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Abstract In this paper we derive power futures prices from a two-factor spot
model being a generalization of the classical Schwartz—Smith commodity dynam-
ics. We include non-Gaussian effects by introducing Lévy processes as the sto-
chastic drivers, and estimate the model to data observed at the European Electricity
Exchange in Germany. The spot and futures price models are fitted jointly,
including the market price of risk parameterized from an Esscher transform. We
apply this model to price call and put options on power futures. It is argued
theoretically that the pricing measure for options may be different to the pricing
measure of futures from spot in power markets due to the non-storability of the
electricity spot. Empirical evidence pointing to this fact is found from option prices
observed at the European Electricity Exchange.

Keywords Energy markets - Pricing measures - Jump processes + Spot price -
Futures and forwards - Options

1 Introduction

In the last two decades markets for power have been liberalized in Europe and other
places world-wide. Nowadays, we find well-functioning markets for purchase of
electricity in many countries on the European continent, in the Nordic countries and
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in the UK. Furthermore, there exists markets in North America, Australia and some
places in Asia. Typically, these markets separate between a day-ahead spot market
for electricity, and financial contracts for future delivery of power. In some, more
developed markets, one also trades in derivatives like plain vanilla call and put
options on the futures contracts. This takes place in for example the Nordic market
NordPool and the German market European Electricity Exchange (EEX).

In this paper we focus the attention on pricing spot, futures and options jointly in
the power market. Our aim is to argue for a separation of the modelling of the risk
premium charged in the futures market and the risk neutral measure used for
options pricing. The classical approach to futures pricing is to specify a stochastic
dynamics of the spot price, and define the futures price as the conditional risk-
adjusted expected average spot price over the delivery period. The risk-adjustment
is modelled by a specification of pricing probabilities, which changes the charac-
teristics of the spot dynamics (see Benth et al. 2008 for a discussion and application
of this approach to energy markets). Usually, as this approach yields a risk neutral
(or martingale) dynamics of the futures price, one would price options using the
same probability. We argue here that there is no violation of no-arbitrage pricing to
have another pricing measure for options, as long as this is an equivalent martingale
measure for the futures price dynamics. The economic argument in favour of this is
the non-storability of the electricity spot price.

Based on a small data set of option prices at the EEX, we also argue empirically
for this possibility. Fitting a two-factor model for the spot price dynamics to EEX
data, we price futures and calibrate the risk premium using a parametric class of
pricing probabilities stemming from the Esscher transform (see Benth et al. 2008).
Although the access to option data at the EEX is poor due to a rather illiquid
market, we find evidence for a different risk neutral pricing measure than the one
used to derive futures prices from the spot dynamics. We benchmark our results to
the Black-76 prices derived from historical volatility.

Our two-factor spot model is a generalization of the Schwartz—Smith dynamics
(see Schwartz and Smith 2000), consisting of a long-term non-stationary factor and
a short-term stationary factor. The Schwartz—Smith model has been applied to
electricity markets by Lucia and Schwartz (2002), who analysed spot and futures
data at the NordPool market. As the Schwartz—Smith model is Gaussian, it fails to
account for the large spikes in the market. We extend the model to include Lévy
process driven noises, which also accounts for the high variability in EEX prices in
non-spike periods. Our proposed model is a simplification of the dynamics pro-
posed and analysed in Benth et al. (2011) and Barndorff-Nielsen et al. (2013). The
fitting of the spot and futures dynamics goes by filtering the non-stationary factor by
using futures prices of contracts far from delivery.

The presentation of our results are separated into several sections. In the next
section we present the rationale behind pricing of futures in power markets. Fur-
thermore, we discuss the pricing of options, and why one may use a different
probability for this purpose. Section 3 first defines the two-factor spot model, and
presents theoretical futures prices based on this dynamics. The joint spot and futures
price model is estimated to EEX data in Sect. 4, while Sect. 5 analyses empirically
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the option pricing performance of our futures price model. This section argues in
favour of a different pricing measure for options. Finally, in Sect. 6, we conclude
and outline some future research directions.

2 The Relation Between Spot, Futures and Options
in Power Markets

Typically, the liberalized power markets are divided into a day-ahead spot market, a
financial market for futures (and/or forwards') contracts on power, and a market for
plain vanilla call and put options on the futures. The futures contracts deliver the
underlying power over an agreed period of time, and the delivery is settled finan-
cially, i.e., the money-equivalent of the spot is delivered. These contracts are
denominated in a “currency” per MWh and work essentially as a swap contract
where one exchanges a floating spot price against a fixed over the contracted period.

For example, in the German EEX market the swaps have delivery periods being
months, quarters or years. The swap price is naturally denominated in Euro per
MWh, and the contract is accounted against the hourly power spot price. One
distinguishes between base and peak load contracts, where the peak load take into
account only the power spot prices in the peak hours, defined as the working days
from 8 in the morning to 8 in the evening. The base load contracts are settled
against the spot price of all hours in the delivery period.

The power spot prices are determined in an auction-based system, where the
traders hand in prices and volumes for production or consumption for given hours
the next day. Based on these bids, the exchange creates demand and supply curves
for each hour the following day, and at 2 p.m. the EEX publishes these spot prices
for the 24 h next day. We emphasise that the trade in the power spot market is
physical, and one therefore needs to have facilities for either producing or con-
suming (retailing) electricity. Unlike most other assets that can be traded, one
cannot form a portfolio and use the spot for investment or speculation purposes. By
the very nature of electricity, it is not possible to store. There are some exceptions,
since one may in fact use water reservoirs, say, as storage of power in terms of
potential energy. However, this is only possible for a limited segment of the market,
namely the hydro power producers.

The options traded in the market are written on specific financial swap contracts.
At the EEX power options are written on the Phelix Base futures with monthly,
quarterly and yearly delivery periods. The EEX offers only European style call and
put options, where the exercise takes place four trading days prior to the beginning
of the delivery period of the underlying futures.

! Some markets have both forwards and futures traded. We shall not make a distinction between
these two asset classes here, but stick to the notion of futures.
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Let us discuss at a more technical level the relationship between spot prices,
swaps, and options. For illustration, consider first a market where the spot is a
liquidly tradeable asset, like for example an exchange-traded stock. We denote S(¢)
as the spot price at time 7 >0, and consider a futures contract which delivers the
spot at a maturity time 7. The futures price at time ¢ <7 is denoted by f(¢, T), and
from standard no-arbitrage arguments based on the cash and carry strategy (see e.g.
Duffie 1992), it can be determined as

f(,T) =S(1)e’ T, (1)

Here, r > 0 is the deterministic risk-free interest rate, where we have supposed
that interest rates are continuously compounded. As is known from classical financial
theory, (1) can be established without any model assumptions on the spot price.

