) and its corresponding decision prob-
lem as MPSWAdec. Additionally, let the matrix x represent values for all variables xkp,
k ∈ K, p ∈ Psuit

k , and let the matrix y represent values for all variables ykpst, k ∈ K,
p ∈ P suit

k , s ∈ Smatch
kp , t ∈ Tp.

Lemma 4.2 MPSWAdec ∈ NP. �

Proof Let (x,y) be a (guessed) solution for an arbitrary instance of MPSWAdec. We
can check in polynomial time if the solution is feasible and if the number of assignments
of workers to projects that is associated with x does not exceed b. A check whether the
solution is feasible requires to test if the solution satisfies Constraint sets (4.10)–(4.16).
The number of constraints within these sets is bounded by a polynomial in the instance
size. �

Theorem 4.2 MPSWAdec is strongly NP-complete. �

82 Chapter 4 Optimization models and complexity analysis

Proof (Polynomial transformation from Minimum Cover)
We restrict MPSWAdec to the special case where P = 1; Sp = S, p = 1; T = 1; rddt = 0,
d ∈ D, t = 1. Let us assume that Rkt = ∞, k ∈ K, t = 1, i.e., that the workers’
availabilities are unbounded.8
Now, let the set F of an instance of Minimum Cover (see page 79) be associated

with the set S of skills. Let each subset Ci be associated with a worker k and let the
elements of Ci correspond to the skills in Sk that are mastered by the associated worker.
Then there is a cover of F that has size b or less if and only if there is a feasible allocation
of the workload of project p = 1 with a team size of b or less. Together with Lemma 4.2
our proof is complete. �

Remark 4.1 If the unbounded version of the decision problem is strongly NP-complete,
all the more is the bounded version. �

Remark 4.2 Minimum Cover can be solved in polynomial time by matching techniques
if |Ci| ≤ 2 holds for all Ci ∈ C. We will succinctly outline an efficient solution procedure
that incorporates matching techniques, but first we will give some definitions on which
the procedure is founded.
An undirected graphG(N,E) is a setN of nodes and a set E of edges. Each edge e ∈ E

joins two nodes u and v. Both nodes u and v are said to be incident with e. A matchingM
in graph G is a subset of edges in E such that every node v ∈ N is incident with at most
one edge in M (cf. Burkard et al., 2009, p. 2; Jungnickel, 2005, p. 205). A matching M
is a maximum matching if its cardinality |M | is maximal, i.e., if there is no matching M ′

with |M ′| > |M |.
To tackle an instance of Minimum Cover by a matching technique, we construct a

graph G by establishing a node v for each element f ∈ F that is given in the instance of
Minimum Cover. For each subset Ci ∈ C with |Ci| = 2, an edge e is established that
joins those two nodes u and v that correspond to the elements f ∈ Ci.
To find a cover of F , a maximum matching M is determined for this graph G, e.g.,

by the algorithm of Edmonds (cf. Edmonds, 1965; Jungnickel, 2005, pp. 374–396). If the
number of nodes |N | is even and |M | = |N |

2
, then the matching M represents a cover of

F . Otherwise, M represents only a partial cover. If M represents only a partial cover of
F , we extend this partial cover step by step, until all elements of F are covered. In each
step, we either extend the partial cover by a subset Ci with |Ci| = 2 whose corresponding
edge does not belong to M or by a subset Ci with |Ci| = 1 whose element f has not been
covered yet.
The minimum number of subsets Ci necessary for a cover of F is given by the sum

of the cardinality |M | of the matching and the number of subsets Ci that are required to
extend the partial cover to a full cover. This minimum number can be compared to b to
answer the question whether there is a cover of size b or less. �

8Instead of unbounded worker availabilities we could alternatively choose the project requirements rpst
for the sole project p = 1 so small that every worker k could accomplish the workload for all skills s ∈
Smatch
kp of his matching skills if he was assigned to the project. In consequence, the largest number

that appears in an instance of the restricted version of MPSWAdec is bounded by a polynomial in the
instance size.

4.6 Complexity analysis 83

Remark 4.2 is relevant for instances of our assignment problem where no worker mas-
ters more than two skills and where the project requirements are very small when com-
pared to the availabilities of workers. For these instances, the solution procedure that was
outlined in Remark 4.2 can be applied to find the minimum team size if only one project
must be staffed. If more projects must be staffed, say P ≥ 2 projects, then the solution
procedure must be applied P times, once for each project.
For a clearer picture of the complexity of MPSWAdec with respect to its subprob-

lems, we will provide a second proof showing that MPSWAdec is strongly NP-complete.
Our second proof is not redundant in so far, as it shows that there are even instances
of MPSWAdec that feature only one skill but cannot be solved in polynomial or pseu-
dopolynomial time. Our first proof did only show that instances with |Sk| ≥ 3 for at least
one worker k are intractable. The following second proof, which relies on transformation
from 3-Partition, will reveal conditions where instances with |S| = 1 are intractable.
Our second proof does not render our first proof redundant, as the first proof shows that
MPSWAdec is strongly NP-complete even if worker availabilities are unbounded. Hence,
both proofs shed precious light on the frontier between hard and easy problems (cf. Garey
and Johnson, 1979, pp. 80–90).
As a vehicle for the second proof, we use the network model, which was introduced in

