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Abstract The U.S. electricity market is organized in several deregulated regional
markets. In this paper we specify a multi-regime switching model to study price
dynamics of electricity in the U.S. markets. Our results show that electricity prices
from the West and East coasts have different regime dynamics with the latter prices
switching more frequently between regimes. Additionally, our methodology sug-
gests that electricity prices are better parameterized by four regimes: the base
regime with low volatility; a spike up and a reverse regime both with high volatility
and short duration; finally, a fourth one has extremely high volatility. This latter
regime describes West coast prices during the California electricity crisis, but East
coast prices are also frequently in that regime. We find evidence of price syn-
chronization in the lowest and highest volatility regimes, i.e., prices from the East
and West coasts tend to be in the same regimes at the same time.
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1 Introduction

The electricity business activity can be roughly characterized by three sectors:
generation, transmission, and distribution, which were usually tied within a utility.
Generation is the process of generating electric energy from other forms of energy
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such as hydro energy, fossil fuels, harnessing wind, solar, or through nuclear fis-
sion. After being generated, electricity is distributed through high-voltage, high-
capacity transmission lines to local regions, where it is consumed. When the
electricity reaches the local destination of consumption, it is transformed into a
lower voltage and sent through local distribution wires to end-use consumers.

In the U.S., for many years each of these segments was investor-owned but state-
regulated or owned by the local municipality. But the 1980s saw the introduction of
a wave of deregulatory reforms that reached the electricity sector. Reforms were
implemented with the argument that competitiveness would rise and benefit con-
sumers by lowering prices in both the short and long runs.

The establishment of a competitive wholesale electricity market, i.e., a market
where competing agents offer and buy electricity was a key element of the
deregulation process. While wholesale pricing used to be of the exclusive domain
of large retail suppliers, a market in a competitive framework should open up to
new participants such as generators, retailers, or financial intermediaries or end-
users. To reach this goal, the Federal Energy Regulatory Commission (FERC), the
regulatory agency, introduced rules such open access to transmission service tariffs
and on the availability of transmission service of networks. Moreover, transmission
owners had to provide access to their networks at cost-based prices to end dis-
criminatory practices against unaffiliated generators.

Market power and the potential upsurge of prices are a major issue in the market
design of wholesale markets. As will be explained in more detail below, the
physical features of electricity favor imperfect competition, and ultimately dereg-
ulation could have adverse effects by increasing prices for end-users. Knittel and
Roberts (2005) refer that when regulated prices were set by state public utility
commissions in order to curb market power and ensure the solvency of the firm.
Price variation was minimal and under the strict control of regulators, who deter-
mined prices largely on the basis of average costs. In contrast, a wholesale market is
based on competitive bidding of supply and demand, and prices are set by market
clearance. Given that electricity demand has frequent fluctuations (e.g., extreme
temperatures) and that there are no inventories to buffer shocks, prices would fully
absorb shocks. Price jumps and spikes in volatility are then inevitable outcomes that
must be monitored. Concerns about market power were substantiated by the
California crisis in 2000-2001, when market power and exploitation of market
design imperfections caused an explosion in wholesale prices.

The deregulated nature of the U.S. electricity market as well as its fragmented
structure with many wholesale markets, makes it an interesting case for analyzing
the dynamics of prices after deregulation. The literature comparing U.S. electricity
prices in different locations is scant. Hadsell et al. (2004) compare electricity vol-
atility in five regions of the U.S. for the period 19962001 using a TARCH model;
Park et al. (20006) use a vector autoregressive (VAR) model to analyze spot prices in
different parts of the U.S. for the period 1998-2002. They find that electricity
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markets in the Western U.S. are separated from the Eastern markets at contem-
poraneous time, but this separation disappears for longer time horizons. The rela-
tionships between the markets depend on physical assets (such as transmission
lines) and institutional arrangements.

