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Abstract. In an implicit authentication system, a user profile is used
as an additional factor to strengthen the authentication of mobile users.
The profile consists of features that are constructed using the history of
user actions on her mobile device over time. The profile is stored on a
server and is used to authenticate an access request originated from the
device at a later time. An access request will include a vector of recent
features measurements on the device that will be matched against the
stored features to accept or reject the request. The features however in-
clude private information such as user location or web sites they have
visited. In this paper we propose privacy-preserving implicit authentica-
tion which achieves implicit authentication without revealing unneces-
sary information about the users’ usage profiles to the server. We propose
an architecture, give formal security models, and propose constructions
with provable security. We consider two security models, namely for cases
where the device behaves semi-honestly or maliciously.

Keywords: Implicit Authentication, User Privacy, Homomorphic En-
cryption, Provable Security, Behavioural Features.

1 Introduction

In mobile applications such as mobile commerce, users often provide authenti-
cation information using Mobile Internet Devices (MIDs) including cell phones
and notebooks. In most cases however, password authentication is the primary
method of authentication. The weaknesses of password-based authentication sys-
tems, including widespread usage of weak passwords, have been widely studied
(see e.g. [25] and references within). In addition to these weaknesses, limita-
tions of user interface on MIDs results in an error prone process for inputting
passwords, encouraging even poorer choices of password by users.

To strengthen authentication, two-factor authentication has been proposed.
The second factor, when based on extra hardware such as SecureID tokens,
have additional cost and limit their wide application. An attractive method of
strengthening password systems is implicit authentication [13] which effectively
adds a second factor to authentication. The idea is to use the history of device
usage to construct features, that are used to provide a second factor for verify-
ing an access request from a user with a claimed identity. Experiments in [13]
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showed that features extracted from device history can be effectively used to
distinguish users. Although the approach is applicable to any computing device,
it is primarily used to enhance security of mobile users carrying MIDs.

The user profile includes private information including (i) device data, such
as GPS location data and WiFi/Bluetooth connections, (ii) carrier data, such as
information on cell towers connected to the device, or Internet access pattern,
and (iii) cloud data, such as calendar entries. The profile is stored at the carrier to
ensure that a compromised device cannot be used to impersonate the legitimate
user. This profile however includes private and potentially sensitive user data,
that must be protected.

The aim of this paper is to address this problem: we propose an efficient
method of privacy preserving implicit authentication systems, and model and
prove its security.

We consider a network-based implicit authentication system where user au-
thentication is performed collaboratively by the device (the MID), and the car-
rier (network service provider). Application servers will use the result of this
authentication to grant access to users and do not directly participate in the
authentication protocol.

Our implicit authentication protocol generates a score that will be used to
accept to reject the user. The score is obtained through secure two party com-
putation between the device and the carrier. User data is encrypted and stored
at the carrier and is used by the interactive protocol to compute the authen-
tication. Data privacy against a semi-honest carrier is guaranteed because the
user data is stored in encrypted form. Calculating the score is by a specially
designed secure two party computation protocol. Secure two party protocols can
be implemented through general constructions using secure circuit evaluation,
e.g. [27,11], or fully homomorphic encryption [9]. These general constructions
however will be inefficient in practice.

Because no data is stored on the MID, user data stays protected even if the
device is lost or stolen.

1.1 Our Contributions

The main contribution of this paper is proposing a profile matching function that
uses the statistics of features to accept or reject a new sample presented by a user,
and providing a privacy preserving protocol for computing a score function for
a newly presented data. We assume the user profile is a vector of features, each
corresponding to a random variable, (V1, . . . , Vn), with an associated probability
distribution. The distribution of Vi is stored as the set of values of the variables
in the last �i successful logins. A new login attempt generates a vector of values,
one for each feature. The verification function must decide if this vector indeed
has been generated by the claimed user. Our proposed verification algorithm
takes each feature separately and decides if the presented value is from the
claimed user. The final verdict is reached by combining the decisions from all
features. To determine if a new value presented for a feature vi matches the model
(stored distribution of the feature), we will use a statistical decision making
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approach that uses the Average Absolute Deviation (AAD) of the distribution.
We use AAD to define an interval around the read value vi given by [vi −
AAD(Vi), vi + AAD(Vi)] and determine the concentration of the stored values
in the user profile that falls within this Interval: if the number is higher than a
specified threshold, then the authentication algorithm accepts the reading. AAD
and standard deviation are commonly used measures for estimating the spread
of a distribution. Our verification algorithm effectively measures similarity of
the presented value with “most common” readings of the variable. Using AAD
allows more efficient private computation.

