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Abstract We study finite-dimensional Lie algebras with given properties of
subalgebras (like all proper subalgebras being abelian) and elements (like all ele-
ments being semisimple). We get results on both the structure of the whole class of
algebras with the given property, and the structure of individual algebras in the class.

We study the following classes of Lie algebras: anisotropic (i.e., Lie algebras for
which each adjoint operator ad x is semisimple), regular (i.e., Lie algebras in which
each nonzero element is regular), minimal nonabelian (i.e., nonabelian Lie algebras
all whose proper subalgebras are abelian), and algebras of depth 2 (i.e., Lie algebras
all whose proper subalgebras are abelian or minimal nonabelian).

All algebras, Lie and associative, are assumed to be finite-dimensional and defined
over a fixed field of characteristic zero (though some of the results, in a weaker form
or under additional restrictions, will hold also in positive characteristic). We stress
that the base field is not assumed to be algebraically closed (all the things considered
here are collapsing to vacuous trivialities in the case of an algebraically closed base
field).

Our notations are standard and largely follow Bourbaki [2]. The symbols �, ⊕,
and +⊂ denote direct sum of vector spaces, direct sum of Lie algebras, and semidirect
sum of Lie algebras (the first summand acting on the second), respectively.
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1 Anisotropic Algebras

It is shown in [3, Propostion 1.2] that any anisotropic solvable Lie algebra is abelian.
From this and the Levi–Malcev decomposition follows that any anisotropic Lie
algebra is reductive.

Theorem 1.1 For a reductive Lie algebra L the following are equivalent:

(i) L is anisotropic;
(ii) all proper subalgebras of L are anisotropic;
(iii) all proper subalgebras of L are reductive;
(iv) all 2-dimensional subalgebras of L are abelian;
(v) L does not contain subalgebras isomorphic to sl(2).

Proof (i) ⇒ (ii). If S is a subalgebra of L, then for any x ∈ S, adS x is a restriction of
adL x, hence the semisimplicity of the latter implies the semisimplicity of the former.

(ii) ⇒ (iii) follows from the observation above that any anisotropic Lie algebra is
reductive.

(iii) ⇒ (iv) follows from the obvious fact that a 2-dimensional reductive Lie
algebra is abelian.

(iv) ⇒ (v) follows from the obvious fact that sl(2) contains a 2-dimensional
nonabelian subalgebra.

(v) ⇒ (i). Write L as a direct sum L = g ⊕ A, where g is semisimple and A
is abelian. Suppose g is not anisotropic. As g contains semisimple and nilpotent
components of each of its elements ([2, Chap. I, Sect. 6, Theorem 3]), g contains a
nonzero nilpotent element, and by the Jacobson–Morozov theorem ([2, Chap.VIII,
Sect. 11, Proposition 2]) g contains sl(2) as a subalgebra, a contradiction. Hence g
is anisotropic and L is anisotropic.

Though the proof is elementary, and all the necessary ingredients are contained
in [3] anyway (in particular, the implication (i) ⇒ (iv) is noted in [3, Sect. 1], and
the equivalence (i) ⇔ (v) in the case of semisimple L is proved, with a slightly
different argument, in [3, Theorem2.1]), we find this explicit formulation of Theorem
1.1 interesting enough. There are many works in the literature devoted to study of
minimal non-P Lie algebras, i.e. Lie algebras not satisfying P and such that all
their proper subalgebras satisfy P , where P is a certain “natural” property of Lie
algebras (abelianity, nilpotency, solvability, simplicity, modularity of the lattice of
subalgebras, …). In all the cases studied so far, the class of minimal non-P algebras
turns out to be highly nontrivial (without further assumptions about the base field,
such as algebraic or quadratic closedness, triviality of the Brauer group, etc.), with
lot of simple objects. To the contrary, from the Levi–Malcev decomposition and
Theorem 1.1 it follows that the class of minimal nonanisotropic Lie algebras is
relatively trivial: those are exactly solvable minimal nonabelian Lie algebras. One
may ask a “philosophical” question: what makes the condition of being anisotropic
different in that regard from other conditions? Where is a borderline for a property
P which makes the class of minimal non-P Lie algebras small and “simple” (or
even empty)?
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Corollary 1.1 A simple Lie algebra all whose proper subalgebras are not simple,
is either minimal nonabelian, or isomorphic to sl(2).