Assume that we are given a complete filtered probability space (Q,F,
{F:}iepo,7), P)- We interpret T < o0 as the time horizon of the market, including the
maturities of all options and futures relevant in our analysis. If S(7) is a semi-
martingale process, then there exists (at least one) equivalent martingale measure O
such that

f(6,T) = Eo[S(T)| F]. 2)

We refer to Shiryaev (1999) for the rigorous argumentation with conditions
leading to this representation of f(z, 7). In a complete market, i.e., a market where
all derivatives on S can be replicated, the probability measure Q is uniquely defined.
In the case of an incomplete market, one may have many such measures Q. The
question is to determine one relevant for pricing of derivatives. But, once such a
measure is pinned down, we can price futures and next use the same probability for
pricing options. Thus, for example the price of a European option with payoff
g(f(z,T)) at exercise time < T becomes

C(r) = e Elg(f(z, 1)) | Fi],

for 0 <t <. Note that we use the same Q for both the futures and the option, as is
the customary when pricing several derivatives based on an asset in an incomplete
market situation. Note, however, that we may use different equivalent martingale
measures for pricing different derivatives, as long as there exists at least one
measure Q that is an equivalent martingale measure for all products.

To see this, suppose that we have two derivatives on the spot with payoffs given
by the random variables X and Y, respectively. Let the prices at time zero be
Cx = Ey,[X] and Cy = Ey, [Y], where we for the moment assume that the interest
rate is zero to simplify the argument. The probabilities Ox and Qy are equivalent
martingale measures. If there exists an equivalent martingale measure Q, such that
the price processes S, Cx and Cy, are all Q-martingales, then the market is arbitrage-
free. However, as long as Q is equivalent to P, it has to be equivalent to Qx and Qy
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as well. Furthermore, by the no-arbitrage theory we must have that Cx = Ey[X] and
Cy = Ey[Y]. This implies that

g |
EQX |: dQX:| IEQx [X} )
and
d
o, |V 10| =Eal¥

These two equalities put strong conditions on the range of possible probabilities
Ox, Oy and Q.

In the case of power markets, the situation is completely different since the
probability measure used to price futures can theoretically be completely detached
from the measure pricing options on futures. As we have already argued, the power
spot price cannot be traded in the normal financial sense, and it works as a reference
index for the settlement of futures contracts. With this view at hand, the pricing
measure Q used to derive the futures price on the spot does not need to be an
equivalent martingale measure, but is required only to be an equivalent measure.
However, the futures is a tradeable asset and its price dynamics must be a
Q-martingale in order for the market to be free of arbitrage opportunities. Pricing
using conditional expectation as in (2) ensures this by definition.

In a specification of the market, one would typically model the spot price
evolution using some stochastic process S(z), and choose a parametric class of
equivalent probability measures Q. Based on a selected probability Q from this
class, the standard approach to price electricity futures is to define it as

Ip)

/ S(iydr| 7| . 3)

T\

1

F(I,Tl,Tz) ZEQ T T
2 1]

Here, we consider a contract delivering electricity over the time interval [Ty, T»],
and the contract is entered at time ¢ < T, with settlement at the end of the delivery
period T5. Note that the price is denoted in MWh, and therefore is normalized by
the length of the delivery period. This gives a theoretical swap price dynamics
which we next calibrate to the observed prices by fitting the parameters of the
probabilities Q. This will pin down a probability @ under which we model the risk-
neutral futures price dynamics. Note that the risk-neutral dynamics of F is a 0-
martingale. Since by construction @ is equivalent to P, we can also (in principle)
derive the market dynamics of the futures. Note that in general @ is not a proba-
bility for which the spot price dynamics becomes a martingale after discounting.

In reality, the above procedure in specifying a probability @ for pricing futures is
an approach to find a parametric representation of the price process F(z, T, T>),
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where we calibrate to represent the risk premium in the market, i.e., to explain the
difference between the observed futures prices and the predicted average spot price.
The latter is calculated by relation (3) using Q = P. Apriori there are two extreme
choices one can make on Q. First, ignoring the existence of a risk premium, one
could select O = P. Alternatively, assuming the electricity spot is tradeable, one
could force Q to be a martingale measure. Note that depending on the model for S,
one could have many possible martingale measures, so the latter choice is not
necessarily unique. Both alternatives are theoretically viable, but hardly reasonable
from the characteristics of electricity markets.

Our next problem is to price call and put options written on the futures. Fol-
lowing the standard no-arbitrage pricing framework discussed above, a first thought
would be to use @ and compute the option price using this probability. To be more
specific, let us suppose that we have a call option with exercise time t < 7T written
on a swap with dynamics F(¢, Ty, T>) given in (3) for the pricing measure 0. The
price of this call at time 7 < 7 is

C(1) = e "B, [max(F(t, Ty, T») — K, 0) | F].

However, in general, there will exist several equivalent measures Q for which
t— F(t,Ty,T,) is a Q-martingale. In fact, since typically the power spot price
dynamics involves jump processes, the futures price will follow a jump dynamics as
well. Under certain conditions, such models admit the existence of a continuum of
equivalent martingale measures Q. In this case we pin down a pricing measure Q by
selecting it from a parametric class of equivalent martingale measures Q for
F(t,T,T;). One could derive this probability by calibrating to observed option
prices in the market, or to appeal (partial) hedging arguments (see Cont and Tankov
2004 for a discussion of hedging and pricing in incomplete markets).

Note that finding Q for option pricing follows in principle the same scheme as
choosing Q for the futures prices. The fundamental difference is that 0O does not
need to be a martingale measure for the spot price, whereas Q has to be a martingale
measure for the futures price. Both probability measures are equivalent to P. In the
next sections we shall estimate a particular two-factor model to spot price data
collected from the EEX, and apply this to futures pricing based on a class of
probabilities defined by Esscher transformation. Using option price data, we shall

argue that the spot-futures probability @ is not the right probability for pricing

options on the futures, pointing towards Q # @

Our analysis is not restricted to power markets only. In the weather markets, like
the temperature market at the Chicago Mercantile Exchange (CME), futures on
temperature indices measured in various cities world-wide are traded. In addition,
plain vanilla call and put options on these futures are traded. The underlying “spot”
price here is the temperature in a given city, for example Chicago itself. Given a
stochastic model for the temperature S(¢), one can derive the resulting futures price
written on an index of the temperature. Typically, one chooses to price using a
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conditional expectation analogous to (3), where a pricing measure is selected.
Obviously, temperature itself is not a tradeable commodity, and we can use the
same argumentation as above to defend choosing the pricing probabilities which are
not necessarily martingale measures for the temperature dynamics. On the other
hand, the futures contracts are tradeable financial assets, and to price the options
with these as underlying, we need to use a probability measure Q which turns the
futures pnce into a Q-martingale. As in the case of power, the futures pricing

measure Q does not need to be the same as the option pricing measure Q. We note
in passing that CME also organize a market for precipitation derivatives based on
snow and rainfall indices in some cities in the US. Further, there has been trials to
create an organized market for wind futures and options at the now closed US
Futures Exchange. Here our discussion makes sense as well.

