
2. Supply Chain Planning and 
Demand Fulfillment 

This chapter summarizes the background cf the DMC problem. Moving from rather gen­
eral aspects to more specific topia>, Section 2.1 will start with an overview cf supply 
chain planning (SCP). This section will be used to introduce the concept cf hierarchi­
ca! planning and to characterize the key relations between the individual SCP tasks. 

8ince the discussion in this thesis is limited to MTS environments, all production pro­
cesses are driven by forecasts and final items are sold from stock.. In such MTS envi­
ronments, the interrelations between three major SCP tasks need. to be characterized. to 
illustrate the background of the DMC problem: 

• In Section 2.2, an overview cf key aspects cf demand planning will be presented; 
in particular, hierarchical forecasting will be addressed. 

• Then, in Section 2.3, master planning will be disCUBSed. Based on the inputs 
provided by demand planning, master planning determines amid-term forecast­
driven aggregate plan for procurement, production, distribution and sales. 

• Demand fulfilhnent, i.e. the order-driven processes in an MTS supply chain will 
be covered in Section 2.4. In P8XtiCUlar, an overview will be provided illustrating 
how current demand fulfillment systems handle customer heterogeneity in MTS 
environments, and a comprehensive review of the existing literature contributioDB 
will be given. 

Finally, Section 2.5 offers a brief summary and concluding remarks. Overall, the analysis 
will confirm that the main issues associated with the DMC problem have not yet been 
addressed thoroughly in the literature, preparing the ground for the contributions in the 
subsequent chapters. 

2.1. Supply Chain Planning 

The following sectioDB will provide an overview of planning concepts in a supply chain. AB 
a starting point, the objectives and tasks of supply chain management will be introduced 
in Section 2.1.1, allowing for a further characterization of the DMC problem as an intra­
organizational cha.nnel coordination problem. An appropriate planning concept, both for 
inter-company and intra-organizational supply chains, is hierarchical planning. It takes 
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care cf the interrelations between the individual planning tasks at different levels. Abrief 
introduction to hierarchical planning will be provided in Section 2.1.2. 

In Section 2.1.3, the interrelations between the individual planning levels will be dis­
cussed.. An intuitive framework for this ja the 8upply chain planning matrix (SCPM). It 
arranges the SCP tasks dang the dimensions planning level and 8upply chain processes. 
Unfortunately, an important characteristic cf all supply chains, the customer order decou­
pling point (CODP) is not reflected in the SCPM. The CODP sep",.tes forecast-driven 
fram order-based tasks, and it will be covered in Section 2.1.4. 

Almost alt planning tasks in today's supply chains CaIl be supported with software 
modules which are part of APS. APS are powernd implementations of the hierarclrical 
planning logic. 8ince some of the ideas developed in the subsequent chapters to salve the 
DMC problem ma.y be integrated into such systems, Section 2.1.5 will provide a short 
overview of APS. 

2.1.1. Supply Chain Management 

In a very basic sense, a stJ.pply chain consists of "two or more parties linked by a flow of 
goods, information, and funds." (Tsayet al., 1999, p. 301). These panies are typica.lly 
involved in four types of key activities: Procuring necessary raw materials, transforming 
them into semi-finished and finished. products in aseries of production steps and finally, 
distributing and selling these products to the end customers (Lee and Billington, 1993). 
These activities have to be aligned closely to ensure that individual customer needs can 
be fulfilled in the best possible manner. 

This aligwnent is usually referred to as supply chain management. The objective of 
SeM is to coordinate these aforementioned activities and to manage the relationships 
between the involved entities. The ultimate goal is to deliver superior customer value at 
fewer costs to the whole supply chain (see Christopher, 1998, p. 18). The breadth of tasks 
involved suggests that SeM comprises both a design and an execution perspective.1 

A key characteristic of SeM is its foeus on the collaboration of multiple panies. SeM 
has risen to prominence as traditional production settings based on verticaJly integrated 
companies have been gradually replaced. by a sequence--or chain-of multiple panies 
working together. It is their joint effort which is required in modern industrial produetion 
settings. 

Many drivers for the establishment of supply chains and of SeM originate from the 
market environment, for example the globalization of many markets. This qualitative 
change from traditional production environments to supply chains has been aceompanied 
by a trend towards better eustomer orientation, resulting in an explosion of product 
variants, shorter product life cycles and more complex produets. Many companies have 
responded to this chaJlenge by speeializing and concentrating on their core eompetencies 
(see Prahalad and Hamel, 1990). This has resulted. in the participation of more and 
of many separate eeonomie and legal entities in the overall process of value ereation. 

1 For more oomprehensive discussions on the term SeM and parlicularly its rela.tionship to logistics, see 
Cooper et aJ.. (1997) or Mentzer et aJ.. (2001). 
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Therefore, most SeM initiatives focus on facilitating cooperation and on ooordinating 
decisions at the interfaces to other enterprises along the logistical chain (Zimmer, 2002, 
p. I)' 

At an aggregate level, the k.ey tasks of SeM are to reduce costs, particularly with 
respect to inventory, to gain efficiency in operations and to improve customer service (Lee 

and Billington, 1995). Essentially, SeM ia concerned with determining the trade-offs be­
tween these apparently conflicting goa.ls. Improving customer service and operations while 

at the same time preventing inventory levels from soaring requires a sophisticated. and 
coordinated effort. For this purpose, SeM incorporates a broad spectrum of managerial 
decisions. Lang-term strategie deliberations mnst be addressed while at the same time 
important tacticaJ planning activities must be talren care 01. This breadth 01 planning 
tasks ean be handled with the hierarchical planning framework which will be discussed 
shortly, in Section 2.1.2. 

The DMC Problem as an Intra-Organizational Channel 
Coordination Problem 

AB stated above, at the heart cf most SeM issues lies the problem cf coordinating multiple 
entities fulfilling a. variety of tasks. A typical example is the channel coordination problem. 
In a particular sales and distribution channel, a. nnruher cf independent supply chain 
entities such as manufacturer, wholessler and retailer are coIlectiveIy involved in bringing 
a. particular product to market. The entities are independent sinee there is aften na 
centrru authority which ca.n exert discretionary power. Hence coordination is required aB 

the entities differ in terms cf their objectives, information endowments or general market 
power. 

The main planning problem conaists of incentivizing the independent entities to coop­
erate for their mutual benefit. A typical phenomenon in 1lllcoordinated aales and distri­
bution channela is double marginalization (see Spengler, 1950). Here, independent price 
setting decisions are made both by the wholesaler and by the retailer. Since each party 
only focuses on individual profit maximization, this not only jeopardizes overall supply 
chain profits, but also leads to individually disadvantageous results (e.g. see Corbett and 
Tang, 1999). Due to the lack of a central coordinating authority, such problems can 
only be mitigated by proper mutual contracts which align incentives and which encourage 
information sharing (e.g. see Cachon, 2003). Channel coordination is achieved if all par­
ties involved independently malre decisions which maximize joint profits (Barnes-Schuster 
et W., 2002, p. 173). 

A typical by-product of missing channel coordination is the build-up of large and costly 
inventory positions at each of the involved supply chain entities. These excess invento­
ries result from distorted aggregate demand signals and disproportionate ordering. Such 
distortions can occur if the demand variability increaseB from the perspective of more 

2 The related term 'demand cha.in management', while more a.ppropria.te to describe the ma.:rket-related 
activities (see Selen and Soliman, 2002), was never a.ccepted in literature and pra.ctice. 
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upstream supply chain entities. Forrester (1958, 1961) was the first to observe this phe­
nomenon which ja commonly referred to 88 the bu.llwhip eJJect. In a seminal paper, Lee 
et al. (19978) identified and analyzed four major sources of the bullwhip effect in supply 
chains: 

• Myopie processing of demand signals as end customer demand ia invisible to 
intermediate supply chain entities, 

• rationing g8llle8 due to proportional allocations and unrestricted return policies, 

• order batching and 

• frequent price variations. 

The literature on the bullwhip effect and on its prevention has increased beyond measure 
in recent years. Many theoretical contributions highlight the importance of centralized 
managerial contral to salve such coordination problems. Yet, this is only rarely feasible. 
In the absence of a. central coordination authority, most anthors agree that increased 
transparency, information shaxing 811.d an aJignment of incentives constitute key measures 
to prevent the bullwhip effect in supply chains and to ensure channel coordination (e.g. 
Lee et al., 1997b). 

However, this result is not limited to supply chains consisting of separate (legal) enti­
ties. Problematic situations which are conceptually similar to the channel coordination 
problem may also IDee in intra-organizational settings. If individual entitiea with pri­
vate information 811.d selfish behavior make lWOOordinated decisions, phenomena which 
are similar to the bullwhip effect may also occur within organizations. In particular, this 
is the case for the DMC problem which was introduced. in the previous chapter. This 
problem is characlerized by a two aspects which closely mirror the root cauees of the 
bullwhip effect in supply chains: 

• Due to the salesforce composite forecasting method, the true demand signal from 
the lea.f nodes is typically not obseroable at higher levels in the customer hierarchy. 

• Decentral information in the customer hierarchy may lead to shortage or ra­
tioning gaming.3 

While same sales staff in a customer hierarchy may also possess pricing power, there 
often exist centrally enforced pricing policies.4 Furthermore, order batching within a 
sales organization is typically less of a problem than between independent entities in an 
inter-organizational supply chain. Hence, the effects order batching and price variations 
are less likely to be encountered in the DMC problem. Nevertheless, the other two effects 

3 Houlihan (1985) was the first to disc1lS8 the rationing or shortage gaming phenomenon also in an 
intra-organizational context. Note that BOrne authors use the term 'Houlihan effect' when referring to 
rationing and shortage gaming in general, e.g. Disney and Towill (2003). 

4. Recall that the discussion in this thesis primarily focuses on MTS environments where prices are often 
set uniformly for all markets. 
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may result in distorted aggregate demand signals. This can be seen as an analogy to the 
bullwhip effect in an inter-organiza.tional setting. 

Countermeasures against this 'interna! bullwhip effect' are similar to the inter-company 
case: The activitiffi cf the individual agents in the customer hierarchy have to be coordi­
nated., information transparency needs to be improved and incentives must be aligned. In 
contrast to the traditional channel coordination problem, however, the individual agents 
in a customer hierarchy already have an established, hierarchical relationship. Ta Borne 

extent, this may allow for a tighter control of the resulting superior-subordinate relation­
ships. But important information asymmetries remain and need. to be dealt with. Overall, 
the DMC problem ca.n therefore be interpreted as an intm-oryanizational channel coordi­
nation problem. 

AB ca.n be seen, SeM is not limited to an inter-oompany setting. Many simil.a.r coordi­
nation problems also occur within l.a.rger firms with distributed. decision-making. While 
the analogy discuased above only addresses the sales and demand fulfillment tasks in 
customer hierarchies, also the other SCM tasks performed by the different entities in a 
multi-divisional firm need to be aligned. An adequate planning com~pt to solve such ooor­
dination problems in inter-oompany and intra-organizational supply chains is hierarchical 
planning. In the following section, this com~pt will be introduced brießy. 

2.1.2. Hierarchical Planning 

Acoording to Ijiri et al. (1968), planning can be llllderstood "as the process of developing 
a strategy for changing or responding to changes in one's environment" by identifying and 
evaluating alternatives. In an SCM oontext, Fleischmann and Meyr (2003) defined supply 
chain planning (SCP) Uas a generic term for the whole range of those decisions on the 
design ofthe supply chain, on the mid-term ooordination 8lld on the short-term scheduling 
of the processes in the supply chain." This definition exhibits two key characteristics: 
First, the large problem of planning an entire supply chain a.ctually oonsists of many 
individual, but closely related. subproblems. These subproblems are referred to as planning 
tasks. Second, this definition illustrates that severru of these planning tasks can be grouped 
at certain planning levels. 

The term planning level requires a definition. Mesarovic et al. (1970, p. 52) observed 
that 'level' is a rather generic term, and they distinguished between three different notions 
of levels in a planning context: 

• Strata: Levels in the sense of strata refer to different degrees 0/ abstmction. Strata 
may be used to differentiate between the extents to which certrun features are in­
cluded in a planning model. 

• Layers: Layers refer to different degrees 01 decision complexity which result from 
vertically decomposing a oomprehensive decision problem into one or multiple usu­
ally simpler subproblems. 
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• Echelons: Echelons refer to different organizationallevels, Le. the mutual relation-
ships between different decision units in larger organizations. 

While these three aspects are inextricably linked in most practicaJ problems, the process 
perspective inherent in planning suggests putting astrang foeus on the nation of layers 
in defining a planning level. Hence, the following definition of a planning level will be 
adopted. It is baaed on Emery (1964, p. 20), who summarized earlier work: 

Definition 2. A planning level is a particular vertical partitioning 0/ a larger problem. 
A certain plan, addressing the entire large problem or parts 0/ it, lies at a lower planning 
level ij it partitions the behavior described bll plans at higher levels into liner details. 

In many cases, such a partitioning may simply refiect the decisions that need. to be made 
at different points in time.5 Often, lower planning levels consist of multiple plans which 
collectively address the entire problem at the higher level. Emery (1964, p. 20) pointed 
out that such an apportionment corresponds to a consistent "one-to-many transformation" 
between the high-level plan and its associated.lower-Ievel plans. Consistency implies that 
the different lower-Ievel plans are indisti.nguisha.ble in terms of the variables which have 
been used. in defining the high-level plan. 

An early differentiation between different types of planning levels was introduced by 
Anthony (1965). He suggested. partitioning a larger planning problem by grouping indi­
vidual planning tasks according to the time during which these decisions have an effect. In 
partieular, he observed that same decisions axe more coneerned with the broader aspects 
of the overall system behavior than others. The related decision periods are longer. The 
result is the familiar differentiation between long-term, mid-term and short-term planning 
levels which is typieally used. in SCP. With each of these three ma.jor pl.a.nning levels, a 
number ofkey SCP tasks are aasociated (see Milier (2002, Ch. 1.1) and Voß and Woodruff 
(2006, pp. 4-5)): 

• Lang-term or strategie planning is eoncerned with setting the long-tenn objec­
tives of a eompany or of an entire supply ehain and with defining a strategy which 
allows meeting these objectives. Such decisions have major implieations over a long 
period of time and are thus associated. with high risk and many Wlcertainties. Typ­
ical stra.tegie supply chain deeisions pertain to the potential markets to serve and to 
finding ways to differentiate from competitors. From a design point of view, stra.te­
gie planning requires making choiees regarding the strueture of the supply cha.in 
network and its key links. Such decisions typieally have an impact over several 
years and are marle by senior management, usually based on aggregated. internal 
and also external data (Miller, 2002, p. 2). Deeisions at a strategie planning level 
are the least structured ones, are associated with high levels of uneertainty and are 
often diffieult to formalize in quantitative terms (Steven, 1994, pp. 54-55). 

• Mid-term planning foeuses on the efficient alloeation and utilization of the re­
sourees which were established by long-term planning. At amid-term level, SCP 

11 Tbis perspective will be referred 8S a decuion-time hiemrchy, see Section 3.2. 
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tasks can be split slang the faur warn functional areas procurement, production, 
distribution and sa.les planning. The time frame cf mid-term planning covers at least 
one full seasonal cycle, Le. usually st the minimum ODe year. Production planning­
often the most important mid-term 8upply chain planning task-is typically split 
into two sub-tasks, particularly in the case cf multi-site production environments. 
While master planning foCUBes on aligning and optimizing production plans across 
multiple sites, production planning and scheduling has a. more limited scope 
and addresses lot-sizing, machine assignment, scheduling and sequencing decisions 
.t the level of. single plant (Fleiachmann and Meyr, 2003, p. 481). 

Mid-term decisions are usually made by middle managers and lower-Ievel senior 
executives (Miller, 2002, p. 4). An important decision which already has to be 
made at a tacticru planning level is the development cf specific inventory alIocation 
policies. In case cf foreseeable shortages during the mid-term planning horizon, 
these policies are used to determine which customers will be served. with priority 
(Miller, 2002, p. 183) . 

• Short-term planning ensures that individual tasks per functional area are per­
formed efficiently and effectively (Miller, 2002, p. 5). In most supply chains, this 
includes routine sequencing and lot-sizing decisions, but also distribution and trans­
portation planning to deliver goods or to pick. up material. In contrast to mid-term 
and long-term plamting, the horizontal interrelationships between individual plan­
ning tasks at the short-term level are less crucial and the use of integrated decision 
models is less common. Instead, there is typically a close vertical relationship be­
tween short-term planning and execution. Operational short-term plans have a 
short planning horizon in the range of days, up to several weeks. 

The above assignment of individual planning tasks to planning levels represents an ideal 
planning situation. In practice, the actual assignment is rather fuzzy and strongly depends 
on the parlicula< supply chain (type) considered (Fleischmann and Meyr, 2003, p. 471). 

Given the many interdependencies between the individual planning taaks at all plan­
ning levels, all decision problems should be considered simultaneously to find a solution 
which is optimal from aglobal perspective. However, designing and solving a mono­
lithic model covering all major supply chain planning tasks is typically not feasible. Such 
a simultaneous planning model requires significa.nt amounts of data and thus will have 
enormous memory requirements. Moreover, it will exhibit a high computational com­
plexity, rendering it impossible in most practical cases to actuaJly determine the optimal 
solution. 

Another major problem of simultaneous planning is the uncertainty which is 8B8Ociated 
with the required. long-term and mid-term forecasts. For example, production decisions 
for all individual final items have to be made for several yea.rs in advance. Since the 
accuracy of forecasts typically improves with shorter lead times, such a monolithic model 
could theoretically be executed agRin at later points in time with updated data. However, 
this is highly problematic. Most updated decisions can no longer be implemented in the 
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ahort run aB they will be inconsistent with prior decisions. Furthermore, higher-level 
planning tasks have longer re-planning frequencies than short-term tasks. For example, 
supply network adjustments will be revised at most annually whereas lot-sizing decisions 
will usually be updated daily or weekly. A common sched.ule to revise all planning tasks at 
all planning levels will introduce undesirable nervousness in the planning system. Overall, 
simult811.eous planning approaches are Da feasible option in practice. 

An alternative cf the other extreme ia successive planning. In 8 successive planning 
approach, the entire problem is clustered into several smaller subproblems with the ob­
jective cf minimizing the interdependences between them. These subproblems will then 
be solved sequentially. Usually, trus sequential planning approach will come at the cast 
cf over-simplifying the interrelationship betweell the individual subproblems. In practice, 
only a one-dimensional (forward) flow of information is assumed between the subproblems 
while the impact of other subproblems is either estimated or ignored altogether (Steven, 
1994, p. 12). This simplifies the planning situation considerably and usually permits deter­
mining feasible and often optimal solutiollB to each subproblem. However, the succeasive 
planning approach leads to a suboptimal overall solution. 

A compromise between the simultaneous and successive planning approach is the so­
called hiemrchical planning concept (Fleischmann and Meyr, 2003, p. 457). In hierarchical 
planning, a larger planning problem is broken along the lines of hieraxchically linked 
planning levels. At each planning level, only certain subproblems of the overall problem 
are solved. Moving down the planning hierarchy, one obtains a more detailed explanation 
of a complex planning problem. Contrariwise, moving up in the hierarchy leads to a 
deeper understanding of the overall problem and its significance (Mesarovic et al., 1970, 
p. 42). Lower planning levels are associated with a high degree of detail, a high re­
planning frequency as weil aa a short planning horizon whereaa the opposite applies to 
higher plamrlng levels. 

The key strength of a hierarchica.l planning concept lies in its ability to allow for decision 
postponing. While lang-tenn and aggregate decisions with a lang time horizon such as 
supply network planning have to be made early (i.e. at higher planning levels), decisions 
affecting more detailed issues may be moved to lower planning levels. These detailed 
decisions (e.g. lot-sizing or transportation planning) are thus postponed to later points 
in time when better decisions based on updated and more accurate information can be 
wade.6 However, it is important to account for interdependencies between these planning 
levels and to ensure that decisions made at a lower planning level are not in contradiction 
with prior decisions at higher planning levels (this is referred to as consistency). Decisions 
at higher planning levels should only restriet the decision space at the lower levels, but not 
pre-determine a particular decision for the short-term problems. The key challenge lies 
in ensuring that the decision spa.ces conceded to the lower planning levels always permit 
the generation of feasible detailed plans. While this splitting of the overall problem into 
multiple hierarchically aligned partial solutions usually does not necessarily lead to an 

CI In Section 3.2, tbis approa.ch will be characterized aa a decision time hiemrchJl. 
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optimum, it provides at least a feasible, consistent and in many cases quite good overall 
solution (Steven, 1994, p. 1). 

The hierarchical planning concept was originally proposed by Hax and Meal (1975) as 
hierarchical production planning (HPP) for a tire manufacturer. This initial publication 
haB spurred an enonnous amount of follow-up work, was subsequently extended to various 
other industries and broadened in scope to include other supply chain processes. Never­
theless, aJl hierarchical planning systems are still built upon five major principles (Stadtier 
and Fleischmann, 2012): Decomposition, coordination, aggregation, model building and 
model solving.7 Ea.ch principle will now be characterized in more detail. 

Decomposition: AB illustrated, monolithic models are usually difficult to salve in prac­
tice. Furthermore, neither is such a. model readily accepted by managers in charge of 
specific SC tasks. Hence, hierarchical planning always entails a decomposition of the 
overall problem into a set of interrelated subproblems and corresponding smaller models.8 

In contrast to successive planning approaches, this decomposition leads to a hierarchi­
cal structure which typically exploits existing responsibilities and information channels 
(Steven, 1994, p. 1). Decomposition-or hierarchiz8.tion-is thus closely linked to the 
existing organizational structure of a company or of an entire supply chain. Therefore, 
hierarchical pla.nning fa.cilitates the split of 8. la.rger planning problem into multiple deci­
sion areas along the lines of responsibility of individual departments or of separate legal 
entities. 

Coordination: In contrast to successive planning approa.ches, the interreIations between 
individual subproblems in hierarchical pla.nning are closely coordinated. Ea.ch subproblem 
belongs to a specific planning level and is link.ed. to the next lower planning level in a 
series of top-down instructions. The subproblem at the higher planning level controls and 
restricts the decision space of the problem at the lower level by these instructions. This 
way, a high level of integration ca.n be enforced, contributing to the conBistency of the 
overall plan. Two types of instructions C8Jl be differentiated (see Stadtier, 1988): 

• Prima! instructions (e.g. target production quantities, available capacities or inven­
tory levels) primarily limit the solution space and thus guarantee the solvability of 
the lower-Ievel subproblem. 

• Dual instructions (e.g. lot-sizing costs, inventory costs, more generally: transfer 
prices) directly affect the objective fwtctions of the lower-Ievel subproblems. 

A number of other types of links may exist between individual subproblems besides 
simple wtidirectional top-down instructions (see Steven, 1994, pp. 36-37). For example, 
a higher level of reciprocity C8Jl be ensured by an asymmetrically bidirectional link. (e.g. 
one-way instructions with a feedback mechanism) or a truly symmetric, mutual link. The 

7 Steven (1994) and Mesarovic (1970) discuss similar principles. 
11 As will be discUS6ed la.ter in Section 3.2, such a decompOflition is a prime example far a. so-caJled 

corutructional hiemrchy. 
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latter is ohen the case between subproblems at the same planning level, e.g. between 
master planning and mid-term distribution planning. 

Aggregation: loosely speaking, aggregation refers to the grouping of similar objects 
into one (Steven, 1994, p. 43), usually with the objective cf reducing complexity. The re­
verse operation to aggregation is referred to as disaggregation. A more thorough definition 
cf these operators will be provided later in Section 3.1.2. 

At higher planning levels, aggregation significantly reduces the complex:ity cf the plan 
and the uncertainties cf input data, e.g. by balancing lower-level demand forecast fine­
tuations. Typical dimensions are the aggregation cf time, geographies, products and 
capacities: 

• Aggregation 0/ time: In mid-term planning, typically weekly er monthly figures cf 
the expected demand are used rather than considering data at the level of days. As 
will be shown in Section 2.2.5, demand figures aggregated over time are less vola.tile 
and easier to forecast. 

• Aggregation 0/ gengrnphies: Production planning can often be facilitated by com­
bining the deman<ls from several smaller regions. The a.ctual geographical origin 
of the demands only needs to be considered at the la.ter stages of distribution and 
transport planning. 

• Aggregation 0/ products: Several similar end items are combined to product /amilies 
which in turn may be aggregated to product types. Often, there is no need for 
setup changes when producing items from the same product family. Itews from 
the same product type can oRen be produced on the same production line. This 
facilitates aggregate production planning, and more detailed product da.ta will only 
be considered when making scheduling decisions. 

• Aggregation 0/ capacities: Similarly, rather than considering the individual macl.ine 
capacities per production lin.e per minute, an aggregate figure is the amount of 
production capacity at a particular plant per month. The latter figure is often 
appropriate when deciding at which plant in a network production should occur. 

Aggregation may be accomplished in a number of different ways:9 

• Perfed (or consistent) aggregation is a fuIly commutative operation, i.e. it may be 
reversed without loss of information (Switalski, 1988, p. 384). 

• Since perfect aggregation usually involves significant practical problems, Axsäter 
(1979) and Axsäter and Jönsson (1984) proposed an alternative approach termed 
approximative aggregation. Acknowledging that some 1068 of information is often 
unavoidable in practice, approximative aggregation merely requires that the results 
of both the aggregated and detailed model should coincide as much as pOBBible. 

9 For a general framework on aggregation and disaggregation methodology a.nd aliterature overview, see 
Rogers et aJ.. (1991). 
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• Rather than relying on a. formal a.ggregation method, many practical applications 
make use cf an existing "natural hierarchica.l structure" (Axsäter, 1979, p. 79) and 
thus perform a. heuristic aggregation. Both the object and the aggregation method 
are picked conveniently to facilitate the overall planning problem. TypicaJ. applica­
tions of heuristic aggregation date back to the original HPP concept by Hax and 
Meal (1975). Heuristic aggregation ia often applied with respect to the aggregation 
of producl, (,ee Miller (2002, pp. 2&-26)). AI a lower planning level, product Iam­
ilies are formed by grouping several end items which use similax tooling cr which 
have similar setup costs. Items from the same product family are often produced 
together to limit cha.ngeovers and to facilitate lot-sizing. At a more aggregate level, 
several product families are often combined into product types which have a similar 
se880naI demand and which cau be produced at the same production rate on the 
same production line (albeit incurring cha.ngeover costs). 

