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Abstract The purpose of this study is to analyze the potential effects of unob-
served heterogeneity on the cost efficiency measurement of electricity distribution
systems within the framework of incentive regulation schemes such as price- or
revenue cap. In particular, we decompose the benchmarking process into two steps:
In the first step, we attempt to identify classes of distribution system operators
functioning in similar environments and with comparable network and structural
characteristics. For this purpose, we apply a latent class model. In the second step,
best practice is obtained within each class, based on deterministic and stochastic
frontier models. The results show that the decomposition of the benchmarking
process into two steps and the consideration of technology classes can reduce the
unobserved heterogeneity within classes, hence, reducing the unexplained variation
that could be mis-specified as inefficiency.
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1 Introduction

In the last two decades the electricity distribution sector in Europe has witnessed a
wave of regulatory reforms aimed mainly at improving the economic efficiency.
Thereby, information on several efficiency concepts in production theory, including
scale and scope efficiency as well as cost efficiency has become very important. The
concept of cost efficiency is a measure of the regulated electricity distribution
company’s ability to minimize costs, given specific demand and market conditions.
Cost inefficiency, also called ‘X-inefficiency’, occurs when the company fails to
produce with full efficiency at the cost frontier, defined by best-practice companies.

Regulatory authorities increasingly use empirical cost norms, such as parametric
or non-parametric benchmarking methods, in various incentive regulation schemes
(Haney and Pollitt 2009). One of the most widely used regulatory regimes in
electricity networks is price- or revenue-cap regulation (often denoted CPI-X reg-
ulation, cf. Littlechild (1983)). This method determines a maximum price or rev-
enue index in real terms, less a productivity improvement parameter, referred to as
the ‘X-factor’.1 The X-factors include a general productivity improvement
requirement (usually called the ‘general X-factor’) and potentially an individual
efficiency improvement parameter (frequently denoted the ‘Xi-factor’ or the indi-
vidual X-factor). Whereas the purpose of the general X-factor is to share the pro-
ductivity gains in the sector between the consumers and the companies, the
individual term is intended to eliminate incumbent efficiency differences between
companies. The exact translation of an estimated static cost inefficiency to an
annual real productivity target (Xi) depends on the allowed period to catch up
inefficiency, the type of inefficiency detected (capital and/or operating costs) and the
type of by-pass mechanism (Z) used for certain costs that may be proportional to the
inefficiency (e.g. network losses). Notwithstanding, the mechanism allows the
regulator to set differentiated price or revenue caps based on the individual com-
pany’s empirically estimated productive efficiency performance.2 An alternative to
the CPI-X regulation, addressing the arbitrariness of the adjustment parameters and
the risk induced by the lag, is the yardstick regulation paradigm (cf. Shleifer 1985).
In this model, the reimbursement of the regulated firm is linked to a dynamic norm,
excluding the cost report of the specific company in its calculation. Although
Shleifer presented the model for a stylized cost function, the use of frontier analysis
tools enables the application of yardstick methods also to multi-output production

1 In addition to inflation, the changes beyond companies’ control may include changes in input
factor prices and exogenous changes in demand and network characteristics, generally referred to
as ‘Z-factors’.
2 The level of productive efficiency or cost efficiency of a firm is composed by the levels of
technical and allocative efficiency. For a discussion of these concepts see Kumbhakar and Lovell
(2003).
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and service provision. Several regulators in Europe, thereof Germany and Norway,
use DEA for dynamic yardstick regimes in electricity distribution regulation.3

However, the increasing use of efficiency analysis has raised serious concerns
among regulators and companies regarding the reliability of efficiency estimates.4

In fact, empirical evidence suggests that the estimates are sensitive to the adopted
efficiency measurement approach.5 This implies that the choice of the approach
may have important effects on the financial situation of the companies as well as on
the industrial structure of the regulated sector.

