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Abstract We begin by reviewing a classical result on the algebraic dependence of
commuting elements in the Weyl algebra. We proceed by describing generalizations
of this result to various classes of Ore extensions, including both results that are
already known and one new result.

1 Introduction

LetR be a commutative ring and S anR-algebra. Let a, b be two commuting elements
of S. We are interested in the question whether they are algebraically dependent over
R. i.e., does there exist a non-zero polynomial f (s, t) ∈ R[s, t] such that f (a, b) = 0?
Furthermore, can we find a proper subring F of R such that a, b are algebraically
dependent over F?

In this article S will typically be an Ore extension of R. We start by introducing the
notations and conventions wewill use in this article and define what an Ore extension
is. After that we review without giving proofs results obtained by other authors for
the case that S is a differential operator ring (a special case of Ore extensions). We
then proceed to describe results obtained by the present author and his collaborators
and we finish by describing a strengthening of these results we recently obtained.

1.1 Notation and Conventions

R will denote the field of real numbers, C the field of complex numbers. Z will
denote the integers.
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IfR is a ring thenR[x1, x2, . . . xn] denotes the ring of polynomials overR in central
indeterminates x1, x2, . . . , xn.

By a ring we will always mean an associative and unital ring. All morphisms
between rings are assumed to map the multiplicative identity element to the multi-
plicative identity element.

By an ideal we shall mean a two-sided ideal.
If R is a ring we can regard it as a module (indeed algebra) over Z by defining

0r = 0, nr = ∑n
i=1 r if n > 0 and nr = −(−n)r if n is a negative integer. If there is

a positive integer n such that n1R = 0, we call the smallest such positive integer the
characteristic of R. If no such integer exists we set say that the characteristic is zero.

Let R be a commutative ring and S an R-algebra. Two commuting elements,
p, q ∈ S, are said to be algebraically dependent (over R) if there is a non-zero
polynomial, f (s, t) ∈ R[s, t], such that f (p, q) = 0, in which case f is called an
annihilating polynomial.

If S is a ring and a is an element in S, the centralizer of a, denoted CS(a), is the
set of all elements in S that commute with a.

This article studies a class of rings called Ore extensions. For general references
on Ore extensions, see e.g. [9, 14]. We shall briefly recall the definition. If R is a
ring and σ is an endomorphism of R, then an additive map δ : R → R is said to be a
σ -derivation if

δ(ab) = σ(a)δ(b) + δ(a)b

holds for all a, b ∈ R.

Definition 1.1 Let R be a ring, σ an endomorphism of R and δ a σ -derivation. The
Ore extension R[x; σ, δ] is defined as the ring generated by R and an element x /∈ R
such that 1, x, x2, . . . form a basis for R[x; σ, δ] as a left R-module and all r ∈ R
satisfy

xr = σ(r)x + δ(r). (1)

Such a ring always exists and is unique up to isomorphism (see [9]). From δ(1 ·1) =
σ(1) · 1+ δ(1) · 1 we get that δ(1) = 0, and since σ(1) = 1 we see that 1R will be a
multiplicative identity for R[x; σ, δ] as well.

Any element r of R such that σ(r) = r and δ(r) = 0 will be called a constant. In
any ring with an endomorphism σ and a σ -derivation δ the constants form a subring.

If σ = idR, then a σ -derivation is simply called a derivation and R[x; idR, δ] is
called a differential operator ring.

An arbitrary non-zero element P ∈ R[x; σ, δ] can be written uniquely as P =∑n
i=0 aixi for some n ∈ Z≥0, with ai ∈ R for i ∈ {0, 1, . . . , n} and an �= 0. The

degree of P will be defined as deg(P) := n. We set deg(0) := −∞.
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2 Burchnall-Chaundy Theory for Differential Operator Rings

We shall begin by describing some results on the algebraic dependence of commuting
elements in differential operator rings. As the title of this subsection suggests, this
sort of question has its origin in a series of papers by the British mathematicians
Joseph Burchnall and Theodore Chaundy [2–4].

Proposition 2.1 Let R be a ring and δ : R → R a derivation. Let C be the set of
constants of δ. Then

(i) 1 ∈ C;
(ii) C is a subring of R, called the ring of constants;
(iii) for any c ∈ C and r ∈ R we have

δ(cr) = cδ(r),

δ(rc) = δ(r)c.

Proof We skip the simple calculational proof.

As expected any derivation satisfies a version of the quotient rule.

Proposition 2.2 Let R be a ring with a derivation, δ, and let a be any invertible
element of R. Then

δ(a−1) = −a−1δ(a)a−1.

Proof

0 = δ(1) = δ(a−1a) = a−1δ(a) + δ(a−1)a ⇒ δ(a−1) = −a−1δ(a)a−1.

Corollary 2.1 Let R be a ring with a derivation δ and C its ring of constants. If a
is an invertible element that lies in C, then so does a−1. If R is a field, then C is a
subfield of R.