Independent of the actual aggregation method employed, aggregate plans are less de­
tailed to allow for efficient planning over a longer time horizon. Some loss of information 
is justified at higher planning levels as aggTegation unburdens the higher levels from irrel­
evanl details (Rohde and Wagner, 2008, p. 172). However, al laler (lower-Ievel) planning 
stages, these aggregate plans need to be disaggregated and detailed information has to be 
amended agam. 8ince it is manda.tory that feasibility is preserved throughout the planning 
process, the disa.ggregation steps need to ensure that feasibility of the lower-Ievel subprob­
lems is maintained in all subsequent periods. Put differently, the disaggregation needs 
to be consistent. Most research on feasibility and consistency in hierarchical planning 
asswnes a deterministic pl.a.nning setting. For this, Axsäter (1986) has given conditions 
which ensure feaaibility at an aggregate level. However, an unsuitable disa.ggregation at 
a particulax instant in time may destroy feasibility for the remaining part of the planning 
honzon of the (originally feasible) aggregate plan. Methods to ensure consistent disaggre­
galion have been 'uggeslad, among olhers, hy Gabbay (1979) and hy Bilran el al. (1981). 
A first characterization of the disaggregation problem in stochastic planning situations 
has been given in Ari and Axsäter (1988). 

In many practical hierarchical planning situations, there is actually no need for the 
disaggregation step to exa.ctly reverse the original aggregation operation. Rather , it is 
usually su::fficient if the disa.ggregated problem fuIfiIls the constraints imposed by the 
aggregate problem. Hence, any consistent allocation of a top-Ievel object to multiple lower­
level objects is usually a feasible and thus perfectly acceptable disaggregation. Schneeweii. 
and Kleindienst (2004, p. 270) observed that most HPP problems usually constitute such 
simpler aggregation-allocation problems. 

Model Building; The various subproblems in an SCP problem are usually solved. with 
the help of planning models. These have the form of a mathematical model, consisting 
of an objective function and several sets of constraints. The constraints represent the 
essential restrictions which must be satisfied. by the decision variables. Many simple 
planning models have the form of a linear program (LP). Both the objective function as 
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weIl aB the constraints correspond to linear expressions and the decision variables can 
take on any continuous va.lue within a certain range. More complex model formulations 
usually lead to mixed-integer programs (MIP) with continuous as well a.s binary and ether 
integer decision variables. 

A necessary requirement cf model building is abstraction. Planners need to trade­
off model simplicity against the desire to account for numerous behavioral aspects cf the 
complex systems in real-world supply chains. The chaice cf a particular level cf abstraction 
(stratum) to describe a given SCP problem is aften subjective and depends significantly 
on the observer, his knowledge and interest in the operation cf the system (Mesarovic 
el al., 1970, p. 40). 

The modeling principles at different strata 8l'e generally not related (Mesarovic et al., 
1970, p. 41): For example, st a strategie planning level, a 8upply chain is usually modeled 
as a set of nodes-representing supply and customer demands-which are linked by input­
output relations and which need to be optimaJly baJ.a.nced over a longer period of time. At 
this aggregate level, the focus of the model lies on the (homogeneous) flow of goods and 
information between the nodes. By contrast, at a disaggregate, operational level, order 
promising models are represented at the level of individual supply units and individual 
customer orders. Both the supply units and the individual orders are no longer seen as 
homogeneous since individual cost and value fWlctions may be associated with each supply 
unit and with ea.ch customer order. An entirely new quality of the planning problem has 
been introduced into the model at the disaggregate level. 

Model Solving: Lastly, the individual subproblems in supply chain planning need to be 
solved. Model solving implies finding an extremaJ value for a given objective with efficient 
a!gorithms. Standard algorithms for mathematical programs permit solving almost an LP 
and many MIP to optimaJity. In situations where a true optimization is either impossible 
or the computation has a too long nw time (e.g. very complex MIP in lot-sizing), heuristics 
are applied. Heuristics do not always find the optimal solution but rather help to find an 
acceptable solution in a reasonable amount of time. 

In contrast to a monolithic model, each subproblem in a. hierarchical pl.a.nning frame­
work is solved individually and may be 8Bsociated with a different solution method. This 
permits tailoring the solution method to the problem type. 

Overall, it can be stated that hierarchical pl.a.nning is a flexible and pragmatic approach 
for many practica.l SCP situations. Its popularity is often swwnarized by three major 
advantages over other planning concepts (see Dempster et al., 1981, p. 708): 

• Hierarchical planning reduces complexity: Smaller subproblems are usually easier 
to solve, and information flows and mutual dependencies can be minimized by a 
clever decomposition of the overall problem. 

• Hierarchical pl.a.mting allows coping with uncertainty by postponing decisions until 

rellable and disaggregate foreca.sts are ava.ilable. 
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• Hieraxchical planning embraces the existing hierarchical structure found in most 
companies: The individual sub-models and planning tasks are often aligned in a 
natural way with existing orga.nizational structures and decision-making authorities. 
This ja usually a key factar to ensure acceptance of the resulting plans by its k.ey 
users. 

After this general outline of the hierarchica.l planning concept, the discussion in the next 
section will focus in more detail on the interrelations between the many planning tasks. 

2.1.3. Interrelations between Planning Tasks 

Clea.rly, decomposing a complex problem into smaller end more manageable subproblems 
offers significant benefits. In hierarchicaJ planning, these subproblems da not rank equally, 
hut exhibit a hierarchical relationship. One subproblem may exercise more power or 
simply has to make decisions at an earlier point in time (Schneeweii, 1998, p. 547). In 
the following, first a framework will be presented. which aHows structuring the various 
vertical relationships in hieraxchical planning. Then, also horizontal relationships at the 
same level of planning will be considered.. Both perspectives are captured. in the Supply 
Chain Planning Matrix. 

Hierarchical Interrelations - The Schneeweiß Framework 

Schneewei& proposed a general framework to describe and analyze the interremtions be­
tween different subproblems at different levels in hierarchical planning. At the very mini­
mum, a hierarchical planning situation consists of two interrelated.levels. A hierarchically 
superior planning level, termed top leve~ interacts with a lower base level,lo as shown in 
Figure 2.1. The plans generated by both levels will ultimately be implemented in a 
concrete object system. For example, the top level may correspond to amid-tenn aggre­
gate planning level whereas the base level may correspond to a short-term production 
scheduling level. Plans from both levels will ultimately be implemented in a produc­
tion environment. Schneeweiß suggested differentiating between three different types of 
interrelationships which govern the link between the top and the base plamting levels: 
instructions, reactions and anticipations (Schneeweiß, 2003, pp. 17-18). 

Instruction: As outlined before, the top level may exercise a direct top-down influence 
on the base level via a set of instructions. These instructions limit the decision space 
of the base level and thus inHuence its subsequent decisions and plans. If the top level 
corresponds to amid-term planning level in a production environment (master planning, 
see also Section 2.3), its output consists-among other things--of required production 
quantities and of end-of-period inventory levels which are passed downwards as instruc­
tions. Assume that the base level is equivalent to short-term production scheduling and 
has to come up with a detailed sched.ule determining when to produce which quantities. 

10 Tbe terms base level and lower level will be used interchangeably. 
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Figure 2.1. - Interre1ations hetween hierarchical planning levels (slightly adapted from 

Schneeweiß, 2003, F;g. 1.10, p. 17) 

The production quantities and inventory levels frorn the top level then correspond to 
constraints which the plan st the base level has to meet. 

Both the plans st the top and the base level are ultimately executed and implemented 
within the object system, Le. in the actual production environment. After the plans 
from both planning levels have been implemented in the production environment, ex­
post feedback information from the object system ca.n be obtained and returned to both 
planning levels. This information may help to improve subsequent pla.nning iterations at 
both planning levels. For example, if the actual production output turned out to be less 
than planned, e.g. due to quality rejects, this information needs to be taken into account 
in the next pla.nning and production cycle. 

Reaction: In many planning situations, the plan derived at the base level (before being 
implemented. in the object system) already contains information which is helpful for the 
top level, e.g. if the instructions provided. by the top level do not permit the base level to 
determine a feasible plan. This bottom-up feedback is referred to as a reaction. Such a 
reaction may be used to trigger a recruculation of the plan at the top level to remove the 
infeasibility. If a reaction function is present between both planning levels, the coupling 
between both levels is no longer of an unidirectional nature, but can better be described 
as being asymmetrically bidirectional (see Steven, 1994, p. 37). 

Anticipation: The third type of interrelation or coupling between both planning levels is 
the most sophisticated one: Usually, planners at the top level are aware of the hierarchical 
planning situation and lmow that the top level plan will be re:fined at the base level. In 
deriving their own plans, the top level planners may have means to anticipate the impact 
of their top level decisions on the lower level. For example, if the top level planners can 
anticipate minimum lot-size requirements which have to be respected in the operational 
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base level plans for sequencing and scheduling, better overall plans may reault. Top level 
plans may then be designed appropriately in the first place to prevent infeasibilities st 
the lower level. 

The extent cf such an improvement obviously depends on the form and quality of the 
anticipation model (cf. Schneeweii, 2003, pp. 42--44): On the one extreme, a. perfeet an­
ticipation will require the top level to be in possession cf an embedded, fully specified 
hase-level planning model. On the other extreme, the reaction cf the base level may not 
be tak.en into account at all and only some general fea.tures cf the lower level may be 
considered by the top level. This other extreme form cf an anticipation function is re­
ferred to as a non-reactive anticipation. It is similar to the coupling between subproblems 
in successive planning environments. In many practica.l cases, only Borne aspectS of the 
base level reaction can be anticipated by the top level, either explicitly or only implic­
itly. Following Schneeweiß, these types of coupling may be termed approximate reactive 
anticipation. 

The Supply Chain Planning Matrix 

The coneept of hierarchica.l planning-and in particular the framework of Schneeweiß 
(2003)-primarily stressed the vertical relationships between individual decisions which 
are made at different planning levels in an SCP environment. In general, the individual 
planning tasks will have further mutual relationships. Steven (1994, pp. 9-10) introdueed 
a classification into three different types of interdependencies between individual planning 
tasks in a supply chain: 

• Vertical or temporal interdependencies: Vertical relationahips reflect the hier­
archieal deeomposition of the overall supply cha.in planning problem and have been 
diseussed above. Since planning levels typieally result from clustering planning tasks 
with a similar temporal scope, most vertieal dependencies between planning tasks 
at different levels have a strong temporal eomponent. 

Two types of temporal relationships prevail: On the one hand, current plans will de­
pend on paat decisions marle at higher planning levels. For example, the produetion 
envirownent built according to previously established strategie and lang-tenn plans 
limits the eurrent production possibilities. On the other hand, eurrent plans also 
set precedence for future plans. The inventory levels which have been determined 
in today's aggregate plan determine the amount of orders which may be aceepted 
in one of the following periods by the short-term demand fulfillment planning task. 

As already highlighted in the introduetion, these temporal interdependeneies and 
the resulting lead times are at the heart of many alloeation problems in supply 
chains, including the DMC problem . 

• Horizontal or objective interdependencies: Horizontal or objective interde­
pendencies refleet the relationship between planning tasks at the same planning 
level, Le. decisions with a similar temporal scope. Such objective relationships may 
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exist between several instances 0/ the same planning task. Production pla.ns for dif­
ferent products have to compete for the same set cf limited common resourees such 
as the available manufaeturing capacity or available raw materials. For exa.mple, the 
decision to produce a particular item i usually cannot be made without considering 
the remaining operations schedule for the same period. It is the entire operations 
schedule for all products which determines whether sufficient resources remain far 
the production of i. Furthermore, the sequence of all production jobs in a particu­
Iar period has an inHuence on the associated costs of the production cf i (e.g. via 
required production line setup operations). 

Other horizontal interdependencies exist between different planning tasks: For cx­
ample, purchasing decisions can only be made onee the actual production program 
ia known. However, once purchaaing pl.a.ns have been implemented, the produetion 
poesibilities have been fixed for a certain period of time and during the purchasing 
lead time, production deeisions are difficult to alter. 

• Level of integration: The level of integration characterizes to which extent related 
subproblems are handled separately. In case of strong objective interdependencies, a 
eomprehensive model will ensure a high level of simultaneous coordination between 
the constituent subproblems. Partial models with a redueed scope, by contrast, 
have been stripped off most interdependencies with other subproblems. This allows 
planners selving them successively. 

Fbr example, if procurement planning ean be negleeted (e.g. because supplier lead 
times are short and there are no constramts on quantities) and if sales and dis­
tribution aetivities are handled by an external third party (with whom detailed 
service level agreements exist), the eore planning problem in this supply chain for 
the mid- and short-tenn essentially reduces to a sequence of manufacturing planning 
steps. AB outlined before, master planning and detailed scheduling are hierarchi­
eally linked. and way usually be solved successively, with one-directional top-down 
links via. instruetions. 

High levels of integration can often be found at more aggregate planning levels, 
for example in strategie planning. Given the dose interrelationships, procurement 
options, produetion facilities as weil as the geographieal scope of distribution and 
sales areas need to be planned simultaneously. 

The multi-faceted nature of the interdependencies between the various supply chain plan­
ning tasks is conceptually eaptured. by the suppIg chain planning matrix. It depiets the 
major SCP tasks as modules in a two-dimensional framework. A typical representation 
of the SCPM is given in Figure 2.2. The SCPM complements the hierarchical planning 
perspective (vertieal axis) with a functional view (horizontal axis). The SCPM repre­
sentation decomposes the overall SCP problem at each vertical planning level into the 
individual planning tasks 88SOciated with the four major supply chain proeesses: pro­
eurement, production, distribution and sales (Fleisc1unann et al., 2008). This horizontal 
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sequence of processes roughly corresponds to the flow of material in a typical supply chain 
(see also Section 2.1.1). 
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Figure 2.2. - Supply chain planning matrix (Fleischmann et al., 2008, Fig. 4.3) 

The vertica.l division into a lang-term, 8 mid-term and 8 short-term planning level not 
ooIy caters to the hierarchical structure of the individual supply chain planning tasks, but 
also mirrors the different planning intervals. The verticallinks, on the one hand, represent 
key temporal dependencies. On the other hand, they also correspond to the governance 
structure and the levels of responsibility of many companies. Strategie, aggregate decisions 
8l'e usually marle by higher-raWred planners wherea.s operational decisions are delegated 
to speeialists. 

Different levels of integration between the individual planning tasks are visualized by 
more aggregate modules. For example, most long-term decisions in a supply chain ean­
not be limited to a particular functional domain, but strategie procurement, production, 
distribution and sales deeisions are closely related, as discussed above. Thus, they are 
represented as one module in the SCPM (top row). In many software solutions for supply 
chain planning, higher levels of integration ca.n also be found at amid-term planning 
level. For example, aggregate and master planning often eomprises not only production, 
but also procurement and distribution decisions (see also Section 2.3). 

The SCPM is a framework which ean be employed for many different supply chains. 
However, this general applieability implies that not all planning tasks have to be present 
in a particular supply chain. For a general overview of the characteristics of different 
supply chain types and plamring requirements, see Meyr and Stadtier (2008). 

2.1.4. The Position of the Customer Order Decoupling Point 

One particulax aspect which is typieally not captured by the SCPM representation is 
the position of the so-ealled customer order decoupling point (Fleischmann et al., 2008). 
Its importanee stems from the fact that the four major proeesses in 8 supply chain­
procurement, production, distribution and sales a.ctivities-can be either executed on an 
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anticipative or on 8 reaetive basis. While reactive processes are triggered by an explicit 
order cf a subsequent supply chain member or by a subsequent supply cha.in process, 
anticipative processes are pushed by forecasts regarding pr06pective, Le. not yet placed 
orders (Fleischmann and Meyr, 2003, p. 462). Tbe boundary between both type, of 
processes ia referred to as the CODP. The planners who are responsible for the forecast­
driven processes UBUally cannat anticipate all orders from the subsequent supply chain 
members (or processes). Hence, buffer stocks are necessary and are held at the position 
cf the CODP point to hedge against forecast eITars. 

There are a number cf different options regarding the actual position of the decou­
pling point. Its choice is a highly strategie decision which haB an impact on a nwnber cf 
Bupply chain characteristi~. Properly chosen decoupling points allow for significant cast 
and efficiency improvements in a supply chain. Moreover, a well-defined CODP has the 
potential to be a key differentiating faetor against oompetitors (see Shannan, 1984). 

At an operationallevel, the CODP determines the lead time after which an order can 
be fulfilled (Hoekstra and Ramme, 1992, p. 8). At higher planning levels, the choice of a 
particular CODP is closely link.ed to the pursued manufaeturing strategy (e.g. job shop 
or flow production).ll 

The existing balance of power between customers and manufa.cturers in a paxticulax 
industry constitutes a highly influential factor in detennining where to place the CODP. 
In a very oompetitive industry with demanding customers, an order request which cannot 
be fulfilled on short notice by a company is typically lost. Hence, delivery times have to 
be shortened. Since procurement, production and assembly times are ohen longer than 
the acceptable customer lead time, as many steps as possible should be executed on an 
anticipative basis. In pra.ctice, this ohen implies executing all production steps ba.sed 
on forecasts and building up inventories of final products to hedge against uncertainties 
in demand. Th keep the amount of finished goods inventory and the associated costs 
small, the a.bility to prepaxe accurate demand forecasts with small forecast errors is a 
crucial prerequisite (Silver et al., 1998, p. 244). In such an MTS environment, the entire 
production is decoupled from CUBtomer orders. The CUBtomer lead time is thus laxgely 
equivalent to the distribution time as transportation from the central inventory stock 
point is only initiated upon order oonfirmation. The position of an MTS decoupling point 
is outlined in Figure 2.3. 

A further shortening of the customer order lead time can be achieved by also executing 
same or all distribution processes already on a speculative basis. This is ohen the ca.se in 
supply chains for oonsumer goods where replenishments of regional warehouses axe already 
planned centrally, based on forecasts. This is referred to as a make-and-ship-to-stock 
(MSTS) or deliver-to-stock environment (Hoekstra and Romme, 1992; Fleischmann and 
Meyr, 2004). This approach implies that the manufa.cturer designates same stocks early 
to serve a certain share of the spatially distributed demand. A more extreme version 
of MSTS is a vendor-IIlBll.B.ged inventory where all supply chain processes including the 

11 A more detailed discussion ofthese aspects can be found in Hoekstra and Romme (1992, p. 70). 
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(adapted fram Fleischmann and Meyr, 2004, Fig. 2) 

entire distribution to the customer are executed based on forecasts. The manufacturer 
directly controls the receiving storage cf the customer. 

On the other extreme, it ia possible to execute all processes, including development 
and procurement only after an order has been received. This leads to an engineer-to­
order (ETO) decoupling point. Even the design of the product is dependent on an acturu 
customer order. Practical examples cf ETO decoupling points include major project­
based, capital-intensive constructions such as ships cr large buildings. 

More typically, the decoupling point is aften p08itioned after the procurement processes. 
This is referred. to as a make-to-order (MTO) envirownent as all production-related 
steps are only executed onee a concrete customer order is available. Depending on the 
actual manufacturing strategy employed, customer lead times may become rather lengthy. 
An intermediate strategy between MTO and MTS is referred to as assemble-to-order 
(ATO). This strategy exploits the fact that many final items are not produced in a single 
step but are assembled from a number of semi-finished items. If the assembly time of the 
final products is rather short compared to the production time of the constituent semi­

finished items, (inventory) costs may be reduced and multiple variants of closely related 
products may be offered at competitive customer lead time durations. 

The breadth of possible decoupling point locations and the 88sociated production en­
vironments are summarized in Figure 2.4. When moving the CODP further downstream, 
the extent of forecast-driven, anticipative processes increases whereas the length of order­
based, reactive processes shortens. In Figure 2.5, the order-driven planning tasks as­
sociated with different positions of the eODP have been indicated symbolically in the 
SCPM.12 The lower right triangular area. marked in dark gray, covering primarily the 
short-term sales planning task, corresponds to the order-driven tasks in an MTS pro­
duction environment, but all procurement, production and most distribution decisions 
are initiated based on forecasts. In ATO environments, by contrast, not only are all 
short-term sales planning tasks executed based on individual orders, but also most die-

1:1 Tbis representation extends Figure 2.2. 
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tribution and many short-term production tasks since product assembly is dependent on 
customer specifications. Lastly, the combination of all highlighted areas corresponds to an 
MTO environment where most production and even some proCUIement decisioDB require 
a concrete customer order. 
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Figure 2.5. - Order-driven tasks in the supply chain planning matrix. for different decou­
pling points (adapted from Fleischmann et al., 2008, Fig. 4.3) 

It is important to note that this dear distinction between prototypical decoupling points 
and their 8SSOciated supply cha.in environments primarily serves analytical purposes. In 
practice, mixed forms prevail: 
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• Companies ohen operate different supply chain configurations simultaneously to 
address different sa.les channels or different regions (Hoekstra and Ramme, 1992, 
p. 68). For example, while orders from some regions may be served from final item 
inventories (MTS case), orders frorn other geographies way first trigger aasembly 
(ATO case, e.g. to ensure 8 product is conform to national requirements in terms of 
language/labeling or power system). 

• The differentiation between anticipative and reactive processes ia eften difficult to 
draw. In an ATO environment, the production of some subassemblies with short 
production times may only be started upon receipt of an actual order (MTO), while 
other subassemblies may be taken frorn inventory. 

• Finally, there are hardly any examples of pure 'to-stock.' strategies if customer orders 
consist cf multiple order lines. Consider retailing 88 8 typical MTS environment. 
Although individual orders are served from stocks of final goods, there is usually 
still a final 8SSelllbly step needed for packaging. Hence, such an environment has a 
close similarity with an ATO setting. Several individual final items are combined or 

assembled 'on the fly' to full shipments which are then collectively dispatched with 
a oommon due date (see Okongwu et al. (2012) and Xu et al. (2009) for examples 
and models). 

The choice of a certain position of the decoupling point is closely link.ed to the concept 
of postponement. Postponement means delaying activities until exact demands material­
ize in the form of individual orders. This strategy reduces the need to maintain c08tly 
inventories, at the C06t of longer lead times. The concept of postponement was originally 
introduced into the IIl8<keting literature by Alderson (1950). Bucklin (1965) developed 
the postponement concept further as a means to manage and shift supply chain risks. 
Zinn and Bowersox (1988) introduced a differentiation of postponement with respect to 
time, place and form: 

• Time: Delay all supply chain activities until orders have been received., e.g. 88 in 
an ETO, PTO or-more commonly-in an MTO environment. This strategy helps 
to reduce inventory levels, but comes at the cost of longer customer lead times. 

• Place: Transportation processes are delayed until orders have arrived. This cor­
responds to the centralization of stocks typicaJly found in MTS environments.13 

By contrast, MSTS is the corresponding decentralized approach, Le. with an early 
commitment of stocks to demand regions. 

• Form: All manufacturing and 88sembly activities which determine the form of the 
final items are delayed until demand is lmown exactly. To keep the customer lead 
time within an acceptable range, products are designed such that they are composed 
of a few common basic assem.blies. A series of quick. customization operations will 

13 A similar aspect arises in the DMC problem. The concept of so-called virtUN safety stocks in multi­
stage customer hierarchiea will be diacusBed in Section 5.3. 
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transform the basic assemblies into a specific product variant. Such a form-related 
postponement ia the most widely understood type of postponement and ia often 
implemented in an ATO environment. An example is the widely cited computer 
88sembly case study of Hewlett-Packa<d, see Lee and Billington (1995)." 

Further theoretical extensions to the postponement idea. were provided by Garg and Tang 
(1997) who studied. 8upply chains with two or more points where product differentiation 
occurs. A more in-depth diScuBsion of the benefits of postponement in stochaatic planning 
environments was given in Aviv and Federgruen (2001). 

Postponement ideas have a.lso been embraced to solve a number of other planning prob­
lems in supply chains, notably allocation problems (e.g., see Sish et al., 2008). Moreover, 
the idea of decision postponement can even be considered as a general design principle 
for planning systems, especially hierarchical planning systems. As will be shown in the 
course of this thesis, this tenet is equally weIl applica.ble to the DMC problem. 

2.1.5. Advanced Planning Systems 

To close this broad overview of supply chain planning issues, a brief look will be ta.ken at 
basic standard software for suppIy chain planning and suppIy chain management. Such 
APS have been positioned by software vendors as comprehensive solutions to support 
(intra-organizational) SCM. The 'advanced' nature of APS does not stem from particularly 
advanced optimization logic in its software modules. Rather , it is the implementation of 
a hiera.:rchical planning concept based on the idea of integral planning and the use of 
true optimization in standardized, extensible software modules which has led to the wide 
adoption of APS in many SeM environments (Flei'chmann and Meyr, 2003, p. 458). 

As a tool primarily designed for supply chain planning, APS do not replace common­
place enterprise resource planning (ERP) systems. Rather, APS and ERP systems are 
compiements. APS rely on ERP systems for variOUB types of input data and send back 
some of their outputs in the form of instructions to be executed by the ERP system 
(Fleisclnnann and Meyr, 2003, p. 480). Hence, ERP systems ensure the execution and 
control of the plans which have been generated by the APS. They also provide imponant 
reponing functionalities. To better Widerstand the relationship between APS and ERP 
systems, it is helpful to briefly review the historical development of enterprise software 
systems.15 

An early computer-ba.sed system is material requirements planning (MRP), popularized 
by Orlicky (1975). MRP systems essentially consist of a database of material requirements 
and their dependencies. They provide three major functions: 

1. To calculate inventory levels and requirements in an automated manner (particularly 
rega.:rding work-in-process inventory), 

14Hewlett_Packard was among the first electronics manufacturers which postponed adding country­
specific power adapters and manualB to their printers ooIy aB late aB in the regional distribution 
warehouses. Demand forecasts are mucb more reliable at regional warehouses which are closer to 
the final customers. 

15 Tbe following points bave been summ.arized from (Miller , 2002, p. 88ff). 
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2. to prioritize production jobs and 

3. to determine production requirements at a detailed level, e.g. regarding suhassem-
blies. 

