
5. Model Extensions: Forecast 

Errors and Enhanced 

Consumption Planning 

In the previoUB chapter, a basic formal model of the DMC problem has been introduced 
and different allocation schemes for multi-stage customer hierarchies have been analyzed. 
More precisely, a partitioned allocation h88 been performed, 88suming that a matching 
dedicated consumption rule is used which does not overrule the original alloca.tions. It 
is the purpOBe cf this chapter to present two key model extensions. First, the impact cf 
introducing forecast errors on the partitioned allocation will be investigated. Afterwards, 
by relaxing the aBsumption cf the dedicated consumption, alternative cOIlBumption policies 
in the form cf consumption rules for individual orders will be discussed. Sinee two types cf 
such cODBumption rules will be presented, the discussion in this chapter ha.s been organized 
into the following three sections: 

1. Forecast errers are not negligible if the alloca.tion planning procedure is perfonned 
subject to a significant lead. time before demand is realized in the form of actual 
orders. In the previous chapter, all experiments were based on the assumption 
that quotas can be planned based on a perfect knowledge of demand. This is a 
reasonable simplification if the objective is to study differences between the many 
possible allocation schemes. Maintaining the assumption of a. partitioned allocation 
and dedicated consumption, it will be investigated in Section 5.1 to what extent the 
different allocation schemes are sensitive to forecast errors. 

2. Onee the allocated quotas per customer segment 8l'e subject to forecast errors, 
same reservations may turn out to be too high compared to the demand of the 
according customer segments. But other customer segments may have to experienee 
unnecessa.ry stock-outs if the demand has been underestimated. This is particularly 
disadvantageous if highly profitable orders have to be denied although some quota 
reservations still ex:ist for other, less profitable customer segments. Hence, it may be 
preferable to overrule the partitioned allocations when fulfilling individual orders. 

Alternative consumption rules1 other than a dedicated consumption allow fulfilling 
an individual order by seaxching for and by consuming the still-available quotas 
at other loo! nodes in the customer hierarchy. Such policies have already been 
used. successfully in models with a flat paxtitioning of the customer segments. An 

1 Or conaumption policie.!, both terms will be used interchangeably in this thesis. 
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adjustment to the ca.se of multi-stage customer hierarchies will be presented in 
Section 5.2. 

3. Lastly, a second class of consumption rules will be presented by introducing the 
principle of decision postponing into multi-stage customer bierarchies. To mitigate 
the risk of misa.llocations in the presence of forecast errors, Kilger and Meyr (2008, 
p. 193) have suggested retaining some supply quantities at higher hieraxchicallevels 
in the form of virtu.al sa/ety stocks. These reservations at intermediate nodes may 
be consumed on a first-come-first-served basis if incoming orders can no longer 
be fulfilled from the quota reserva.tioIlB. While similar approaches have already 
been successfully implemented in multi-echelon inventory systems, neither practical 
experiences nor actual design recommendations for such retention policies have yet 
been reported in the context of demand fulfillment. A few starting points for further 
investigations of this strategy will be presented in the course of Section 5.3. 

5.1. Forecast Errors 

A particularly strong assumption wbich has been made in Section 4.1 was that the allo­
cation planning procedure can be performed with accurate information. More precisely, 
it has been 88sumed that ea.ch sales agent at ea.ch of the leaf nodes I is capable of making 
a.ccurate forecasts of the dema.nd and the unit profit in bis customer segment, Le. dl = dl 

and Pl = Pl. In many practical settings, there will be a lead time between the forecast­
ing and allocation planning step on the one hand and the consumption of the resulting 
quotas on the other hand. Then, it is unlikely that the sales agents can make accurate 
forecasts regarding the demand and unit profits. Rather , there will exist forecast eITors 
d, - d, = Et =I 0 and PI - PI = Ef =I 0 at each leaf node. Yet two key assumptions will be 
maintained in this section: 

• The outcome of the allocation planning step consists of paxtitioned quotas (Le. 
separate reserva.tioIlB will be made for ea.ch leaf node) . 

• There is still only a dedicated consumption, Le. each order may solely consume 
reservations made for its associated customer segment at the corresponding leaI 
node. 

With these assumptions still in place, but in the presence of foreca.st errors regarding 
demand and unit profits, the quotas determined in the al1ocation planning step will no 
longer exa.ctly match the actual demand per leaf node even if an optimal allocation scheme 
ja used (e.g. OCA or ODA) end ifno shortage occurs (SR = 0%). It is the purpose ofthis 
section to study to what extent the different allocation schemes are affected by foreca.st 
errors. 

Note that a few attempts have already been reported in the literature wbich go even one 
step further: Some models utilize information about forecast errors to aJready improve the 
al1ocation step. See Tal1uri and van Ryzin (1999) for an early example from the revenue 
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management literature and Quante (2009); Quante et al. (2009a) for several approaches 
from the demand fulfillment literature with a fiat customer segmentation. Such ideas are 
not in scope of this thesis and may be the subject of subsequent research. 

Section 5.1.1 contains a description of how forecast errors ca.n be integrated into the 
simulation framework, whereas Section 5.1.2 will report the results of several numerical 
experiments. 

5.1.1. Forecast Error Model 

Ta accommodate forecast errors, a few adjustments of the simulation environment are 
required. For the experiments described in the following, it is desirable to control the 
magnitude of the forecast error directly. The next paragraphs will describe how this can 
be achieved. 

The actual values for demand and unit profit per leaf node are generated as before. 
However, the forecast values will be obtained by adding a random error term drawn from 
a specified distribution to these actual values. These error terms will be drawn from a 
Normal distribution which has a m.ea.n of zero and a controlled standard deviation.2 

Consider demand forecast errors at node l: While the mean val.ue of the forecast error 
should equal zero, the standard deviation of the forecast error will be modeled as the 
product of the actual value of demand and a pre-specified facior CVdz ' Le. 

(5.1) 

Rearranging implies CVdj = ~, i.e. the standard deviation of the forecast error-the root 
of the mean squa.red error-is normalized by the actual demand. This measure of forecast 
accuracy has already been introduced in Table 2.3 as the CV-RMSE or simply as the CV 
(for a shorthand notation). 

For the scope of this thesis, the simplifying assumption will be made that the forecast 
accuracy as measured by CVdz is identical at alileaf nodes, i.e. CVdj = CVdjl = CVa for 
aII I, I' E C and 1 # I'. This leads to 

(5.2) 

The resulting demand forecast error !dz at node I is then distributed according to fdz '" 

N(O,o1). For small values of dl , or in case ofhigh values of CVa, this approach entails the 
risk that the demand forecast error term may become a !arge negative quantity, i.e. -fdj > 
dj • To keep the simulation framework within a reasonable level of complexity, neither 
negative demands (which may result from order cancellations) nor negative profits (which 
may result under certain market environments) will be allowed. Ta prevent negative 
demand forecast values, such cases will be truncated and set to zero. Aß a result, the 

:iI Such an a.pproach has also been used in other dem.and fulfillment models, e.g. in Quante (2009, p. 83). 
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demand forecasts will be given by 

d, = max{Ojdl + "dJ. (5.3) 

Profit forecasts will be obtained in a corresponding mann.er. The standard deviation 
of the unit profit forecast error at node I is generally given by Up, = PI . CY",. Again, 
CVp, = ~ is a measure of the forecast aecuracy with respect to the unit profits at node 
1. Ta simplify the numerical experiments, this value will also be assumed to be identical 
at allieaf nodes, so CVp, = CVp" = CVp for all I, l' E C and I f. I'. Hence, the standard 
deviation of the unit profit forecast error which is used in the following is given by 

UP1 = PI . Cy". (5.4) 

The resulting unit profit forecast error fp, at node 1 is then distributed according to 
"PI '" N(O, u!J After trWlcating any possible negative values, the unit profit forecast 
used in the following corresponels to 

p, ~ max{O;p, + .",}. (5.5) 

Note that the accuraey of the demand and of the profit forecasts can be controlled inde­
pendently, Le. by adjusting either Clrd or Cy". 

This modeling approach with normally distributed errar tenns allows for a straight­
forward link. to other forecast accuraey measures which are more common in practice. 
Managers often prefer to express forecast accuracy in terms of percentage errors (MAPE, 
see Section 2.2.4) rather than in terms 01 the CV(-RMSE). For normally distributed da­
mand forecast errors, there is a simple relationship between the mean absolute deviation 
(MAD) and the standard deviation U of the demand forecast errars (e.g. see Raju and 
Srinivasan (1996, p. 1460) or Nabmias (2009, p. 112)). It i, given by 

1 
MAD ~ v1'/7 ~ v'2fr'/7 '" 0.8 '/7. (5.6) 

Normalizing both the MAD and /7 by the actual demand yields the relationship M AP Ed '" 
0.8· CVd for the demand forecast error (the same argument also holels for the unit profit 
forecast error measures). Hence, a GV of 0.5 roughly translates into a MAPE of 40%. 
Recall that typical short- and medium-term demand forecast errars at the SKU-level are 
in the range of 15-20%, but can become as high as 40% (see Table 2.4 in Section 2.2.4). 
Therefore, the numerical experiments reported in the following will use values for the 
coefficient of variation CVd of 0.0, 0.1, 0.3 and 0.5 to cover a broad range of typical values 
for the MAPE metric found in praetice. Since no sources have been found in the literature 
which give an indication of the typical forecast accuracy with respect to prices or margina, 
the same range will also be used for Cy". 
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The other assumptions of the simulation framework continue to hold. For example, the 
sa.les agents are still assumed to report their forecast values truthfully to their superiors. 
Hence, the demand forecast aggregation in the customer hierarchy again occurs according 
to (3.16). No additional eITors will be introduced in the aggregation process. Note that 
the aggregation process has a beneficial effect on the mean demand forecast eITor. AB 
discussed in Section 2.2.5 in the context of hierarchical forecasting, the mean forecast 
error will decrease at higher hierarchy levels. 

Profit forecasts at higher hierarchlcallevels will again be determined according to (3.17). 
The magnitude of the profit forecast eITor values at higher levels is determined by two 
effects: 

1. There is an obvioUB direct eilect if CVp > 0, Le. if the individual lea.f node profit 
forecasts are inaccurate. 

2. Additionally, there is an indireet eilect. Assume that there axe no profit forecast 
eITors at the lea.f nodes (Le. if CYp = 0). But if demand forecast eITors exist (CVd > 
0), the dema.nd-weighted aggregation of the profit values via (3.17) will introduce 
profit forecast eITors at higher levels, because the weights in the aggregation fonnula 
will be ina.ccurate. 

The ca.lculation of the Theil index at higher hierarchical levels is affected by simila.r 
direct and indirect effects. First, lower-Ievel values of T may be biased (direct effect). 
In addition, there are two indirect effects: Error-prone demand forecast values ca.n enter 
Equation (3.67) directly. Furthermore, this calculation also involves the (aggregated) 
profit forecast values. AB indicated above, these aggregate profit forecast values may also 
exhibit a forecast eITor even if CYp = o. 

In the presence of forecast eITors, a major difference compared to the experiments 
reported in Chapter 4 is that the OCAjODA schemes no longer constitute the first-best 
benchmarks. Although both rules per se lead to 'optimal' quotas at the leaf nodes of 
the hierarchy, over- and under-allocations will result since allocation planning is based on 
ina.ccurate input d.a.ta. Both the actual demand and the actualleaf node profitabilities will 
be different !rom the forecast. Hence, under the OCAjODA schemes, excess quantities 
will remain as leftovers at same nodes while other nodes will suHer a shortage. 

For analyticaJ purposes, the Perfect Central Allocation (PCA) scheme will be intro­
duced. PCA corresponds to an omniscient central planner who has full transparency 
across the customer hierarchy and also has a perfect forecasting ability. Essentially, PCA 
allocates the given supply according to the acrual demands and actual unit profits at the 
leaf nodes (and not according to the (error-prone) demand and profit forecasts, as under 
the OCA scheme). The resulting quotas under PCA will therefore be optimal given the 
actual values of the demand volumes and profitabilities. 

PCA may not be used for actual allocations in a practical context. Rather, PCA-based 
allocations will only be ca.lculated on an ex-post basis to serve 8S a first-best benchmark. In 
particular, all performance assessments of the different allocation schemes will be reported 
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in the form of ARLP with respect to PCA. Since PCA leads to identica.l results as aCA if 
no forecast errors exist, the ARLP values reported for the following numerical experiments 
remam comparable to those discussed in the previous cha.pter. 

5.1.2. Numerical Experiments 

The purpose of the following numerical experiments is twofold: to clarify the impact 
which forecast errors have on the quality of the alloca.tion planning process and to identify 
differences between the key alloca.tion planning schemes. The sequence of the experiments 
follows a similar logic as in the previous chapter. First, a base case setting will be 
presented which illustrates the performance of the different allocation schemes under 
different settings of the forecast accuracy. Then, changes to both the shortage rate as weil 
as the hierarchy size will be investigated. This is accompanied by a detailed comparison 
between the performance of the aDA and ADA schemes and between the IDA and PA 
schemes. 

Base Case: Impact of Demand and Profit Forecast Errors 

AB in Chapter 4, the base case setting agam consists of a three-Ievel hierarchy with a span 
of control of 4 (i.e. 16 leaf nodes and 21 nodes overall). The shortage rate will initially be 
fixed to a value of SR = 20% 0/ the actual demand at the root note of the hierarchy. This 
means that the shortage rate will not be affected by the demand forecast eITors and can 
be control1.ed independently. As before, random values for the demand and unit profit at 
the leaf nodes will be drawn uniformly from the interval [0; 100] for a total of 100 input 
data sets. 

In contrast to the previous experiments, forecasts for the demand and the profit at the 
leaf nodes will now be determined via (5.3) and (5.5) for each input data set. In this 
base ca.se experiment, both CVd and CVp will be varied independently and the sixteen 
combinations of the values 0.0, 0.1, 0.3 and 0.5 for both coefficients of variation will be 
tested to determine the impact of both types of forecast errors. 

The leaf node allocations will result from the application of any of the three profit­
based schemes aCA, ADA and IDA or of the proportional, ie. quantity-based. scheme 
PA. All results will be reported in the form of the average profit 1088 compared to the 
theoretical best ca.se scheme (ARLP metric). Recall that in all experiments involving 
forecast errars, the flrst-best allocation will be achieved via the PCA scheme and no 
langer by the OCAjODA ,ehernes. 

Thbles 5.1a-5.1d give the resulting ARLP values for each allocation scheme for the 16 
different combinations of the forecast error settings for demand (CVd , horizontal a.xia of 
each table) and unit profit (Cy", vertical axia). 

