
Chapter 7 ROBERT G. MILNE 

Immunoelectron Microscopy for Virus Identification 

1 Introduction 

I am going to discuss immunonegative staining-the immunoelectron microscopy 
(!EM) of virus (or other pathogen-related) particles in suspension-with only short 
excursions into the topic of immune reactions on or in thin sections, as these are 
considered elsewhere in this book. As the field has been thoroughly reviewed, what I 
shall say will be more an informal commentary than an exhaustive survey, and I 
shall not necessarily follow each statement by a precise citation, or attempt to 
mention all the interesting papers. In places I shall use the term "grid" to mean 
support film. 

As all those know, who have worked with viruses both in negative stain and in 
thin sections, resolution is much higher in negative stain, and intensity and fidelity of 
immunolabeling is also greater; you would never work with sections again if they did 
not furnish positional information that is lost when you make an extract. This loss 
means that in negative stain you can only work with structures that can be 
recognizcd out of context-virus particles, subviral components, or certain virus­
induced inclusions; perhaps also mycoplasmas or their fragments. However, 
sometimes the same structures can be recognized both in vitro and in situ; and with 
the advantage of immune labeling we can, with luck, identify an antigen in both 
contexts. In that case we can obtain both positional or contextual information as 
well as high-resolution details of structure or antigen location. An interesting 
technique that I will not discuss, but which may prove a valuable compromise, is 
immunonegative staining of thin cryosections. 

1.1 The early days 

As our symposium was held to celebrate 50 years of electron microscopy in plant 
pathology, and also in order to place today's methods in context, I would like to 
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remind you of some historical IEM landmarks. These were often the occasion for 
interesting reviews such as those of Williams (1954) [77], Valentine (1961) [71], 
Kleczkowski (1961) [31], Horne and Wildy (1963) [27], Lafferty and Oertelis (1963) 
[35], Horne (1967) [26], Almeida and Waterson (1969) [1], Ball (1971) [3], Doane 
and Anderson (1977) [17], and Milne and Luisoni (1977) [53]. There are also more 
recent commentaries [5,29,32,34,36,47,48,51,61,62,74]. 

It all began when two independent teams [2,64] examined mixtures of tobacco 
mosaic virus and its antiserum in the electron microscope. These preparations were 
without benefit of added contrast, and the microscopes were not very advanced, but 
the already known rod-shaped particles were seen to be specifically clumped and to 
be approximately doubled in thickness. 

Eighteen years passed before reports appeared of imaging individual antibodies 
attached to virus particles. The preparations in question were contrasted by metal 
shadowing, and clearly this technique did not offer sufficiently rewarding results. 
Valentine in 1961 [71] discusses negative staining of viruses and mentions anti­
bodies, but not until 1962 were negatively stained virus-antibody complexes 
reported [e.g.,28]. This kind of work culminated in the review of Almeida and 
Waterson [1]. 

2 Leaf-Dip Serology 

Leaf-dip serology [3,4] became popular with plant virologists because it was simple 
and reliably demonstrated serological reactions in the electron microscope by 
negative staining. However, the method was inherently flawed because it consisted 
in mixing together a sap extract from an infected leaf, the antiserum diluted in buffer, 
and the negative stain. Conditions were made worse because of two factors. First, 
the sap-antiserum mixture was dried on the grid before being negatively stained, and 
as we know now, negative stain helps to support structures as they dry, minimizing 
distortion and, especially, flattening. This is not to mention the sticky mess resulting 
from drying even diluted plant sap and serum down on the support film. 

Secondly, the serological reaction was reported to work much better in 
phosphate buffer (titer four two-fold steps higher) than in ammonium acetate buffer, 
but the latter was used since it sublimes on drying, whereas phosphate leaves 
crystalline deposits. A third factor working against the system was the use of PTA 
(neutralized phosphotungstic acid), although this was mixed with vanadomoly­
bdate. As was then already known in part [20], PTA disrupts the particles of some 
viruses, especially those held together by protein-nucleic acid interactions 
(examples: alfalfa mosaic, cucumber mosaic, geminiviruses) or those containing lipid 
(rhabdoviruses, spotted wilt). PTA may also give poor stain distribution and lower 
resolution than some other stains such as uranyl acetate [47,61,62]. 