MRP systems eRD be seen aB complements cr 88 basic extensions to HPP systems (Miller, 
2002, p. 90): While HPP systems are used to plan independent demands, MRP determines 
the dependent demand which derives fram the independent demand. The major drawback 
of the MRP planning logic ia that it does not explicitly consider capacity constraints. In 
practice, aseries of MRP runs h88 to be executed and the associated plans have to he 
checked until the feasibility of the overall HPP plan ia ensured (successive planning). 

The focus of MRPII (Manufaeturing Resource Planning) systems goee beyond materials. 
These systems seek to provide a common information basis for all major processes involved 
in a manufacturing environment, for example by integrating demand forecasts 88 well 
a.s financial or personnel-related data. At the core of MRPII is the master prod'l.l.ction 
8chedule (MPS), a plan for raw material requirements, production quantities, staffing and 
inventory levels. Furthermore, MRPII systems usually consider limited capacities in the 
planning proeess and thus offer some functionality for due date and capacity planning 
for the major production resourees. However, most MRPII systems still build upon a 
successive planning concept. Henee, plans obtained. under MRPII logic usually fall short 
of the solution qua.lity which may be obtained by a hierarchical planning method. 

Evolutionaxy improvements to the MRPII concept led to ERP systems. These can 
be seen as more integrated software solutions due to a centralized. database and a more 
thorough connection of individual modules. However, ERP systems continue to lack 
a systematic consideration of resouree availabilities and are still pred.ominantly based 
on a successive planning method. While offering adequate support for execution and 
controlling in a production environment or supply chain, ERP systems have only limited 
planning functionality aud cau only provide restricted decision support. 

APS a.im at filling this gap by providing a more holistic planning perspective and a 
truly capacity-oriented. planning approach. While many APS are positioned as all-purpose 
solutions for all SCM applications, most commercially available solutions address only a 
subset olthe planning needs which Brise in SCM (cl. Barisch and Bickenbach (2002, p. 28) 
and Knolmayer et w. (2009, p. 21)). 

Adopting the coneept of hierarchical planning, APS split a large planning problem 
into a set of smaller, loosely coupled. planning modules. In many APS, this structure is 

similar to the elements ofthe SCPM (see Meyr et al., 2008b) which have been introduced 
in Section 2.1.3. By employing a simultaneous planning approach for tasks positioned 
at the same level and by using successive planning for problems positioned at different 
planning levels, APS a.im at striking a balance between true optimization and integral 
planning on the one hand and between finding a feasible, flexible solution on the other 
hand (Fleischmann and Meyr, 2003, p. 457). 

Usually, higher- 8Ild lower-Ievel APS modules are linked by a non-reactive anticipation 
function since the plans of the higher level are forced. upon the lower level in the fonn 
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of instructions and constraints. Reaetive feedback is often only considered with a certain 
delay due to the rolling horwclD planning methodology. However, some eiforts have re­
cently been marle to enable some event-driven pla.nning functionaJity to shorten response 
limes (Meyr el al. (2008b, p. 114); see Laulenschläger (2008) rar a case 'Iudy). 

Commercially available APS solutions differ significantly in terms of the functionality 
provided. Usually, not all software modules have to be installed simultaneously and many 
modules have been pre-customized to address the requirements of a. specific industry. 
Nevertheless, the functionality cf most APS ean be clustered roughly into the modules 
depicted in Figure 2.6. Fbllowing Meyr el al. (2008b), Ihe lasks 88,ocialed wilh Ihe lrey 
software modules depicted in Figure 2.6 can be summarized aB follows:16 

• The design of the supply chain network structure (plant locations and distribution 
system) and the associated key material flows between the nodes in the network 
are determined in the strategie network design planning module. As diseussed 
above, these design decisions have to include purchasing OptiOIlB and lOItg-term sales 
opportunities. These strategie decisioIlB (see also page 26) are marle with a long-term 
planning horizon. 

• Demand planning primaxily genarates short- and mid-term demand forecasts at 
variOUB levels of aggregation. These sales forecasts provide a key input into the mas­
ter planning, distribution and demand fulfillment modules. Furthermore, demand 
planning also offers functionality to monitor and control the sales forecasts. 

In addition to that, demand planning often eontains procedures to detennine safety 
stock requirements. These requirements then serve as eOIlBtraint in subsequent 
master planning (see below). This is justified as the amount of required. safety stocks 
depends on the size ofthe forecast errors (see Fleischmann and Meyr, 2003, pp. 487-
488).n Many demand planning modules also offer funetionality for simulatioIlB and 
what-if analyses, e.g. for the planning of sales and marketing campaigns and for new 
product introductions or for product retirements. A broader perspeetive on typieal 
demand pl.a.nning functionalities will be provided in Section 2.2. 

• Most APS synchronize all major mid-term decisions regarding procurement, pro­
duction and distribution planning via a common master planning module. Based 
on mid-term sales forecasts from the demand planning module, master planning de­
termines aggregate purchasing, production and transportation quantities, ensuring 
that the available supply chain network is utilized as efficiently as possible. As a re­
sult, master planning provides a holistie optimization of all decisioIlB at amid-term 
planning level. It is thus a significant improvement over prior eapacity planning ap­
proaches in MRPII and ERP systems which only apply successive planning methods. 
Basie master planning is also covered in more detail in Section 2.3. 

111 .Aß indicated in the fo11owing, seme modules will be discussed in more detaU in tbe subsequent sections. 
17However, safety stock levels ma.y also be determined aB pari of the master planning module (e.g. see 

Betge, 2006, p. 55). 
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• Demand fulfillment ja a. module for the short-term which takes care of expected 
and arriving customer orders. Basic demand fulfillment approa.ches merely match 
the available supply quantities with the arriving orders. More sophisticated mod­
ules have been designed with a profit improvement objective, e.g. by reservW.g scarce 
quantities for more important customer groups. The tasks of this module are ad­
dressed more comprehensively in Section 2.4. 

• The actual functionality provided by the production planning and schedul­
ing module depends largely on the actual production envirownent and industry. 
Often, tbis module ia split into 8. separate production planning sub-module which 
determines lot sizes based on the constraints set by the master planning module. 
Subsequently, machine scheduling and shop-floor contral iSBues are handled by a 
scheduling Bub-module. 

• Transport and distribution planning addresses all short-term transportation 
planning needs. Operating within the constraints set by strategic and mid-term 

planning in terms of the structure of the supply network and the aggregate produc­

tion and distribution quantities, it is used to optimize vehicle loadings and sch.edules. 
This module fulfills an important function termed deployment, Le. to physica.lly link 
short-term product availabilities (from production planning and scheduling) with 
short-term demands (from demand fulfillment). 

• Purchasing & material requirements planning usually complements existing 
MRP functionality which is embedded in most ERP systems. While the ERP system 

performs the operational MRP tasks such as providing basic bill-of-material explo­
sions and generating purchasing orders, this APS module addresses more advanced 
planning needs, e.g. accOlmting for constraints such 8S limited resource ava.ilabilities, 
supporting the supplier selection process or determining order quantities in the case 
of quantity discounts. 

The APS modules employ mathematical models to represent the objectives and con­
straints of each planning task. The models are solved with the help of algorithmic ap­
proa.ches based on the principles of mathematica1 programming. For a comprehensive 

overview of the different solution methods used in APS modules, see Dudek et al. (2002, 
p. 50). A key problem of these solutions is that they are often not well understood by 

practitioners (Steven, 1994, p. 21). AB a consequence, practitioners may at times become 
leery of these solutions and rather prefer to run their operations via proven rules-of-thumb. 

This is particularly important when an APS is being implemented for the first time. Lin 

et al. (2007) argued that the human factor is too often overlook.ed in most APS implemen­
tation projects. Challenges with the planning process to implement an APS, especial!y 

from a. modeling perspective, have been analyzed in Zoryk-Schalla et al. (2004). Jons­
son et al. (2007) and Rudberg and Thulin (2009) presented case studies which illustrate 
practical applica.tions of APS in different industries, and Kjellsdotter lvert and Jonsson 
(2010) gave a comprehensive discussion of the overall benefits which may be gained for a 



46 2. Supply Chain Planning and Demand Fulfillment 

Procurement Production 

Long-tenn I Strategie network deBign 

Mid-term 

I 

MoB"" plamrlng 

I 
Domand 
plamrlng 

Production Distribution 
Purchaaing & planning plamrlng 

material 
requirements 

EJ planning 

I I I I 

Scheduling 

Tr_ 
planning Short-term 

Figure 2.6. - Software modules in tbe SCPM (Meyr et aL, 2oo8b, Fig. 5.1) 

company. Arecent textbook on APS fundamentals based on a simulation case Btudy is 
Stadtler et al. (2012). 

This concludes the basic overview of SCP in general and APS in particular. In the 
remaining sections of this chapter, the three key SCP tasks and their APS software mod­
ules which are most important for the DMC problem will be covered in more detail. AB 
illUBtrated in Figure 2.7, demand planning will be addressed in the immediately following 
Section 2.2. Based. on the demand planning inputs, master planning (Section 2.3) can then 
determine aggregate procurement, production and distribution plans. Lastly. Section 2.4 
will cover the actual demand fulfillment process which matches supplies as determined 
by master planning with demand as forecast by demand planning. As indica.ted before, 
Section 2.5 will conclude the chapter. 

2.2. Demand Planning 

As outlined in the previous section, the ultimate goal of all SCP tasks is to optimally 
prepare a supply chain for the arrival of customer orders so that the available supplies 
match demand as closely and as profitably as possible. While the previous discussion 
centered on the general planning tasks to be performed, the purpose of this (demand 
planning) and the following section (master planning) is to foeus on the major forecast­
driven tasks, before discussing the handling of actual customer order arrivals in Section 2.4 
(demand fulfillment). 

The subsequent presentation is primarily geared towards settings where the CODP 
separates production and distribution processes, corresponding to an MTS environment. 
Starting in Section 2.2.1, the major objectives and planning tasks of demand planning 
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Production 

Long-tenn 

Mid-term 

Short-tenn 

Figw-e 2.7. - Structure ofthe following sections 

will be swnmarized. Mterwards, the major components of a. demand planning system 
will be introduced: 

• Demand pla.nning structures (Section 2.2.2) refer to the planning and forecasting 
hierarchies which need to be managed within a company, 

• demand planning processes (Section 2.2.3) comprise the key forecasting activities 
and 

• demand planning controlling (Section 2.2.4) addresses procedures and meaaures 
to manage the quality and accuracy of the demand planning process. 

These sections provide a general overview of demand planning. In many practical settings, 
demand planning structures ha.ve a hierarchical nature in the form of multi-stage customer 
hierarchies. Forecasting and demand planning in such hierarchical structures is rarely 
covered in textbooks and the standard forecasting literature. Hence, Section 2.2.5 will 
provide an introduction to hierarchicaJ. forecasting. 

2.2.1. Objectives and Planning Tasks 

Demand planning is ohen defined formally as the process of forecasting future customer 
demand (Kilger and Wagner, 2008, p. 133). lt conalilules Ihe firsl planning ,Iep al each 
supply chain planning level as its output affects the quality of all subsequent planning 
activities (ehen et al., 2007, p. 2269). Any errors and uncertainties which are present 
in demand planning are propagated and often magnified by all subsequent supply chain 
processes. Hence, the further up in the supply chain, the worse usually the planning 
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quality (Lee et al., 19978). Bad planning has a particularly adverse influence on schedul­
ing, on resource acquisition decisions and on the determination of resource requirements 
(Makridakis et aJ., 1998, p. 5). 

Companies rum for exact forecasts to achieve long-, mid- and short-term objectives 
(see Eickmann, 2004-): In the mid- and lang-term, accurate forecasts help leveling out 
fluctuatioDB in production and procurement planning. This reduces setup costs as well aB 

direct and indirect inventory holding costs (e.g. due to obsolescence). In the short-term, 
accurate forecasts lead to improved service levels, shorter service times, a more flexible 
production and less exception mana.gement. 

Good forecasting also requires ca.tering to a variety of specific forecasting needs which 
have to be satisfied in the different functional areas of a company. Table 2.1, taken 
fram Mentzer and Bienstock (1998), summarizes typical forecasting needs of different 
managerisl functions. The overview highlights the requirements per corporate function in 
terms of level of granularity, horizon and interval alter which forecast updates are required. 
This bread.th of requirements wtderlines that not only good forecasting techniques but 
also adequate planning structures slong multiple dimensions are necessary far succeesful 
demand planning. 

Additionally, adequate controlling and forecast monitoring processes are another k.ey 
component of demand pl.a.mting to maintain the consistency and quality of the forecasts. 
To summari.ze, demand planning consists of three key components (Kilger and Wagner, 
2008, pp. 133-135): 

• Demand planning structures: Proper planning structures are necessary to han­
dle the inputs and outputs, particularly slong seversl k.ey dimensions, including 
products, customers, loeation and time. As will be discussed in more detail in See­
tion 2.2.5, aggregation and disaggregation functions are required to provide forecasts 
slong these dimensions at different planning levels. 

• Demand planning processes: This component refers to the actual preparation 
of the forecasts. After the input data has been collected, analyzed and possibly 
condensed, both statistical and judgmental forecasting methods are usually used to 
predict the future. Often a reconciliation of multiple farecasts from different sources 
into 'one number' is necessary. 

• Demand planning controlling: In the spirit of a continuous improvement pro­
cess, the quality of the resulting forecasts needs to be evaluated ex-post to trigger 
necessary adjustments both in the forecasting processes and in the planning strue­
tures. This requires the definition of basic forecast evaluation metrics. Furthermore, 
systems to calculate, to record and to present such performance indicators are nec­
essary. Such forecast controlling systems also have to be complemented by suitable 
organizational processes to ensure incentives and responsibilities are set adequately 
(e.g. when using variable compensation schemes). 

In the following, a more detailed discussion of each of those three components will be 
provided. 
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2.2.2. Demand Planning Structures and Forecasting Hierarchies 

A first issue ia to c1.ea.rly define appropriate data structures which hold the input and 
output data of the required forecasts. As exhibited in Thble 2.1, mOBt organizations require 
a series of interrelated forecasts which ean be structured according to multiple dimensions. 
Miller (2002, p. 199) differentiates between eight typical forecasting dimensions. These 
axe summarized in Table 2.2. 

Dimension Typical forecasting levels Hierarchy 

Product End item, product family, product line, x 
company, industry 

Geography COWlty, province, state I country, continent x 

Sales organization 8ales territory, district, region x 

Planning horizon / HOUI, day, week, month, quarter, year x 
time 
Customer Individual person, key account, customer x 

segment 
Sales channel Retail, wholesale, online 

Company Cost center, business unit, corporate 
organization 
Network Ioeation Plant, distribution center 

Tab1e 2.2. - Typical forecasting dimensions (adapted from Mill.er (2002, p. 199» 

The different forecasting levels within most dimensions form a hierarchy, Le. these lev­
els are related via generalization-specialization relationships (see also Section 2.1.2). For 
example, along the product dimension, inventory ID.8.Il.8.gement 8lld product scheduling re­
quire disaggregate forecasts for individual end items. Marketing, advertising and logistics 
plamring, however, rather require foreeasts at a product family level. Further forecast­
ing needs exist at even more aggregate levels such as the product line level or even the 
entire company (for example for strategie network planning). In many industries, also 
the development ofthe entire eompetitive landscape (e.g. ear units sold worldwide) needs 
to be predicted. At these higher levels of aggregation, the produet dimension gradually 
blends into the measurement of general macroeconomie output.18 In some dimensions, 
however, no such hierarchical relationships exist and only horizontal splits are possible, 
e.g. regarding forecasts per sales channel, comp811y organization or network loeation. 

Furthermore, users require forecasts in different units of measurement at many differ­
ent levels of aggregation. Consider Figure 2.8, taken from Lapide (2006). It illustrates 
different views on the forecasting requirements of different funetional areas of a company. 
While some of these sta.keholders such as sales and marketing usually require foreeasts in 

111 These latter forecasting needs are rarely addressed internally and the use cf external forecasters such 
as (national) statistics bureaus or industry associations is more common, see Davidson and Prusak 
(1987). 
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terms of sales revenues (Figure 2.8a), others such as manufa.cturing and logistics require 
forecasts in terms of units (Figure 2.8b). Another important category of measurement 
units are budgetary units such as revenues, costs and margins (Figure 2.8c). 

1Woa'riew ~ ..... 
<--) (RMm-.--) 

(a) Demand-side views 

-­""" 
tcptIoo ...... ~ ...... 

(U-. obippiDc Wlitl) (U.uw) 

(b) Supply-side views 

Budgnry 111_ 11m • .,...,.ctMo 
<--.~) <-...... &iDo) 

(c) Financial views 

Figure 2.8. - Forecasting needs of stakeholders in varioua functionru areaa and hierarchy 
Ievels (Lapide, 2006, Fig. 2) 

It is usually not feasible to prepare and manage individual forecasts at all levels in all 
forecasting dimensions. Rather, forecasts a.re managed in the form of planning hiemrchies 
in whieh direct forecasts are only made a.t certain levels (see also Miller, 2002, eh. 6.4). 
Forecasts for other planning levels can be obtained via aggregation or disaggregation 
operations. The definition of adequate planning structures to fulfill the various forecasting 
needs of the organization is thus a key strategic planning task of demand planning. A 
discussion of hierarchical forecasting will be postponed to Section 2.2.5. 

A key structural requirement for hierarchical forecasting is a multi-dimensional database 
system to store, query and present forecasting inputs, forecasts and actual demand data. 
Thi, functionality is typically provided by online analytical proces8ing (OLAP) lools (for 
technical details, see Gray et al., 1997). OLAP tools allow navigating within the forecast 
and demand data. They provide the mea.ns to analyze data across multiple dimensions 
and hierarchy levels (e.g. roll-up and drlll-down). In particular, Ihey allow users 10 apply 
forecasting procedures at a certain aggregation level of the dema.nd data and to propagate 
the forecast results to other levels via forecast aggregation and disaggregation. However, 
OLAP tools primarily serve operational purposes and do not provide planning function­
aJity. For example, they do not provide recommendations how aggregation should be 
performed within the hierarehy (see ehen and ehen, 2004). 

2.2.3. Demand Planning Processes and Forecasting Procedures 

The process of forecasting, ie. predicting the future, is at the hea.rt of demand planning. 
There is an almost endless amount of literature on individual forecasting procedures. 
Hanke and Wiehern (2009, pp. 2-3) introduced four main dimensions whieh may be used 
to classify individual forecasting procedures: 

• Type: Quantitative vs. qualitative, or better: statistica1 vs. judgmental foreca.sts 
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• Temporal span: Lang term VB. ahort term forecasts 

• Level of aggregation: Position on the micro-macro continuum, ie. item-Ievel cr 
corporate forecasts 

• Nature cf output: Point forecast (single best guess), intervaJ. forecast, density 
forecast (probability distribution for the future value) 

The differentiation between quantita.tive and qualitative forecasts ia aften made in the 
following sense: Qualitative forecasts apply to situations where little cr Da quantitative 
information is available, but where sufficient qualitative lmowledge exists to malre an ed­
ucated prediction (see Makrid.aJcis et al., 1998, p. 8). As both quantitative and qualitative 
forecasting methods result in a quantitative output, it is preferable to distinguish between 
statistical and judgmental forecasts. 19 A discussion cf the key aspects cf statistical and 
judgmental forecasts will follow shortly. 

Note that some of the above dimensions are closely rela.ted. For example, forecasts for 
a long and very long horizon Me often derived via judgmental forecasts as the necessary 
input data for statisticaI techniques are only rarely available (e.g. regarding long-term 
technology trends). The most typical forecasting needs relate to the short- and mediwn 
term and a single figure is the most widely used fonn of output. 

In the following, firnt an overview of the key phases of the demand planning process will 
be given. Mterwards, the two most important of these steps, statistical and judgmental 
forecasting, will be charaeterized in more detail. In particular, the salesforce composite 
method will be introduced, a form of judgmental forecasts typica.lly used for demand 
planning in multi-stage customer hierarchies. 

Phases of the Demand Planning Process 

In many companies, the actuaI forecasting activities are embedded into a formalized 
demand planning process. It consists of a regularly repeated sequence of up to five phases. 
ThiB demand planning process iB followed by demand planning controlling. Figure 2.9 
contains a schematic overview (see for the following Kilger and Wagner, 2008, pp. 141-
144).20 

19 Nehmias (2009, p. 56) maIres a similar point and USe6 the terms 'objective' and 'subjective' foreca.stB. 
20 Kilger and Wagner (2008) in fact considered six phases of tbe demand planning proC€8B. They includecl 

a.t the fiftb position a. 9E!para.te step for tbe planning of tbe ~ dependent demand. In an MTS 
environment, such a. dependent demand is the amount of raw materials and components required to 
produce tbe predicted quantity cf final items. Tbis dependent demand is typically determined with 
the help cf tbe MRP capabilities of ERP 801utions (see Section 2.1.5). Often, bowever, tbe availability 
cf ra.w materials and components will be constrained, rendering tbe production of tbe original :final 
item demand foreca.st infea.sible. Hence, taking ca.:re of the dependent demand is in fact a pla.nning 
problem which neecls to be handled separately from tbe demand planning and forecasting process, 
typically in the master planning step (see Section 2.3). Therefore, the step 'planning cf the dependent 
demand' is omitted here. This perspective haa also been talren in, e.g., Meyr (2012). He highlighted 
that the outcome cf demand planning is simply an (unconstrained) 'forecast'. Onee actuaJ. constraints 
a.:re respected, it is more appropriate to refer to this output a.s a 'plan'; but planning is not in scope cf 
forecasting. 
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Step 1: Preparation: In a first preparatory phase, historie demand data is gathered 
and-where necessary---corrected (e.g. to remove outliers or discontinued products). 

Step 2-4: Core Forecasting Activities: The eore forecasting activities eonsist of up 
to three phases. If sufficient quantitative information is available, a statistical fore­
cast is eomputed and forms the basis for all subsequent steps. Statistieal forecasts are 
often prepared with the implicit assumption that no systematic changes or deparlures 
from previously observed patterns are expected. Hence, statistieal forecasting emphasizes 
predicting the future rather than explaining the past (Makridakis et al., 1998). If no or 
only limited quantitative information is available or if significant deviations from past 
observations a.re expected, a judgmental forecast may replace or adjust the statistical 
forecast. Both statistical and judgmental forecasting will be characterized in more detail 
below. 

Often, closely related foreeaats may be prepared by several managerial functions at the 
same time (e.g. by the corporate headquaxter to complement the forecast of the regional 
sales organization). Furthermore, different statistical methods may be used in parallel 
to forecast the same data. Usually, the resulting forecast figures will differ and any 
discrepa.ncies between different sources need. to be removed in a consensus forecasting 
step. This step is necessary to synchronize the tasks and decisions within an organization 
or entire supply chain. 

The combination of several foreeaats-also known as /orecast pooling-usually leads 
to an improvement of the overall forecast quality (Newbold and Granger, 1974). Tbe 
underlying idea is portfolio diversification. Forecasting methods a.re usually affected to 
different degrees by structura! breaks in a time series (Le. they adapt to changes at 
different speeds). In many judgmental forecasts, private information is included which 

is unobservable to other forecasters and barely captured by statistical forecasts. Abasie 
approach to forecast pooling is to simply calculate the average of the available forecast 
values to determine the one-figure forecast. More advanced procedures aim at finding 
optimal weights for pooled forecasts (e.g. see Mahmoud (1984), Clemen (1989), Granger 
(1989), Leitner and Leopold-Wildburger (2011) lor reviews 01 the literature). 

Forecast pooling is parlicularly popular in practice in the form of collaborative /01'8-

casting. This collaboration follows a formalized process which is often referred to as sales 
fj operations planning (S&OP). S&OP combines the human knowledge from different 
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Figure 2.9. - Phases of the demand pla.nning process (adapted from Kilger and Wagner, 
2008, Fig. 7.7, p. 141) 
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sources such 88 sales, marketing, production and corporate headquarter with statistical 
methods.21 

Step 5: Forecast Release: Finally, the resulting forecast can be released officially. It 
has to be shared within the supply chain, possibly also beyond the boundaries of legal 
entities in ca.se cf collaborative forecasting. Onee the a.ctual rea.lizations cf the forecast 
have been recorded, the quality cf the foreca.st ca.n be determined. as part cf the subsequent 
demand planning controlling a.ctivities. These analyses often yield important indications 
which way improve subsequent iterations cf the demand planning process. 

Statistical Forecasts 

AB mentioned above, statistical forecasts are applica.ble if sufficient quantitative informa­
tion from the past is available which allows for an extrapola.tion into the future. Statisticru 
forecasts ca.n be roughly classified into causal and time-series models.22 Time-series mod­
els only rely on paat values for the prediction whereas causa.l models also include data 
from other sources to explain the future development of a value (Nahmiaa, 2009, p. 57). 

In causal models, it is aasumed. that reliable dependencies exists between adependent 
variable which is to be predicted. and one or several predictor variables or leading indicators 
other than just time (Meyr, 2012, p. 73). An example for such apredietor variable is 

the 'outdoor temperature', which inHuences the dependent variable 'aales of ice cream'. 
If suffieiently accurate predictions of the outdoor temperature of the following day are 
available, this may allow making an accurate forecast of tomorrow's ice cream sales. 
Many causa! models use the various techniques of regression analysis to identify stable 
relationships between the dependent and the predietor variables. 

Time series models aim at identifying and exploiting patterns observed in past be­
havior to prediet the future. Historie data is decomposed into different components. 
These usually include a baseline level, trend, sea.sonality factors and remaining randorn 
ßuctuations. The simpiest assumption is a stationary time-series which is often predicted 
with the help of the simple exponential smoothing method. This method pro duces a one­
step ahead /orecast, i.e. the immediately following period t + 1 is being foreeast. Given 
the stationary nature of the time-series, this forecast also holds for all following periods 
t + 2, ... , t + n. The simple exponential smoothing foreeast is given by 

d.+l ~ "d, + (1- ,,)d., 0<" ~ 1. (2.1) 

21 Fbr a general overview of S&OP, see Miller (2002, eh. 6.5); for a more detailed discussion of the 
judgmental issues in S&OP, see Oliva and WatsOD (2009). 
Combinations of judgmental and time-series-based forecasts were analyzed in a comprebensive study 
by Fildes et al. (2009). They fmmd that judgmental adjustments of forecasts generated. by statistical 
methods generally improved. the overall forecast quality. This effect was greater in caaes where the 
judgmental adjustment was luge and furthermore, where the adjustment lad to a reduction cf the 
forecast figure. 

