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Abstract We introduce the notion of quadratic (resp. symplectic quadratic) Poisson
algebras and we show how one can construct new interesting quadratic (resp. sym-
plectic quadratic) Lie algebras from quadratic (resp. symplectic quadratic) Poisson
algebras. Finally, we give inductive descriptions of symplectic quadratic Poisson
algebras.

1 Introduction

In this paper, we consider finite dimensional algebras over a commutative field K of
characteristic zero.

Recall that the Lie algebraG of a Lie groupGwhich admits a bi-invariant pseudo-
Riemannian structure is quadratic (i.e.G is endowedwith a symmetric nondegenerate
invariant (or associative) bilinear form B). Conversely, any connected Lie group
whose Lie algebra G is quadratic, is endowed with bi-invariant pseudo-Riemannian
structure [14]. The semisimpleLie algebras are quadratic.Many solvableLie algebras
are also quadratic. Quadratic Lie algebras appear, in particular, in connection with
Lie bialgebras and physical models based on Lie algebras. Recall that quadratic Lie
algebras are precisely the Lie algebras for which a Sugawara construction exists [9].
Several papers provided interesting results on the structure of quadratic Lie algebras
[4, 5, 8–10, 12, 13].

In [13], Medina and Revoy have introduced the concept of double extension in
order to give an inductive description of quadratic Lie algebras. This concept is also
a tool to construct a new quadratic Lie algebra from a quadratic Lie algebra (g1, B1)

and a Lie algebra g2 (not necessarily quadratic) which acts on g1 by skew-symmetric
derivations with respect to B1. Let us remark that the non-trivial new quadratic
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Lie algebra will be obtained if g2 acts by non-inner skew-symmetric derivations on
(g1, B1). In general, it is difficult to find a Lie algebra g2 of dimension upper or
equal to 2. In the first part of this paper, we will show how from quadratic Poisson-
admissible algebra (A , B) we can find a Lie algebra g2 of dimension upper or
equal to 2 acting on a quadratic Lie algebra (g1, B1) by non-inner skew-symmetric
derivations.

In addition, we introduce the concept of symplectic quadratic Poisson algebra
and we show how one constructs interesting symplectic quadratic Lie algebras from
symplectic quadratic Poisson algebras. Let us recall that the Lie algebra of a Lie
groupwhich admits a bi-invariant pseudo-Riemannianmetric and also a left-invariant
symplectic form is a symplectic quadratic Lie algebra. These Lie groups are nilpotent
and their geometry (and, consequently, that of their associated homogeneous spaces)
is very rich. In particular, they carry two left-invariant affine structures: one defined
by the symplectic form and another which is compatible with a left-invariant pseudo-
Riemannian metric. Moreover, if the symplectic form is viewed as a solution r of
the classical Yang Baxter equation of Lie algebras (i.e. r is an r -matrix), then the
Poisson-Lie tensor π = r+ − r− and the geometry of double Lie groups D(r)

can be nicely described in [7]. In addition, symplectic quadratic Lie algebras were
described by methods of double extensions in [1, 2]. Further, in [2], it is proved that
every symplectic quadratic Lie algebra (G , B, ω), over an algebraically closed field
K, may be constructed by T ∗−extension of nilpotent Lie algebra which admits an
invertible derivation.

In the last section, we study structures of symplectic quadratic Poisson algebras
and we give inductive descriptions of symplectic quadratic Poisson algebras over an
algebraically closed field with characteristic zero by using some results of [2, 3].

2 Definitions and Preliminary Results

Definition 2.1 Let A be a vector space endowed with two bilinear operations [ , ]
and ◦. (A , [ , ], ◦) is called a Poisson algebra if (A , [ , ]) is a Lie algebra and (A , ◦)

is a commutative associative algbra (not necessarily unital) such that

[a, b ◦ c] = [a, b] ◦ c + b ◦ [a, c], ∀a, b, c,∈ A (Leibniz rule).

Definition 2.2 LetA be an algebra, we denote by . its multiplication. On the under-
lying vector space of A one can defined the two following new products:

[x, y]: = x .y − y.x; x ◦ y: = 1

2
(x .y + y.x), ∀x, y ∈ A .