First, note that 1lllder all four allocation schemes (with a small exception for PA at 
GV = 0.1), the introduction of a demand forecast error leads to a Iarger degradation of 
the ARLP values than a profit forecast error of the same magnitude. AB can be seen, the 
ARLP values in the upper right part of the results matrices are significantly larger than in 
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CY.. CV. 
0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5 

0.0 0.0 4.0 12.3 20.7 0.0 0.8 4.6 12.5 20.6 

Cl'" 
0.1 0.0 4.0 12.4 20.8 

Cl'" 
0.1 0.8 4.6 12.6 20.7 

0.3 0.9 4.9 13.2 21.6 0.3 1.7 5.4 13.3 21.3 
0.5 4.4 8.2 15.9 23.6 0.5 5.1 8.7 16.1 23.4 

(a) ODA ""eme (b) ADA ""eme 

CV. CY.. 
0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5 

0.0 5.0 8.7 16.3 24.3 0.0 15.9 15.8 18.2 23.8 

Cl'" 
0.1 5.2 9.0 16.5 24.4 

Cl'" 
0.1 15.9 15.8 18.2 23.8 

0.3 6.1 9.5 17.0 24.5 0.3 15.9 15.8 18.2 23.8 
0.5 8.6 12.1 19.0 25.5 0.5 15.9 15.8 18.2 23.8 

(c) lIlA scheme (d) PA ""eme 

Table 5.1. - ARLP (%) under demand and profit forecast errors (SR = 20%, 3-leve1 hier-
",ehy) 

the lower left part. AB expected for a quantity-based scheme, there is no inHuence of the 
profit forecast error on the performance of the PA scheme. In each column of Table 5.1d, 
all ARLP values are identical. But even under the profit-based allocation schemes, the 
impact of profit forecast errors is Bmall. AB can be seen by comparing the first two rows 
in ea.ch table, a small profit forecast eITor (CYp = 0.1) leads to ahnost the same ARLP 
values as in the case without any profit forecast errors (CYp = 0). 

Proceeding to laxger values of CVp, the impact of profit foreca.st errors becomes more 
profoWld if CVp = 0.5. This disproportionate performance degradation relates to the fset 
that the (aggregated) unit profit values primarily determine the order in which successor 
nodes are served. While small profit forecast errors only rarely disturb the optimal se­
quence a.ccording to which individual nodes will be served, once the profit forecast error 
becomes large enough, these disturbances become more frequent. 

Another major observation is that with increasing forecast errors the resulting ARLP 
values for the ADA scheme approach or even undercut those ofthe ODA scheme (esp. for 
CVc, = 0.5). Hence, there seema to be no additional benefit from using full information 
(ODA) or central control (OCA)3 for the allocation decision if (demand) forecast errors 
are sufficiently large. Rather , the ADA scheme, which only uses aggregated information, 
leads to competitive or better results. 

This behavior ca.n be explained. best with the help of a concrete example. Far a simpler 
presentation, the example will be given for the case with only demand forecast errors, Le. 
CVp = O. Now consider Figure 5.1 which depicts a basic example hierarchy with four lea.f 
nodes and given forecast values for the demand and unit profit at each leaf node. Hence, 
the forecast for the overall demand equals 200 units. Assume that there ja a shortage of 

3 Recall that ODA and OCA lead to the same allocation results. 
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supply of 25%. As a result, only 150 supply units are available and need to be allocated 
using either the ODA or the ADA scheme. Thble 5.2 contains more detailed infonnation 
on the mechanics of this allocation process to the leaf nodes. 

50 50 50 60 Dema.nd forece.st 

Figure 5.1. - Example hierarchy: Allocatian under ODA and ADA with forecast errars 

Initially, recaJl that the ODA scheme serves the leaf nodes strictly in order of decreasing 
unit profit forecasts (data row 1). In this sequence, the leaf nodes receive an allocation 
which equaIs their demand forecast until the available supply has been depleted (in many 
caseB, the last leaf node with a positive allocation may only receive a partial allocation). 
In the example hierarchy, allieaf nodes except aa receive an allocation of 50 units under 
the ODA scheme. This is refiected in data row 3 of Thble 5.2. 

Under the ADA scheme, it is the level of customer heterogeneity at the intermediate 
nodes a and b which determine the size of the leaf node allocations. For the given clata, 
the allocations to the intennediate nodes correspond to X a = 64 and Xb = 86 units.4. These 
quantities will be allocated further to the lea.f nodes. In this last allocation step, the more 
profitable nodes will be served first. The resulting alloca.tions per leaf node under ADA 
8l'e given in line 4 of Table 5.2. 

Now consider the impact of demand forecast errors. Asswne that the actual demand 
per leaf node turns out as indicated in row 5 of Thble 5.2.5 If the dem.and at a lea.f 
node has been overestimated, the allocation is likely to be too high, depending on the 
allocation scheme. These leftovers cannot be sold and will lead to a profit loss at that 
leaf node. Equivalently, there may also be a profit IOBS from too low allocations due to 
underestimation. 

In the example hierarchy, the ODA scheme leads to leftover quantities at nodes ba 

and bb where the corresponding demand was overestimated (data row 6). Profit losses 
from under-allocations occur at nodes aa and ab (clata row 7). Under the ADA scheme, 
leftovers only occur at the single node bb while under-allocations ca.n be noticed at all 

4, This can be confirmed by calculating the parameters 8a and ~ via (3.61) and then determining the 
allocations according to Algorithm 2. 

5 The given wJues of the forecast and the actuaJ dema.nd imply a. MAPE wJue of 20% if aggregated over 
allleaf nodes, Le. CVd = 0.25. 
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Data aa ab ba bb Total 
1 Unit profit forecast 1 7 2 5 
2 Demand forecast 50 50 50 50 200 

3 
Allocation 

ODA 0 50 50 50 150 
4 ADA 14 50 36 50 150 

5 Actual demand 50 70 40 40 200 

6 
Profit IOBS leftovers 

ODA 0 0 20 50 70 
8 ADA 0 0 0 50 50 
7 Profit 1088 under-allocation ODA 50 140 0 0 190 
9 ADA 36 140 8 0 184 

10 ODA 50 140 20 50 260 
11 Total profit loss ADA 36 140 8 50 234 
12 PCA 50 0 0 0 50 

Table 5.2. - Comparison between ODA and ADA under forecast errors: Leaf node data 

three other leaf llodes. In the eurrent setup of the simulation environment, which only 
considers a. single period problem (i.e. Olle allocatioll planning step and one consumption 
phase), and with a dedicated consumption poliey, leftovers a.re clearly more hannful than 
under-a.llocations in shortage situations: An under-allocation at a highly profitable leaf 
node only means that additional profits would have been possible had more supply been 
available at that node (rather than being diverted to a less profitable node). Hence, one 
only looses the profit differential between a more profitable node with shortage and the 
less profitable node which is a.ctually served instea.d. By contrast, aleftover is even worse: 
Here, the entire unit profit of the most profitable node which still experiences a shortage 
is lost. 

The assumption of a single period problem is certainly valid if the allocated products 
are perishable or constitute fashion items which will have no or a signifieantly reduced 
value in the next period. However, if leftovers do not constitute lost sales, but can be 
reused again in a subsequent period, a different temporal model is required, e.g. by ex­
tending the setup of Meyr (2009) to multi-stage customer hierarchies. Such an approach 
will also a.llow accounting for stock-out pena.lties such as baclrorder or order denial costs. 
In the one-period setting studied here, these costs of sub-optimal eustomer service ean 
only be accounted for partia.lly and indirectly via the unit profits per leaf node (see also 
Sections 1.2 and 3.3). Overall, in a multi-period setting with inventories, the perfor­
mance difference between ADA and ODA requires a closer inspection. This constitutes 
an important avenue for further research. 

Returning to the example calculation in Table 5.2, note that under the ADA scheme, 
the alloca.tioll Xb is smaller than the demand forecast. Hence, the less profitable node ba 
only receives a. reduced alloca.tioll of Xba = 36. However, as the demand at this node has 
been overestimated anyway, this reduced allocation only implies a small profit loss from 
under-a.llocation of 8 units (compared to the first-best PCA scheme). Instead, ODA leads 
to an over-alloeation of 20 units. 
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Now consider the left intermediate node a. The higher alloca.tion to node a allows 
fulfilling at least same demands at node aa under ADA. Had this quantity been allocated 
to intermediate node b instead (as under ODA), it wou1d not have resu1ted in a profitable 
use. Rather , it wou1d have been allocated to ba and led to lost profit due to an excessive 
allocation. The net effect is that the total profit difference to the first-best case PCA 
scheme is smaller under ADA than under ODA in this scenario (see data rows 10-12 in 
Thble 5.2). Put differently, the fuzzier alIocation under ADA alIeviates the risk of over­
allocations and of associated profit losses if forecast errors need to be accounted for. Tbe 
strict adberence to the latently inaccurate forecasts under ODA often reserves too high 
quotas for the more profitable nodes. 

The above experiment has shown that profit forecast errors have significantly smaller 
effects than demand forecast errars. Ta reduce the number of parameters in the fol­
lowing experiments, only the joint eifect of both demand and profit forecast errors will 
be considered in the following experiments. More precisely, it will be assumed that the 
error terms for both types of forecast will have the same coefficients of variation, Le. 
G\.), = C\Id = GV. This corresponds to the setting along the first diagonal in Ta,­

bl .. 5.1a-5.1d. 

Different Shortage Rates and Hierarchy Sizes 

AB an extension of the above base case experiment, the assumption of a fixed shortage 
rate will be relaxed. This paragraph will illustrate the joint effect of different shortage 
rates as weil as of different forecast error settings. The same effect will be considered 
further in the following paragraph, focusing on a detailed comparisan between the ODA 
and ADA schemes as wellas between the PA and IDA schemes. 

Initially, the 3-level hierarchy will again be used.. While the shortage rate will be 
varied between 0-90%, the forecBSt error (for demand and unit profit) will be controlled 
by testing tbe settings GV = 0.0, 0.1, 0.3 and 0.5. Aß before, tbe perfonnance 01 tbe 
allocation schemes ODA, ADA, IDA and PA in terms of ARLP will be compared. 

The results of the experiment are depicted in Figures 5.2a-5.2d. Each gra.ph corresponds 
to a different forecast errar setting CV and shows the profit loss associated with each of 
the four allocation schemes as a function of the shortage rate. 

In the following, the effect of forecast errars on each of the four allocation schemes will 
be discussed in more detail: 

• ODA (dark gray lines): In case ofno forecast errors, ODA is optimal and the corre­
sponding ARLP curve corresponds to the horizontal axis, as shown in Figure 5.2a.6 

The introduction of forecast errors has the effect of moving the ARLP curve upward. 
This shift of the ARLP curve is alm08t constant over the entire range of shortage 
rates tested. Comparing the four graphs, the performance 1088 in terms of ARLP 
due to the forecast errors increases with the value of CV. For example, the setting 
CV = 0.1 (Figure 5.2b), corresponding to an average forecast error of about 8%, 

CI Note that Figure 5.2a correaponds to Figure 4.16. 
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Figure 5.2. - ARLP (%) per abortage ra.te and forecast error setting (3-level hierarchy) 

leads to an ARLP of 4.2% on average. Simila.rly, GY = 0.3 (Figure 5.2c), equivalent 
to a forecast error of 24%, shifts tbe ARLP curve under ODA to on average 13.8%. 

• ADA (bla.ck continuous lines): If no forecast errors are present, it has been observed 
in the previous chapter tbat tbe ga.p to an optimal schem.e increases sligbtly witb 
the shortage rate. At GV = 0.1, this increase is significantly smaller and ARLP is 
almost constant over the entire range of shortage rates analyzed. At high (GY = 0.3) 
and very high (GV = 0.5) forecast error settings, the ARLP values even become 
smaller again at higher levels of shortage. Furthermore, ADA leads to strictly better 
allocations than ODA from a particular threshold vaJue of the shortage rate onwards. 

• IDA (light gray lines): For the case without forecast error (see Section 4.5.3), it was 
already noted that the diHerence to an optimal allocation scheme increases with the 
shortage rate until a shortage rate of about 80%. Far higher values of SR, the ARLP 
vaJues decrease again. This pattern can also be observed after the introduction of 
forecast errors and the same explanation as before applies (see page 252). As with 
the ODA scheme, positive values of CV have the result of shifting the ARLP curve 
upwards. 

• PA (bla.ck dotted lines): For this scheme, a different phenomenon ca.n be observed. 
While the introduction of increasingly laxger forecast errors clearly has a nega.tive 
impact on ARLP for small shortage rates, there are hardly any differences in ARLP 
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between the depieted forecBSt error settings for shortage rates > 40%. This ean be 
explained as follows: 

In ease of no or only small shortage rates, the demand forecast errors will lead 
to situations where same leaf nodes will reeeive too high allocations. Given the 
dedieated consumption poliey, the surplus supply units will constitute lost sales in 
the one-period setting studied here. Clearly, the higher the foreeast error setting, the 
stronger is this effect. It shifts the leftmost part of the ARLP eurves in Figures 5.2a-
5.2d upwards. However, with rising shortage rates, these surplus allocations cease to 
oeeur, almost all alloeated quantities will be sold and the total profit over all nodes 
will approach on average a value of 1 - SR also for high forecBSt error settings. 

In sum, the results in Figure 5.2 indieate that the ADA scheme is the superior scheme 
once demand and profit uncertainty are incorporated. While ODA and ADA lead to 
similar ARLP values if the forecast error values remain small, ADA outperforms ODA 
at higher forecast error levels if the shortage rate is large enough. It appea.rs that the 
organizational and technical efforts to alloeate quotas based on the ODA scheme (or 
equivalently, based on the OCA scheme ) may often not be justified if forecast errors 
matter. The use of ADA, which only requires aggregate data, will lead to equivalent or 
even better alloeations. 

To further illustrate the eonsequences which arise when introdueing foreeast errors, the 
test bed settings deseribed above for a 3-level hierarchy have also been applied to a 5-level 
hierarchy. Va.rying agRin both the shortage rate and the eoefficient of variation to control 
the foreeast errors, the corresponding ARLP values in this larger hierarchy have been 
depicted in Figures 5.3a-5.3d for the four alloeation schemes studied here. 

The qualitative results a.re similar to those which have been observed for the 3-level 
hierarchy. One noticeable difference refers to the performance of the IDA scheme. It 
has already been observed beiere (see Section 4.5.4) that the gap between the !DA and 
the PA scheme in terms of ARLP values is small in the larger hieraxchy. With forecast 
errors, the picture changes for the worse. This is partieularly obvious in Figure 5.3d. At 
a forecBSt error setting of GV = 0.5, the PA scheme strictly outperforms the IDA scheme 
over the entire range of shortage rates tested. This is an important result for practieal 
applieations. Including aggregated profit foreeasts into the allocation decision at higher 
hierarchy levels (without eonsidering the heterogeneity of the eorresponding sub-trees) 
entails a significant loss of profit. A simple proportional scheme ie a far better choice in 
this setting. 

Detailed Comparison: ODA vs. ADA and IDA vs. PA 

'!'wo aspects of the above results will be investigated further in the following. The first 
paragraph will foeus on a direct comparison of the performance under the ADA and 
the ODA scheme in the presenee of forecast errors. Figures 5.4a and 5.4b visua.lize the 
absolute difference of the eorresponding ARLP values (in % points) for each hierarchy 
type, at different levels of forecast errors and over a wide range of shortage rates. 
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Figure 5.3. - ARLP (%) per shortage ra.te and forecast error setting (5-level hierarchy) 

The second paragraph will address the relative performance of the PA and the IDA 
scheme. Correspondingly, Figures 5.5a and 5.5b depict the absolute differenee of the 
ARLP vaJues (in % points) between the PA and the !DA scheInes, again for different 
levels of the shortage rate and for different settings of GY. 

All four figures allow for a straightforward interpretation: For those settings of SR 
and GY where the curves He in the positive half-plane, the ODA and the IDA scheme, 
respectively, lead to a better alloca.tion of quotas (in terms of profit loss compared to the 
first-best scheme PCA). For those settings of SR and CY where the corresponding curves 
lie in the negative half, the ADA and PA schemes result in better allOca.tiOIlB. 