22For a reference, see Kilger and Wagner (2008, p. 144). 
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In (2.1), t4t.l' the forecast for period t + 1, is a weighted average of the aetual observation 
fit in period t and the previous forecast~. a: is the smoothing constant which determines 
the weight plaeed on the previous realization fit. A simple rearrangement of terms gives 

(2.2) 

where €t is the observed one-step ahead forecast error for period t. In case the time­
series follows alinear trend, dou.ble exponential smoothing or HoIt's method may be used 
to forecast both the level and the slope of the time-series. Time-series with a Se8S(lllal 
pattern23 may be predicted with the help of Winter's method. Introductions into these 
extensions of simple exponential smoothing have been provid.ed in Makridakis et al. (1998, 
Ch. 4) or in Meyr (2012, Ch. 4.3). Note that for these time-series models which exhibit a 
trend and/or a seasonal. pattern, it is also possible to generate multi-step ahead forecasts. 
However, the forecast error generally increases with the length of the step-ahead. horizon, 
Le. short-term forecasts tend to be more aecurate. 

Compared. to these basic techniques based on simple exponential smoothing, the level of 
sophistication of modern time series forecasting approaclles has increaaed. considerably. It 
is not intended to provide a review here. Rather, Hyndman et al. (2008) as weil as Gardner 
(1985, 2006) may be referenced for reviews of the current state of the art of time-series 
forecasting using exponential smoothing. Yet, in practice rather simple methods such as 
simple exponentiaI smoothing (Equation (2.1) above) still prevail (e.g. see the survey by 
White, 1984, p. 5). Several authors have shown that such simple methods may perform 
sufficiently weil in many praclieal situations, often matching the performance of many of 
the more complex alternatives (see Mahmoud, 1984j Fildes et al., 1998j Makridakis and 
Hibon, 2000). 

Judgmental Forecasts and the Salesforce Composite Method 

In many situations, historic information is insufficient to prepare a forecast and hUIIl.8n 
judgment has to be used. in forecasting. This may be necessary if there is information 
available in the present which suggests that a time-series will deviate from historie pat­
terns. An example is the ease of planned promotions or advertisement which will affect 
future sales (see Meyr, 2012, p. 73). Similarly, the historic time-series data may have 
been biased by singular events unlikely to be repeated in the future. In both cases, the 
application of statistieal forecasting approaches will lead to erroneous pred.ictions while 
human judgment may prove superior. Typical examples for structured forms of judgmen­
tal forecasts include expert panels, SUnJeys or sales/orce composite forecasts (Nahmias, 
2009, p. 56). These judgmental or qualitative forecasts are not characlerized. by anyex­
plicit model, but rather knowledge, experiences and gut feeling (Caniato et a!. (2005, 
p. 32), see also Armstrong (2001) for a broader perspective). 

:13 These seaaonal patterns can be of an additive or multiplicative nature. 
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Judgmental forecasts have to cope with 8 number oftypical problems. Most result from 
the naturallimitations of all human decision makers to process complex information. Far 
example, Mentzer and Bienstock (1998, pp. 111-113) mention four essential aspects: 

• Biaa,2-4 

• overconfidence of forecasterB, 

• anchoring effects (influencEE due to starting values, e.g. from quantitative forecasts ) 
and 

• the susceptibility of planners to political pressure (e.g. to malre aales forecasts agree 
with company business plans). 

Given these chalIenges, the individual judgmental forecasts in a company need to be 
coordinated, e.g. via an S&OP process. Far example, over-budgeting ia a typical issue 
with overconfident marketing and aales teams. Their customer representatives usually 
da not wish to disappoint customers (see, e.g. Celikbas et al., 1999; Laxkin and Leider, 
2011). Under-budgeting is often associated with the finance and controlling function, 
wishing to avoid or to reduce working capital requirements. Furthermore, production 
management generally has an incentive to understate forecasts in an attempt to increase 
the utilization rates of 888ets under their control, a key performance measure for operations 
staff (see Porteus and Whang, 1991). On top of this, ex:ecutive management often requires 
a certain amount ofrevenue or ha.s a margin target to meet investor relations (see Gilliland, 
2002, p. 18). As these 0Yer- and under-budgeting effects may go in both directions, the 
exaet impact depends on individual circumstances. Furthermore, judgmental forecasts 
axe generally associated with a higher cost per forecast value than statistical methods. 

Nevertheless, the use of judgmental forecasts is often unavoidable, particularly for de­
mand planning in certain business markets. Generally, business markets have charac­
teristics which are distinctly different from most consumer markets.25 While conswner 
maxkets encomp8S8 individual conswners or households which buy or a.cquire goods and 
services for their personal consumption, products distributed in industrial markets are 
used in the production of other products or services which are sold, rented or supplied 
to third-party customers. Compared to consumer markets, order quantities in industrial 
markets are larger and quantity discounts are commonpla.ce. Demand is often inelastic 
in the short term 8S it constitutes derived demand, Le. the product is used in or for the 
production of other items. Furthermore, prices are often less stable than in conswner 
markets, for example regarding raw materials. 

Many specialized industrial products require technically competent sa.1es agents having 
good personal rapport with the customers. An adequate approach to forecasting in such 
markets is the salesforce composite method. In short, salesforce composite forecasting 
consists of relying on the views of the sales agents and their sales managers to determine 
a bottom-up outlook on individual products or on total sales (Cox, 1989, p. 307). This 

24 For a further discussion of bias in the oontext of forecast errors, see page 6I. 
25 Tbe following aspects have been Bummarized from Kotler et 81. (2009, Ch. 8). 
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approach is also prevalent with apparel and fashion retailers, see Fisher et al. (1994) and 
Hausman and Thorbeck (2010). 

The salesforce composite method implies that a hierarchical sales organization exists. 
Sales agents, positioned at the lowest level, can usually provide a fairly accurate per­
spective on the upcoming demancls within their sales district or for their key accounts. 
Higher-level sales managers coordinate and supervise the sales agents and collect and 
aggregate the mark.et data for the individual districts and segments. Usually, multiple 
layers of management are required as one manager can only supervise a limited number 
of subordinates efficiently.26 A major advantage of the resulting hierarchy is its a.bility to 
closely scrutinize the market information as it is passed on through the forecasting system, 
being reviewed by several individuals with different personal vantage points (Weinstein, 
1987, p. 453). A basic hierarchical sales organization is depicted in Figure 2.10. 

The salesforce composite method ranges among the most widely used methods since it 
often yields very satisfactory results (e.g. see Dalrymple, 1987; McCarthy et al., 2006). 
However, it is not free from weaknesses. In addition to the general problems which apply 
to all judgmental forecasting techniques, Weinstein (1987) discussed three major issues 
which are often associated with salesforce forecasts: 

• Expertise and contagion errors: When relying on personal judgment, two differ­
ent types of error m.a.y occur: Expertise errors refer to individual errors of judgment 
which may occur at each hierarchy level in the sales organization. These individual 
errors are usually unrela.ted. Their impact on the aggregate error can be mitigated 
by having each agent only forecast a small share of overall demand (Staelin and 
Turner, 1973). Contagion errors, by contrast, can be introduced if some or all 
sales agents and managers rely on identical pieces of information, e.g. regarding the 
macroeconomic outlook, production capa.cities er promotional plans. This type of 
error usually has a much stronger impact on the aggregate error. 

• Loss and distortion of information: Due to the aggregation process, some data 
may inadvertently be lost, e.g. regarding the level of uncertainty associated with each 
detailed foreca.st. A partial solution to this problem is to rely on several scenario 

26 Tbis aspect is addressed in more detaillater in Section 3.2. 
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forecasts. Furthermore, a. dose monitoring cf key accounts may help to obtain early 
warnings of unexpected demand changes. 

A greater problem ia posed by aales persona actively distorting cr biaaing their fore­
casts or hiding additional (strategie) information (e.g. regarding material changes 
within one of their dient organizations). These problems often arise either due to 
negligence cr intentionally, e.g. to obtain personal advantages for individuals. While 
negligence may be addressed with training programs, intentional behavior requires 
8. proper alignment cf incentives . 

• Confusion between forecasts and objectives: Lastly, (aales) forecasts aften 
serve a dual purpose: On the one hand, they constitute lrey inputs into many subs6-
quent SCP processes; on the other hand, they are used. to set personal objectives for 
individual agents and managers. Objectives help to reduce ßuctuations cf output, 
to set expected DOrms of performance and can also provide motivation. Neverthe­
less, objectives and goals not necessarily refiect an appropriate prognosis of the 
future. However, the latter is usually required for good plans for the su'bsequent 
supply chain process{~t The closer the relationship between forecasts and salesforce 
objectives, the more likely ie also the introduction of bias (see previOUB point). 

In addition to the above aspects, Kerkkänen et al. (2009) highlighted that salesforce 
composite forecasts may involve motivational problems. Sales people perceive selling to 
be more attractive and better rewarded than administrative tasks such as forecasting. 
Fwthermore, White (1984, p. 39) mentioned that salespeople tend to be poor estimators 
when tasked with identifying long-term trends. 

However, many of these challenges can be handled. On the one hand, salesforce com­
poeite forecasts are rarely used alone. Rather , aggregate saleeforce composite forecasts are 
usually complemented by statistical (aggregate) forecasts (e.g. computed by the corporate 
head.quarter). Hence, reconciliation between both data sources has to be performed. to 
determine an overall single-figure forecast (Weinstein, 1987, p. 451). On the other hand, 
problems caused by game-playing behavior can be mitigated, at least to same extent, by 
properly designed incentive and compensation schemes. This last aspect will be discussed 
in more detail in Section 3.4. 

2.2.4. Demand Planning Controlling and Forecast Error Measures 

AB frequently emphasized in the forecasting literature, forecasts are always wrong (e.g. 
see Nahmias (2009, p. 52), Meyr (2012, p. 67)). The extent to which a forecast J.,. diflers 
from the actuaJ. value c4 is an obvious measure of the forecast quality. Here, t refers to 
the time period of the event to be forecast and r ie the period in which the forecast was 
prepared. t4,r is the t - r-step ahead forecast and t4,r - c4 = €t,r is the 8SSOciated forecast 
error (Kilger and Wagner, 2008, p. 150). 

In the following, first an overview of popular forecast error and accuracy measures 
will be given. Then, the problem of biased forecasts will be addressed brieHy. Lastly, a 
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few empirical results regarding the typical level of forecast accuracy in practice will be 
reported. 

Forecast Error and Accuracy Measures 

The primary objective of demand planning controlling is to reduce and manage the overall 
level of forecast errars (see Kilger and Wagner, 2008, p. 149). Lower forecast errars lea.d 
to reduced overall costs, e.g. due to lower safety stock requirements. This objective is 
pursued by providing adequate measures to track and analyze the evolution of forecasts, 
actual data and resulting forecast errors. An important component is the definition of 
adequate measures for forecast errors-or conversely, for the level of forecast accuracy. 
Some authors differentiate strictly between both types of measures. The term terror' 
focuses more on the deviation from the actual whereas 'accuracy' rather considers the 
reverse, the level of agreement between forecast and actua!. Nevertheless, both concepts 
capture the same issue: How 'good' is a particular technique in predicting a time series or 
an event. Therefore, the subsequent presentation will be simplified by not differentiating 
between error and accuracy measures, unless this is required by the context.27 

Many different measures are available to quantify forecasting errars.28 Most measures 
are suited for particular areas of application and may fail when applied in other, unsuitable 
areas. Reporting a measure for a single forecast error is rarely useful in practice. Rather, 
a summary statistic which provides an aggregate evaluation of the forecast accuracy over 
several data points is usually required. Typical dimensions include the aggregation over 
time (aggregation of the most recent n individual forecast errors), over different products 
and geographies (Kilger and Wagner, 2008, pp. 151-152). In the remainder of this section, 
the focus of the presentation will remain on the aggregation over time whereas a discussion 
of further aggregation dimensions will be postponed to Section 2.2.5. 

A simple categorization of aggregate forecast errar and accuracy measures for the di­
mension time has been suggested by Mentzer and Bienstock (1998, pp. 20-21) and Mentzer 
and Moon (2005). Employing their ca.tegories, a number of accuracy measures which are 
frequently used either in aca.d.emia or practice have been swnmarized in Thble 2.3. 

The measures in the first group are all related to the basic forecast error 6t,r and hence 
ca.pture the differences between the forecast and the actual value in absolute tenns. The 
ME comes with the often Wldesired side effect that positive and negative forecast errors 
cancelout. This deficiency is cured by the MAE or MAD by only considering the absolute 
value of the deviation, irrespectively of the direction. However, both the MAD and the 
ME put equal weight on all errors. Frequently, it is preferable to penaJize large deviations 
more heavily. This can be achieved by the MSE, which corresponds to the variance of the 
forecast error over the time horizon considered (Kilger and Wagner, 2008, p. 151). 

Neither of the measures in the first group does allow for an easy comparison between 
different time series as the measures are not standardized. This problem is countered by 
the measures in the second and third group. For example, the MAPE corresponds to a 

27This perspective is also taJren in Mentzer a.nd Bienstock (1998). 
:iIlFor a oomprebensive overview, see e.g. Armstrong (1978). 
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Actual measures of forecasting accuracy 
Mean errar ME 
Mean absolute errar, wean absolute 
deviation 

Mean squared errar 

MAE, 
MAD 
MSE 

Accuracy measures relative to a perfect forecast 
Mean absolute percentage errar MAPE 

Mean absolute percentage accuracy MAPA 

Coefficient cf variation cf the root CV-RMSE, 
wean squared errar CV 

Xt = max (1- ~;o) 
v'!Et'_14,r _ u 

Lt'_ldt - di 

Accuracy measure relative to a naive Corecasting technique 

Theil's U-statistic u E~.:-,' (".i;')' 
E:','(~)' 

Table 2.3. - Frequently used forecast errer and accuracy metries, adapted from Mentzer 
and Bienstock (1998, pp. 20-21), Mentzer and Moon (2005) and Kilger and 
Wagner (2008) 

relative asBessment cf the forecast error (ar the accuraey) compared to the aetual value. 
The problem with the MAPE metric is that it ia not defined in case the acturu demand 
realization equals zero. Therefore, Kilger and Wagner (2008) proposed using the MAPA 
metric which has the advantage of being defined even if t4 = 0 in one period. The third 
mea.sure of the second group can be obtained in a similar manner as the MAPE. Rather 
than normalizing the MAD, in the GV-RMSE the square root of the MSE is used in the 
numerator. AB stated above, the MSE corresponds to the variance of the forecast errorj 
correspondingly, the square root of the MSE equals the standard deviation of the forecast 
error. Following Reddy (2011, p. 145), this norrna.1.i.zed standard deviation of the forecast 
eITors will simply be referred to a.s the coefficient 0/ variation (GV) , unless this would 
result in a disambiguation.29 Note that it is possible to define a corresponding a.ccuracy 
mea.sure in the form of MAPA also for the GV. 

Unfortunately, MAPE, MAPA and GV only a.llow for relative comparisons between 
different forecasting techniques. This means that it iB only pOBsible to determine whether 
one forecasting technique is better than the other, but apart from a comparison with 
aperfeet foreca.st (Le. the a.ctual value), it is impossible to given an absolute quality 
assessment. 

29 Nevertheless, a proper usage of the concept of the coeflicient of variation would require dividing the 
sta.ndNd deviation by the mean. Given tbat the mea.n demand forecast error equals zero, the normal­
ization hete occurs witb respect to tbe actuaJ. demand. 
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This lack. of a standard is cured in the third category of a.ccura.cy measures. Here, the 
forecast error resulting from a certain forecasting method is compared to the forecast error 
from a naive forecasting technique. As an example for measures of the third category, 
Theil's U statistic is given.30 Like the MAPE and the CV m.etrics, it is not defined in 
case dt = O. Theil's U statistic compares how weIl a certain forecasting model performs 
against a naive l-step ahead prognosis. Such a nai've forecast simply results from using 
the most recent observation as the forecast, i.e. de+! = dt. If U > 1, the forecast model 
is worse than the :n.a.ive forecast. Clearly, values smaller than 1 are preferred, and a value 
of U = 0 corresponds to a perfect forecasting technique. 

Biased Forecasts 

Fildes and Kingsman (2011) have stressed that the above definition of the forecast error is 
actually the combination of two components: The first component is the inherent random­
ness in the process which generates the time-series. The second component corresponds 
to the error arising from not using the optimal forecasting model (e.g. by assuming a time 
series is stationary while in fa.ct it follows a trend). It is only this latter component which 
leaves room to improve the quality of the forecast. Unfortunately, the generation process 
far most time-series is usually unknown in pra.ctical applications. However, separating 
the inherent randomness in the data generation procees from the problem of choosing 
a suboptimal forecasting model permits to distinguish-at least conceptually-between 
several different aspects of forecast errors (Fildes and Kingsman, 2011, p. 487). 

A typicaJ. such error type is bias, the systematic over- or underestimation of a variable. 
In practice, bias is due to safety thinking of the forecaster or triggered by incentive 
misalignments (see above). In the presence of bias, the individual forecast errors €t,r are 
either consistently positive or negative. This results in an ME which is strictly different 
from zero (Kilger and Wagner, 2008, p. 153). Ifboth the magnitude and direction of bias 
do not change over time, the forecast ca.n be adjusted manually to remove this distortion. 
COITffiponding de-biasing schemes have been discussed, e.g. in Weinstein (1987) and in 
Utley (2011). 

As judgmental forecasts are particularly susceptible to bias, statistical methods often 
yield better results in pra.ctice (Ma.kridakis et al., 1998). Nevertheless, human judgment 
is often essential in many business contexts, e.g. for the salesforce composite method. The 
introduction of appropriate compensation schemes may provide important incentives to 
mitigate biased and misrepresented forecast reports in such situations. An overview of 
suitable schemes will be presented in Section 3.4. 

Forecast Accuracy in Practice 

In the absence ofbias, there are two dominant fa.ctors which affect €t,r (Kilger and Wagner, 
2008, p. 150), 

30 The measure U given hexe is sometimes also referred to aB U2. Note that '!'heil proposed two error 
meBBureB, but the historicallyalder Ul has seriaus flawa and should be discarded (see Bliem.el, 1973). 
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• the lead time t - r between forecast and aetual vaJue and 

• the forecast grnnularity, Le. the level within the demand planning hierarchy at which 

eh" has been detennined. 

While langer lead times in general entail a higher forecast error,31 less granul.a.r forecasts 
UBUally lead to lower forecast errors (see also Section 2.2.5). Furthermore, when fore­
casting demand, certain cha.racteristics of the market environment have a strang impact 
on the magnitude cf the resulting forecast errors, e.g. the current market dynamics (e.g. 
market growth), the competitive situation and the phase in the product life-cycle (e.g. 
new product introduction va. stahle, established product). Forecast errors Me higher in 
volatile than in stable maxkets. 

Empirical observations regarding the level cf forecasting accuracy achieved in practice 
depend significa.ntly on the individual industries, markets and company particularities 
and a.re therefore difficult to generalize. Unfortuna.tely, it is almost impossible to obtain 
independent inter-company and cross-industry asSffiSments offorecast enor performances. 
The only practicable way is to resort to (unveri:fiable) surveys. Three major cross-industry 
surveys have been reported in the literature. To conduct ea.ch of these surveys, managers 
have been asked to asscss their familiaxity with different forecasting methods, to state 
their level of sa.tisfaction and to disclose the observed forecasting errOrB. 

The three surveys by Mentzer and Cox (1984), Mentzer and Kahn (1995) and McCaxthy 
et al. (2006) use a similar survey design and have been conducted roughly ten years after 
their immediate predeces80r, allowing for comparisons over time. For later reference, their 
wain results regarding forecasting accuracy as well as some similar survey results among 
British managers by Fildes and Beard (1992) are stated in Table 2.4. More specifically, the 
table lists MAPE values at different levels of aggregation and for different lead times. Tbe 
first data series, abbreviated by MC84, represents results of the first survey by Mentzer and 
Cox (1984) whereas the third and fourth data series are the subsequent survey updates 
by Mentzer and Kahn (1995) (MK95) and by McCaxthy et 01. (2006) (MC06). The 
second data series, abbreviated by FB92, is from a British study by Fildes and Beard 
(1992). These values have been referenced frequently in the literature (see e.g. Waclrer 
and Lummus (2002), Fildes et 01. (2009)). 

AB noted by McCaxthy et 01. (2006), the level of overall forecasting accuracy appears 
to have dropped since the mid-1980s at almost all hierarchicallevels. Independent of the 
temporal span of the forecasts, accuracy is generally highest at the corporate level and 
decreases at more disaggregate levels such as SKU or SKU per location. Note further 
that forecasts covering a period of three months up to two years are generally less reliable 
than short-term forecasts over less than three months.32 

31 Empirically, thiB holds when comparing short- and mid-term forecasts. Aß indicated below in Table 2.4, 
forecast accuracy in practice seems to improve agam in the longer run (> 2 years). It is beyond the 
scope of this thesis to disCUBS pOBsible reasoDB for this observation. 

3:1However, the two more recent studies (MK95 and MC06) indica.ted that for more distant periocIs of 
time (more than 2 years) overall forecast accuracy at tbe SKU level is higher than a.t tbe mid-term level 
(3 months up to 2 years). Neither of the author teams provided an explanation for this phenomenon. 
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Overall, the values in Table 2.4 give a rough indication of the accura.cy which C8Jl be 
achieved in praclice. In parlicular, the forecast error 80t the SKU per loeation-Ievel can 
be expected to be roughly in the range 13-40%. In the numerical experiments reported 
in Ch80pter 5 for the DMC problem with forecast errors, values from this range will be 
employed to generate realistic forecast error values. 

Horizon Short (:5 3 months) Medium (,; 2 ye.",) Long (> 2 years) 

MeN ~" ~ MO<>' MCM J!'BU~ MKU5 MOO" Moa ... ~n MK~ Me~ 

Corporate 7 28 29 11 14 16 18 12 11 
Product line 11 12 10 12 16 12 14 21 20 20 12 21 
SKU 16 16 18 21 21 20 21 36 26 26 14 21 
SKU by loeation 24 34 25 40 13 

Table 2.4. - Forecast accuracy survey results (MAPE, in %) by level end time horizon 
(based on McCarthy et al., 2006); MC84 = Mentzer and Cox (1984), FB92 
~ Fliedner .. d M.bert (1992), MK95 ~ Montzer ""d Kahn (1995), MC06 ~ 
MeCerthy et si. (2006) 

2.2.5. Hierarchical Forecasting 

Given the ongoing trends towards globalization (more demand and supply markets), 
customer orientation (more customer segments) and increa.sed product differentiation 
(more product varieties),33 many organizations now require enormous amoWlts of differ­
ent demand- and supply-side as weil as financial forecasts. Already 20 years ago, Fildes 
and Board (1992) inrucated that 10,000 appeared to be a common figure for the number 
of individual product forecasts which many companies had to handle in their production 
and inventory forecasting systems. From today's perspective, this is likely to be 80 rather 
conservative estimate. 

Given these large numbers of forecasts, the costs and elfort associated with maintaining 
individual forecasts for all relevant time series UBUally ca.nnot be justified (Gross and Sohl, 
1990). Rather, hieraxchical forecasting schem.es have been suggested as an alternative. 
Not only do they result in 80 reduced forecasting eifort, but also often lead to a better 
forecasting performance. 

The following discussion of hierarchical forecasting consists of five paragraphs which are 
organized as follows: After introducing the essential concepts of direct and derived fore­
casts, the benefits of aggregate forecasts will be analyzed. Then, appropri8ote str80tegies 
to generate disaggregate forecasts at lower levels of planning will be investigated. After­
waxds, the prior discussion of demand planning controlling will be extended to hieraxchical 
forecasting situations. This section will close by briefly discuasing a suggestion from the 
literature regarding the optimal design of demand planning and forecasting hieraxchies. 

33 See also the introduction. 
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Direct and Derived Forecasts 

In discussing hierarchical forecasts, a fundamental differentiation needs to be made be­
tween direct and derived forecasts (Theil, 1954). Consider the problem cf deriving a 
statistical demand forecast for a particular product in a certain market: 

Direct forecast Only the historical demand da.ta cf the given product in the given market 
ia used to prepare the forecast . 

Derived forecast The foreca.st ia calculated from other existing forecasts, e.g. forecasts 
for other products or forecasts from other markets. 

Derived forecasts are typical of hierarchical forecasting situations. On the one hand, the 
m direct forecasts frorn a lower hierarchicallevel may be combined via bottom-up (BU) 
sUIIlIIl8.tion, yielding an aggregate derived forecast. On the other hand, a directly made 
higher-level forecast may be promted in a top-down (TD) manner to result in a number 
of lower-level, derived forecasts (Shlifer and Wolff, 1979). 

For example, 88 depicted. earlier in Figure 2.88, the marketing function usually needs 
sa.les volume forecasts at the level cf individual brands cr at the level of individual products 
(SKU) for a. particulax market. In addition, also aggregate product category level forecasts 
are required. Rather than preparing aseparate forecast at the aggregate level, one may 
simply sum the m different forecasts at the SKU per Ioeation-Ievel. This bottom-up 
forecasting approach is depicted in Figure 2.118. 

AB introduced in Section 2.2.2, many other aggregation dimensions are pOBBible besides 
a product-based hierarchy, e.g. time or geography. 

Conversely, lower-Ievel forecasts per individual product may be obtained by disaggre­
gating an existing aggregate forecast at the product category level in a top-down manner, 
8S shown in Figure 2.11b. 

Step 2: A prOduet group foreeut i8 

i 
ereatoo. by aggregatiug the n 
fin&l itmn furecasts (S\lllllll&tion 
in CBIIe of product qllllZltita) 

Step 1: m individual. ro-tI! at the 
lewl of final item. 