A (or .) is called Poisson-admissible if (A , [ , ], ◦) is a Poisson algebra.
We denote by A − (resp. A +) the algebra (A , [ , ]) (resp.(A , ◦)).



Construction of Symplectic Quadratic Lie Algebras from Poisson Algebras 113

Definition 2.3 1. Let (A , .) be an algebra and B : A × A → K be a bilinear
form. We say that B is associative (or invariant) if

B(a.b, c) = B(a, b.c), ∀a, b, c ∈ A .

2. Let (g, [ , ]) be a Lie algebra and B : g × g → K be a bilinear form. (g, B) is
called a quadratic Lie algebra if B is symmetric, non-degenerate and invariant.
In this case, B is called an invariant scalar product on g.

3. Let (A , ◦) be an associative algebra and B : A × A → K be a bilinear form.
(A , B) is called symmetric algebra if B is symmetric, non-degenerate and asso-
ciative. In this case, B is called an invariant scalar product on A .

4. Let (A , .) be a Poisson-admissible algebra and B : A × A → K be a bilinear
form. (A , B) will be called quadratic if B is symmetric, non-degenerate and
associative. In this case, B is called an invariant scalar product on A .

5. Let (A , [ , ], ◦) be a Poisson algebra and B : A × A → K be a bilinear form.
(A , B) will be called quadratic if B is symmetric, non-degenerate such that:-

B([a, b], c) = B(a, [b, c]) and B(a ◦ b, c) = B(a, b ◦ c), ∀a, b, c ∈ A .

Remark 2.1 1. Let (A , .) be a Poisson-admissible algebra and B : A × A → K

be a bilinear form. It is clear that (A , B) is quadratic if and only if (A −, B) is
a quadratic Lie algebra and (A +, B) is a symmetric algebra.

2. (A , ., B) is a quadratic Poisson-admissible algebra if and only if (A , [ , ], ◦, B)

is a quadratic Poisson algebra (where [x, y] := x .y − y.x and x ◦ y := 1
2 (x .y +

y.x),∀x, y ∈ A ).

Now, we are going to give some examples of quadratic Poisson-admissible (or Pois-
son) algebras

1. Let (A , [ , ], ◦) be a Poisson algebra and A ∗ is the dual vector space of
underlying vector space ofA .An easy computation prove that the following bracket
[ , ]∼ and multiplication � define a Poisson algebra structure on the vector space
A ⊕ A ∗ :

[x + f, y + h]∼: = [x, y] − h ◦ adx + f ◦ ady;

(x + f ) � (y + h): = x ◦ y + h ◦ Lx + f ◦ L y, ∀(x, f ), (y, h) ∈ A × A ∗,

where Lx is the left multiplication by x in the algebra (A , ◦).

Moreover, if we consider the bilinear form B : (A ⊕ A ∗) × (A ⊕ A ∗) → K

defined by:

B(x + f, y + h): = f (y) + h(x), ∀(x, f ), (y, h) ∈ A × A ∗,

then (A ⊕ A ∗, B) is a quadratic Poisson algebra.
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Let us remak that if (A , .) is a Poisson-admissible algebra, then the following
multiplication 	
 on the vector spaceA ⊕A ∗ define a Poisson-admissible structure
on A ⊕ A ∗:

(x + f ) 	
 (y + h): = x .y + h ◦ Rx + f ◦ L y, ∀(x, f ), (y, h) ∈ A × A ∗,

where L y (resp. Rx ) is the left (resp. right) multiplication by y (resp. y) in the algebra
(A , .).

In addition, the bilinear form B : (A ⊕ A ∗) × (A ⊕ A ∗) → K defined by:

B(x + f, y + h): = f (y) + h(x), ∀(x, f ), (y, h) ∈ A × A ∗,

is an invariant scalar product on A ⊕ A ∗ (ie. (A , B) is a quadratic Poisson-
admissible algebra).