3 The Spot Price Dynamics and Implied Futures Prices

We consider a simple arithmetic two-factor spot price dynamics in the spirit of
Lucia and Schwartz (2002). The occurrence of negative spikes at the EEX, and,
even more, the observation that these spikes may even lead to negative prices,
indicate that an arithmetic model may be suitable. To this end, suppose that S(z)
follows the dynamics

S(t) = At) +X(1) + Y(1). 4)

Here, A : [0, 7] — R is a measurable deterministic function, modelling the mean
seasonal variation in spot prices. Usually, this function consists of a linear trend and a
periodic function (a linear combination of sines and cosines, with different fre-
quencies), and as such is a smooth function. The base component X(t) in the spot
price dynamics is assumed to be non-stationary and defined to be a Lévy process, i.e.,

dX (1) = dLi(1). (5)

In Lucia and Schwartz (2002), it is assumed that L, (¢) = y¢ 4+ oB(¢) with y and &
being constants and B(#) a Brownian motion. The volatility ¢ is naturally assumed
to be positive. One may think of the base component as stochastic variations from
market activity as well as long term effects like inflation in fuel prices and limited
resources, as well as entry of new sources of energy (like renewables). As it will
turn out from our empirical analysis of EEX spot price data, a drifted Brownian
motion is unsuitable for modelling the true dynamics of the non-stationary term,
and a Lévy process is much more appropriate.

Typically in power markets spot prices may exhibit random shocks due to
imbalances in supply and demand. These shocks are seen as spikes in the price path,
imposed from an unexpected increase in demand due to colder weather, say, or shut
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down of a major power plant yielding a drop in supply. The prices will in both these
cases exhibit a major price jump upward, which is followed typically by a strong
decline since demand will be significantly reduced by higher prices, or expensive
power production plants are ramped up (like coal-fired plants in Denmark in the
NordPool area). In the EEX market one observes many negative spikes, which is
caused by wind power mainly. By political legislation, wind power and other
renewable energy sources have priority into the electricity grid, and hence an
unexpected increase in wind power production (due to more wind where the farms
are...) may create bigger than expected supply (since it takes time to ramp down or
adjust other power plants fueled by gas and coal or producing nuclear energy). In
fact, one observes negative prices in the EEX market due to over-supply, where
some producers choose to pay for power consumption rather than shut down their
production.

From this discussion, we see that there is ample evidence for a mean-reverting
short-time factor of the form

dy(t) = —nY(t)dt + dLy(¢). (6)

Here, the constant 7 > 0 is expected to be rather big, since spikes created by the
Lévy process L,(¢) are reverting fastly back to normal price levels. We suppose that
L,(#) may have both positive and negative jumps, i.e., Ly(1) is distributed on R.

Notice that in Lucia and Schwartz (2002), both an arithmetic and geometric two-
factor model were analysed theoretically and empirically on NordPool data. In their
approach, the second factor Y was also assumed to be driven by a Brownian motion.
We believe that a jump factor for the noise is more appropriate in order to explain the
sudden spikes in prices, exhibiting a jump like behaviour in the price path. Also, most
empirical studies of power spot prices point strongly towards non-Gaussianity in
prices, and hence the need to use other processes than the Brownian motion to drive
the dynamics (see discussion in Benth et al. 2008). We remark that Lucia and Sch-
wartz (2002) let the short and long term factors correlate through their driving noise.

We denote L = (L;,L,), and assume that L is a bivariate Lévy process with
cumulant (log-characteristic function) defined by

1 o
W(x) =ig'x — EX/CX + / e™” —1—ix'z1(|z| <1)¢(dz), (7)
RZ
with x = (x,y)" € R?, u € R?, C a symmetric non-negative definite 2 x 2 matrix

and /(dz) a Lévy measure on R*\{0}. Here x’ denotes the transpose of the vector,

and i = v/ —1 is the imaginary unit. In the case of independence between L; and L,,
we can express the cumulant as a sum

V() = i (x) + %2 (v)
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where V;, i = 1,2 are cumulants of the univariate Lévy processes L; and L,. Our
general model allows for a dependency between L; and L,, although we shall
assume independence in the empirical study on EEX data below.

In Benth et al. (2011) they use a more general model. The stationary short time
variations are modelled as a continuous-time autoregressive moving average
(CARMA) process, where the driving process L, is an a-stable Lévy process. As it
includes mean reversion, a CARMA model is comparable to the standard approach
of commodity spot price modelling, i.e., to describe the spot as a sum of several
Ornstein—Uhlenbeck processes with different speeds of mean reversion and sto-
chastic drivers (see Benth et al. 2008). In Benth et al. (2011), a CARMA(2,1)
dynamics is proposed and fitted empirically to EEX spot price data. Such a
dynamics is similar to a two-factor model, with each factor being an Ornstein—
Uhlenbeck process. Although we find strong indications of a two-factor dynamics
in our empirical study, we simplify the considerations here to a one-factor model as
a first order approximation of the short-term factor. This makes the fitting of data
significantly easier, and is in line with the more classical two-factor model of Lucia
and Schwartz (2002). Moreover, it turns out that we can do well with a much more
regular Lévy process than the a-stable to model the random fluctuations.

Our first concern is to introduce a parametric class of equivalent probabilities
Q which is appropriate for pricing swaps. For 0 = (0y,0,) € R?, define the
equivalent probability Qp, where the density process of Qp with respect to P is

dQy .
— |7, = exp{OL(t) — Y (—i0)1}. (8)
dP

In order for this to be well-defined, we must of course assume exponential
integrability conditions on L(1). Hence, suppose from now on that there exists a
constant ¢ > 0 such that

/ ¥ (dz) < o0, ©)

RZ

for all |x| <c. This ensures finite exponential moments for L(1) up to order c.
The probability Qy parameterized by 0 is known as the Esscher transform of
L (see Benth et al. 2008). The probability Qg is equivalent to P by definition of the
Radon-Nikodym densities. We emphasize, however, that we do not demand Qy to
be a martingale measure, in the sense that the power spot dynamics becomes a
Qp-martingale (the reader should note that this is technically impossible anyway
with the Esscher transform on an Ornstein-Uhlenbeck process, see Benth and
Sgarra (2012)). The reason is the non-storability of the spot which makes it non-
tradeable, i.e., one cannot create portfolios with spot investments in electricity.
Once purchased, it must be consumed. The parameter 0 is restricted to the subspace

of R? defined by |0] <c.
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In the next Lemma we characterize the process L under Qp:

Lemma 3.1 The process L is a Lévy process with respect to Qs with cumulant
function

Vo, (x) = ¥(x —i6) — (-i0).
Hence, the drift is

w4 0C+ / (e” — 1)z(dz)

|z <1
and the Lévy measure
lo,(dz) = " ((dz),

while the covariance matrix C remains the same.
Proof Using Bayes’ Theorem along with the density process of Qy and the inde-

pendent increment property of the Lévy process, yield that the conditional log-
characteristic function of L(#) given F; for t >s>0 is

InEg, [¥H0| F,] = ((x = i0) = y(~i0))(r - 5).