(a) Bottom-up forecasting 

"I " Produ" grou, """" 

Step 2: Item WreeMts by dltl~tlng c-:c--""-, r-::~--:-, 
=-~~~intom 

(b) Top-down forecasting 

FiglU'e 2.11. - Basic hierarchical forecasting methods (Miller, 2002, Fig. 6.8) 
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Aggregate Forecasts: Direct cr Derived Bottom-up Approach 

An extensive discussion has emerged over the past 60 yea.rs, examining the various argu­
ments for and against individual hierarchical forecasting approaches. Two directions of 
this discussion can be di:fferentiated (see Fliedner, 1999, p. 1136): 

• In the older literature, pred.ominantly in the economics domain, the focus was placed 
on strategies to forecast an aggregate value. The key question is whether an aggre­
gate relation can better be forecast by a direct forecast at the aggregate level or by 
combining the results of several more granular forecast models in a bottom-up man­
ner. Typically, advanced forecasting methods are used in this context. An outline 
of this discussion will be given below. 

• More recently, hierarchical forecasting has also been adopted in the business man­
agement literature. Here, the focus has been placed on forecasting strategies both 
for the aggregate and for the disaggregate level. A typical area of application is 
supply chain planning where both aggregate and disaggregate forecasts need to be 
prepared. In such settings, rather simple forecasting methods such as exponential 
smoothing prevail. Tbe research contributions in this stream of the literature not 
only consider the question of predicting aggregate values by either a direct or a 
derived bottom-up approach, but also address the reverse question whether die­
aggregate forecasts should better be prepared by a direct or a derived top-down 
approach. 

The first stream of literature starts with Theil (1954), who argued in favor of direct 
forecasts at the lower level using specific micro-models. His modeling environment con­
tains the strong assumption that the parameters of the detailed forecasting models are 
known with certainty. He then showed that a direct forecasting model at the aggregate 
level introduces bias and forecasting errors. However, in (econometric) practice, as con­
tended by Grunfeld and Griliches (1960), forecasting models at the micro-Ievel are usually 
less a.ccurately specified than at the macro-level, allowing for a direct ma.cro forecasting 
model to better capture relationships at the aggregate level. Lütkepohl (1984) sided with 
this view and showed. that the direct approach at the aggregate level is superior if the 
parameters of the disaggregate forecasting models are unknown and have to be estimated. 
Both Orcutt et al. (1968) and Edwards and Orcutt (1969), arguing in favor of a bottom­
up a.pproach, pointed out that using only aggregate (econometric) data to construct an 
aggregate forecasting model may entaiI a. substantial information 1068. 

Dwm et al. (1971) and Dunn el al. (1976) were among Ibe firsl 10 report empirical 
evidence. They gave practical illustrations from the telecommunications industry and 
showed that the summation of forecasts obtained from detailed forecasting models per 
geographicaJ. demand region can predict overall demand at an aggregate level consistently 
better than a direct forecasting model at the higher level. More empirical support for the 
derived approach haa heen provided hy Kinney (1971) and Collins (1976). They found lhal 
aggregate corporate performance can better be predicted by first forecasting detailed-Ievel 
earnings data and aggregating. A similar result in fuvor of the derived approach has been 
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reported by Foekens et al. (1994). They analyzed retall promotion effects st different levels 
of aggregation such as store, chain cr the market level. In particular, they established that 
detailed forecasting models ean better accommodate heterogeneity among the lower-Ievel 
series which otherwise gets lost when forecasting st higher levels of aggregation. ZeUner 
and 'Ibbias (2000) and Weotherford et al. (2001) arrived ot similar conclusions when 
forecasting gross domestic product (GDP) data and data for hotel revenue management, 
respectively. 

While the empirical resulte tend to point towards a superiority of the derived. bottom­
up approach, there is na general consensus whether a direct cr derived approach performs 
better. Rather, aB pointed out by Wei and Abraha.m (1981, p. 1340), there is Da "one-way 
unconditionru inequality" which could speclly whether a direct aggregate or a derived 
aggregate linear forecast34 performs better. 

The key challenge thus consists of identifying specific conditions Wider which either the 
direct or the derived approach to forecast an aggregate time-series works better. This call 
has been taken up by some of the more recent contributions. These younger publications 
also put a stronger emphasis on the cloeely related problem of specifying conditions under 
which a disaggregate time-series ca.n better be predicted by either a direct approach or 
by top-down proration. 

In this context, it is important to note that the phrasing in many publications gives the 
false impression that the actuat problem is whether a top-down or a bottom-up approach is 
better.35 Technically, these two approaches are not alternatives. Rather , the leey problem 
is-as indicated above-whether a direct or a derived foreca.st is better suited to mak.e 
predictions at a given hierarchy level.36 

In the following, the benefits of direct and of derived forecasts will be investigated with 
the help of a simple formal model. Consider the problem of forecasting the demand of m 
product items which form a particular product family. This setting constitutea a simple 
two-Ievel hierarchy. For period t, denote the aggregate demand at the family level by D t . 

D t is the sum of m disaggregate time-seriea and ~,t will be used to denote the (aetual) 
demand of item i in period t. The entire family demand is then given by 

(2.3) 

For later reference, note that Dt > 0 if at least one of the ~,t > 0, i = 1, ... ,m. 
Aasume that a forecast for period t + 1 is required. Using the above concepts, there 

are two ways to generate an aggregate forecast Dt+1. First, using a direct forecast-

34 In a linear forecast, the individual historie observations of a partieular time-series are related only 
by linear functional rela.tionships. Fox example, this is true for the exponential smoothing or moving 
average forecasting models. 

35 A few examples where already the title is misleading: Schwarzlropf et &1. (1988), Kahn (1998), Wanke 
.. d Saliby (2007), V~wanathan et 01. (2007), Widiarl. et 01. (2008, 2(09). 

311 ThiB applies if only a lower and an upper hierarchy 1eve1 are considered. However, if there are three or 
more hierarchy levels, the middle level ma.y be foreCBBt by a direct forecast, by top-down proration or 
by a bottom-up summation. The emerging problem of coruißtency will be addressed shartly. 
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ing approach, one may resort to the last n historical observations of aggregate demand 
Dt, Dt _ 1 , ••• , Dt - n+1 to produce a forecast bt!tl' e.g. via exponential smoothing or any 
other time-series-based procedure. Here, the superscript dir indicates a direct forecast at 
the aggregate level. Alternatively, one may produce individual forecasts J"t+1 for each 
of the m disaggregate time-series and use summation to determine a derived bottom-up 
(BU) forecast for the aggregate family demand, i.e. 

(2.4) 

Similaxly, there axe two ways to determine disaggregate forecasts at the item-Ievel. In 
addition to the direct forecast c4,t+l, there is also the derived., top-down approach by 
prorating a direct aggregate forecast. Far example, by multiplying the aggregate direct 
forecast bt.rl by the ratio of the disaggregate demand of item i to the aggregate demand 

in period t, (~:), the top-down (TD) derived forecast will be obtained as 

i= 1, ... ,m, if D, > O. (2.5) 

In many situations, the direct and the derived forecast do not coincide. At the aggregate 
"dir "BU m" . . JrD " 

level, Dt+l =F Dt+l = Et=zl ~"'H and SImllaxly, at the lower level Ui,t+1 =F ~,t+1' 
The principle of vertical consistency implies that the sum of the forecasts made at 

a lower level needs to equal the forecast value at the upper level. This is seldom the 
case. In such situations, processes for a proper reconciliation of forecasts across levels are 
required. An ea.rly contribution in this respect was the pyramid principle by Muir (1979). 
He proposed a forecasting system in which in a first step, the most recent demand data 
at the item level is collected. Then, statistical forecasts at the item-Ievel will be produced 
for all SKUs. These will be complemented by judgmental (management) forecasts for 
selected SKUs. Aggregate values at the product group level will be obtained by summing, 
on the one hand, the most recent demand information and, on the other band, the forecast 
values per SKU groUp.37 The group-Ievel figures of the most recent demand information 
then form the basis of the statistical forecast at this hierarchicallevel, same of which may 
again be complemented by judgmental forecasts. 

The summed group-Ievel forecasts will then be used for a subsequent disaggregation or 
'downward-forcing' operation to obtain the final item-Ievel forecasts. These must sum ei­
ther to the statistical or to the judgmental forecast of their respective group. Muir (1979) 
did not give guidelines regaxding the choice of the downwaxd-forcing method and only 
stated several methods to obtain item-Ievel forecasts. Far a description of an early practi­
cal implementation of a forecasting system based on the pyramid principle see Kuehne and 
Leach (1982). Forecast reconciliation is now a standard functionality of many planning 

37 This is done sepa.:rately for the statistical and tbe IIl.8ZU:IogeIIl forecaBt; if no judgmental forecast exists 
for a particul.ar item, tbe BtatisticaJ. forecast will be used inBteoo. 
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software taels, for example see Bartsch and Bickenbach (2002, pp. 128-130) cr Kilger and 
Wagner (2008, p. 140). 

In the following, it will be highlighted why a mrect forecast at the aggregate level is 
usually superior to a derived bottom-up forecast for the case of stationary demand time­

series. For this, it will be shown that aggregation leads to a smaller relative forecast errar. 
To obtain simpler analyticaJ expressions, only two products Ci = 1,2) at the lower-level 
will be considered, hence m = 2. 

First, aasume that the demand for each product i Ci = 1,2) ia stationaryj the mean 
values (h can thus be used to make predictions. The forecast errar a&<>Ociated with this 
method can be measured with the MSE. The CV-RMSE (see Table 2.3), or CV for ahort, 

is the corresponding normalized forecast accuracy measure: 

(2.6) 

A demand-weighted a.verage of the two individual values CVi a1lows characterizing the dis­

persion of the joint relative forecast error of both disaggregate time-series for the bottom­
up approach. The corresponding expression amounts to 

cvgu = _ d1 _ ~1 + _ (h _ ~2 = ~l +~2 = v'u~+U~+2UIU2 (2.7) 
d, +d,d, d, +<Iod, d, +<10 d, +<10 

Now consider the time-series of the aggregate demand D = d1 + d2 with a mean value of 
d1 + ih,. The variance of the forecast error corresponds to 

Here, cov (d1 , d2 ) is the covariance between both time-series and rdl,~ is the corresponding 
correlation coefficient. Now the relative dispersion of the aggregate demand process can 
be apecified, yielding 

CVD ~ vi<? + 1 + ~,O',rd',,,,. (2.9) 
,+ , 

Clearly, unless both lower-Ievel time-series are perfectly positively correlated with rdl'~ = 

1, the relative dispersion of the aggregate forecast error is strictly smaller than the 
demand-weighted dispersion of the sum of the two disaggregate forecast errors, 

(2.10) 

Therefore, a direct forecast at the aggregate level is usually superior to a derived forecast 
as it is associated with a lower relative forecast error.38 

This resu1t has been largely confirmed by Fliedner (1999) in a number of simu1ation 
experiments for the above setting with two demand streams. He generated forecasts at 
the disaggregate and at tbe aggregate level via exponential smoothing and moving av-

311 A similar argumenta.tion can be found in many SeM textbooks, e.g. in Vollm.ann et &1. (2005, p. 40). 
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erages and tested different degrees of correlation between the two lower-Ievel demand 
strea.ms. Irrespective of the forecasting technique and the level of correlation between the 
two demand streams, the direct forecasting approach performed better than the derived 
approach. However, the performance gap between both approaches was smaller for highly 
correlated demands (positive and negative correlation) than for not or only mildly cor­
related lower-Ievel demand streams. As the first concluaion is in contradiction to some 
earlier studies, Fliedner (1999) argued that other results may be possible if the number 
of disaggregate demand streams becomes larger (and thua the correlations become more 
complex), if the disaggregate streams exhibit trends and seasonal variations or if more 
sophisticated forecasting techniques are used. Hence, the performance of hierarclrical 
forecasting is not only dependent on the hierarchical level, but also on the type of the 
aggregation which is uaed. 

Disaggregate Forecasts: Direct or Top-down Approach 

The analog problem to the issue discussed above is the question whether forecasts at 
the lower-Ievel should better be prepared using a top-down derived or a direct approach. 
Strijbosch et al. (2008) stated four factors which seem to have a decisive influence whether 
a top-down forecasting approach is superior, but gave no empirical support for the claims. 
In the following, several key findings from the existing literature will be related to the 
statements of Strijbosch et al. (2008). These four factors consist of 

1. the criteria used to form aggregates based on similar lower-Ievel series, 

2. the accuracy of the aggregate forecast, 

3. the magnitude of the individual disaggregate time-series in relation to the aggregate 
time-series and 

4. the accuracy of the factors used in prorating the aggregate forecast. 

Criteria to Form Aggregates: Traditionally, it has been suggested in the literature 
to form product families by grouping items with similar demand patterns (see also the 
discussion on hierarchical planning in Section 2.1.2). This homogeneity criterion aims 
at preserving the common demand pattern at the aggregate level to exploit it in the 
forecasting process (see, e.g., Lapide, 1998). This approach often leads to the claim that 
item-Ievel demand time-series should be correlated positively at the aggregate level (see, 
e.g., Fliedner, 1999, p. 1146). A simulation study of this problem has been reported by 
ehen and Blue (2010) who studied direct and derived forecasting approaches and who 
investigated both the autocorrelation and the cross-correlation of two demand time-series. 
They observed that the top-down forecasting approach is beneficial if the aggregated 
demand is very predictable due to a strong positive autocorrelation component. The 
authors found that the predictability at the aggregate level in their model setting benefits 
from a positive correlation of the two demand time-series. 



70 2. Supply Chain Planning and Demand Fulfillment 

However l the argumentation in the previous paragraph h88 suggested that it ia generally 
negative correlation which will lead to lower forecast errors st the aggregate level. The 
apparent contradiction between both perspectives has been discussed by ehen and Boylan 
(2009). They favored negative correlation aB the key criterion to form aggregates, and their 
argumentation focused on the types cf forecasting models used. If the same jorecasting 
model ia used for the disaggregate and the aggregate time-series (e.g. simple exponential 
smoothing with same weights), they argued that it ia in fact negative correlation between 
the demand time-series which reduces vaxiability at the aggregate level, and tbis favors 
the derived top-down approach (ehen and Boylan, 2009, p. 176). 

However, tbis Da longer holds if different forecasting models are used. In fad, tbis was 
the esse in the ehen and Blue (2010) study. They exploited the autoregressive nature 
of the demand streams and thus used different jore.casting models for the two lower-Ievel 
deman<ls and the aggregate demand (due to different values for the autoregressive coeffi­
cients). Following Chen and Boylan (2009, p. 176), ''the more consistent the [forecasting] 
model forms are, the more this favors the grouping approach; and consistency of [fore­
casting] model forms is aasociated with positive correlations between series, not negative 
correlations.n39 

Moreover, positive correlation is a bad indicator whether series follow the same model, 
aB positive correlation may also be incurred by a trend component (Chen and Boylan, 
2009, p. 176). This may explain the results of the experimental research results by Fliedner 
(1999) which have been reported in the previous paragraph-he actually found both types 
of correlation (positive and negative) to result in a superior forecasting perfonnance at 
the aggregate level. 

Overall, the choice of aggregation criteria remains achallenging task as unequivocal 
criteria have not yet been reported in the literature. Far example, when testing differ­
ent criteria to group item-level forecasts into an aggregate family-Ievel forecast, Fliedner 
and Lawrence (1995) found some empirica.l confirmation that sophisticated clustering ap­
proaches do not perfonn better than random clusterings. 

Accuracy of the Aggregate Forecast: The second factor appears to be more impor­
t811.t. Generally, proponents of a top-down approach argue that lower-Ievel data is often 
more error-prone and more volatile (e.g. see Zotteri et al., 2005). An aggregate time se­
ries is more stable, making forecasts at the aggregate level more reliable which can then 
easily be broken down to the lower level. In the particuIar in case of intermittent demand 
at the lower levels, a top-down approach has been found useful by Moon et al. (2012) 
who reported a case study involviog military spare parts. Deklrer et al. (2004) presented 
evidence from two case studies for large Dutch wholesalers involving products with highly 
seasonaJ demand. They showed that seasonaJ factors can be determined more precisely 
at the aggregate product group level and that a top-down strategy thus performs better. 

39 Tbe two insert8 were added by tbe autbor of this thesis. 
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Magnitude of Disaggregate Values: Sehwarzkopf et al. (1988) stresse<! that although 
the top-down approach reduces the effect of random errors on the disaggregate (derived) 
forecasts, the proration may introduce a complex interaction between bias and outlier 
effects. This effect was found to be particularly strong if the lower-Ievel time-series are of 
similar magnitude and thus represent similar proportions of the family demand. By con­
trast, Gordon et al. (1997) established that the top-down approach is superior if detail.ed­
level demands are roughly of equa.l size or if detailed-Ievel demands are negatively cor­
related. Similarly, Fliedner and Mabert (1992) found the top-down approach to perform 
better for product families which were formed by items with similar volumes (i.e. where 
the individual components ha.d comparable proportions of the aggregate) than for other 
cIustering criteria such a.s seasonality cr forecast performance. 

Accuracy of Prorating Factors: In the few ana.lytica.l contributions on the performance 
of top-down forecasting schemes, for exa.mple by Widiarta et al. (2007, 2008, 2009), the 
simplifying assumption was marle that the prorating faetors, i.e. the expected value of the 
share Pi,t = ~,t/ Dt of time-series i with respect to the family time-series is known with 
certainty. However, this is rarely the ca.se in practice, BIld these prorating factors need. to 
be estimated. 

Gross and Sohl (1990) tested a large variety of such factors experimentally. They 
fOWld that simple sampie averages over the last n periods lead to satisfactory results. 
In particular, the two most promising candidatea were the proportional-mean and the 
mean-proportional faetor. Using the previous notation, the proportional-mean is given by 

. h {-:;;' if D, > 0, Wlt X,t= 
, 0, otherwise. 

(2.11) 

The mean-proportional factor is 

(2.12) 

ehen et al. (2008) showed that the proportional-mean fact.or Pi minimizes the sum of 
squared differences between ~,t/ Dt and Pi. They also suggested another factor, 

(2.13) 

and proved that it minimizes the sum of squared differences between Dt · pt and ~,t. They 
fomd that pt is more accurate than Pi and Pi. 

Note th.t the expressions (2.12) and (2.13) OIe not defined if the respective denomi­
nators equal zero. However, these ca.ses will only occur if all produets in the group are 
characterized by intermittent demand, with long periods of no demand at alt. But if the 
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denominators equal zero, also the numerators must equal zero, due to Equation (2.3). 
Should such a situation anse, it is convenient to require that fi;. = 0 and pt = 0 must hold. 

The problem with these Iather static factors Pi, Pi and pt is that they da not capture 
characteristics of the individual time-series such as trend or seaBonality which lead to 
different proportions over time. Athanasopoul06 et al. (2009) suggested forecasting the 
proportional fadars by producing independent forecasts for alilower-level time series and 
then ca1culating the proportion of each individual forecast to the aggregate, i.e. to deter­
mine ßt"t = d"tl E7-1 dj,t. Then, they used tbis facta! to prorate 8.II. aggregate forecast, 

Le. they calculated ßt"t . Dt . Obviously, this approach based on forecast proportions intro­
duces significa.ntly more eifort, particularly since a. simple direct forecast is already being 
produced in this process. 

Another method to update the proportional factors is to use exponential smoothing to 
dynamieally adjust the weights of each individual time-series over time. This way, the 
rise and deeline of the demand ean be eaptured better for individual produets as they 
pass through different stages of their produet life eycle. The problem here, as pointed 
out by ehen et al. (2008), is that the optimal smoothing coefficient needs to be updated 
regularly. This involves a significant computing effort per time-serieB to find the Bmoothing 
coefficient which minimizes the sum of squared diHerenees. As an alternative, the authors 
suggested adynamie updating scheme for the weighting factors based on the sampie one­
lag autoeorrelation statistie. This scheme simplifies the seaxch for the optimal smoothing 
coefficient eonsiderably. The overall dynamie updating approach was fomd to perfonn 
weH using demand data from the semieonductor industry. 

To conclude this diseussion, it ean be inferred that the superiority of a direct or a de­
rived forecasting approach depends on a laxge lllWlber of situation-speeifie factors. These 
include the variability of the lower-Ievel demand strea.ms, their correlation, the relative 
magnitude of the individual shares and the a.ccuracy of available foreeasting techniques 
both at the lower and at the aggregate level. More speeifically, the following guidelines 
have emerged: 

• Forecasts at aggregate level: Preparing a direet forecast at the aggregate level is 
often beneficial in hieraxchieal supply chain planning, particularly if the lower-Ievel 
time-Beries axe negatively or mildly pOBitively correlated. 

• Forecasts at lower level: Top-down approaches Beem to work weH for positively 
eorrelated time series with only limited variability or if the forecasting a.ccuracy is 
signifieantly higher at the aggregate level, e.g. in ease of highly Be880nal time-series. 

While these previouB diBeuBBions have ma.inly focused on situations involving only two 
hierarchieallevels, most praetieal applieations of hierarchieal forecasting involve multiple 
hierarchy levels. For these situations, many authors have also suggested that a eombina.­
tion of direet and derived approaches-both bottom-up and top-down---can be beneficial 
(e.g. see Schwarzkopf et al., 1988; Kahn, 1998). This is often referred to as a middle-out 
approach where a direct forecast is made at a partieular intermediate level and disaggre­
gation is used to determine lower-Ievel foreeasts and aggregation yields forecasts for more 
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aggregate levels. Lo et al. (2008) presented a practical example applying hier8l'chical 
forecasting to the LeD monitor market. Using a three-level planning hierarchy (level 0: 
all products, level!: clustering by product size, level 2: clustering by size and by region), 
they found that a middle-out approach performs best. 

Zotteri et al. (2005) stressed that one of the most crucial decisions in hierarchical fore­
casting is the choice of the hierarchy level at whieh the direct forecast will be made. 
They argued that the overall ability to produce a good forecast is determined by two 
major factors. Ta use their wording, planners have to wake a trade-off between managing 
variability and capturing variability. This trade-off is sk.etched in Figure 2.12: On the 
one band, at a high level of aggregation, variability is lower and thus easier to manage, 
for example when determining parameters of (aggregate) forecasting models which are 
usually more accurate (dotted line). On the other hand, one loses the ability to exploit 
heterogeneity at an aggregate level. Pro-rated forecasts usually do not capture the het­
erogeneity which exists at lower level of aggregation (dashed line). In addition to the 
hierarchy level) it is also the choice of the criteria used to form the aggregates whieh has 
a significant impact on the ability to capture and to manage variability. Kalchschmidt 
et al. (2006) have given several case studies which illustrate the benefits on forecasting 
performance by choosing adequate criteria for the aggregate clusters. 

Ability to 

""""" Ability to 
~.­
variability 

Ability to 

:';'a"rmty 

Figure 2.12. - The ability to forecast at different aggregation levels 
(Zotteri et 01., 2005, Fig. 3) 

Controlling of Hierarchical Forecasts 

Demand planning hierarchies not only require an aggregation and disaggregation of fore­
casts) but also a calculation of forecast accuracy or errar measures at different levels 
of aggregation. While the following brief discussion will be limited to simple accuracy 
measures at aggrega.te levels, Flores and Wiehern (2005) gave a broader perspective) par­
ticularly addressing problems with aggregate biss. 

AB will be discussed. in more detail in Section 3.1.2, forecast accuracy measures represent 
non-summable quantities. Thus, special C8l'e needs to be tak.en when performing aggrega­
tion in hierarchical forecasting systems. Given the many different dimensions along which 
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(dis)aggregation can occur (see Section 2.2.2), two basic cases IDust be distinguished (see 
Kilger and Wagner, 2008): 

• Aggregation by time 

• Aggregation by other dimensions such as product, geography, aales channel ete. 

The first case poses no special requirements and a number of approaches have already 
been presented in Section 2.2.4. The second ca.se requires making sure that only matching 
items are compared. Two essential requirements will be disCUBSed in the following. 

First, aggregation of forecast measures should only be performed for time-series with 
similar units of measurement. For example, in mark.ets with volatile prices, a certain 
forecast accuracy measured for a sa.les revenue forecast haB a different interpretation than 
a. forecast accuracy measured for 8 forecast in sales units. In the latter case, the effect 
of changed prices is not accounted for. AB disCUBSed earlier, most planning environments 

require forecasts in terms of revenues and units. Hierarchical forecasting systems need to 
provide for functionality to convert one into the other while maintaining consistency of 
the overall database. This requirea that pricea and profit margina a.re available at different 
hierarchicallevels to allow for conversions between units and revenues. In practice) prices 
and profit margins are usually aggregated via demand-weighted arithmetic averagea (see 
Section 3.1.2). Disaggregation of prices may be more cumbersome) but in the absence of 
additional information) the higher-Ievel figure can aimply be copied to the lower level (in 
SAP's APO system) this disaggregation procedure is termed 'average of key figures), see 
SAP AG (2011)). For example, if a price is change<! at an aggregate level, it is helpful 
to propagate this change immediately to the lower levels of the planning hierarchy. If 
revenue data ia stored separately from the unit and price information, consistency can 
be ensured by immediately multiplying the updated price data with the number of units 
(Kilger and Wagner, 2008, p. 155). 

The second requirement is that forecast accuracy measures are weighted appro­
priately. Middle a.nd senior management often requires forecast accuracy metrics at 
higher hiera.rchical levels. If direct forecasts at the aggregate level (and the diaaggregate 
actual values) are available) such metrics can be calculated easily. However, if a bottom­
up forecasting approach has been used., also the a.ccuracy metrica require an aggregation. 
Since simple sums may not be used for the aggregation of non-summable figure)40 forecast 
accura.cy figures such aB MAPE a.re aggregated to higher hierarchica.llevels in practice by 
calculating demand-weighted arithmetic means, similar to the case with prices or profit 
margins. 

Kilger and Wagner (2008, p. 152) auggested using weights of the form 

(2.14) 

40 Tbis aspect will be diaCUBsed in more detail in Section 3.1.2. 
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allowing to caleulate the aggregate (bottom-up) forecast accura.cy MAPEBU as 

m 

MAPEBU ~ L (w,· MAPE,). .. , 

75 

(2.15) 

Here, MAPE, is the foreca.st accuraey obtained for the lower-Ievel time-series i and m is 
the number of time-series which are to be aggregated. This type of weight is particularly 
helpful for the aggregation involving time-series with intermittent demand where either 
the actual demand or the forecast value may be zero in some periods or intervals. A 
standard demand-weighted approach will not consider the corresponding eontribution to 
overall foreca.st a.ceuracy 8S ~/ E; d; = O. 