2. Let (A , ., B) be a quadratic Poisson-admissible algebra and (H, �, ϕ) be a
symmetric commutative algebra.

The commutativity and the associativity of � imply that the vector space A ⊗ H
with the multiplication:

(a ⊗ x) • (b ⊗ y): = a.b ⊗ x � y, ∀(a, x), (b, y) ∈ A × H,

is the Poisson-admissible algebra.
Moreover, the bilinear form B ⊗ ϕ : (A ⊗ H) × (A ⊗ H) → K defined by:

B ⊗ ϕ(a ⊗ x, b ⊗ y): = B(a, b)ϕ(x, y), , ∀(a, x), (b, y) ∈ A × H,

define a quadratic structure on the Poisson-admissible algebra (A ⊗ H, •).

Definition 2.4 Let (A , .) be an algebra and ω:A ×A → K be a bilinear form. We
say that (A , ω) is a symplectic algebra (or ω is a symplectic structure on (A , .)) if:

1. ω(x, y) = −ω(y, x)∀x, y ∈ A , (ie. ω is skew-symmetric);
2. ω is non-degenerate;
3. ω(x .y, z) + ω(y.z, x) + ω(z.x, y) = 0,∀x, y, z ∈ A .

Definition 2.5 If (A , .) is an algebra, B an associative scalar product on A and
ω is a symplectic structure on A , we say that (A , B, ω) is a symplectic quadratic
algebra.

If (A , .) is an associative algebra, we can also say that (A , B, ω) is a symplectic
symmetric algebra.

Proposition 2.1 If (A , B) is a quadratic algebra, ω is a symplectic structure on
A if and only if there exists a unique skew-symmetric (with respect to B) invertible
derivation of (A , ., B) such that:



Construction of Symplectic Quadratic Lie Algebras from Poisson Algebras 115

ω(x, y) = B(D(x), y), ∀x, y ∈ A .

Proof It is straightforward calculation considering ω(x, y) = B(D(x), y), for all
x, y ∈ A .

We finish this section by showing how to construct symplectic quadratic Poisson-
admissible algebras from an arbitrary Poisson-admissible algebras.

Let (P, .) be a Poisson-admissible algebra. Let O := XK[X ] be the ideal of
K[X ] generated by X and R := O/XnO , where n ∈ N

∗. R is a commutative and
associative algebra and {X̄ , X̄2, . . . , X̄n} is a basis of the underlying vector space of
R. The vector space P̃ := P ⊗ R endowed with the multiplication defined by:

(x ⊗ P̄) • (y ⊗ Q̄): = x .y ⊗ ¯P Q, ∀x, y ∈ P,∀P, Q ∈ O,

is a nilpotent Poisson-admissible algebra. Next, (A := P̃ ⊕ P̃∗, 	
, B) is a
quadratic Poisson-admissible algebra, where:

(x + f ) 	
 (y + h): = x • y + h ◦ Rx + f ◦ L y,

and

B(x + f, y + h): = f (y) + h(x), ∀(x, f ), (y, h) ∈ P̃ × P̃∗.

Now, let us consider the endomorphism D of P̃ defined by:

D(x ⊗ X̄ i ): = i x ⊗ X̄ i , ∀x ∈ P,∀i ∈ {1, . . . , n},

is an invertible derivation of P̃. It easy to verify that the endomorphism D̃ of A
defined by:

D̃(x + f ): = D(x) − f ◦ D, ∀(x, f ) ∈ P̃ × P̃∗,

is an invertible derivation ofA which is skew-symmetric with respect to B. Conse-
quently, the bilinear form ω on A defined by:

ω(x + f, y + h): = B(D̃(x + f ), y + h), ∀(x, f ), (y, h) ∈ P̃ × P̃∗,

is a symplectic structure on A . Then, (A , B, ω) is symplectic quadratic Poisson-
admissible algebra.
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3 Construction of Quadratic (Resp. Symplectic Quadratic) Lie
Algebras from Quadratic (Resp. Symplectic Quadratic)
Poisson-Admissible Algebras

First, let us recall the concept of the double extension in the case of quadratic Lie
algebras.

Let (g1, [ , ]1, B1) be a quadratic Lie algebra and (g2, [ , ]2) be aLie algebrawhich
is not necessarily quadratic such that there exists a morphism of Lie algebras ϕ :
g2 → Dera(g1, B1)where Dera(g1, B1) is the set of the skew-symmetric derivations
with respect to B1, this set is a Lie subalgebra of gl(g1). Since ϕ(g2) ⊆ Dera(g1, B1),

then the bilinear mapψ : g1 ×g1 → (g2)
∗ is a 2−cocycle where (g2)

∗ is considered
as a trivial g1−module. Consequently, the vector space g1 ⊕ (g2)

∗ endowed with the
multiplication:

[X1 + f, Y1 + h]c: = [X1, Y1]1 + ψ(X1, Y1), ∀X1, Y1 ∈ g1, f, h ∈ (g2)
∗,

is a Lie algebra. This Lie algebra is the central extension of g1 by means of ψ.