Comparison Between ADA and DDA: Focus initially on Figure 5.48., which shows the 
difference in ARLP between the ODA and the ADA scheme in the 3-level hierarchy. Onee 
parlicular threshold values for CY and SR have been reached, ADA clearly outperfonns 
ODA. For GV = 0.3, both schemes have similar ARLP values, but for values of SR > 60%, 
there is a clear advantage to be gained by using ADA. For GV = 0.5, ADA leads to better 
overall allocations over the entire range of shortage rates tested. 

Similar conclusioIlB can be drawn by inspecting Figure 5.4b, which illustrates the gap 
between the ARLP for ADA and ODA in the 5-1eve1 hierarchy. ADA is superior to ODA 
for a shortage rate of a.bout 50% or larger if GV = 0.3. If GV = 0.5, ADA outperfonns 
ODA again for all shortage rates. 
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Figw-e 5.4. - Difference between ADA and üDA per shortage rate and forecast error 

Comparing the graphs for both hierarchy sires, there is one puzzling difference to be 
observed: While the curves in Figures 5.4a and 5.4b are very similar for small and medium 
levels of shortage, the advantage of ADA over ODA starts to decrease again in the 3-level 
hierarchy at very high levels of shortage. Interestingly, this observation cannot be made 
in the 5-level hierarchy. 

The root cause of this phenomenon is that the performance differential between ODA 
and the first-best solution PCA decreases signifieantly in small hierarchies at high levels 
of shortage. The reasen for this effect will be given in the following: RecaJl that the 
values of the demands at the leaf nodes are determined by randomly drawing uniformly 
distributed figures from the interval [0; 100]. Hence, the average demand per leaf node 
is approximately 50 units. In the 3-level hierarchy, total demand over alileaf nodes is 
appraximately in the range of 16 . 50 = 800 units. At very high shortage rates, say 90%, 
only 80 supply units will be available on average. As the ODA scheme serves the leaf 
nodes in order of decreasing profitability, these 80 supply units will only be sufficient to 
fulfill the actual demand olles. than two leaf nodes (80/50~1.6 leaf nodes) on average. 
Now consider the impa.ct of the demand forecast errors.7 One of two situations will oecrn 
at the most profitable leaf node. Assume that this most profitable lea.f node is I while the 
second most profitable node is l': 

1. If dl > dl, the forecast was exaggerated, resulting in a surplus allocation dl-dl (recall 
that the allocation corresponds to XI = dl as it is the most profitable node). This 
surplus exceeds the customer demand and a potential profit amount of PI(dl - dl) 
will be lost. Note that the alloca.tion to l' will be less lik.ely to exceed the actual 

7 Profit forecast errors have a minor influence. As stated before, their presence primarily influences tbe 
order in which the leaf nodes will be served. The following explanation will fOCU8 on demand forecast 
erro". 
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demand dll because on average, only an amount of 0.6· dll will be allocated to I' in 
the first place. Hence, under ODA, no profit will be lost at node l' compared to the 
PCA scheme. 

Seen over all leaf nodes, there will be a significant difference in terms of ARLP 
between the ODA and PCA scheme due to the leftovers. AB stated, this gap ammmts 
to p,(d, - d,), 

2. If dl < dl , actual demand was underestimated. Not all demands at the most prof­
itable node l will be fulfilled. However, the shortfall dl - dl will lead to an increaaed 
alloeation to the second node l'. But despite this additional quantity dl - dl' the 
total allocation to node I' will on average still be less than the actual demand dl/. 
Put differently, the risk of any surplus alloeation at node l' remains smal1 even in 
case the demand at node I has been underestimated. 

The overall IOBS in profits over allleafnodes under the ODA scheme eompared to the 
PCA seherne will therefore only amount to (p,-p,,)( d,- d,), This IOBS is signifieantly 
smaller than in the first eaae discussed above. In particular, no leftover units will 
remain at any of the leaf nodes and also the diHerenee between PI and Pl' is likely 
to be small. In sum, the resulting difference in ARLP between ODA and PCA will 
be rather limited. 

A main insight is that both of the above two cases, i.e. leftovers and no leftovers, will 
occur with equal probability in the 3-level hierarchy at a shortage rate of 90%. This is 
due to the fact that only one leaf node will be affected by leftovers. Furthermore, over­
and Wlderestimation are equally likely because forecast errors have been drawn from the 
(symmetrie) Normal distribution. 

Against this background, the different performance gaps in the 3-level and in the 5-level 
hierarchy between ODA and PCA at a shortage rate of 90% ca.n be explained. The main 
rea.son is that a situation without leftover quantities at any leaf node will occur with 
a signifieantly lower probability in the !arger hierarchy. Therefore, the gap in terms of 
ARLP between ODA and PCA and between ODA and ADA is much larger in the 5-level 
hierarehy at high levels 01 shortage, 

A numericaJ exarnple will help to highlight the merhanies, RecaIl that the 5-level 
hierarchy which is used for the experiments has 256 leaf nodes. Despite an average total 
demand of 256 . 50 = 12,800 units across allieaf nodes, only 1,280 units of supply will 
be availa.ble if the shortage rate equals 90%. On average, this supply quantity is only 
sufficient to satisfy the total deman<ls of 25.6 of the 256 leaf nodes. Hence, in the 5-level 
hierarchy, approximately 26 nodes ca.n be expected to reeeive a positive alloca.tion at this 
level of the shortage rate, in contrast to only 2 nodes in the 3-level hierarchy. At roch 
of these 26 nodes, demand may be both over- and underestimated. The differenee to 
the three-Ievel hierarchy is that simultaneous under-forecasting of the demand at all of 
these 26 lea.f nodes is highly unlikely. Rather , for almost every input data set, surplus 
allocations from overestimation will result at least at some leaf nodes. On average, these 
surpluses will affect every other of the 26 leaf nodes. Now reeall that the performance of 
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ODA will only come close to PCA if there are no leftover quantities at any of the lea.f 
nodes. While this ca.se occurs in the 3-level hierarchy with about 50% probability, it will 
happen alm06t never in the 5-level hierarchy. 

Hence, the resulting gap between ODA and PCA in terms of ARLP will remain high 
for a shortage rate of 90%. To see the same improvement as in the 3-level hierarchy, the 
shortage rate needs to be increased further, until the supply is sufficient to only serve the 
demancls of 1.6 leaf nodes. This requires a shortage rate of SR = 1-1.6/256 = 99.375%. 
Only in this extreme case, there is also a 50% probability that no leftover quantities will 
remain at any lea.f node in the 5-level hierarchy. This explains why there is an improvement 
of the ARLP values under ODA in the 3-level hierarchy at a shortage rate of 90%, but 
not in the 5-level hierarchy. 

Comparison Between PA and IDA: It is similarly instructive to directly compare the 
performance of the IDA and of the PA schemes. Focus first on Figure 5.5a which gives 
the difference in terms of ARLP between both allocation schemes in the 3-level hierarchy, 
again for different values of CV and SR. While the IDA scheme leads to superior results 
at small and medium levels of forecast error, it can be observed that the simpler PA 
scheme actually performs better for shortage rates of up to 55% at high forecast errors 
(CV = 0.5). Put differently, there appears to be no benefit from employing a simple 
profit-based scheme such as IDA if forecast errors are large, unless there is a significant 
level of shortage in the customer hierarchy. 

If the hierarchy is larger, the advantages of the PA scheme are more apparent. AB 
depicted in Figure 5.5b, the PA scheme leads to a strictly lower ARLP at all levels of 
shortage tested if CV = 0.5. Even if forecasts are more accurate (CV = 0.3), PA is still 
superior to IDA at shortage rates of up to 80%. Also nate that there are hanDy any 
differences in performance between both schemes if forecast errors are smaIl and if there 
is only a mild shortage (GV = 0.1, SR ~ 25%). The superiority of PA at low levels of 
shortage and high forecast errors can be explained by the superposition of two effects: 

• On the one hand, IDA clearly favors more profitable nodes through its 'all-or­
nothing' property (aee also Section 4.5.3). This is particularly helpful if supplies 
are very tight so that only a. small number of leaf nodes will receive any allocation 
at all. By design, these are the more profitable lea.f nodes while the less profitable 
nodes will receive no allocations at all. AB was discussed earlier, this effect is diluted 
by more hierarchy levels and if many leaf nodes exist. By contrast, PA will serve 
allieaf nodes equally . 

• On the other hand, however, this 'all-or-nothing' property of IDA may lead to 
significant surplus allocations in case of forecast errors (both demand and unit profit 
forecasts may playa roIe here). Moreover, on average every other leaf node with a 

positive allocation under IDA will have leftover quantities since forecast errors are 
normally distributed; and these nodes with a. positive alloca.tion belong to the more 
profitable nodes. 



5.2. Enhanced Quota Consumption Rules 279 

By contrast, leftovers due to forecast errors will occur on average at every other 
of allieaf nodes under the PA scheme if there ja no shortage. But with increasing 
shortage rate, the number of leaf nodes with leftovers will decrea.se under PA. 

At smaIl and medium levels of shorta.ge, the second eHect prevails, leading to a superiority 
of the PA scheme. However, 80t high levels of shortage, the first effect will dominate, as 
can be inferred from Figure 5.580 and especially from Figure 5.5b. 
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Figure 5.5. - Difference hemen PA and IDA per shortage ra.te and forecast error 

The 8obove experiments indica.te th80t forecast errors h80ve a significant impact on the 
performance of the individual allocation schemes. Two results stand out: 

1. The new ADA scheme has been shown to perform particularly well against all other 
alloc8otion schemes under forecast erroIS. Once foreca.st errors are as high as in many 
pra.ctica.l situations (GV ~ 0.3, Le. MAPE ~ 24%), the ODA/OCA schemes cease 
to yield the best allocation results. 

2. For the PA and IDA schemes which are more widely used in practice, the above 
experiments have shown th80t a basic profit-based scheme lik.e IDA rarely offers any 
advantage over 80 simple quantity-based scheme lik.e PA if forecast errors need to 
be considered. In the presence of re31istic forecast erroIS (GV ~ 0.3, ie. MAPE 
::>: 24% or larger) and for smalllevels of shortage (SR:<:; 30%), a simple proportional 
allocation leads to similax results already for small customer hierarchies. 

5.2. Enhanced Quota Consumption Rules 

In 311 previo1l8 experiments, the focus was placed on the alloca.tion planning step and on 
methods to 31loca.te scarce supply quantities to the leaf nodes in multi-stage customer 
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hierarchies. The resulting quotas correspond to reservations for particular eustomer seg­
ments which were subsequently consumed by the incoming orders in areal-time process, 
as discussed in Section 2.4. So far, the leey assumption has been that the allocation 
pl.a.nning step leads to a partitioned allocation which is not overruled by the consumption 
policy, Le. there is a dedicated consumption. 

However, when deciding whether to accept an arriving customer order from a pal'tieulax 
customer segment, companies may not only check the corresponding quota reservation. 
Rather, if demand for a paxtieulaxly important , Le. highly profitable eUBtomer segment 
has been underestimated, companies may at times prefer fulfilling such important orders 
by diverting quotas which have originally been reserved for other order arrivals, thus 
overruling the original quota allocation. 

Prom the perspective of the simulation model UBed in this thesis, the key differenee 
between a dedicated consumption and more enhanced consumption rules is that in the 
latter cases, each individual order and the sequence 0/ order arrivals need to be considered. 
By eontrast , with dedicated consumption, it is sufficient to rely on the fact that the total 
demand d, at node I corresponds to the sum of the quantities requested per individual 
order. Onee the quota ha.s been depleted, orders in excess of XI will be denied. Neither 
the size of each individual order nor the arrival of the orders at all other nodes need to 
be modeled explicitly to determine the total profit earned under the different allocation 
schemes in the setup used in Chapter 4. 

However, if the consumption poliey permits a consumption from an alternative, less 
profitable node I' =/;1 (as considered in this and the next section), the sequenee of order 
arrivals (and the order size) matters. It is instructive to briefiy illUBtrate the more impor­
tant point regarding the order arrivaJ. sequence: Assume that the quotas and the actual 
total demand at both nodes 1 and [' are equal, Le. XI = XI' and d, = dl" and that there 
is a shortage, ie. X, < d, and correspondingly XI' < d

"
. For simplicity, consider only unit 

size orders. If most of the orders at the other node l' arrive later than those at node I, 
some of the orders arriving at node 1 after X, has been depleted may still be fulfilled by 
'stealing' from node l'. However, if there is a truly mixed order arrival, both quotas X, 

and XI' will be depleted almost at the same time and no stealing will occur. 

Such enhanced eonsumption policies which grant highly profitable orders access to quo­
tas reserved for lower-profit orders are conceptually similar to quantity-based. revenue 
management.8 With the consideration of eonsumption policies other than a simple ded­
icated consumption, e.g. nested ones which are UBed in revenue management, the quota 
reserva.tions marle in the allocation planning step no longer determine the outcome of the 
demand fulfilhnent process (Le. the maximum possible profit). Rather, such alternative 
consumption rules may effectively override Bome of the previouBly fixed quotas. Cleverly 
designed consumption rules thUB have the potential to paxtially offset deficiencies eaused 
by improper allocation planning or by forecast errors. 

11 See also tbe brief overview of revenue management-based demand fulfillment wbich was given in Sec­
tion 2.4.4, especially Quante et al. (2009b). 
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The following discussion of consumption-related aspects of the DMC problem consists 
of two parts. Initially, in Section 5.2.1, an overview will be given coneerning the different 
consumption rules which may be employed in customer hierarchies. In Section 5.2.2, 
results will be reported from numerieal experiments to evaluate the promising rule types. 

5.2.1. Enhanced Consumption Rules in Customer Hierarchies 

As long as the alloca.tion planning procedure does not involve a physical transportation 
of supply quantities to other loeations, it only results in a virtual earmarking of the 
individual quantities for particular customer segments. A number of alternative fulfillment 
options ca.n easily be implemented. Enhanced consumption rules establish a prioritized 
order of the alternative fulfillment options. Searching for fulfillment alternatives may be 
particularly useful for highly profitable orders. As discussed in Seetion 2.4.3, there are 
three typica1 search dimensions in the esse of a flat partitioning of the customer segments: 

Customer segment If the demand for a partieular eustomer segment has been underes­
timated, consumption rules may grant a.ccess to quota reserva.tions which have been 
made for other customer segments. 

Time If quota reserva.tions per customer segment have been made for partieular con­
sumption periods, consumption rules may permit also consuming quotas which have 
originally been reserved for the same eustomer segment for earlier or for later peri­
oda. 

Substitute product If a requested produet is out of stock, a company may at times 
choose to fulfill the order request by delivering a similar product of equal or higher 
value, provided the eustomer aceepts such substitutions. 

Since the foeus of the models discuased in this thesis is limited to a single-period problem 
(consisting of one allocation planning step and one subsequent consumption period) and 
since only a single produet is considered, the following presentation will only address the 
first search dimension. A key idea here is nesting, i.e. using a system of hierarchically 
linked quotas rather than strietly separated, i.e. partitioned quotas. As highlighted in Sec­
tion 2.4.4, nested quotas have primarily been discussed in the context of quantity-based 
revenue management, but the applica.tion to demand fulfillment with a flat partitioning 
of the customer segments has already reeeived much attention. The following paragraph 
will present an extension of the nesting concept to multi-stage customer hierarchies. Af­
terwards, the order arrival. model will be explained. 