Optimal Design of Forecasting Hierarchies 

All previous comments on hierarchical forecasting have largely foeused on aggregation and 
disaggregation operations within given demand planning hierarchies. Nevertheless, this 
leaves the more important strategie question unanswered 'in which direetion' aggregation 
should ideally be performed. More precisely, when building demand planning and fore­
casting hierarchies, one often may choose between different dimensions to represent data 
at higher hierarchical levels. For example, asswne that at the lowest level of planning, 
a company requires forecasts per SKU per month per customer. Ignoring the dimension 
time, should aggregate data at the next higher level of planning be represented at the 
level of regions, or rather at the level of product fumilies? 

Most firms have a lega.cy demand planning and forecasting hierarchy, but it is often 
unclear whether this is the best setup. In the following, a number of ideas will be discussed 
which have origina11y been presented by Chen and Chen (2004). 

They defined a demand planning hierarchy as a "sequence of steps which starts from the 
highest aggregation level, and ends at the most detailed disaggregated lever' (Chen and 
Chen, 2004). In the following, the inverse, yet equivalent direction will be used.. For ex­
ample, consider the demand perspective (Figure 2.8a) with the two dimensions customers 
(sales view) and products (marketing view). Both dimensions have a hierarchieal strue­
ture as customer aecounts are grouped on a geographical basis to regions. The highest 
level of planning comprises the entire eustomer base of the company. Similarly, products 
(brands) are grouped to product families, to product types (product categories) up to 
the corporate level. Starting at the most disaggregate level with forecasts at the SKU 
per account-Ievel-should the next higher level of demand planning data be represented 
at the country level (geography dimension) or better at the level of the product family? 
Similar choices exist at each of the next higher levels.41 Ultimately, a number of different 

41 AB discUB8ed by Cben and Chen (2004), tbis problem also arises if the dimensions do not bave a 
hierarchical. relationship, but if a number of :functional attributes are cODSid.ered. For example, they 
diSCUBsOO. various options to define a demand planning path in the semiconductor industry. Here, 
one has a choice among severa! functional. attributes to de:fine product families at different levels of: 
functions (memory, logic, ASIC), manufacturing technology (i.e. the width of the structures, usually 
measured in Ilm or nm) or the number of meta! layera. 
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paths may be taken to traverse the hierarchy from the bottom to the top (ar vice versa). 
All these paths consist cf the same number cf steps. Several possible paths are indicated 
in Figure 2.13. 

Customer / Geography 

Product "r-_;;:All"--,-..:c;;:o.:;:-='-,-_Co.,,=7.C"";-r'lu==.::=,,,--, 
p.u" 

All 

P,",' 

F..,;]y 

SKU :.. ............................. :.~.~ .......... . 

Figure 2.13. - Different paths in a demand planning hierarchy 
(adapted &om Chen and Chen (2004)) 

Following Chen and Chen (2004), 8 good demand planning hierarchy path will mini­
m.ize the demand-weighted coefficient cf variation cf the demand data. Alternatively, the 
demand planning path can also be determined with respect to the forecast accuracy. In 
this latter case, the demand-weighted relative forecast error will be minimized which is 
measured by the root cf the MSE divided by the mean cf the a.ggrega.te demand Jj, Le. 
the CV-RMSE measure.42 ehen and ehen preferred to term this value the coejJicient 0/ 
/orecast e1T'Or. 

If corremtions between demand series can be ignored, the demand-weighted coefficient 
of variations of m time-series with mean (4 and coefficient of variation of C1/i = Ui/dr. is 
given by 

CV~ t (~."!) ~ E~,,,:;. 
i=1 Ej:l dj c4 E::l c4 

Similarly, the demand-weighted and nonnalized root of the squared forecast error 
"/MSE/D is calculated in a similar bottom-up manner via 

(2.16) 

(2.17) 

The optimization problem consists of finding a demand planning hierarchy which has 
smaller variations or errors at the top (Chen and Chen, 2004). The authors presented both 
a greedy and adynamie programming algorithm for this problem. In the simple greedy 
approach, the next aggregation step is chosen by considering all possible aggregation 
dimensions at the next higher level. For each possible adjacent aggregation step, the 
weighted-average CV or CV-RMSE according to (2.16) and (2.17) will be calculated. The 

42 Note that hexe the additional qualifica.tion CV-RMSE rather than CV must be used for the foreCBBt 
accuracy measure to avoid ambiguity. 
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aggregation dimension leading to the lowest CV cr CV -RMSE will be chosen. For example, 
consider applying this greedy approach to the two dimensions depicted in Figure 2.13. In 
a. first step, demand data cr forecasts are available at the level 'SKU, per 8CCOunt'. Now 
determine CV cr CV-RMSE at the next higher levels 'SKU, per COWltry' and 'product 
family, per account'. Whichever dimension leads to the lowest GY or CV-RMSE is chosen 
aB the first aggregation step. This check. is repeated at each hier8l'chy level until the top 
level h88 been reached. Alternatively, adynamie programming algorithm may be used to 
find an entire path along which the Bum cf GY cr CV-RMSE is minimaL This problem 
is equivalent to finding the ahortest path in a network. 

Yet, this approach is often too simplistic as it neglects important interdependeneies 
with other planning tasks. In practice, the choice of a demand planning hierarchy must 
be aJigned with the overall planning system, rather than simply focusing on minimizing 
the variability of the demand or of the forecast data. For example, to reduce the com­
plexity of the models used in master planning, a particular minimum level of aggregation 
must be employed. Hence, direct or derived demand forecasts at this level of aggregation 
must be available in an acceptable quality to allow for relia.ble plans. This already fixes 
BOme parts of the demand planning path. As a result, the choice of the demand plan­
ning hierarchy is strongly dependent on the overall planning system used. in a. paxticulax 
p1a.nning environment. 

This closes the discussion of demand pl.a.mting in general and of hierarchical forecasting 
in particular. As indicated before, the output of this important planning task influences 
a. number of other SCP problems, especially master planning. This will be covered in the 
next section. 

2.3. Master Planning 

Based on the demand forecasts provided by demand planning, master planning synchro­
Wzes the flow of materials in the entire supply chain over amid-term time horizon (see 
Fleischmann and Meyr, 2003). In line with the hierarchica.l planning concept, master 
planning decisions are made within the limits imposed. by the higher strategic pl.a.mting 
level. Thus, master planning Bims at using the established infrastructure as effectively as 
possible. Its results in turn constitute constraints and targets for short-term operational 
pla.nning. In the lollowing, first the objectives and pla.nning tasks 01 master pla.nning 
will be discussed in Section 2.3.1. Afterwards, a basic master planning model will be 
introduced. in Section 2.3.2. 

2.3.1. Objectives and Planning Tasks 

Mid-term master planning is important because most production environments-particu­
larly in the case of MT&-involve significant lead times before a final product becomes 
available for sale to a customer. Typically, three types of lead times exist: 
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• Procurement lead times: Raw materials, subassemblies and other procured items 
usually need to be ordered early to ensure availability at the time cf production. 
For example, in the previously mentioned planning situation in the refining industry 
described. by Roitsch and Meyr (2008), erude oil procurement decisions have to be 
made 2--8 weeks ahead cf actual production based on aggregate forecasts. 

• Manufacturing lead times: Machine capacity haa to be considered 88 fixed., 
at least in the ahort- and medium tenno If aggregate demand exhibits se8S(mal 
fluctuations, a possible solution in master planning consists cf anticipatively building 
se88(malstocks. This way fix a large part cf the master plan early in the planning 
process. Furthermore, an adjustment cf employment levels (e.g. overtime work to 
maximize machine runtime ) has to be announced with sufficient lead time in many 
jurisdictions and is typically subject to negotiations with employee representatives. 

• Deployment lead times: If planning takes place in an MSTS environment, not 
only production, but also same distribution processes will be executed based on 
forecasts (e.g. in the consumer goods industry). Hence, long legs in the distribution 
system, e.g. via long-distance cargo vessels, may necessitate an early finalization of 
the production and distribution plan. 

Master planning uses a central perspective and considers all relevant costs, constraints, 
temporal dependencies and bottlenecks in the SC to determine feasible aggregate plans for 
the mid-term horizon. Typical measures include (see Rohde and Wagner, 2008, p. 162): 

• to build sea.sonal stocks, 

• to temporarily increase capacity by working overtime, 

• to produce at different Bites while incurring higher or lower production costs, possibly 
offset by additional transportation costs, 

• to outsource production to an externa1 third party and 

• to employ alternative transportation modes and delivery routes. 

The objective of most master planning models is either cost minimization or profit max­
imization. Such models are usually of the LP or MIP type. Like all mid-term planning 
tasks, also master planning is based on deterministic planning data. Apart from in­
ternal production-related data, e.g. regarding C06ts, capacities and inventory levels, the 
most important set of planning data is provided by demand planning. To cope with 
unavoidable forecast eITors, safety stocks are a typical way to handle the stochasticity 
of demand. Safety stocks are often included in master planning in the fonn of minimwn 
inventory constraints. Their aggregate size is usually determined in demand planning (see 
Section 2.2)'3 

43 In the case of demand planning in multi-6tage hierarchies, determining safety stock levels at the disag­
gregate level is a cballenging task. However, tbis problem is beyond the Bcope ofthis thesis. 
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To simplify the planning problem, to increase the likelihood that 8 feasible solution will 
be found and to cope with the unavoidable inaccuracy cf planning data, master planning 
requires an aggregation cf input dat8, cf resourees and cf constraints. Aggregation in 
master pl.a.nning usually occurs rega.rding time, decision variables and input data (Rohde 
and Wagner, 2008, pp. 172-174). 

Master planning is a typical planning task in which rolling achedules ",e ernployed to 
allow for regular plan adjustments. While plans are made for 8 number cf periods into 
the future, only the plan for the first few periods is binding and will be implemented. 
The plans for the suhsequent periods are only cf a tenta.tive na.ture. They ma.y still be 
adjusted if either updated cr more detailed. information becomes available, e.g. in the 
form cf improved demand forecasts. 

AB discussed in the context cf hierarchica.l pla.nning, the demarcation between mid-tenn 
master planning tasks and those addressed either in operational or strategic planning may 
often be fuzzy. The allocation of planning tasks to the different planning levels usually 
depends on the industry and the actuaJ produetion environment. For example, in the 
base chemicaJs industry, lot-sizing is often already determined on amid-tenn pla.nning 
horizon and thus part of master planning. In other industries, e.g. food and beverages, 
lot-sizing is part of the short-term planning and sched.uling tasks (see Wagner and Meyr, 
2008). This choice is closely related to the lengths of the time buckets employed. in master 
planning. Sinee master pla.nning is a typieal mid-term planning task, its planning horizon 
spans at least one seasonal eycle, Le. 12-18 months. This period is usually divided. into 
monthly or weekly time buckets. Hence, if the manufacturing time per produetion lot is 
rather in the range of days or hours, lot-sizing deeisions Me made at a more disaggregate 
planning leveL 

2.3.2. Basic Master Planning Model 

While strategic network planning is used to detennine the markets to serve, no actual 
supply quantities can be determined at this early stage in the planning process. But 
better data is usually available at amid-term planning level. Hence, in master planning, 
not only the quantities to be produeed, but also their alloeation to different warebouses 
and sales regions will be determined.. The supply network as defined in the strategic 
network planning task has to be utillzed as efficiently as possible by making adequate 
production, distribution and sales decisions. 

In contrast to strategie network planning where only rough profitability estimates per 
market may be used, more reliable information regarding revenues and individual cast 
components is usually available in master planning at the geography level. Sinee sales 
regions have different revenue potentials, numerous trade-offs need to be solved involving 
production, inventory and transportation decisions. To prevent that strategieally impor­
taut, though not yet highly profitable regions are under-served, lower bound constraints 
may be set in the master plan to ensure a minimum service level. 

Tc illustrate the fundamental mid-term decision problems in an MTS supply chain, a 
basie master pla.nning model will be stated for a two-stage supply chain which produces a 
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single product. The following LP model was presented by Fleischmann and Meyr (2003, 
pp. 493-494). Assume that there are multiple manufacturing plants, warehouses and sales 
regions, indexed by p E 'P, w E W and SES. The model will determine optimal values 
for three types of decision variables within the planning horizon t = 1, ... ,T: 

• The production quantities Xpwt ~ 0 which are to be ma.nufactured in plant p and 
sent to warehouse w in period t. 

• The aales quantities Yw.t ~ 0 to be sold via warehouse w in aales region s in period 
t. 

• The inventory level I we ~ 0 cf warehouse w in period t. 

All other parameters of this basic model are summa.rized in Table 2.5. Note that trans­
portation times are assumed to be sufficiently small in comparison to the length of each 
plamring period t, allowing omitting them from this model. 

Data and model parameters 
r.t Unit revenues in sales region s in period t 
~ Per unit costs for production in plant p and transportation to ware-

c.;: 
C!. 
I wO 

a. 
K,. 
Jr:;iR,~ 

hause w 
Per unit holding costs in warehouse w 
Per unit transportation costs frorn warehouse w to sales region 8 

Initial inventory in warehouse w 
Time required to produce one unit of output in plant p 
Available production capacity in plant p in period t 

Minimum sales requirements and maximum sales forecast in region 8 

in period t 

Table 2.5. - Notations of the basic master planning model 

The resulting LP is a profit maximization problem: 

T T T T 

Max L TA' Yw~t- L cPpw' Xpwt- L c.;:.I",,- L ~~. Ywri 

WEW,~ES,t=l pE'P,wEW,t=l WEW,t=l WEW,.!ES,t=l 

(2.18) 

subject to 

Iwt = Iw,t_l + L Xpwt - LYw.t Vw E W,t= 1, ... ,T (2.19) 
pEP .es 

"Lx"",,~K .. Vp E P,t= 1, ... ,T (2.20) 
wEW 

J.;iR ~ L Yw.!t ~ J:;= VsES,t=l, ... ,T (2.21) 
wEW 



2.4. DeIßBJld Fulfillment 81 

In the objective function (2.18), total profits, Le. the difference between revenues and 
the various cost components, are maxim..ized. The set of equations (2.19) represents the 
inventory balance constramts. The constraints (2.20) limit production in each plant to 
the available capacity. Finally, constraints (2.21) ensure that the sales quantities remain 
within lower and upper bounds. While the lower aales bounds aften correspond to (COll­

tractuaJ.) minimum service commitments, the upper bounds typically reReet the maximum 

demand forecasts. 
The key results of this master planning model are the product quantities Xpwt to be 

transported to each regional warehouse w per time period t. In line with the hierarchical 
plamting concept, these regional allocations constitute constraints on the nlImber and 
size of orders which may be fulfilled in each aales region. A further refinement of these 
quantities will take place in the subsequent short-term planning tasks. In particular, 
differences in terms of customer heterogeneity have not yet been observed. explicitly. This 
is the purpose of the demand fulfillment task which will be characterized in the following 
section. 

2.4. Demand Fulfillment 

The process of handling a. customer order after it h88 entered a. company's planning system 
is generally referred to as demand fulfillment (Fleischmann and Meyr, 2004). This supply 
chain planning task extends the long- and mid-term sales-rela.ted tasks stra.tegic network 
planning and demand planning to the short term. More specifically, demand fulfilhnent 
refers to a.ll order-driven activities downstream of the CODP. Furthermore, the planning 
tasks associated with demand fulfillm.ent are also closely linked. to other short- and mid­
term tasks upstrea.m of the CODP such as master planning, distribution planning and 
deployment. 

Mte< cli,cus'ing the objectives and key planning tasks 01 the deIßBJld lulfillment prob­
lem in Section 2.4.1, an overview of basic demand fulfillment system types will be given 
in Section 2.4.2. Mterwards, in Section 2.4.3, basic models will be presented for the de­
mand fulfillment problem in MTS environments with a fla.t partitioning of the customer 
segments. Finally, an overview will be given of the current state-of-the-art of demand 
fulfillment in MTS environments (Section 2.4.4). The concluBion from thiB overview con­
firms the need for the research presented in this thesis. It will be shown that the existing 
approaches primarily apply to a fiat partitioning of the customer segments and do not 
provide sufficient support yet for the case of multi-stage customer hierarchies. 

2.4.1. Objectives and Planning Tasks 

With many supply chains being pressed hard to ensure lean operations while at the Bame 
time satisfying high customer service levels, demand fulfillment is now a core business 
activity for many firms. Its decisions have a strong and immediate impact on profits 
in a supply-constra.ined supply chain. Starting 88 a mere availa.bility record, demand 
fulfillment h88 developed into a powerful planning and decision support system. 



82 2. Supply Chain Planning and Demand Fulfillment 

Ita most important functionality is to distinguish between customers or between orders 
cf different priorities. Given limited resourees (e.g. as specified by master planning), 
enhanced service levels should primarily be offered to the most important customers 
who guarantee the lang-term succeS8 cf a. company. While the importance cf demand 
fulfillment ia unmsputed, Da consensus sooms to exist among researchers and practitioners 
alike regarding the exact decision problems which are to be supported (see Framinan and 
Leisten, 2010). In this thesis, the argumentation by Kilger aod Meyr (2008, p. 181) will 
be followed. They postulated three key objectives cf demand fulfillment: 

1. Ta generate reliable quotes and thus improve the on time delivery, 

2. to increase the number cf business opportunities by searching effectively for feasible 
quotes and 

3. to increase the average aales price and in turn improve revenue and profitability. 

For analytical purposes, it is helpful to distinguish between two k.ey phases of demand 
fulfiilment: order promising and order juljillment« (see Fleischmann and Meyr, 2004). 
These two phases, as weil as the associated decision problems and their outputs are 
summarized in Figure 2.14. 
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Figura 2.14. - Phases, decision problems and results of the demand fu1fillment task 

A key driver which determlnes the exact plann1ng taske of dernaod fulfillment is the 
position of the CODP, separating the forecast-driven and the order-driven tasks in a. 
supply chain. The order promising phase can be loosely summarized as processing and 
replying to a. particular customer order request. This requires fust an order acceptance 
decision for all incoming order requests. In most cases, the order requests are chara.cterized 
by sorne fiexibility in terms of the order due date. Hence, the problem of due date setting 
must also be solved. The subsequent order fulfiilment phase takes ca.re of the accepted 
customer orders. Tbe underlying decision problem will be referred to a.s order scheduling 
fj control. It ensures that the order will be fulfilled as originally confirmed. to the customer. 
Order scheduling & control is a particularly complex problem in environments with many 
order-driven processes lik.e MTO and ATO. 

44 Tbe order fulfillment pbase is sometimes also termed order exe.cution, e.g. in Dkongwu et 01. (2012). 
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Obviously, several other classifications cf the demand fulfillment tasks and decision 
problems are also p08sible. The three main decision problems introduced above correspond 
to the split diacuaaed in Framinan and Leisten (2010). A similar logic is also used by 
Fleischmann and Meyr (2004) who use the term demand-supply matching rather than 
order scheduling & control. They mention shortage planning a.s 8 further decision problem 
which comprises adequate actiOllS if capacities er quantities are in abort supply. On the one 
hand, such situations occur if a new order is to be accepted. On the other hand, shortage 
plamting ia also an inherent task in order scheduling & control if a single cr a batch cf 
(already accepted) orders needs to be re-scheduled (ar in the worst case re-promised.). 
This latter situation is more likely to occur in MTO and ATO environments due to the 
duration cf all order-driven tasks. For the scope cf this thesis, shortage planning will be 
split. Its two main sub-tasks will be covered as part of the order promising and as part 
of the order scheduIing & control subproblems. 

In the following, the three decision problems order acceptanee, due date setting and 
order scheduling and contral will be explained in more detail. A summary of the individual 
tasks per decision problem is provided in Table 2.6. 

Phase 

Order 
promising 

Order 
fulfillment 

Decision 
problem 

Order 
acceptance 

Due date setting 

Order 
scheduling and 
contral 

Main tasks 

Order receipt 
ATP availability check 
Search rules for supply alternatives 
Shortage planning 

Due date assignment 
Order confuma.tion 

Order execution contral & demand supply 
matching 
Order rescheduling 
Shonage planning 
Deployment 

Thble 2.6. - Decision problems and ma.in tasks of demand fulfillment 
(based on Fl.eischma.nn and Meyr, 2004; Framinan and Leisten, 2010) 

Order Acceptance: All demand fulfillment steps are invoked onee a customer submits 
an order request. Most firms provide many ways for the order submission, e.g. online, 
via. phone or with a. sa.les agent. The order receipt task ensures that the order request 
is recorded properly, entered into the company's order management system and that any 
obvious errors or missing data entries are corrected (for more such operational aspects, 
see Craxton, 2003). 

Subsequently, a. check. is necessary whether the company has sufficient resources avail­
able to ful:fill the order request. Far now, focus on the case of an MTS environment in 
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which final items are produced according to forecasts. Here, it typically suffices to conduct 
an ATP availability check which consists cf merely verifying the available inventories 
to determine if the order can be fulfilled. If stocks are insufficient, a feasible due date can 
be determined by simply quoting the default lead time required for manufacturing and 
distribution. More reliable commitments may be obtained and more promises may be 
kept by explicitly observing the constramts within the supply chain. Essentially, orders 
should rather be quoted against the 8DlOunt cf yet uncommitted stock in the inventory and 
against the planned production quantities which become available according to the MPS 
(McClelland, 1988). These quantities are commonly referred to as available-to-promise or 
ATP qUBlltities (Schwendinger, 1979).45 

For a planning haman cf T periods, the ATP quantities for a given single product 
may be calcu1ated 8S follows (see Fleischmann and Meyr, 2003, p. 507): Use I t to denote 
the inventory in period t = 0, ... , T, where 10 is the amount of initial inventory, and 
let St and Ct designate prospective supply arrivals and the amount of already accepted 
customer orders in period t, respectively. First, the inventory position in each period t 
can be calculated via a simple forward-pass calculation, 

It = It_ 1 + St - X t Vt = 1, ... ,T (2.22) 

Provided no nega.tive va.lue of It exists in t = 1, ... , T, the ATP quantities can be derived 
by working ba.ckwa.rds from period T. Introduce If = h and Ir = min {Iti It"l} for 
t = 0, ... , T - 1. This gives 

ATPt = It - It-l (2.23) 

for the amount of ATP quantities which become available for order promising in period 
t or la.ter. Aß will be seen la.ter, in some situations, it is more important to consider 
the amount of ATP quantities which are ava.ilable in a particu1a.r period, including those 
which remain from previous periods. This cumulative ATP quantity can be defined 8S 

, 
CATP, ~ LATP. ~ r,. (2.24) 

The second part of the above equality holds if 10 = o. 

Note that order acceptance based on the ATP quantities as defined in (2.23) or (2.24) 
is a mere bookkeeping function without any planning functionality (Chen et al., 200l, 
p. 477). Corresponding simple order promising systems check the availability of the 
existing or planned resourees to determine if an order request ca.n be a.ccepted. More 
sophisticated systems (sometimes also referred. to as advanced ATP systems) provide real 
pla.nning functionality. They may be configured with a set of multi-dimensional search 

45 In parts of the literature, the term ATP is sometimes used very broadly, e.g. to also designate the entire 
demand fulfi.11ment p1anning task (e.g. in Chen et al. (2001» er to refer to the supporting software 
modules (e.g. in Framinan a.nd Leisten (2010)). In this thesis, tbe term ATP is U8ed more restrictively 
to refer to the available quantitiea of final items. 
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rules to identify supply alternatives if shortages occur. This ia particularly relevant 
in MTS and MSTS environments. Three search dimensions are typically used in this 
shortage planning step: 

• Time (delivery earlier cr later than requested by the customer») 

• product (search for a substitute product, e.g. frorn same product family) cr 

• geography (delivery frorn a more distant supply Ioeation). 

Obviously, combinations cf these dimensions are possible. To ensure a. positive contribu­
tion to overall company profits, an important planning functionality in this search process 
is to differentiate between orders cf different importance and to explicitly observe hetero­
geneity in the customer base, e.g. due to different levels cf customer profit ability. This 
functionality is also reierred to as projitable-to-promise, e.g. by SAP AG (2003). Basic 
models for the order a.cceptance decision with heterogeneous customers will be introduced 
in Section 2.4.3. 

The order acceptance decision problem is different if the CODP lies upstream of or 
between production tasks. To be able to accept an order in an MTO environment, a 
company must have sufficient free ca.pacity at all bottleneck resources which are required 
in the production process. This capable-to-promise (CTP) availability check repla.ces the 
ATP availa.bility check in MTO environments where the availability of raw materials only 
raxely constitutes a limiting fa.ctor. The situation is more complex in case of an ATO 
environment. Here, the order acceptance decision needs to be based on a joint ATP /CTP 
availability check as both component inventory and assembly capacity may constitute 
bottlenecks.46 A comprehensive discussion of the different nature of the order acceptance 
planning task in the MTO, ATO and MTS environment has been provided in Fleischmann 
and Meyr (2004, eh. 3). 

Due Date Setting: The tasks within the due date setting decision problem agam depend 
on the degrees of freedom which may be exploited by the supply chain: In many MTS 
and MSTS environments, the customer either has specified a. mandatory due date or 
requires immediate delivery, typically within a range of 24-72 hours (Fleischmann and 
Meyr, 2003, p. 505). If feasible, the order is confirmed to the customer as requested or 
it will be rejected. If the customer order allows for some due date flexibility, due date 
setting corresponds to simply returning the result of the ATP availa.bility check look-up 
function to the customer as the order confirmation. 

Due date assignment is therefore particularly relevant in the context of MTO and 
ATO and closely related to the order scheduling problem. Often, order completion times 

0&11 AB in the MTS case, companies operating in an MTO or ATO environment should focus on identifying 
particularly profitable order requests. For ATO ca8es, Ervolina et w. (2007) proposed an 'availability to 
sell' functionality for customizable products such as computers. It allows for component substitutions 
and suggests up-selling opportunitiffi (i.e. repla.cing oomponents by more profitable alterna.tives) to 
improve overall profits from the order. 
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are stocha.stic, rendering the due date assignment problem particularly difficult. Ke­
skinocak and Tayur (2004), Framinan and Leisten (2010) and Slotnick (2011) provided 
overviews cf the current stste of the an. Note that the due date which is ultimately 
committed. to the customer ja often set to a later period than the estimated completion 
time cf the production orders associated with the order request. Lea.ving some slack in 
the initial due date quotation increases the degrees of freedom for the Bubsequent order 
8cheduling and control tasks particularly in MTO and ATO environments. 