One important dimension affecting the reliability of efficiency estimates is the
presence of unobserved factors. The regulated companies operate in different
regions with various environmental and network characteristics that are only par-
tially observed. This heterogeneity in the service area is an important factor to
consider in a benchmarking analysis. Recall that the purpose of the benchmarking
method is to create a cost norm for efficient, structurally comparable companies
under similar operating conditions. Some methods of estimating efficiency take
account of such unobserved factors, but in different ways. Generally, in deter-
ministic models such as the non-parametric linear programming approach, the
unobserved factors that influence the level of production costs are not considered in
the analysis. The explicit assumption in these approaches is that all relevant cost
differences are captured by observed variables. The few efficiency analysis models
addressing part of the unobserved heterogeneity factors are parametric and based on
panel data. The seminal paper for the development of models for unobserved
heterogeneous factors is Greene (2005). The main idea is to introduce an individual
effect in an econometric model capturing the unobserved heterogeneous factors that
remain constant over time. The main problem hereby is that the individual effects
can capture also part of the inefficiency that remains constant over time. In addition,
the complexity of the models developed by Greene (2005) and the entailed
assumptions remain important obstacles in applying panel data models in regulatory
practice. Given that the unobserved factors are considered differently in various
models, the resulting estimates can vary across methods. The magnitude of varia-
tion depends on the importance of the unobserved factors, which might change
from one case to another.

To address this problem, we propose an alternative strategy for improve effi-
ciency measurement methodology in the presence of unobserved heterogeneity. In
our strategy, we decompose the benchmarking process into two steps: In the first
step, we attempt to identify classes of companies that operate in similar environ-
ments and with comparable network and structural characteristics. For this purpose,
we apply a latent class model. In the second step, the best practice is obtained

3 The theory for dynamic applications of DEA in yardstick and a comparison with a conventional
CPI-X approach are found in Agrell et al. (2005a).
4 Shuttleworth (2005) provides a critical overview of the problems coming along with the use of
benchmarking in the regulation of electricity networks.
5 See e.g. Jamasb and Pollitt (2003), Estache et al. (2004), Farsi and Filippini (2004) or Farsi et al.
(2006).
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within each class, based on deterministic and stochastic frontier models. Provided
that the identified classes contain reasonably comparable cases and assuming a
reasonable explanatory power for the variables included in the model specification,
any deterministic or stochastic approach can be used to estimate efficiency.

The outline of this chapter is as follows: Sect. 1 reviews some of the most
commonly used approaches to efficiency measurement. Section 2 addresses the cost
model specifications and estimation methods. Section 3 introduces the data and
Sect. 4 provides the estimation results for both steps and measures of cost efficiency
for different frontier models in the second step. We draw our conclusions in Sect. 5.

2 Review on Approaches to Efficiency Measurement

This section briefly reviews some of the most commonly used frontier approaches
to cost efficiency measurement, based on more extensive reviews in Kumbhakar
and Lovell (2003), Murillo-Zamorano (2004), Coelli et al. (2005), Cornwell and
Smith (2008), Greene and William (2008), Kumbhakar and Lovell (2003), and
Farsi and Filippini (2009).6 The focus here is mainly on cost efficiency and on cost
functions, the argumentation is analogously valid for production functions and
productive efficiency (under a set of regularity conditions, cf. Shepard (1953) and
Nerlove (1963)). The frontier approach assumes that full cost efficiency is defined
by those companies that are identified as the best-practice peers. All other com-
panies are assumed to operate above the cost frontier, hence to have non-zero
inefficiency.

Economic literature has developed two different frontier paradigms to empiri-
cally measure cost efficiency.7 The first is based on a non-parametric deterministic
and the second on an econometric approach, sometimes also referred to the para-
metric approach.

Non-parametric approaches, such as the Data Envelopment Analysis (DEA),
proposed by Farrell (1957) and Charnes et al. (1978), use linear programming to
construct a company’s efficiency frontier, which is considered as a deterministic
function of the observed variables. These methods are non-parametric in the sense
that they do not impose any specific functional form or distribution assumption, i.e. it
is assumed that the data are free of noise. Thanks to their relative simplicity and
availability, such methods, in particular DEA, are quite popular among both
researchers and regulators in energy distribution networks. The DEA models can be
input- or output-oriented and one of the a priori assumptions concerns the returns to
scale. The models can be specified as constant returns to scale (CRS), variable returns

6 The latter review includes also sections on the traditional production theory and on scale and
scope economies.
7 A third paradigm, the Bayesian approach is only little-known in applied science. Readers
interested in Bayesian stochastic frontier models (sometimes also assigned to non-parametric
models) are referred to van den Broeck et al. (1994).
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to scale (VRS), non-increasing returns to scale (NIRS), non-decreasing returns to
scale (NDRS), free disposal hull (FDH) and free replicability hull (FRH), where the
latter two merely impose disposability and additivity, but not convexity of the pro-
duction space. A basic DEA formulation calculating the minimal cost under VRS for
company i in a sample of N companies with k inputs and m outputs would be

