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ABSTRACT: 

A high-order time-domain approach for wave propagation in bounded and 
unbounded domains is developed based on the scaled boundary finite element 
method. The dynamic stiffness matrices of bounded and unbounded domains are 
expressed as continued-fraction expansions. The coefficient matrices of the 
expansions are determined recursively. This approach leads to accurate results with 
only about 3 terms per wavelength. A scheme for coupling the proposed high-order 
time-domain formulation for bounded domains with a high-order transmitting 
boundary suggested previously is also proposed. In the time-domain, the coupled 
model corresponds to equations of motion with symmetric, banded and frequency-
independent coefficient matrices, which can be solved efficiently using standard 
time-integration schemes. A numerical example is presented.  

Keywords: dynamic soil-structure interaction, wave propagation, scaled 
boundary finite element method, continued fractions 

1 Introduction  

The modelling of wave propagation is essential in a dynamic soil-structure 
interaction analysis. This is associated with two major challenges: the unbounded 
extent of the soil and fine mesh requirements for high-frequency components. 
Numerical methods for wave propagation in unbounded domains include absorbing 
boundaries [1, 2], the boundary element method [3, 4], infinite elements [5], the 
thin-layer method [6] and perfectly matched layers [7]. For extensive reviews of 
these methods the reader is referred to References [8, 9]. For wave propagation in 
bounded domains, spectral elements [10, 11] have been proven to be efficient. 
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A relatively recent method that combines the advantages of accurately modelling 
radiation damping and employing spectral element concepts is the scaled boundary 
finite element method [12]. This semi-analytical technique also excels in modelling 
singularities and can thus be used to model the propagation of seismic waves in the 
ground containing faults or discontinuities. The original solution procedure of the 
scaled boundary finite element method has been developed in the frequency 
domain [13]. Time-domain solutions have thus been obtained using inverse Fourier 
transformation and evaluating convolution integrals in early publications.  

Recently, efficient direct time-domain formulations of the scaled boundary finite 
element method have been proposed in References [14, 15] for unbounded and 
bounded domains, respectively. These are based on continued-fraction solutions of 
the scaled boundary finite element equation in dynamic stiffness. Although these 
approaches are conceptually appealing, they have only been applied to problems 
with a small number of degrees of freedom in References [14, 15]. The extension 
to large scale problems is challenging, due to potential ill-conditioning of the 
original continued-fraction algorithms. In Reference [16] an improved, numerically 
more robust continued-fraction expansion technique has been proposed for 
unbounded domains by introducing an additional scaling. The improved continued-
fraction solution is extended to wave propagation problems in bounded domains in 
this paper. The coupling of the resulting time-domain model for bounded domains 
with the transmitting boundary derived in Reference [16] is also addressed. Finally, 
a robust unified high-order time-domain formulation of the scaled boundary finite 
element method is established, that can be used for the direct time-domain analysis 
of complex coupled soil-structure systems containing singularities. 

2 Concept of the scaled boundary finite element method 

In the scaled boundary finite element method, a so-called scaling centre O is 
chosen in a zone from which the total boundary, other than the straight surfaces 
passing through the scaling centre, must be visible (Figures 1(a) and 1(b)). Only 
the boundary S is discretized. A typical line element to be used in a two-
dimensional analysis is shown in Figure 1(c). The scaled boundary transformation 
(Eq. (1)) relating the Cartesian coordinates ݔො, ݕො, ̂ݖ to the scaled boundary 
coordinates ߞ ,ߟ ,ߦ is introduced. Here, the symbols ሼݔሽ, ሼݕሽ, ሼݖሽ and ሾܰሺߟ,  ሻሿߞ
denote nodal coordinates and shape functions of isoparametric elements, 
respectively.   