Let π be the co-adjoint representation of g2. If X2 ∈ g2, an easy computation
prove that the endomorphism ϕ̄(X2) of g1 ⊕ (g2)

∗ defined by: ϕ̄(X2)(X1 + f ) :=
ϕ(X2)(X1) + π(X2)( f ),∀X1 ∈ g1, f ∈ (g2)

∗, is a derivation of Lie algebra (g1 ⊕
(g2)

∗, [ , ]c). Next, it is easy to see that the linear map ϕ̄ : g2 → Der(g1 ⊕ (g2)
∗) is

a morphism of Lie algebras. Therefore, one can consider g := g2 �ϕ̄ (g1 ⊕ (g2)
∗)

the semi-direct product of g1 ⊕ (g2)
∗ by g2 by means of ϕ̄. As vector space g =

g2 ⊕ g1 ⊕ (g2)
∗ and the bracket of the Lie algebra g is gien by:

[X2 + X1 + f, Y2 + Y1 + h] = [X2, Y2]2 +
(
[X1, Y1]1 + ϕ(X2)(Y1) − ϕ(Y2)(X1)

)

+
(
π(X2)(h) − π(Y2)( f ) + ψ(X1, Y1)

)
,

∀(X2, X1, f ), (Y2, Y1, h) ∈ g2 × g1 × (g2)
∗. Moreover, if γ : g2 × g2 → K is

an invariant, symmetric bilinear form on g2, it is easy to see that the bilinear form
Bγ : g × g → K defined by:

Bγ (X2 + X1 + f, Y2 + Y1 + h): = γ (X2, Y2) + B(X1, Y1) + f (Y2) + h(X2),

∀(X2, X1, f ), (Y2, Y1, h) ∈ g2 × g1 × (g2)
∗, is an invariant scalar product on g. g

(or (g, B0)) is called the double extension of (g1, [ , ]1, B1) by g2 by means of ϕ.
Now, we are going to construct quadratic Lie algebras from quadratic Poisson-

admissible algebras by using this concept of double extension.
Let (A , ., B) be a quadratic Poisson-admissible algebra. Then, (A −, [., .], B) is

a quadratic Lie algebra and (A +, ◦, B) is a symmetric commutative algebra. Let
us consider the three-dimensional Lie algebra sl(2). Recall that there exists a basis
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{H, E, F} of sl(2) such that [H, E] = E, [H, F] = −F, [E, F] = 2H. The vector
space sl(2) ⊗ A + with the bracket [., .]1 defined by:

[x ⊗ a, y ⊗ b]1: = [x, y] ⊗ a ◦ b, ∀(x, a), (y, b) ∈ sl(2) × A ,

is a Lie algebra.Moreover, the bilinear form B1 : (sl(2)⊗A +)×(sl(2)⊗A +) → K

defined by:

B1(x ⊗ a, y ⊗ b): = K (x, y)B(a, b), ∀(x, a), (y, b) ∈ sl(2) × A ,

is an invariant scalar product on the Lie algebra (sl(2) ⊗ A +, [., .]1) (ie. (sl(2) ⊕
A +, [., .]1, B1) is a quadratic Lie algebra) whereK is the Killing form of sl(2).

It is cleat that if D is a derivation of (A +, ◦), then the endomorphism D̄: =
idsl(2) ⊗ D of sl(2) ⊗ A + defined by:

D̄(x ⊗ a): = x ⊗ D(a), ∀(x, a) ∈ sl(2) × A ,

is a derivation of the Lie algebra (sl(2) ⊗ A +, [., .]1). In addition, if D is skew-
symmetric with respect to B, then D̄ is skew-symmetric with respect to B1. In fact,
let (x, a), (y, b) be two elements of sl(2) × A ,

B1(D̄(x ⊗ a), y ⊗ b) = K (x, y)B(D(a), b)

= −K (x, y)B(a, D(b)) = −B1(x ⊗ a, D̄(y ⊗ b)).

