An Information Flow Monitor-Inlining Compiler
for Securing a Core of JavaScript

José Fragoso Santos and Tamara Rezk

Inria
{firstname.lastname}@inria.fr

Abstract. Web application designers and users alike are interested in
isolation properties for trusted JavaScript code in order to prevent confi-
dential resources from being leaked to untrusted parties. Noninterference
provides the mathematical foundation for reasoning precisely about the
information flows that take place during the execution of a program. Due
to the dynamicity of the language, research on mechanisms for enforcing
noninterference in JavaScript has mostly focused on dynamic approaches.
We present the first information flow monitor inlining compiler for a re-
alistic core of JavaScript. We prove that the proposed compiler enforces
termination-insensitive noninterference and we provide an implementa-
tion that illustrates its applicability.

1 Introduction

Client-side JavaScript programs often include untrusted code dynamically loaded
from third-party code providers, such as online advertisers. This issue raises the
need for enforcement mechanisms that isolate trusted code from code that comes
from untrusted sources. Such mechanisms must prevent trusted programs from
leaking confidential resources. Noninterference [13] is an expressive and elegant
property that formally defines secure information flow, thus being commonly
used as a soundness criteria for dynamic and static analyses that aim at enforcing
secure information flow.

Due to the dynamic nature of JavaScript, research on mechanisms to check
the compliance of JavaScript programs with noninterference has mostly focused
on dynamic approaches. In practice, there are two main approaches for imple-
menting a JavaScript information flow monitor: either one modifies a JavaScript
engine so that it additionally implements the security monitor (as in [9]), or
one inlines the monitor in the original program (as in [7,11]). The second ap-
proach, which we follow, has the advantage of being browser-independent. We
present the first compiler that inlines an information flow monitor for a subset
of JavaScript that we call Core JavaScript. Core JavaScript includes the main
standard features of the language, such as objects with prototypical inheritance
and closures, as well as non-standard features, such as several unusual ways for
interacting with the global object — a special object that binds global variables.

The proposed compiler is proven sound w.r.t. a standard definition of input-
output termination insensitive noninterference for monitors. In this setting, at-
tackers are assumed to be unable to observe the contents of intermediate memory

N. Cuppens-Boulahia et al. (Eds.): SEC 2014, IFIP AICT 428, pp. 278-292, 2014.
© IFIP International Federation for Information Processing 2014

An Information Flow Monitor-Inlining Compiler 279

states or use divergent executions as a means of disclosing confidential resources.
Informally, we prove that the execution of a compiled program only goes through
if it is noninterferent; otherwise, the constraints inlined in the program by the
compiler cause it to diverge. The paper is divided into two main sections. Sec-
tion 2 presents an information flow monitored semantics for Core JavaScript that
is proven sound, i.e. proven to enforce termination-insensitive noninterference.
Section 3 presents an inlining compiler that rewrites Core JavaScript programs in
order to simulate their execution in the monitor. The compiler is proven correct,
meaning that the execution of a program goes through in the monitor if and only
if the execution of its instrumentation by the inlining compiler goes through in
the original semantics. We have implemented a prototype of the proposed com-
piler, which is available via at [1] together with a broad set of examples and a
full version of this paper that includes the proofs of the main theorems.

1.1 Core JavaScript Syntax and Semantics

The syntax of Core JavaScript is given in Figure 1. Some expressions are anno-
tated with one or two unique indexes for use by the compiler, which are omitted
when not needed. In the examples, we use o.p as an abbreviation for o[“p”].
Objects are the fundamental data type in JavaScript. Informally, an object can
be seen as a collection of named values. At the semantic level, we model objects
as partial functions from strings, taken from a set Str, to values. JavaScript
values comprise: (1) primitive values (taken from a set Prim), (2) object ref-
erences (taken from a set Ref), and (3) parsed function literals (for which we
use the lambda notation: Az.var y1,- -+, yn;e). Prim includes strings, numbers,
and booleans, as well as two special values null and undefined. The strings in
the domain of an object are called its properties. Some properties are internal
and therefore can neither be changed nor read by programs. For clarity, these
properties are prefixed with an “@Q”. Every expression that creates an object in
memory yields a free non-deterministically chosen reference that points to it.
Hence, references can be viewed as pointers to objects. Given an object o, we
use #o to denote the reference that points to it. Finally, a memory u is a partial
mapping from references to objects.

Notation. We use the notation: (1) [pg +— vo,- - ,pn > vy,] for the partial func-
tion that maps py to vg, ..., and p, to v, resp., (2) f[po— vo, - ,Pn — Uy
for the function that coincides with f everywhere except in pg, ..., pn, which
are otherwise mapped to vp, ..., v, resp., (3) f|p for the restriction of f to P
(provided it is included in its domain), and (4) f(r)(p) for (f(r))(p), that is, the
application of the image of r by f (which is assumed to be a function) to p.

Function Calls and Variables. As in JavaScript, we model scope via scope o0b-
jects [2,10]. Every function call triggers the creation of a scope object which
maps its formal parameter as well as the variables declared in its body to their
corresponding values. A scope object is said to be active if it is associated with
the function that is currently executing. Furthermore, every scope object defines

280 J. Fragoso Santos and T. Rezk

en= v value | function®(zx){var y1,--- ,yn; e} function literal
| this’ this keyword | {}* object literal
| eo op’ e1 binary operation | eo(er)’ function call
| «* variable | eolei](e2)’ method call
| x=e variable assignment | eg, e sequence
| eole]’ property look-up | eo 7% (e1) : (e2) conditional
| eolei] = ez property assignment
e, eg, e1 and es represent expressions, ¢ and j represent program indexes, X, Y1, ..., Yn

represent variable names, and op represents binary operators.