Our study analyzes price dynamics of U.S. regional markets by regime-
switching models (RSM). These models, introduced by Hamilton (1989), have been
extensively used to model electricity prices as they accommodate well electricity
price features such as asymmetric volatility, jumps, and spikes." The computational
burden in model estimation, which increases with the number of time series,
observations, and regimes is a hindrance to their empirical application. Our esti-
mation algorithm overcomes these limitations and allows the study of the cyclical
behavior of several electricity price time series in a parsimonious way, providing
new insights on the existence of common regimes and the synchronization between
them. Moreover, this approach recognizes different regime-switching dynamics of
electricity prices, so far not addressed in the literature. In addition, the flexible
modeling of observed returns using Gaussian mixture distributions makes it more
appropriate for non-Gaussian returns (see, e.g., McLachlan and Peel 2000; Dias and
Wedel 2004).

To study price dynamics in different regions of the U.S., we take the Dow Jones
U.S. Electricity Price Indexes. These price indexes cover several geographical
regions of the United States. We conclude that prices in the same U.S. region share
the same regime dynamics, i.e., prices of the East (West) coast markets behave
similarly. The best model parametrization has four regimes. The extremely high
volatility regime describes West Coast prices during the California electricity crisis,
but prices of the East coast markets are also frequently in that regime. Regional
electricity markets seem to differ in the time spent in each regime. West market
prices spend more time in the low volatility regime than East coast markets.
Strikingly, the time they spent in the spike regime is similar despite the episode of
the California crisis. To address the question of whether prices of the East and West
coasts are in the same regime at the same time, we compute synchronization
measures between and within regimes. We find evidence of price synchronization
in the lowest and highest volatility regimes, i.e., prices from the East and West
coasts tend to be in those regimes at the same time.

The rest of the chapter is organized as follows. Section 2 gives an overview of
the main changes in the U.S. electricity markets. Section 3 describes the data.
Section 4 introduces the econometric methodology. Section 5 presents and dis-
cusses the empirical results. Section 6 analyzes the synchronization between the
different electricity markets and, finally, Sect. 7 concludes the paper.

! See, e.g., Fong and See (2002), Huisman and Mahieu (2003), Bierbrauer et al. (2007), Haldrup
et al. (2010), and Janczura and Weron (2010).
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2 The Establishment of a Wholesale Market

The deregulation process targeted two key features of the utility sector: monopolies
and natural barriers to entry. Joskow (1997) describes that the deregulation process
had two main goals. First, to separate the potentially competitive functions of
generation and retail from the natural monopoly functions of transmission and
distribution. Second, to establish a wholesale electricity market and a retail elec-
tricity market.

Ideally, a wholesale market should have a sound free-market base such as
competitive supply offers, demand bids and prices set by market-clearance. To
achieve this, it urged to push for the breakdown of barriers to entry and attraction of
new players into the market. In 1996 a set of measures were implemented to ease
entry and enhance competition. For instance, established transmission owners had
(i) to provide access to their networks at cost-based prices, (ii) to end discriminatory
practices against unaffiliated generators and marketers, (iii) to expand their trans-
mission networks if they did not have the capacity to accommodate requests for
transmission service, and (iv) to provide non-discriminatory access to information
required by third parties to make effective use of their networks.

These measures were reinforced by the FERC Order 2000 issued in December
1999. This contained a new set of regulations designed to facilitate the “voluntary”
creation of large regional transmission organizations to solve problems created by
the balkanized control of U.S. transmission networks and alleged discriminatory
practices affecting independent generators and energy traders seeking to use the
transmission networks of vertically integrated firms.

The particular features of the electricity operations are a hindrance to competi-
tion. Monopolies emerge as an outcome of economies of scale of the generation
process and the losses from long-distance transmission. To truly compete in the
distribution sector, rival firms should duplicate wire networks. However, the
duplication of infrastructures is inefficient as there is a need to keep the system
adequacy, i.e., the balance between inflow and outflow at all times. The failure to
balance leads to the collapse of the grids which has severe economic losses.>”

Market power also arises because of the inelasticity of energy demand. This
naturally leads to high prices at peak times as demand rises above the production
capacity of generators and further price increases result in little additional supply or
reduction of demand. The prices then naturally reflect the scarcity of supply relative
to demand.