Claim D̄ is an inner derivation of the Lie algebra (sl(2) ⊗A +, [., .]1) if and only if
D = 0.

Proof of claim Let us suppose that the derivation D̄ is inner, then

D̄ = ad(H ⊗ a1) + ad(E ⊗ a2) + ad(F ⊗ a3),

where a1, a2, a3 ∈ A . Let a ∈ A , then H ⊗ D(a) = −E ⊗ a ◦ a2 + F ⊗ a ◦ a3,
so D(a) = 0. We conclude that D = 0.

Since (A , .) is a Poisson-amissible algebra, then for all X ∈ A we have δX : =
adA − X is a derivation of (A +, ◦) and in addition this derivation is skew-symmetric
with respect to B because B is associative. Therefore for all X ∈ A , ¯δX is a skew-
symmetric derivation of (sl(2) ⊗A +, [., .]1, B1) and ¯δX is not inner if adA − X 
= 0
(ie. X is not in the center of A −). Then we can consider g(A ) := A − ⊕ (sl(2) ⊗
A +) ⊕ (A −)∗ the double extension of (sl(2) ⊗A +, [., .]1, B1) by the Lie algebra
A − by means the morphism of Lie algebra ϕ : A − → Dera(sl(2) ⊗ A +, B1)

definedby:ϕ(X) := δX , ∀ X ∈ A .Let us remark that the dimension of this quadratic
Lie algebra obtained by double extension is 5n where n is the dimension ofA .Recall
that the bilinear form T0 : g(A ) × g(A ) → K defined by:
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T0(X + s ⊗ a + f, Y + s′ ⊗ b + h): = K (s, s′)B(a, b) + f (Y ) + h(X),

for all X, Y, a, b ∈ A , f, h ∈ A ∗, is an invariant scalar product on g(A ).

Remark 3.1 In the construction above, one can replace sl(2) by an arbitrary simple
Lie algebra.

In [2], symplectic quadratic Lie algebras are studied. Now, we are going to show
how we can construct symplectic quadratic Lie algebras from symplectic quadratic
Poisson-admissible algebras.

By easy computation, we prove the following lemma.

Lemma 3.1 If D is a derivation of a quadratic Poisson-admissible algebra
(A , ., B), then the endomorphism D̃ of g(A ) defined by:

D̃(x): = D(x), D̃( f ): = − f ◦ D; D̃(s ⊗ a): = s ⊗ D(a),

∀a, x ∈ A , f ∈ A ∗, s ∈ sl(2),

is a derivation of Lie algebra g(A ). Moreover, if D is invertible (resp. skew-
symmetric with respect to B), then D̃ is invertible (resp. skew-symmetric with respect
to T0).

Consequently, if (A , B, ω) is a symplectic quadratic Poisson-admissible algebras
and D the skew-symmetric (with respect to B) invertible derivation of A such that
ω(x, y) = B(D(x), y), ∀x, y ∈ A , then (g(A ), T,Ω) is a symplectic quadratic
Lie algebra where Ω is the symplectic structure on Lie algebra g(A ) defined by:

Ω(X, Y ): = T (D̃(X), Y ), ∀X, Y ∈ g(A ).

3.1 Structures of Symplectic Quadratic Poisson-Admissible
Algebras

Recall that if (A , ◦, B) is a commutative associative algebra, we denote by Ends

(A , B) the set of symmetric endomorphisms of the vector space A with respect to
B. It is clear that Ends(A , B) is a subalgebra of End(A ) (the associative algebra of
the endomorphisms of A ).

Let (δ, a0) ∈ Ends(A , B) ×A . In [3], (δ, a0) is called a pre-admissible element
of Ends(A , B) × A if

δ◦Lx = Lx ◦δ and δ2 = La0 (ie. δ(x ◦ y) = x ◦δ(y), δ2(x) = a0◦x, ∀x, y ∈ A ).