Constructing User Profiles. A user profile is a feature vector (V1, . . . , Vn), where
feature Vi is modelled by a vector of �i past samples. The vector can be seen
as a sliding window that considers the latest �i successful authentication data.
Using different �i is allowed for better estimation of the feature distribution.
Possible features are the frequency of phone calls made or received by the user,
user’s typical locations at a particular time, commonly used WiFi access-points,
websites that the user frequently visits, and the like. Some features might be
dependent on other ones. For example, given that the user is in his office and it
is lunch time, then there is a higher chance that he receives a call from home.
We do not consider dependence of features and in selecting them make special
care to select those that appear independent.

We note that usage data such as application accesses and past WiFi connec-
tions could enhance performance and usability of the device and applications.
However to use such data securely as part of the authentication system, the data
must be stored securely at the carrier to be protected from malicious parties who
may get hold of the device. In practice a user can be given a choice to use certain
device-collected data for authentication and so for such data.

Privacy-Preserving Authentication. All user profile data is stored in encrypted
form on the carrier and the decryption keys are only known by the device.
To find the authentication score for each feature, the device and the carrier
have to perform a secure two-party computation that outputs the authentication
score to the carrier, and nothing to the device. We propose a 3-round protocol
between the device and the carrier that allows the carrier to “securely” calculate
the score. To provide the required efficiency, we have to sacrifice some privacy
in the sense that although the actual data samples are not leaked, the protocol
does expose structural information related to the relative order of data samples.
We give a formal definition of this notion of privacy which guarantees that no
information other than the relative order of samples is revealed by a secure
protocol. We then prove the security of the protocol, according to the definition,
against semi-honest adversaries.

The paper is organized as follows. We discuss the related work in the field of
behavioural authentication in Section 1.2. Section 2 contains the preliminaries
needed for our scheme. System architecture, the adversarial model, and a ba-
sic implicit authentication protocol not guaranteeing privacy are presented in
Section 3. We give details of our proposed protocols for semi-honest and ma-
licious devices in Section 4. Security proofs and a detailed discussion on the
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efficiency of our proposed protocol are provided in the full version of this paper
[21].

1.2 Related Work

The privacy problem in implicit authentication was noted in [13]. The three
approaches proposed for enhancing privacy are: (i) removing unique identifier
information; (ii) using pseudonyms; and (iii) using aggregate data instead of fine
grained data. All these methods however have limited effectiveness in protect-
ing users’ privacy while maintaining usefulness of the system. It is well known
that user data with identification information removed can be combined with
other public data to re-identify individuals [24], and fixed pseudonyms does not
prevent linkability of records [15]. Finally coarse aggregates result in inaccurate
authentication decisions.

Further discussion on related work e.g. on privacy-preserving biometric sys-
tems [16,18,19,22] and implicit authentication systems using accelerometers [6],
gait recognition [14], user location [5,23,7,4], and fingerprints [26] can be found
in full version of this paper [21].

2 Preliminaries

Our constructions use homomorphic encryption and order preserving symmetric
encryption. In the following we first give an overview of these primitives.

Homomorphic Encryption (HE). We use here an additive homomorphic public
key encryption scheme [20,8] which supports addition and scalar multiplication in
the ciphertext domain. Let EHE

pk (·) denote such an encryption algorithm. Given

encryptions of a and b, an encryption of a+ b can be computed as EHE
pk (a+ b) =

EHE
pk (a) � EHE

pk (b), where � represents an efficient operation in the ciphertext
space. The existence of the operation� enables scalarmultiplication to be possible
in the ciphertext domain as well; that is, given an encryption of a, an encryption of
ca can be calculated efficiently for a known c. To simplify the notation, we use+ for
both the operations + and �. As an instantiation, we use Paillier Cryptosystem
[20,8] in which EHE

pk (x+y) = EHE
pk (x)EHE

pk (y) and EHE
pk (cx) = EHE

pk (x)c. Paillier
Cryptosystem is semantically secure under the decisional composite residuosity
assumption [20,8].