2 The grid needs to be constantly surveyed and cannot be under or overloaded. This implies that if
wires owned by different companies were allowed to interconnect to form a single network, then
the flow on one line could affect the capacity of other lines in the system to carry power creating
risky unbalances.

3 A recent case of grid collapse happened in India. India has increased the number
interconnections between regional grids, approaching a single national grid. A breakdown in
one part of the grid loaded other parts of the grid massively making the system collapse.
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Given that electricity is not storable, inventories cannot be used to load the grid
and smooth prices over time. As a result, deregulated prices are characterized by
volatility that varies over time and occasionally reaches extremely high levels,
commonly known as “price spikes”.

Market power and imperfect competition have well-known economic implica-
tions such as high profits for sellers at the cost of higher prices for consumers
contradicting the aims of the deregulation process. Moreover, increased volatility
and subsequent losses represent additional risks for market participants which for
instance has led to the emergence of power derivatives markets. Market power has
other detrimental effects on economic growth because high energy costs imply an
increase of costs for firms and price volatility also creates uncertainty which tends
to postpone investment decisions.

Finally, market power affects the reliability and credibility of wholesale markets.
The California electricity crisis in 2000-2001 is a good illustration of what can go
wrong in the deregulation process due to imperfections in the deregulated market.
Energy traders created artificial shortages in days of peak demand to increase prices
and company profits. The explosion of prices and the rolling blackouts adversely
affected many businesses dependent upon a reliable supply of electricity, and
inconvenienced a large number of retail consumers.* The California state suffered
from multiple large-scale blackouts, and one of the state’s largest energy companies
collapsed with harmful economic effects.’

3 Data

We use Dow Jones U.S. Electricity Price Indexes to analyze electricity prices in
different regions of the U.S. Indexes. These prices cover different regions of the
U.S. market, namely the West and East coasts. From the West region, and condi-
tional on data availability, we use California and Oregon Border (COB), Four
Corners (Utah, Colorado, New Mexico and Arizona), Mid Columbia (Washington)
and Palo Verde (Arizona) prices indexes; from the East region, we use CINERGY
(Ohio, Indiana) and PIM (Pennsylvania) interconnection which is the world’s
largest competitive wholesale electricity market. These indexes are volume-
weighted averages of wholesale electricity transactions and provide a clear spot
market indication for over-the-counter trading in that region.

Our sample covers prices from 6th January 1999 through 7th July 2010, for a
total of 601 price observations. Prices are weekly, from Wednesdays like Mjelde
and Bessler (2009), and in U.S. dollars. Let P;; be the observed weekly closing price

4 Energy traders took power plants offline for maintenance in days of peak demand. This
increased power prices sometimes by 20 times its normal price.

5 For a detailed explanation of California electricity crisis, we refer to Faruqui et al. (2001),
Moulton (2005), and Woo (2001).
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Fig. 1 Dow Jones electricity price indexes

of marketiondayz,i=1,...,nand ¢t =0,...,T. Thus, the weekly rates of return
are defined as the log-rate percentage: y; = 100 x log(P,-,/Pm_l), t=1,...,T.

Figure 1 depicts electricity prices for the entire period. Electricity prices show
extraordinary volatility during 20002001, the period of the California electricity
crisis. Prices in the East coast—CINERGY and PJM—also tend to show frequent
price spikes.

Table 1 summarizes the descriptive statistics for the returns. The mean is positive
for all series, except for CINERGY. As expected, electricity returns show high
dispersion (standard deviation) and kurtosis. Interestingly, West region prices tend
to show positive skewed distributions, whereas East coast series are negatively
skewed. The heavy tails and skewness of the distributions turn out to reject the
normality for all time series (Jarque Bera test, p-value < 0.001).

The stylized characteristics of these price returns—cyclical behavior, jumps, and
spikes—provide ground for applying regime switchings models.

