
Chapter 1

Physical and Technical Background

THE fundamental physical phenomenon of magnetic resonance is the
existence of nuclear spin. With each spin a magnetic moment is asso-

ciated making it sensitive to its magnetic environment. In MR(I) a very
large ensemble of spins exists. Therefore quantum statistics describes well
the behavior of the macroscopic quantities. Whereas the local magnetic
interactions are responsible for the large amount of available diagnostic
information, it is the external fields which allow one to retrieve this infor-
mation and make it observable for the diagnosing physician in modern
medical examinations.

This dissertation is based on the development of an external hardware
component and therefore the focus of this thesis are interactions with the
external magnetic fields and local interactions are ignored unless neces-
sary to understand the discussed imaging behavior. To this end, the spin
ensemble is mostly treated as non-interacting. Based on this assumption,
the basic equation of motion for the magnetization vector in an external
magnetic field is derived. This equation is purely classical and therefore the
further physical treatment can be performed with classical electromagnetic
theory. To produce image contrast, relaxation effects are exploited, which
are the result of spins interacting with their magnetic neighborhood. At
some places in this thesis, these effects are considered by extending the
equation of motion for the magnetization to the famous Bloch equations.

MRI signals are created by first magnetizing the object under examination
with a constant, strong magnetic field, then perturbing the equilibrium
magnetization with a transverse RF field before encoding the object with
magnetic gradient fields and finally receiving the signal with RF-receiver
coils. The frequency and phase content of the received signals strongly
depends on the geometric and temporal characteristics of the magnetic
fields involved. This implies that a very high standard of coil design and
electronic integration is required for high-quality spectra or images in MR(I),
one reason among others, which make MR(I) an extremely powerful, but
also challenging technology.

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_1, © Springer Fachmedien Wiesbaden 2013
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The basic physical principles of MR(I) are well understood. Far from being
complete, only the most important results are reviewed here. For a detailed
physical treatment of the magnetic resonance phenomenon consult [95].
Similarly, only the basic technical features of those hardware components
are presented, which are used to generate the required external magnetic
fields. A thorough description of the technical realization of an MR scanner
is presented in chapter 15.1 of [123], page 540 - 598. Considering that
within the PatLoc project a different kind of encoding hardware has been
developed, special emphasis is placed on the gradient system and its main
purpose: signal localization. In PatLoc, signal localization with a modified
gradient hardware is not sufficient in general and should therefore be
accompanied with parallel image acquisition; this topic is therefore also
touched at the end of this chapter.

1.1 Nuclear Magnetic Resonance

In this section, the physical principles of MR are presented and the basic
NMR experiment, fundamental to MR spectroscopy and MR imaging, is
analyzed involving

• magnetization of the object under examination with the main magnet,
• excitation of the magnetization with an RF-transmit pulse and
• signal reception with the RF-receiver unit.

1.1.1 Physical Principles

The physics of MR is based on the physics of the nuclear spin. The spin is
a non-classical property and therefore quantum mechanics is the correct
framework for describing its dynamics. The basic observation is that a
spin can be regarded as an intrinsic angular momentum of the nucleus. A
nucleus consists of charged particles and therefore with the spin a mag-
netic moment μ̂1 is associated, which points along the direction of the spin
angular momentum Ŝ:

μ̂ = γŜ. (1.1)

1The hat indicates quantum mechanical operators.
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The proportionality constant γ is termed gyromagnetic ratio. This ratio is
different for each nucleus. For the most important nucleus in MR, hydrogen,
with spin 1/2, it has the value γ = 267.52 106 rad/Ts, also denoted as γ- =

γ/(2π) = 42.58MHz/T.

Having a magnetic moment, the spin interacts with the magnetic field �B at
its location. The interaction energy is described by the Hamiltonian:

Ĥ = −μ̂ �B. (1.2)

In the NMR experiment, a macroscopic voltage is measured in the receiver
chain. The voltage is induced by the magnetization of the measured ob-
ject, which can itself be regarded as a macroscopic (spatially-dependent)
property. Quantum statistics can be used to bridge the gap between micro-
scopic quantum theory and macroscopic measurements. In NMR, quantum
statistics gives very accurate results because the (local) sample sizes involve
around 1022 spins.

These large spin ensembles exhibit a macroscopic magnetization under the
influence of external magnetic fields. But what is the exact effect of those
fields onto the magnetization?

To answer this question, a non-interacting spin ensemble is assumed, which
is a very good assumption within the scope of this thesis. The relevant
findings can be deduced based on the density operator formalism. The
density operator is defined as σ̂ := |ψ〉 〈ψ|, where the overbar indicates
averaging over all independent sample quantum states.

The (macroscopic) magnetization density �M at location �x and time t is then
found by calculating

�M(�x, t) = n(�x)· < μ̂ >= n(�x) · Tr {σ̂(�x, t)μ̂} , (1.3)

where n(�x) is the spin density. The dynamics of the magnetization is there-
fore entirely defined by the dynamics of the density operator. The time
evolution of this operator is described by the von Neumann equation:

dσ̂

dt
= − i

�
[Ĥ, σ̂]. (1.4)
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In this equation, � denotes the reduced Planck constant, which has a value
of 1.05× 10−34 Js. The time derivative of the individual components of the
magnetization is found by combining Eqs. 1.2 - 1.4:

Ṁi

n
=

d

dt
T r {σ̂μ̂i} = − i

�
Tr

{
[Ĥ, σ̂]μ̂i

}
= +

i

�

∑
j

Tr {σ̂[μ̂i, μ̂j ]Bj}.

According to Eq. 1.1, the commutator relations of the magnetization opera-
tor follow the common relations of the spin angular momenta:

[μ̂i, μ̂j ] = γ2[Ŝi, Ŝj ] = i�γ2
∑
k

εijkŜk = i�γ
∑
k

εijkμ̂k,

where εijk is the Levi-Civita symbol. The time derivative of Mi is therefore
found to be:

Ṁi = −n
∑
j,k

εijkTr {σ̂μ̂k} (γBj) = −
∑
j,k

εijkMk(γBj) = ( �M × (γ �B))i,

and the dynamics of the magnetization vector is described with a simple
equation:

�̇M = �M × (γ �B). (1.5)

This equation is the macroscopic equation of motion of the magnetization
vector. This equation is also known from classical physics. Most results
in this thesis are based on this classical equation, and therefore mostly a
quantum mechanical treatment can be omitted and established techniques
from classical electrodynamics are employed instead.