ሼݔොሺߦ, ,ߟ ሻሽߞ ൌ ,ߟሾܰሺߦ ,ߦොሺݕሽ ሼݔሻሿሼߞ ,ߟ ሻሽߞ ൌ ,ߟሾܰሺߦ ,ߦሺݖሽ ሼ̂ݕሻሿሼߞ ,ߟ ሻሽߞ ൌ ,ߟሾܰሺߦ ሽ (1)ݖሻሿሼߞ
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(a)  (b)   (c)  

Figure 1: Concept of scaled boundary finite element method: (a) bounded domain, 
(b) unbounded domain, (c) 3-node line element on boundary 

The displacements at a point (ξ, η, ζ) are obtained interpolating nodal 
displacements  ሼݑሺߦሻሽ  using the same shape functions as for the geometry.  ሼݑሺߦ, ,ߟ ሻሽߞ ൌ ሾܰሺߟ,  ሻሽ   (2)ߦሺݑሻሿሼߞ

Applying the method of weighted residuals to the governing equations formulated 
in terms of the scaled boundary coordinates, the scaled boundary finite element 
equation in displacements ሼݑሺߦሻሽ is obtained. ሾܧ଴ሿߦଶሼݑሺߦሻሽ,కక൅ ൫ሺݏ െ 1ሻሾܧ଴ሿ െ ሾܧଵሿ ൅ ሾܧଵሿ்൯ߦሼݑሺߦሻሽ,క൅ ൫ሺݏ െ2ሻሾܧଵሿ் െ ሾܧଶሿ൯ሼݑሺߦሻሽ ൅ ߱ଶሾܯ଴ሿߦଶሼݑሺߦሻሽ ൌ 0 (3) 

The coefficient matrices ሾܧ଴ሿ, ሾܧଵሿ, ሾܧଶሿ	and ሾܯ଴ሿ are evaluated using standard 
finite element technologies [13]. The dynamic stiffness ሾܵሺ߱ሻሿ relates the 
amplitudes of the nodal forces ሼܴሺ߱ሻሽ to the amplitudes of the nodal displacements ሼݑሺ߱ሻሽ at the boundary.  ሼܴሺ߱ሻሽ ൌ ሾܵሺ߱ሻሿሼݑሺ߱ሻሽ (4) 

Using the relationship between internal nodal forces and nodal displacements, 
Equation (3) can be transformed into an equivalent differential equation in ሾܵሺ߱ሻሿ, 
the so-called scaled boundary finite element equation in dynamic stiffness.    ሺേሾܵሺ߱ሻሿ െ ሾܧଵሿሻሾܧ଴ሿିଵሺേሾܵሺ߱ሻሿ െ ሾܧଵሿ்ሻ േ ሺݏ െ 2ሻሾܵሺ߱ሻሿ േ߱ሾܵሺ߱ሻሿ,ఠെ ሼଶሽ൧ܧൣ ൅ ߱ଶሾܯ଴ሿ ൌ 0 (5) 

Equation (5) is valid for both bounded and unbounded domains, where the upper 
and lower signs apply in the bounded and unbounded case, respectively.  

3 Bounded domains  

A high-order time domain formulation for bounded domains can be constructed by 
expanding the dynamic stiffness ሾܵ௕ሺ߱ሻሿ into a series of continued fractions. 



550 C. Birk et al. 

3.1 Continued-fraction expansion of dynamic stiffness matrix 

The dynamic stiffness at the boundary is expressed as  ሾܵ௕ሺ߱ሻሿ ൌ ሾܭሿ െ ߱ଶሾܯሿ െ ߱ସൣܺሺଵሻ൧ൣܵሺଵሻሺ߱ሻ൧ିଵൣܺሺଵሻ൧், (6) 

where a scaling factor ൣܺሺଵሻ൧ is introduced to improve the numerical condition of 
the solution. Equations for the coefficient matrices in Equation (6) are obtained by 
substituting it in Equation (5) and setting individual terms corresponding to powers 
of ߱ଶ to zero in ascending order. The constant term yields an equation for the static 
stiffness matrix ሾܭሿ, ሺሾܭሿ െ ሾܧଵሿሻሾܧ଴ሿିଵሺሾܭሿ െ ሾܧଵሿ்ሻ െ ሾܧଶሿ ൅ ሺݏ െ 2ሻሾܭሿ ൌ 0. (7) 

An equation for the mass matrix ሾܯሿ is obtained by setting the terms in ߱ଶ equal to 
zero.  ሺሾܭሿ െ ሾܧଵሿሻሾܧ଴ሿିଵሾܯሿ ൅ ሾܯሿሾܧ଴ሿିଵሺሾܭሿ െ ሾܧଵሿ்ሻ ൅ ሿܯሾݏ െ ሾܯ଴ሿ ൌ 0 (8) 