Fig. 1. Syntax of Core JavaScript

a property @scope that points to the scope object that was active when the
corresponding function literal was evaluated.

The sequence of scope objects that can be accessed from a given scope object
through the respective @Qscope properties is called a scope-chain. The global 0b-
ject, which is assumed to be pointed by a fixed reference #glob, is the object that
is at the end of every scope-chain and therefore it is the object that binds global
variables. In order to determine the value associated with a given variable, one
has to inspect all objects in the scope-chain that starts in the active scope object.
This behavior is modeled by the semantic relation Rscopeif (1,70,) Rscope T1,
then r; is the reference that points to the scope object that is closest to the one
pointed by rp in the corresponding scope-chain (whose objects are in the range
of p) and which defines a binding for variable z.

Function Literals and Variable Assignments. The evaluation of a function literal
yields a reference to an object, called a function object, that stores its parsed
counterpart. More specifically, since every function is executed in the environ-
ment in which the corresponding function literal was evaluated, every function
object defines the following two properties: (1) @Qcode that stores the parsed func-
tion literal and (2) @fscope that stores the reference that points to the scope
object that was active when the corresponding function literal was evaluated.
Assuming that the global object defines a variable out originally set to null, the
evaluation of the program presented below on the left yields the value 0 and
creates in memory the list of objects displayed below on the right:

(function(z){ 0 = [@scope — #glob, z — 0, g — 04, h — op]
var g, h; 0d = [@scope — #00, x> 1]
g = function(z){h(2)}, ol = |@scope — #03,y — 2]
h = function(y){out = z}, 09 = [Qcode — Ax.var g, h;é, @fscope — #glob]
g(1) 0g = [@code — Az.h(2), @Qfscope — #02]
H(0); on = [Qcode — Ay.out = z, @fscope — #0]]

where (1) 02, 09, and o" correspond to the scope objects associated with the
invocation of the anonymous function, of function g, and of function h, respec-
tively, (2) objects 0o, 04, and op, correspond to their respective function objects,
and (3) é corresponds to the body of the anonymous function. After the execu-

tion of this program, the global object maps out to 0 and not to 1, because the

An Information Flow Monitor-Inlining Compiler 281

scope object that is closest to o and which defines a binding for is 0! and not
09 (which does not belong to the scope-chain of o).

Object Literals and Property Look-ups. Core JavaScript features prototypical
inheritance. This means that every object (except scope objects and function
objects) defines a property prot that stores a reference to its prototype. When
trying to look-up the value of a property p of an object o, the semantics first
checks whether p € dom(o). If p € dom(o), the property look-up yields o(p),
otherwise the semantics checks whether the prototype of o defines a property
named p, and so forth. The sequence of objects that can be accessed from a
given object through the respective prot properties is called a prototype-chain.
The prototype-chain inspection procedure is emulated by the semantic relation
Rproto- U {t,7,m, Iy X) Rproto (1, 0), then 1 is the closest reference to r in its
corresponding prototype-chain (whose objects are in the range of 1) that defines
a binding for m (we ignore, by now, the remaining elements of the relation, since
they are used by the monitored semantics and not by the original semantics). The
evaluation of an object literal yields a free non-deterministically chosen reference
that points to a new object that only defines a property prot originally set to
null. Hence, the evaluation of og = {}, 0oo.p =0, 01 = {}, 01. prot = o0p, 01.p
yields 0, because, although 07 does not define property p, its prototype does.
When looking-up the value of a property p in an object o, if p is not defined in
the whole prototype-chain of o, instead of yielding an error, the semantics yields
undefined. Therefore, the expression o = {}, 0.p evaluates to undefined.

Method Calls and the this Keyword. Functions whose references are assigned to
properties of an object are called its methods. A function can be either invoked
as a normal function or as a method. When calling a function as a method, the
this keyword is bound to the corresponding object, otherwise it is bound to the
global object. Therefore, every scope object defines a property Qthis (that was
omitted in the first example) that holds the value of the this keyword in that
scope. We further remark that given an object o, every method m accessible from
o through its prototype-chain can be called as a method of o. Hence, suppose
that in a memory g, the global object defines two variables o9 and o3 that hold
references to [prot — null, f — #oy] and [prot — #og] respectively, where
#oy is the reference of a given function object. In the evaluation of expression
01.f(0), the semantics starts by creating a scope object in which property @this
is set to #01 and then proceeds with the evaluation of the body of f.

The remaining program constructs have the usual semantics, which can be
understood from the formal definition. We make use of a big-step semantics
for Core JavaScript with the following shape: r F ((u,€)) U (¢, v)), where
r is the reference of the active scope object, p and p’ are the initial and final
memories respectively, e the expression to be evaluated, and v the value to which
it evaluates. Due to space constraints we choose not to give its formal definition
here. Instead, we only present its monitored version, {;r (Figure 2). In order to
obtain |} from |};, one simply has to remove from | ;r the monitor constraints.