1.1.2 Main Magnetic Field

Starting from an initial state, the equation of motion presented in Eq. 1.5
can be integrated for known magnetic fields. However, the initial state
requires at least some magnetization. The most important purpose of the
main magnetic field B0�ez is to polarize the object under examination.
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Figure 1.1: This MR scanner (MAGNETOM Trio, A Tim System 3T, Siemens Health-
care, Erlangen, Germany) was equipped with a PatLoc insert coil while this thesis
was conducted. The scanner is shown during delivery to the site of installation.
Visible from outside is the vacuum chamber that contains the main magnet, the
largest component of the scanner.

a) Main Magnet

The magnetic field is generated with the large main magnet (cf. Fig. 1.1).
The field strength determines the precession frequencies of the magneti-
zation. A major engineering criterion is spatio-temporal homogeneity of
the precession frequencies. Therefore, the magnet design is based on a su-
perconducting solenoid which generates very homogeneous fields with an
accuracy of around 0.1− 10ppm in the typical imaging region. Typical field
strengths for imaging patients range from 0.2T− 3T. An 11.75T system
(Iseult/INUMAC project) is planned to be delivered in April 2013 to the
Neurospin site in Saclay, France [187]. It will be largest and strongest whole-
body system ever built. Experimental or pre-clinical scanners often have
even stronger fields of up to 20T. One advantage of such strong systems
is an increase in SNR. Most clinical magnets are shielded with a second
superconducting coil. The shield reduces efficiency in favor of enhanced
patient safety and siting costs resulting from fast decaying magnetic fields
outside of the examination area.

b) Polarization

With the main magnet, the measured object is polarized. But how does
the generated constant magnetic field B0�ez actually create the nuclear mag-
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netization in the sample? In order to find a reliable value of the initial
magnetization methods from quantum statistics should be used. The ini-
tial magnetization is established in the thermodynamic equilibrium. In
this equilibrated state, the off-diagonal elements (coherences) of the den-
sity operator are zero. The diagonal elements (populations) are weighted
according to their corresponding Boltzmann factors:

σeq
mm =

1

Z
exp(−E(m)/kBT). (1.6)

The value Z =
∑

m exp(−E(m)/kBT ) represents the canonical partition
function, kB is the Boltzmann constant with value kB = 1.38× 10−23JK−1,
T is the temperature and E(m) is the energy of the corresponding Zee-
man quantum state. For a constant field B0�ez the energy levels E(m) are,
according to Eqs. 1.1, 1.2, given by:

E(m) = m�γB0,

where m is the quantum number of the z-angular momentum Ŝz . In NMR,
the Boltzmann factor B = �γB0/kBT is typically only about 10−5. Therefore,
the exponentials in Eq. 1.6 can be simplified using a Taylor series expansion
and for a spin 1/2 system with only two Zeeman states (m = ±1/2) the
equilibrium density operator reduces to:

σ̂eq =

(
1
2 + 1

4B 0

0 1
2 − 1

4B

)
.

The initial magnetization �Meq is then found with the relations presented in
Eqs. 1.1, 1.3:

Meq
x = Meq

y = 0,

Meq
z = n · γ · Tr

{
σ̂eqŜz

}
=

1

4

�2γ2

kBT
nB0

B0=1.5T≈ 5× 10−3 J/Tm3

≈ 4× 10−9B0/μ0, μ0 = 4π · 10−7 Tm/A.

(1.7)

The resulting nuclear paramagnetism of water has a susceptibility of only
4× 10−9. It is about 2000 times weaker than the actual diamagnetism of wa-
ter. The contribution of the nuclear spins to the longitudinal magnetization
is therefore negligible. Nevertheless, it is strong enough to be detected once
being moved out of equilibrium as shown below.
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c) Precession

In the thermodynamic equilibrium, �Meq does not change in magnitude and
direction. If the thermodynamic equilibrium is disturbed, a magnetization
vector �M0 might result with non-zero transverse components. For a constant
magnetic field B0�ez the equation of motion, given by Eq. 1.5, can be solved
analytically. With an initial magnetization �M0 the solution is simply:

�M(t) = R(�ez, ωLt) �M0.

The matrix R is just a standard 3D rotation matrix that describes a rotation
by the angle ωLt around the z-axis (cf. definition of R(·, ·) in Appendix A.1
on page 291). As the angle increases linearly with time, the motion of the
magnetization is indeed a precessional motion around the z-axis (cf. Fig.
1.2) with the Larmor frequency ωL:

ωL = −γB0. (1.8)

Figure 1.2: Precession of the magnetization vector around the direction of the static
main magnetic field.
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d) Relaxation and the Bloch Equations

For the assumed non-interacting spin ensemble, the precessional motion
goes on forever. In reality, however, the spins interact with each other and
their charged neighborhoods. The magnetization therefore slowly relaxes
toward its equilibrium value �Meq . The longitudinal relaxation gives rise to
the diagnostically very important T1-contrast and the transverse relaxation
to the T2-contrast. This macroscopic relaxation effect is described by the
Bloch equations [11], which modifies the basic equation of motion presented
in Eq. 1.5:

�̇M = �M × (γ �B)− T−1
2 (Mx�ex +My�ey)− T−1

1 (Mz −Meq
z )�ez. (1.9)

There are many other interaction effects, like for example chemical shift or
diffusion, which can correctly be treated with an appropriate model. These
effects give rise to a modification of the above Bloch equations [182]. Within
the scope of this thesis, these effects are, however, irrelevant and therefore
they are ignored.

e) Rotating Frame Formalism

Consider a reference frame, which rotates with �ω compared to the labora-
tory frame. If ∂rot

t describes the time derivative in the rotating frame, the
equation of motion (Eq. 1.5) takes the following form:

∂rot
t

�M = �M × (γ �B + �ω). (1.10)

For a reference frame which follows exactly the precessional motion of the
magnetization, i.e., �ω = ωL�ez = −γB0�ez , the effect of the constant main
magnetic field �B = B0�ez is formally eliminated: Equation 1.10 reduces
to ∂rot

t
�M = 0; the magnetization vector in the rotating reference frame is

therefore fixed in time.