Hence, L is a Lévy process under Qp as well. By a direct computation, we find the
drift and the Lévy measure as claimed. O

Note that if we have a (bivariate) drifted Brownian motion as Lévy process, i.e.,
{(dz) = 0, then the Esscher transform is simply a Girsanov transform of the
Brownian motion with a constant parameter 6. For Lévy processes with jumps, the
Lévy measure is exponentially tilted by the Esscher transform. We may interpret
this as a rescaling of the size and intensity of jumps.

We remark that the expected value of L(1) under Qy is given by

Ey[L(1)] = =iVi(-i0),

where V is the gradient and Ey[] is the expectation operator with respect to the
probability Q. Thus, the Lévy process L(¢) = L(t) + iVy(—if)t becomes a mar-
tingale under Qg as it has expectation zero. This means in particular that under Qy,
the dynamics of X and Y are, respectively,

dX(t) = —iy,(—i0)dr + dLy (1) (10)

and
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dY (1) = { =iy, (—i0) — nY (1) } dt + dLs(1). (11)

Here, we have used the notation v, and v, as the partial derivatives of y with
respect to the two variables x and y, respectively. The solution Y(s) at time s > ¢,
conditioned on Y (), of this Ornstein—Uhlenbeck process is

s

(1 —e M0y 4 / e " Ly(du).  (12)

t

Y(s) = Y(£)e 1070 + #Pﬁ)

Next, we consider pricing of swaps in this market. Let us start with analysing the
implied swap price dynamics for the arithmetic model. The following result holds:

Proposition 3.2 The swap price F(t, Ty, T) is given by

F(t, Ty, Ty) =A(T1,T>) + X (1) + Y(2)ii(t, Ty, T»)
—iyp, (—i0)

(=T T)) ’

—SW(O)(Ts ~ Ti) — i (~i0)(T; — 1) +

where

T

1 efn(sft) ds
n-T

T

ﬁ(ta Tlv T2) =

and A(Ty, Ty) is the average value of the seasonality function A(s) over the interval
[Ty, T7].

Proof From the expression in (10), we find (for s > ¢)
Eo, [X(s)|F:] = X(2) — ivp (=i0(s — 1),

after appealing to the independent increment property of the Qy-Lévy process L;
with zero mean, and the F,-measurability of X(¢). Similarly, from the independent
increment property of the Qp-Lévy process L, having mean zero, we find from (12)
iy (—i6
Bo Y1) = v(ge o) -0 (g _ ovoon
n
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Since
L
FTLT) = [ {AG) +Eo () + Y7 s
1 J
the result follows after using the Fubini Theorem. |

We note that 7 is the average value of the “volatility function” exp(—n(s — 1))
over the delivery period [T, T3], and takes the form

1
i(t. T To) — ( —n(T1—t) _ 711(Tzft)> 1
1, 1) n(T> — Th) ) ¢ 7 13)

or,

1

n(T, — Th) (1 - e*'7<T2*T1>) . 14)

n(t, Ty, T) = e (M=)
In the representation (14), 71 — t is time left until start of delivery, and T, — Tj is
length of delivery. We recognize the exponential damping factor exp(—n(T, — 1))
as the Samuelson effect on the volatility, i.e., the volatility of the spot is increasing
as time to start of delivery is decreasing. The classical Samuelson effect says that
the volatility of the futures price is exponentially increasing in time to maturity to
the spot volatility (see Samuelson 1965, Benth et al. 2008). We note here that
7(t, Ty, T) is not converging to the “spot volatility”, being one in this context, but
to a value less than this. The delivery period creates this violation of the classical
Samuleson effect. It is natural from a financial and empirical point of view that the
volatility of the electricity futures price is not converging to that of the spot as the
futures price is the average of the spot over a delivery period.
We derive the dynamics of F in the next proposition

Proposition 3.3 The Qy dynamics of the swap price is

dF([, T, T2) = dil(l) + ﬁ(l, Ty, Tz)diz(l) .

Proof Since i (¢, Ty, T>) = nij(t, Ty, T2), the result follows after applying the Itd
formula for jump processes and the Qy-dynamics of X and Y. O

As is apparent from the definition of F(z,Ty,T>), it is a Qp-martingale process
for t <T). Thus, it defines an arbitrage-free model for the stochastic evolution of
electricity futures prices.
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4 An Empirical Study of EEX Spot and Futures Prices

In this section we want to estimate the parameters in the spot model, and calibrate it
to futures prices where we derive the market price of risk 6. It turns out that a joint
estimation of spot and futures is most efficient, where one can make use of the
asymptotic behaviour of futures prices to filter out the non-stationary factor in the
spot. This approach is analogous of the calibration procedure in Schwartz and
Smith (2000), with a more sophisticated version of it found in Benth et al. (2011).

The following asymptotic result of the futures price with respect to time to
delivery plays a crucial role in the estimation algorithm.

Proposition 4.1 It holds that

lim {F(t,T\,T>) = A(T1, T») — ¥Y(t, T\, T»;0) — X(1)} =0,

T,—t—o00

where

i (—i6)

(1,11, T»; 0) = —%npx(—ie)(rz =) — i, (0T 1) ==

Proof Recalling the explicit dynamics of F(z, Ty, T,) in Proposition 3.2, the result
follows after observing that exp(—#(7Ty —t)) — 0 as T} — t — oo. O

Hence, asymptotically the futures price behaves like
F(t,T1,T2) = ATy, T2) + ¥(1, 11, T3 0) + X (1), (15)

for T) — t — oo. This means that in the long end of the futures market, the prices
fluctuate as the non-stationary factor X(#) plus some non-stochastic adjustment term
A(T,,T,) + ¥(t, Ty, T»;0) involving the market price of risk 0. From these con-
siderations we can derive an algorithm for estimating the model. It goes as follows.

For a fixed delivery period [Ty, T3],

(1) Fit a seasonal function A(#) to the spot prices S().
(2) Fit the autocorrelation function of Y(¢) to the deseasonalized spot prices to

have an apriori estimate of 1. Use this 5 to find a threshold T for which
“Ty —t = 7, i.e., how big should T — ¢ be for the asymptotic behaviour of
F in (15) to be acceptable.

(3) Subtract K(Tl, T,) from the observed futures prices to “deseasonalize” them.
Call this time series F(z, T}, T,).

(4) Observe that we have for T, — ¢ > T
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F(Z‘7 Ty, Tg) ~ C(Q, Ty, Tz) — llpx(—l())(Tl — t) + X(f),
where

. 0
C(@,Tl7 TZ) = _%1%(—19)(% . Tl) _ llpy(n 1 ) .

Hence, for all observed futures prices F(¢,Ty,T) for which T} — > T, esti-
mate the “constants” ¢(0, Ty, T) and —iy, (—i6) by linear regression of F with
respect to 77 — ¢.