min
k;xi

w0
ixi

s: t: : �yi þ Yk� 0; xi � Xk� 0; N 0k ¼ 1; k� 0
ð1Þ

where wi and xi are k × 1 vectors representing input prices and quantities for
company i; yi is an m × 1 vector representing the given output bundle; X and Y are
input and output matrices namely, a k × N and an m × N matrix consisting of the
input and output bundles for all companies in the sample; N is an N × 1 vector of
ones; and λ is an N × 1 vector of non-negative constants to be estimated. The VRS
property is satisfied through the convexity constraint (N’λ = 1) that ensures that only
similar-sized companies are benchmarked against each other. The linear program-
ming algorithm finds a piece-wise linear isoquant in the input-space, which cor-
responds to the minimum costs of producing the given output at any given point.
Cost efficiency (CE) finally is measured by the minimum feasible input bundle for
each company relative to its actual input bundle, i.e. CEi ¼ w0

ix
�
i =w

0
ix
0
i .

In contrast to non-parametric methods, most of the econometric approaches
include estimating an empirical cost function, where the observed variables should
include a vector of outputs (q) and a vector of input prices (p). The remaining
unobserved part, the residual, is completely (in deterministic models) or partially (in
stochastic models) assigned to inefficiency.

The first econometric frontier models that appeared in the literature were
deterministic and estimated by OLS. Usually, their cost function is expressed in
logarithms as

lnCit ¼ f qit; pit; bð Þ þ aþ eit ð2Þ

where Cit is total cost incurred by the unit i at time t, f(.) is a parametric cost
function, qit and pit are vectors of outputs and input prices, respectively, β is the
vector of parameters and α the intercept to estimate, and εit is the residual. As the
error term in deterministic models only reflects the inefficiency, it is assumed to be
non-negative. Therefore, Winsten (1957) suggested shifting the estimated intercept
down by the minimal residual value. This model is called Corrected OLS (COLS).
The cost efficiency of unit i in the COLS model is thus given by exp(−uit) with
uit = εit – min(εit) ≥ 0. Afriat (1972) proposed a slightly different model, usually
referred to as Modified OLS (MOLS), where the OLS intercept is shifted by the
expected value of the inefficiency term that is, E(uit). The cost efficiency of unit i at
time t in the MOLS model is thus given by exp(−uit) with uit = εit + E(uit). The
efficiency term uit is not necessarily positive (some units are below the cost fron-
tier). Truncation at zero assigns the respective units with full efficiency.
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Deterministic models are similar to DEA and other linear programming models
in that the best practice (the cost frontier) is a fixed function that does not vary
across observations or units. As main drawback, these models attribute the residual
entirely to inefficiency, i.e. they do not account for other sources of stochastic
variation such as measurement errors.8,9 Nevertheless, deterministic models are still
widely used in applied economic literature and in regulation (see e.g. Haney and
Pollitt (2009)).

To overcome the drawbacks of deterministic models, Aigner et al. (1977) and
Meeusen and van den Broeck (1977) proposed a stochastic frontier model (SFA),
which divides the residual εit into two parts: uit is reflecting inefficiency, and vit is
capturing the random noise. The basic cost function of the stochastic frontier model
can be written as

lnCit ¼ f ðqit; pit; bÞ þ aþ uit þ vit ð3Þ

With certain distribution assumptions on uit and vit, this model can be estimated
using the Maximum Likelihood (ML) estimation method. Typically, it is assumed
that the inefficiency term uit has a one-sided non-negative distribution that is, a
normal distribution truncated at zero: uit * |N(0,r2u)|,

10 and the random noise term
vit is normally distributed: vit * N(0,r2v ). Additionally, uit and vit are considered as
being independently distributed from each other. As in the models above, one
would expect the most efficient unit to take uit = 0, and the efficiency value to be
calculated as exp(−uit). Unfortunately, E(uit) cannot be calculated for an individual
unit. Jondrow et al. (1982) proposed therefore a different estimator to measure
efficiency. This estimator is based on the conditional expectation function of the
residual, (E[uit|εit]), and is known as the JLMS estimator referring to the authors.11

This is a highly non-linear function that only slightly increases the inefficiency for
units close to the frontier leaving no unit with full efficiency. The other estimator
proposed by these authors is based on the conditional mode (M[uit|εit]) that nor-
mally assigns full efficiency to several units. It has been used much less in the
empirical literature than the JLMS estimator.