282 J. Fragoso Santos and T. Rezk

2 Monitoring Secure Information Flow

Specifying Security Policies. The specification of security policies usually relies
on two key elements: a lattice of security levels and a labeling that maps resources
to security levels. In the examples, we use £ = {H, L} with L < H, meaning
that resources labeled with level L (low) are less confidential than resources la-
beled with H (high). Hence, after the execution of a program, resources labeled
with H are allowed to depend on resources originally labeled with L, but not
the opposite, since that would entail an information leak. In the following, we
always assume that < and U correspond to the order relation and the least upper
bound on security levels respectively. A security labeling is a pair (I', X') where
I': Ref — Str — L maps each property in every object to a security level and
XY : Ref — L maps every reference to the structure security level [9] of the corre-
sponding object. Hence, given an object o pointed to by a reference r,, I'(r,)(p)
is the security level associated with o’s property p and X(r,) is the structure se-
curity level of o. Notice that, as every variable is modeled as a property of a given
scope object, I' also maps variables to their corresponding security levels, treat-
ing variables and properties uniformly. In the examples, we assume that variables
h and [are respectively labeled with levels H and L. The structure security level
of an object can be understood as the security level associated with its domain.
The need to associate a security level with the domain of every object arises be-
cause it is possible for a program to leak information via the domain of an object.
For instance, after the evaluation of o = {}, h ? (0o.p =0) : (null), | = o.p, the
final value of the low variable [depends on the initial value of the high variable
h. Precisely, when h € { false, 0, null, undefined}, property p is not added to the
domain of o and [is set to undefined, whereas in all other cases, both property p
and variable [are set to 0. Finally, we observe that initial memories are assumed
to include a global object for the binding of global variables. Accordingly, initial
labellings apply both to the global object as well as the objects that are initially
accessible through the global object.

Low-Equality. We introduce a notion of indistinguishability between memories
that models the “power” of an attacker that can only observe resources up
to a given security level o, called low-equality, denoted by ~g3 . Informally,
two labeled memories are low-equal at level ¢ if they coincide in the resources
labeled with levels < o. Since references are non-deterministically chosen we
need to be able to relate observable references in two different memories. To this
end, we parametrize the low-equality relation with a partial injective function
B : Ref — Ref [5] that relates observable references. The low-equality definition
relies on a binary relation on values, named S-equality and denoted by ~g. 3-
Equality: two objects are ($-equal if they have the same domain and all their
properties are S-equal, primitive values and parsed functions are S-equal if they
are equal, and two references ro and r; are S-equal if B(rg) = ry.

In the following, given a property labeling I', a reference r, and security level
o, we denote by I'(r)|,, the set of observable properties in I'(r) at level o:

Ir)le ={p| I'(r)(p) <o}

An Information Flow Monitor-Inlining Compiler 283

Definition 1 (Low-Equality ~3,). Two memories pio and p1 are said to be
low equal with respect to (Iv, Xo) and (I't, X1), security level o, and function p,
written po, o, Yo ~p,o w1, 11,21, iff for all references ro,r1 € dom(B) such that
r1 = B(ro), the following holds: (1) The observable domains coincide: I'y(ro)|o =
Ii(r1)]e = P. (2) The objects coincide in their observable domains: po(ro)|p ~g
ui(r)|p. (83) Either the domains of both objects are not observable, or they are
both observable and completely coincide: (Xo(ro) < oV Xi(r1) < o) = Xo(ro) U
21(r1) < o Adom(uo(ro)) = dom(pi(r)).

Monitored Semantics. The rules of the monitored semantic relation, {;r, defined
in Figure 2, have the form r,op. & (e, I, X) Jrp (W v, I, X' o), where oy
is the security level of the execution context, (I, X') and (I, X’) are the initial
and final labellings, and o is the reading effect of e [13]. The remaining elements
keep their original meaning in |}. The reading effect of an expression is defined
as the least upper bound on (1) the levels of the resources on which the value
to which it evaluates depends and (2) the level of the current context, op.. The
monitored execution of an expression e can be interpreted as an extension of the
unmonitored execution of e that additionally performs the abstract execution
of e on the abstract memory given by I'. Hence, the computation of I and o
precisely mirrors the computation of p' and v. The monitored semantics makes
use of a relation R newScope, Which models the storing of a new scope object in
memory. Hence, if (u, I', X, 7¢,Varg, Tthis, Ope; Carg) RNewScope {1y, I, X', 1!, 0pe),
then: (1) ' and (I, X’) are the memory and labeling obtained from p and
(I, X) by the allocation of the new scope object in the free reference r’; (2)
is the reference to the function that is going to be executed, e its body, varg
the argument to be used, o, the level of the context in which the function was
invoked, 04,4 the reading effect of the actual argument, and 7445 the reference
to the object to be used as this; and (3) o,,. is the security level at which the
execution of e takes place.

Among the possible techniques to design a purely dynamic sound informa-
tion flow monitor, we choose to follow the no-sensitive-upgrade discipline [3].
Essentially, the monitor blocks executions that try to upgrade the value of low
resources within high contexts. To illustrate the idea of this strategy, consider
the following program: h ? (I =0) : (null). Suppose that the monitor allows the
execution of this program to go through in an initial memory that maps h to
1 just raising the level of [to H (which constitutes a sensitive upgrade). If this
same program is executed in a memory that maps A to 0; in the final memory, I
is labeled with L and therefore it is visible. Hence, after executing this program
starting from two indistinguishable memories, we obtain two memories that are
distinguishable by an attacker at level L, meaning that the attacker has learned
something about the confidential resources of the program.