Nesting in Customer Hierarchies 

Before discussing nesting strategies in customer hierarchies, a few definitions and concepts 
need to be introduced. While in case of a f:l.at partitioning of the customer segments, a 
centraI planner oversees the eurrent quota levels and knows the sequence of the eustomer 
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segments in terms of profitability, this level of data transparency only rarely exi.sts in eus­
tomer hierarchies. Instead, it is helpful to characterize the eustomer segments which can 
be nested with the help of the degree 0/ kinship (DK) metrie. This coneept is illustrated 
in Figure 5.6. 

(a) Degree 0 (h) De",ee 1 (e) Degree 2 

Figure 5.6. - Enhanced consumption mies: Different degrees of kinship 

Consider Figure 5.6a fust, which represents the base ease without nesting (DK = 0), 
Le. a dedicated consumption. An order '1 from eustomer segment I with a size of qi, may 
only eonsume the quota X,. H 1Ji! > X" the order must be denied if a partial fulfilhnent 
is not permitted. In Figure 5.6b, the degree of kinship equals DK = 1. Order arrivals 
from a particular eustomer segment I may also be fulfilled by using the reservations at the 
immediate sibling Dodes, Le. from the Dodes which have the same parent Dode as Dode 
I. In Figure 5.6e, DK = 2. An order arrival at node I may also be fulfilled by using the 
quotas at the nodes which have the same grand-parent node as Dode I. This is equivalent 
to a central planner. 

Hence, the setting of the DK value represents the degree of data transparency in a eus­
tomer hierarchy. For example, if DK = 1, it is the loeal sales manager, being responsible 
for several loeal sales territories, who ean decide whether the quotas at her subordinate 
nodes ean be nested. The necessary information for such a decision is often not available 
at higher hierarchieallevels, e.g. at the level of eorporate management. 

Given a certain degree of kinship DK = n > 0, the following notation will be intro­
dueed. First, denote the parent node i of a partieular node k E Vi BS p(k) = i. Then 
p(p(k» denotes the grand-parent 01 node k. For simplicity, write p(p(k» = P'(k) and 
similarly pn(k) for the n-th parent of node k which is positioned n hierarchy levels above 
node k. 

Consider again the arrival of order 'I with size qi" Given a degree of kinship setting 
DK = n alllea.f nodes in the set ~ may be search.ed for available quotas to serve i ,. Here, 
the set ~ comprises allieaf nodes in the sub-tree which deseends below node i, and node i 
corresponds to i = P"(l). Asswne now that there are L' leaf nodes in this set Ci = Cp"(l). 

and that these leaf nodes have have been ordered in deereasing order of profit ability. 
The resulting order 1, ... , L' means that leaf node 1 corresponds to the most profitable 
customer segment while node L' contains the reservations for the leBSt profitable segment, 
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with associated quotas XI', I' = 1, ... , L'. Denote the eumulative quota at all nodes (or 
the eapacity) by x = E~~l XI', 

The key idea of nested quotas is that order 11 may not only access quota XI, but also 
the eumulative quota at all other leaf nodes associated with equal or less profitability 
compared to node I. This means that an order will be a.ceepted if 0! is less than or 
equal to the cumulative quota bj = E~~I XI" Conversely, this implies that an amount 
Yl-l = x-bi = E:~l XI' remains reserved for orders of the higher segments 1, ... ,1- 1.9 

In the revenue management literature, b, is referred to as the booking limit for segments 
1 and lower (i.e. with higher indices I, I + 1, ... , V), while Yl-l is the protection limit of 
the segments 1, ... ,I - 1 with a higher unit profit (see, e.g. Talluri and va.n Ryzin, 2004, 
pp. 28-29). 

Generally, with nested quotas, an order 1, will be a.ccepted if fli! ~ b
" 

or equivalently, if 
flil ~ X - Yl-l. This leads to a remaining overall eapaclty of x - qil" Two types of nesting 
are typica.lly discussed in the revenue management literature (see Ta.lluri and va.n Ryzin, 
2004, p. 30). They ean be distinguished by foeusing on the protection limit YI (i.e. the 
quantities reserved for orders from segments 1, ... ,l): 

• In standard nesting, the protection limit for segment I will be redueed after a.ccepting 
an order of segment I. This reflects an updating (Le. decrease) of the amount of 
demand which is still expected to arrive for segment I . 

• An alternative approach is theft nesting which is assoeiated with a 'memorylessness' 
property (Talluri and va.n Ryzin, 2004, p. 31). Even alter a.ceepting an order, it will 
be eontinued to protect an amount of Yl for later arriving demand of segment 1. 

Theft nesting is equivalent to standard nesting if the orders arrive in sueeessive order 
from the segments L', L' - 1, ... ,1. However, in applieations with mixed arrival orders, 
theft nesting protects a comparably laxge share of supply for the more profitable eustomer 
segments (Talluri and van Ryzin, 2004, p. 31). This over-protection is often undesiredj 
henee theft nesting is less eommonly used. 

Furthennore, note that the use of nested quotas in the consumption phase could alrea.dy 
be anticipated in the alloeation planning step. For example, in ease of theft nesting, it way 
be useful to reserve a larger quantity for the least profitable eustomer segment eompared 
to a simple partitioned a.lloeation (and corresponding dedica.ted eonsumption poliey), 
knowing that all other segments m.a.y also access the quota at this lowest-profitability 
segment. In other words, it also appears promising to already anticipate in the alloeation 
pla.nning step the consumption policy which will be used afterwards. However, such an 
extension is beyond the seope of this thesis. Here, the foeus remains limited to studying 
alternative consumption policies to mitigate improper allocation quotas which may result 
from the presenee of demand and profit forecast errors in the a.lloca.tion planning step. 
An anticipation of the consumption rule already in the alloeation step way be the subject 
of follow-up research. 

SI Notethatm=x-b,+x,. 
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In multi-stage customer hierarchies, consumption policies based on both standard and 
theft nesting can be implemented with the help of search rules. In addition, it is suggested 
here to combine elements of both of these established types of nesting to arrive at a third 
strategy for nested consumption. Recall the definition of the sea.rch space as a function 
of the DK parameter and consider the following rules. They are applied onee an order il 

of customer segment I with a size IJiI arrives: 

• Standard nesting: First, check the remaining allocation Xl at node I. If XI > 0, 
fulfill11 = min(1Ji1jXl) and reduce Xl accordingly. For the residual order volume 
qil - 11 check. the next node I + 1 (with slightly lower profitability) and fulfill an 
amount of fl+1 = min (q~ - Ili XI+1)' Afterwards, continue in order of decreasing 
node profitability, Le. to higher node indices. H also the quota at the least profitable 
node L' is insufficient to fulfill the remaining residual order volume qtl - ~I I,. 
this residual quantity cannot be fulfilled at all and will be lost. H the customer does 
not allow partial order fulfillment, the entire order will be lost. In that case, the 
quantities /z, ... ,JL, can be added back to the corresponding quotas. 

This strategy effectively leads to a gradual reduction of the quantities which remain 
protected for orders arriving at node I (and of those arriving at the nodes with a 
lower profitability 1+ 1, ... ,L'). 

• Theft nesting: First, check the quota at the least profitable node L'. Afterwards, 
proceed by checking the reservations at the other permitted nodes in order of in­
creasing node profitability. The last node to be checked is node I. 

Note that this strategy generally preserves the protection limit YI at node I (unless 
node l ultimately also has to be searrhedj since the quotas at all leaf nodes with 
lower profitability have been insufficient to fulfill the order). 

• Combined nesting: First, check node l for availa.ble quota, as in standard nesting. 
Afterwards, adopt the logic of theft nesting and search the remaining quotas in 
increasing order of profitability, Le. checking the quota at the least profitable node 
L' second and proceeding to node I + 1 (Le. by checking in decreasing order of the 
node indices L', L' -1, L' - 2, etc). 

This strategy may avoid over-protection at node l often seen with theft nesting. 
Furthermore, an over-ruling of the original partitioned allocation is done in a manner 
that any 'stealing' from other nodes first affects the lea.f nodes with the lowest 
profitability, rather than in decreasing order of profit ability, as seen in standard 
nesting. 

The implications of the search rules for these nesting strategies can be illustrated with 
the help of a simple example.10 Assume a particular intermediate node k at level m = 
M - 2 has three successor leaf nodes D" = C" = {I, 2, 3} at which orders arrive. All three 

lOThe example is based on Klein and Steinha.rdt (2008, p. 133-134). Rather than booking limits, pro­
tection limits have been used and an adjustment to the CBBe of multi-unit orders hBB been made. 
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leaf nodes 1,2, 3 may be searched for ava.ila.ble quotas (D K = 1). Node 1 has the highest 
while node 3 ha.s the lowest unit profit. 

The four Thbles 5.3a-5.3d illustrate the development of the quota reservations per 
node after the arrival of six order requests. While Table 5.3a represents the base case 
with dedica.ted consumption and no nesting, the results for standard, theft and the new 
combined nesting strategies are shown in Table 5.3b, 5.3c and 5.3d, respectively. 

For each incoming order, the order size q, the arrival nooe and the acceptance decision 
are stated in the tables. Furthermore, the tables give the quota at each node after ea.ch 
order acceptance decision. Note that in Tables 5.3b and 5.3c the last six columns also 
state the effective nested quotas, Le. the booking limits, and the corresponding proteetion 
limits. The booking limit takes into acCOWlt the still available quantities at the other 
nodes which may be used to make order acceptance decisions. For example, the booking 
limit Cor orders at node 1 initia.lly equals 15 units for a.ll types of nesting since orders 
from this node ma.y access the reserva.tions at all nodes. Accepting the first order of size 
3 at node 2 leads to a decrease of the booking limit at nodes 1 and 2 under all three 
nesting strategies. In ca.se of standard and combined nesting, the order will be fulfilled 
by consuming the quota at node 2. This also affects the booking limit at node 1, but not 
the quota at node 3. In case of theft nesting, the order will be fulfilled by consuming the 
quota at node 3. At; a result, also the booking limit at nodes 1 and 2 will be reduced. 
Similarly, the protection limit gives the amount of quantities still preserved Cor orders 
arriving from the same or from a higher priority segment (Le. with alower index). 

In the base case, dedicated consumption strategy without nesting, the last two orders 
5 and 6 can only be fulfilled partially, although there are still 2 units available at node 
3. Standard nesting and the new combined nesting strategy allow for an efficient use 
of the available quantities and manage to fulfill a.ll orders. The only difference between 
both strategies in the above examples can be seen in the penultimate line of Thbles 5.3b 
and 5.3d. In both cases, the order of 5 units arriving at node 1 will primarily be served 
with 4 units from this node. Under standard nesting, the fifth unit of the order, which 
ca.nnot be fulfilled from node 1, is being consumed from the neighboring node 2. Under 
the combined nesting, it will be taken from the least profitable node 3 instead. 

However, larger differences are apparent between these two nesting strategies and theft 
nesting. While the two former nesting strategies consume quantities from other nodes only 
if the current quota is insufficient, theft nesting protects the quotas of a particular node 
(and of all higher-ranked nodes) as long as possible, as illustrated in the protection limit 
columns. Theft nesting guarantees a particula.rly high service level to the most profitable 
customer segments represented by node 1. As can be seen by the leftover quantity of 4 
units at node 1, this strategy has led to over-protection in the example. Orders of lower 
profitability were lost or only satisfied partially, although sufficient overall supplies were 
available to fulfill all orders. 

From a technica.l point of view, also a number of other nesting strategies besides stan­
dard, theft and the new combined nesting ca.n be defined. For example, also those nodes 
may be searched which have higher unit profitabilities than the node where the original 
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Order Quota 

No. Size Node Decision 1 2 3 

0 5 5 5 
1 3 2 ok 5 2 5 
2 1 1 ok 4 2 5 
3 3 3 ok 4 2 2 
4 1 2 ok 4 1 2 
5 5 1 partial 0 1 2 
6 2 2 partial 0 0 2 

(a) Dedicated consumption, DO nesting 

Order Quote. Booking limit Protection limit 

No. Size Node Decision 1 2 3 1 2 3 1 2 3 

0 5 5 5 15 10 5 5 10 15 
1 3 2 ok 5 2 5 12 7 5 5 7 12 
2 1 1 ok 4 2 5 11 7 5 4 6 11 
3 3 3 ok 4 2 2 8 4 2 4 6 8 
4 1 2 ok 4 1 2 7 3 2 4 5 7 
5 5 1 ok 0 0 2 2 2 2 0 0 2 
6 2 2 ok 0 0 0 0 0 0 0 0 0 

(b) Standard nesting 

Order Quote. Booking limit Protection limit 

No. Size Node Decision 1 2 3 1 2 3 1 2 3 

0 5 5 5 15 10 5 5 10 15 
1 3 2 ok 5 5 2 12 7 2 5 10 12 
2 1 1 ok 5 5 1 11 6 1 5 10 11 
3 3 3 partial 5 5 0 10 5 0 5 10 10 
4 1 2 ok 5 4 0 9 4 0 5 9 9 
5 5 1 ok 4 0 0 4 0 0 4 4 4 
6 2 2 dewed 4 0 0 4 0 0 4 4 4 

(c) Theft nesting 

Order Quote. Booking limit Protection limit 

No. Size Node Decision 1 2 3 1 2 3 1 2 3 

0 5 5 5 15 10 5 5 10 15 
1 3 2 ok 5 2 5 12 7 5 5 7 12 
2 1 1 ok 4 2 5 11 7 5 4 6 11 
3 3 3 ok 4 2 2 8 4 2 4 6 8 
4 1 2 ok 4 1 2 7 3 2 4 5 7 
5 5 1 ok 0 1 1 2 2 1 0 1 2 
6 2 2 ok 0 0 0 0 0 0 0 0 0 

(d) Combined nesting 

Table 5.3. - Examples of order consumption using different nesting strategies 
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order has a.rrived. Nevertheless, there is usually no rationale for most of these possible al­
ternatives. Aß already indicated in Section 2.4.3, Meyr (2009) has tested a number of such 
alternative consumption strategies for demand fulfillment with a Hat partitioning of the 
customer segments. Since none of the alternative strategies was found to be parlicularly 
helpful, they will be disregarded in the following. 

Order Arrival Model 

Aß argued above, the actual realization of demand needs to be modeled in more detail to 
determine the impact of the different enhanced. consumption strategies. In the previous 
experiments with a dedicated consumption policy without nesting, no information about 
individual order a.rrivaJs was required. The a.na.lyses focused on the share of the overall 
demand at ea.ch node which could be satisfied under a particular allocation policy (see 
equation (4.56) which swnmarized the profit reaJization). 

In the following, a more detailed perspective is required. After an allocation procedure 
has taJren place, the individual order arrivals need to be considered. Order arrivals in 
customer hierarchies for physical goods differ in two respects from the simple assumptions 
used in many revenue management models for service industries: 

• There is no defined order arrival sequence. Wh.en considering the stream of incoming 
order requests, each base customer segment is equally likely to receive the next order. 

• Orders may comprise several units. 

In this thesis, detenninistic models are used. both for the allocation planning and the 
consumption step. This allows taking care of orders easily which differ in terms of the 
order size. Neverlheless, a variation of the order size would introduce another parameter, 
further adding to the complexity of the simulation environment. Therefore, a detailed 
study of this aspect will be left for future research. Instead, the simplifying assumption 
will be made that all orders have the size of one unit. 