The remaining terms yield an equation for the residual ඃܵሺ௜ሻሺ߱ሻඇ (with ݅ ൌ 1), ൣܵሺ௜ሻሺ߱ሻ൧ൣܿሺ௜ሻ൧ൣܵሺ௜ሻሺ߱ሻ൧ െ ൣܵሺ௜ሻሺ߱ሻ൧ ቂܾ଴ሺ௜ሻቃ் െ ቂܾ଴ሺ௜ሻቃ ൣܵሺ௜ሻሺ߱ሻ൧ ൅߱ଶ ൬ൣܵሺ௜ሻሺ߱ሻ൧ ቂܾଵሺ௜ሻቃ் ൅ ቂܾଵሺ௜ሻቃ ൣܵሺ௜ሻሺ߱ሻ൧൰ ൅ ߱ൣܵሺ௜ሻሺ߱ሻ൧,ఠ൅ ߱ସൣܽሺ௜ሻ൧ ൌ 0,			
 (9) 

with the constants ൣܽሺଵሻ൧ ൌ ൣܺሺଵሻ൧்ሾܧ଴ሿିଵൣܺሺଵሻ൧, ቂܾ଴ሺଵሻቃ ൌ ൣܺሺଵሻ൧்ሾܧ଴ሿିଵሺሾܭሿ െ ሾܧଵሿ்ሻൣܺሺଵሻ൧ି் െ ሺݏ ൅ 2ሻ/2ሾܫሿ, ቂܾଵሺଵሻቃ ൌ ൣܺሺଵሻ൧்ሾܧ଴ሿିଵሾܯሿൣܺሺଵሻ൧ି், ൣܿሺଵሻ൧ ൌ ൣܺሺଵሻ൧ିଵሾܯሿሾܧ଴ሿିଵሾܯሿൣܺሺଵሻ൧ି்.  

(10)

The parameter ൣܺሺଵሻ൧ is selected in such a way that ൣܿሺଵሻ൧ is a diagonal matrix with 
entries +1 or -1.  

Similarly, Eq. (9) is solved by postulating  ൣܵሺ௜ሻሺ߱ሻ൧ ൌ ቂܵ଴ሺ௜ሻቃ െ ߱ଶ ቂ ଵܵሺ௜ሻቃ െ ߱ସൣܺሺ௜ାଵሻ൧ൣܵሺ௜ାଵሻሺ߱ሻ൧ିଵൣܺሺ௜ାଵሻ൧் (11) 

The solution for  ቂܵ଴ሺ௜ሻቃ is obtained from  ቂܵ଴ሺ௜ሻቃିଵ ቂܾ଴ሺ௜ሻቃ ൅ ቂܾ଴ሺ௜ሻቃ் ቂܵ଴ሺ௜ሻቃିଵ ൌ ൣܿሺ௜ሻ൧. (12) 
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The solution for  ቂܵ଴ሺ௜ሻቃ follows from ቀെ ቂܾ଴ሺ௜ሻቃ ൅ ቂܵ଴ሺ௜ሻቃ ൣܿሺ௜ሻ൧ቁ ቂ ଵܵሺ௜ሻቃ ൅ ቂ ଵܵሺ௜ሻቃ	൬െ ቂܾ଴ሺ௜ሻቃ் ൅ ൣܿሺ௜ሻ൧ ቂܵ଴ሺ௜ሻቃ൰ ൅2 ቂ ଵܵሺ௜ሻቃ ൌ ቂܾଵሺ௜ሻቃ ቂܵ଴ሺ௜ሻቃ ൅ ቂܵ଴ሺ௜ሻቃ ቂܾଵሺ௜ሻቃ். (13) 