Function/Method Calls, Conditional Expressions, and Function Literals. The
only non-trivial part concerning the monitoring of these four types of expressions
has to do with how the first three update the level of the execution context in
which their subexpressions are evaluated. Observe that o,. must always be higher

284 J. Fragoso Santos and T. Rezk

than or equal to the security levels of the resources that were used to decide: (1)
which branch to take in a conditional expression whose code is still executing
and (2) which function/method to execute in a function/method call expression
whose execution is still being performed. E.g., consider the following expression:

f1 = function(z){l = 0}, fo = function(z){l=1},h ? (f = f1) : (f = f2),f() (1)

Since the final value of the low variable | depends on the original value of
the high variable h, this program does not abide by the security policy and is
therefore considered illegal. Hence, independently of the branch taken in the
execution of the conditional, in the evaluation of the corresponding expression,
the monitor must be aware that the decision to take that branch depends on the
value of a high variable. Analogously, when executing the body of the function
assigned to f, the monitor must be aware that the fact that it is executing that
function and not another does also depend on the value of a high variable. Hence,
ope must be upgraded to high both during the execution of the taken branch of
the conditional and during the execution of the body of the function bound to
f. Additionally, o, must also take into account the level of the context in which
the function literal corresponding to the function that is currently evaluating
was itself evaluated. Consider the expression:

f="h7? (function(z){l = 0}) : (function(z){l = 1}), f() (2)

This program is illegal because after its execution, depending on the value of
the high variable h, the low variable [can be either 0 or 1. To account for this
type of leak, when a function literal is evaluated the level of the current context
is stored in I'(ry)(@fscope). Hence, every time the corresponding function is
called, it is executed in a context whose level is set to be > I'(ry)(@fscope).

Variable Assignments and Property Updates. In accordance with the no-sensitive-
upgrade discipline, the monitor only allows a variable z (or a property p of an
object 0) to be upgraded in a context whose level is lower than or equal to its
current level: ope < I'(rpe)(z) (or ope < I'(#0)(p)). Therefore, considering the
expression given in Code Snippet (1), if f is a high variable, the assignments
inside the branches of the conditional are allowed to go through. However, the
assignment inside the body of the function bound to f is not, because the value
of the execution context is high, whereas the level of the variable that is being
updated is low. Notice, however, that, in the Rule [PROPERTY AsSIGNMENT] (for
the case in which the property to be assigned is defined), the constraint is not
ope < I'(#0)(p), but instead oplUoy < I'(#0)(p). Observe that, since the monitor
ensures that op. < 09 and oy, < 01, the latter constraint subsumes the former.
The need for this stricter constraint arises from the fact that in a property
assignment, the assignment that actually takes place depends on the reading
effects of (1) the expression that evaluates to the reference of the object of the
property to be assigned and (2) the expression that evaluates to the actual
property whose value is to be updated. Suppose, for instance, that variable o
holds an object only containing low properties. Then, even if o, is low, the

An Information Flow Monitor-Inlining Compiler 285

expression o[h] = 0 is illegal, because depending on the value of h, it updates
the value of a different low property. One cannot simply upgrade the level of the
property to which h evaluates to H because that would constitute a sensitive
upgrade, since for different values of h, an attacker at level L would see different
properties disappearing from the observable domain of o.

Property Look-ups, Property Creation Fxpressions, and Object Literals. When a
program looks up the value of a property p in an object o, if p & dom(o), the
security level associated with the property look-up expression must be equal to or
higher than the structure security level of o, because this property look-up leaks
information about its domain. In fact, since every property look-up searches the
prototype-chain of the corresponding object, the security monitor has to take
into account the structure security level as well as the level of property prot of
every object traversed during the prototype-chain inspection procedure (which
corresponds to o in (u,r,m, I',) Rproto (1, 0)). For example, given a memory:

w=[#o0— [p—1, prot — null],#o01 — [prot — #oo],F#glob — [01 — #o1]] (3)

and a labeling (I', X), such that I maps all properties in every object in the
range of p to L and X = [#o00 — L,#01 — H,#glob+— L], the reading effect of
the expression 01.p must be H, because it leaks information about the domain of
01 whose level is H. Naturally, when an object literal is evaluated, its structure
security level is set to the level of the execution context, because the creation of
the object is visible at that level. Finally, when creating a new property in an
object o, the monitor checks whether the structure security level of o (X (#0))
is at least as high as the reading effects of: (1) the expression that evaluates
to #o0 (0¢) and (2) the expression that evaluates to the name of the property
to create (o1). Recall that both oy and o1 are at least as high as the level
of the execution context. Hence, the monitor does also implicitly require that
ope < X(F#o0). To illustrate the need for these constraints, consider the expression
oo ={},o0 ={},h? (h=00): (h=o01),h.p = 0,1 = 01.p. This program is illegal,
as the final value of the low variable [depends on the original value of the high
variable h. In fact, since the level of h is not lower than or equal to the structure
security level of any of the two objects, the monitor blocks the property creation.