No further modifica.tions to the simulation environment are required to accommodate 
individual orders. Th maintain consistency with previous experiments, the actual demand 
between two allocation procedures will simply be broken into individual orders of size 
1. The resulting orders from all leaf nodes will then be shuffied to obtain an order 
strea.m far the hierarchy. This order stream is then characterized by a random order 
arrival sequence. As the model environment only considers a single cycle between two 
allocation procedures, neither the aetual arrival of each order nor its due date need to be 
modeled explicitly. This situation is depicted in Figure 5.7. As a consequence, no quota 
reserva.tions will be made for individual periods between two allocation instante. Hence, it 
is only the sequence of the order arrival which needs to be considered in the experiments. 
A natural question ie whether the eifort of allocation planning and the subsequent use of 

consumption search rules is justified at all. Instead., a very simple alternative is to serve all 
order requests in a first-come-first-served (FCFS) manner. Under FCFS, orders consume 
the ava.ilable supply without giving any priority to a parlicular customer segment. Thus, 
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Figure 5.7. - Random sequence of order arrivals within one cycle between two allocation 
planning instances 

FCFS constitutes a (worst-case) benchmark. With the extended scope ofthe DMC model 
and the inclusion of individual orders, this aspect will also be considered in the following 
numerical experiments. 

5.2.2. Numerical Experiments 

The purpose of the following three numerical experiments is to test the effectiveness of the 
different conswnption strategies which use nesting as a means to mitigate adverse effecls 
of quotas which have been set under the influence of forecast errors. 

• In the first experiment, the impact of using consumption rules based on standard, 
theft and combined nesting will be evaluated for the ~leval and the 5-level hierar­
chies using different settings of the DK parameter. These enhanced consumption 
rules will be compared, on the one hand, to the base case consumption policy with­
out nesting (dedicated consumption) and, on the other band, to a simple FCFS order 
acceptance rule. Here, only two settings of the shortage rate will be considered.. 

• In the second experiment, a wider range of shortage rates will be considered. for the 
most powerful combination of allocation scheme and consumption policy identified 
in the first experiment. Using the ADA allocation scheme and the new combined 
nesting conswnption strategy, different sizes of the search space in terms of the DK 
setting will be compared to a simple FCFS fulfillment strategy. 

• One result of this experiment is that even for the simplest consumption strategy 
without nesting, there appear to be particular conditions under which an allocation 
planning-based approach (with subsequent dedicated consumption) clearly outper­
forms a simple FCFS fulfillment strategy. These conditions will be evaluated further 
in a. third experiment which includes a consideration of different levels of customer 
heterogeneity. Approximate worst-case threshold vaJues for the shortage rate, fore­
cast accuracy and the level of customer heterogeneity will be determined for the 
3- and the 5-level hierarchy. Below these threshold values, an approach based on 
the ADA scheme in connection with a dedicated consumption leads to worse results 
tban a simple FCFS order acceptance strategy. These values can indeed constitute 
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warst case settings, as these thresholds will generally be lower if more enhanced 
consumption rules are used. 

Consumption Rules Using Nested Quotas 

As shown in Section 5.1, forecast eITors typically found in practice may lead to a severe 
deterioration of the ARLP metric far the allocation scheInes ODA, ADA, IDA and PA, 
although to a different degree. Tbe following experimental results will show how enhanced 
consumption rules based on nested quotas ca.n lead to more profitable order a.cceptance 
decisions in the presence of forecast errors. A high forecast error setting of GV = 0.5 
will be UBed to generate the demand and unit profit forecast values. Two settings for the 
shortage rate will be tested, SR = 20% and SR = 90%. 

3-level Hierarchy: Initially, the focus lies on the 3-level hierarchy. ARLP values per 
a.llocation scheIne for the base ca.se with a dedicated. consumption and no nested quotas 
have alrea.dy been determined in Section 5.1 and were reported in Tables 5.1a-5.1d (lower­
right entries in ea.ch of the fOlli tables). 

The ma.in question is whether the introduction of more enhanced conswnption mIes 
can lead to significantly Iower ARLP values. By va.rying the degree of kinship and the 
nesting strategy, seven different consumption policy settings can be defined. for the 3-Ievel 
hierarchy. Each of the policies specifies a particular sequence in which the lea.f nodes 
of the customer hierarchy will be sea.rched for availa.ble quota reserva.tions to fulfill an 
incoming order: 

1. DK = 0, i.e. no nesting at all 

2. DK = 1, standard nesting 

3. DK = 1, theft nesting 

4. DK = 1, combined. nesting 

5. DK = 2, standard nesting 

6. DK = 2, theft nesting 

7. DK = 2, combined. nesting 

The first policy with degree 0 implies that quota consumption is restricted. to the node 
where the order has arrived. This dedicated consumption was the defauit setting in a.ll 
previous experiments. Tbe main motivation behind using any of the other consumption 
policies 2-7 is to increase the nwnber of profitable orders which will be a.ccepted and 
fulfilled if the allocation pla.nning process is subject to forecast eITors. 

As the PCA scheme corresponds to an ex-post perspective, forecast errors have no 
impact under the PCA scheIne. The allocations determined by PCA a.lready equal the 
optimal reservation quantities. As a consequence, orders arriving at ea.ch leaf node sha.ll 
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only be served up the quota leveL The use of any consumption rule which grants access 
to reservations at other Dodes is counterproductive and will lead to lower total profits. 
Hence, PCA in connection with consumption policy 1 constitutes the first-best benchmark 
against which all other settings will be evaJuated. 

Initially, focus on the case with SR = 20%. The ARLP vaJues per allocation scheme 
and per consumption strategy are shown in Figure 5.8a for standard nesting (polieies 
1,2,5), in Figure 5.8c for theft nesting (policies 1,3,6) and in Figure 5.8e for eombined 
nesting (policies 1,4,7).H Note that the base case policy 1 (no nested consumption) is 
repeated in each figure to allow for an easier eomparison. 

In the base case setting, there are hardly any differences between the allocation schemes 
ODA, ADA and PA (all ,esult in ARLP values between 22-23%). AB already ,eported in 
Section 5.1, the IDA scheme seems to suffer to alarger extent from the forecast errors, 
leading to an ARLP vaJue of 25%. Compare these values to the result for the simplest order 
aceeptance strategy FCFS (dashed horizontalline). For the given vaJues of SR = 20% 
for the shortage and GY = 0.5 of the forecast eITor setting, the additional eIforts of 
using alloeation and consumption planning (poliey 1, Le. without nesting) do not pay off. 
Simply accepting the orders based on FCFS appears to be a far superior strategy from 
the perspective of profit maximization, resulting in an ARLP of only 16%. 

However, allowing consumption from the immediate sibling leaf nodes (DK = 1) with 
standard nesting (poliey 1) leads to ARLP values for ODA, ADA and PA which are 
comparable to the FCFS results. Increasing the degree of kinship setting further to 
DK = 2 (policy 3), alileaf nodes of the eustomer hierarchy will be searched for available 
quotas. This requires a planner with fuH oversight over all leaf nodes. Should this be 
feasible, an additional deerease of the ARLP values can be observed for all allocation 
schemes, leading to ARLP values of only 8% under ODA and ADA and to values of 10% 
and 12% under IDA and PA, respectively. 

While the use of standard nesting improves overall profits considerably, theft nesting 
either does not lead to any improvements at all (ADA, ODA) or only results in slightly 
better ARLP values (IDA, PA), at least for policy 5. Nevertheless, all theft nesting sim­
ulations lead to worse results than FCFS if the shortage rate is low with SR=20%. The 
third nesting strategy, combined nesting, performs best, being on par or even outperform­
ing standard nesting. For example, using the large search space DK=2, all four allocation 
schemes result in ARLP values of 8-9%. 

In Figures 5.8b, 5.8d and 5.8f, the above experiment has been repeated with a high 
shortage rate of 90%. At this high level of shortage, the use of a profit-hased allocation 
scheme with dedicated eonsumption (ODA, ADA or IDA with base case consumption 
policy 1) leads to significantly bette, ,esults than • quantity-based seheme (PA) 0' • 

simple FCFS strategy. AB shown in the fourth set of data bars in all three figures, 

11 Note that for the same settings of SR a.nd CV, there are small difFerences (+/- l%-pomt) between the 
values reported here for the beBe case with conaumption rule 1 (first data row) and those established 
above in Section 5.1. These are due tc tbe stochastic nature cf tbe input data. Recall that random 
input data is used for the unit profit and demand per leaf node; furthermore, tbe sequence in which 
the indivdiual orders arrive at the leaf nodes iB different in each cf the 100 input data sets. 



5.2. Enhanced Quota Consumption Rules 291 

the latter two approaches result in extr80rdinarily high ARLP values of 46% and 47%, 
respectively. Among the profit-based schemcs, ADA is more effective than ODA (and 
more effective than IDA). 

DK 
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AlIoW .. ...... 

DK 
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Figure 5.8. - ARLP (%) for different nesting strategies (3-1eve1 hierarchy, GV = 0.5) 

AB under the low Bhortage rate setting, the ARLP values obtained under any of the 
four a.llocation schemes can be improved further by allowing for a nested consumption. 
An interesting finding is that all three types of nesting have roughly the same impact 
under the profit-ba.sed schemes ADA, ODA and IDA. This result holds for all degrees of 
kinship tested. and thus appears to be independent of the sire of the search space. Upon 
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close inspection, the new combined nesting is again the best strategy, leading to slightly 
better overall results. 

The similar performance of all three nesting types can be explained with the high short­
age rate present in this experiment. The high degree of supply shortage will lead to quota 
values of zero for most of the low-profit leaf nodes.12 The unit profit differential among the 
few nodes which receive a positive alloeation is comparably small, so the actual sequeJl(~ 
in which nodes are searched only has a small impact on overall profits. Furthermore, the 
risk of overprotection is small as weIl As a result, standard, theft and combined nesting 
will lead to similar results. Differences between the three nesting strategies at high short­
age rates ca.n be expected to be more significant in larger hierarchies, since more nodes 
will receive a positive allocation at a shortage of 90%. 

It remains to briefly comment on the performance of the quantity-based PA scheme 
at the high level of shortage. By eomparing Figures 5.8b and 5.8f against 5.8d, one ca.n 
conclude that a significant improvement in terms of ARLP can be achieved by allowing 
theft nesting rather than standard or combined nesting. RecaJI from above that one of 
the differences between these three types of nesting lies in the node which is checked first 
for an available quota. While under standard and combined nesting, this first node is the 
node at which the order arrives, it is the least profitable node llllder theft nesting. 

The superiority of theft nesting for the PA scheme in Figure 5.8d can be explained 
as follows: At the very high level of shortage considered here, all leaf nodes will receive 
roughly 10% of the actual demand under the PA scheme. This is the main difference to 
the profit-based schemes where only a small shaxe of the leaf nodes will receive a positive 
allocation at high levels of shortage. Assume a highly profitable order arrives first. Under 
theft nesting, it will be served by consuming the less profitable quotas at the other nodes, 
leaving the reservations at the original node uncha.nged for later-arriving orders. Some 
of the less-profitable orders which arrive early will also be served, but on average, theft 
nesting will protect more quantities for the highly profitable orders than standard or 
combined nesting if the shortage is severe. 

5-level Hierarchy: The above experiment has also been conducted for a 5-level hierarchy 
to better study the impact of a gradually increased search space for available quotas from 
DK = 0 (no nested cOIl8umption) to DK = 4 (aII1eafnodes may be searcbed). Figure 5.9 
shows the results in terms of ARLP values for each allocation scheme, nesting strategy 
and the two shortage rate settings (CV = 0.5, as before). Figures 5.9a, 5.ge and 5.ge 
depict the case with SR = 20% for standard, theft and combined nesting. The results for 
the higher shortage rate SR = 90% are represented in Figures 5.9b, 5.9d and 5.9f. Tbe 
dashed horizontal lines again give the ARLP values which are reaJized under a simple 
FCFS order acceptance scheme. 

The results for the 5-level hierarchy are similar to those obtained for the 3-level hier­
archy: Standard nesting or combined nesting involving only the immediate sibling nodes 

12 RecaJl from the disCUSsWn in Seclion 5.1.2 that the ODA scheIne will lead to pOBitive allocations at no 
more than two nodes at this l.eveJ. of shortage. 
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(DK = 1) leads to similar ARLP values 88 a simple FCFS approach in case of the lower 
shortage rate. This holds if either the ADA, ODA or PA scheme is used in the allocation 
pla.nning step. H even higher values for DK are chosen, the ARLP values improve further, 
with similar results for these three allocation schemes. As a1ready established before, 
IDA performs worse than ODA, ADA and PA in the larger hierarchy, although noticeable 
improvements can be realized for this scheme by increasing the search spa.ce in the order 
consumption, espeeially for DK = 4. Nevertheless, the conceptually much simpler PA 
scheme leads to better results than IDA for all values of DK if there is only a mild level 
of shortage. For all four alloeation schemes in scope of this experiment and for all five 
settings of DK tested, theft nesting did not turn out to be an attractive alternative. The 
resulting ARLP values amounted to at least 19%, Le. were higher than Wlder FCFS. 

Turn now to the results obtained Wlder a high level of shortage in the 5-level hierarchy 
(Tables 5.9b, 5.9d and 5.9f). Here, the superiority of the ADA scheme is apparent for all 
types of nesting. ADA outperforms all other schemes, usually by a large margin, except 
for very large search spaces (if DK > 2, ODA is slightly better). IDA leads to worse 
allocations than PA unless the value of DK is sufficiently high. However, consumption 
rules with a larger search space can lead to signifieant improvements for IDA whereas PA 
hardly benefits from a larger sea.rch space. 

In a similar manner 88 in the 3-level hierarchy, eombined nesting performs best from 
an overall perspeetive at the high shortage rate SR = 90%, followed by standard nesting. 
As before, the only exception is the PA scheme where theft nesting strongly outperforms 
standard and eombined nesting. Nevertheless, the use of a good profit-based allocation 
scheme such as ADA will always lead to lower ARLP values than any eombination of PA 
and theft nesting. 

Overall, the introduction of nested consumption is an effective means to malm more 
profitable order acceptanee decisions in a customer hierarchy. The larger the search 
space, the higher the improvement in terms of ARLP. Yet, realizing a eonsumption policy 
in practice with a high setting of DK requires a significant level of data transparency 
within the eustomer hierarchy. 

The above experiments have indicated that at a high level of the shortage rate (SR = 

90%), a demand fulfillment approach based on a prior alloeation pla.nning step using 
the ADA scheme with dedicated consumption of the quotas (Le. no nested consumption) 
alread.y outperforms a simple FCFS scheme for the order acceptance deeision. At a lower 
level of the shortage rate (SR = 20%), an improvement over FCFS requires the use of 
enhanced consumption rules which permit to utilize quotas from other nodes, possibly at 
a large distance 88 measured by the degree of kinship metrie. In the following paragraph, 
this relationship will be investigated in more detail for a wider range of shortage rates. 
Mterwards, also the impact of the level of customer heterogeneity will be explored. 

seareh space rar Nested Quotas 

The following experiment will foeus on the ADA scheme. It has been the best-performing 
a.llocation scheme in the previous two experiments if the simulations were run at levels 
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Figw-e 5.9. - ARLP (%) for different nesting strategies (5-1evel hierarchy, GV = 0.5) 

of forecast error which are typically found in practice. Furthermore, in the previoUB 
experiment, a eonsumption planning approach based on the eombined nesting strategy 
has been shown to lead to higher profits than both standard and theft nesting if used in 
connection with ADA. The eombination of both choiees constitutes a promising overall 
dema.nd fulfillment strategy which warrants a more detailed investigation, both for the 
3-level and the 5-level hierarchy. The foeus in the following will be on these two aspeets: 
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• Different settings of the sea.rch spa.ce in the consumption planning in terms of the 
DK pa<ameter (using the range DK = 0,1,2 for the 3-1evel and testing the range 
DK = 0, ... ,4 for the 5-level hierarchy) and 

• a wider range of the shortage rate setting (0-90%). 