Order Preserving Symmetric Encryption (OPSE). Order preserving symmetric
encryption (OPSE) was introduced in [3]. A function f : D → R is order preser-
ving if for all i, j ∈ D: f(i) > f(j) if and only if i > j. A symmetric encryption
scheme having plaintext and ciphertext space D,R is order preserving if its en-
cryption algorithm is an order preserving function from D to R for all keys;
i.e., an OPSE maps plaintext values to ciphertext space in such a way that the
order of the plaintext values remains intact. The construction provided in [3] has
been proven secure in the POPF-CCA (pseudorandom order preserving function
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against chosen-ciphertext attack) model. More details on the security model and
encryption system are given in the full version of this paper [21].

Secure Two-Party Computation. In a secure two-party computation, two parties
A and B with private inputs x and y, respectively, compute a function f(x, y)
ensuring that, privacy and correctness are guaranteed. Privacy means that nei-
ther A nor B learns anything about the other party’s input. Correctness means
that the output is indeed f(x, y) and not something else. To formalize security
of a two-party protocol, the execution of the protocol is compared to an “ideal
execution” in which parties send their inputs to a trusted third party who com-
putes the function using the inputs that it receives. Informally, a protocol is
considered secure if a real adversary in a real execution can learn “the same”
amount of information as, or can “change the protocol output” not more than
what an ideal adversary can do in the ideal model.

Security of two-party protocols is considered against different types of adver-
saries. In the semi-honest model (a.k.a. honest-but-curious model), the adversary
follows the protocol specification but tries to learn extra information from the
protocol transcript. A malicious (a.k.a. dis-honest) adversary however follows
an arbitrary strategy (bounded by polynomial time algorithms) and can deviate
from the protocol specification.

There are a number of generic constructions for secure two party computation,
e.g. [27,11], however they have proven to be too inefficient in practice, specially
in resource-restricted devices. An alternative approach to realize specific secure
two-party protocols is based on homomorphic encryption (HE). In this approach,
one party sends its encrypted inputs to the other party, who then computes the
specific desired function in the encrypted domain using the homomorphic proper-
ties of the encryption system. Paillier’s additively homomorphic cryptosystem
[20] and Gentry’s fully homomorphic scheme [10] are the commonly used tools
in this approach.

Average Absolute Deviation. In our protocol we use a model of feature compari-
son that uses average absolute deviation. The median of a data set is the numeric
value separating the higher half of distribution from the lower half. The average
absolute deviation (AAD) of a data set is the average of the absolute deviations
and characterizes a summary of statistical dispersion of the data set. For a set
X = {x1, x2, . . . , xN} with a median denoted by Med(X), AAD is defined as

AAD(X) := 1
N

∑N
i=1 |xi −Med(X)|.

Notation. Throughout the paper we use EHE
pk and DHE

sk to denote the encryption
and decryption algorithms of a homomorphic encryption scheme such as Paillier
Cryptosystem with public and secret key pair (pk, sk). For the OPSE algorithm
we use EOPSE

k and DOPSE
k to refer to the encryption and decryption with key

k. Key generation algorithms are denoted by KeyGenHE and KeyGenOPSE,
respectively for HE and OPSE schemes.
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Fig. 1. The System Architecture

3 System Model

Fig. 1 gives the working of the system we consider in practice. The authentication
process is between the device and the carrier. In a typical scenario, an application
server receives a service request from a device. The user information is forwarded
to the carrier that will engage in the authentication protocol with the device.
At the completion of the protocol, the results are sent to the application server,
and if successful, the device (user) will receive the requested service.

The focus of this paper is on the device and carrier authentication. We assume
other communication channels are secure and the information will be communi-
cated safely across these channels. User data is stored in encrypted form at the
carrier. The device records user’s data, encrypts it and sends it to the carrier.
No data used to develop the user profile in implicit authentication is stored on
the device. This ensures that if the device is compromised, the adversary cannot
learn the user profile and simulate its behaviour.