Noninterferent Monitor. We say that a security monitor is noninterferent iff it
preserves the low-equality relation. Informally, an information flow monitor is
noninterferent iff, for any program e, whenever an attacker cannot distinguish
two labeled memories before executing e, then the attacker is also unable to
distinguish the final memories.

Theorem 1 (Non-Interferent Monitor). For any expression e, memories
and ', respectively labeled by (I, X)) and (I, X'), reference r, security levels
ope and o, and function B s.t. u, I X =g, (', I, 2, ropc F {p,e, 1, 2) Ir1p
(pp,vp, Ly, Xy 0p), and B(r), opc F (W e, I, X7 Jrp (u},v},F},E},a}); then,
there exists a function 8 extending B s.t.: pp, Iy, Xy ~p » ,u}, F}, E}. Moreover,
if either oy < o or o} < o, then vy ~g V.

286 J. Fragoso Santos and T. Rezk

3 Monitor-Inlining

This section presents a new information flow monitor-inlining compiler for Core
JavaScript, which instruments programs in order to simulate their execution in
the monitored semantics presented in Section 2. This instrumentation rests on
a technique that consists in pairing up each variable/property with a new one,
called its shadow variable/property [7,11], that holds its corresponding security
level. Since the compiled program has to handle security levels, we include them
in the set of program values, which means adding them to the syntax of the
language as such, as well as adding two new binary operators corresponding to
< (the order relation) and U (the least upper bound).

In the design of the compiler, we assume the existence of a given a set of
variable and property names, denoted by Zo, that do not overlap with those
available for the programmer. In particular, the compilation of every indexed
erpression requires extra variables intended to store the corresponding value
and security level, to be later used in the compilation of other expressions that
include it. Hence, we assume the set of compiler variables to include two indexed
sets of variables {$ZAZ»}¢€N and {$0; }ien, used to store the levels and the values of
intermediate expressions, respectively. Given a variable z, we denote by $/, the
corresponding shadow variable. In contrast to variables, whose names are avail-
able at compile time, property names are dynamically computed. Therefore, we
assume the existence of a runtime function $shadow that given a property name
outputs the name of the corresponding shadow property. Given an expression e
to compile, the compiler guarantees that e does not use variable and property
names in Z¢ by (1) statically verifying that the variables in e do not overlap with
Z¢ and (2) dynamically verifying that e does not look-up/create/update proper-
ties whose names belong to Z¢. To this end, the compiler makes use of a runtime
function $legal that returns true when its argument does not belong to Z¢. For
clarity, all identifiers reserved for the compiler are prefixed with a $. By mak-
ing sure that compiler identifiers do not overlap with those of the programs to
compile, we guarantee the soundness of the proposed transformation even when
it receives as input malicious programs. Malicious programs try to bypass the
inlined runtime enforcement mechanism by rewriting some of its internal vari-
ables/properties. E.g., the compilation of the expression $i, = L, | = h fails, as
this program tries to tamper with the internal state of the runtime enforcement
mechanism in order to be allowed to leak confidential information. Concretely,
this program tries to transfer the content of h to [without raising the level of [
by setting the level associated with variable h to low.

Besides adding to every object o an additional shadow property $1,, for every
property p in its domain, the inlined monitoring code also adds to o a special
property $struct that stores its structure security level. Hence, given an object
0 = [p+— vg,q — v1] pointed to by r, and a labeling (I',), such that I'(r,) =
[p — H,q— L] and X(r,) = L, the instrumented counterpart of o labeled by
(I X)is 6 = [p > vo,q — v1, 81, = H,S$l, — L, $struct — L.

An Information Flow Monitor-Inlining Compiler

THIS
Tehis = p(r)(Qthis) Othis = 1'(r)(Qthis) U ope
7, 0pe b (o this, I, 2) brp (0, Tenis, I X, 0this)

VALUE
r,0pe b <#w1/~ I, E) brr (p,v, F72$[7P">

BINARY OPERATION
Ty Ope = </J‘$607F7 E) Urr <#0-1~‘0,Fu7 204,(70> Ty Ope = (MO,EL,FU,E@ Yir <M,’01, I, ELUl)

7, 0pc F (1,e0 op €1, I, 2) Yrr (p1,v0 op v1, I't, 1,00 U o)

VARIABLE ASSIGNMENT

VARIABLE r,ope b (e, 1,) Yrr (po, vo, To, o, 00) (1o, 7,) Rscope Tx
(,7,2) RScope T re 7 null rz 7 null ope < To(rz)(x)

v = p(ra)(z) o= I(r:)(x) Uope I =T [ra = To(ra) [z — o0]] w = o [re = po(rz) [x — vo)]

7y 0pe (2, I, 2) bir (p0, T, X, 0) rope E (ox=e,) Yir (' 00, I, Yo, 00)

PROPERTY LOOK-UP
7, 0pe E (pye0, I, 2) Yir (po, 70, [0, Xo, 00) 7, 0pe = o, €1, To, Xo) Yir (1, ma, I, Xy, 01)
i () (ma), o0 Uy Uo' UT(r')(ma)) if v’ # null
(u1,70,ma, I, Z1) Rproto (17, 07) (v.0) = { (undefined, oo U oy La') otherwise

r,0pe = (wyeolen], I, X) Ui (pa,v, I, 21, 0)