The combination of ADA-ba.sed allocation and consumption planning with combined nest­
ing will be evaluated against a simple FCFS strategy for two different settings for the 
forecast eITors (CV = 0.3 and GV = 0.5). It is the objective of the following experiment 
to find settings for the consumption strategy to be used in connection with ADA-based 
allocation which will lead to an order acceptance performance which is superior to FCFS. 

A graphical representation of the resulting ARLP vaJ.ues in the 3-level hierarchy ca.n be 
found in Figure 5.10a for GV = 0.3 and in Figure 5.lOb for GV = 0.5. For the 5-level 
hierarchy, corresponding graphs are given in Figures 5.11a and 5.11b. In ea.ch chart, the 
FCFS benchmark is represented by the gray curve whereas the combinations of the ADA 
scheme with the different consumption rule settings are depicted in bla.ck. 

For ea.ch setting of CV and DK, there ja a particular threshold value of the shortage rate: 
Below the threshold, FCFS leads to higher profit,. This threshold value is marked with 
black dashed verticallines. For exa.mple, in the 3-level hierarchy, ifno nested consumption 
ja used (DK=O), the threshold value roughly corresponds to a shortage of 18% for the 
lower foreca.st error setting (GV = 0.3). Ifthe forecast error setting equals GV = 0.5, the 
threshold lies at a shortage rate of slightly above 30%. Similar observations can be made 
for the 5-level hierarchy. When increasing the search space in terms of DK, the additional 
efforts of alloca.tion planning and nested consumption already pay off at lower levels of the 
shortage rate. However, as can be seen especially in Figures 5.11a and 5.11b for the 5-level 
hierarchy, the marginal effect of a higher DK setting is decreasing. Increa.sing the search 
space from DK = 2 to DK = 3 only leads to a modest improvement of the threshold 
value, and searching the entire customer hierarchy at a setting of D K = 4 barely leads 
to any further improvement. 

The above experiment has shown that it may at times be necessary to use comprehen­
sive consumption rules and a large sea.rch spa.ce to a.chieve similar levels of performance 
lik.e a. simple FCFS strategy. However, in customer hierHl'chies with limited information 
transparency, consumption rules with settings of DK > 1 may often not be feasible. For 
managers, this raises the question under which worst-case environmental conditions an 
allocation planning-based approach is clea.rly superior to a. simple FCFS approach. This 
will be addressed next. 

Different Levels of Heterogeneity 

The previous experiments reported in this chapter have analyzed the impact of two im­
portant dimensions which inHuence the performance of allocation planning-based. demand 
fulfillment strategies, Le. the level of the shortage rate and the forecast a.ccura.cy (or equiv­
alently: forecast error). The higher the values along any dimension (or both), the more 
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Figure 5.10. - ARLP (%): Allocation planning-based demand fulfillment (ADA with con­
sumption planning based on combined nesting) VB. FCFS, for different 
shorta.ge rates (3-1evel hierarchy) 

profitable is an allocation planning-based demand fulfillment approach in comparison to 
.nmpIe FCFS. 

It is the purpose of this section to use the simulation framework to illustrate that also 
the level of customer heterogeneity plays an important role. AB with the last experiment, 
the foeus will be on identifying worst-case conditions under which it is clearly prefer­
able to incur the additional efforts of using allocation and consumption planning with 
decentraJized decisions, rather than employing a simple FCFS order a.cceptance strategy. 
Therefore, the following setup will be used: 

• Allocation planning will be performed using the new ADA scheme. Other schemes 
like OCA or ODA may often not be available in practice, and IDA and PA have not 
perlormed well againsl FCFS, particularly _I high levels 01 short_ge. Recall lhal 
the information about potential forecast errars is not yet exploited in this allocation 
planning step. This is in line with the objective of primarily identifying worst-case 
conditions under which ADA-based allocation is superior to FCFS. 

• Consumption planning relles on a simple dedica.ted conswnption without nesting 
(DK = 0), in line with the assumption that a partitioned allocation is performed. 
The reason for this choice is again the focus on identifying worst-ca.se conditions 
under which an alloca.tion planning-based approach remains superior to FCFS. Tbe 
last experiments have shown that enhanced consumption rules (especially combined 
and standard nesting) will result in the ADA-based approach being superior to 
FCFS already at lower levels of shortage and also in the presence of less accurate 
forecasts. 

Overall, all combinations of the shortage rate SR, forecast accuracy CV and customer 
heterogeneity T have been determined far which FCFS and the ADA scheme with ded­
icated consumption lead to similar ARLP values. This search was conducted both for 
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Figure 5.11. - ARLP (%): Allocation planning-based demand fulfillment (ADA with con­
sumption planning based on combined nesting) VB. FCFS, for different 
shorta.ge rates (5-1evel hierarchy) 

the 3-level and the 5-level hierarchy. The results are depicted. in Figures 5.1280 and 5.12b. 
Each of these graphs has been derived as follows: 

• Four batches, each consisting of 100 different input d80ta sets, h80ve been generated 
by varying the setting for the unit profit interval from which the unit profit values 
are drawn randomly. In line with the simulations reported in Section 4.5.5, the four 
different intervaJ settings correspond to a relative range of RRp = 200%, 100%, 50% 
and 25%. This approach leads to different levels of average customer heterogeneity 
per batch.13 These averages have been denoted by T, and the corresponding coeffi­
cient of varia.tion of the level of customer heterogeneity per ba.tch is CVT . Note that 
the Cour values T are almest identical for the 3- and the 5-level hierarchy, but that 
the dispersion of the individual T values as measured by CVT per batch is much 
wider Cor the smaller hierarchy . 

• The 100 individual input data sets of each batch have been applied to the corre­
sponding customer hierarchy (3- and 5-1evel, respectively) under different settings of 
the shortage rate and the forecast enor parameter. While the shortage rate has been 
varied between 0 and 60% with a step size of 5%, the forecast error as measured 
by CV(-RMSE) was varied between 0 and 0.75 at a step size of 0.025. For eacl1 
combination of input data set, SR and CV, the total profit values Wider the ADA 
scheme (with dedicated consumption and DK = 0) and under a simple FCFS14 

strategy have been determined.. 

13 Recall from the description of the test environment in Section 4.5.1 that the level of customer hetero­
geneity per input clata set is a random value. It is baaecl on the random draws for the dem.and and 
unit profit at each leaf node of the customer hierarehy. AB a result, T cannot be controlled directly, 
and its values tend to be normally distributed with a rather small variance. More precisely, T is a 
weighted sum. of multiple uniformly distributed random variables. Hence, T is approximately normally 
diBtributed due to the Central Limit Theorem (e.g. see Bertsekas and Tsitsiklis, 2008, p. 274). 

14 The variation of CV was not necessary for FCFS as this scheme does not require any forecasts. 
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• Afterwards, the average profit over the 100 input data sets per batch has been 
calculated for the different combinations of the shortage rate setting and forecast 
error level, both for the ADA and the FCFS scheme.15 Then, for each of the 
(discrete) values of the shortage rate, the (discrete) forecast errar level has been 
identified at which the squared difference between the average profits per batch 
under ADA 811.d FCFS was minimal. These pairs of the shortage rate and forecast 
error level have been used to draw one curve per batch in Figures 5.12a and 5.12b. 

Each curve represents a different level of average customer heterogeneity T and marks 
the values of SR and CV at which both ADA and FCFS result in identical total profits 
on average. Ta the left of each curve, FCFS leads to superior results while to the right 
ADA performs better. For example, in case of a heterogeneous hierarchy with T = 0.2 
(black bold line) and a ,horlage rale of 30%, Ihe allocalion planning-based approach is 
superior to FCFS if the forecast error is roughly below a value of 0.45 as measured by 
Ihe CV. If Ihe forecast error i, higher, FCFS performs beller. This holda for bolh Ihe 3-
and the 5-level hierarchy. In case of less heterogenous hierarchies, e.g. with T = 0.04, at 
the same level of shortage rate of 30%, the critical value for the forecast errar is slightly 
above a CV value of 0.2. Sy comparing Figures 5.12a and 5.12b for rather homogenoUB 
hierarchies with 'i' R:l 0.0025 (lowest gray line), one diHerence becomes apparent between 
the two hierarchy sizes considered in this study: The critical value for the forecast error is 
higher for the 5-level hierarchy than for the 3-level hierarchy at all levels of shortage below 
60%. In case of the 3-level hierarchy, the lowest gray line lies at the horizontal axis for 
almost all values of the shortage rate, meaning that FCFS is superior onee forecasts are no 
longer exact. In case of the 5-level hierarchy, the allocation-based ADA approach already 
performs better in these difficult situations with rather smaller shortage rates, almost 
homogeneous hierarchies and few forecast errars. Hence, the more hierarchy levels, the 
more allocation decisions are required which are then less dependent on very accuarte 
forecasts. 

The representation in Figures 5.12a and 5.12b is a different way to state a key result 
established before: If forecasts are comparably accurate, ADA outperforms FCFS already 
for very low values of the shortage rate. Two new aspects are highlighted. in these graphs: 
The influenee of the level of customer heterogeneity and the size of the customer hierarchy. 

Nevertheless, it is important to keep in mind that the relationships depicted in Fig­
ure 5.12 only represent worst case situations. Still, these values can give helpful guidelines 
to practitioners to assess whether profit-based allocation planning approaches are worth­
while for a company. AB disCUBSed before, the performance of allocation planning-based 
schemes such aB ADA can be improved further: 

• Allocation planning step: The information about potential forecast errors may 
already be exploited. when detennining quotas. Furthermore, the consumption strat­
egy can be anticipated, for example if nested quotas are used and if yeB, which type 
of nesting is employed. 

15 RBther than considering average profits, also ARLP values could have been caJculated. As the latter 
iB only a normalized version of the former, the same overall reaults would have emerged. 
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Figure 5.12. - FCFS VB. ADA: Shortage rate, forecast error and heterogeneity threshold 
values for different hierarchy sizes 

• Conswnption planning: More enhanced cOIlBumption rules which rely on nested 
quotas can lead to significantly lower ARLP values for given settings of the forecast 
eITor and shortage rate. In parlicular, higher settings of the DK parameter repre­
senting a larger search space will allow for better results of ADA-based approaches, 
provided there is a sufficient level of information transparency in the customer hi­
erarchy. 

Furthermore, the type of search rule used within the nested quotas has been shown 
to have a significant impact on the resulting ARLP values. An influencing factor 
here is the distribution of order arrivals per customer segment. If arrivals are truly 
mixed, the new combined nesting strategy was superior to theft nesting and even 
superior to standard nesting in the simulation experiments studied above. 

Using one or several of these ideas will lead to lower threshold values along the dimensions 
shortage rate, forecast accuracy or customer heterogeneity at which allocation planning­
based approaches have dear advantages over FCFS. However, far particularly low values 
along these three dimensions, it is likely that a simple FCFS strategy may remain better. 
Therefore, it may be beneficial to complement the allocation and consumption planning 
demand fulfillment strategy with some FCFS behavior. A rather simple extension of the 
existing simulation framework is to retain some quota reservations at higher hierarchy 
levels in the form of virtual safety stocks which may be cOIlBumed on a FCFS basis. This 
strategy will be investigated in the following section. 

5.3. Quota Retention and Virtual Safety Stocks 

Serving orders on a FCFS basis has been shown to be a simple yet highly beneficial 
approach for making order acceptance decisioIlB in the presence of forecast errors if there 
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ja only a mild level of shortage. Onee the shortage rate becomes larger, an approach 
based on a prior alloeation planning step appears to be a better strategy. However, both 
strategies may be combined in multi-stage eustomer hierarchies. Acknowledging that the 
quota reservations at the leaf nodes are subject to forecast errors, Kilger and Meyr (2008, 
p. 193) have suggested retaining a certain share of the available supply at intermediate 
levels of the eustomer hierarchy in the form of virtual safety stocks (VSS). Onee the quota 
reservations at the leaf nodes have been depleted, the VSS at the higher hierarchieallevels 
may be consumed in a FCFS manner. This decision postponement bears strong similarity 
with the idea of postponement with respect to place, as introdueed in Section 2.1.4. The 
term. VSS refers to the coneept of eentralized safety stocks in multi-level inventory systems. 
Their 'virtual' nature stems from the fact that the retention in a customer hierarchy does 
not involve any physieal inventory movements. Qnly changes in the reservations will be 
marle. 

Given this elose relationship with the inventory literature, Section 5.3.1 will provide a 
brief summary of selected literature contributions which discuss alloeation proeedures for 
centralized safety stocks in inventory systems. Mterwa.rds, it will be shown in Section 5.3.2 
how the VSS coneept ean be ineluded in the simulation environment for the multi-stage 
customer hierarchies. A few experimental results will be presented in Section 5.3.3. 

5.3.1. Stock Retention in Multi-Echelon Inventory Systems 

In the inventory management literature, the positioning of safety stocks in multi-echelon 
inventory systems has received. much attention. In multi-echelon inventory systems, a 
central warehouse is used to supply a number of loeal warehouses (see also Figure 4.3). 
These loeal warehouses are often equivalent to retailers in practiee, they are positioned 
at the second stage of the system. The eentral warehouse is replenished by an outside 
supplier, usually subject to a lead time. The primary role of the central warehouse is to 
forward any external replenishments to the retaUers. The resulting divergent system has 
several advantages. For example, it allows exploiting quantity discounts at the supplier. 
Furthermore, the lead time within the system is usually small compared to the lead time 
of the outside supplier .16 

The demand at each retailer between the arrival of two sueeessive replenishments from 
the central warehouse (one cyele) follows a stochastie process. Some retailers will experi­
enee higher cycle deIll.8.lld than predicted and will run short on inventory before the next 
external replenishment arrives while others may still have plenty of stock. One option to 
resolve such inventory imbalanees within each cycle is to eonduct transshipments between 
the retailers (e.g. see Herer et al. (2002) or Tiacci and Saett. (2011)). An alternative is to 
invest in additional safety stocks at the retailers. For stationary, stochastie demands, an 
additional safety stock at each retaUer inventory leads to a higher service level. However, 

111 Therefore, a centralized ordering process can hedge against demand fluctuations at the retailers during 
the ~ernallead time (this efEect is often termed "statistical economies of BCale", see Eppen and Schrage 
(1981)). 
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a.s the interna.l lead times are comparably smaII, such sa.fety stocks can also be held at 
the central warehouse. It is a well-known result in inventory theory that centralization of 
stocks reduees the amount of total inventory required to provide a particular service level 
(e.g. see Ibe classical reference Maister (1976)). 

This is the typical understanding of safety stocks which implies that severa.l units of 
stock. are held in addition to the mean cycle demand. For such settings, many contribu­
tions in the inventory literature address two main questions: How much total sa.fety stock 
should be held and where should these stocks be placed? The answers to these questions 
depend strongly on the modeling assumptions. Overviews of the comprehensive literature 
in this area. can be found, e.g., in Inderfurth (1994) or in Graves and Willems (2003). 