1.1.3 RF Excitation

The RF-transmit system serves to “excite” the magnetization by moving it
out of thermodynamic equilibrium. RF excitation is essential
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• because the static longitudinal magnetization is very weak and cannot
be measured effectively. It is the dynamic motion in the transverse
plane, which induces measurable currents in the RF-receiver coils.

• because the return of the magnetization back to thermodynamic equi-
librium is tissue-dependent and provides image contrasts with a high
relevance for medical diagnostics.

a) RF-Transmit System

The object is excited by irradiating appropriate RF pulses into this object.
Fig. 1.3 schematically shows the hardware typically involved in the signal
transmission process and the caption explains the purpose of the individual
components of the transmit chain.

Figure 1.3: Typical RF-transmit chain. An RF synthesizer generates a continuous
waveform typically oscillating at the Larmor frequency, from which pieces of the
desired pulse duration are cut. A waveform modulator adjusts the pulse in amplitude
and phase according to the digital instructions of the sequence programmer and
sends it to the RF-power amplifier. Finally, the amplified pulse is coupled to the
RF-transmit coil, which irradiates the RF field into the object under examination.

b) Excitation

Consider on-resonance excitation with a transmitting RF field �B1(t). On-
resonance means that the field rotates with the Larmor frequency, given
by Eq. 1.8, in the direction of the rotating reference frame. Even if the
transmit field has a longitudinal component along the z-axis or an opposing
rotational component, it is sufficient to only consider the rotation along the
rotating Larmor frame as those other components have a negligible impact
on the dynamics of the magnetization under normal imaging conditions (cf.
note 7 of chapter 8 in [95]). The transmit field can therefore be assumed to
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be directed in the transverse plane. With an initial direction along the x-axis
it is given by:

�B1(t) = B1(t)(cos(ωLt)�ex + sin(ωLt)�ey) = B1(t)R(�ez, ωLt)�ex = B1(t)�e
′
x.

The vector �e′x describes the fixed x′-axis in the rotating reference frame
and the vector �ex describes the fixed x-axis in the laboratory frame. The
latter equality holds because the two vectors �e′x and �ex are linked via �e′x =

R(�ez, ωLt)�ex. In the rotating reference frame, the transmit field therefore
points along the �e′x-direction. The magnetic field envelope B1(t) might have
a time-dependency, which is assumed to be slowly varying compared to the
Larmor frequency. When the transmit field is added to the main magnetic
field, the equation of motion (Eq. 1.10) reduces to:

∂rot
t

�M = γB1(t)( �M × �e′x).

The dynamics described by this equation is just a precessional motion a-
round the x′-axis with the Rabi frequency |ωR| = γB1. If the on-resonance
transmit field is switched on for a duration τ , the magnetization is therefore
flipped away from the z′-axis around the x′-axis by the flip angle α given
by:

α = γ

∫ τ

t=0

B1(t)dt. (1.11)

This flip affects the magnetization vector accordingly:

�M(α, t) = Meq
z

(
cos(α)�e′z + sin(α)�e′y

)
= Meq

z (cos(α)�ez + sin(α)R(�ez, ωLt)�ey) .
(1.12)

The same applies to any initial magnetization �M0 other than the equilibrium
magnetization. The resulting flip of the magnetization vector is the physical
interpretation of what is normally referred to as “excitation”. Off-resonance
excitations, where the transmit field rotates with a slightly different fre-
quency than the Larmor frequency, lead to more complicated motions of
the magnetization vector. The dynamics are, however, fully described by
the Bloch equations. Closed-form solutions to these equations exist only
under special imaging conditions (an example is discussed in section 1.2.3,
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page 32ff). In general, the dynamics of the magnetization vector is found by
numerical integration.2

1.1.4 NMR Signal Detection

The final step in acquiring an NMR signal is to detect the excited magnetiza-
tion. This is done with receiver coils which are sensitive to the fast magnetic
field variations caused by the precessing magnetization.

a) RF-Detection System

A typical RF-detection system is schematically depicted in Fig. 1.4 and
explained in detail in the caption. Consult the textbook [111] for a detailed
presentation of RF coil and circuit design.

Figure 1.4: Typical RF-receiver chain. First, the signal is received with one or more
receiver coil probeheads. The small signals are amplified before being sent to the
quadrature receiver. In this hardware component, the signals are multiplied with
sinusoidal waveforms from an RF synthesizer having a reference carrier frequency
of the same frequency as used for signal transmission. There are two reference
signals, shifted by 90 ◦. The outgoing signals form, after low-pass filtering and
digitization in an analog-to-digital converter (ADC), real and imaginary part of the
NMR signal, which is finally stored using appropriate hardware.

b) Free Induction Decay

The influence of the individual components of the RF-detection system onto
the NMR signal can also be quantified, which is the topic of this section.

First, consider that the precessing magnetization generates a magnetic field
which is induced in an RF-receiver coil. Based on Faraday’s law of induction

2Nice animations of spin dynamics can found at [150].
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and a reciprocity law [68]3, it can be shown that the induced voltage U in
the receiver coil is given by:

U(t) = −Φ̇(t) = − d

dt

∫
V

�Bre(�x) �M(�x, t)d�x. (1.13)

Here, Φ is the magnetic flux through the receiver coil, V is the excited
volume and �Bre is the magnetic field generated by the receiver coil per
unit current.4 The time derivative of Mz can be neglected because the
precessional motion is restricted to the xy-plane. Therefore, introduction of
Eq. 1.12 into the above equation leads to a voltage of:

U(t) = ωL

∫
V

Meq
z (�x) sin(α)

(
Bre

x (�x) cos(ωLt)−Bre
y (�x) cos(ωLt+

π

2
)
)
d�x.