Order Scheduling &. Control: Starting and completion times cf the production orders 
associated with the accepted customer orders need to be controlled to efficiently utilize 
the available reSOlIrces and raw materials (order execution contral & demand supply 
matching). This is important if the already committed. orders have to be rescheduled 
due to una.nticipated shortages, e.g. coneerning raw materials or subassemblies (shortage 
planning). Furthermore, later-arriving, more important orders may be granted preferred 
aceess to production ca.pacities and materials, neeessitating an adjustment of the produc­
tion schedule (order rescheduling). These tasks are particula.rly challenging in MTO 
and ATO environments. 

In MTSjMSTS environments, delivery orders are usua.lly released. immediately upon 
order acceptance. For single-item. orders, order scheduling & control simply consists of 
reserving and dispatching the supply quantities which have been determined as part of 
the ATP availability check. In ease of multi-line orders, this process is equivalent to 
deployment. Different types of stock, often from different inventory locations need to 
be allocated to a particular order (Fleischmann and Meyr, 2004). 

The above overview of planning tasks and decision problems illustrates that demand 
fulfillment systems need. to be earefully tailored to the requirements of speeifie industries, 
business contexts and production environments. In the following, a basic classification of 
demand fulfillment systems will be introdueed. 

2.4.2. Types of Demand Fulfillment Systems 

In the following, a. classifieation of demand fulfillment systems due to Pibernik (2005) will 
be summarized to illustrate the breadth of the existing demand fulfillment approaches. 
This classification allows characterizing demand fulfillment systems along the three dimen­
sions interoction with manu/acturing resource planning, availability level and the operating 
mode. As ea.ch dimension deseribes two major contrasting chara.cteristies, in total eight 
different basic demand fulfillment system types can be distinguished. These types are 
indicated in Figure 2.15. 

While the resulting basic types a.re not truly mutually exclusive, this classification per­
mits illustrating the key trade-offs involved when designing a. demand fulfillment system. 
In the following paragraphs, the three dimensions of this classification will be explained 
in more detail to provide an overall picture of possible demand fulfillment systems. Later, 
in Section 2.4.3, the foeus will be placed on a particular subset of demand fulfillment 
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systems, passive systems for finished goods. This selection has been highlighted in gray 
in Figur. 2.15. 
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Figure 2.15. - Generic demand fulfillment system types (Pibernik, 2005, p. 242) 

Availability Level: A demand fulfillment system may promise orders either based on 
finished goods cr on the basis of 8upply chain resources such as raw materials, subassem­
blies and production capacities. This differentia.tion follows the position cf the CODP in 
the production environment. While in MTS environments production ia independent of 
actual orders and inventories are thus held at the level of final products, this is different in 
MTO and ATO envirownents. Here, demand fulfillment always needs to consider supply 
chain resources ainee production and assembly, respectively, are not triggered hefore the 
customer order has been received and confirmed. 

Interaction with Manufacturing Resource Planning: On the one hand, a demand 
fulfillment system may be passive in the sense that it does not change the production 
schedule. The system is merely capable of checking the availability at the level of final 
goods or at the level of supply chain resources. If suitable products or resource capacities 
have been fOWld, they will be reserved by the demand fulfillment system onee an order 
has been accepted. On the other band, an active demand fulfillment system has the 
capabilities to directly adjust the production schedule when scheduling individual orders 
and determining due dates. 

Passive systems rely on powerful search rules for the order acceptance module. These 
rules help identifying fulfillment alternatives to ensure consistently high service levels 
to the most important customers. It is of utmost importanee to prevent promising the 
last available stock units or capacities to a less important customer if chances are high 
that a more important customer will request this last item on stock immediately after-
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waxds.47 This is particularly relevant in a. passive demand fulfillment system which is 
used to promise finished goods. Here, the order promising decision is usually irrevocable 
as a.ccepted orders are immediately deployed and shipped. 

An active demand fulfillment system ia inherently more complex with respect to the 
due date setting and the order scheduling & control decision problems. Active demand 
fulfillment is more appropriate for ATO and MTO environments where 8Ssembly and 
production operations, respectively, are only triggered upon order a.cceptance. However, 
active demand fulfillment functionality may also exl.st in MTS environments. These sys­
tems trigger the indusion cf an additional, customer-specific production order via the 
CTP functionality. In comparison to passive systems, active demand fulfillment systems 
UBUally have more flexibility to respect different customer priorities. For example, the or­
der scheduling & control decision problem may determine appropriate counter mea.sures 
if an unexpected high-priority order arrives, e.g. by rescheduling or even re-promising the 
existing orders. 

Operating Mode: From the customer's perspective, the two typical operating modes 
batch and real-time differ with respect to the timing of the responses: In real-time mode, 
customers receive an immediate reply in direct response to their individual order. In 
batch mode, on the contrary, replies are only given to the customers at regular intervals. 
A number of orders are collected during a batching interval.48 The set of incoming orders 
is then proceased jointly. Framina.n and Leisten (2010) further distinguished between two 
types of real-time mode and an entirely off-line process: 

• Real-time process: This is the typical situation usually implied by real-time order 
promising. It frequently occurs in electronic markets where the customer requires 
an instant response to bis order request and furthermore, immediately afterwards 
must confinn or deny such a quote. This quick customer acceptance is particularly 
important in same ATO /MTO environments. Each order quotation requires an 
upfront scheduling step to check. order fea.sibility, to determine the availability of 
the supply chain resources &nd/or to determine the costs of the order request. As 
other orders may arrive in the mea.ntime which may compete for the same supply 
chain resourees, it is costly to freeze a tentative schedule with unconfirmed orders 
for an extended period of time . 

• Real-time quotations differ from real-time processes in that the customer does not 
immediately have to confirm an issued order promise. ThiB is more acceptable in 
MTS situations with order promising at the level of final goods since no scheduling 
activities are affected. 

47Unfortunately, many commercially available demand fulfillment systems do not provide for the pOBsi­
bility to observe CUBtomer heterogeneity. For an overview cf academic mod.els with this capability, see 
Section 2.4.4. 

411 The 1ength cf the batching intervaJ. may typically range from an hour up to several days (Ball et al., 
2CNJ4). In the experimental studies of ehen et al. (2CNJ1), 1-7 days were tested wherea.s Lin et al. (2010) 
considered the range 12-72 houre. 
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• Otl-line quotations cover the typical batch-promising situation: Neither party ex­
pects an immediate reply or confirmation. This gives the manufacturer more fiexibil­
ity to optimally schedule the processing cf the order. Furthermore, real-time access 
to the required production pl.a.nning and sched.uling systems is aften not p08sible 
in the same moment when an order arrives (see Chen et al" 2002, p. 426). Nev­
ertheless, to still reduce waiting time for a customer, sometimes a two-step, hybrid 
approach ia taken: First, an initial 'soft' and often coarse promise ia given to the 
customer in real-time (e.g. the delivery week). This is followed by a. more detailed 
confirmation (e.g. delivery day) after some detailed scheduling has been run, usually 
8S part of a. batch process (see Ball et aL, 2004, Sec. 2.3). 

In ATO environments, the order acceptance decision always requires a feasibility check. H 
nevertheless a. real-time repIy ja required, a. passive demand fulfillment system is usually 
more adequate as the computational requirements have to be very modest to allow issuing 
a real-time order confirmation. Hence, simple availability checks which do not cause any 
schedule changes are more appropriate (Akkan, 1997, p. 172). 

As stressed before, the focus of this thesis lies on MTS envirownents with order promis­
ing at the level of final goods and without scheduling (passive systems). Therefore, the 
remainder of this demand fulfillment discussion will address the two suitable system types 
for this setting which have been indicated in Figure 2.15. The next section will present 
basic mathematical problems for passive batch and the real-time order promising for MTS 
environments. 

2.4.3. Basic Models for Demand Fulfillment 

The major advantage of a batch order promising system is the ability to mak.e a selection 
from a group of order requests and to only fulfill the most important or most profitable 
orders if the available resources are constrained.. This involves a key trade-off: A longer 
batching interval is more beneficial from the firm's perspective, but results in a severe 
degradation of customer service as replies will be given with a substantial delay. Further­
more, a long batching intervaJ may lead to missed business opportunities if orders arrive 
which have due dates before the end of the current batching interval (see ehen et al., 
2001). 

In choosing between a batch and a real-time system, the balance of power between the 
manufaeturer and the customers is crucial: In a buyer's mark.et, customer expectations, 
e.g. in terms of response or delivery lead time, are usually not negotiable. This is typical 
of many standard, high-volume products produced and sold in MTS / MSTS environ­
ments. The situation ja different if a manufaeturer has a strong competitive position or 
manufaetures products which require customization to customer specifications. In these 
latter cases, the manufaclurer will usually have more lea.d time in responding to and more 
ßex:ibility in promising a particular order. 

In the following, two typical approaches for demand fulfillment with a fiat partitioning 
of the customer segments will be characlerized. in more detail. First a basic batch order 
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promising model will be presented and discussed, highlighting its weaJcnesses. Afterwards, 
a real-time approach will be introduced which is based on an allocation planning step. 
Individual orders will be handled by a. separate consumption planning model upon arrival. 
It is the objective ofthe subsequent discussion in Chapters 4 and 5 to extend the allocation 
planning-based approach with subsequent consumption planning to the case of multi-sta.ge 
customer hierarchies. 

Basic Batch Order Promising Model 

In the following, a basic batch order promising model 8S suggested by Fleischma.nn and 
Meyr (2004, pp. 310-311) will be introduced. Table 2.7 s1lIIlIIl.8.I'izes the notation. The 
model consists of the following LP: 

Indices 
i EI 
t= 1, ... ,T 

Data 
q; 
d; 
ATP, 
P,t 

Pi,T+l < 0 

Decision variables 
O;t ;:. 0 
Oi,TH ~ 0 

Individual order from tbe set of all open customer orders I 
Time periods 

Desired quantity of order i 
Desired delivery date of order i (1 ~ d; ~ T) 
ATP quantity becoming available in period t (t = 1, ... , T) 
Profits = revenues - costs, from serving Olle unit of order i 
with ATPti revenues and costs may differ per order ij costs 
include: 
• Costs for early allocation (t = 1, ... ,d;, -1) 
• Co,t, for backlogging (t = d; + 1, ... ,T) 
Negative profits (=penalty) for not fulfilling order i within 
the planning horizon 

Part of order i which ia served with AT Pt from period t 
Part of order i which ia not fulfilled within the planning hori­
zonT 

Table 2.7. - Nota.tion of tbe batch order promising model 

Bubject to 

T+1 

Max. L Pi/; . Oit 

I,t_ 1 

LOit~ATPt Vt=l, ... ,T 
;EI 

T+1 

LOit = qi, Vi EI 
'_1 

(2.25) 

(2.26) 

(2.27) 

The objective (2.25) of this network-flow type model is to find profit-maximizing order 
acceptance and fulfillment decisions for all orders in the set I which have been received 
during the previoUB batching interval. Each fulfillment alternative of each order differs 
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in terms of the associated profits. Far simplicity, it will be assumed that unit revenues 
are given and fixed over the planning horizon. Thus, the foeus of the model lies on the 
order-specific tangible and intangible costs in the profit terms p,t. The former refer to the 
direct costs incurred by serving ODe unit of order i with AT Pt while the latter penalize 
non-adherence to order specifications. They capture the actual (e.g. contractuaI penalties) 
aB well 88 the virtual (e.g. customer 8.IlIloyance, reduced future purchase probability and 
generally reduced customer retention) ahort- and long-rWl C08tS of suboptimal customer 
service. The resulting per unit profits Pit allow discriminating between orders of varying 
importance and betweeD different fulfillment alternatives (see Pibernik (2006) and Jung 
(2010) for similar formulations). Nevertheless, the quantification of the associated cest 
components is 8 crucial task, particularly regarding the lang-run effects (e.g. see Anderson 
et al. (2006) for an example concerning stockout costs). 

Constramts (2.26) limit the consumption of ATP in each period to the quantities which 
are 'available to promise'. A major chara.cteristic of demand fulfillment systems for MTS 
environments is that production and order promising decisions are decoupled, Le. the 
timing and quantities of ATP replenishments are given, e.g. by prior master planning or 
scheduling (see Section 2.3). Such fixed replenishment schedules are common in indus­
try due to efficiency gruns and cast reduction potentials in production and distribution 
(Graves, 1996; Ernst and Kamrad, 1997). A different approach is adopted in the literature 
on inventory rationing where the replenishment decision is determined endogenously.49 

The second set of constramts (2.27) ensures that all units of each order i are ultimately 
taken ca.re of. Usually, orders a.re served within the planning horizon 1 ... T from the 
available ATP quantities. In case overall ATP inventory is insufficient to meet total 
demand, parts or entire orders may ultimately be fulfilled from an infinite supply in 
dummy period T + 1, Le. after the current planning horizon. This corresponds to a. 
typical approach in practice as many companies employ a policy of never denying an 
order. Rather , in shortage situations, delivery due dates will be confirmed only for the 
very distant future after the planning horizon T (see e.g. Ball et al., 2004). 

The model is run regularly, Le. every b periods. Here, b corresponds to the length of 
the batching interval in terms of time periods. Each model run considers the orders i E I 
which have been received during the last batching interval. All these orders are processed 
simultaneously and order acceptance decisions are generated for a planning horizon of T 
periods. Generally, it holds that b « T to ensure that the due date cl;. of all orders i E I 
lies within the current planning horizon. After each run of the model, Le. every b periods, 
the available ATP quantities have to be updated to reflect the previously accepted order 
quantities. These relationships between the batching interval and the planning horizon 
are also illustrated in Figure 2.16. 

49 Tbe general relationship between inventory rationing and demand fulfillment was diBcusm in Quante 
et al. (2009b). Nguyen et al. (2012) extend.ed this discussion to networks with multiple stock. points. 
General overviews of the comprehensive literature on inventory rationing approa.ches have appeared in 
Kleijn and Dekker (1999) and in Teunter and Klein HaneveJ.d (2008). 
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Figure 2.16. - Time structure in the batch order promising model 

The wain drawback of the above batch order promising model ia the time delay :$ b 
before a reply can be given to the customer. In practice, it is mandatory in many situations 
to give a real-time response. ODe may approximate real-time order promising behavior 
with the above model by shortening the batching interval b. This obviously reduces 
the number of elements in I. In the limit, 171 = 1, and an immediate, myopie reply 
can be given to the (single) customer order. The resulting order acceptance decision 
corresponds to a first-come-first-served scheme. This is aften unsatisfactory in practice 
since sales agents are usuaJly well aware of different degrees of importance within their 
customer base. Oue way to game such a myopie system ia to book 'pseudo orders' based 
on forecasts of upcoming orders hom the more important custOIDers (Zhao et al., 2005, 
p. 70). This way, sales agents are able to reserve criticaJ resources for these anticipated 
high priority dema.nds without running the risk of disappointing them. A better approach 
will be explained in the next section. 

Basic Allocation Planning Model for Real-Time Order Promising 

In the following, a more thorough implementation of the above reservation idea will be 
presented.. For important CUBtomers, product quantities will be set aside to enable a true 
real-time process for a given fiat partitioning of the CUBtomer segments. Note that batch 
order promising and the related greedy real-time method may also be referred to 88 pull­
based models.5o In pull-based models, resource allocation decisions are made dynamica.lly 
and in response to one or several actual order requests. 

An alternative are pmh-based models. In anticipation of potentially arriving order re­
quests, push-based demand fulfillment models pre-alloca.te (Le. reserve) resources (final 
good inventory quantities in MTSj material, production and distribution capacities in 
ATOjMTO environments) for individual customers or CUBtomer segments. This reser­
vation step is referred. to as allocation planning. The actual order promising is marle at 
a later point in time, upon arrival of each individual order. This consumption planning 
step is greatly simplified compared to order promising in the batch model. It merely 
has to check whether the remaining quot8851 which may be consumed by a particular 

50 The differentiation of push- and pull-based models is due to Ball et N. (2004). 
111 The terms ATP 'reservations' and 'quotas' will be used interchangeably. 
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request are sufficient to fulfill the order. This spares the need to execute 8 computation­
ally expensive optimization model and sHows giving fast responses. More sophistica.ted 
consumption planning solutions consist of a set of interrelated search rules, e.g. to check 
quota. availabilities in different time periods, at other locations cr for substitute products. 

This two-step process incorporates langer-term profitability considerations already into 
the allocation planning step. The customer segment-specific quota reservations may then 
be translated. into reliable consumption planning decisions in a. real-time process (see Ball 
et al., 2004, pp. 459-461). 

Accurate forecasting ja a necessary prerequisite for the allocation planning step. Com­
pared to MTS environments, this is particularly difficult for ATO jMTO settings. Here, 
the nnmber cf necessary forecasts ia significantly higher than in MTS. Forecasts are also 
required at the level of materials or subassemblies. Furthermore, the availability of pro­
duction capacities needs to be considered. Since customers usually accept a longer lead 
time for products which are tailored to their specifications, real-time order promising is 
often not mandatory in ATO or MTO production environments. Hence, allocation and 
conswnption planning predominantly apply to MTS environments. 

Note that allocation planning does not consider individual order lines or orders, but 
rather operates at the more aggregate level customer segments, Le. the grouping of similar 
customers. The basic relationship between order lines, orders, customers and customer 
segments is depicted in Figure 2.17. In allocation planning, quotas are reserved at the level 
of customer segments, and in consumption planning, the available fulfillment options are 
determined based on the customer segment associated with the customer who just placed 
a new order. As stated before, it is assumed in this thesis that orders consist of just one 
order line, Le. a single product (as refl.ected by the gray right part of Figure 2.17). 

~:J ~I ~1"''"'-~'1 Custom", ~I ~1",,",,-~. LI_o_",_e_, _' ---"f-~l""n"-~.1 Order line 

Figure 2.17. - Grouping orders to customers to customer segments 

AB an example for a basic real-time order promising model based on allocation and 
conswnption planning, the model suggestion by Meyr (2009) will be described in the 
following. Any additional or adjusted notation compared. to the previous batch model is 
s11IllIll8.l'ized in Table 2.8. 

The mOBt important feature of the model is that the firm is 8SSumed to be able to 
differentiate between different types of customers. On the one hand, there are important 
customers where order denial is comparably costly, e.g. regular customers who always had 
high 811.d steady turnovers, or custom.ers with whom service level agreements exist which 
may only be broken at high penalty costs. On the other band, other customers are less 
important, e.g. casual spot-market customers. Further backgrolllld on the reasons for this 
customer heterogeneity has already been presented in Section 1.2. Since reservations for 
individual customers axe not viable, customers with similar importance are grouped into 
customer segments. 
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Sets and indices 
j E .1 ~ {I, ... ,nJ} 
t,T=l, ... ,T 

Data 
ATP, 

Decision variables 
ZjtT ~ 0 
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Customer priority class 
Time periods 

Yet unassigned ATP quantity becoming available in pe­
riod t 
Forecast of maximum (minimum) demand occurring in 
customer segment j during period 'T 

Profits frorn serving ODe unit cf demand occurring in 
customer segment j during period 7" with AT Pt becom­
ing available in period t 

Demand in customer j occurring during period T, 

served. using AT Pt which becomes available in period t 
Unallocated part of ATP supply in period t 

Table 2.8. - Indices, data and variables of the allocation planning model (see Meyr, 2(09) 

The basic allocation planning problem h88 the form of a. simple LP (Meyr, 2009, pp. 239-
240): 

T+l T 

Max L L Pjw . Zjtr (2.28) 
;,(=11'"_ 1 

subject to 
T 

L Zjtr+ ft = ATPt Vt = 1, ... ,T (2.29) 
;,7=1 

T+1 

J;~ ~ LZji-r ~ ~= Vj,7 = 1, ... ,T (2.30) 

"'" 
The objective (2.28) of the allocation planning problem is to allocate the available ATP 
supplies to the priority classes j E :r in order to maximize overall profits (decision vari­
ables Zjtr). Furthermore, a second set of decision variables ft captures the am01111t of ATP 
quantities frorn period t which shall remain unallocated. Note that the profits from serv­
ing one unit of demand in period T using ATP quantities of period t, Pjtr, is an average 
value for all customers in segment j (and implicitly, also for all their individual orders). 

The fust set of constramts (2.29) specifies the utilization of the ATP quantities which be­
come available in ea.eh period---either they are allocated to individual customer segments 
and time periods (Zjtr) or they remain unallocated (ft). The unallocated quantities ft 
may be uaed during aetual order promising to fulfill order requests of any cuatomer pri­
ority segment. The second set of constramts (2.30) ensures that the resulting allocatioDB 
observe the upper and lower bounds on the demand per cuatomer segment. Recall that 
there is unlimited supply in period T + 1 which ensures that a feasible solution always 
exists. 
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The optimal solution Zitr to the problem in (2.28)-(2.30) corresponds to 8 fine-grained 
reservation of alloca.ted ATP (aATP)52 quantities, simultaneously specifying the target 
priority class and the consumption period for each unit of ATP supply. Following Meyr 
(2009), the allocated ATP quantity immediately after the allocation planning procedure, 
before the arrival of the first order, can be described 88 

aATP}t-r:= Zit7" Vj,t,T (2.31) 

Forecasts on such a detailed level of customer priority segment and consumption period 
are often not very reliable.53 Summing over one or several dimensions of the decision 
problem will yield a coa.rser aJlocation result. For example, the aggregate amount of ATP 
quantities becoming available in a particular period t to be reserved for consumption by 
a particular customer segment j can be described by 

T 

aATP}t:= LZitr Vj,t. (2.32) 
=1 

When applying the sbove alloca.tion planning model to a setting in practice, a ma.jor 
difficulty is specifying the shortage costs per unit time and customer segment which enter 
PjtT. In particular, the indirect C08tS of su'b-optimal customer service are often difficult 
to quantify. This challenge has caused some researchers to prefer a service-Ievel baaed 
approach to determine quota reservations (e.g. see Pibernik and Yada.v (2009)). However, 
this does not salve the underlying problem as it is still necessary to define an appropriate 
stock-out probability per customer segment. These problems also occrn in inventory 
management. Here, Silver et al. (1998, eh. 7) illustrated that a cast minimization and a 
service level objective approach are equivalent representations of the same problem. In 
paxticular, they showed that the different types of stockout probabilities (e.g. fi11 rate, cycle 
service level, ready rate) can be converted into equivalent shortage cast representatioIlS, 
e.g. fixed casts per stock-out occasion, fraetional charges per unit short, or shortage C08ts 
per unit time. In a similar manner, Nahmias (2009, p. 275) used the term 'imputed' 
shortage cast to refer to the implicit shortage costs which carrespond to a particular 
service level objective. 

An alternative way to circumvent the problem of explicitly specifying shortage coats per 
unit time is to replace the LP-based allocation planning model by a set cf simple rules. 
For example, it may often be easier to only specify a priority order in which the quotas for 
the individual customer segments should be set. Procedures for such rule-based allocation 
planning are provided by many commercially available AP8j for a basic overview, see Meyr 
et al. (2008a.). Rule-based allocation planning is paxticularly attra.ctive for situations with 

52 aATP is also used for advanced ATP in parts of the literature. For this latter usage, see Lee et al. 
(2006) and Dlrongwu cl 01. (2012). 

53 Recently, approaches based on ideas from revenue management have been proposed to handle tbe 
stochasticity of the demands (Quante, 2009; Quante et al., 200980). More details will be presented in 
Section 2.4.4. 
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decentral decisions 8S in multi-stage customer hieraxchies with limited data transparency. 
Examples for such rules will be given in Section 4.3. 

Basic Consumption Planning Model 

Dnce allocations have been determined for all relevant customer segments, the order 
acceptance problem is greatly simplified. Individual orders may now be promised with 
respect to these quats reserva.tions in areal-time process. This single-order promising 
after alloca.tion planning (SOPA; see Meyr (2009)) corresponds to a simple search for the 
least expensive fulfillment alternative. In the following, the basic LP-based consumption 
planning model cf Meyr (2009) for a fla.t partitioning of the customer segments will be 
presented.64 

The model is invok.ed. every time an order arrives. Aasume that iteration 8 comes 
next. An order i(s) cf size qt(iI) axrives with delivery due date t4(iI)' The order originates 
from customer priority segment iiC.)' It can be fulfilled by using both allocated ('1,) and 
unalloca.ted (ft) ATP quantities, up to the maximum available quantities aATPjH" and 
tt..ATPt

il
• 

In practice, not all possible fulfillment options may be desired. The simplest option is a 
dedicated conswnption, Le. orders may only be fulfilled by consuming the corresponding 
quota reservations. Enhanced options can be described with the help of sets which specify 
the permitted search alternatives. For example, the set .Ji designates the customer priority 
classes to which order i of priority class ii has access. By setting .Ji := {j' : ii ;::: j' ;::: nJ}, 
it can be ensured that order i can only conswne ATP which has been reserved for its 
own priority class ii or ATP quantities for lower priority classes. Furthermore, note that 
not all available ATP quantities may have been allocated in the prior allocation planning 
step for consumption by a particular customer segment i in a particular period T. Those 
unalloca.ted quantities tt..AT Pt· can also be used to fulfill a particular order i( s) in iteration 
s; this is controlled by the decision variable fi. A swnmary of the additional or adjusted 
nota.tion for the conswnption planning model is given in Thble 2.9. 

The consumption planning model for SOPA in iteration s for order i(s) is given 8B 

follows (Meyr, 2009, p. 242): 

T+1 T 

Max L: ~Cil),t' ojt + L:~(.),t . f: 
je.1;:,t=-l t=1 

subject to 

o ~ oft ~ aATPJtdt(.) Vi E :h,t = 1, ... ,T 

o ~ ft ~ tt..ATpt Vt = 1, ... ,T 
T+l T 

E ojt + E ft = /h(il) 
je,Ji,t=1 t=><1 

114 Note that for an actual implementation, a simple one-pass seareh algorithm will be Bu:fIicient. 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
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Sets and indices 
:T. 

Data 
aATPjt'f'" 

uATpt 

Pt. 