A part of the literature addresses the ca.se where forecasts regarding the demand at 
the retailers until the next external replenishment are highly unreliable, but improve over 
time. In this situation, it may be useful to initially retain a certain amount of each 
externa.l replenishment quantity at the central warehouse. The remainder of the external 
replenishment quantity will be immed.iately forwarded to the retailers to ra.ise their stock 
levels. Following the concept of decision postponing, the retained central stock may be 
allocated to the retailers at a later point in time. Onee more accurate forecasts regarding 
the dema.nd at each retailer are available, and before the next external replenishment 
arrives at the central warehouse, the retained quantities may be used to resupply any 
retailer which has experienced higher than expected demand. 

Several models have been discussed in the literature addressing this stock retention 
and allocation problem. The typical setup ca.n be summarized 8S follows (e.g. see Cao 
and Silver, 2005): Tbe central warehouse foreca.sts the aggregate demand at all retailers 
and regularly places orders at the uncapacitated outside supplier. While the bulk of the 
arriving supplies is forwarded immediately to the retailers upon arrival, a certain amount 
of stock. remains at the eentral fa.cility. It will be used in between two outside replen­
ishments cycles to re-balance the local inventories. There are w time periods between 
any two external replenishments at the central warehouse. For analytical tractability, the 
retailers are usually assumed to be identical, Le. the demand distribution at each retailer 
has the same mea.n and the same variance. Most models for this problem setting aim at 
answering one or several of the following key questions: 

• Which quantity should be delivered directly to ea.ch retailer? 

• Which amount of stock should be retained centra.lly? 

• At what point in time before the next replenishment should the central stock be 
allocated? 

• How should the central stock be split among the retailers? 

One of the earliest contributions was provided by Jackson (1988).17 In his model, 
internal replenishments are shipped to a.ll retailers at the end of ea.cb time period t = 

11 A warking paper version ofthe model has been circulated at least since 1983. 
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1, ... , w-l until the centrally held stock has been depleted. The last period in which these 
interna! replenishments are sufficient to bring all retailer inventories to their maximum 
level is referred to a.s the pooled-risk period. In the subsequent time period, usually not 
all retailers can be replenished fully. In Jackson's model, the remaining central quantities 
will be allocated among all retallers with lower-than-average inventory levels. In other 
words, the objective of this last allocation is to ensure that the lowest inventory level 
among all retailers after the final allocation of central stock will be as high a.s possible. 
Overall, this scheme has been shown to lead to lower system-wide backorder costs than a 
procedure without any central safety stock. 

If there is a cost for the internal replenishment, separate shipments at the end of each 
time period t = 1, ... , w - 1 are expensive. It is preferable to only re-supply the local 
retailers onee before the arrival of the next external replenishment order. Jönsson and 
Silver (1986, 1987) fix this single internal replenishment instant to the end of period w - 2. 
This means that two periods remain before the next external replenishment will arrive. 
The authors argued that shortages in earlier periods of the cycle can be expected to be 
small and that the number 01 expected backorders will be highest towards the end 01 each 
cycle. Hence, they foC1l8ed on maximizing the service rate in periods w -1 and w. Fixing 
the replenishment instant allows for a number of analytieal simplifieations. Assuming 
identical, normally distributed demands at each retaller, Jönsson and Silver showed an 
efficient way to determine the amount of stock to retain at the centra! warehouse for a 
given overall supply from the externalsupplier. This policy has been found to be helpful in 
a practieal applieation at the Swiss pharmaceuticaJs and chemieals company Ciba Geigy, 
today Novartis (see Fincke and Vaessen, 1988). 

This setting with only a single realloeation instant has also been analyzed by a number 
of other authors. Erkip (1984) attempted determining both the optimal amount of eentral 
safety stock to retain and the optimal allocation instant. His results are computationally 
expensive and he unfortunately did not provide any numericaJ examples. MeGavin et a!. 
(1993) derived a '50-25' heuristie for this problem. The alloeation instant of the eentral 
safety stock. was set to the mid-point of the cycle length and the amount of eentral safety 
stock was set to 25% of the mea.n eycle demand. Cao and Silver (2005) prE18ented a 
heuristic for the ca.se when the retailers are replenished directly by the outside supplier 
and only the retained stock is kept at the eentral warehouse. 

While the contributions mentioned 80 far supported eentrally held stocks, Schwarz et al. 
(1985) and Badinelli and Schwarz (1988) arrived at a contradictory conclusion. They 
found little benefieial effects of eentrally retained stocks and argued that the average 
on-hand depot inventory should be dose to zero. Zipkin (1980) sided with this view 
and showed that the risk-pooling benefit of the eentral stock deereases with positively 
correla.ted demands at the retailers. This different result has been explained with the 
fad that these latter models employ a FCFS rule for the internal replenishment of the 
retailers from the central safety stock (see McGavin et al., 1993). AB a result, inventory 
imbalanees among the retailers will oecur onee the central safety stock has been depleted. 
By contrast, the models by Jönsson and Silver (1987) and Jackson (1988) conducted an 
allocation over all retailers to bring allloeal inventories to comparable levels. 
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In sum, the idea of VSS in customer hierarchies bears more similarity with the ooncept 
of the retained central stock than with actual safety stock planning. The main analogy 
between the former and VSS refers to the time horizon of the decisions. While safety stock 
investment choices are usually marle on amid-term basis a.nd ahn at preventing stock-out 
situations at all retailers in the first place (see Section 2.1), stock retention and allocation 
decisions are more of an operational nature. They are made in the short-term and ahn 
at using the scarce supplies as efficiently as possible. Therefore, the application of this 
stock. retention ooncept to the DMC problem appears promising. Some initial ideas will 
be presented in the next section. 

5.3.2. Virtual Safety Stocks in Multi-Stage Customer Hierarchies 

In the course of this section, an extension to the simulation framework will be suggested to 
allow testing the impact of VSS on the order acceptance decision in multi-stage customer 
hierarchies. 

First, realize that VSS can be held at each hierarchicallevel 0, ... , M - 2 in a customer 
hierarchy, except for the leaf node level m = M -1. The variable parent level (PL) will 
be used to denote the maximum number of hierarchy levels above a leaf node which may 
be searched for retained VSS. PL has a similar interpretation as the DK variable which 
has been introduced. in Section 5.2 to cha.racterize oonsumption rules for nested quotas. 

Consider the three cases represented in Figure 5.13 for the 3-level hierarchy. Fig­
ure 5.13a with PL = 0 oorresponds to the base case where no quota is retained at a 
higher hierarchicallevel (dedicated. consumption). In Figure 5.13b with PL = 1, a quota 
will be retained at the immediate parent node. This quota can be accessed by all leaf 
nodes positioned in the sub-tree below this parent node, but not from the leaf nodes in 
the right subtree. Lastly, in Figure 5.13c with PL = 2, a quota will be retained both 
at the intermediate nodes and at the top node. Note that the quota at the root node is 
accessible to allieaf nodes in the hierarchy. 

(al PL~O (B"'''''''''l 

Figw-e 5.13. - Virtual safety stocks: Retaining supplies at higher hiera.rchy levels 

In the experiments presented in the next section, the foeus will be limited to illustrating 
the impact of particular quota retention settings, rather than determining the optimal VSS 
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policy for a partieular setting. In addition to PL, a second parameter retention share (RB) 
will be introduced. Provided a certain non-Ieaf node i (Le. intermediate or root node) will 
hold VSS-this is specified by the setting PL-, an amount RB· x, is retained at node i 
while the amount (1- RB)· x, is allocated to the successor nodes in V,. 

In a hierarchy with PL = 1 and RS = 10%, a ten pereent quota will be retained only at 
the first intermediate node abare the leaf nodes. By eontrast, consider a 3-level hierarchy 
with P L = 2 and RB = 10%. Assume that the PA scheme is used for the alloeation. Ten 
pereent of the overall supply, Le. (1- SR) . do . RB = (1- BR) . do '10%, will be retained 
at the root node. An amomt of x" . RB will be held back at the intermediate node a. 
The allocation at each leal node I corresponds to (1 - RS) . (1 - RS) . (1 - SR) . d, ~ 
90%·90%· (1- SR)· d, ~ 81%· (1- SR)· d,. If other allocation schemes different to PA 
are used, the reduetion of the leaf node alloeations will not be uniform among the leaf 
nodes. However, the same amount of overall VSS will be held. 

Onee a eertain amount RB . X a of the available supply at an intermediate node a shall 
be held back .. VSS, \wo types of policies can be distinguiahed: 

Direct Retention (DR) The VSS is retained directly :Crom the entire available supply 
Xa' The remaining amount of (1 - RB) . X a is allocated and each of the sueeessor 
nodes XI receives a share in aceordance with the chosen alloeation scheme. If a 
profit-based alloeation scheme is used, it is primarily the less profitable sueeessor 
nodes which will experienee a signifieantly redueed alloeation in comparison to a 
situation without retention. 

Proportional Retention (PR) First, for each successor node l EVa, the regular alloea­
tion quantities XI are determined. However, only a reduced quantity x~ = (1-RB) 'XI 

is actually alloeated to ea.ch node l, the remaining quantities RB· Xl are held back as 
VSS. AB a result, all sueeessor nodes will experienee an equal proportional reduction. 

Both policies are equivaIent in case the quantity-based PA scheme is used for the alloea­
tion.18 Under the profit-based schemes and direet retention, the least profitable sueeessor 
nodes will eontribute most to the VSS stock.. The most profitable nodes will usually 
receive about the same alloeation as without VSS. AB all successor nodes ca.n access the 
VSS on a FCFS basis, the direct retention poliey will effectively reserve higher quotas far 
the more profitable cuatomer segments. 

111 This holds for all levels of shortage if the overall supply quantity S corresponds to a certain fraction of 
the demand fOrua5t. However, if the shortage rate is related to the aemal demand (8B in the simulations 
reported in this thesis), situations may Brise in the simulation environment where there appears to be 
an oversupply if the actual shortage rate is very low or zero. Such an apparent oversupply during the 
allocation planning step occurs if the actual demand in the entire hierarchy has been underestimated 
(d., < <10). 

In other words: the aVBilable Bupply (1 - SR) . da may be larger than the demand expectation do 
during the alloeation planning step. In this situation, the DR policy with PL = 2 reserves a higher 
VSS quantity at the root node of the 3-1evel hierarchy than the PR policy. Since there is in fact no 
oversupply (or even a mild ievel of shortage), more quantities will be consumed on an FCFS basis 
under DR than under PR, leading to a slight performance disadvantage for the DR scheme. This effect 
iB only Bmall and vaniBhes with higher shortage rates. 
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The motivation behind the alternative proportional retention is to avoid potential over­
protection of the most profitable customer segments. In case the demand forecast for 
the most profitable segments has been overestimated, surplus allocations would normally 
remain as leftovers at these nodes if no VSS are held. By truncating the allocations at all 
successor nodes by a common percentage, too high reservations may be prevented. The 
retained VSS quantity is available for conswnption on a FCFS basis by all successor nodes. 
This way, less profitable nodes can be fulfilled by consuming quantities which would oth­
erwise have been lost as surplus allocations at the most profitable nodes. However, if 
the demand at these most profitable nodes has been Wlderestimated, the proportional 
retention policy option will lead to a lower average profit than without retention. 

5.3.3. Numerical Experiments 

The impact of placing VSS will be illustrated with the help of four simple numerical 
examples for the 3-level hierarchy and a forecast error setting of GV = 0.5: 

• First, the impact of different parent level settings will be investigated. In addition, 
also the impact of the two types of retention settings will be simulated. Essentially, 
it will be investigated to what extent VSS policies based on different settings of the 
PL parameter and the retention setting (DR or PR) can lead to an improvement 
over plain ADA- and PA-based al1ocation with dedicated consumption, i.e. without 
VSS. 

• Then, two different strategies for the positioning of the VSS in the customer hier­
arclty will be analyzed. 

• Using the best overall VSS policy settings as established in the previous experiments, 
the impact of different sizes of the VSS volume will be simulated. 

• The last experiment will brießy illustrate the effect of a comprehensive consumption 
policy in which both a nested quota (using the combined nesting search rule) and 
VSS are employed in combination. 

Different Parent Level Settings: The main focus of the following simulations lies on 
the new ADA scheme, as it has a.lready been shown to be the best a.llocation scheme in 
the presence of forecast errors. Figure 5.148. represents the ARLP of the ADA scheme 
in combination with different VSS policies over a wide range of the shortage rate (0-
90%). Two benchmarks are worth considering. First, the bold black. line represents the 
baae case, i.e. the ADA scheme with dedicated consumption (and thus without any VSS). 
Second, the bold dark gray curve corresponds to a simple FCFS order acceptance strategy. 
Aß already discuased in Seclion 5.2, FCFS leads 10 higher profilS Ihan Ihis plain ADA 
strategy (without VSS or nested quota consumption) as long as the shortage rate is below 
~ 32% in the 3-level hierarchy. 

The two light gray lines correspond to the two types of VSS strategies (DR or PR) for 
the settings P L = 1 and RB = 30%, i.e. 30% of the aUocation to each intermediate node 
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is retained for FCFS consumption by the respective lea.f nodes. As can be seen, the PR 
policy (dashed line) leads to lower ARLP value, than the DR poliey (continuousline) lor 
lower levels of the shortage rate up to about 45%. 
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o 30 60 900 
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Shartll3ll rate (%) 

(b) PA w. FCFS 

Figure 5.14. - ARLP (%): Virtual safety stocks at different hierarchy levels (3-level hier­
arehy, GV ~ 0.5) 

Focus now on the relative performance with respect to the two benchmark strategies. 
Both VSS strategies with P L = 1 lead. to an improvement over FCFS onee the shortage 
rate becomes larger than a.bout 32%. In comparison to a plain ADA-based strategy, the 
introduction of VSS leads to lower ARLP values under both retention policies (DF and 
PR) up to a shortage rate of about 45%. 

Furthermore, Figure 5.14a also contains the simulation results for VSS policies with 
P L = 2, ie. quantities are retained both at the root node and at the intermediate nodes at 
Ievel 1. The total VSS ,tock in the eustomer bierarchy amounts to 1- (1-0.3)(1-0.3) '" 
50%. As before, the continuous line represents the DR strategy while the dashed line 
corresponds to the PR strategy. Again, the PR strategy is superior for shortage rates 
below approximately 45%. At higher shortage levels, the use of VSS is generally not 
justified, as the plain ADA scheme results in significantly lower ARLP values. 

Overall, the retention of VSS will introduce the advantages and disadvantages of FCFS 
consumption into the customer hierarchy. For low shortage rates, the use of VSS appears 
to ensure a more efficient use of the available quantities by reducing overprotection at 
the more profitable leaf nades. Once higher shortage rates need to be coped with, many 
of the retained quantities will be used to fulfill less profitable orders, resulting in an 
overall performance deterioration. The more quantities are retained at higher Dodes in 
the hierarchy, especially at the root nade, the more the resulting ARLP curve approaches 
that 01 the FCFS strategy. 
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This behavior becomes more obvious if the PA scheme is considered instead of ADA. 
Using the same settings as before, the corresponding ARLP curves are represented in 
Figure 5.14b. As discussed above, both the DR and the PR strategy are roughly equivalent 
under the PA scheme. Therefore, only two curves for the VSS schemes with PL = 1 and 
PL = 2 are represented in addition to the plain PA-based and FCFS schemes. This graph 
shows clearly how larger values for the PL setting bring the ARLP values closer to those 
obtained under a plain FCFS strategy. The curves for PA with PL = 2 and FCFS are 
practically indistinguishable. 