(1.14)
The signal is amplified by a factor βA, it is split in two and modulated in the
quadrature receiver. The effect of the quadrature receiver can be explained
with a multiplication of the signal, represented by Eq. 1.14, with a sinusoid
tuned at the transmit frequency. The output therefore consists of two signals
s1 and s2, where s1 has been multiplied with 2 cos(ωLt) and s2 has been
multiplied with the phase-shifted reference signal 2 cos(ωLt+ π/2). After a
low pass filter, the two signals are formally combined to form a complex
signal s(t):

s(t) = s1(t) + is2(t) =

∫
V

m(�x)c(�x)d�x, (1.15)

m(�x) := ωLβAM
eq
z (�x) sin(α),

c(�x) := Bre
x (�x)− iBre

y (�x).
(1.16)

The quantity c(·) is usually termed RF-coil sensitivity. Spin density is a
common term to denote the quantity m(·). This definition is problematic,

3The used model is valid for field strengths of up to about 1.5T on whole-body systems.
The model assumes that the magnetic field generated by the excited magnetization has an
immediate effect on the magnetic flux in the receiver coil (near-field). For higher field strengths
however, time lags must be considered [67]. Consult for example [66] for a correct treatment
beyond the near field or Appendix E in [163], where a formula for the induced voltage is
presented.

4Here, too, the limited validity of Eq. 1.13 becomes apparent. The derivation of Eq. 1.13
models the receiver coil as a simple wire loop and not as a resonant structure, as it should
correctly be done [163]. It is assumed that the coil’s DC sensitivity equals its RF sensitivity.
Interactions with the measured object are ignored. In practice the RF sensitivity depends on
the electromagnetic properties of the object and the frequency (also cf. [201]), and therefore the
RF sensitivity is typically determined for each scan separately (also cf. chapter 2.1.2b, page 48).
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but might be justified because, according Eqs. 1.7, 1.16, m is actually pro-
portional to the spin density. However, small deviations occur when the
transmit field is not homogeneous because, in this case, the flip angle is not
constant over the entire excitation volume (cf. Eq. 1.11). Though not exact
as well, it is also common to denote m(·) as magnetization. In this thesis
both terms, spin density and magnetization, are used to describe m(·). In the
following, the dependency of m on the amplification βA will be suppressed
by assuming w. l. o. g. βA := 1.

The signal presented in Eq. 1.15 is the measured signal of the NMR experi-
ment. This signal is constant because relaxation effects have been ignored
in these calculations. In reality the presence of transverse relaxation causes
the signals to decay. This decaying signal is called the free induction decay, or
in short, the FID.

c) Signal-to-Noise Ratio

Physical measurements are always of a statistical nature. The main sources
of noise for MRI are thermal motions of charged particles. It is obvious that
the electrons in the receiver electronics add to the resulting noise. However,
in NMR, it is the charged ions of the objects under examination, which
typically form the dominant part of the resulting noise. Whereas elaborate
designs of the receiver electronics can lead to a significantly reduced noise
contribution, thermal motion of the ions of the measured object cannot be
influenced by the experimenter. Noise in the electronic devices might pose
a problem with micro-architectures [55]. However, in this work, micro-coils
were not used and therefore the discussion of noise is uniquely restricted to
thermal noise originating from the object under examination.

How does it happen that the sample contributes noise to the measured
signal? The principle can be understood in a fairly simple way: The human
body mainly consists of water, in which different ions like for example
Na+,K+ or Ca2+ are dissolved. These ions are thermally agitated and
move. This motion is responsible for a fluctuating current density which is
accompanied by an electromagnetic field. The resulting electric field gen-
erates a fluctuating voltage across the terminals of the receiver electronics,
and is considered as noise.

This noise, in a basic situation, has been described quantitatively by Johnson
in 1928 already [77]. Basic theoretical work considering AC-currents has
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elucidated the basic principle in the same year by Nyquist in [116]. More
suitable for NMR reception is, for example, the theoretical description as
presented in the section A conducting sample in Appendix A in a publication
by Hoult [67]. The derivation is based on the Langevin equation and the
law of equipartition of energy from statistical mechanics leading to the
following result for the noise squared < η2 >:

< η2 >= 4kBTBWR, (1.17)

where T is the temperature of the measured object, BW the bandwidth of
the receiver, and R is the resistance of the measured object seen from the
terminals of the receiver electronics. This resistance expresses a principle of
reciprocity: The effect of moving ions in the sample onto the noise in the
received signal is analyzed by considering the resistance of the sample to a
current flowing in the circuit of the receiver!

The macroscopic resistance of the measured object can be calculated with
the help of Ohm’s law: Because of Ohm’s law, the resistance R is equivalent
to the power P deposited in the body per unit current in the receiver coil
(U = RI ⇒ R = P/I2). The dissipated power can be calculated also on
a local scale, where Ohm’s law states that the current density �j generated
by an electric field �E depends on the electric conductivity σ: �j = σ �E.
The electric field caused by the current in the receiver has two effects: On
the one hand, it is responsible for local currents flowing with the velocity
�v = �j/ρ = σ �E/ρ, where ρ is the electric charge density. On the other hand,
the field exerts a Lorentz force �f = ρ �E onto the moving particles. This force
acts on the local currents and performs the work a = �f ·�v = ρ �E· �Eσ/ρ = σ �E2.
By considering that this work is dissipated the resistance can be calculated
by integrating over the volume V of the measured object:

R =
P

I2
=

∫
V

σ(�x)| �E(�x)|2d�x
/

I2 =

∫
V

σ(�x)|E(�x)/I|2d�x

=

∫
V

σ(�x)|�E(�x)|2d�x,
(1.18)

where �E is the electric field �E per unit current, denoted as electric sensitivity
of the receiver coil in this thesis. Note that in the derivation of the latter
equation, it has been disregarded that, in MRI, the electromagnetic quan-
tities are high-frequency RF signals. Nevertheless, the latter equation is
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still valid (see e.g. Eq. 3 in [200]) with the electric sensitivity �E being a
complex-valued quantity (just as the magnetic sensitivity �B).