4 Methodology

The methodology applied in this work falls within the regime switching framework.
Regime switching models (RSM) have been extensively applied in economics and
finance research and the modeling of electricity prices is no exception (see, e.g.,
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Table 1 Summary statistics

Mean Std. deviation | Skewness | Kurtosis | Jarque-Bera test
Statistics | p-value
CINERGY -0.014 |36.079 -0.319 8.038 623.84 | 0.000
4_CORNERS 0.096 |28.441 0.367 14.303 3117.11 | 0.000
MID_COLUMBIA 0.070 |34.939 0.194 13.226 2543.13 | 0.000
PALO_VERDE 0.067 |28.988 0.292 14.280 3099.35 | 0.000
PIM 0.049 |34.327 —0.460 9.383 1007.80 | 0.000
COB 0.064 |29.718 0.270 16.089 4171.58 | 0.000

This table reports descriptive statistics and the Jarque-Bera test of normality for electricity prices
returns. The returns are percentage log-rate returns (weekly data) and are from 06-01-1999 to
07-07-2010

Deng 1998; Ethier and Mount 1998). In a meta-analysis of several econometric
approaches, Bierbrauer et al. (2007) conclude that a major strength of regime
switching models over other econometric models is its flexibility in accommodating
extreme observations. In particular, the model allows for consecutive spikes in a
very natural way, as well as the switching of prices to the ‘normal’ regime after a
spike.® In short, these models are a parsimonious representation the unique char-
acteristics of power prices. Moreover, regimes are able to describe the price jumps
caused by different levels of demand and supply (see, e.g., Andreasen and Dahlgren
2006; Bierbrauer et al. 2007; Deng 1998; Ethier and Mount 1998; Huisman and
Mahieu 2003; Janczura and Weron 2010, 2012). In particular, they capture specific
characteristics such as the spiky and nonlinear behavior of electricity prices
(Bierbrauer et al. 2007; Mari 2006; Weron et al. 2004). Thus, the introduction of
nonlinearities by the regime-switching mechanism admits temporal breaks in model
dynamics.

The application of RSM has been hindered by two (related) practical issues:
computational burden and the number of regimes allowed. Because of the com-
putational burden, seminal works set up two regimes a priori (see Deng 1998 and
Ethier and Mount 1998). Huisman and Mahieu (2003) are the first to propose a
three-regime model, but with constraints: the initial jump regime is immediately
followed by the mean-reversing regime and then moves back to the base regime.
Using electricity price data from the Dutch, German, and the United Kingdom
markets, they found that a regime-switching model performs better than a stochastic
jump model specification for both mean-reversion and spikes. Our work departs
from previous studies because we do not impose a priori the number of regimes that

S Other econometric approaches such as stochastic jump models have been applied in energy price
modeling. Comparisons show that regime-switching models present many advantages in modeling
the spiky and nonlinear behavior of electricity prices over competing techniques (Bierbrauer et al.
2007; Janczura and Weron, 2010; Mari 2006; Weron et al. 2004).
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best captures the features of the electricity time series and proposes a joint analysis
of distinct electricity markets.

We use the heterogeneous regime-switching model (HRSM) in Dias et al. (2008,
2009) and Ramos et al. (2011). This statistical model defines classes of regime-
switching models based on the similarity of the dynamics within each class. An
advantage of this approach is that we can see whether different time series share
regimes (or regime dynamics). This model assumes two different types of discrete
latent variables or states:

1. each time series belongs to a specific group or cluster, say w € {1,...,5}. A
model with S clusters is called a HRSM-S;

2. each specific time series is modeled as a regime-switching model with K regimes
andz; € {1,...,K} forallz = 1,..., T is the state occupied by the time series i at
time 7. Transitions between the K regimes over time follow a first-order Markov
process.

Based on the definition of y;, introduced previously, let f(y;; ¢) be the density
function of the electricity time series i. The HRSM-S is defined by:

S K K T
YU ZZ Z Wl le|wl Hf Zl[|th 17Wl (yl'|wiazil7-~-aziT)- (l)
i=1zi=1 =2

zir=1

where: (a) f(w;) is the probability of time series i belongs to cluster w; (b) f(z;1|w;)
is the initial-regime probability, i.e., the probability that time series i starts the
sequence in regime k conditional on belonging to the cluster w; (c) f (z,',|z,-7,,1 , wi) is
a latent transition probability, i.e., the probability of being in a particular regime at
time ¢ conditional on the regime at time # — 1 and within the cluster w. Assuming a
time-homogeneous transition process, pjx, = P(Zi, =k|Ziyoy =j, Wi = w) is the
relevant parameter. Thus, for cluster w the transition probability matrix is

Piiw  --- Plkw
P, =1: L ;

Pkiw " PKKw

with ZkK:1 Djtw = 1. Thus, the HRSM-S extends the traditional RSM as it allows
cluster specific regime-switching dynamics.