8 Semi-parametric frontier models such as quantile regression (Koenker and Bassett 1978)
sometimes count as deterministic models. Unlike least squares methods, quantile regression
techniques do not approximate the conditional mean of the response variable, but either its median
or quantiles and offer therefore a systematic strategy for examining the entire distribution of the
population. Readers interested in applied quantile regression models for efficiency measurement
are referred to Behr (2010) and to Knox et al. (2007).
9 In real regulatory application, regulators use specific outlier detection and elimination methods
to reduce the impact of, and incentives for, errors in the reference set, see Agrell and Niknazar
(2014).
10 Other extensions of the SFA model have considered exponential, gamma, or truncated normal
distributions for the inefficiency term.
11 Jondrow et al. in (1982).
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The models described so far can be applied either to cross-sectional or panel
data. However, the panel structure in the data is ignored, as these models require
pooling all observations and treating them as being independent from each other.
Temporal variations can be captured using time trends or time-interactions.
Moreover, these models are not suited to account for unmeasured, i.e. unobserved
heterogeneity. This is due to the fact that with pooled data, each observation is
considered as a single, discrete unit. With only one observation per unit, it is not
possible to disentangle efficiency and time-invariant, unit-specific heterogeneity.
Therefore, the presence of unobserved heterogeneity influences the estimation
results of the regressors in case of correlation, or the residuals (referred to heter-
ogeneity bias, Chamberlain (1982)). The structure of panel data offers the oppor-
tunity to apply models that account for the individual effect that should capture the
unobserved heterogeneity and hence free from the heterogeneity bias. The time
dimension in panel data sets allows us to observe the same unit repeatedly over a
certain time span. This enables us to extract time-invariant factors such as unit-
specific characteristics that do not necessarily accrue to the unit’s inefficiency, but
do affect the costs across different networks. Especially structural inefficiencies
(inefficiency that is constant over time) and inefficiencies following a certain time
path can be better identified using panel data. Most of the developments of the panel
data models go back to the stochastic frontier models of Aigner et al. (1977) and
Meeusen and van den Broeck (1977) expressed in Eq. (3).

An early application to panel data of this stochastic frontier model was the
Random Effects (RE) model by Pitt and Lee (1981) which was estimated by ML and
assumed that the inefficiency uit is fixed through time, but still half-normally dis-
tributed: ui * |N(0,r2u)|. Important variations of this model were presented by
Schmidt and Sickles (1984) who relaxed the distribution assumption, and by Battese
and Coelli (1988) who assumed a truncated normal distribution. Schmidt and Sickles
(1984) also proposed a Fixed Effects (FE) model to avoid the possible heterogeneity
bias in case of correlation of uit with the explanatory variables. One of the drawbacks
of models with time-invariant efficiency is that time-varying components of heter-
ogeneity are entirely interpreted as random noise. Therefore, Cornwell et al. (1990),
Kumbhakar (1990) and Battese and Coelli (1992) suggested the first stochastic
models allowing the cost efficiency to vary over time. However, the first two models
developed were vulnerable to multicollinearity and the third was characterized by a
deterministic functional form of the inefficiency term over time.

The main restriction of all of the models presented above is that unobserved
factors are assumed to be random over time. This implies that time-invariant factors
such as physical network and environmental characteristics are not considered as
heterogeneity. The family of ‘true’ panel data models (Kumbhakar 1991) and
Polachek and Yoon (1996) as precursor models of Greene (2005) extend the ori-
ginal stochastic frontier model as it is formulated in Eq. (3) by adding a unit-specific
time-invariant factor accounting for the individual effect.12 Hence, apart from the

12 The term ‘true’ refers to the FE and RE models fully described in Greene (2005).
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random noise component, these models include two stochastic terms for unob-
served heterogeneity, one for time-varying and one for time-invariant individual
effects. This model can be written as

lnCit ¼ f qit; pit; bð Þ þ ai þ uit þ vit ð4Þ

where αi is the time-invariant unit-specific factor and the model is estimated by
Maximum Simulated Likelihood (MSL). In a RE framework, αi is an iid random
component and must not be correlated with the observed variables. In a FE
framework, αi is a constant parameter for every unit.13 As in all ML models, the
inefficiency component can be measured by the JLMS estimator of Jondrow et al.
(1982). Assuming that physical network and environmental characteristics do not
vary considerably over time and that the inefficiency is time-varying, these models
help to separate unobserved time-invariant effects from efficiency estimates.
However, if inefficiency is persistent over time, these models underestimate the
inefficiency systematically, e.g. if managers take wrong decisions in every period or
make the same mistakes again and again, the corresponding consequences in terms
of inefficiency are detected as time-invariant unit-specific heterogeneity and not as
inefficiency. As noted in Greene (2008), the ‘truth’ doubtless lies somewhere
between the two strong assumptions.