We only consider the data that is collected by the device to be included
in the user profile. The information collected by the carrier is known to the
carrier and is not included. Selection of an appropriate set of features that allow
distinguishability of users is outside the scope of this paper. The goal of this
paper is to provide privacy for user features that are used as part of the user’s
profile.

Trust Assumptions and the Adversarial Model. We assume that the carrier cor-
rectly follows the protocol but may try to learn the users’ data. This is a rea-
sonable assumption given the stature and reputation of carriers and difficulty
of tracing the source of data leakage. We assume the device is used by the user
for a period of time before being compromised. This is the period during which
the user profile is constructed. We consider two types of adversaries. Firstly, we
consider a less sophisticated adversary that tries to use a stolen device with-
out tampering with the hardware or the software and so the device is assumed
to follow the protocol. This also corresponds to the case that the authentica-
tion program resides in a tamper proof [12,17] part of the device and cannot be
modified by the adversary and so a captured device follows the protocol but takes
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input data from the adversary. We assume the program can be read by the
device holder, but cannot be changed. In the second case, the device behaves in a
malicious way and may deviate from the protocol to succeed in an authentication
scenario.

In both cases the system must guarantee privacy of the user: that is, neither
the carrier nor the adversary in possession of the compromised device should
learn the user’s profile data. A stolen device used by an active malicious user
must also fail in authentication.

3.1 Authentication without Privacy

A user profile consists of features. A feature is a random variable that can be
sampled by the device and in combination with other features provides a reliable
means of identifying users. We denote feature i by the random variable Vi that is
sampled at each authentication request, and if the authentication is successful, is
stored by the carrier and used as part of the distribution samples for evaluation
of future authentication requests. The variable distribution for the i-th feature is
approximated as Vi = (vi(t1), vi(t2), . . . , vi(tli)). Here, vi(tj) is the feature value
at time tj and li is a system parameter. As discussed before, we only consider
independent features.

The user profile U is a tuple of features; that is U := (V1, V2, . . . , Vn),
where n is the total number of features. A sampled feature vector is denoted
as (v1(t), v2(t), . . . , vn(t)) where vi(t) is the current instance of the variable Vi.
Given a user profile and a new set of measured samples (for features), the scoring
algorithm first calculates individual feature scores, and then combines them to
generate a total score which is compared to a threshold. Authentication is con-
sidered successful if the score is higher than the threshold. The scoring algorithm
works as follows.

We assume the final authentication score is obtained as a combination of
authentication scores that are calculated for each feature separately. The scoring
function for each variable estimates if the new sample belongs to the distribution
that is represented by a set of samples from previous successful authentications.
For a feature Vi we define our scoring function as follows:

si(t) = Pr[ bil(t) ≤ Vi ≤ bih(t) ], where

bil(t) = vi(t)− AAD(Vi) and bih(t) = vi(t) + AAD(Vi) .

Here, AAD(Vi) represents the average absolute deviation of data in the set Vi.
The probability Pr[ bil(t) ≤ Vi ≤ bih(t) ] is approximated by counting the

number of elements of Vi that fall between bil(t) and bih(t) and dividing the
count by the number of all elements, i.e. li.

As will be shown in Section 4, the choice of AAD(Vi) allows the carrier to
perform the required computation on encrypted data. The scoring function esti-
mates the likelihood of the new sample belonging to the distribution by counting
the number of the previously recorded values of a feature that conform with, i.e.
are within a determined interval of, the new sample.
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To obtain the combined score of n features, various methods might be used
depending on the authentication policy. A simple and popular method in this
regard is the weighted sum of the scores as a(t) := w1s1(t)+ · · ·+wnsn(t), where
wi represents the weight assigned to the i-th feature and a(t) is the combined
authentication score.

In summary, the authentication protocol proceeds as follows: The carrier has
a user profile which consists of the sample distributions of the user features. The
device sends a set of sampled behavioural data to the carrier. The carrier retrieves
the sample distribution for each feature and calculates the feature scores. Then
it combines the individual feature scores and compares the combined score with
a threshold to make an authentication decision.