The last term in Eq. (1) is the observed data density conditional on the regimes,
f(yiwi,zi1, - - -, zir). Assuming that the observed return at a particular time depends
only on the regime at that time, i.e., conditional on the latent state z;, the response
v;; 1s independent of returns and regimes at other time points:

T
Filwiszits - zir) = Hf(yiz\Zit)- (2)
=1
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The probability density of the return i at time ¢ conditional on the regime
occupied at time #, f(yi|zi), is assumed to have a normal density function. For
regime k, this distribution is characterized by the parameter vector Oy = (g, 63),
i.e., the expected return or mean (i) and risk or variance (a]%). The right-hand side
of Eq. (1) shows that we are dealing with a mixture model consisting of time-
constant latent variable w; and T realizations of the time-varying latent variable z;,.
As in any mixture model, the observed data density f(y;; @) results from margin-
alizing over the latent variables, in this case over the S - K7 mixture components
(see McLachlan and Peel 2000). Since f(y;; ¢) is a mixture of densities across
clusters and regimes, it defines a flexible Gaussian mixture model that can
accommodate deviations from normality in terms of skewness and kurtosis (see,
e.g., Dias and Wedel 2004 and Pennings and Garcia 2004).

The estimation of the HRSM-S parameters is performed by the maximum
likelihood (ML) method. Given the presence of missing data (clusters and regimes),
the expectation-maximization (EM) algorithm (Dempster et al. 1977) is a natural
choice for maximizing the log-likelihood function: ¢(¢@;y;) = > i, logf(y;; ).
Since the EM algorithm at the Expectation-step requires the computation and
storage of S x KT entries of f(w;, zi1, ..., zir|y;) for each time series, computation
time and computer storage increases exponentially with the number of time points.
However, for regime-switching models, a special variant of the EM algorithm has
been proposed that is usually referred to as the forward-backward or Baum-Welch
algorithm (Baum et al. 1970) and will be used here.

A key issue in regime-switching modeling is the decision on the optimal number
of regimes needed. For the HRSM-S, the selection of the number of clusters (S) and
regimes (K) is based on the Bayesian information criterion (BIC) of Schwarz
(1978) given by

BICsx = —2Usx(p;y) + Ns logn, (3)

where N g is the number of free parameters in the regime-switching model and n is
the sample size. The combination (S, K) with the minimum BIC identifies the best
model.

5 Empirical Results

This section reports the estimates of the HRSM-S applied to electricity indexes. We
estimate models with the density function given by Eq. (1) for different values of
S =1,...,8)and K (K = 1,...,8). For each combination, we use 1000 different
sets of random starting values to minimize the impact of local maxima. A solution
with two latent classes (S = 2) and four regimes (K = 4) yields the lowest BIC
value (log-likelihood = —16258.8; number of free parameters = 39; and
BIC = 32587.6). This means that the best solution incorporates two types of regime
dynamics and four regimes.
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Table 2 Estimated prior and posterior probabilities and modal classes

Latent class 1 Latent class 2 Modal

Prior probabilities 0.643 0.357

Posterior probabilities

CINERGY 0.000 1.000 2
4_CORNERS 1.000 0.000 1
MID_COLUMBIA 1.000 0.000 1
PALO_VERDE 1.000 0.000 1

PIM 0.000 1.000 2
COB 1.000 0.000 1

This table reports the electricity prices level probabilities and modal latent class. Prior probabilities
provide the size of each latent class or cluster and posterior probabilities express the evidence that
a given electricity time series belongs to a given latent class. The maximum posterior probability
indicates the modal latent class

Table 2 summarizes the results for the distribution of electricity prices across
latent classes. Each latent class indicates a cluster, i.e., a group of prices that shares
the same regime dynamics. Electricity prices are classified into two clusters, indi-
cating that East coast electricity prices have different dynamics from those of the
West coast (i.e., CINERGY and PJM are in latent class 2, whereas other price
indexes are in latent class 1). The class assignments always have probability one,
i.e., there is no uncertainty about the classification of these time series.