PROPERTY ASSIGNMENT
r,0pe = (py €0, I XY Y1r (10,70, o, o, 00) 7, 0pe = (po, €1, 1o, Xo) Yrr (u1,m1, I, X1, 01)
7, 0pe F (1, e2, I, X1) Uir (2, v2, I, $o, 02) I = Iy [ro — Ia(ro) [m1 — oo Uor U]
w = o [ro + pa(ro) [m1 +— v2]] mi1 € pa(ro) = oo Uoy < In(ro)(ma) m1 & p2(ro) = oo Uor < Xa(ro)

7, ope (1, eoler] = ea, I 2) Urp (v, I, 2o, 02)

287

(pa, Ie, X2, 75,v2,70,00 U o1 U I (1) (m1) Uom, 02) RNewsScope (i, €, 1, X, F, 0pc)

FUNCTION LITERAL OBJECT LITERAL
ry & dom(p) w' = pry > [@fscope > r,Qcode — Az.€]] ro & dom(p) 1= pifro — [prot_— null]]
I'" =T [ry — [@fscope = ope, Qcode — opc]] X' =Z[rs v+ ope I'" =T [ro = [prot_+ ope]] X' =X [ro = opel
r,0pe = (u, function(z){e}, I, X) Yrr (1 1y, Iy 5 0pe) roope (AL T 2) bir (1710, Ty 52 0pe)

FuncTioN CALL
7, 0pe b (py €0, I, X) B (po,70, To, Yo, 00) — 1,0pe (o, €1, o, Xo) drr (pa, 01, 11, X, 01)
(u1, I, X1, 70, v1, #glob, 00, 1) Ryewscope (fiy € Iy 3,7, Gpc) 7y 6pe (1,6, 1, 2) Ui (W0, I, X' o)
7 0pe F (uyeo(er), I, Y)Y brr (00, 17, 2 o)

METHOD CALL

7, 0pe b (uye0, I,) Yir (po,70, 1o, Xo,00) 1,0pe = (o, €1, o, o) brr (1, ma, I, X1, 01)
7, 0pe b (1, €2, I, 1) bir (p2,v2, T2y Yo, 02) - (p2,r0,ma, I, X2) Rervoto (tmyom) 7y = pia(rm)(ma)

7y Gpe b (1,6, 1,) buwe (10,1, 5, o)

r,ope F (pyeole](e2), I, XY brr (W0, 17, 5 0)

SEQUENCE
7, 0pe b (1, €0, I,) Yrr (10, vo, Lo, Xo, 00) r,0pe F (1o, e1, Io, Xo) brr (u1,v1, I, Z1,01)
7y ope B (1, (€0, 1), Ty X) Ubrr (p2,v1, I, 21, 01)

CONDITIONAL
N . Ao A . . 0if o 0, false, undefined, null
1o b (8, 1 5) baw (0,0, 8,6) = {1 010, f }

r0pe UG E (e, 1, 8) Yir (0, T, o)
rope b (18?7 (eo) s (e1), I, 2) bar (W0, I, X, 0)

NEw Score
7 = p(ry)(@fscope) Az.{var y1,- - ,yn; e} = p(ry)(Qcode) v’ & dom(u) Ope = 0pe U T (ry)(@fscope)
,u' =p [r/ — [Qscope +— 1,z > Varg, Y1 — undefined, - ,yn — undefined, Qthis — r,;m]] y=x [r/ — 0;6}
r'=r [7" — [@scope > aémz — D';,,_. U Garg, Y1 = cr;,c, e Yn a",(,,@this — a;,LH

7 =
(i, I, 2,75, Varg, Tthis, Opes Oarg) RNewscope (e, I, X7 0pc)

Fig. 2. Monitored Core JavaScript Semantics

288 J. Fragoso Santos and T. Rezk

Formal Specification. The inlining compiler is defined as a function C, given in
Figure 3, that expects as input an expression e and produces a tuple (&, i), where
¢é is the expression that simulates the execution of e in the monitored seman-
tics and 4 an index such that, after the execution of é, $0; stores the value to
which e evaluates in the monitored semantics and $I; its corresponding reading
effect. Besides the runtime functions $shadow and $legal, the compiler makes
use of (1) a runtime function $check that diverges when its argument is different
from true, (2) a runtime function $inspect that expects as input an object and
a property and outputs the level associated with the corresponding prototype-
chain inspection procedure, and (3) an additional binary operator hasOwnProp
that checks whether the object given as its left operand defines the property
given as its right one. During the evaluation of the instrumented code, the level
of the execution context, o, is assumed to be stored in a variable $pc. To this
end, function literals are instrumented in order to receive as input the level of
the argument and the level of the context in which they are invoked. Func-
tion/method calls are instrumented accordingly. Furthermore, the instrumented
code of a function/method call must have access to both the return value of the
original function/method and the level that is to be associated with that value.
Therefore, every function literal returns an object that defines two properties:
(1) a property $v where it stores the return value of the original function and
(2) a property $I where it stores the level to be associated with that value. Each
compiler rule precisely mimics the corresponding monitor rule. However, the
compiler must also keep track of the variables in which the security level and the
value of the expression to compile are stored during execution. This is done by
assigning the value to which the expression evaluates to a new variable $4; and
the security level to a new variable $l;. The compilation of every variable/prop-
erty assignment and sequence expression does not introduce additional variables
because the corresponding value and reading effect are already available in the
indexed variables introduced by the corresponding subexpressions.