The idea of observed parameter variability was early applied to a precise indi-
cation of heterogeneity of the production environment by Kalirajan and Obowona
(1994) in the stochastic frontier context. A similar random parameter (RP) model
was also formulated by Greene (2005), which is a generalization of the True Effects
models in that not only the constant but also the parameters of the observed vari-
ables are unit-specific indicating the effect of different environments or technolo-
gies. This model is estimated by MSL. As noted by Greene (2008), the estimation
of the MSL of this model can be numerically cumbersome.

Another approach to accommodate heterogeneity among units into the model is
followed by latent class (LC) models. Originally introduced by Lazarsfeld and
Henry (1968), LC identifies distinct class membership among subjects regarding
their cost structure and estimates a separate cost function for each of these classes
simultaneously.14 LC models can be regarded as the discrete counterparts of RP
models. With a sufficient large number of classes, LC approximates a fully
parameterized RP model. The LC model can be written as:

lnCit ¼ f qit; pit; bj
� �þ aj þ uit j þ vit

�� ��
j ð5Þ

13 An alternative version of the True FE model uses dummy variables for every unit. However,
this specification may be affected by the ‘incidental parameter problem’, especially in short panel
data sets.
14 Latent class analysis has been applied in different fields of science and industry sectors, e.g. in
the banking sector (Orea and Khumbhakar 2004) or more recently in the electricity distribution
(Cullmann 2010).
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The subscript i denotes the unit, and uit and vit are defined as above. αj is the
constant and βj is a vector of discrete random parameters identified in j = 1, 2, …,
J classes, assuming that each observation in the sample follows a specific tech-
nology. These technologies differ from each other in the values of model parameters
{αi, βi, σi}. This vector includes also a set of prior probabilities that determines the
fraction of each latent class in the sample. It is defined as a discrete random vector
with the following distribution:

ai; bi; rif g ¼ aj; bj; rj
� �

with probability Pj; where : j ¼ 1; 2; . . .; J; and
XJ
j¼1

Pj ¼ 1 ð6Þ

The subscript j denotes the latent class with J being the number of classes. The
choice of J is usually based on diagnostic criteria such as the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC).15 These criteria
indicate the optimal number of classes from an informational perspective, but
cannot be used for statistical inference. After the estimation of the LC model,
posterior probabilities bPj can be calculated for each observation from Bayes rule.

The choice of the econometric models presented so far is usually not straight-
forward. For instance, Farsi and Filippini (2009) have found several studies that
report discrepancies in efficiency estimates between different models and approa-
ches.16 Such discrepancies are partly due to methodological sensitivity in the
estimation of individual efficiency scores and partly due to different consideration
of unobserved heterogeneity factors, which are particularly relevant in network
industries such as electricity distribution. Panel data models can be used to control
for the firm- or network specific unobserved heterogeneity. The use of panel data
models is especially interesting as data for several years have become available to
an increasing number of regulators in many countries. The complexity of such
models remains however an important obstacle in applying panel data models in
regulation. The effort in disentangling inefficiency variations from unobserved
factors such as statistical noise due to error and omitted variables is a crucial
element of all frontier models, in both cross sectional and panel data. The statistical
modeling challenge has a parallel in practice: benchmarking can only be effective to
the extent that for any specific company with given characteristics, there exists a set
of comparable companies upon which a ‘best practice’ can be constructed.

Therefore, as previously discussed, we propose an alternative strategy in this
paper to consider unobserved heterogeneity factors in that we decompose the

15 However, compared to the BIC, the AIC corrects the likelihood function only by the sample
size and not by the number of parameters to estimate. This is a clear disadvantage with increasing
number of classes.
16 See e.g. Jensen (2000), Jamasb and Pollitt (2003), Street (2003), Estache et al. (2004), Farsi and
Filippini (2004). The results show substantial variations in estimated efficiency scores and, for
some of them, in efficiency rankings across different approaches (econometric and non-parametric)
and among model specifications.
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benchmarking analysis into two steps: In the first step, we attempt to identify
classes of companies that operate in similar environments and with comparable
network and structural characteristics. For that step, we use a latent class model. In
the second step, best practice is obtained within each class applying different
benchmarking methods. Provided that the identified classes include reasonably
comparable cases and assuming a reasonable explanatory power for the variables
included in the model specification, any deterministic or stochastic approach can
provide accurate values of efficiency. Therefore, we use the DEA, MOLS and SFA
methods for the second step. In the next section, we will apply this approach using a
sample of Norwegian electricity distribution companies.