However, Ball and Brakke were able to demonstrate relatively clear results; 
moreover they used the method to titrate antisera-the first quantitative use of 
electron microscopy in this way. 
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3 Immune Complexes from Ouchterlony Plates 

Meanwhile, in another part of the forest, a small but interesting development took 
place. Agar gel diffusion has long played a major part in virus diagnostics and 
titration of antisera, and the technique of cutting out the precipitin band, crushing 
the agar in a little buffer, and negative staining the immune complexes released has 
been reinvented several times. The first to describe the method were Watson et al. in 
1966 [76]. Examples from our laboratory were the finding that whole closterovirus 
particles (grapevine virus A, 800 nm modal length) could migrate through agar to 
form a clear band [12], and the separation of the spherical particles of white clover 
cryptic viruses 1 and 2 to form two distinct bands, using a mixed virus preparation 
and a mixed antiserum (Figs. 1-3); [E. Luisoni and R.G. Milne unpubl.; 8,9]. 

3.1 Clumping 

As we have seen, the classical approach to immunoelectron microscopy in vitro was 
to mix antigen and antibody, and detect the resulting clumps, which resemble those 
in Figs. 2 and 3 [see e.g., 50]. This method is little used now by plant virologists, as 
the clumping effect is sometimes nonspecific, especially if the preparation has been 
pelleted and resuspended. Moreover, it requires relatively large concentrations of 
virus to be effective. 

4 ISEM 

In 1973 K.S. Derrick published his "serologically specific electron microscopy" 
method [14; see also 6,16,24,59], which was later simplified, improved, and 
renamed more appropriately as immunosorbent electron microscopy (ISEM) 
[38,39,46,53,57,63]. 

In this method, the grid is coated with a dilution of the antiserum, and rinsed; 
there follows a trapping phase in which the virus preparation is incubated with the 
grid, and virus particles are bound (Figs. 4 and 5). Even perhaps more important, 
[39], the layer of antibody and other serum constituents inhibits non-specific 
binding of structures, other than the viral antigen, that may be in the preparation. 
The result is selective immuno-purification of the virus on the grid. 

It was also made clear [39] that when crude virus preparations are absorbed to 
grids without the benefit of ISEM, host constituents generally compete effectively 
with virus particles for an anchored site on the support film, so that many virus 
particles in the preparation are not retained on the grid. For similar reasons, coating 
grids with undiluted antiserum or indeed serum diluted less than about 1/1000 can 
inhibit efficient trapping, probably because with less diluted serum, proteins other 
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than the trapping antibodies preferentially occupy available sites on the support film 
[50]. 

In ELISA, antiserum coating times are of the order of 60 min or more, but with 
the strictly equivalent grid coating of the ISEM procedure, coating times of 5 min at 
room temperature have been shown to bind nearly all the effective antibody that 
is going to become attached [see 49]. This curiosity has not adequately been 
explained. However, with virus adsorption, the kinetics are different, and signifi­
cantly more virus may continue to be trapped for several hours. Trouble may come if 
the virus particles detach or become degraded during long incubations (say, over 
4 h). We routinely trap virus for only 15 min, while realizing that more could be had 
with longer incubation, if necessary. 

Standard conditions will often give a satisfactory response with ISEM, but to 
optimize the system, a number of buffers, ionic strengths, and pH values should be 
tested, for both the antibody coating and virus trapping steps [11]. Additives such as 
EDT A, reducing agents, polyethylene glycol, or polyvinylpyrrolidone should also 
be considered. 