Subsection 4.3.1, to represent our assignment problem. Before we will present the proof,
let us shortly turn towards two variants of a network design problem that are related to
our assignment problem and that led us the way to our proof. The two variants are the
fixed-charge network flow problem and the minimum edge-cost flow problem.
Both the fixed-charge network flow problem (cf. Kim and Pardalos, 1999; Cruz et al.,

1998; Magnanti and Wong, 1984) and the minimum edge-cost flow problem (cf. Garey
and Johnson, 1979, p. 214) seek for a minimum cost origin-destination flow on a network
with bounded arc capacities where fixed arc costs are incurred whenever an arc transports
a positive flow.
There are only slight differences between the two network design problems. The fixed-

charge network flow problem considers not only fixed arc costs, but in addition also
variable arc costs which linearly depend on the amount of flow shipped on the arc. Fur-
thermore the flow variables are continuous variables, whereas the minimum edge-cost flow
problem presumes integral flow variables.
Both network design problems are NP-complete in the strong sense. For the fixed-

charge network flow problem, Guisewite and Pardalos (1990) prove this problem complex-
ity by transformation from 3-Satisfiability (abbreviated 3SAT, cf. Garey and John-
son, 1979, p. 259). For the minimum edge-cost flow problem, strong NP-completeness is
indicated by Garey and Johnson (1979, p. 214), who refer to a transformation from Ex-
act Cover by 3-Sets (abbreviated X3C, cf. Garey and Johnson, 1979, p. 221). This
transformation from Exact Cover by 3-Sets is shown by Benoist and Chauvet (2001,
pp. 2–3), for example.
To recognize the relation of our assignment problem to network design, see that we

could restrict our problem to a special case of the fixed-charge network flow problem. For
our proof, however, we will exploit the relation to the minimum edge-cost flow problem.
Our proof follows Benoist and Chauvet (2001, pp. 5–6), who show that the minimum
edge-cost flow problem remains strongly NP-complete for a special case which they call

84 Chapter 4 Optimization models and complexity analysis

bipartite minimum edge-cost flow problem.9 Their proof relies on transformation from 3-
Partition. We will take on this transformation to prove that MPSWAdec is intractable
even if it features only one skill.

Theorem 4.3 MPSWAdec is strongly NP-complete even if restricted to one skill, i.e.,
even if |S| = 1. �

Proof (Pseudopolynomial transformation from 3-Partition)
Problem: 3-Partition
Instance: Set C that contains 3m elements, m ≥ 3, m ∈ N; a positive integer B;
a size s(c) ∈ N \ {0} for each c ∈ C such that B

4
< s(c) < B

2
for all c ∈ C and∑

c∈C s(c) = mB.
Question: Can C be partitioned in m disjoint subsets C1, C2, . . . , Cm such that∑

c∈Ci
s(c) = B holds for i = 1, . . . ,m? (If so, every subset Ci must contain exactly

three elements from C.)
3-Partition is NP-complete in the strong sense (cf. Garey and Johnson, 1979, p. 224).
To prepare a transformation, we picture an instance of 3-Partition by a bipartite

graph G(N,A) with node set N and arc set A. Graph G is depicted in Figure 4.2. The
set N of nodes is a union of the disjoint node sets U and V . Arcs run only from nodes
in U to nodes in V and arc capacity is not bounded. The graph G represents a directed
network with a set of supply nodes, namely, the set U , and a set of demand nodes, namely,
the set V . Concretely, for each element c ∈ C a node u is established whose supply is
equal to the size s(c). The node set V comprises m nodes, which have an identical supply
of −B, i.e., a demand of B units of flow. The arc set comprises the arcs 〈u, v〉, u ∈ U ,
v ∈ V .

u3m

s(c3m)

...

...

u2

s(c2)

u1

s(c1)

vm

−B

...

...

v1

−B

Key:

i

supplyi
j

supplyj

Figure 4.2: Network representation of an instance of 3-Partition for transformation
to MPSWAdec

9The bipartite minimum edge-cost flow problem was formulated by Benoist and Chauvet (2001) for a
problem in construction industry. This problem is described in detail by Benoist (2007).