The signal-to-noise ratio of the acquired signal can then, within the limits
of the used model, be expressed with the electromagnetic properties of the
receiver coil and the measured object by combining Eqs. 1.7, 1.15, 1.16, 1.17,
1.18:

SNR =
|s|√

(< η2 >)
= C ·

|
∫
V
n(�x)(Bre

x (�x)− iBre
y (�x))d�x|√∫

V
σ(�x)|�E(�x)|2d�x

,

with C =
1

8

�2γ3| sin(α)|
(kBT )3/2

B2
0

B
1/2
W

.

(1.19)

1.2 Magnetic Resonance Imaging

With the main magnet and the RF-transmit/receive system, a signal is ob-
tained which has information about the whole object. However, according
to Eq. 1.15, all locations are encoded nearly equivalently. Therefore signal
localization is not achieved with these hardware components; it cannot be
differentiated whether the signal originates from one location or another. In
MR imaging, the bulk part of spatial encoding is obtained by an additional
hardware component: the gradients.

1.2.1 The Gradients

The purpose of the three gradients is to encode information about the
locations of the individual signal sources. This task is traditionally solved
by generating three spatial magnetic encoding fields (SEMs), whose Bz-
components vary linearly along the three different axes of the magnet. An
important result of this section is that it is possible to apply these linear
SEMs such that the signal data and the spatial distribution of the excited
magnetization form a simple Fourier pair. Such a strategy is often used
by imaging sequences like the gradient echo or the spin echo, which differ
from each other in the way how signal relaxation is exploited to produce a
different image contrast (also cf. section 1.2.4, page 33f).
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The involved electronics is schematically depicted in Fig. 1.5. The wire
windings of gradient coils are typically supported by a cylindrical structure.
This geometry is advantageous for hardware integration and especially
useful in handling patient scans. The basic gradient coil design, along with
one more realistic fingerprint design of an x-gradient coil, is depicted in Fig.
1.6. For practical designs, the wire windings are optimized to compromise
between gradient linearity, efficiency, minimal Bx and By field strength
(=concomitant fields), inductivity, power dissipation and other important
coil characteristics.

Figure 1.5: Typical gradient driving electronics. The sequence programmer defines
the trapezoidal pulse shapes for each gradient channel. The digital instructions are
converted to an analog voltage level using a digital-to-analog converter. This voltage
is amplified with gradient power amplifiers and finally sent to the gradient coils. The
coils generate the linear encoding fields with magnetic field time-courses according
to the programmed pulse shapes.

Figure 1.6: Simple and more practical gradient coil wire designs. (a) The basic
z-gradient is a Maxwell pair. (b) The basic x- and y-gradients are double-saddle coils
(= Golay coils). (c) Fingerprint design of a linear x-gradient coil. The pattern has
been optimized using a stream function method with high order smoothness (see
chapter 4 in [76]). The image shown is courtesy of Dr. Feng Jia and corresponds to
Fig. 4.15a in [76].
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1.2.2 Gradient Encoding: Signal Equation for a Single
Receiver Coil

The physical principle, which eventually makes localization possible, is sim-
ple: The additional linear gradient field changes the precession frequency
of the spins along the direction of the field gradient. The received signal
therefore has a broadened frequency distribution with a one-to-one corre-
spondence between frequency and location along the direction of the field
gradient. With three orthogonal gradients, it is therefore possible to extract
the spin density at each location in a unique way. The physical relation
between gradient encoding and localization is sketched in Fig. 1.7.

Figure 1.7: The principle of gradient encoding. (a) Without a gradient the magnetic
field is constant over the entire object. Therefore the magnetization precesses at
the same frequency in the whole object and the frequency content of the signal is
represented by a very narrow peak. There is a finite line width in reality because of
chemical shift, susceptibility effects and T ∗

2 -relaxation, among others (the line width
shown is vastly exaggerated for reasons of illustration). (b) With a linear gradient field
applied along one axis, magnetization vectors perpendicular to that axis still precess
with the same frequency. However, along the gradient axis the Larmor frequency is
different for each location. This results in a broadened frequency distribution with a
one-to-one-correspondence to the spatial coordinate of the signal source.

A rigorous derivation of this result may begin with the dynamics of the
magnetization in the fixed frame system, mathematically described by Eq.
1.5. The effective encoding field �Benc, resulting from the superposition of
the applied gradient fields, disturbs the main magnetic field. The fields
vary slowly in comparison to the precessional motion. The gradient field
dynamics can therefore be treated as being static in the equation of motion,
given by Eq. 1.5. The resulting motion is a precessional motion with a
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frequency corresponding to the magnitude of the overall external magnetic
field:

ω = −γ
∣∣∣B0�ez + �Benc

∣∣∣ = ωL + (−γBz
enc) + (−γB⊥)O

(
B⊥
B0

)
≈ ωL + (−γBz

enc).

(1.20)

For a scanner with a B0 on the order of 1 − 3T, the gradient field Bz
enc

is typically below 10mT. The magnitude of the concomitant fields B⊥ =

[(Bx
enc)

2 + (By
enc)

2]1/2 is of the same order as Bz
enc; in the region of interest

(ROI), it is most often even below Bz
enc. As a consequence of the large differ-

ence between gradient field strengths and main magnetic field strength, the
approximation of Eq. 1.20 is very good. Therefore, only the z-components
of the gradient fields have a significant impact on the precession frequency
of the magnetization vector and the direction of the precessional motion is
almost not affected by the gradient fields.