4 Privacy-Preserving Authentication

At the heart of the authentication protocol is the score computing algorithm. It
basically takes two inputs: the stored distribution and the fresh device sample,
and it produces a feature score. All the computation takes place at the carrier
side, given the two inputs above, where the former is stored by the carrier, and
the latter is provided by the device. Both inputs are in plaintext. In this section,
we focus on this algorithm and provide a two-party score computing protocol
that is able to calculate the feature score from encrypted profiles stored at the
carrier and encrypted fresh samples provided by the device, where the keys to
encryptions are only known to the device.

We chose to provide private protocols for score computation on the feature
score level, as opposed to the combined score level, for two reasons: first, different
carriers might have different authentication policies, and hence different score
combination formulas, and our formulation choice leaves the choice of combina-
tion method open; second, we consider it an overkill to require that the carrier
only finds out about the combined score and nothing about the individual scores,
and indeed solutions for such an overkill are likely to be inefficient for practice.

In the following we propose a protocol between a device and a carrier that
enables the carrier to calculate a feature score for the device, while provably
guaranteeing that no information about the stored profile at the carrier is re-
vealed to the device other than the AAD of the stored feature values, and no
information about the fresh feature value provided by the device is revealed to
the carrier other than how it is ordered with respect to the stored profile feature
values.

4.1 A Protocol Secure against Honest-but-Curious Adversaries

Let HE = (KeyGenHE, EHE , DHE) be a homomorphic encryption scheme,
such as Paillier, and OPSE = (KeyGenOPSE , EOPSE , DOPSE) be an order-
preserving symmetric encryption scheme. The protocol ΠPI we propose consists
of four phases: system setup, precomputation, authentication, and AAD update.
The protocol works as follows:
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System Setup. Performed once for each device,KeyGenHE and KeyGenOPSE

are run to generate the HE key pair (pk, sk) and the OPSE key k2. Public
parameters of the two encryption systems HE and OPSE, including pk, are
communicated to the carrier.

Precomputation. At any point during the life of the system, the carrier has

stored an accumulated user profile containing
(
EHE

pk (vi(tj)), E
OPSE
k2

(vi(tj))
)
for

j = 1, . . . , li. Before the start of the authentication protocol, the carrier precom-
putes EHE

pk (AAD(Vi)) as follows. It first computes:

EHE
pk ( AAD(Vi) · li ) =

li∑

j=1

∣
∣EHE

pk (vi(tj))− EHE
pk (Med(Vi))

∣
∣ ,

where Med(Vi) denotes the median element of Vi and can be found using the
OPSE ciphertexts stored in the profile. Then the constant factor li is removed
using the scalar multiplication property of the homomorphic encryption HE. In
Paillier cryptosystem, this is done by raising EHE

pk (AAD(Vi) · li) to the power of

l−1
i , where l−1

i is precomputed once and stored along with li as system parame-
ters.

Authentication. Device samples the features (i.e. user data) using its modules.
For each feature value vi(t), 1 ≤ i ≤ n, at time t, device computes a pair
of encrypted values, ei(t) = ( EHE

pk (vi(t)), E
OPSE
k2

(vi(t)) ). The HE ciphertext
allows the carrier to perform necessary computations, namely addition and scalar
multiplication, in the encrypted domain, while the OPSE ciphertext helps the
carrier find the order information necessary to the computation.

Device sends ei(t) values to the carrier. Using these values, carrier calculates
EHE

pk (bil(t)) and EHE
pk (bih(t)) as follows:

EHE
pk (bil(t)) ← EHE

pk (vi(t))− EHE
pk (AAD(Vi))

EHE
pk (bih(t)) ← EHE

pk (vi(t)) + EHE
pk (AAD(Vi))

where Vi = {vi(t1), . . . , vi(tli)} and EHE
pk (AAD(Vi)) is pre-computed as dis-

cussed.
Carrier however does not know the order of the newly generated encrypted

values with respect to the stored ciphertexts in the user profile. To find the order,
carrier interacts with the device: carrier first sends EHE

pk (bil(t)) and EHE
pk (bih(t))