Correctness. Definition 2 presents a similarity relation between labeled memories
in the monitored semantics and instrumented memories in the original semantics,
denoted by Sg. S requires that for every object in the labeled memory, the
corresponding labeling coincide with the instrumented labeling (except for some
internal properties whose levels can be automatically inferred) and that the
property values of the original object be similar to those of its instrumented
counterpart according to a new version of the S-equality called C(8)-equality.
This relation, denoted by ~¢(g), differs from ~g in that it relates each parsed
function with its corresponding compilation and in that it allows the domain of
the instrumented object to be larger than the one of the original object.

Definition 2 (Memory Similarity). A memory p labeled by (I', X) is similar
to a memory (' w.r.t. B, written (u, I, X) Sg 1, if and only if dom(8) = dom(u)
and for every reference v € dom(B), if o = p(r) and o = p'(B(r)), then
X(r) = o ($struct) and for all properties p € dom(o)\{@scope, Qthis, Qcode},
o(p) ~e(s) o' (p) and T(r)(p) = o'(81,)

An Information Flow Monitor-Inlining Compiler 289

VALUE
é=8$l; =8pc, $0;, =v
C(v') = (é,1)

VARIABLE .
z & Io é=8l; =8%pcUSl,, $0; =2
Cla') = (&)

Tuis
é=$l; = $pc, $0; = this
C(this")y = (é,1)

BINARY OPERATION
Cleo) = (f0,4) Cler) = (é1,k)

VARIABLE ASSIGNMENT .
z ¢ Ic Cle) = (¢,4) é=¢c', $check($pc < $l.), $l. = $l;, = = $0;
Clx =e) = (é,1)

PROPERTY LOOK-UP

Cleo) = (0, k) Cler) = (1,4) eren = $I; = $Ix U $I; U $inspect($oy, $0;)
é=éo, é1, Scheck($legal(30;)), erev, $0; = $0x[$0;]

Cleolen]'y = (&,4)

PROPERTY ASSIGNMENT

Cleo) = (€0, 1) Cle1) = (é1,7) Clea) = (é2,k)
Cens = $: hasOwnProp $0; 7 ($check($i, s, < $i [$shadow($o,)])) : ($check($z} usi; < $o,.$stmct))
¢ = e, e1, éa, Scheck($legal($0;)), eens, $0i[$shadow($0;)] = $i; U Si; U $ik, $0:[$0,] = Son,

Cleoler] = e2) = (&, k)

FUNCTION LITERAL
Cle) = (é5,7)

Cfbody = &5, $ret = {}, $ret.$v = $0;, $ret.$l = $i;, $ret
{i1, -+ ,ix} = indexes(e) e = $0; = function(z, $lz, $pc){var y1,- -, yn, $0iy, Sliy, -+, $0i,, $iik: €fbody
é=eyf, $0;.8struct = $pe, $0:.$lasscope = $pc, $li = $pe, $0;

C(function®(z){var y1, -+ ,yn; €}) = (&,i)

FuncTioN CALL
OBJECT LITERAL . Cleo) = (é0,4) Cle)=(é,k)
¢’ = $;.$struct = pc, A’[}1n$lp'roto = $pc e = 8$lcte = $0;.8lasscope LI ?l‘]; $ret = $0;($0k, Sl U Sleta, $lers)
é=%0; ={}, €, $l; = $pc, $0; é=¢o, é1, €, $l; = $ret.$l, $0; = $ret.$v
c{}) =(&1) Cleo(er)’) = (&,1)
METHOD CALL SEQUENCE
Cleo) = (€0,5) Cler) = (1, k) Clez) = (é2,1) Cleo) = (éo, 1)
e =éo, é1, é2, Slets = $1; LIA$l;C u $}'ns§)ect($@;ﬁ, $0;) L $0;[$0%].$la sscope Cler) = (é1,5)
é=c¢, Sret = $0;[S0x]($01, $lete U S, Sleta), $li = $ret.$l, $0; = $ret.$v é=éo,é1
Cleoler](e2)’) = (&,1) Cleo,e1) = (&,5)
CONDITIONAL
Cleo) = (é0,i) Cler) =(é1,j) Cle2) = (é2,k)
Ceond = $; 7 (él, $0, = $0;, $I, = $i,) < (éa, $00 = $on, i, = $Zk)
é=¢o, Sis = $pc, Spc=SpcUSLi, econa, Spc=Sis,$i:
Cleo 77" (e1) : (e2)) = (&,t)

Fig. 3. Information Flow Monitor Inlining Compiler

290 J. Fragoso Santos and T. Rezk

The Correctness Theorem states that, provided that a program and its com-
piled counterpart are evaluated in similar configurations, the evaluation of the
original one in the monitored semantics terminates if and only if the evaluation
of its compilation also terminates in the original semantics, in which case the
final configurations as well as the computed values are similar. Therefore, since
the monitored semantics only allows secure executions to go through, we guar-
antee that, when using the inlining compiler, programs are rewritten in such a
way that only their secure executions are allowed to terminate.