Proof Let L be a reductive Lie algebra all whose proper subalgebras are not simple.
By implication (v)⇒ (iii) of Theorem1.1, eitherL is isomorphic to sl(2), or all proper
subalgebras of L are reductive. As any nonabelian reductive Lie algebra contains a
simple subalgebra, in the latter case all proper subalgebras of L are abelian.

In [16, Theorem 2.2] a statement similar to the corollary is proved about simple
Lie algebras, all whose proper subalgebras are supersolvable.

Theorem 1.2 Let L be a nonempty class of Lie algebras satisfying the following
properties:

(i) L is closed with respect to subalgebras;
(ii) if each proper subalgebra of a reductive Lie algebra L belongs to L , then L

belongs to L ;
(iii) solvable Lie algebras belonging to L are abelian.

Then L is the class of all anisotropic Lie algebras.

Proof Any class of Lie algebras satisfying conditions (i) and (iii) consists of
anisotropic algebras. Indeed, from the Levi–Malcev decomposition and condition
(iii) it follows that any algebra in L is reductive. Then from implication (iii) ⇒ (i)
of Theorem 1.1 and condition (i), it follows that any algebra in L is anisotropic.

Now, suppose that there is an anisotropic Lie algebra not belonging toL , and con-
sider such algebra L of the minimal possible dimension. Then all proper subalgebras
of L belong toL , and by condition (ii) L itself belongs toL , a contradiction.

2 Regular Algebras

If N is a nilpotent subalgebra of a Lie algebra L, by L0(N) is denoted the Fitting
0-component with respect to the N-action on L (i.e., the set of all elements of L on
which N acts nilpotently).

Recall ([2, Chap.VII, Sect. 2.2]) that rank rk L of a Lie algebra L is the minimal
possible non-vanishing power of the characteristic polynomial of ad x, x ∈ L, and
elements of L for which this minimal number is attained are called regular. Another
characterization of x ∈ L to be a regular element is the equality dim L0(x) = rk L.

If each nonzero element of L is regular, then L itself is called regular.
It is clear that any nilpotent Lie algebra is regular, with rank equal the dimension

of the algebra. If a regular Lie algebra L is not semisimple, i.e., contains a nonzero
abelian ideal I , then for any x ∈ I , (ad x)2 = 0, hence each element in L is nilpotent,
and by the Engel theorem L is nilpotent. It is clear also that a regular semisimple
Lie algebra is simple (see [2, Chap.VII, Sect. 2.2, Proposition 7]), and that a regular
simple Lie algebra is anisotropic (see [2, Chap.VII, Sect. 2.4, Corollary 2]).
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Theorem 2.1 For a simple Lie algebra L the following are equivalent:

(i) L is regular;
(ii) all proper subalgebras of L are regular;
(iii) all proper subalgebras of L are either simple, or abelian.

Proof (i) ⇒ (ii) follows from the fact that if S is a subalgebra of L, and x ∈ S is
a regular element in L, then x is a regular element in S ([2, Chap.VII, Sect. 2.2,
Proposition 9]).

(ii)⇒ (iii). By the observation above, any proper subalgebra of L is either simple,
or nilpotent. Hence L does not contain a 2-dimensional nonabelian Lie algebra, and
by implication (iv) ⇒ (iii) of Theorem 1.1, all proper subalgebras of L are reductive,
and all its nilpotent subalgebras are abelian.

(iii) ⇒ (i). By implication (iii) ⇒ (i) of Theorem 1.1, L is anisotropic. In any Lie
algebra, Cartan subalgebras are exactly nilpotent subalgebrasN such thatL0(N) = N
([2, Chap.VII, Sect 2.1, Proposition 4]). But nilpotent subalgebras of L are abelian,
and L0(N) coincides with the centralizer of N , so Cartan subalgebras of L are exactly
abelian subalgebras coinciding with their own centralizer. For an arbitrary nonzero
element x ∈ L, its centralizer ZL(x) cannot be simple, hence it is abelian. But, obvi-
ously, ZL(x) coincides with its own centralizer, hence ZL(x) is a Cartan subalgebra
of L, dim ZL(x) = dim L0(x) = rk L, and x is regular.

Note that similar to the anisotropic case, minimal nonregular Lie algebras are
exactly solvable minimal nonnilpotent Lie algebras.

Theorem 2.2 Let L be a nonempty class of Lie algebras satisfying the following
properties:

(i) L is closed with respect to subalgebras;
(ii) if each proper subalgebra of a Lie algebra L belongs to L , then L belongs

to L ;
(iii) non-semisimple Lie algebras belonging to L are nilpotent.