The equation for ൣܵሺ௜ାଵሻሺ߱ሻ൧ is the same as Eq. (9) with ݅ replacing ݅ ൅ 1 and the 
corresponding coefficient matrices ൣܽሺ௜ାଵሻ൧ ൌ ൣܺሺ௜ାଵሻ൧்ൣܿሺ௜ሻ൧ൣܺሺ௜ାଵሻ൧ ቂܾ଴ሺ௜ାଵሻቃ ൌ ൣܺሺ௜ାଵሻ൧் ൬2ሾܫሿ െ ቂܾ଴ሺ௜ሻቃ் ൅ ൣܿሺ௜ሻ൧ ቂܵ଴ሺ௜ሻቃ൰ ൣܺሺ௜ାଵሻ൧ି் ቂܾଵሺ௜ାଵሻቃ ൌ ൣܺሺ௜ାଵሻ൧் ൬െ ቂܾଵሺ௜ሻቃ் ൅ ൣܿሺ௜ሻ൧ ቂ ଵܵሺ௜ሻቃ൰ ൣܺሺ௜ାଵሻ൧ି் ൣܿሺ௜ାଵሻ൧ ൌ ൣܺሺ௜ାଵሻ൧ିଵ ൬ൣܽሺ௜ሻ൧ െ ቂܾଵሺ௜ሻቃ ቂ ଵܵሺ௜ሻቃ െ ቂ ଵܵሺ௜ሻቃ ቂܾଵሺ௜ሻቃ்൅ ቂ ଵܵሺ௜ሻቃ ൣܿሺ௜ሻ൧ ቂ ଵܵሺ௜ሻቃ൰ ൣܺሺ௜ାଵሻ൧ି்  

(14)

Therefore, Equation (9) can be solved recursively for high-order terms with the 
coefficient matrices updated by Equation (14). The LDLT decomposition [17] of 
the coefficient ൣܿሺ௜ሻ൧ is used to determine the scaling factor ൣܺሺ௜ሻ൧. It is chosen as 
the lower diagonal matrix ൣܮሺ௜ሻ൧, which can be normalized such that the diagonal 
entries of ൣܦሺ௜ሻ൧ ൌ േ1. ൣܿሺ௜ሻ൧ ൌ ൣܺሺ௜ሻ൧ିଵൣܿ̃ሺ௜ሻ൧ൣܺሺ௜ሻ൧ି்,					ൣܿ̃ሺ௜ሻ൧ ൌ  ሺ௜ሻ൧் (15)ܮሺ௜ሻ൧ൣܦሺ௜ሻ൧ൣܮൣ

3.2 High-order time-domain formulation  

Starting from the continued-fraction solutions of the dynamic stiffness matrix, 
high-order time-domain formulations can be constructed as equations of motion 
describing bounded domains. Substituting Eq. (6) into Eq. (4), the force-
displacement relationship is expressed as ሼܴሺ߱ሻሽ ൌ ሺሾܭሿ െ ߱ଶሾܯሿሻሼݑሺ߱ሻሽ ൅ ߱ଶൣܺሺଵሻ൧൛ݑሺଵሻሺ߱ሻൟ (16) 

where the auxiliary variable ൛ݑሺଵሻሺ߱ሻൟ is defined as the case ݅ ൌ 1 of  െ߱ଶൣܺሺ௜ሻ൧்൛ݑሺ௜ିଵሻሺ߱ሻൟ ൌ ൣܵሺ௜ሻሺ߱ሻ൧൛ݑሺ௜ሻሺ߱ሻൟ (17) 

with ሼݑሺ߱ሻሽ ൌ ൛ݑሺ଴ሻሺ߱ሻൟ. Substituting Eq. (11) into Eq. (17) leads to  
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߱ଶൣܺሺ௜ሻ൧்൛ݑሺ௜ିଵሻሺ߱ሻൟ ൅ ቀቂܵ଴ሺ௜ሻቃ െ ߱ଶ ቂ ଵܵሺ௜ሻቃቁ ൛ݑሺ௜ሻሺ߱ሻൟ ൅߱ଶൣܺሺ௜ାଵሻ൧൛ݑሺ௜ାଵሻሺ߱ሻൟ ൌ 0 (18) 

Equations (16) and (18) are easily written in the time domain as ሼܴሺݐሻሽ ൌ ሾܭሿሼݑሺݐሻሽ ൅ ሾܯሿሼݑሷ ሺݐሻሽ െ ൣܺሺଵሻ൧൛ݑሷ ሺଵሻሺݐሻൟ 0 ൌ െൣܺሺ௜ሻ൧்൛ݑሷ ሺ௜ିଵሻሺݐሻൟ ൅ ቂܵ଴ሺ௜ሻቃ ൛ݑሺ௜ሻሺݐሻൟ ൅ ቂ ଵܵሺ௜ሻቃ ൛ݑሷ ሺ௜ሻሺݐሻൟെ ൣܺሺ௜ାଵሻ൧൛ݑሷ ሺ௜ାଵሻሺݐሻൟ (19)

An order ܯ௕ continued fraction expansion is terminated with the assumption ൛ݑሺெ್ାଵሻሺݐሻൟ ൌ 0. 