With gradient encoding, the precession frequency of the magnetization (cf.
Eq. 1.12) gets a spatial dependency that deviates from the Larmor frequency
ωL in most parts of the object. After the quadrature receiver the complex
signal is then modulated with a time and space dependent phase factor
φ(�x, t):

s(t) =

∫
V

m(�x)c(�x)e−iφ(�x,t)d�x. (1.21)

This phase factor can be manipulated by the gradient fields in two different
ways: application of a gradient field during signal readout or before. Recon-
sider Fig. 1.7b. There, it is shown that the application of a SEM during signal
readout alters the frequency content of the signal. Therefore, this strategy is
denoted as frequency encoding. The frequency content is different only for
spins experiencing a different field strength - therefore localization with
pure frequency encoding is only feasible along one spatial direction. Several
signal readouts, each encoded with a different gradient direction, could be
used to complete signal localization. However, it is also possible to combine
frequency encoding with a strategy, where SEMs are applied before signal
readout. These SEMs do not affect the frequency content of the received
signals directly, but spins at different locations acquire a different phase
during the application of the SEMs and this phase information modulates
the signal when being read out. In this thesis, the term phase encoding is
used to describe such an encoding strategy.5

5Note that this definition is broader than often encountered in the MR literature.
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Based on Eq. 1.13, it can be shown that, when both strategies are combined,
the phase factor in Eq. 1.21 consists of an initial phase from phase encoding
and a time-dependent part resulting from frequency encoding:

φ(�x, t; r) = φ(�x, 0; r) + γ

∫ t

t̃=0

Bz
enc(�x, t̃; r)dt̃. (1.22)

The index r has been added because typically (apart from single-shot imag-
ing) a number of signal readouts (r = 1, . . . , Npe) are acquired. The mag-
netic gradient encoding field Bz

enc(�x) is a superposition of the three linear
gradient fields Bz

j (�x):

Bz
enc(�x, t̃; r) =

3∑
j=1

Bz
j (�x, t̃; r) =

3∑
j=1

Gj(t̃; r)xj = �G(t̃; r)�x. (1.23)

The introduced parameters Gj , j = 1, 2, 3, are the gradient strengths of the
corresponding gradient field.

The latter equation shows that the effective encoding field decomposes into
a spatial and a temporal component. The spatial component is predefined
by the geometries of the gradient fields.6 However, the temporal component
can be influenced freely by defining the time-courses of the gradient pulse
shapes. These temporal degrees of freedom are captured by the introduction
of k-space. With the k-space notation the phase distribution of Eq. 1.22
reads:

φ(�x, t; r) =
(
�kr + �k(t; r)

)
�x, (1.24)

where the initial k-space position �kr and the k-space traversal during read-
out �k(t; r) are defined as:7

�kr := γ

∫ τ

t̃=0

�G(t̃; r)dt̃ and �k(t; r) := γ

∫ t

t̃=0

�G(t̃; r)dt̃. (1.25)

6This is where PatLoc imaging becomes interesting: The generalization to arbitrary field
geometries introduces new spatial degrees of freedom for MRI signal encoding (cf. chapter 4,
page 135ff).

7In the literature, it is also not uncommon to define k-space slightly differently with γ
replaced by (γ/2π), see for example [7, 12, 125]. Depending on which definition is used, the
factor 2π may, or may not, occur in other equations related to k-space.
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In this definition, it was assumed w. l. o. g. that the duration of phase
encoding τ is the same for each readout r. Introducing the k-space notation
(Eqs. 1.24, 1.25) into the signal equation (Eq. 1.21) leads to:

s(t; r) =

∫
V

m(�x)c(�x)e−i(�kr+�k(t;r))�xd�x. (1.26)

In the general case, the temporal dimension of the sampling trajectory is
important. For example, image contrast, caused by relaxation, is determined
by the timing of data sampling. However, in the latter equation explicit
time-dependent effects like relaxation have been ignored to focus on spatial
encoding rather than temporal effects. Under these assumptions, the signal
does not change if the k-space trajectory is traversed differently as long
as the set K = {�kr + �k(t; r); t ∈ [0;T ], r = 1, . . . , Npe} of acquired k-space
locations remains the same. Thus, it is possible to eliminate the temporal
dependency from the signal equation and Eq. 1.26 adopts a simpler form by
only considering the signal values at the sampled k-space location �k ∈ K:

s(�k) =

∫
V

m(�x)c(�x)e−i�k�xd�x. (1.27)

This equation is one of the most important equations in the field of MRI.
It shows that signal and spin density, modulated by the RF-coil sensitivity
have a Fourier relation. There is only one caveat: The set of sampled k-space
locations K is only a one-dimensional trajectory of finite length within the
d-dimensional full k-space K = Rd required for a true Fourier relation. In
chapter 2.2.1c it is shown on page 61 that the finite length of the trajectory is
closely linked to image resolution. More subtle is the problem that a true d-
dimensional (d = 2, 3) image is to be reconstructed from a one-dimensional
trajectory. It turns out that for sufficiently dense sampling, it is possible
to treat the one-dimensional trajectory K as a d-dimensional subset K of
Rd. The reason for this surprising result is described in the paragraph
“Completeness of k-Space Encoding” on page 64 in the following chapter.
In this thesis, the extended subset K ⊃ K, K ⊂ Rd is called effective k-
space coverage, or simply effective k-space, whereas K is called sampled k-space
(coverage). The concepts of k-space trajectory, sampled k-space coverage and
effective k-space coverage are illustrated in Fig. 1.8.
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Figure 1.8: k-space trajectory and k-space coverage. (a) Cartesian trajectory.
Shown are 16 phase-encodes. The effect of phase encoding, according to how this
term is defined in this thesis, is to define the initial k-space position before readout.
With the x-gradient, the initial k-space location is shifted along the kx-axis (often
denoted as a prewinder ) and with the y-gradient along the ky-axis (phase encoding
in the narrow sense). During acquisition, the x-gradient is switched, and k-space is
traversed along the corresponding direction. The direction of k-space traversal is
indicated by the arrows accompanying the trajectory. When time-dependent effects
like signal relaxation are ignored, the direction of k-space traversal can be ignored.
The sampled k-space is given by the black lines. However, the effective k-space
extends around the black lines and is indicated by the gray area. In chapter 2.2.1c
it is shown under which conditions this extension occurs. (b) Radial trajectory. By
combining x-and y-gradients, the initial k-space positions define locations on a circle
in k-space. During readout, the same combination of the gradients, with opposite
flow of the coil currents, is used. The trajectory leads to a higher sampling density
at the center. A sufficient number of readouts ensures a gap-free effective circular
k-space coverage.