The sensitivity of ISEM is generally comparable to that of ELISA, and it may 
detect 0.1-10 ng/ml of virus in volumes of a few /11 [see 61]. Where the particle is 
especially stable or conspicuous, or where ELISA backgrounds are troublesome, 
ISEM can be appreciably more sensitive than ELISA [see e.g., 45]; in other cases 
ISEM has been considerably less sensitive, probably because free viral coat protein 
in the preparation competes in binding to the antibody-coated grid [46,74]. 

An undeniable problem with ISEM for mass screening is its labor-intensive 
nature compared with ELISA. An advantage that hardly needs promoting to this 
readership is: seeing is believing. Just a very few virus particles observed on the grid 
give a clear positive result; this avoids the ELISA dilemma of trying to decide 
whether a given low level of absorbance above background is positive or not, and 
also avoids the requirements for a number of controls necessary to the ELISA test. 

~---------------------------------------------------------------

Figs. 1-3. A gel double-diffusion plate (1, x 4) showing two bands resulting from interaction 
ofa mixture (upper well W) of white clover cryptic viruses 1 and 2 (WCCV1, WCCV2) and an 
antiserum to both viruses (lower well). The bands from this plate were each cut out and 
crushed in buffer; material from the extracts was then adsorbed to grids and negatively stained 
in uranyl acetate. The lower band contained exclusively clumps ofthe more rapidly diffusing 
WCCVl (ca, 30nm in diameter 2) and the upper band contained only clumps ofWCCV2 (ca, 
38 nm in diameter, 3). Note that the relative positions of the bands also depends on the 
antigen/antibody ratios used in the test. Bars = 100 nm. 1 courtesy of Dr. E. Luisoni 

Figs. 4 and 5. Crude sap of a plant infected with Ourmia melon virus (OuMV) was adsorbed 
for 15 min to an untreated grid (4) or a grid precoated with OuMV antiserum diluted 1/1600, 
for 5 min (5). With limiting amounts of virus, the difference in particle counts was of the order 
of 10000 times [41]. The one particle found on a 400-mesh grid square (41) is arrowed. 
Bar = 100nm 
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4.1 Protein A-ISEM 

It had been known for some time that protein A had the specific capacity to bind 
to the Fc portion or "tail" of certain IgG's, but Shukla and Gough in 1979 [23,65J 
were the first to use this property in the context of ISEM, and show that trap­
ping efficiencies could be thereby improved. When a grid coated with protein A is 
incubated with antiserum, the IgG's are trapped with their active Fab portions 
exposed. Thus we have both selection and orientation. Experiments in several 
laboratories (see reviews cited above) have shown that in practice the increased 
sensitivity obtainable with protein A (increase in numbers of particles trapped from 
a given preparation by a given antiserum) is really significant only when the 
concentration of virus is not limiting. 

However, using protein A we can largely overcome the inhibitory effect of using, 
for coating, antisera that have not been highly diluted. The ability to use less diluted 
sera means that those of low titer can be used more effectively. (A similar result is 
obtained if the IgG fraction is isolated and used for coating). A second benefit is that 
a wider spectrum of heterologous antigens can be detected by ISEM using protein A 
[38, 75]. 

4.2 ISEM with dsRNA 

Derrick [15J extended the ISEM technique to the detection of double-stranded 
RNAs. The method has been used to detect circular dsRNAs in viroid-infected 
plants [21J, and to trap a dsRNA-containing mycovirus from Agaricus bisporus 
[13]. In our laboratory, some preliminary attempts to trap dsRNA's were not 
encouraging, but further work should be done, as there is reason to believe the 
method can work. 