4 Unbounded domains 

A detailed derivation for the improved continued fraction solution of the dynamic 
stiffness of an unbounded domain is presented in Reference [16]. It is obtained in 
the same way as for the bounded domain but at the high frequency limit. The 
continued fraction solution is postulated as  ሾܵஶሺ߱ሻሿ ൌ ݅߱ሾܥஶሿ ൅ ሾܭஶሿ െ ቂܺ௨ሺଵሻቃ ൣܻሺଵሻሺ߱ሻ൧ିଵ ቂܺ௨ሺଵሻቃ் ൣܻሺ௜ሻሺ߱ሻ൧ ൌ ݅߱ ቂ ଵܻሺ௜ሻቃ ൅ ቂ ଴ܻሺ௜ሻቃ െ ቂܺ௨ሺ௜ାଵሻቃ ൣܻሺ௜ାଵሻሺ߱ሻ൧ିଵ ቂܺ௨ሺ௜ାଵሻቃ் 

(20)

Substituting into Eq. (4), the force-displacement relationship is expressed in the 
time domain as   ሼܴሺݐሻሽ ൌ ሾܥஶሿሼݑሶ ሺݐሻሽ ൅ ሾܭஶሿሼݑሺݐሻሽ െ ቂܺ௨ሺଵሻቃ ሼݒሺଵሻሺݐሻሽ 0 ൌ െ ቂܺ௨ሺ௜ሻቃ் ൛ݒሶ ሺ௜ିଵሻሺݐሻൟ ൅ ቂ ଵܻሺ௜ሻቃ ൛ݒሶ ሺ௜ሻሺݐሻൟ ൅ ቂ ଴ܻሺ௜ሻቃ ൛ݒሺ௜ሻሺݐሻൟെ ቂܺ௨ሺ௜ାଵሻቃ ሼݒሺ௜ାଵሻሺݐሻሽ (21)

where ሼݒሺ௜ሻሺݐሻሽ  are auxiliary variables. An order ܯ௨ continued fraction expansion 
is terminated with the assumption ൛ݑሺெೠାଵሻሺݐሻൟ ൌ 0. 

5 Coupling of bounded and unbounded domains 

The force-displacement relationships (Eqs. (19) and (21)) of the bounded and 
unbounded domains can be assembled together to formulate the equation of motion 
of the whole system ሼ݂ሺݐሻሽ ൌ ሾீܯሿሼݖሷሺݐሻሽ ൅ ሾீܥሿሼݖሶሺݐሻሽ ൅ ሾீܭሿሼݖሺݐሻሽ. (22) 
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The vector of unknowns ሼݖሺݐሻሽ contains the displacements ሼݑሺݐሻሽ of the coupled 
soil-structure system, the internal variables ൛ݑሺଵሻൟ to ൛ݑሺெ್ሻൟ corresponding to the 
bounded domain and the internal variables ൛ݒሺଵሻൟ to ൛ݒሺெೠሻൟ of the unbounded 
domain. The vector ሼ݂ሺݐሻሽ contains all external forces acting on the coupled soil-
structure system. The high-order mass, damping and stiffness matrices ሾீܯሿ, ሾீܥሿ 
and ሾீܭሿ are banded, symmetric and sparse. Equation (22) can be solved using 
standard time-integration methods. 

6 Numerical example 

The coupled soil-structure interaction problem shown in Figure 2 is analysed. It 
consists of an elastic block of width 2ܾ and height ݄, with 2ܾ/݄	 ൌ 2/3, resting on 
a homogeneous soil halfspace with shear modulus ܩଵ, mass density ߩଵ and 
Poisson’s ratio ߥଵ ൌ 0.25. The shear modulus, mass density and Poisson’s ratio of 
the elastic block are: ܩଶ ൌ ଶߩ ,ଵܩ9 ൌ ଶߥ ଵ andߩ ൌ 0.25. Plain strain is assumed.  