For simplicity, consider here complete k-space coverage K = Rd, and a
homogeneous RF-coil profile c(�x) = 1 for all �x ∈ V . Under these special
conditions, signal s(�k) and spin density m(�x) form a Fourier transform pair:

s(�k) =

∫
V

m(�x)e−i�k�xd�x = FT {m}(�k),

m(�x) =

∫
K

s(�k)ei
�k�xd�k = FT −1{s}(�x).

(1.28)

The latter equation mathematically expresses the effect of gradient encoding
as the capability to uniquely localize an MRI signal: Under the assumption
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of infinitely long sampling, the spin density of the measured object can be
retrieved exactly and uniquely at each location. The effect of finite sampling
in realistic measurements on the reconstructed images is discussed in the
next chapter.

1.2.3 Slice Selection

Without gradients, a large three-dimensional volume V ⊂ R3 is excited after
application of an on-resonance RF pulse. In many situations, it is useful
to excite only thin slices and use two orthogonal gradients for in-plane
encoding. This process is called slice selection and is achieved by applying a
gradient field during transmission of the RF pulse.

Consider a gradient field Bz
enc(�x) = Gzz along the z-axis (= z′-axis) swi-

tched during an RF pulse �B1(t) = B1(t)�e
′
x. According to Eq. 1.10, the

motion of the magnetization in the rotating reference frame is given by:

∂rot
t

�M = �M × γ(B1(t)�e
′
x +Gzz�e

′
z). (1.29)

In general, a closed-form solution to this equation does not exist and must be
found numerically [26, 129]. Under the small-tip-angle assumption8 Mz(t) =

Mz(0) = const a closed-form solution exists, revealing insight into the
relationship between excited magnetization and pulse shape. With the
initial condition �M(0) = M0

z�e
′
z , in Eq. 1.29 only the transverse components

of the magnetization need to be considered further. For symmetric pulse
envelopes B1(t) of duration τp, the complex-valued solution M⊥ = Mx +

iMy to Eq. 1.29 right after the pulse is found to be:

M⊥(τp, �x) = iγM0
z (�x)e

−iγGzzτp/2FT −1{B1}(γ-Gzz). (1.30)

The main result from this equation is that slice profile and pulse envelope
form a Fourier transform pair - under the small-tip-angle assumption. In
theory, this assumption seems to be good only for flip angles below 20 ◦;
notwithstanding, the above Fourier relation is in practice often acceptable
for flip angles up to 90 ◦ [96]. An approximately rectangular-shaped slice of
thickness Δz is therefore excited with an apodized pulse envelope mimick-
ing a sinc-function of frequency f = γ-/2GzΔz. This result is depicted in Fig.

8described for example in chapter 5.1.3.2 of [96].
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1.9. When slice selection is performed, it is useful to reduce the signal equa-
tion (Eq. 1.28) to a two-dimensional (2D) problem with �x ∈ V ⊂ R2, �k ∈ R2

and m̄(x, y) =
∫
z
m(x, y, z)dz. When the bar over m̄ is ignored 2D and 3D

imaging problems can be handled with the same notation.

Figure 1.9: Relationship of slice profile and pulse shape. Under the small-tip-angle
assumption and linear gradient fields employed, slice profile and pulse envelope
form a Fourier transform pair. Note that the Fourier relation is not valid for high flip
angles. In this case, no analytic solution to the Bloch equations exists and therefore
numerical methods must be used to establish the exact relationship between pulse
shape and slice profile.

1.2.4 Basic Imaging Sequences

An important part of MRI research is devoted to the development of various
imaging sequences; i.e., the definition of RF and gradient pulse shapes and
the timing of signal reception. In the context of this thesis, only two of the
most basic imaging sequences are considered: the gradient echo [53] and the
spin echo [56, 59]. Extensive information regarding sequence design is found
in the textbook of Bernstein et al. [10].

a) Gradient Echo

The (two-dimensional) gradient echo is a very simple imaging sequence.
With Cartesian sampling, k-space is traversed as depicted in Fig. 1.8a.
The corresponding pulse sequence is presented in Fig. 1.10a: After slice
selection, a phase encoding step brings the k-space vector to the desired
position. From this position a line in k-space is read out with a gradient
of a fixed amplitude. In contrast to single-shot imaging, an RF-transmit
pulse is played out for each acquired k-space line with the repetition time
TR. This ensures reduced signal dephasing, which is due to magnetic field
inhomogeneities, mainly caused by susceptibility differences, which have
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been ignored in the signal equation (cf. Eq. 1.27). For long echo times TE

(i.e., the time between RF pulse and center of signal readout) and long TR,
the resulting contrast is often referred to as the T ∗2 -contrast.

b) Spin Echo

An important advantage of a spin echo is that the effect of static magnetic
field inhomogeneities is eliminated. Whenever magnetic field inhomo-
geneities would deteriorate the image quality, a spin echo will produce
superior image quality. The imaging sequence is depicted in Fig. 1.10b.
In contrast to a gradient echo, two RF pulses are played out prior to data
acquisition. The effect of the second pulse is to reverse the signal dephasing
taken place since the application of the first pulse. Repetition time TR and
echo time TE (i.e., the time between the first RF pulse and the center of
signal readout) are chosen according to the desired imaging contrast. For
long TE and long TR the contrast is often referred to as the T2-contrast.

Figure 1.10: Two basic imaging sequences. (a) Gradient echo. (b) Spin echo.
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1.3 Parallel Imaging9

In the early years, only a single RF coil was used for MRI measurements.
From about 1990 on, initial experiments were performed with multi-coil
receiver arrays. Initially, such arrays were used to improve SNR [145]. The
potential of multi-coil arrays to accelerate MR image sequences [173, 135]
was recognized only in the late 1990s and since then research in the field of
parallel imaging has exploded. In this section, imaging with an RF array is
introduced, some of the most important implications of parallel imaging to
MRI are briefly discussed and the signal equation for multi-coil acquisitions
is presented.