Decision variables 
ojt ~ 0 

It ? 0 

Permitted customer classeEI for order i 

ATP quantity which becomes available in period t which 
is reserved for consumption by customer segment j in 
period T 

Unallocated ATP quantity becoming available in period 
t 
Profits = revenues - costs, from serving one unit of 
order i with ATP in period t 

Part of aATP reservation for customer segment j becom­
ing available in period t which has been used in iteration 
s to fulfill order i(8) with requested due date ~(,,) 
Part of uATP supply from period t which haB been used 
in iteration 8 to fulfill order i( 8) with requested due date 
d;(.) 
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Table 2.9. - Indices, d.a.ta and variables of tbe consumption planning model (see Meyr, 
2009) 

The objective function (2.33) aims at minimizing the total costs cf fulfilling order i(8). 
Constraints (2.34)-(2.35) re,trict the fulfillment quantities to the reserved aAT P and to 
the available uAT P quotas, respectively. Constraints (2.36) ensure that the order quantity 
is fulfilled either from the aceessible aAT P reservations, from any of the unalloca.ted 
uAT P quantities or from the dummy supply in period T + 1. 

Mter each exeeution of this consumption planning model, the values for the aAT P and 
uATP quantities need. to be updated for the next itera.tion s + 1. Denoting the optimal 
solutions of iteration s by oft and Ir, the update eorresponds to 

aAT Pfidc(.) - oft 
uATpt - Ir 

Vj E.:Ji, t = 1, ... , T 

Vt=1, ... ,T 

The above eonsumption planning model allows for a number of extensions to fine-tune 
the search for fulfillment quantities. 

As a first step, one may easily introduce sea.rch priorities. The eurrent consumption 
pl.a.nning model effectively fulfills the first unit of the order request with the most cost­
efficient fulfillment option in terms eustomer priority penalty costs. Onee that souree of 
suppIy has been exhausted, the next best alternative is chosen freely within the search 
'pace defined by:1. Meyr (2009) has shown an eflicient way to e,tablish a fixed seareh 
sequence within the search set. Additional types of search mIes may ea.sily be defined 
and implemented. For example, Jeong et al. (2002, p. 195) allowed for order promising in 
a. multi-site environment. They presented simple heuristies to determine the sequence of 
warehouses to check for a.vaila.ble reservations. 
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An alternative strategy is to define the aAT P quota reservations at 8 more aggregate 
level. For example, it is p08sible to move from a very fine-grained reservation as used 
above to a quota where the consumption period r is not pre-defined, as in (2.32). However, 
Meyr (2009, p. 248) and Quante (2009, p. 89) reported rather di,appointing re,ult, for 
this aggregate reservation and consumption policy. 

While the concepts discussed. above have been presented for a situation with a flat 
partitioning cf customer segments and a central. planner, they allow for an adaptation to 
decentral planning and the esse cf multi-stage customer hierarchies. Such an extension cf 
allocation and consumption planning will be provided in Chapters 4 and 5 when presenting 
solution approa.ches to the DMC problem. 

The batch and the allocation pla.nning-based demand fulfillment approaches which have 
been introduced in this section only represent a fradion cf the available demand fulfillment 
systems. Ta eonclude this discussion of demand fulfillment, the next seetion will give an 
overview of alternative approaches which have been diseussed in the literature. 

2.4.4. State of the Art: Demand Fulfillment in MTS 
Environments 

Many idea.s Cor demand fulfillment have been driven by practitioners rather than by the 
scientifie eommunity. Vendors of ERP and of APS systems have implemented compre­
hensive algorithms to determine order due dates and to ealeulate quantities which ean 
be promised to eustomers (Fleischmann and Geier, 2012, p. 162). Far example, SAP's 
'Global ATP' module extends order promising to an enterprise-wide basis and a global 
scale. It checks produet requirements not only against availability, but also against alloe&­
tions. This is possible due to the elose interrelation of the demand fulfillment system with 
other key APS modules sucl:J. as master and demand planning. A detailed presentation 
on the demand fulfillment eapabilities of SAP's Advanced Planner and Optimizer (APO) 
was given in Bartsch and Biclrenbach (2002, p. 2800) and in Dickersbach (2009, Ch. 7)55 

Besides the steady development in practiee, demand fulfillment has also inereasingly 
attracted the attention of academie research.ers over the last years. Initially, many sci­
entifie papers on demand fulfillment only swnmarized needs and potential features and 
highlighted the importanee of adopting demand fulfillment systems. As pointed out by 
Chen et al. (2001, 2002) ten ye&s ago, only few papers actually addressed the underlying 
decision models. 

This has changed in the meantime. In the following, an overview of the major eontribu­
tions will be presented which deseribe demand fulfillment models for MTS environments 
with order promising at the level of final goods. The Coeus lies on models whicl:J. acCOWlt 
for customer or order heterogeneity. Most models solve the order acceptanee problem, 
either for a batch of orders or Cor an individual order in ease of areal-time process. Some 

55 Within tbe range of open source enterprise software, ATP functionality is in the best case reduced 
to a basic quantity calculation without any advanced planning ca.pabilities, as in the free ERP suite 
Compiere (Christou and Ponis, 2008, p. 22). 
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models also provide functionality for due date setting or search for alternative fulfillment 
options, e.g. by checking the availability cf substitute products. 

Table 2.10 summarizes the identified demand ful:fillment contributions which meet the 
criteria 'MTS environment' and 'customer heterogeneity'. Far each surveyed paper, the 
model type and the opera.ting mode are given in columns two and three. The fourth 
column states which form cf customer heterogeneity ia exploited in the model. Where 
available, also the industry ia specified to which each model applies. 

In the following paragraphs, abrief characterization of the papers listed in Thble 2.10 
will be given. The first two paragraphs present different models for the two operating 
mades batch and real-time. Then, the introduction of ideas from revenue management 
into demand fulfillment will be highlighted. The last paragraph addresses models designed 
for multi-loeation networks which consist of multiple warehouses. 

Batch Demand Fulfillment Models 

Fischer (2001) was one of the first a.uthors to consider heterogeneous customers. He 
analyzed several demand fulfillment appraa.ches using data from the lighting industry. In 
parlicular, he described implementatioIlB of a simple order promising approach, a batch 
LP model and a combined alloca.tion and consumption planning model to enable real­
time order promising. The batch order promising logic operates on a coefficient which 
chara.clerizes the suitability of ea.ch available ATP quantity to fulfill a particular order, 
taking into account both order profitability and customer importance aB well aB lost sales 
costs. While Fischer found the batch approach beneficial, his LP model has met some 
critique regaxding the use of the 'suitability coefficient'. Pibernik (2002) criticized the 
use of overlapping suitability criteria, non-trivial aggregation weights and the reliance on 
identical lost sales costs for all priority groups. He presented an alternative batch model 
which exploited differences in order-specific contribution margins and penalty costs. 

Fleischmann and Meyr (2003, 2004) and Günther and Tempelmeier (2003) described 
basic batch models for the order a.cceptance decision in MTS environments where indi­
vidual orders have different values or costs. Pibernik (2003) presented a multi-product 
order acceptance and due date setting model for MTS. His model is an adaption of a prior 
paper by Chen et al. (2001) originally deeigned for ATOjMTO environments. A more 
extensive version of the former model has also been presented in Pibernik (2005). 

Leci6-Cvetkovi6 et al. (2010) provided an outline of a heuristic algorithm to make order 
acceptance decisions for a batch of orders. Their paper is one of the few contributions 
which contain a rudimentary clustering algorithm to form customer segments. However, 
the impact of their approach remains unclear as they neither state any objective functions 
nor give quantitative results for their method. An alternative approach to clustering 
customers has been presented by Meyr (2008). The application of this latter approach 
has been deecribed in Meyr (2009) (see below). 
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Paper Model 
Operating Customer 

Industry Comments 
mode heterogeneity 

Fischer (2001) MIP 
Batch + Suitability 

Lighting 
Real-time coefficient& 

Pibernik (2002) MIP Batch 
Margin, Max.2 
penalty deliveries 

Fleischmann and 
LP Batch Cest 

Meyr (2003) 
Günther and 

MIP Batch Penalty 
Tempelmeier (2003) 

Fleischmann and 
Also 

Meyr (2004) 
LP Batch Coot network 

model 
Pibernik (2003) MIP Batch Profit, penalty 
Ball et al. (2004) LP Real-time Profit 
Pibernik (2005) MIP Batch Profit, penalty 

Allocation Priority, 
Neural 

Lee et al. (2006) Batch network 
rules volume 

approach 

Pibernik (2006) MIP 
Batch + 

Priority Pharm. 
Real-time 

Kilger and Meyr Allocation 
Real-time 

Priority, 
(2008) rules volume 
Meyr (2009) LP Real-time Valueb Lighting 

Pibernik and Yadav Non-linear Elec-
Service-

Real-time Priority level 
(2009) program tranics 

perspective 
Quante (2009), Stochastic Revenue 
Quante et 8I. dynamic Real-time Revenue mgmt. 
(2009.) program model 

ChJBtering + Promise / 
Dhakar et al. (2010) allocation Batch order da.te, Apparel 

rules volume 
Huaili and Yanrong 

Rule-based Real-time Profit 
(2010) 

Jung (2010) LP Batch 
Priority, TFT- Network 
penalty LCD model 

L~i6-Cvetkovi6 
Clustering + 

Service-
et al. (2010) 

allocation Batch Not formalizedc 
IeveI 

rules 

Nguyen et al. (2012) LP Batch Profit, penalty 
Network 
model 

Table 2.10. - Literature overview: !Jemand fulfillment models with heterogeneoua customers 
for MTS environments 

& Weighted average of profit and priority fador. 
b Piece-wise linear function of the strategie value of the order (unit profit + 8IEeIE1Ilent of the strategie 

importance of the customer) and a penalty to account far early ar late delivery or order denial; similar 
to the suitability coefficient of Fischer (2001). 

C Criteria mentioned include revenue, profit, development potential, service rate, partnership level. 
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Real-Time Demand Fulfillment Models with an Allocation Planning Step 

While alloca.tion planning-based approa.ches have previously been addressed by software 
vendors, the dissertation by Fischer (2001) is again the first reference in the academic 
literature. Another basic push-based allocation model for multiple demand classes was 
given in Ball et al. (2004). In a technica.l sense, their model ia suited to MTS supply 
chains as it allocates final items to demand classes. But at the same time, the model 
also supports decisions regarding material inventories and production ca.pacities and thus 
better fits an ATO environment, as noted by Meyr (2009). Unfortunately, Ball et al. 
did not test their model with rea.l-world data. However, due to the significa.ntly higher 
number of possible customer-product configurations in ATO than in MTS, it ia re88<mable 
to expect that push-ba.sed allocation in ATO will only yield satisfying results if the bill 
of material (BOM) ha.s a very simple structure, if only few customer cl8SSeS exist and 
generally, if all required forecasts have very low errors. 

Pibernik (2006) described several order promising mechanisms and discussed modeling 
aspects for the short- and long-term costs associated with insufficient order fulfillment. 
He made the proposition to change from single-order processing to a batch approach in 
the case of shortages. AdditionaJly, bis paper contains a description of an inventory pre­
allocation logic based on an ordinal ranking of (given) customer cl8SSeS to enable real-time 
order promising. Unfortunately only a naive reservation policy for this alloca.tion pI.a.nning 
step has been tested in the case study. 

Kilger and Meyr (2008) provided an overview of demand fulfillment approaches com­
monly supported by APS, focusing on the allocation planning step. They illustrated 
various alloca.tion rules to split the available ATP quantities among the competing cus­
tomer classes. In contrast to the remainder of the literature, they accounted for the case 
where the customer segments are structured according to a tree hierarchYi for example, 
as a result of splitting customers on a geographical basis (continents, countries, sales dis­
tricts). It is rea.sonable to assume that the individual segments at the leaf nodes of such 
a tree differ in terms of profit ability as a result of different transportation costs, taxes or 
exchange rate differences. As already highlighted in Section 1.2, Kilger and Meyr illus­
trated the use of a rank-based., proportional and fixed split allocation rule, but offered no 
quantitative analyaEE of these policies. 

ThiB gap was partially addressed by Huaili and Yanrong (2010) who assessed the perfor­
mance of rank-based, proportional and fixed-split allocation planning schemes in a setting 
with a Hat parlitioning of the customer base. They compared these rule-based allocation 
methods with two benchmarks, an ex-post bEEt case strategy under full information and 
with a naIve FCFS strategy. The contribution of their paper lies in attempting to quan­
tify the 1088 in total profit and overall service level which results from using any of the 
rule-based. allocation planning approaches under different shortage rates and forecast er­
rors, compared to an ex-post global optimization. However, Huaili and Yanrong fell short 
of a systematic assessment of the availa.ble levers and did not provide any rnanagerial 
recommendations. A related study addressing rule-based allocation schemes is Dhaka.r 
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et al. (2010). They showed how a. very basic pre-alloca.tion rule ca.n be used to smooth 
the workload over time in a distribution center. 

Meyr (2009) presented deterministic allocation and consumption planning models based 
on LP formulations and reported comprehensive numerical results. His characterization 
of customer heterogeneity ia similar to the approach taken by Fischer (2001). There is a. 
time-independent component aB customers axe assumed to pOBSeSB a specific unit profit 
contributiollj and customers also differ in tenns of their strategie importance. However, 
the latter term ia not formalized in the paper. In addition to these customer-specificjtime­
independent components, there is a time-dependent component to accoWlt for earIy or 
late delivery 88 weil aB order denial. The alloca.tion planning and consumption plan­
Ding models of Meyr (2009) have already been summarized. in Section 2.4.3. The author 
showed that substantial improvements ca.n be aclrieved by an allocation pla.nning-based 
approach compa.red. to simple FCFS order a.cceptance. However, bis deterministic setting 
is particularly susceptible to foreca.st errors. 

A special aspect of forecast errors has been studied in the paper by Lee et al. (2006). 
They investigated allocation rules for situations in which forecasts for customer segments 
axe biased. Instead of considering bias due to strategic gaming, the authors focused 
on what they called 'surplus demand'. In essence, this surplus demand results if local 
planners, when preparing forecasts of the expected demand in their customer segment, 
deliberately report a higher demand forecast (compa.red. to the Wlbiased. point forecast 
quantities) to acCOWlt for prognosis eITors.56 As the sum of the regular and these surplus 
demall<:ls of all customer segments often exceed the available capacity, an allocation is 
required. The paper by Lee et al. (2006) describes how a basic neural network-based 
approach way be employed to identify these surplus demands. They went on to illustrate 
how adjusted allocations may be calculated if any of the three basic rule-based. allocation 
policies rank-based, proportional and fixed split as described by Kilger 8lld Meyr (2008) 
axe used. 

Revenue Management-Based Demand Fulfillment Approaches 

A more rigorous approach to better account for the stochasticity of the customer demands 
and to consider forecast errors already in the allocation pla.nning step was suggested by 
Ball el al. (2004). They observed lhal Ihe push-hased demand fulfillmenl approaches 
with an allocation planning step can be viewed as 8 type of yield or revenue management 
problem. Revenue management is a set of methods and procedures to ma.ximize the yield 
or revenue and is typically encountered in service industries. Here, a fixed capa.city needs 
to be utilized as efficiently as possible to ma.ximize profits. The main components of 
revenue management systems include mechanisms for capacity (re-)allocation, dynamic 
pricing as a means to inHuence external demand and overbooking rules (see Weatherford 
and Bodily, 1992). A standard revenue management problem ie to decide which service 
requests to accept if the requests belong to different service or fare classes. These fare 
classes have different revenue potentials. By contrast, cost differentials can usuaIly be 

1111 Tbis resembles the determination of Bafety stocks in inventory management. 
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neglected in many service industries. The necessary capacity to render the service (e.g. 
airplane seats, hotel roams) is costly to establish and to adjust. Furthermore, this ca­
pacity is usually perishable, thus unused capacity is lOBt (see Belobaba., 1987; Bromelie 
et al., 1990; Wea.therford and Bodily, 1992). For comprehensive introductioDS into the 
key revenue management concepts, see McGill and van Ryzin (1999) and Talluri and va.n 

Ryzin (2004). 
Harris and Pinder (1995) were the first to transfer these basic revenue management con­

cepts frorn service operations to manufacturing settings. They presented basic stochastic 
models for the determination cf critical reservation levels, for optimal pricing and capacity 
reallocation decisions for a static revenue management problem with multiple customer 
classes. In manufacturing settings, the foeus is less on exploiting differentials in the will­
ingness to pay, but rather on differentiating between different levels of strategie importance 
as measured by tangible and intangible costs. Quante et al. (2009b) highlighted thot the 
planning tasks of demand fulfillment in manufaeturing environments largely correspond 
to the problem in service industries of choosing among service requests of different prior­
itiea. Their paper also provided a framework for analysis and detailed discussions of the 
interrelations between demand fulfillment) revenue management and inventory rationing. 

In many MTO manufacturing environments) tbe similaritiea to revenue management 
in service industries are partieulaxly dose. Assembly capacity is often the key bottleneck 
as it is usually difficult to adjust in the short-term and lost if unused (the availability 
of materials is typieally less constrained). Examples for demand fulfillment and order 
promising approaches in MTO environments can be found, e.g., in Spengler et aJ.. (2007) 
or Volling and Spengler (2011). The application of revenue management ideas is more 
difficult in MTS environments 8S the alloca.tion decision has to be made regarding the 
allotment of final items. These usually do not perish in the ahort- and medium term and 
thus inventory holding deeisions must be included) leading to a signifieantly larger state 
apaee and resulting in computational cha.llenges.51 

The task of introducing revenue management ideas into an MTS demand fulfillment 
setting has been undertaken in Quante (2009) and Quante et al. (20090). They explicitly 
modeled the stochasticity of eustomer demands. After deriving the optimal fulfillment 
policy, the authors demonstrated the superiority of their stochastic approach compared 
to a deterministic allocation pla.nning step 88 weIl as in comparison to FCFS. While 
the underlying idea of this revenue management-based approach has its merits, a few 
drawbacks still need to be addressed. For example) the approach is computationally 
expensive, relles on the asswnption of a particular (given) stochastic process and ca.nnot 
account for different ba.ckorder and lost aale costs per euatomer segment. 

57In ATO environments, both scarce perishable capacities and storable inventories of materials and 
subassemblies need to be oonsidered simultaneously. See Chen et al. (2001), Ervolina et aJ. (2007) er 
Robinson and Carlson (2007) for examp!es. 
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Demand Fulfillment Models for Networks of Multiple Warehouse Locations 

Few papers on demand fulfillment explicitly provide for the opportunity to sstisfy an 
order request frorn alternative loca.tions. In a recent overview paper, Nguyen et al. (2012) 
identified only seven contributions for network demand fulfillment in an MTSjMSTS 
environment. Of these, just three cODsider customer heterogeneity. A few more network 
demand fulfillment models exist which apply to ATO jMTO environments (e.g. Jeong et al. 
(2002), Thai and Wang (2009) or Venkatadri et al. (2008)). However, the focus in these 
contributions lies more on the due date setting functionality and the order scheduling 
& contral problem in a network. Furthermore, network demand fulfillment models for 
ATO jMTO environments are aften tailored to specmc industries such as microelectronics 
or TFT !LCD assembly. 

The three papers for network demand fulfillment in MTS environments with heteroge­
neous orders represent cl8SSi.cal optimization models of the LP type. The models use the 
flexibility of the batch approach to exploit different aspects of network-related fulfillment 
alternatives: A first basic model has been described by Fleisc1una.nn and Meyr (2004) 
which only considered general cost differentials associated with different fulfillment al­
ternatives without specifying any detailed cost components. In the extended version 
described in Nguyen et al. (2012), both transportation time and costs were includedj ad­
ditionaI1y, the model provided for different transportation modes. Jung (2010) described 
a praclica.l application in the TFT /LCD industry. His model focused on transport&­
tion time and contained ca.pacity constraints. In contrast to single-Iocation models, no 
real-time models with prior allocation planning have yet been presented for the network 
case. 

Overall, demand fulfillment is an established area of research. More recent publications 
have focused particularly on iSBuing order confirmations in real-time and on incorporating 
the stochasticity of the underlying demand processes. Differences in the importance of 
individual orders or customers can be accounted for in a prior allocation planning step 
and can be respected by flexible consumption search rules. These approach.es have the 
potential to improve overall company profits and to raise customer service levels for the 
most important customer segments. 

However, given the many different (and often conflicting) design alternatives, there is 
room for more quantitative assessments to derive concrete recommendations to improve 
the use of demand fulfillment systems in praclice. For example, which allocation schemes 
at which temporal granularity should be employed given a certain level of forecast error? 
Which consumption rules are appropriate? 

A major limitation of most current demand fulfillment models is the assumption of a 
Hat partitioning of the customer segments with central control. This allows sorting the 
individual classes unambiguously and to determine an optimal fulfillment decision. In 
practice, however, multi-stage customer hierarchies with distributed decision-making pre­
vail. Fulfillment decisions often have to be made on a decentral basis and without full 
data transparency. Then, the ranking of the customer segments in terms of fulfillment 
priorities is rarely obvious. Pibernik (2006, p. 730) noted that an allocation planning 
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scheme for praetical applications will have a hierarchical structure. He suggested employ­
ing a fixed-split rule to first a.llocate supply quantities to sales regions and then to refine 
these regional allocations to the level of customer segments. This idea will be studied in 
the following cha.pters in an a.ttempt to extend allocation planning and conswnption rules 
to such hierarchica.l settings. 

2.5. Conclusions: Allocation Problems In Supply 
Chain Planning 

In this cha.pter, an overview of the key tasks in SCP has been provided and a differentiation 
between the major planning tssks at the different p1a.nning levels hss been presented. To 
a.chieve the overall objective of SCM, Le. to profitably match supply with demands to 
satisfy customer needs, a number of interrelated deeision problems need to be aligned 
and solved. The concept of hierarchieal planning has been shown to be an adequate 
pl.a.nning framework both for theoretieal and pra.ctical ressons. A prime argument is that 
it a.llows for decision postponement. This is partieula.rly relevant in demand fulfillment 
where the a.ctual value of each customer order is only known upon its arrival. However, 
a. number of important decisions need to be marle weil in advance, particularly in an 
MTS environment with forecast-driven manufa.cturing processes. As a consequence of 
capaeitated produetion, it is important to exploit the heterogeneity among the arriving 
order requests to ma.ximize overall profits in the supply cha.in. Order acceptance decisions 
should be made dependent on the relative value and importance of each individual request. 
Ta allow for areal-time process, most supply cha.ins employ aseries of prior allocation and 
refinement deeisiona which ultimately determine which customer orders will be served.. 

These refinements a.re an integral characteristic of the hierarchica.l planning logic. Reca.ll 
that at a long-term planning level, companies choose among the markets to serve. Planners 
specify the geographical area.s, sales channels and aggregate customer segments to address. 
AB only a limited amount of (usually unreliable) demand data is available at this planning 
stage, customer heterogeneity is only considered coarsely, e.g. by assessing the rough sales 
and profit potential in the relevant segments. 

At amid-term level, planning is usually done with the objective of satisfying all demands 
which have been predicted by demand planning. Hence, master planning determines ag­
gregate production quantities, sales quantities per customer region as well as inventory 
replenishment quantities per warehouse loeation. H shortages oceur and if an allocation 
is required, many mid-term planning models exploit differences in direct profits between 
competing eustomer segments. Often, decisions are made based on a geography-based 
segmentation for which revenue and cost differentials ca.n be established easily. For ex­
ample, different regions may have different sales prices, distribution eosts, transportation 
costs, salesforce compensation schemes, etc. Minimum service level constraints may be 
set to enaure that sa.les regions with strategie importance are served. adequately. This ease 
may mse if certain regions have promising long-term sales and profit potential although 
they a.re currently less profitable than other geographies. 
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At 8. shorter time horizon, distribution planning and deployment provide for 8. further 
refinement of master planning quantities, e.g. by determining replenish.ments to individual 

sites within aggregate regions. HeIe, the foelle is predominantly on transportation issues. 
Heterogeneity among customer segments ia agam primarily respected to the extent that it 
reistes to direct cost differentials frorn employing the existing supply network.58 Neither 

individual orders Dar single customers are considered.. 
Alloca.tion pla.nning as introduced in Section 2.4.3 complements these mid- and 8hort­

term. allocation decisions by introducing a broader nation of customer heterogeneity. Al­
Ioeation planning models also consider the 8hort- and lang-term costs of suboptimal cus­
tower service. AB stated by Ball et w. (2004, p. 461), allocation planning fills a niche 
downstream in time from inventory control. It ja complemented by consumption planning 
fm the immediate short-term decision of how to fulfill a particular order request. 

Overall, a series of allocation problems is solved in supply chain planning to continuously 
match demand with supply. Each associated model re1lnes the decisions which have been 
marle at the prior, Le. higher planning level. This decomposition is necessary due to the 
staggered ava.ilability of reliable demand and profitability data. Allocation and refinement 
decisions are poetponed until more ßCcurate and more detailed demand data becomes 
available, starting at an aggregate geographicallevel and proceeding to smaller customer 
segments until individual order data is available. 

This hierarchical allocation and refinement process in supply cha.in planning has been 
summarized in Table 2.11. Far each planning problem, the table states the typical time­
horizon, lists the key decision variables and indicates how customer heterogeneity is ac­

counted for. AB a result, the successive re:finement from the global markets to address 
down to the question of which orders to accept becomes obvious. 

The DMC problem as introduced. in the introductory Chapter 1 can be interpreted as a 
generalized form of the allocation and consumption planning problems. Considering the 
more limited tim.e-horizon in the mid- and short-term, actual product and sales volumes 
need to be allocated within many sales organizations to match a given amount of supply 
with volatile demands and orders of individual customers. Tbe research presented in 
the following chapters differs from previous contributions by explicitly 8CCOWlting for the 
hierarchical structure within the customer base. 

lillFor a model formulation, see Grunow and Farahani (2012). 
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Planning Time Allocation entities / Form of Customer 

problem horizon decision variables Heterogeneity 

Strategie Long-tenn Mark.ets to address 
Revenue and profit 

network potential 

planning 

Aggregate product 
Revenues and direct Master planning Mid-tenn quantities per sales 
costs region 

Deploymenl / mid-term I Replenishment 
Direct costs 

inventory control short-tenn quantities per warehouse 

Allocation Mid-Ierm / SaJes quotas per Average unit profits + 
planning short-tenn customer segment indireet penalty costs 

Consumption Short-Ierm Orders 10 fulfill 
Unit profits + indirect 

planning penalty costs 

'Dlble 2.11. - Allocations and quota refinements in hierarchical supply chain planning 
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