Positioning of the VSS: In this second experiment, different safety stock positioning 
strategies will be investigated. Two different cases will be considered, with a low (20%) 
and a high (50%) total VSS volume. Both will be compared to 80 plain ADA strategy with 
dedicated conswnption and without VSS. As before, a 3-1evel hierarchy will be used, the 
forecast error setting remains at GV = 0.5 and the shortage rate will be varied between 
0-90%. 

In the 3-level hierarchy, there are two options regarding the positioning of the VSS. 
First, VSS can only be held at the intermediate nodes, corresponding to the setting 
P L = 1 with either RB = 20% or RB = 50%. This will also be referred to as single-level 
VSS. Second, VSS can be held both at the root node and at the intermediate nodes in 
the lorm 01 a distributed VSS. With PL ~ 2, a setting 01 RB ~ 10% implies that only 
an average amount of (1- 0.1)(1- 0.1) = 81% of the original allocation remains at each 
leaf node. The total VSS at the top two hierarchy levels thus comprises almost 20% of 
the overall supply. Similarly, in the case PL = 2, a setting RB = 30% implies a total 
VSS volume 01 1 - (1 - 0.3)(1 - 0.3) '" 50%. This permits direct comparisoIlB between 
different positioning strategies using the same amount of VSS. 

The results of the numerical experiments are depicted in Figure 5.15. They have been 
calculated in the following manner: Each curve represents the difference in percentage 
points between the ARLP va.lues for a particula.r VSS policy and the plain ADA strategy 
per shortage rate. H this difference is positive, a plain ADA strategy leads to lower ARLP 
va.lues whereas 80 negative value implies that the use of that VSS policy is more beneficial. 
In addition, also the difference between the ARLP values of a FCFS strategy BIld a plain 
ADA-baaed strategy has been depicted for comparisons. This type of presentation based 
on the percentage point differences between different policies has been used before in 
Figures 5.4 and 5.5. 

Figure 5.1580 corresponds to the case with the low overall VSS stock of 20% of the 
overall supply whereas the total VSS stock in Figure 5.15b amounts to 50%. Each figure 
contains four curves: '!\vo light gray lines for the single-Ievel VSS and two bla.ck lines for 
the distributed VSS. AB in Figure 5.14, the dashed lines indicate a PR policy whereas the 
continuoUB lines stand for a DR policy. 

Figures 5.1580 and 5.15b convey similar m.essa.ges: All eight different VSS policies (four 
per figure) lead to a better performance than the plain ADA scheme for low shortage 
rates. The reverse holds for high shortage rates. Generally, the higher the total amount 
of VSS stock, the larger the improvement over a plain ADA policy at low shortage rates. 
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Figure 5.15. - Different positioning Btrategies for virtual safety stocks (3-1evel hierarchy, 
CV = 0.5, ADA scheme) 

But high VSS stocks lead to a severe deterioration of performance at the high range of 
the shortage rate. Two further conclusions can be drawn: 

• PR is a better strategy than DR: Far the low total VSS volume (20%), the two 
dashed lines He below the eontinuous lines for low and medium levels of shortage. 
At high levels of shortage, hardly any perfonnanee differences ean be noted. For 
the high total VSS volume (50%), essentially the same observation ean be made 
regaxding the distributed VSS policy (PL = 2). In ease of the single-Ievel policy 
(PL ~ 1) with RS~50%, the DR strategy performs significantly better at very high 
levels of shortage. But it has already been eoncluded that the use of VSS is not 
reeommended in these cases with high shortage levels, hence PR is the preferred 
overall retention policy . 

• The distributed policy appears to be advantageous: For the low total VSS volume 
(20%), the performance 01 both types 01 policies lor the distributed VSS (see the 
eontinuous and dashed black lines for the DR and PR policies) is clearly better than 
the performance of the two single-Ievel polieies (eontinuous and dashed light gray 
lines) at low levels of the shortage rate <20%. At higher levels of shortage, both 
positioning polieies lead to a similar results. 

For the large size of the VSS (50%), this only holds if the DR poliey is employed. 
In case 01 the PR policy, both the single-level and the distributed VSS lead to very 
similar results for shortage rates of up to 40%. As before, the use of VSS is not 
reeommended at higher levels of shortage as neither VSS strategy will lead to an 
improvement over a plain ADA strategy. 
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Size cf the VSS: While the previous simulation h88 already shown the impact of two 
different sizes of the overall VSS stock, this parameter will now be varied over a wider 
range. Agam, the 3-level hierarchy will be used, allocation is performed using the ADA 
scheme, conswnption does not involve nesting (DK=O), but VSS are employed. As a 
consequence of the previous simulation results, only the proportional retention strategy 
will be a.nalyzed, aB this setting haB been fOlllld to be superior to DR for lower levels of 
shortage. Furthermore, only the case P L = 2 with a distributed VSS will be considered, 
Le. VSS is held both at the nodes of the intennediate level as weil as at the root node. To 
cover a wide range of the overall VSS size, the parameter RS will be varied with settings 
of 2.5%, 10%, 20%, 30% and 50%. This means that the size of the overall VSS ranges 
between 5 and '" 75%. 
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Figure 5.16. - Different sizes of the VSS as measured by the RS parameter(3-1evel hierar­
ehy, GV = 0.5, ADA scheme, proportional retention, P L = 2) 

Figure 5.16 shows the corresponding ARLP values for a simple FCFS order acceptance 
scheme (continuous dark gray line) and different ADA-based demand fulfillment strategies 
(thin dashed and continuous lines). Note that the curves for FCFS, for the basic ADA­
based aJlocation without any VSS (no retention) as weil as the case with RS = 30% have 
already been shown in Figure 5.14a. 

Generally, the higher RS, the more units will be served in a FCFS fashion. At a level 
of RS = 30%, about 50% of the overall supply is served in a FCFS manner due to the 
P L = 2 setting. The resulting ARLP curve is already very dose to that of a simple FCFS 
scheme, with very low ARLP values at low levels of shortage, but there is a significant 
performance deterioration if shortages are severe. At RB = 50%, the corresponding ARLP 
curve (thin continuoUB black.line) is almost indistinguishable from that depicting the plain 
FCFS strategy, except for very high levels of shortage. 

Overall, these simulation results confum the intuition. A higher volume of VSS leads 
to a performance which is doser to FCFS. Yet, the above simulation does not yet answer 
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the question regaxding the best level of VSS to retain, it only illustrates the implications 
of different settings. While this certainly requires further research, the following guideline 
can be inferred from the above results: Retaining small amounts of VSS appears useful 
if the shortage rate fluctuates significantly. At low levels of shortage, a small amount of 
VSS (e.g. RB ~ 2.5% together with PL ~ 2) will lead to better ARLP wlue, than a 
plain ADA-based allocation with dedicated consumption and no VSS. Still, the allocation 
planning-based approach has its merits if from time to time the shortage rate reaches 
higher levels.19 Maintaining this small VSS volume also in situations with higher shortages 
only leads to a small decrease in performance. But if situations with significa.nt shorto.ge 
rates can be anticipated, it is advisable to discontinue reserving VSS in the allocation 
plaoning step. 

Combining Nested Quota Consumption and VSS: To conclude this introduction into 
VSS, joint policies will be illustrated brießy which involve consumption p1anning based 
on a combination of nested quotas and VSS. The setup of this simulation is as follows: 
Again, the 3-level hierarchy is used, the forecast error setting remains at CV = 0.5 
and the shortage rate will again be varied between 0-90%. The objective is to find a 
set of consumption rules for an ADA-based allocation which leads to low ARLP values 
for all levels of shortage. First, only results for 'pure' policies will be reported for an 
easier companson. More precisely, the following cases have been considered and their 
corresponding ARLP values have been depicted in Figure 5.170.: 

• FCFS: As before, 0. FCFS order acceptance can serve as a simple benchmark (bold, 
dark gray line) 

• Base case: A demand fulfillment strategy consisting of a plain ADA-based allocation 
and a corresponding dedicated consumption constitutes the default case (bold black 
line, DK ~ 0, PL ~ 0). 

• Nested quotas: The previous experiments in Section 5.2 have shown that the ADA 
scheme perfOrDlS well in combination with the combined nesting strategy. Simu­
lations with only nested quotas have been run for the two different search space 
settings with DK ~ 1 and DK ~ 2 (thin black lines). R.ecall that especially the 
last setting requires a high level of data transparency within the customer hierarchy 
which may not always be given in pra.ctice. 

• VSS: Last, ADA-based allocation can also be combined. with VSS instead of nested 
quotas. To simplify the analysis, the size of the overall VSS will be limited to 20% 
of the overall supply. Hence, it ca.n either be placed only at the intermediate level 
(PL ~ 1, RS ~ 20%, i.e. single-level policy) or also at the parent level (PL ~ 2, 
RS = 10%, Le. distributed policy). These two settings correspond to the continuous 
and the dashed light gray lines, respectively, in Figure 5.17a. 

19 If the shortage rate is always 10w and d.oes not :H.uctuate, a simple FCFS strategy may be preferred if 
the worst case threshold vaJues for ADA-based allocation given in Section 5.2.2 and Figure 5.12 are 
not surpaased. 
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The compaxison of the simulations shows that the use of nested quotas lea.ds to more 
consistent reductions of the ARLP values over the entire range of the shortage rate tested 
than the VSS-based strategies. As a.lready discussed before, the distributed VSS policy 
leads to improved ARLP va.lues especia.lly for low values of the shortage rate « 20%), 
compared to retaining VSS only at the intermediate level. With this setting of P L = 2, the 
VSS-based cOllBumption rule even leads to superior results for shortage rates lower than 
10%, compa.red to a conswnption rule with nest.ed quotas and DK = 1. Had an even 
higher VSS size been used (compare the previous simulation), a further improvement 
would have been possible, but only for small shortage rates < 10%. From an overa.lI 
perspective, a plain FCFS order acceptan.ce policy performs best for these very low levels 
of shortage. But considering the performance over the entire range of shortage rates, a 
conswnption policy based on nested quotas with D K = 2 is the most competitive one 
which can be used combination with an ADA-based a.lloca.tion. 

It will now be a.na.lyzed to what extent a combination of nested quotas and VSS ca.n 
constitute an attractive alternative consumption policy. This joint policy will handle 
individual orders in the following manner: Upon arriva.l of an order, initia.lly the pennitted 
nested quotas will be checked according to the combined nesting strategy. If the order 
cannot be fulfilled, the VSS will be checked next. In case of P L = 2, the VSS check begins 
at the parent level of the leaf node receiving the order. The VSS at the top level will be 
checked last. The order will be lost if no supply quantity was found during this search.20 

In Figure 5.17b, the ARLP va.lues for the following demand fulfillment strategies have 
been depicted for the shortage rates in the range 0-90%: 

• FCFS: This remains the simplest benchmark (bold dark gray line). 

• Base case (for comparison): ADA-based allocation with corresponding dedica.ted 
consumption (DK = 0, PL = 0, bold black line). 

• Nested quotas (for comparison): ADA-based a.lloca.tion and nested consumption 
with DK = 1 and DK = 2 and no VSS (thin black 0008). 

• VSS and nesting over the immediate sibling nodes: ADA-based allocation, nested 
consumption with D K = 1 as weil as VSS with a total size of 20%. The VSS can 
either be pla.ced only at the intermediate level (P L = 1, RB = 20%, continuous 
daxk gray line) or at both the intermediate and the top level (PL = 2, RB = 10%, 
dashed dark gray OOe). 

• VSS and nesting over aJIleaf nodes: ADA-based aJIoca.tion, nested consumption 
with DK = 2 and VSS. Again, either single-Ievel or distributed VSS can be used, 
indicated. by the continuous and dashed light gray lines, respectively. 

20 RecaJl that the order sire is 8B6umed to equal one unit in all simulation experiments reported in this 
chapter. 



312 5. Model Extensions: Forecast Errors and Enhanced Consumption Planning 

Observe first that also in case of these joint consumption policies (nested quotas plus 
VSS), the distributed VSS (PL = 2, RB = 10%) generally perfonns better thon a single­
level VSS with the same overall amount of VSS, as illustrated by the dashed gray lines in 
comparison to the continuous gray lines. Nevertheless, the more important observations 
from Figure 5.17b remte to the performance of these joint polieies: On the one hand, 
the combination of VSS with a consumption poliey based on nested quotas leads to a 
further improvement of the ARLP values at lower levels of the shortage rate eompa.red to 
a consumption policy which uses nesting, but no VSS. On the other hand, however, such 
a joint poliey also leads to higher ARLP values at medium and higher levels of shortage. 
More precisely, in the case of DK = 1, the best joint policy (with distributed VSS) leads 
to an improvement over a policy which only uses nested quotas up to shortage rates of 
about 20%. If D K = 2, the best joint policy is only superior up to a shortage rate of about 
10%. From a shortage rate of 60% onwards, such a joint poliey performs even worse than 
consumption planning based only on nested quotas with D K = 1. Furthermore, note 
that there seems to be no real advantage from combining a loeal VSS (with P L = 1 and 
RB = 20%) with a nested consumption policy which only searches the immediate sibling 
nodes (DK = 1). This can be seen by oomparing tha middle black line with the thin dark 
grey line in Figure 5.17b. The additional VSS only leads to a minor improvement up to a 
shortage rate of 20%, and the performance llllder this joint policy degrades signifieantly 
at higher levels 01 shortage. 
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(b) Nested quotas and joint policies with VSS 

Figura 5.17. - ARLP (in %) for consumption policies based on nested quotas, based on 
VSS and joint policies (3-1eve1 hierarchy, GV = 0.5, ADA scheme) 

Ta summarize, retaining some quantities at higher hierarchy levels is a coneeptually 
simple strategy to improve the performance of allocation planning-based demand fulfill­
ment in multi-stage customer hierarchies for low shortage rates. For such settings, VSS 
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can at best lead to a similar performance as achieved under a plain FCFS scheme. Nev­
ertheless, this has to be traded off against a severe performance degradation at higher 
levels of shortage. Overall, the following conclusions can be drawn from the simulations 
reported above: 

• A proportional retention has been found to lea.d to better results than a direct 
retention. Under the former policy, all successor nodes contribute in equa.l relative 
tenns to the size of the VSS. By contrast, the latter policy implies that the VSS is 
formed primarily by reducing the allocation to the least profitable successor nodes. 

• Furthermore, for a given overall size of the VSS, slightly better results have been 
noticed if the VSS is retained not only at the intermediate level, but also at the top 
level of the 3-1evel customer hierarchy studied here, i.e. a distributed VSS perfonns 
better than a single-Ievel policy. Further experiments may analyze such p08itioning 
policies also in larger hierarchies. 

• The appropriate size of the VSS appears to be dependent on the typical range of 
the shortage rate, but this question certa.in1y warrants further investigation. 

Conceptually, VSS can also be used in combination with consumption rules based on 
nested quotas. Such joint consumption policies will result in a superposition of the effects 
observed when using either nested quotas or VSS, Le. a further performance improvement 
for lower levels of shortage at the cast of worse ARLP values at medium and higher levels 
of shortage. Overall, the results reported above only constitute some first simulation 
results, leaving sufficient room for further ana.lyses of the VSS concept in multi-stage 
customer hierarchies. 
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