Now, Let (W , ., B) be a quadratic Poisson-admissible algebra. Let Δ ∈ Dera
(W −, B) and (δ, a0) be a pre-admissible element of Ends(W +, B) × W +. Then,
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1. The vector space A := Ke ⊕ W ⊕ Ke∗ with the skew-symmetric bilinear map
[ , ] : A × A → A defined by:

[x, y]: = [x, y]W − + B(Δ(x), y)e∗; [e, x]: = Δ(x); [e∗,A ] = {0},

∀x, y ∈ W , is a Lie algebra.
2. The vector space A := Ke ⊕ W ⊕ Ke∗ with the symmetric bilinear map � :

A × A → A defined by:

x � y: = x ◦ y + B(δ(x), y)e∗; e � x : = δ(x) + B(a0, x)e∗;
e � e: = a0 + ke∗; e∗ � A = {0},

∀x, y ∈ W , is an associative commutative algebra.

Moreover, if we consider the symmetric bilinear form T :A × A → K defined by:

T|W ×W : = B; T (e, e∗) = 1; T (e, Ke ⊕ W ) = T (e∗, Ke∗ ⊕ W ) = {0},

then (A , [ , ], T ) is a quadratic Lie algebra (called the double extension of (W −,

[ , ]W − , B) by the one-dimensional Lie algebra by means of D (see [13])) and
(A , �, T ) is a symmetric commutative associative algebra (called generalized dou-
ble extension of (W +, ◦, B) by the one dimensional algebra with null product by
means of (δ, a0) (see [3])).

In addition, if we suppose that

Δ ◦ δ = δ ◦ Δ = 1

2
adW −(a0) (ie. = 1

2
[a0, .]W −); Δ(a0) = 0;

Δ ∈ Der(W +); δ([x, y]W −) = Δ(x) ◦ y + [x, δ(y)]W − , ∀ x, y ∈ W ,

then (A , [ , ], �) is a Poisson algebra, so (A , [ , ], �, T ) is a quadratic Poisson alge-
bra. We call this quadratic Poisson algebra the double extension of the quadratic
Poisson algebra (W , [ , ]W − , ◦, B) by means of (Δ, δ, a0, k).

Now, the vector space A with the product:

X � Y : = 1

2
[X, Y ] + X � Y, ∀ X, Y ∈ A ,

is Poisson-admissible algebra. Then (A ,�, T ) is a quadratic Poisson-admissible
algebra called the double extension of the quadratic Poisson-admissible algebra
(W , ., B) by means of (Δ, δ, a0, k).

More precisely, the product � is given by:

x � y = x .y + B(Ω(x), y)e∗,

e � x = Ω(x) + B(a0, x)e∗, x � e = Ω∗(x) + B(a0, x)e∗,
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e � e = e � e: = a0 + ke∗; e∗ � A = A � e∗ = {0},∀x, y ∈ W ,

where Ω := 1
2Δ + δ and Ω∗ := − 1

2Δ + δ.

Let us consider a symplectic quadratic Poisson-admissible algebra (W , ., B, ω).

Then there exists a unique invertible skew-symmetric derivation of W such that
ω(x, y) = B(D(x), y), ∀x, y ∈ W .Next,we consider a double extension (A ,�, T )

of (W , ., B) by means (Δ, δ, a0, k).

By [2, 3], if there exist ł ∈ K and c0 ∈ W such that:

[D,Δ] + łΔ = adW −(c0),

[D, δ] + łδ = Lc0 and δ(c0) = ła0 + 1

2
D(a0),

Then the endomorphism Γ of A defined by:

Γ (x): = D(x) − B(c0, x)e∗; Γ (e∗): = łe∗; Γ (e): = c0 − łe∗,

is an invertible derivation of (A ,�) and Γ is skew-symmetric with respect to T . It
follows that the skew-symmetric bilinear form ♦:A × A → K defined by:

♦(X, Y ): = T (Γ (X), Y ), ∀X, Y ∈ A ,

is a symplectic structure on (A ,�). Therefore, (A ,�, T,♦) is a symplectic
quadratic Poisson-admissible algebra called the double extension of (W , ., B, ω)

(by means of (Δ, δ, a0, c0, k, ł)).