3 Cost Model Specification and Estimation Methods

We specify a cost model that explains total costs of the Norwegian electricity
distribution system operators (DSO) with two input and one output variable, one
environmental factor and one network characteristics. We write this model as
follows:

TC ¼ f ðPL; PC; Q; D; SÞ ð7Þ

where the dependent variable TC represents the total costs of the DSO. PL and PC

are the input prices of labor and capital, respectively. Q is the delivered electricity,
D the network density and S, finally, the share of high voltage network. For a
complete description of the data and variables, see Sect. 4.

For the identification of the comparable technology classes in the first step, we
apply a Latent Class (LC) approach (cf. Lazarsfeld and Henry (1968), see Sect. 2)17

to estimate the cost model in Eq. (7).18 Using a Cobb-Douglas functional form and
imposing the linear homogeneity restriction, the LC model in Eq. (5) can be adapted
to:

ln
TCit

PCit
¼ a0j þ bPj ln

PLit

PCit
þ bQj lnQit þ bDj lnDit þ bLSjSit þ eit jj ð8Þ

where subscript i denotes the electricity distribution company i = 1, 2, …, I, sub-
script t the years 1998–2002, and εit * N(0,σi) the error term. The subscript
j denotes the latent class with J being the number of classes.

After the identification of comparable technology classes, we estimate the cost
efficiency in the second step separately for each class. As the heterogeneity within

17 Different models could be considered to identify technology classes. LC is a statistical method
that has been used in literature to identify classes (see Orea and Khumbhakar (2004) or Greene
(2005)).
18 All estimations have been conducted by Nlogit software version 4.0.
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classes is expected to be low due to comparable technologies, any deterministic or
stochastic approach can be considered. For general overviews on approaches to
efficiency measurement, see e.g. Murillo-Zamorano (2004) or Greene (2008), or,
for an empirical application, Farsi and Filippini (2009). With respect to current
regulatory practice (see Haney and Pollitt (2009) for an overview over 40 coun-
tries), we apply the three following, most prevalent methods: The Data Envelop-
ment Analysis (DEA, proposed by Farrell (1957) and Charnes et al. (1978)), the
Modified OLS (MOLS, proposed by Afriat (1972)) and the Stochastic Frontier
Analysis (SFA, proposed by Aigner et al. (1977)).

DEA is a non-parametric method to calculate cost efficiency as a deterministic
function of the observed variables, i.e. it is assumed that the data are free of
stochastic variation due to measurement errors or noise. The cost model given in
Eq. (7) can be readily used for the efficiency measurement with the DEA method.
Assuming variable returns to scale (VRS), the Eq. (1) reduces to the following
minimization problem:

min
k

TCit

s: t: : �Yit þ Yk� 0; TCit � TCk� 0; N 0k ¼ 1; k� 0
ð10Þ

where Yit represents the vector of the output bundle including output Qit and output
characteristics Dit and Sit, as both characteristics take resources. However, in the
DEA model, D is defined as the inverse of the network density, since a higher
network density implies lower costs. N and λ are vectors of ones and non-negative
constants, respectively. Cost efficiency (CE) is measured as the minimum feasible
costs for each company relative to its actual costs, i.e. CEit = TC*/TCit.

MOLS and SFA are parametric methods that use regression techniques to
construct the efficiency frontier. Both require the specification of a functional form
of the cost function as well as assumptions about the error term(s). Similar to
Eq. (8) in the first step, we estimate cost model in Eq. (7) using a Cobb-Douglas
functional form and impose the linear homogeneity restriction. The MOLS and
SFA models in Eqs. (2) and (3) can be adapted to:

ln
TCit

PCit
¼ a0 þ bP ln

PLit

PCit
þ bQ lnQit þ bD lnDit þ bLSSit þ eit ð11Þ

The MOLS approach is based on the OLS estimation. The residuals εit are
corrected using a constant shift, which is the expected value of the inefficiency
term, E(uit). The cost efficiency in the MOLS is thus deterministic and given by
CEit = exp(−uit) with uit = εit + E(uit). uit is not necessarily positive, as some units
may lie below the cost frontier. Truncation at zero assigns the respective units with
full efficiency.