4.6 Complexity analysis 85

A solution to an instance of 3-Partition is represented by a flow from nodes u ∈ U to
nodes v ∈ V that does not exceed the supply of nodes in U and that satisfies all demands
of nodes in V and that does not require more than 3m arcs to transport the flow units.
For our proof, we restrict MPSWAdec to the special case where T = 1; D = 1;

P = m− 1; S = 1; and lks = 1, k ∈ K, s = 1. In this case, all workers belong to the same
unique department and all projects require the same unique skill.
For a transformation from 3-Partition to MPSWAdec, let each element c, i.e., each

node u, correspond to a worker k and let the supply of node u, i.e., s(c), be associated
with the availability Rkt, t = 1, of the corresponding worker k. Furthermore, we associate
each of the m − 1 projects with a demand node v and we associate the requirement rpst
of a project p for the unique skill s in period t = 1 with the demand of the correspond-
ing node v. Finally, let the sole department d = 1 correspond to a node v and let its
requirement rdt, t = 1, correspond to the demand of the node v. This demand amounts
to B units of flow.
Then, an instance of 3-Partition is a yes-instance if and only if there is an allocation

of project workload such that the number of assignments of workers to projects does not
exceed 3(m − 1). Note that 3(m − 1) assignments imply that each project is staffed
with three workers, who spend their entire available time for this project, while three
workers who are not assigned to any project spend their entire time to accomplish the
departmental workload. Together with Lemma 4.2 our proof is complete. �

Remark 4.3 Since 3-Partition remains strongly NP-complete as long as m ≥ 3,
MPSWAdec is NP-complete in the strong sense if two projects must be staffed and a unique
department has a positive requirement, or if at least three projects must be staffed. �

Remark 4.4 The special case where two projects must be staffed and no departmental
workload arises, is NP-complete. This complexity result can be concluded from equiv-
alent proofs of Guisewite and Pardalos (1990) and Benoist and Chauvet (2001). Both
contributions show by transformation from Subset Sum (cf. Garey and Johnson, 1979,
p. 223) that the corresponding fixed-charge network flow problem and the corresponding
minimum edge-cost flow problem, respectively, are NP-complete if there are only two de-
mand nodes. By their proofs, both works help to clarify the sight on the boundary line
between NP-completeness and strong NP-completeness for the respective problem.
Note that the conclusion for our assignment problem does not hold if only one project

must be staffed and a positive requirement of one department must be satisfied. Although
this case results in two demand nodes, transformation from Subset Sum is not possible
in this case. �

To sum up, we have the following three complexity results for the optimization version
MPSWAopt of our assignment problem.

Corollary 4.3 MPSWAopt can be solved in polynomial time if workers master at most
two skills and worker availabilities are “unbounded”. �

Corollary 4.4 MPSWAopt is NP-hard if two projects must be staffed and worker avail-
abilities are bounded. �

86 Chapter 4 Optimization models and complexity analysis

Corollary 4.5 MPSWAopt is NP-hard in the strong sense if at least one worker masters
three or more skills that are required by a project, or if at least three projects must be
staffed and worker availabilities are bounded, or if two projects must be staffed and in the
sole department some work must be accomplished and worker availabilities are bounded.�

4.6.4 Complexity of the utilization leveling problem
In this subsection, we state that the utilization leveling problem is solvable in polynomial
time.
Our optimization problem of allocating workload of a department such that the work-

ing times of workers who belong to the department are leveled as well as possible was
described in Section 3.4 and modeled in Section 4.4. The corresponding decision problem
asks whether there is a feasible allocation of departmental workload such that the sum of
pairwise absolute differences in working times is not greater than b, b ∈ N \ {0}.

Theorem 4.4 The decision problem of our leveling problem is in P. �

Proof The decision problem of our leveling problem can be solved in polynomial time.
A polynomial-time algorithm that solves the optimization problem in O(K2) time is pre-
sented in Section 6.1.2. �

Corollary 4.6 The optimization version of our leveling problem can be solved in polyno-
mial time. �

4.6.5 Summary of results
Table 4.1 summarizes the main results of the complexity analysis that we conducted for
our three problems.

Table 4.1: Main results of the complexity analysis for the three problems considered in
this thesis

Problem Complexity

Project selection NP-hard in the strong sense
Workforce assignment NP-hard in the strong sense
Utilization leveling Solvable in polynomial time

	Chapter 4 Optimization models and complexity analysis
	4.1 An integrated approach vs. a hierarchical planning approach
	4.2 A model for the project selection problem
	4.3 Models for the workforce assignment problem and their limitations
	4.3.1 Two alternative models for the workforce assignment problem
	4.3.2 Limitations of the assignment models and potential remedies and extensions

	4.4 Two alternative models for the utilization leveling problem
	4.5 A monolithic model for all three problems
	4.6 Complexity analysis
	4.6.1 Basic concepts of complexity theory
	4.6.2 Complexity of the project selection problem
	4.6.3 Complexity of the workforce assignment problem
	4.6.4 Complexity of the utilization leveling problem
	4.6.5 Summary of results