(5) Using the estimated regression coefficients ¢ and a, we filter out X (¢) from the
observations,

F(l, T17T2) —6‘—&(T1 —l)

forall 7y —¢>T.

(6) Subtract the filtered data series X (¢) from the deseasonalized spot prices. This
results in a time series which is modelled by Y (7). Re-estimate 5 based on
linear regression of Y (¢) against Y (¢ — 1).

(7) Fit a Lévy process L to the residuals of the Y process and the time series of the
X process obtained above. From the fitted Lévy process L, we obtain the
cumulant .

(8) For the given cumulant v, find the estimated market price of risk 0 by solving
the system of equations

a= _iwx(_i0)7
—iyr, (—i0
e = — Sl (~i0)(Ts = T1) + % .

This calibration algorithm provides us with a full specification of both the spot
and the futures price model, including the estimation of the market prices of risk
0 = (01,0,). We next apply it to spot and futures price data collected from the
European Energy Exchange (EEX).

We have available daily Phelix base load spot prices from 02.01.2006 to
19.10.2008, constituting altogether 1,022 daily observations. We remark that we
include weekend prices as we are going to apply base load futures prices in our
estimation routine. These futures are settled on the spot prices including the
weekends. To the spot price data, we fit the seasonality function taken from
Barndorff-Nielsen et al. (2013),

T + 27t

) Ty + 27t
365

A(t) = &y + & cos( + &, cos( )+ &3t + Ealsa (1) + Eslsun(?) -
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This function takes annual and weekly seasonality into account along with a
trend. As prices on weekends are in general lower than during the rest of the week
due to a different demand situation, we introduce additionally a weekend-correction
to capture these effects. Here 1sy(7) and 1su,(¢) are equal 1, if the weekday cor-
responding to ¢ is a Saturday and Sunday, respectively.

A non-linear least squares estimation on the spot data yields the parameters
reported in Table 1. Figure 1 (left) displays the spot price data and its estimated
seasonality function. The estimated seasonality follows the general movements of
the spot, on a weekly pattern as well as a yearly one.

Next we continue the calibration algorithm with filtering the non-stationary
factor X from the futures data with long time to delivery. For this purpose we use
base load futures contracts with 1 month delivery period from the EEX, for which
we have available price data for the same dates as the spot (weekends and holidays
are excluded, as there is no trade in futures).

We first need to determine the threshold 7' for which the futures prices are
asymptotically given by (15). This depends, obviously, on the value of #, the speed of
mean reversion in the factor process Y. We can estimate this parameter from the
autocorrelation function of ¥ which is known to be exponentially decaying at the rate
n (see Benth et al. 2008). However, at this point in the estimation procedure we have
not yet filtered the time series of Y from the spot data, so the empirical autocorrelation
function is unknown to us. Therefore, we do a rough estimation of 7 by looking at the
empirical autocorrelation of the deseasonalized spot, which is modelled by
X(t) + Y(z). We observe a decaying autocorrelation structure, and fit an exponen-
tially decaying function to the first five lags obtaining the pre-estimate 77 = 0.1781.
We derive T = 16 as the threshold when Y ()7(z, T;, T») ~ 1 using Y (t) being three
times the standard deviation of spot price data. Note that we expect the presence of
X to make the beta smaller than the “true” one. A larger value for n would lead to a
smaller threshold. Hence, our decision to apply 7 = 16 is a conservative choice.

We construct a time series of futures prices with “infinite” time to delivery from
the base load contracts as follows: if the time to delivery is more than 16 days, we
choose the futures which has the first coming month as delivery period. Otherwise,
we switch to the contract with delivery in the following month. That is, we use the
price series of front-month contracts as long as these are farther than 16 days to
delivery, and switch to the next month when the front-month contracts have less
than 16 days to delivery. Like this we make sure that for each date we have a
futures price with time to delivery of more than 16 days. These prices will not, at
least approximately, have any influence from the stationary component Y. As the
futures are not traded on weekends and holidays, we use as a substitute for missing

Table 1 Estimated parameters of the seasonal function

o ¢ & & 4 ¢s 71 T2
738.733 4.360 -11.716 0.020 1.000 1.000 —13637.760 40.401
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values at the weekend the price of the preceeding Friday. On holidays, we use the
price of the last trading day before the holidays.

To deseasonalize the constructed futures price series we subtract the average
seasonality of the delivery period. We have fitted the seasonality function to data
until October 2008, such that we take October 2008 as the last delivery period and
let our futures price series end at 14.09.2008. A linear regression of this time series
delivers the estimates a = 0.030 and ¢ = 3.406. We filter the non-stationary time
series X(¢) from the futures prices corresponding to step (5) in the algorithm, and
afterwards retrieve the stationary time series Y (¢) from the spot prices as in step (6).
The plot on the right in Fig. 1 shows the filtered factor X(¢) along with the des-
easonalized spot prices. It seems to reflect a long-term stochastic trend in the price
data.

Next we estimate the mean reversion parameter #. The autocorrelation function
of the time series Y (¢) is plotted in Fig. 2. Re-estimating 1 over the first five lags
results in # = 0.359. The initial decrease of the autocorrelation function seems to be
captured well by using an exponential function. However, it decays too rapidly for
larger lags. Including more lags to fit the autocorrelation function (i.e., #7) results in
a poor fit in the first lags. To get a better fit over all lags, one could use two (or
more) exponential components. This would mean that we model the factor Y by two
or more Ornstein—Uhlenbeck processes, or by a higher-order CARMA model.
Benth et al. (2011) indicate that one should indeed use a higher-order CARMA
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Fig. 1 Left empirical spot price data together with the estimated seasonality function. Right
deseasonalized spot price data with the filtered data series X (r)
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Fig. 2 Autocorrelation function of Y(7)

model. However, such models are much more complex to estimate, and we apply
the one-factor assumption on Y here as a first approximation of the dynamics.

The next step is to fit a bivariate Lévy process L = (L, L,) to the time series
X(¢) and Y (). For simplicity, we assume that L, and L, are independent, meaning
that there is no dependency between the short-term and long-term price fluctuations.
In the Schwartz—Smith model (see Schwartz and Smith (2000), or Lucia and
Schwartz (2002) for the case of electricity) L is assumed to be a bivariate Brownian
motion. However, the Gaussian assumption on the increments AX (¢) is not realistic,
and we propose to fit the dynamics of X with a normal inverse Gaussian (NIG) Lévy
process, i.e., a Lévy process with NIG distributed marginals. The NIG distribution
seems to be a good choice for modelling the residuals of Y (z) as well.