Regimes are described in Table 3. The first set of rows shows the estimates of
the probability P(Z): the average proportion of returns in each regime over time.
Overall, electricity prices are in regime 1 16.2 % of the time, in regime 2 7.4 % of
the time, in regime 3 58.4 % of the time, and in regime 4 18.0 % of the time.

The next set of rows presents the expected returns and variance of each regime.
Regimes are sorted by mean returns; regime 1 has the lowest returns and regime 4
the highest. Regimes 1-3 have negative mean returns. Regime 1 has very negative
mean returns and high volatility, while regime 2 has negative mean returns and the
highest volatility of all regimes; regime 3 has negative mean returns and the lowest
volatility, which resembles ‘the base regime’.” Regime 4 has positive returns and
the variance is similar to that of regime 1, it is the “up spike’ or the “up’ regime. The
daily standard deviation for regimes 1, 2, 3 and 4 are 22.7, 88.0, 11.6 and 24.6,
respectively. The extremely high volatility of regime 2 should be noted as it shows
levels not reported in previous studies.

Results in Table 4 shows why electricity prices do not share the same dynamics,
or are in different clusters. The first row gives the estimated probabilities of being in

7 We will apply terminology common to previous papers to characterize regimes: base, reverse,
and spike regimes.
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Table 3 Description of regimes

Regimes 1 2 3 4
P(2) 0.162 0.074 0.584 0.180
(0.023) (0.018) (0.052) (0.028)
Return (mean) —25.453 -0.756 -0.103 23.833
(1.986) (5.546) (0.286) (2.050)
Risk (variance) 517.497 7763.911 134.130 604.573
(49.701) (874.390) (7.657) (54.417)

This table reports the estimated marginal probabilities of regimes—P(Z): is the average proportion
of markets in each regime over time, means, and variances. Standard errors are reported in round
brackets

a particular regime for each cluster, i.e., electricity time series have different regime
probabilities across classes.

West coast prices (latent class 1) have 0.67 probability of being in regime 3 (the
base regime), whereas in the East coast (latent class 2) this probability is reduced to
0.43. East coast prices spend more time in spike regimes with probabilities of
regimes 1 and 4 adding up to 0.488; on the other hand, probabilities of spike
regimes from the West coast add up to only 0.261. Notwithstanding, both have a
similar probability of being in the crisis regime, regime 2, despite the well-known
crisis in California.

In the second row, we present the transition probabilities between the regimes
for each group. It means that the closer the diagonal value is to one, the higher the
regime persistence. In other words, once an electricity price enters a given regime, it
is likely to stay in the same regime for some period of time.

All prices show regime persistence for regimes 2 and 3, those with the highest
and lowest volatility. Inversely, regimes 1 and 4 do not show persistence, i.e., the
likelihood of continuing in regime 1 and 4 is very small (spike regimes). West coast
prices have a 0.802 probability of jumping from regime 4 to regime 1 and East coast
prices a 0.733 probability. This means that after spiking up, there is a high prob-
ability that prices will go down. It is likely that prices from regime 1 jump to regime
3, the base regime, or spike again to regime 4, highlighting a very dynamic nature.

The (mean) sojourn time is the expected time that a price takes to move out of a
given regime and is measured in weeks. It is given for regime k and conditional on
the latent class w by 1/(1 — puy,). Naturally, regimes with regime persistence have
higher sojourn times. Regimes 2 and 3, the ones that show persistence, have sojourn
times of 8 and 14 weeks for West coast, while mean times for spike regimes are
around 1 week. Prices from the East coast stay in regime 3, the base, for shorter
periods of time. Again, the evidence suggests that returns in the East coast are more
volatile and change more often between regimes than those of the West coast.