---------- ~ 

Fig. 6. Mixture of purified tobacco necrosis virus (TNV) and tomato bushy stunt virus 
(TBSV) absorbed to the grid, then treated with a saturating level of antibodies to TBSV. The 
TNV particles have remained clean, with sharp outlines, although antibody molecules are 
seen in the background. Bar = 100 nm 

Fig. 7. A natural mixture of potyviruses from the wild European perennial cucurbit Bryonia 
cretica. The decorated particles have reacted with an antiserum to "white bryony mosaic 
virus" -supposed at that time to have been a carlavirus [see 55]. Note that one particle (near 
the center) is longer than normal and is free of antibody in part; such particles were not 
infrequent and probably arose by end-to-end aggregation of two virus particles from a mixed 
infection (or fragments of them) bearing different coat proteins. The phenomenon, detected 
only by EM decoration tests, also occurs with closteroviruses and may be responsible for 
anomalous transmission of one virus by vectors normally specific for another [see 56]. 
Bar = 100nm 

Fig. 8. a-f A panel of maize rough dwarf virus (Reoviridae) B-spiked subviral particles. All 
but the particle in e, which was untreated, were decorated with antiserum specific for the 
B spikes. Bar = 100nm 
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5 Decoration 

The clear advantages but also the evident defects of leaf-dip serology led Milne and 
Luisoni [52, 53J to develop the decoration method, only to discover later that they 
had been elegantly preempted by two groups working on bacteriophage structural 
proteins [70,78]. In this method, the virus particles (or other structures) are first 
absorbed to the grid under whatever conditions are optimal for that process, and the 
grid is rinsed (a) to remove unwanted salts, proteins, sugars, impurities or buffers, 
and (b) to set up conditions which are optimal for the next phase: attachment of 
antibody to the virus. After antibody attachment, the grid is again rinsed, and then 
stained, usually with uranyl acetate. By separating and optimizing each step, much 
clearer, more sensitive, and more consistent results are obtainable, and since each 
virus particle is, ideally, well separated from the others, interpretation ofthe image is 
simplified (Figs. 6-8). 

Uranyl acetate has worked satisfactorily in our hands, although the pH (about 
4.2) seems close to that which would cause antigen-antibody separation. However, 
fixing the reacted particles with glutaraldehyde before applying uranyl acetate does 
not make any difference. It is interesting that a final rinse of the particles, before 
staining, with very slightly acidified distilled water, will immediately remove the 
decorating antibody-which however remains in place if the decorated particles 
have been fixed. 

Decoration has become a popular method of identifying plant viruses, mainly 
because the result is (or should be) unequivocal and direct (Figs. 6,7). Of all serolog­
ical methods it is one of the most easily and safely interpreted because you see the 
virus particle and you see the antibody attached to it -and where the antibody is 
attached. False positives and false negatives are rare, though with some viruses and 
especially with poor or preliminary antisera, clear interpretation may not be 
possible in the murky preparations that result. 

The localization of proteins on the surface of virus particles has been elegantly 
demonstrated by decoration in a number of cases. Yanagida and Ahmad-Zadeh 
[78J determined the position of certain gene products on the capsid of phage T4, and 
similar beautiful work was done by Tosi and Anderson [70J with phage 29. Luisoni 
et al. [44J, as part of the serological analysis of the capsids of Fijiviruses 
(Reoviridae), showed that the B spikes and the inner capsids could be decorated with 
specific antisera (Fig. 8). Fukuda et al. [22J demonstrated the initiation ofTMV rod 
assembly near the 3' terminus of the RNA, by beginning encapsidation with the 
protein of one strain and completing it with the serologically different protein of 
a second strain. A similar approach earlier allowed Otsuki and Takebe [58J to 
demonstrate mixedly coated virus particles in protoplasts doubly infected by strains 
ofTMV. 
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5.1 ISEM Plus Decoration 

A natural step, once ISEM and decoration were established techniques, was to 
combine them [53], since ISEM cleans and concentrates the virus, presenting an 
optimized field for the decoration step (Figs. 10-12). Even where the numbers of 
virus particles are not limiting, ISEM is a very useful preliminary to decoration [see 
for example 54]. 