Then L is the class of all regular Lie algebras.

Proof Any class of Lie algebras satisfying conditions (i) and (iii) consists of regular
algebras. Indeed, from the Levi–Malcev decomposition and condition (iii) it follows
that any algebra L in L is either semisimple, or nilpotent. In the former case, write
L = g1 ⊕· · ·⊕gn as the direct sum of simple components. If n > 1, by condition (i)
the subalgebra of L of the form g1 ⊕ Kx, where x is an arbitrary nonzero element of
g2, belongs toL , and by condition (iii) it is nilpotent, a contradiction. Hence n = 1,
that is, L is simple. By conditions (i) and (iii) L does not contain 2-dimensional
nonabelian subalgebra, andby implication (iv)⇒ (iii) ofTheorem1.1, all subalgebras
of L are reductive. This, together with conditions (i) and (iii) again, implies that all
subalgebras of L are either simple, or abelian, and by implication (iii) ⇒ (i) of
Theorem 2.1, L is regular.

Now, the same elementary reasoning utilizing condition (ii) as at the end of the
proof of Theorem 1.2, shows that any regular Lie algebra belongs toL .
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3 Minimal Nonabelian Algebras

It follows from the Levi–Malcev decomposition that any minimal nonabelian Lie
algebra is either simple, or solvable. Solvable minimal nonabelian Lie algebras (even
in a slightly more general minimal nonnilpotent setting) were described in [7], [14],
and [15]. A simple minimal nonabelian Lie algebra is regular. Simple minimal non-
abelian Lie algebras were studied in [4] and [6], but their full description remains an
open problem.

Recall that an algebra is called central if its centroid coincides with the base field.
For simple algebras this is equivalent to the condition that the algebra remains simple
under extension of the base field.

Theorem 3.1 There are no central simple minimal nonabelian Lie algebras of types
Bl (l ≥ 2), Cl (l ≥ 3, l �= 2k), Dl (l ≥ 5, l �= 2k), G2, and F4.

Proof The proof follows from the known classification of central simple Lie algebras
of these types (see, for example, [13, Chap. IV]).

Types B–D. Each central simple Lie algebra of this type (with the exception
of D4) is isomorphic to a Lie algebra of J-skew-symmetric elements S−(A, J) =
{x ∈ A | J(x) = −x}, where A is a central simple associative algebra of dimension
n2 > 16 with involution J of the first kind (smaller dimensions of A are covered by
“occasional” isomorphisms between “small” algebras of different types, including
type A). By a known description of such algebras (see, for example, [10, Theorem
5.1.23]), A is isomorphic to Mm(D), a matrix algebra of size m × m over a central
division algebra D with involution j, and J has the form

(dk�)
m
k,�=1 	→ diag(g1, . . . , gm)(j(dk�))

� diag(g−1
1 , . . . , g−1

m )

for some g1, . . . , gm ∈ D such that j(gk) = gk , k = 1, . . . , m.
IfD coincideswith the base field, i.e.A is a fullmatrix algebra, than the Lie algebra

S−(A, J) is split and, obviously, contains a lot of proper nonabelian subalgebras.
Hence we may assume dim D ≥ 4. From the description above it is clear that,
provided m > 1, the subalgebra B of A of all matrices with vanishing last row
and column, is isomorphic to Mm−1(D) and is stable under J , hence S−(B, J) is
a Lie subalgebra of S−(A, J). Since dim A = m2 dim D ≥ 25, we have dim B =
(m − 1)2 dim D = s2 ≥ 9, and this subalgebra is a central simple Lie algebra of
dimension s(s−1)

2 or s(s+1)
2 . Therefore, ifm > 1, S−(A, J) contains proper nonabelian

subalgebras, and it remains to consider the case where A = D is a division algebra.
Since D has an involution, its exponent is equal to 2, and its dimension n2 is equal

to some power of 4. This excludes all the types mentioned in the statement of the
theorem.

Type G2. Each central simple Lie algebra of this type is a derivation algebra of
a 8-dimensional Cayley algebra O. The latter is obtained by the doubling (Cayley–
Dickson) process from the 4-dimensional associative quaternion algebra H, and it
is known that each derivation of H can be extended to a derivation of O (see, for
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example [12, Theorem 2]). Thus, Der(O) always contains a 3-dimensional central
simple Lie algebra Der(H) as a subalgebra, and hence cannot beminimal nonabelian.