The SFA approach is based on the Maximum Likelihood estimation. The
residuals εit are composed of the inefficiency term uit and the random noise term vit.
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In this study, it is assumed that uit follows one-sided non-negative distribution, i.e. a
normal distribution truncated at zero: uit * |N(0,r2u)|, and that vit is normally
distributed: vit * N(0,r2v). Additionally, uit and vit are considered as being inde-
pendently distributed from each other. The cost efficiency in the SFA is thus
stochastic and given by CEit = exp(−uit).

In order to compare the results from this two-step approach with that of a
conventional analysis, we estimate the three models (DEA, MOLS, SFA) also in
one step, i.e. without consideration of classes, but for the whole sample. The
resulting tables are given in the Appendix.

4 Data

The data we use for this study consist of a balanced panel of 555 observations from
111 companies that have operated in the Norwegian power distribution sector from
1998 to 2002.19 The available information includes total costs, labor costs, full time
equivalents, total transformer capacity, distributed electricity, number of customers,
line length for each low and high voltage, and year dummies. Table 1 provides a
descriptive summary of the balanced panel data set for the variables included in the
models.

From this data, we calculated the variables included in the models as follows:
The dependent variable (TC) is the total network costs excluding the cost of pur-
chased electricity. It is measured in millions Norwegian Kroner (NOK) and is in
real terms; hence it is adjusted for inflation. TC includes all DSO’s network costs
consisting of both operating and capital expenditures. The explanatory variables
involve two input price variables, one output variable and one environmental and
one network characteristic, hence the DSO’s are here considered to be single-
product firms. The input price variables include a price for labor (PL) and a price for
capital (PC). We derived PL by dividing labor costs by the number of full-time
equivalents. PC is an approximation to the real capital price, calculated as a residual
price by dividing non-labor costs by the installed transformer capacity. The output
is given by the delivered electricity (Q), measured in gigawatt hours (GWh). The
environmental variable is the network density (D), represented by total number of
customers divided by total network length in kilometers. The network characteristic
(S) is modeled by the share of high voltage network length and total network
length.

19 In order to get a balanced panel data set, we extracted this data from the data that has been used
in several scientific studies (Agrell et al. (2005a, b)) as well as in a research project financed by the
Norwegian Water Resources and Energy Directorate partly reported in Agrell and Bogetoft (2009)
and a research project financed by Swiss Federal Institute of Energy reported in Filippini et al.
(2011).
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5 Results

In the first step, we first determine the optimal number of classes J of the LC model.
Using the model specification in Eq. (8), we applied LC models to the data in
Table 1 with two to six classes.20 The specification diagnostics obtained by this
analysis show that J = 4 is the optimal number of classes for the BIC and J = 6 for
the AIC. In cases with J > 4, we observed some implausible values for the
regression coefficients, e.g. statistically insignificant values for the output. Con-
sidering the appealing statistical features of the BIC, we adopted this criterion and
selected four classes.

The estimation results of this LC model estimated in the first step are summa-
rized in Table 2. These results show four distinctive technology classes with sig-
nificant coefficients in most of the cases. Differences in the coefficients indicate that
there are variations in marginal costs and technological characteristics across these
classes. We see throughout all classes that total cost increases with higher input
prices and higher outputs and in three classes with an increasing share of high
voltage networks. As expected, operation with density reduces costs. Differences in
coefficients indicate that there are variations in marginal costs and technical char-
acteristics across classes. Prior class probabilities indicate also different class sizes.

Table 3 provides a descriptive summary of the observed variables for each class
as identified by the estimated posterior class probabilities. These probabilities show
that the operators can be distinguished with high probabilities. The fact that even in
the worst cases, minimum probabilities are greater than 0.5 suggests that operators
can be classified without ambiguity. The resulting classes have at least 100
observations, which is large enough for reasonable degrees of freedom for the
second step estimations. The values of the observed variables in each class indicate
that we can distinguish in an approximate manner certain features that characterize
each class. Class 1 faces low input prices and a high customer density, whereas
Class 2 has high input prices and medium customer density. Classes 3 and 4 face
intermediate values for most of the variables except for a relatively low customer
density in Class 3.

The estimation results for the MOLS and the SFA estimated in the second step
for each class separately are summarized in Table 4. Other than the first step, the
estimations are based on cost model specification in Eq. (11) and on subsamples of
the data in Table 1, given by the four classes of the first step. In general, the
coefficients are of the same magnitude as in the LC model in the first step. The
coefficients of the MOLS and the SFA differ slightly because of different
assumptions on the error term. The signal-to-noise ratio λ is significant for three
classes indicating skewness and existence of inefficiency. The insignificant value of
λ in class two means that standard errors of the inefficiency terms are low compared
to that of the noise terms, which will results in low inefficiency values for this class.