Figures 2 and 3 show the regime-switching dynamics in electricity prices in each
group through time. It depicts the posterior probability of being in each regime at
period . Electricity has a dynamic nature and its frequent switches between regimes
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Table 4 Estimated regime occupancy and transition probabilities within each latent class

Regimes ‘ 1 | 2 | 3 | 4
Latent class 1
P(Z|W) 0.126 0.070 0.670 0.135
(0.014) (0.022) (0.035) (0.016)
Regime 1 0.138 0.067 0.370 0.425
(0.049) (0.022) (0.048) (0.051)
Regime 2 0.001 0.876 0.001 0.122
(0.007) (0.035) (0.003) (0.036)
Regime 3 0.001 0.000 0.929 0.070
(0.003) (0.002) (0.010) (0.010)
Regime 4 0.802 0.001 0.003 0.194
(0.058) (0.007) (0.018) (0.056)
Sojourn time 1.160 8.052 14.124 1.240
Latent class 2
P(Z|W) 0.226 0.082 0.430 0.262
(0.025) (0.029) (0.042) (0.028)
Regime 1 0.131 0.001 0.362 0.506
(0.053) (0.005) (0.081) (0.079)
Regime 2 0.022 0.857 0.081 0.040
(0.090) (0.051) (0.045) (0.068)
Regime 3 0.004 0.001 0.794 0.202
(0.018) (0.003) (0.034) (0.038)
Regime 4 0.733 0.043 0.004 0.220
(0.063) (0.016) (0.019) (0.059)
Sojourn time 1.151 6.974 4.843 1.282

This table reports the estimated probabilities of being in a regime conditional on the latent class:
P(Z|W). Rows below report transition probabilities between regimes. The last row in each panel
reports the mean sojourn time, i.e., the expected time a stock market takes to move out of a given
regime. It is given for regime k and conditional on the latent class w by 1/(1 — py,). Standard
errors are reported in round brackets

are notorious. The figures depict how the groups of prices have different patterns of
regime switching. Light grey areas correspond to regime 3, the base regime, as
revealed already by the probabilities.

West coast prices were usually in regimes 3 (light grey), 4 (white), and 2 (dark
grey) during the California crisis. The dynamics of East coast prices are consistent
with the information in the tables, namely the shorter durations of regimes and the
frequent switching. Regime 2, the one with the highest volatility, occurs frequently
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Fig. 2 Price dynamics in the U.S. West Coast. This figure shows the estimated posterior regime
probability in latent class 1

in the East coast. Interestingly, the period of the California electricity crisis is
clearly identified by the dark grey area in the figure. This episode, well captured by
regime 2, seems to be time specific and has not occurred again in the West coast.®

8 The case of California led to specific measures in order to prevent similar cases. For instance,
Moulton (2005) mentions the introduction of mitigation procedures after the energy crisis in
California (2000-2001).
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Fig. 3 Price dynamics in the U.S East Coast. This figure shows the estimated posterior regime
probability in latent class 2

It is also interesting to note that in the East coast, periods of extremely high
volatility occurred frequently after 2001 and prices spikes often seem to occur.

Our results support a four regime parametrization contrasting with previous
works such as Huisman and Mabhieu (2003), Bierbrauer et al. (2007), Janczura and
Weron (2010) that used three regimes; however, their study did not use U.S. data
which included the particular episode of California Crisis with extremely high
volatility due to price manipulation.

6 Electricity Synchronization

In this section we look at the synchronization of the regimes. To measure syn-
chronization and co-movement in the electricity price series, we compute the
association between prices using the posterior probability of being in regime k. In
other words, synchronization is measured by the likelihood that prices share regime
k at the same period t.