A further advantage of combining ISEM with decoration is that different 
antibodies can if desired be used for each phase. For example, a mixed antiserum to 
white clover cryptic viruses 1 and 2 was employed to trap both viruses from the 
crude sap of carrier plants, and antiserum to virus 2 was then used to decorate that 
virus but not the other, and show them to be distinct [8]. Similarly, a mixture of 
three cryptic viruses from hop trefoil (Medicago lupulina) was differentiated, 
although not all the viruses could be separated, and not all the relevant monovalent 
antisera were available [43]. Fukuda et aI., referred to above [22], also trapped their 
mixedly coated TMV particles by ISEM before decorating them with the 
differentiating antisera. 

Despite the above, the decoration technique is often (even usually) done badly, 
and then results are both less beautiful and less informative. The main problems 
(apart from human factors) may be among the following: poor antisera, insufficiently 
thorough washing steps, poor support films (e.g., use of uncarboned plastic films), 
use of PTA, drying of the grid before negative staining, or even persistence in the use 
of the classical but outmoded leaf-dip serology. Roberts [61,62] has good advice on 
how to avoid these and other pitfalls. 

One problem common to all serological tests, but sometimes easy to overcome 
using glutaraldehyde fixation, is that of antigenic change in the virus particle. It has 
become increasingly clear that viruses, especially perhaps filamentous ones, may be 
subject to partial hydrolysis in vitro or even in vivo, with consequences for the 
preparation of antisera and for their subsequent use. Shukla et ai. [66,67] 
have described the all too easy removal of the antigenically specific N-terminal 
end of potyvirus coat proteins, whereas Koeing et ai. [33] described similar 
hydrolysis of the coat protein of a potexvirus. In vivo coat protein hydrolysis can be 
responsible for failures and anomalous results in the detection of bean yellow mosaic 
potyvirus in gladiolus [69], and antigen breakdown has been described in a mite­
transmitted potyvirus [37]. Such problems are more likely with long incubation 
times involving unrinsed sap preparations, and may be responsible for the patchy or 
inconsistent appearance of decoration sometimes reported. 

5.2 Quantitative Decoration 

As we have seen, Ball and Brakke [3,4] used leaf-dip serology to titrate antisera. The 
decoration method, being an improvement on leaf-dip serology, facilitates such 



96 Robert G. Milne 



Chapter 7 Immunoelectron Microscopy for Virus Identification 97 

titration (Figs. 10-12), which can be done, from preparation to observation, easily 
within one hour [49]. Yet, unfortunately, the number of workers using decoration 
quantitatively are few whereas those using it as a yes/no measure of relationship are 
many. 

5.3 Double Decoration 

If the first decorating antibody (say, rabbit anti-plum pox virus) is followed by a 
second (this could be sheep anti-rabbit IgG), and the complex is negatively stained, 
then the particles, originally thin, pale and difficult to see at low magnification, 
become thickened and blackened so that they are easily noted, even at only 5000 x 
enlargement [30]. The stain penetrates among the attached antibodies and gives the 
virus particle a highly contrasted coat. The method is useful for rapid diagnosis, 
especially by unskilled electron microscope operators or those working with an old 
or low-performance instrument. 

5.4 Gold Labeling 

As noted by Cristoforo Colombo, "Gold is the most exquisite of things. Whoever 
possesses gold can acquire all that he desires in the world. Truly, for gold he can 
gain entrance for his soul into paradise". While electron microscopists might 
express themselves differently, we can see what he means. Some examples of de­
coration enhanced by the use of gold-labeled antibodies can be cited [5, 7, 18, 19,25, 
40, 42, 60, 72, 73]. 

Generally, the approach has been to decorate the antigen with the primary 
antibody (say, rabbit anti-virus) and follow this with either a second, gold-labeled 
antibody (for example, 5 nm gold-goat anti-rabbit) (Fig. 9), or with gold-labeled 
protein A. Louro and Lesemann [42J noted that gold labeling could carry the 
decoration titer four twofold dilution steps higher than was possible without the 
gold, although in our laboratory we would claim an increase of only two twofold 
steps. 