20 Using several specifications, we also tried models with seven or more classes. Due to non-
convergence we could not estimate any models with more than six classes.
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The results of the efficiency analysis for the four classes and three models each
are summarized in Table 5. The average efficiency value ranges from 0.56 for DEA
in Class 1 to 0.98 for SFA in Class 2. In general, the average efficiency values are
lowest in Class 1 for all three models and highest in Class 2 for MOLS and SFA.
The highest average efficiency value for DEA is in Class 3 with 0.81. The standard
deviations are highest in Class 1 for all three models and lowest in Class 2 for SFA,
indicated already by the insignificant lambda in Table 4. Throughout all three
models, SFA produces higher efficiency values than DEA and MOLS. This is
expected since the model considers statistical noise. Another typical feature is that
whereas DEA and MOLS assign full efficiency to several observations, SFA does
not classify any operator as fully efficient. The minimum values are low in Class 1
for all three models. In particular, DEA attributes considerably lower minimum
efficiency estimates for all classes than the other models.

In general, the efficiency values are higher and more realistic than the corre-
sponding scores of a conventional analysis performed in one step (given in Table 7
in the Appendix). The decomposition of the benchmarking process into two steps
and the consideration of technology classes has reduced unobserved heterogeneity
within classes and, hence, reduced the unexplained variance previously claimed as
inefficiency. Therefore, conventional cross-sectional or pooled models might
underestimate cost efficiency.

6 Summary and Conclusions

Regulatory authorities increasingly use benchmarking practices to identify a com-
pany’s individual efficiency in various incentive regulation schemes such as price-
or revenue cap. The identification of cost efficiency in electricity distribution is a
challenging task, as the companies operate in different regions with various envi-
ronmental and network characteristics that are only partially observed. Therefore,
the purpose of this study was to analyze cost efficiency in electricity distribution
under consideration of these unobserved heterogeneity factors.

In order to disentangle cost efficiency variations from unobserved factors, we
proposed an alternative strategy that decomposes the benchmarking process into
two steps: The first step is to identify classes of comparable companies in order to
reduce unobserved heterogeneity within classes and the second to obtain the best
practice for each class.

The analysis in the first step has revealed four distinct latent classes. These
classes can be characterized in an approximate manner by different observed
variables, mainly by input prices and customer density. The analysis in the second
step applying DEA, MOLS and SFA frontier methods has shown that average
efficiency values vary considerably among methods and classes. In general, DEA
has produced lowest and SFA highest values. Companies in Class 1 are on average
considerably less efficient than companies in the other classes, and the variation in
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efficiency scores in Class 1 is highest. This class involves clearly the largest and
most heterogeneous companies concerning output.

Most importantly, the efficiency values are generally higher and more plausible
than the corresponding scores of a conventional single-step analysis. The decom-
position of the benchmarking process into two steps and the consideration of
technology classes has reduced unobserved heterogeneity within classes and, hence,
reduced the unexplained variance previously claimed as inefficiency. Therefore,
conventional cross-sectional or pooled models might underestimate the real cost
efficiency values. This in turn could lead to too incommensurate regulatory mea-
sures in account of the affected companies, especially if price or revenue cap
regulation as incentive regulation scheme is in force.

7 Appendix

See Tables 6 and 7.

Table 6 Estimation results for MOLS and COLS, conventional analysis

Variable MOLS
Coefficient (SE)

SFA
Coefficient (SE)

Input price ratio (P) 0.6827 *** (0.024) 0.6637 *** (0.024)

Distributed electricity (Q) 0.9328 *** (0.011) 0.9327 *** (0.011)

Density (D) −0.3423 *** (0.028) −0.3226 *** (0.024)

Share HV network (S) 0.7258 *** (0.091) 0.7679 *** (0.080)

Constant 4.8223 *** (0.009) 4.5888 *** (0.011)

Sigma: σ2 = σu
2 + σv

2 0.3175 *** (0.001)

Lambda: λ = σu/σv 2.2973 *** (0.229)

***, **, *: significant at 1 %, 5 % and 10 %, respectively N = 555

Table 7 Efficiency scores,
conventional analysis

DEA MOLS SFA

Mean 0.554 0.762 0.802

SDev 0.151 0.148 0.104

Min 0.246 0.319 0.498

p25 0.453 0.645 0.727

Median 0.527 0.769 0.827

p75 0.625 0.871 0.887

Max 1 1 0.960

T = 5 (1998–2002), i = 111, N = 555
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