Let &; be the estimated probability that electricity price i at time ¢ will be in
regime k. To obtain a number in the full range of real numbers, this probability is
expressed using the logit transformation:
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Table 5 Synchronization between electricity price regimes
Time series
ey @) 3 C)] 5 (6)
Panel A: regime 1
CINERGY (1) 1
4_CORNERS ) —0.031 1
MID_COLUMBIA 3) —0.031 0.594 1
PALO_VERDE “4) —0.047 0.916 0.554 1
PIM ) 0.675 —-0.115 —0.043 —-0.105 1
COB 6) —0.063 0.753 0.841 0.716 —0.093 1
Panel B: regime 2
CINERGY 6)) 1
4_CORNERS ¥)) 0.513 1
MID_COLUMBIA | (3) 0.390 0.707 1
PALO_VERDE 4 0.498 0.942 0.669 1
PIM ) 0.789 0.383 0.432 0.384 1
COB 6) 0.513 0.890 0.873 0.860 0.470 1
Panel C: regime 3
CINERGY (1) 1
4_CORNERS @ | 0355 | 1
MID_COLUMBIA |(3) | 0313 | 0660 | 1
PALO_VERDE ) 0.362 0.952 0.638 1
PIM 5) 0.677 0.326 0.331 0.328 1
COB 6) 0.365 0.836 0.867 0.833 0.384 1
Panel D: regime 4
CINERGY (1) 1
4_CORNERS @) 0.028 1
MID_COLUMBIA | 3) |-0.011 0.596 1
PALO_VERDE 4) 0.021 0.917 0.555 1
PIM ) 0.663 —0.044 —0.025 —0.056 1
COB 6) —-0.019 0.749 0.847 0.708 —0.049 1

This table reports the correlation between electricity prices based on the logit of the posterior
probability of being in regimes 1, 2, 3 and 4, see Eq. (4)

log ity = log<1 a”g k).
— Oy
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Synchronization is quantified using the product-moment correlation between the
logits for two time series. Our logit-based measure does not suffer from distortion
caused by outliers because it filters out extreme observations of prices.

Table 5 shows the correlation between price time series. Panel A shows the
probability of two electricity price series being in regime 1 at the same time, and the
other panels for the other regimes.

For prices in the same cluster, or geographical area, it is likely that correlation
within the cluster is high since they share the same regime dynamic. However, if
electricity price indexes are in different clusters, it is interesting to see whether there
is synchronization so as to gain some insights about common drivers.

We find a clear distinction of synchronization of regimes. For regimes with
regime persistence, there is synchronization between groups (Regimes 2 and 3
present synchronization within and between groups) but we do not find evidence of
synchronization for the other two regimes. To put it simply, when prices of the
West coast are in the base (or the highest volatility) regime, it is likely that prices of
the East coast are also in the base (or the highest volatility) regime. Conversely, it is
not likely that prices of the East and West coasts will be found in regimes 1 and 4 at
the same time. The correlation is high between returns within classes, but close to
zero between the different geographical areas.

7 Conclusion

The 1980s saw the implementation of a wave of deregulatory reforms in the U.S.
electricity sector. Wholesale electricity markets were transformed from a highly
regulated government controlled system into deregulated local markets. The
increase in competition of wholesale markets changed price dynamics and increased
price volatility, exposing consumers and producers to significantly greater risks.
We draw on the literature that has proposed multi-regime frameworks to charac-
terize electricity prices. We depart from previous work because we do not impose a
fixed number of regimes a priori. Our findings suggest that a four-regime parame-
trization offers a better characterization of the price dynamics: a base regime, an
extremely high volatility regime, a spike up regime, and a reverse regime. Our results
show that electricity prices from West and East coasts have different regime dynamics
with the latter prices switching more often between regimes. Additionally, our
methodology suggests that electricity prices are better parameterized by four regimes:
the base regime with low volatility; a spike up and a reverse regime both with high
volatility and short duration; and a fourth one with extremely high volatility. The
extremely high volatility regime describes West coast prices during the California
electricity crisis, but East coast prices are also frequently in that regime. We find
evidence of price synchronization in the lowest and highest volatility regimes, i.e.,
prices from the East and West coasts tend to be in those regimes at the same time.
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In summary, in this chapter we describe and compare the price dynamics of
electricity prices in the wholesale electricity markets of U.S. East and West coasts.
The characterization of joint price dynamics is of great importance to financial
market participants and may be useful in making optimal risk management
decisions.
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