A uniformly distributed strip load ܲሺݐሻ is acting on the top surface of the block. It’s 
time-dependence and the corresponding Fourier transform are shown in Figure 3. 
Here, the dimensionless frequency is defined as ܽ଴ ൌ ܾ߱/ܿ௦,ଵ with ܿ௦,ଵଶ ൌ   .ଵߩ/ଵܩ

In the scaled boundary finite element model, the elastic block and a semi-circular 
near-field portion of the soil of radius ܾ are modelled as two subdomains and 
discretized with eight nine-node high-order elements. The scaling centre of the 
unbounded domain is located at the point O shown in Figure 2. 

The bounded domain is modelled using the high-order time-domain formulation 
proposed in Section 3.1. Considering the requirement of 6 nodes per wavelength, 
the discretization represents ߣ ൌ 4/3ܾ. This wavelength corresponds to a 
maximum dimensionless frequency ܽ଴ ൌ 14.1. In the radial direction, 3 to 4 
continued- fraction terms per wavelength are required [15]. The order of continued-
fraction expansion is thus chosen as ܯ௕ ൌ 3. The high-order transmitting boundary 

 
Figure 2: Elastic block resting on homogeneous halfspace  
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summarized in Section 4 is used to model the far field with ܯ௨ ൌ 9 and ܯ௨ ൌ 15. 
The dimensionless vertical displacements at points A and O (see Figure 2) obtained 
by solving the coupled Equation (22) with Newmark’s method are shown in  
Figure 4. The time step is ∆ݐ ൌ 0.02ܾ/ܿ௦,ଵ.  

To verify the proposed method, an extended mesh with a rectangular area of 21ܾ ൈ 20ܾ to the right of the plane of symmetry is analysed using the finite 
element method (ABAQUS/Standard [18]). Half of the symmetric system is 
discretized with 6768 eight-node elements of size 0.25ܾ ൈ 0.25ܾ, yielding 20657 
nodes. 

For comparison, a viscous-spring boundary [19] combined with a finite element 
model of size 8ܾ ൈ 3ܾ is also employed. It consists of parallel connected spring-
dashpot systems in the normal and tangential directions, with normal and tangential 
spring and damping coefficients ܭ஻ே, ܥ஻ே and ܭ஻், ܥ஻், respectively. ܭ஻ே ൌ ܣ ௥ீ್ ஻ேܥ						, ൌ ஻்ܭ					,௣ܿߩܣ ൌ ܣ ଶீ௥್ ஻்ܥ					, ൌ  ௦ (23)ܿߩܣ

In Equation (23), the symbols ܣ and ݎ௕ denote the total area of all elements around 
a node at the boundary and the distance from the scattering wave source to the 
artificial boundary point. Here, ݎ௕ is taken as 3ܾ. The finite element region is 
discretized with 480 eight-node elements of size 0.25ܾ ൈ 0.25ܾ, yielding 1553 
nodes.  

In Figure 4, the vertical displacements computed using the present coupled method 
and the viscous-spring boundary agree very well with the extended mesh solution 
for early times up to ̅ݐ ൌ 5. After that, the results obtained using the viscous-spring 
boundary differ considerably from the reference results. On the other hand, the 
vertical displacements determined using the proposed method agree very well with 
the reference solution up to ̅ݐ ൌ 10. The extent of the slight deviations occurring 
after that depends on the order of continued fraction expansion used in the 
unbounded domain. The displacements calculated using the present technique 

  

(a) (b) 

Figure 3: Uniformly distributed load: (a) time domain, (b) frequency domain  
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converge to the extended mesh results with increasing order of continued fraction ܯ௨. In the given example, excellent agreement is obtained using ܯ௨ ൌ 15. 

7 Conclusion 

High-order time-domain formulations for modelling wave propagation in bounded 
and unbounded domains of arbitrary geometry have been developed. A standard 
equation of motion of a linear system in the time domain is obtained, which can be 
solved using established time-stepping schemes, such as Newmark's method. Only 
the boundaries of the bounded and unbounded domains are discretized, leading to 
reduced numerical effort. The numerical results demonstrate the accuracy of the 
proposed coupled method. The approach presented in this paper can easily be 
extended to three-dimensional problems and applied to investigate influence of 
faults and other geological discontinuities on structural responses.  
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