The NIG distribution is a four parameter family of distributions successfully
applied to model the log returns of financial data. For its applications to finance and
a detailed probabilistic analysis of the NIG family, we refer the interested reader to
Barndorff-Nielsen (1998). Assuming L, (¢) to be a NIG Lévy process, its cumulant
(i.e., the logarithm of the characteristic function) function at time 1 is given by

W) = 0{y/2 — B — /o2 — (B+ i)’} + i, (16)

for the four parameters g, f, 6 > 0 and o > 0. The skewness of the NIG distribution
is described by f5, where f§ > 0 means a positively skewed distribution, and <0
negatively skewed. For a symmetric NIG distribution, i.e., when ff =0, u is the
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mean. Otherwise, u is the location parameter. ¢ is the scale and o the tail heaviness
parameter. Note that the NIG distribution has semi-heavy tails, with the normal
distribution as a limiting case. We easily find the expectation from (16) as

%

K1 = >
w—p

+u.

The estimated parameters of L;(1) based on maximum-likelihood are given in
Table 2. We remark in passing that the NIG distribution has been applied in studies
of energy prices in Benth and galtyté-Benth (2004) and Borger et al. (2009).

We fit another NIG Lévy process L, to the residuals of Y. The estimates are
reported in Table 2. The estimated densities of L;(1) and L,(1) are displayed
together with the empirical ones in Fig. 3. The fit seems to be good, and we find the
NIG distribution as a satisfactory choice for modelling L; and L,. Recall that we
assumed independence of L; and L,. Empirically, the correlation between the data
series for L; and L, is given by —0.16. A more realistic model should take this into
account, which requires an analysis of the dependency structure. We relegate this to

Table 2 Estimated NIG parameters of L; and L,

o p 0 u
L, 0.0946 —0.0099 0.3136 0.02421
Ly 0.0402 0.0071 14.3407 —2.9488
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Fig. 3 Empirical density of L; (left) and L, (right) as well as the fitted NIG density (dashed line)



Pricing Futures and Options... 251

future studies. From the estimates in Table 2 we observe that the NIG distributions
for L; and L, are close to symmetric.
Following step (8), the market price of risk 0 = (01, 0,) is given by

oy 4
0=t p, (17)
(agllll) _|_1
OCQK
0y =———u — B,, 18
= b (18)

where
Bof. 1. W
K=—=(¢c—=a(lL-T)) —=—|.
52 ¢ Za( 2 l) ﬁz

Here, the subscript in the parameters o, f§, 0 and u refer back to L; and L,. Using
the estimates for the NIG distributions, we can derive the values of 0; and 0,. These
are reported in Table 3 along with the expected values of L; and L, with respect to
the probabilities P and the fitted Qp. We note that the market price of risk is
positive, and that the expected value of L; and L, are moved from being negative
under P to positive under Qgy. The fitted market price of risk is shifting the distri-
bution of L; and L, towards the right, roughly meaning that we get more positive
jumps and less negative. Furthermore, quite nicely the NIG distribution is preserved
under a constant Esscher transform. Hence, L is a bivariate NIG Lévy process both
under P and Qy, where only the skewness parameter is different under the two
measures.

Let us comment on the risk premium implied by our estimated model. The risk
premium is defined as the difference between the futures price and the predicted
average spot price over the delivery period. In mathematical terms,

Ip)

/S(r)dt|]—", . (19)

T,

Rp(t, T\, T2) =F(t,T,,T,) — E
P(7 1, 2) (7 1 2) T27T1

From Proposition 3.2 we find

Table 3 The market price of risk derived from the fitted NIG parameters together with the
expectation of L; and L, under P and Qy

i 0; Ep[Li(1)] Ep[Li(1)]
1. 0.0115 —0.0087 0.0296
2. 0.0010 —0.3583 0.0211
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Fig. 4 Theoretical risk premium for the estimated model parameters

Rp(1,T1,T2) :%(Eo[Ll(l)} —E[L())(T2 = Th)
+ (Eg[Li (1)] — [Ll(l)D(Tl —1)
+ (Eo[L2(1)] — E[L (I)D (1 =7t T1, T»)).

The non-stationary factor gives a linear contribution in time to delivery T} — ¢,
while the stationary factor gives an exponential shape and converges fastly to a
constant when 77 — t — oo. A plot of the risk premium for the estimated model
parameters is shown in Fig. 4. As a result of the positive market price of risk, the
risk premium also becomes positive. This tells us that the consumers in the market
are willing to pay a premium for locking in electricity prices in the futures market.
Note that we use data from the relative short end of the market, using the front-
month (or second month) contracts.

5 Pricing of Options on Futures

At EEX, the market for options is rather illiquid, however, there exists traded
contracts. In 2008, 12 options on baseload futures with delivery period 1 month
were traded, 11 of them in the period we consider. Out of these 11, four are call
options, and seven puts. We use these for further analysis and discussion.

In Tables 4 and 5 we list the calls and puts with their main characteristics. We
have decided to label the contracts by Ci, i =1,2,3,4 for the calls and Pi,
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Table 4 Traded call options in 2008 with delivery period 1 month

Contract Trading day Delivery period Strike Futures price Settlement price
Cl1 06.02.2008 Mar 2008 57 56.81 1.900
C2 28.01.2008 Mar 2008 57 57.00 2.270
C3 15.01.2008 Feb 2008 75 70.50 1.065
C4 09.01.2008 Feb 2008 74 68.50 0.928

Table 5 Traded put options in 2008 with delivery period 1 month

Contract Trading day Delivery period Strike Futures price Settlement price
P1 08.07.2008 Aug 2008 74 74.77 3.233
P2 08.07.2008 Aug 2008 75 74.77 3.835
P3 03.07.2008 Aug 2008 73 78.00 1.989
P4 08.04.2008 May 2008 55 55.35 1.522
P5 04.03.2008 Apr 2008 58 58.70 1.911
P6 28.02.2008 Apr 2008 58 61.75 0.955
P7 08.01.2008 Feb 2008 65 69.00 1.179
i=1,...,7 for the puts. Recall that the exercise time t of the options is four trading

days before the delivery period of the underlying futures starts. The historical data
available from the EEX provides settlement prices for traded option contracts. For
all derivatives traded, a settlement price is established on all exchange trading days.
In the case that a settlement price cannot be determined on basis of the order book
situation, a so-called Chief Trader Procedure applies, where all trading participants
can take part with a representative. The EEX Market Supervision makes a stand-
ardised form available for all those trading participant volunteering to specify a
market price for the respective derivatives. The settlement price is then determined
as the average of the expectations of the market participants. We note that options
on peakload futures are not traded at all at EEX, explaining why we use baseload
spot data in our empirical analysis above.

We first look at the “classical” approach to price options on futures in com-
modity markets, namely pricing using the Black-76 formula (see Black 1976). For
the convenience of the reader, we state the Black-76 formula in a Proposition.

Proposition 5.1 Suppose the risk-neutral futures price dynamics is a geometric
Brownian motion

dF(t, Tl, T2>

—————~ — gdB(¢t
F(t,T\,T,) odB(1),

for a constant a > 0. Then, the price at time t < T of a call option with strike K and
exercise time t <t <T), is given by Cg6(t, F(t,T1,T2)) with
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Cars(t,x) = e " [x®(d, (x)) — KO(dy(x))],
for ® being the cumulative standard normal distribution function, and

In(£) +1c%(t—1)
dl(x) = (K)O_ 21__[ )

dr(x) =dy —ovT—1.