Proposition 3.1 Let (A ,�, T ) be a quadratic Poisson-admissible algebra. Sup-
pose that there exists e∗ ∈ Ann(A )\{0} such that B(e∗, e∗) = 0. Then, (A ,�, T )

is a double extension of a quadratic Poisson-admissible algebra (W , ., B). More
precisely, W : = (Ke∗)⊥/Ke∗ and

(x + Ke∗).(y + Ke∗): = (x � y) + Ke∗,

B(x + Ke∗, (y + Ke∗): = T (x, y), ∀x, y ∈ (Ke∗)⊥.

Proof Since B is non-degenerate, then there exists e ∈ A such that B(e∗, e) = 1.
Consequently, ifW : = (Ke∗⊕Ke)⊥ denotes the orthogonal ofKe∗⊕Kewith respect
to T , with the Poisson-admissible structure . induced by the one of (Ke∗)⊥/Ke∗, one
easily verifies that B: = T|W ×W is an invariant scalar product on Poisson-admissible
algebra (W , .)

Let us remark that there exit a0 ∈ W and k ∈ K such that e � e = a0 + ke∗
because B(e � e, e∗) = B(e, e � e∗) = 0,

Let us consider Ω the endomorphism of W defined by:
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Ω(x): = PW (e � x), ∀x ∈ W ,

where PW :A → W is the natural projection.
Next, we considerΔ: = Ω −Ω∗, δ: = 1

2 (Ω +Ω∗),whereΩ∗ the endomorphism
ofW defined by B(Ω(x), y) = B(x,Ω∗(y)), for all x, y ∈ W (ie.Ω∗ is the adjoint
of Ω with respect to B). It easy to verify that (A ,�, T ) is the double extension of
the quadratic Poisson-admissible algebra (W , ., B) by means of (Δ, δ, a0, k).

Lemma 3.2 Let (A , .) be a Poisson-admissible algebra. If A admits an invertible
derivation, then Ann(A ) 
= {0}.
Proof If (A , .) admits an invertible derivation Γ then Γ is either an invertible
derivation of (A −, [ , ]) and an invertible derivation of (A +, ◦). Consequently, by
[11] (rep. by [3]), (A −, [ , ]) is a nilpotent Lie algebra (resp. (A +, ◦) is a nilpotent
associative algebra). It follows that z(A −) 
= {0} and Ann(A +) 
= {0}. Since
adA − X is a derivation of (A +, ◦), for all X ∈ A , then Ann(A +) is an ideal of
(A −, [ , ]). Therefore Ann(A +) ∩ z(A −) 
= {0} because (A −, [ , ]) is a nilpotent
Lie algebra. The fact that Ann(A +) ∩ z(A −) ⊆ Ann(A ) implies that Ann(A ) 
=
{0}.
Theorem 3.1 If K is algebraically closed, then every non-zero symplectic quadratic
Poisson-admissible algebra (A ,�, T,♦) is a double extension of a symplectic
quadratic Poisson-admissible algebra (W , ., B, ω)

Proof Let (A ,�, T,♦) is a non-zero symplectic quadratic Poisson-admissible.
There exists a unique skew-symmetric (with respect to T ) invertible derivation Γ of
(A ,�) such that ♦(X, Y ) = T (Γ (X), Y ), for all X, Y ∈ A . Then, By Lemma 3.2,
Ann(A ) 
= {0}. Since Γ is a derivation of (A ,�), then Γ (Ann(A )) ⊆ Ann(A ).

It follows that there exist e∗ ∈ Ann(A )\{0} and ł ∈ K\{0} such that Γ (e∗) = łe∗.
The fact that Γ is skew-symmetric with respect to T implies that T (e∗, e∗) = 0. By,
Proposition 3.1, (A ,�, T ) is a double extension of a quadratic Poisson-admissible
algebra (W = Ke∗)⊥/Ke∗, ., B) by means of (Δ, δ, a0, k) (see the proof of Propo-
sition 3.1 for definitions of Δ, δ, a0 and k). Therefore, A = Ke∗ ⊕ W ⊕ Ke with
T (e, e∗) = 1 and W = (Ke∗ ⊕ Ke)⊥.