Type F4. Each central simple Lie algebra of this type is a derivation algebra of a
27-dimensional exceptional simple Jordan algebra J. It is known that derivations of
Jmapping a cubic subfield of J to zero form a central simple Lie algebra of type D4
(see, for example, [9, Chap. IX, Sect. 11, Exercise 5]).

We conjecture that the remaining types not covered by Theorem 3.1—C2k and
D2k—cannot occur as well.

Conjecture 3.1 There are no central simple minimal nonabelian Lie algebras of
types B–D (except of D4).

Let us provide some evidence in support of this conjecture.

Lemma 3.1 Let D be a central division algebra of dimension n2 over a field K with
involution J of the first kind, such that S−(D, J) is a minimal nonabelian Lie algebra.
Then for any J-symmetric or J-skew-symmetric element x in D, not lying in K, one
of the following holds:

(i) x is J-symmetric and of degree 2;
(ii) K[x] is of degree n

2 , and dimK[x] CD(x) = 4;
(iii) K[x] is a maximal subfield of D.

Proof The associative centralizer of x inD, CD(x), is a proper simple associative sub-
algebra ofD. By the Double Centralizer Theorem (see, for example, [11, Sect. 12.7]),

dim K[x] · dim CD(x) = n2, (1)

and the associative center of CD(x) coincides with K[x].
As CD(x) is stable under J , S−(CD(x), J) is a Lie subalgebra of S−(D, J). If it

coincides with the whole S−(D, J), then S−(D, J) ⊆ CD(x), and by (1), dim K[x] ≤
n2

n(n−1)
2

< 3, hence dim K[x] = 2, i.e. K[x] is a quadratic extension of K , the case (i).

Note that in this case x cannot be J-skew-symmetric, as otherwise it lies in the Lie
center of S−(D, J), a contradiction.

If S−(CD(x), J) is a proper subalgebra of S−(D, J), then it is abelian, and
by [8, Theorem 2.2], CD(x) is either commutative (i.e., a subfield of D), or
is 4-dimensional over its center K[x]. In the former case, since the degree (= dimen-
sion) over K of each intermediate field between K and D is ≤ n (actually, a divi-
sor of n), and since K[x] ⊆ CD(x), we have dim K[x] = dim CD(x) = n, and
CD(x) = K[x], the case (iii). In the latter case, from (1) we have dim K[x] = n

2 and
dim CD(x) = 2n, the case (ii).

For example, if the division algebra D is cyclic (what always happens over num-
ber fields), then, considering the conditions of the lemma simultaneously for a
J-skew-symmetric element x generating a cyclic extension of the base field, and
even powers of x (which are J-symmetric), one quickly arrives to a contradiction.
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For the remaining exceptional types, the question seems to bemuchmore difficult,
and it is treated in [5] using the language and technique of algebraic groups andGalois
cohomology. There are central simple minimal nonabelian Lie algebras of types D4
and E8. For types E6 and E7 partial answers are available.

Central simple minimal nonabelian Lie algebras of type A of the form D(−)/K1
(i.e., quotient of D, considered as a Lie algebra subject to commutator [a, b] =
ab − ba, by the 1-dimensional center spanned by the unit 1 of D), where D is a cen-
tral division associative algebra, were studied in [6]. A necessary, but not sufficient
condition for such Lie algebra to be minimal nonabelian is D to be minimal non-
commutative (i.e., all proper subalgebras of D are commutative). In this connection
the following observation is of interest:

Theorem 3.2 Let D be a central division associative algebra. Then the Lie algebra
D(−)/K1 is regular if and only if D is a minimal noncommutative algebra.

Proof Let the dimension of D over the base field K is equal to n2, so dim D(−)/K1 =
n2 − 1. The Lie algebra D(−)/K1 is regular if and only if the Lie centralizer of any
nonzero element x ∈ D(−)/K1 is a Cartan subalgebra of dimension n − 1, what, in
associative terms, is equivalent to the condition that the associative centralizer CD(x)
of any element x ∈ D\K , is a maximal subfield of D of dimension n over K . Taking
this into account, the proof is an easy application of the Double Centralizer Theorem,
with reasonings similar to those used in the proof of the lemma above.

The “only if” part. Suppose that for any x ∈ D\K , CD(x) is a maximal subfield
of D. Consider a subfield K[x] ⊆ CD(x) of D. We have CD(x) = CD(K[x]), and
by the Double Centralizer Theorem, dim K[x] · dim CD(x) = n2. But the degree
(= dimension) over K of each intermediate field between K and D is ≤ n (actually,
a divisor of n), hence dim K[x] = dim CD(x) = n, and CD(x) = K[x]. That means
that there are no intermediate fields between K and the maximal subfields of D.