In the Black-76 formula, one boldly assumes the futures price dynamics to be a
geometric Brownian motion, a dynamics which is far from the one we have esti-
mated to the electricity futures prices at the EEX. The volatility o is also constant,
an assumption that is not likely to be true. Based on the historically estimated
volatility of the futures contracts in question, we can price the call options. The
Black-76 prices are reported in Table 6 along with the actual settlement prices as
quoted on the EEX. Appealing to the put-call parity, we report the put prices in
Table 7. In both tables, we have also reported the historical volatility ¢ used in the
Black-76 formula, as well as the implied volatility so that Black-76 matches
the settlement price. We estimate the historical volatility of the logreturns of the
underlying futures from the last month of daily price data. Furthermore, we choose
r = 5% which is about the average yearly Euro LIBOR rate in 2008. We find that
the price of all options are substantially underestimated by Black-76. Due to the low

Table 6 Black-76 pricing of the call options

Contract Settlement price Black-76 Mispricing (%) Hist. vol. Impl. vol.
Cl1 1.900 0.464 =76 0.1046 0.3770
C2 2.270 0.725 —68 0.1100 0.3560
C3 1.065 0.000 —-100 0.0788 0.5030
C4 0.928 0.000 —100 0.0821 0.4450

Table 7 Black-76 pricing of the put options

Contract Settlement price Black-76 Mispricing (%) Hist. vol. Impl. vol
P1 3.233 0.693 =79 0.1491 0.521
P2 3.835 1.158 -70 0.1491 0.532
P3 1.989 0.055 -97 0.1496 0.509
P4 1.522 0.177 —88 0.0679 0.357
p5 1.911 0.295 -85 0.1014 0.394
P6 0.955 0.001 —-100 0.0797 0.366
p7 1.179 0.000 —100 0.0842 0.437
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volatility, those options that are far out of the money have a Black-76 price being
essentially 0 (P6 and P7, and C3 and C4). The implied volatility becomes very high
compared to the historical volatility. Indeed, the historical volatility is in the modest
range of 8—11 % for the underlying futures of the call, whereas the implied vola-
tilities are estimated to be from 35 to 50 %. The mispricing is rather dramatic, as the
percentages ranging above 70 % tells. One might be tempted to speculate that the
market is adding a huge risk premium for effects like illiquidity of the options and
non-normality of the futures price dynamics. The issuer runs a big risk selling call
options, since it is difficult to turn around the position in the option market.
However, the underlying future is reasonably liquid, so delta hedging is possible.
This removes some of the liquidity risk for the issuer.

One can in theory create synthetic investment strategies mimicking to a large
extent the payoff of a call or put option. This could be used in order to exploit
potential arbitrages in the option market. However, if the futures dynamics is not a
geometric Brownian motion, there will be a large residual error in such strategies,
which theoretically can be made perfect by delta hedging in the Black-76 frame-
work. The empirical study of spot and futures pricing in the previous Section
strongly points towards non-Gaussian models, hence ruling out this possibility.

In any case, the conclusion so far is that Black-76 in its simplest form is
inadequate for pricing of options in the EEX market. As our proposed futures price
dynamics is far more sophisticated than a simple geometric Brownian motion, we
now move on to analyse the implied option prices from this model with the hope
that it can improve the situation.

The call option price is then given by

C(1) = e " E[F (v, T1, T) — K| F]. (20)

The pricing probability Q is an equivalent martingale measure for F(z, Ty, 7T>),
and we let this be given by Qy. The Qp-dynamics of F(¢, Ty, T,) is given by
Proposition 3 and Qy is determined through the market price of risk (17) from the
spot-futures analysis above. We evaluate the expectation through a Monte-Carlo
simulation. To simulate the Lévy processes L; and L, under Qy, we use that NIG-
Lévy processes are stable with respect to an Esscher change of measure. In fact, it
can be seen (see Benth et al. 2008) that if, for i = 1,2, L;(1) is NIG distributed
under P with parameters o, 3;, d; and g, then the L;(1) is again NIG distributed
under Qy with the same parameters except the skewness, which becomes f3; + 0;.

Based on a simulation of 1,000,000 paths we compute the option prices based on
the average payoff. To simulate the NIG distribution, we applied the algorithm
implemented in the R-package fBasics, which is based on the normal variance-
mean mixture of the NIG distribution.

The resulting numbers are reported in Tables 8 and 9. We have also included the
mispricing and computed the implied volatility of the simulated price using the
Black-76. From the tables, we see that the picture is more mixed, with both over and
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Table 8 Simulated prices of the call options

F.E. Benth and M.D. Schmeck

Contract Settlement price Simulated price Mispricing (%) Impl. vol.
Cl1 1.900 2.748 45 0.4820
c2 2.270 3.525 56 0.4882
C3 1.065 0.821 -23 0.4255
Cc4 0.928 1.006 9 0.4037
Table 9 Simulated prices of the traded put options

Contract Settlement price Simulated price Mispricing (%) Impl. vol.
Pl 3.233 2.476 -23 0.4256
P2 3.835 2.964 -23 0.4239
p3 1.989 1.438 -28 0.4260
P4 1.522 2.397 57 0.5358
P5 1.911 2.659 39 0.5368
P6 0.955 1.889 98 0.5384
P7 1.179 1.376 17 0.4032

underpricing of the calls and puts. Moreover, at the first glance, the mispricing seems
to be less severe than in the case of Black-76, although admittedly still very big.
Our spot and futures price model includes non-Gaussian noise as both factors in
the spot are driven by an NIG Lévy process. Note that the futures price is depending
on the non-stationary factor directly, whereas the short-term factor is dampened and
negligible for contracts far from delivery. From our estimation procedure, the non-
stationary long-term factor is estimated from the futures prices, so if the market
would price according to our futures price dynamics with the given pricing measure
Qyp, at least options with long time until exercise should be priced reasonably
accurate. Looking at C1 and C2, these have the longest time to exercise in our
sample of call options. However, the simulated option prices from our model for
these two contracts are approximately 50 % higher than the quoted prices. This
means that our model is pricing in too much risk. From the spot dynamics we
estimated positive market prices of risk which pushes the skewness of the NIG
distribution to more positive jumps. The more positive market price of risk, the
higher values of the options. Thus, it seems like the futures model inherits far too
much risk premium from the spot when it comes to option pricing. We reach the
conclusion that the option market is not including the same risk perception as the
one inherited from the spot in the futures market. This is a clear sign that a
completely different pricing measure Q is used in the option market than in the
futures pricing. Note that C1 and C2 are both (approximately) at-the-money, so a
big portion of the distribution of the futures is taken into account in the pricing.
The contracts C3 and C4 are far out-of-the-money and slightly closer to exercise
time than C1 and C2. Noteworthy is that the mispricing of these are significantly
less than for C1 and C2, being respectively —23 and 9 %. If we have based our
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calculations of the call prices on the wrong risk premium, it will be more influential
far from exercise than close since we span out more of the risk the longer into the
future we simulate the futures price. Close to exercise, the misspecification of the
tails under the chosen Q will be relatively much smaller than when we move
futures. Maybe more importantly is that a smaller portion of the price distribution of
F is taken into account for these two out-of-the-money options than C1 and C2, and
hence a wrongly chosen Q matters less. This discussion conforms with the
observations above for C1 and C2.