1.3.1 RF-Receiver Array

Before the advent of multi-coil RF arrays, MRI scanners were typically
equipped with one large RF-volume coil. Such a volume coil is typically
designed to have a homogeneous sensitivity. This is beneficial because then
the coil is equally sensitive to all parts of a measured object. In contrast
to such homogeneous large volume coils, small RF coils, placed near the
surface of the object under examination, are not sensitive to the whole object.
Nevertheless, Roemer et al. realized in 1990 that such surface coils can be
useful in MRI when several of those surface coils are combined to an array
of coils surrounding the measured object (cf. Fig. 1.11a). Even though the
individual elements are only sensitive to a limited region of the imaging
volume (cf. Fig. 1.11b), the combination of all coils is sensitive to the whole
volume with a tendency of a higher sensitivity near the surface of the object,
and for field strengths above about 1T for human systems a high sensitivity
can also be observed at the center; this phenomenon is sometimes termed
dielectric resonance (see for example the root-sum-of-squares10 sensitivity
image in Fig. 1.11c). Fortunately, the sensitivity variations have proven to
be rather unproblematic in practice.

9In this thesis, the term parallel imaging (PI) is used in a broad sense. Sometimes, PI is
used in a narrower sense comparable to the term partially parallel imaging (PPI), typically used
to denote accelerated imaging with the help of an RF array. Here, however, PI refers to all
imaging experiments where data are acquired with several RF coils. PI is therefore defined
here as multi-coil imaging opposed to single-coil imaging.

10The root-sum-of-squares involves: (a) multiplication of each voxel value with its complex-
conjugate and (b) formation of a single image from the several coil images by summing up the
(squared) voxel values and (c) taking the square root of the formed single image.
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Figure 1.11: RF-receiver coil array with sensitivity maps. (a) Twelve-channel head
receiver coil array for a MAGNETOM Trio, A Tim System 3T, Siemens Healthcare,
Erlangen, Germany. (b) Four RF-coil sensitivity maps at 3T of the coil shown in (a),
where each map has been combined from three others. The maps were determined
by dividing images of each receiver channel, acquired with a homogeneous phantom,
by the corresponding RF-transmit field maps, which were measured similar to the
method described in [34]. (c) Root-sum-of-squares image of the RF-sensitivity
profiles.

It is an important feature of a receiver array that it consists of several coils,
each of which generating a separate signal - in parallel. Each signal channel
should provide as much independent information as possible. Thus, it is
important that the individual coils are not strongly coupled to each other.
RF-coil decoupling strategies (see e.g. chapter 3.4.2 in [90]) are therefore
of great interest to the RF engineer with important consequences for the
optimal coil geometries. At the same time, the coils should be placed as
near as possible to the measured object in order to enhance the SNR. These
and other concerns explain why modern whole-body MR scanners are often
equipped with a multitude of different RF-receiver arrays, where each array
is optimized for a different medical application. For example, there are
cardiac, spine or knee arrays. Another example is Fig. 1.11a, where a head
coil array is shown.

1.3.2 Implications of Parallel Imaging

Signal reception with several coils has the advantage over single-coil mea-
surements that each RF coil is sensitive in different object regions; thus,
an RF-receiver array provides spatial information in addition to gradient
encoding. And this additional information is not generated sequentially as
done with gradients, but in parallel; i.e., at the same time. Therefore, the
information gained with an array almost comes “for free”. The additional
information can be used in various ways. Some of the most important
implications to MRI are presented here.
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a) Increased SNR

In 1990, Roemer et. al presented in their seminal publication [145] that
parallel acquisition can significantly enhance the SNR of the reconstructed
images. The basic idea relies on an optimal combination of the different coil
images. An adequate optimization can be formulated as a reconstruction
problem and is therefore discussed in more detail in the next chapter, see in
particular the Remark on page 78.

b) Acceleration of MR Measurements

Even more important is that PI can be used to significantly accelerate MRI
scans. The duration of patient examination is not only a question of suffi-
cient resources or patient comfort. Among others, shorter measurements
significantly reduce motion artifacts. For single-shot techniques, such as EPI
[109] (also cf. chapter 3.4.2 in [212]), it is advantageous to shorten measure-
ments in order to reduce susceptibility artifacts. Also functional MRI [113]
profits from a higher temporal resolution such that even 3D single-shot
acquisitions become feasible.11 The usage of PI in this context has already
been suggested in the late 1980s and early 1990s [18, 70, 82, 88, 139]. Fur-
ther technological and theoretical developments in the late 1990s [173, 135]
leveraged the original ideas to the wide-spread acceptance of PI in research
and clinical environments. The role of PI for the acceleration of MR mea-
surements is best understood in the context of image reconstruction and is
therefore discussed in chapter 2.3, page 72ff.

c) Further Applications

Further applications of PI are reviewed in [90] including artifact removal
caused by coherent k-space inconsistencies and the reduction of motion
artifacts. Another interesting application of PI is the fast determination of
B0-inhomogeneities [175, 174]. In the context of parallel imaging, the pre-
sented PatLoc imaging concept can also be regarded as a further interesting
application of PI.

11A modern example of an ultra-fast 3D trajectory is found in [211].
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1.3.3 Signal Equation for Several Receiver Coils

When several receiver coils are considered in an RF array, cross-talk between
the coils can occur. With modern decoupling techniques, this cross-talk is
often reduced to a negligible level in high-quality receiver arrays and the
received signals behave nearly independently from each other. Therefore,
the signal equation derived for the single-channel case in Eq. 1.27 is valid
also in multi-coil arrangements. An array with Nc signal channels then
generates separate signals sα(�k):

sα(�kκ) =

∫
V

m(�x)cα(�x)e
−i�kκ�xd�x for all α = 1, . . . , Nc. (1.31)

The index κ has been introduced to indicate that only a finite number of
data points at �k = �kκ are stored for post-processing. The difference between
the individual signals results from the different spatial distributions cα(�x)
of the RF-coil sensitivities. Note that, even when the individual channels
cannot be regarded as being completely decoupled, the above equation is
still valid. If needed, the RF-coil sensitivities are measured in a separate
scan using the same hardware configuration. Therefore the cross-talk is
implicitly accounted for when the sensitivities are extracted from the data.
A detailed analysis of the effects that coupled RF coils have on MRI signals
and reconstructed images is found in [118], chapter 3, page 73ff.
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