(for all features) back to the device. Device decrypts the ciphertexts using the
decryption function DHE

sk and gets bil(t) and bih(t), and then encrypts the result
to find cil(t) = EOPSE

k2
(bil(t)) and cih(t) = EOPSE

k2
(bih(t)), respectively, using the

OPSE scheme. Device sends cil(t) and cih(t) back to the carrier.
Carrier computes the individual score si(t) as the number of the OPSE ci-

phertexts EOPSE
k2

(Vi) in the profile that satisfy cil(t) ≤ EOPSE
k2

(Vi) ≤ cih(t). Note

that this condition is equivalent to bil(t) ≤ Vi ≤ bih(t).
The same process is used for all features. The final authentication score is then

calculated using the score combination method, e.g. the weighted sum method
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described earlier. Finally, the final calculated score determines if implicit au-
thentication is successful or not. If implicit authentication is not successful, the
device is challenged on an explicit authentication method, e.g. the user is logged
out of a service and prompted to log in anew by providing a password.

AAD Update. If implicit authentication is successful, or if it is unsuccessful
however the device subsequently succeeds in explicitly authenticating itself, then
the AAD needs to be updated using the new encrypted features provided in the
authentication phase. The current feature history includes a vector of size li. The
new feature is added to this vector first, and then, depending on the carrier’s
strategy, the oldest feature might be discarded to keep the vector size constant.
In both cases, recalculating the AAD only needs constant-size differential cal-
culations and there is no need to recompute AAD from scratch (which instead
would be linear in the size of the vector). The reason is that when the median
is shifted, for almost half of the existing feature values, the absolute deviation
increases by the difference of the old and new medians, and for almost all of the
rest of the existing feature values, the absolute deviation decreases by the same
value, and these almost totally cancel each other out. Only a few calculations
are needed eventually to account for the few that do not cancel out, plus the
possible discarded feature, and the new feature.

Complexity. We discuss the computation complexity of the precomputation, au-
thentication, and update phases of our protocol in the full version of this paper
[21]. We implement Paillier and OPSE to confirm computation benchmarks in
the literature, and calculate concrete running times for our protocol. In partic-
ular, we show that authentication takes less than 300 milliseconds on a typical
device as a background process, and hence our protocol is able to protect user
privacy with an insignificant computation overhead cost.

Security. We discuss the security of our protocol considering honest-but-curious
devices and carriers in the full version of this paper [21]. We provide a formal
definition of privacy for our protocol against honest-but-curious devices and car-
riers. The definition intuitively guarantees that by participating in the protocol,
the device only learns the AAD of the usage data stored at the carrier side, and
the carrier only learns little beyond the order information of the current sample
with respect to the stored data. We argue that the AAD and order information
learned during the protocol reveal little about the actual content of the data in
question, and hence our definition guarantees a high level of privacy. Eventually,
in the full version of this paper [21], we prove the following theorem guaranteeing
the privacy of our protocol:

Theorem 1. Protocol ΠPI is provably secure against honest-but-curious devices
and honest-but-curious network carriers.

4.2 Securing the Protocol against Malicious Devices

In the above version of the protocol, secure against honest but curious adver-
saries, in the authentication phase the carrier interacts with the device as follows:
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the carrier sends homomorphic ciphertexts EHE
pk (bil(t)) andEHE

pk (bih(t)) to the de-
vice and the device is expected to reply back order-preserving ciphertexts of the
same plaintexts, i.e. EOPSE

k2
(bil(t)) and EOPSE

k2
(bih(t)). These order-preserving

ciphertexts are subsequently used to compare the values of bil(t) and bih(t) in the
order-preserving ciphertext space with the feature values and find out how many
feature values lie between bil(t) and bih(t). However, a malicious device cannot
be trusted to return correctly formatted order-preserving ciphertexts. In the fol-
lowing, we propose a modified version of the protocol secure against malicious
devices. We call this modified version ΠPI∗.

First, we note that the device cannot be forced to use an honest feature value
vi(t) to start with. In the absence of a trusted hardware such as tamper-proof
hardware, the device may enter the interaction with the carrier on any arbitrary
input. Even with the recent advances in smartphone technology, e.g. ARM’s
TrustZone [1], the device cannot be prevented to change the sensor readings
unless the whole algorithm is run in the so called Trusted Execution Environ-
ment (TEE). However, the device can be required to show that the ciphertext
EHE

pk (vi(t)) is well-formed. To enforce this requirement, we require that the de-
vice sends an interactive proof of knowledge of the corresponding plaintext vi(t)
along with the ciphertext EHE

pk (vi(t)). Proofs of knowledge of plaintext exist for
most public key encryption schemes. For Paillier encryption, a concrete proof
protocol can be found in [2], which can be made non-interactive using the well-
known Fiat-Shamir heuristic.