Note that contract P6 is farthest from exercise among the put options, as well as
being out-of-the-money. This contract has the highest mispricing by our model. All
the other put contracts in our sample have shorter time left to exercise. P1, P2, P4
and P35 are all approximately at-the-money put options with almost the same time
left until exercise. The mispricing of these are significantly less than for P6. In fact,
for P1 and P2 our model gives a price —23 % less than the settlement prices. P4 and
P5 are contracts on futures with delivery in the spring months May and April,
respectively. Temperature predictions may influence the futures price expectations,
as the spring may become colder or warmer than usual. We also note that it is the
left-tail of the futures price distribution that counts when pricing an out-of-the-
money put option. An underpricing can be the result of the distribution being
moved to the right by a positive risk premium.

P3 and P7 are out-of-the-money put options where the mispricing of our model
is rather modest (—28 % and 17 %, respectively). P7 is the only put option written
on a futures with delivery in the winter period, namely February. For the calls C3
and C4, which also are written on February futures contacts, we observe a relatively
small pricing error. It seems like the model captures best the futures price evolution
in the winter term. We also remark that the poor fit of the autocorrelation of the
stationary factor ¥ may lead to wrong assessments of the spike influence. However,
we believe that this is to some extent compensated for by the good fit of the Lévy
process L, using a NIG distribution.

All in all, it seems like the futures price dynamics based on the pricing measure
Qyp implied by the spot-futures relationship provides a significantly better prediction
of option prices than Black-76. However, the prices are far from satisfactory, and
we find clear evidence that the risk-adjustments should be different than those given
by Qq. Based on our findings, we dare to conclude that another pricing measure O
should be used for power option pricing, a pricing measure which attributes a
different loading on the distributions of the Lévy processes L, and L,. In fact, based
on the differences between summer and winter contracts in the pricing analysis
above, one may suspect that such a measure change should incorporate seasonal-
ities as well. Furthermore, it may also account for the state of the futures price, so
that one can capture out-of and in-the-money option price differences better. One
can also think of pricing measures which not only changes the characteristics of the
jump processes L; and L,, but as well change the dynamics. For example, it is
possible to define measures which change the speed of mean reversion of the
Y factor. This could for example lead to a slower risk-neutral speed of mean
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reversion, essentially saying that a spike lasts longer in a risk neutral context than
under the market probability.

As our futures price dynamics consists of two jump components, it gives rise to an
incomplete market model. The selection of risk neutral probabilities for pricing
options in such markets is frequently based on utility indifference pricing techniques
(see Rouge and El Karoui 2000). Such a method, which is based on a risk averse,
utility optimizing investor, leads to a partial hedging strategy of the option. The
utility indifference method is particularly useful when pricing options in illiquid
markets, where one is stuck with the option investment. Other approaches to pricing
is based on deriving optimal partial hedges, where the optimality criterion may be the
futures investment hedge which minimizes the variance of the hedging error (see
Cont and Tankov 2004). All these various approaches lead to a pricing measure Q. It
is of great interest and application to see whether such prices will explain the set-

tlement option prices in the EEX market, and whether our conjecture 0 #£ Q is true.

As we have mentioned earlier, the option market at the EEX is rather illiquid, and
a liquidity premium is naturally associated to the observed prices. This premium will
be part of the risk premium as we have estimated. Once bought or sold an option, one
might be stuck with the position taken until exercise or having to accept a significant
loss by reversing it. This will impact the settlement prices as buyers and sellers know
that it is difficult to get out of the position at a later time. On the other hand, the
underlying futures market is reasonably liquid, so any position can (in theory, at
least) be hedged to a certain degree. Considering our derived Black-76 prices, which
were consistently too high, one could speculate whether the sellers had to accept a
discount in prices due to illiquidity. However, for the much more realistic futures
price dynamics that we considered, the picture was more mixed with both over- and
underpricing. There is no doubt that a liquidity premium exists in the market, but it is
hard from our analysis to conclude anything on its size and structure. Moreover,
liquidity might also be an issue in the futures market, further complicating matters.

6 Conclusion

We have argued that in power markets one may use a probability measure @ for
futures pricing based on spot modelling which can be different than the equivalent
martingale measure Q used for pricing options on the futures. There is no violation
of no-arbitrage pricing theory that 0 # 0, and the argument hinges on the fact that
electricity spot cannot be stored. Due to the non-storability, Q can be chosen as an
equivalent measure which is not necessarily turning the discounted spot dynamics
into a O-martingale. On the other hand, @ is an equivalent measure such that the
futures price becomes a @-martingale.

We introduce a two-factor model for the spot price dynamics being a general-
ization of the classical commodity model of Schwartz and Smith (2000). Both the
long-term and the short-term factors are driven by normal inverse Gaussian Lévy
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processes, a choice based on empirical arguments using data collected at the EEX.
The spot model allows for analytical futures pricing, where the Esscher transform
provides an parametric class of probability measures to model the risk premium.
We perform a joint estimation of the spot and futures, where the crucial step is to
apply long-dated futures contracts to filter out the non-stationary long-term factor of
the spot.

Applying Monte Carlo simulations we priced call and put option prices for our
proposed futures dynamics. We compared the simulated prices where we chose

0 = O with observed option prices in the market. This led to a significant mis-

pricing, and we argued that the results pointed to the fact that @ # Q. Our results
were benchmarked against the Black-76 prices using the historical volatility of the
underlying futures as input. The proposed spot-futures model was a clear
improvement over this in predicting option prices.

We did not suggest any probability Q for the futures price which could remedy
the situation. There exists many potential approaches to produce such risk neutral
probabilities taken from the theory of derivatives pricing in incomplete markets.
But before setting off such a study, one should make the spot dynamics even more
sophisticated to take into account some defiance like the misspecification of the
autocorrelation structure of the stationary factor. CARMA processes could be a
choice here, or even more general Lévy semistationary processes. However, this
will require more advanced estimation procedures to fit to data. On the other hand,
such improvements will make the conclusions on option pricing and choice of risk
neutral measures less prone to model error. A further issue is to open for more
flexible pricing measures for the futures price, taking into account random changes
in the risk premium and impacts from fuels and weather.

Mliquidity of the power option markets is a clear issue which can question our
analysis. Power options are relatively little traded, but we believe that in the future
these markets will emerge as important one for hedging and speculation of power.
The results in our paper will hopefully provide an important guideline in the
challenges when pricing spot, futures and options simultaneously.
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