If A is a noncommutative proper subalgebra of D, then, obviously, A is a division
algebra. Its center Z(A), being a field extension of K , either coincides with K , or
is a maximal subfield of D. In the former case A is central of dimension m2, where
1 < m < n, and its maximal subfield has degree m over K , a contradiction. In the
latter case, we have dim A > dim Z(A) = n. Applying again the Double Central-
izer Theorem, we have dim A · dim CD(A) = n2. Since Z(A) ⊆ CD(A), we have
dim CD(A) ≥ dim Z(A) = n, a contradiction.

The “if” part. Suppose D is minimal noncommutative. For an arbitrary x ∈ D not
lying in the base field K , its centralizer CD(x) is a subfield of D. By the Double
Centralizer Theorem, CD(CD(x)) is a simple subalgebra of D (and, hence, is
also a subfield), and dim CD(x) · dim CD(CD(x)) = n2. By the same argument
as above about degrees of intermediate fields between K and D, dim CD(x) =
dim CD(CD(x)) = n. Since CD(x) ⊆ CD(CD(x)), this implies CD(x) = CD(CD(x)),
and CD(x) is a maximal subfield of D.
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4 Algebras of Depth 2

Define the depth of a Lie algebra in the following inductive way: a Lie algebra has
depth 0 if and only if it is abelian, and has depth n > 0 if and only if it does not have
depth < n and all its proper subalgebras have depth < n. Thus, minimal nonabelian
Lie algebras are exactly algebras of depth 1.

Many of the algebras considered below arise as semidirect sums L +⊂ V of a Lie
algebra L and an L-module moduleV (in such a situation, wewill always assume that
V is an abelian ideal: [V , V ] = 0). It is clear that the depth of such semidirect sums
is related to depth of L and the maximal length of chains of subspaces of V invariant
under action of subalgebras of L, though the exact formulation in the general case
seems to be out of reach. In the particular case where L is 1-dimensional, the depth
of such semidirect sum is equal to the maximal length of chains in V of invariant
subspaces with nontrivial L-action.

The following can be considered as an extension of the corresponding results from
[7], [14], and [15].

Theorem 4.1 A non-simple Lie algebra of depth 2 over a field K is isomorphic to
one of the following algebras:

(i) A 4-dimensional solvable Lie algebra having the basis {x, y, z, t} and the fol-
lowing multiplication table:

[x, y] = z, [x, z] = 0, [y, z] = 0, [z, t] = 0,

with ad t acting on the space Kx�Ky invariantly, without nonzero eigenvectors,
and with trace zero.

(ii) A 4-dimensional solvable Lie algebra having the basis {x, y, z, t} and the fol-
lowing multiplication table:

[x, y] = z, [x, z] = 0, [y, z] = 0, [z, t] = z,

with ad t acting on the space Kx�Ky invariantly, without nonzero eigenvectors,
and with trace 1.

(iii) A direct sum of a simple minimal nonabelian Lie algebra and 1-dimensional
algebra.

(iv) A semidirect sum S +⊂ V, where S is either the 2-dimensional nonabelian Lie
algebra, or a 3-dimensional simple minimal nonabelian Lie algebra, and V is
an S-module such that each nonzero element of S acts on V irreducibly.

(v) A semidirect sum S +⊂ V, where S is an abelian 1- or 2-dimensional Lie algebra,
and V is an S-module such that for each nonzero element x ∈ S, the maximal
length of chains of x-invariant subspaces of V is equal to 2 (what is equiva-
lent to saying that any proper x-invariant subspace does not contain proper
x-invariant subspaces).
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Proof It is a straightforward verification that in each of these cases the corresponding
Lie algebras have depth 2, so let us prove that each non-simple Lie algebra L of depth
2 has one of the indicated forms.

Note that L cannot be semisimple. For, in this case it is decomposed into the direct
sum of simple components: L = g1 ⊕ · · · ⊕ gn, n > 1, and any subalgebra of the
form g1 ⊕ Kx, x ∈ g2, x �= 0, is not minimal nonabelian.