Apart from the increase in sensitivity, however, the gold label has the great 
advantage of being easily and exactly identifiable, whereas what constitutes a trace 

~ ----------~-----------

Fig. 9. A plum pox potyvirus particle adsorbed from infected apricot leaf sap (without IS EM) 
after extraction in buffer containing 2% polyvinylpyrrolidone (Me 40 000) as protect ant. The 
particles were decorated with a 1/2000 dilution of antiserum, followed by gold labeling using a 
1/100 dilution of goat anti-rabbit IgG-Snm gold (Janssen). Bar = 100nm 

Figs. 10-12. Preparation of OuMV particles trapped by ISEM as in Fig. 5, then decorated 
with different dilutions of the same antiserum: 1/32 (10), 1/256 (11) and 1/512 (12). The 
decoration titer of this antiserum was 1/1024. Bar = 100 nm 
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of unlabeled decorating antibody could be a matter of opinion, and certainly 
becomes so if the preparation and electron microscopy are not of a high standard. 
Where particular, localized epitopes are being identified, as, for example, those 
exposed at one end ofTMV rods, only a very few antibody units (perhaps one) can 
attach to the site, and this is an ideal situation in which to exploit gold labeling [18]. 
GLAD (gold-labeled antibody decoration) has been effective in screening mono­
clonal antibody-secreting clones for antibodies to plum pox virus [25]. 

6 Mycoplasma-Like Organisms 

Antibodies against MLO's, both monoclonal and polyclonal, are now becoming 
available, and methods are being developed to exploit such antibodies in taxonomy 
and diagnostics. Corn stunt spiroplasma has been detected by ISEM [16], and since 
then a number of MLO's have been revealed by this method [see 68]. We ha ve used a 

Figs. 13 and 14. Gold labeling (5 nm gold-goat antimouse) of primula yellows MLO in thin 
sections and in vitro with a monoclonal antibody from M.F. Clark. 13 shows pre-embedding 
labeling of glutaraldehyde-fixed phloem tissue, followed by osmium fixation and classical 
Epon embedding. 14 shows a partially purified MLO preparation osmotically Iyzed, trapped 
by ISEM, and decorated with gold. A highly labeled fragment (presumably MLO tissue) is 
seen together with unlabeled (presumed host) materials. 'Healthy' preparations gave no 
labeling above the rather low background. Bars = 100 nm 
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monoclonal from M. F. Clark [10] to label primula yellows MLO in thin sections 
(Fig. 13) using a pre-embedding labeling technique (R. G. Milne and R. Lenzi 
unpubl.) and have also labeled MLO fragments trapped by ISEM from partially 
purified primula yellows preparations (R. G. Milne and R. Lenzi unpubl.; Fig. 14). 

Gold labeling of MLO's using embedding and sectioning methods is discussed 
elsewhere in this book. Our attempt to trap and label MLO fragments directly on 
grids was successful (Fig. 14), but the method requires further development, and we 
had less success in trapping intact MLO bodies. We need to be able to trap 
morphologically recognizable MLO's, not only fragments, and of course gold-label 
them convincingly. The technique should then become very useful, as it will be 
simple and not take more than an hour or two to perform. 

7 Conclusion 

This review has left many topics unexamined, but has attempted to touch on the 
major ones, and to discuss some areas where improvement is possible or progress is 
being made. My overall impression, however, is that immunoelectron microscopy of 
in vitro preparations (as opposed to thin sectioning) needs a new stimulus. It 
comprises a very useful, and indeed often used, collection of techniques, but they 
have become routine. I hope that this conference and similar ones will, as often 
happens, make contacts and produce stimuli that lead to something new. 

Acknowledgment. I thank Vera Masenga and Riccardo Lenzi for technical assistance with 
some of the work described, and Dr. Michael Clark for MLO-infected plants and anti-MLO 
antibodies. 
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