Apart from inclusion of the above proof of knowledge, further modification is
required to make the protocol secure against malicious devices. The main idea
here is as follows: instead of asking the device for order-preserving ciphertexts,
the ability to interact with the device is used to directly compare bil(t) and bih(t)
with the feature values, only using the homomorphic ciphertexts. In each round
of interaction bil(t) (resp. bih(t)) is compared with an element of the feature
vector. The relative position of bil(t) (resp. bih(t)) within the elements of the
feature vector can be hence found in log li rounds of interaction following a
binary search algorithm.

Assume that in one round the carrier wishes to compare bil(t) with vi(tj). The
carrier has homomorphic encryptions of both, i.e. EHE

pk (bil(t)) with EHE
pk (vi(tj)),

and hence can calculate EHE
pk (bil(t)−vi(tj)). The carrier is interested in knowing

whether bil(t)−vi(tj) is positive, negative, or zero. The carrier chooses k random
values and encrypts them using the homomorphic encryption scheme. It also
randomises EHE

pk (bil(t) − vi(tj)) using scalar multiplication by either a positive
or a negative random blinding factor. The carrier finally shuffles all the k +
1 ciphertexts, including the k random cipheretxts and the blinded version of
EHE

pk (bil(t)−vi(tj)), and sends them all to the device. The device decrypts all the
received ciphertexts and replies back to the carrier with k+1 responses indicating
whether each of the received ciphertexts decrypt to a positive, negative, or zero
plaintext. The carrier knows what the response should be for the k random
ciphertexts. Hence, it will first check whether all such responses are as expected.
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If they are, then the carrier deducts whether bil(t) − vi(tj) is positive, negative,
or zero, by reversing the effect of the random blinding factor.

The idea in the above interaction is that since all the k + 1 challenges look
random (and hence indistinguishable) to the device, a malicious device has at
most 1

k+1 chance of cheating and not getting caught. k is a parameter of the
protocol and controls a trade-off between complexity and security. The larger k
is, the less chance there is for a malicious device to cheat, but at the same time
the higher the complexity of the protocol is.

Note that even if the device manages to cheat and not get caught, it does
not gain any meaningful advantage in impersonating a legitimate user since the
bil(t)−vi(tj) value is blinded before being sent to the device. Blinding changes the
sign of the bil(t)−vi(tj) value with 50% probability. A malicious device therefore
is not able to tell which behaviour, being honest or cheating, works in its favour.

Complexity. We discuss the computation complexity of the modified protocol
in the full version of this paper [21]. In particular, we show that an authentica-
tion failure is discovered in less than 4 seconds after the first feature reading is
reported by the device.

Security. We discuss the security of our protocol considering malicious devices
in the full version of this paper [21]. We provide a formal definition of privacy
for our protocol against maliciously-controlled devices. The definition intuitively
guarantees that even if the device is maliciously controlled, it will not be able to
learn any information more than what it would learn during an honest execution
of the protocol. Eventually, in the full version of this paper [21], we prove the
following theorem guaranteeing the privacy of our protocol:

Theorem 2. Protocol ΠPI∗ is provably secure against maliciously-controlled
devices (with probability at least k

k+1), and is provably secure against honest-
but-curious carriers.

Conclusion

In this paper we proposed a privacy preserving implicit authentication system
that can calculate authentication score using a realistic scoring function. We
argued that using user behaviour as an additional factor in authentication has
attractive applications. We showed that by relaxing the notion of privacy, one
can construct efficient protocols that ensure user privacy and can be used in
practice. The low computation and communication complexity of our proposed
protocol in the case of semi-honest adversary makes it executable almost in
real-time for carrier and modern MIDs. We also provided a modification to the
basic protocol to ensure security in the case of a malicious device. Our proposed
protocol in this case, has a complexity that grows logarithmically with the size
of the user profile. We argued that this translates into a reasonable time-frame
for implicit authentication with protection against malicious devices. A complete
implementation of the system will be our future work.
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