Suppose that L is non-semisimple and non-solvable, and let L = g+⊂ Rad(L) be
its Levi–Malcev decomposition. Then g is minimal nonabelian and hence is simple.
Further, Rad(L) abelian, as otherwise g+⊂ [Rad(L),Rad(L)] is a proper subalgebra
of L which is not minimal nonabelian. Suppose now that rk g > 1, and g acts on
Rad(L) nontrivially. Then taking x ∈ g with a nontrivial action on Rad(L), and
the Cartan subalgebra H of g of dimension > 1 containing x, we get a subalgebra
H+⊂ Rad(L) of L which is not minimal nonabelian. Hence in the case rk g > 1,
Rad(L) is a trivial (and then, obviously, 1-dimensional) g-module, and we arrive at
case (iii). If rk g = 1, then g is 3-dimensional. If some nonzero x ∈ g acts on Rad(L)

trivially, then so is [x, g], and, since g is generated by the latter subspace, the whole
g acts on Rad(L) trivially, a case covered by (iii). Assume that any nonzero x ∈ g
acts on Rad(L) nontrivially. The Lie subalgebra Kx +⊂ Rad(L) contains, in its turn, a
subalgebra Kx +⊂ V for any proper ad x-invariant subspace V of Rad(L), what shows
that x acts trivially on V . Letting here V to be the Fitting 1-component with respect to
the x-action on Rad(L), we see that Rad(L) = V , what means that x acts on Rad(L)

nondegenerately, and hence, irreducibly. We arrive at case (iv).
It remains to consider the case of L solvable. Take any subspace A of L of codi-

mension 1 containing [L, L], and a complimentary 1-dimensional subspace:

L = Kt � A, (2)

ad t acts onA. SinceA is a proper ideal ofL, it is either abelian orminimal nonabelian.
In the former case, we arrive at the semidirect sum Kt +⊂ A, and it is easy to see that
any proper nonabelian subalgebra of L is isomorphic to the semidirect sum Kt +⊂ V ,
where V is a proper ad t-invariant subspace of A. Thus, for L to be of depth 2 is
equivalent to the condition described in case (v) (with S 1-dimensional).

Suppose now that A is minimal nonabelian. According to [7, Theorem 4] (also
implicit in [14] and [15]), each solvable minimal nonabelian Lie algebra is either
isomorphic to the 3-dimensional nilpotent Lie algebra, or to the semidirect sum
Kx +⊂ V such that ad x acts on V irreducibly (in particular, ad x|V is nondegenerate).
Further, ad t is a derivation of A, and subtracting from t an appropriate element of A,
wemay assume that either t is central, i.e. (2) is the direct sum ofA and 1-dimensional
algebra, or ad t is an outer derivation of A.

Suppose first that A is 3-dimensional nilpotent, i.e., has a basis {x, y, z} with
multiplication table [x, y] = z, [x, z] = [y, z] = 0. If t is central, we arrive at a
particular case of (i). Straightforward computation shows that each outer derivation
of A is equivalent to a derivation d which acts invariantly on the space Kx � Ky, and
either d|Kx�Ky has trace zero, and d(z) = 0, or d|Kx�Ky has trace 1, and d(z) = z.
These two cases correspond to the cases (i) and (ii) respectively, with the condition
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of absence of nonzero eigenvectors to ensure the absence of subalgebras which are
not minimal nonabelian.

Suppose now that A = Kx +⊂ V , ad x acts on V irreducibly. If t is central, L �
Kx +⊂ (V � Kt) (with ad x acting on t trivially), a case covered by (v) (with S
1-dimensional). Straightforward computation shows that each outer derivation of A
is equivalent to a derivation d which acts on V invariantly, and either [ad x, d] = 0
in the Lie algebra gl(V), and d(x) = 0, or [ad x, d] = ad x and d(x) = x. These
two cases correspond to the cases (v) and (iv) respectively (with S 2-dimensional),
with the respective conditions to ensure the absence of subalgebras which are not
minimal nonabelian.

Corollary 4.1 (to Theorems 1.1 and 2.1) A simple Lie algebra of depth 2 is either
isomorphic to sl(2), or regular.

Proof It is clear that sl(2) has depth 2. Hence a simple Lie algebra L of depth 2
is either isomorphic to sl(2), or does not contain sl(2) as a proper subalgebra. In
the latter case, by implication (v) ⇒ (iii) of Theorem 1.1, all subalgebras of L are
reductive. But as each minimal nonabelian Lie algebra is either simple, or solvable,
all subalgebras of L are either simple, or abelian, and by implication (iii) ⇒ (i) of
Theorem 2.1, L is regular.

In group theory, a notion analogous to depth in the class of finite p-groups is
called An-groups, see [1, Sect. 65] for their discussion and for a partial description
of A2-groups.
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