Since the idealKe∗ of (A ,�) is invariant by the skew-symmetric derivationΓ, so
is its orthogonal (with respect to T ) Ke∗ ⊕W . Now, if p : Ke∗ ⊕W → W denotes
the projection p(te∗ + x) := x, for t ∈ K, x ∈ W , then one can easily verify that
D: = p ◦ Γ|W is an invertible skew-symmetric derivation of (W , ., B). Since Γ is
skew-symmetric with respect to T and T (e∗, e) = 1, one immediately obtains that
there exists c0 ∈ W such that Γ (e): = c0 − łe∗ and Γ|W = D − B(c0, .)e∗. Since
Γ is a derivation of (A ,�), then Γ is either a derivation ofA − and a derivation of
A +, one easily deduces that

[D,Δ] + łΔ = adW −(c0),

[D, δ] + łδ = Lc0 and δ(c0) = ła0 + 1

2
D(a0).
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Therefore (A ,�, T,♦) is the double extension of (W , ., B, ω: = B(D(.), .)) (by
means of (Δ, δ, a0, c0, k, ł)).

Now, we denote byM the 2−dimensional Poisson-admissible algebra with zero
product. If {e, f } is a basis of the vector space M , the symmetric (resp. skew-
symmetric) bilinear form B0 (resp. ω0) of M defined by B0(e, e) = B0( f, f ) =
1, B0(e, f ) = 0 (resp. ω0(e, f ) = 1), is quadratic (resp. symplectic) structure on
M . By Theorem 3.1, The following result follows easily:

Corollary 3.1 If K is algebraically closed, then every non-zero symplectic quadratic
Poisson-admissible algebra (A ,�, T,♦) is obtained from the 2−dimensional sym-
plectic quadratic Poisson-admissible algebra (M , B0, ω0) by a sequence of double
extensions.

References

1. Aubert, A.: Structures affines et pseudo-métriques invariantes à gauche sur des groupes de Lie.
Thesis, Université Montpellier II (1996)

2. Bajo, I., Benayadi, S., Medina, A.: Symplectic structures on quadratic Lie algebras. J. Algebra
316(1), 174–188 (2007)

3. Baklouti, A., Benayadi, S.: Symmetric symplectic associative commutative algebras and related
Lie algebras. Algebra colloq. 18(1), 973–986 (2011)

4. Benayadi, S.: Structures de certaines algèbres de Lie quadratiques. Commun. Algebra 23(10),
3867–3887 (1995)

5. Bordemann, M.: Nondegenerate invariant bilinear forms on nonassociative algebras. Acta
Math. Univ. Com. LXVIP(2), 151–201 (1997)

6. Dardié, J.-M., Medina, A.: Double extension symplectique d’un group de Lie symplectique.
Adv. Math. 117(2), 208–227 (1996)

7. Diatta, A., Medina, A.: Classical Yang-Baxter equation and left invariant affine geometry on
Lie groups. Manuscr. Math. 114(4), 477–486 (2004)

8. Favre,G., Santaroubane, L.: Symmetric invariant non-degenerate bilinear formon aLie algebra.
J. Algebra 105, 451–464 (1987)

9. Figueroa-O’Farrill, J.M., Stanciu, S.: On the structure of symmetric self-dual Lie algebras. J.
Math. Phys. 37(8), 4121–4134 (1996)

10. Hofmann, K.H., Keith, V.S.: Invariant quadratic forms on finite dimensional Lie algebras. Bull.
Austral. Math. Soc. 33, 21–36 (1986)

11. Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Amer. Math.
Soc. 6, 33–39 (1955)

12. Lu, C.: Finite-dimensional solvable Lie algebras with nondegenerate invariant bilinear forms.
J. Algebra 311, 178–201 (2007)

13. Medina, A., Revoy, Ph.: Algèbres de Lie et produit scalaire invariant. Ann. Scient. Ec. Norm.
Sup. 4ème série 18, 556–561 (1985)

14. O’Neill B.: Semi-riemannian geometry with applications to relativity. Academic Press, New
York (1983)


	8 Construction of Symplectic Quadratic Lie Algebras from Poisson Algebras
	1 Introduction
	2 Definitions and Preliminary Results
	3 Construction of Quadratic (Resp. Symplectic Quadratic) Lie Algebras from Quadratic (Resp. Symplectic Quadratic) Poisson-Admissible Algebras
	3.1 Structures of Symplectic Quadratic Poisson-Admissible Algebras

	References