Theorem 2 (Correctness). Provided that e does not use identifiers in Z¢, for
any labeled and instrumented configurations (u, e, I XY and (1, e'), function 3,
and reference v in p, such that (p, I, X) Sg 1’ and C{e) = (€,1), for some index
i; there exists (uy, vy, I'y,0) such that r, L= (u,e, I, X) brp (pg,vp, I, Xy, 0p)
iff there exists (u'y,v’) such that B(r) & ((1',€)) 4 ((}, %)), in which case: (1)

(g, Ty 2p) Sgr 1y, (2) v5 ey V5, and (3) oy = py(B(r))(8ls).

4 Discussion and Related Work

JavaScript Semantics. Since scope objects are assumed not to have a prototype
and since we do not include the JavaScript with construct, Core JavaScript
programs are syntactically scoped. This means that we could have modeled the
binding of variables using substitution, as in other works targeting subsets of
the whole language, as [8]. However, we have chosen to model scope using scope
objects, as in [10], for two main reasons. First, we envisage to extend the model
to deal with a larger subset of the language. Second, by modeling the binding of
variables in the same way we model the binding of properties, we do not need
to introduce an extra labeling function for the labeling of variables.

Monitoring Secure Information Flow. Information flow monitors can be divided
in two main classes. Purely dynamic monitors (such as [3] and [4]) do not make
use of any kind of static analysis. On the contrary, hybrid monitors (such as [12])
make use of static analyses to reason about the implicit flows that can arise due
to untaken execution paths. Our choice for the inlining of a purely dynamic
monitor has to do with the fact that the dynamic features of JavaScript make it
very difficult to approximate the resources created /updated in untaken program
branches. Hedin and Sabelfeld [9] have been the first to design an information
flow monitor for a realistic core of JavaScript. Their monitor is purely dynamic
and enforces the no-sensitive-upgrade discipline. This monitor has been designed
in order to guide a browser instrumentation and not an inlining transformation.
Furthermore, it differs from ours in that it labels values instead of variables/prop-
erties. Bichhawat et al. [6] have recently proposed a hybrid monitor that makes
use of a sophisticated static analysis to minimize performance overhead [6].

Monitor-Inlining Transformations. Chudnov and Naumann [7] propose an in-
formation flow monitor inlining transformation for a WHILE language, which
inlines the hybrid information flow monitor presented in [12]. Simultaneously,

An Information Flow Monitor-Inlining Compiler 291

Magazinius et al. [11] propose the inlining of a purely dynamic information flow
monitor that enforces the no-sensitive-upgrade discipline for a simple imperative
language that features global functions, a let construct, and an ewval expression
that allows for dynamic code evaluation. Both compilers pair up each variable
with a shadow variable. We extend this technique to handle object properties
by pairing up each property with a shadow property. The languages modeled in
both [7] and [11] only feature primitive values and do not feature scope com-
position (in [7] there are no functions and in [11] every function is executed in
a “clean” environment and does not produce side-effects). Hence, in both [7]
and [11], the reading effect of an expression e corresponds to the least upper
bound on the levels of the variables of e. Therefore, the instrumented code for
computing the level of e is simply $1,, - - -U$l, , where {x1,- -, z,} are the vari-
ables that explicitly occur in e. In Core JavaScript (as in JavaScript) this does
not hold. First, one can immediately see that expressions that feature property
look-ups or function/method calls do not generally verify this property. Second,
expressions may be composed of expressions that have side effects. Therefore,
the level associated with the whole expression can actually be lower than the
least upper bound on the levels of the variables that it includes. As an example,
consider the expression (z = y) + x. Since = y evaluates to the value of y
(besides assigning the value of y to x), the level of the whole expression only
depends on the initial level of y. In order to handle these two issues, the inlining
transformation must introduce extra variables to keep track of the values and
levels of intermediate expressions. Finally, both [7] and [11] ignore the problem
of malicious programs.

In summary, we have presented the first compiler for securing information flow
in an important subset of JavaScript. The presented compiler is proven sound
even when it is given as input malicious code that actively tries to bypass the
inlined enforcement mechanism. A prototype of the compiler is available via [1]
together with a broad set of examples that illustrate its applicability.

Acknowledgments. This work was partially supported by the Portuguese Gov-
ernment via the PhD grant SFRH/BD/71471/2010.

References

1. Information flow monitor-inlining compiler,
http://www-sop.inria.fr/members/Jose.Santos/

2. The 5th edition of ECMA 262 June 2011. ECMAScript Language Specification.
Technical report, ECMA (2011)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
PLAS (2009)

4. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. PLAS
(2010)

5. Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a Java-like language. In: CSFW (2002)

6. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in We-
bKit’s JavaScript bytecode. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS
2014). LNCS, vol. 8414, pp. 159-178. Springer, Heidelberg (2014)

http://www-sop.inria.fr/members/Jose.Santos/

292

10.

11.

12.

13.

J. Fragoso Santos and T. Rezk

Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: CSF (2010)
Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126-150. Springer, Heidelberg (2010)
Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In: CSF
(2012)

Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for JavaScript. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307-325. Springer,
Heidelberg (2008)

Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. In: Computers & Security (2012)

Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
CSF (2010)

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications (2003)

	An Information Flow Monitor-Inlining Compiler
for Securing a Core of JavaScript

	1 Introduction
	1.1 Core JavaScript Syntax and Semantics

	2 Monitoring Secure Information Flow
	3 Monitor-Inlining
	4 Discussion and Related Work
	References