Example 2.1 As the ring R we can take C∞(R,C), the ring of all infinitely many
times differentiable complex-valued functions on the real line. For δ we can take
the usual derivative. The ring of constants in this case will consist of the constant
functions.

With R and δ as in Example 2.1 we can form the differential operator ring
R[x; idR, δ]. We will show that the name “differential operator ring” is apt by con-
structing a ring of concrete differential operators that is isomorphic to R[x; idR, δ].

The ring R = C∞(R,C) can be seen as a vector space over C, with operations
defined pointwise. So we can consider the ring EndC(R) of all linear endomorphisms
ofR. (Note that the endomorphisms are not required to bemultiplicative.) EndC(R) is
in turn an algebra over R. One of the operators in EndC(R) is the derivation operator,
whichwe denote byD. Furthermore, for any f ∈ R there is themultiplication operator
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Mf thatmaps any function g ∈ R to fg. The operatorD and all theMf together generate
a subalgebra of EndC(R), which we denote by T .

It is clear that the set of all Mf , for f ∈ R, is a subalgebra of T , isomorphic to
R. Thus we abuse notation and identify Mf with f . By doing this we can write any
element of T as a finite sum,

∑n
i=0 aiDi, where each ai is a function in C∞(R,C).

Furthermore such a decomposition is unique, or in other words: the powers of D
form a basis for T as a free module over R.

We now compute the commutator of D and f for any f ∈ R. We temporarily revert
to writing Mf for the element in T to make our calculations easier to understand. Let
g be an arbitrary function in R. We find that

(DMf − Mf D)(g) = DMf (g) − Mf D(g) = D(fg) − Mf (g
′)

= f ′g + fg′ − fg′ = f ′g = Mδ(f )(g).

Hence
DMf − Mf D = Mδ(f ).

Relapsing into our abuse of notation we write this as Df − fD = δ(f ) or equivalently
as Df = fD + δ(f ).

Denote the identity function on the real line by y. Then Dy − yD = 1, a relation
known as the Heisenberg relation. The elements y and D together generate a subal-
gebra of T known as the Weyl algebra or the Heisenberg algebra, which is of interest
in quantum mechanics, among other areas.

Any element, P, of T can be written as P = ∑n
i=0 piDi, for some non-negative

integer n and some pi ∈ C∞(R,C). Conversely every such sum is an element of T .
Thus T is isomorphic to R[x; idR, δ] with R and δ defined as in Example 2.1.

In a series of papers in the 1920s and 1930s [2–4], Burchnall and Chaundy studied
the properties of commuting pairs of ordinary differential operators. In our terminol-
ogy they may be said to study the properties of pairs of commuting elements of T .
(They do not specify what function space their differential operators are supposed to
act on.) The following theorem is essentially found in their papers.

Theorem 2.1 Let P = ∑n
i=0 piDi and Q = ∑m

j=0 qjDj be two commuting elements
of T with constant leading coefficients. Then there is a non-zero polynomial f (s, t)
in two commuting variables over C such that f (P, Q) = 0. Note that the fact that P
and Q commute guarantees that f (P, Q) is well-defined.

The result of Burchnall and Chaundy was rediscovered independently during the
1970s by researchers in the area of PDEs. It turns out that several important PDEs
are equivalent to the condition that a pair of differential operators commute. These
differential equations are completely integrable as a result, which roughly means that
they possess an infinite number of conservation laws.

Burchnall’s and Chaundy’s work rely on analytical facts, such as the existence
theorem for solutions of linear ordinary differential equations. However, it is possible
to give algebraic proofs for the existence of the annihilating polynomial. This was
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done later by authors such as Amitsur [1] and Goodearl [5, 8]. Once one casts
Burchnall’s and Chaundy’s results in an algebraic form one can also generalize them
to a broader class of rings.

More specifically, one can prove Burchnall’s and Chaundy’s result for certain
differential operator rings.

Amitsur [1, Theorem 1] (following work of Flanders [7]) studied the case when
R is a field of characteristic zero and δ is an arbitrary derivation on R. He obtained
the following theorem.

Theorem 2.2 Let k be a field of characteristic zero with a derivation δ. Let F denote
the subfield of constants. Form the differential operator ring S = k[x; id, δ], and let
P be an element of S of degree n. Denote by by F[P] the ring of polynomials in P with
constant coefficients, F[P] = {∑m

j=0 bjPj | bj ∈ F }. Then CS(P) is a commutative
subring of S and a free F[P]-module of rank at most n.

The next corollary can be found in [1, Corollary 2].

Corollary 2.2 Let P and Q be two commuting elements of k[x; id, δ], where k is a
field of characteristic zero. Then there is a nonzero polynomial f (s, t), with coeffi-
cients in F, such that f (P, Q) = 0.

Proof Let P have degree n. Since Q belongs to CS(P) we know that 1, Q, . . . , Qn

are linearly dependent over F[P] by Theorem 2.2. But this tells us that there are
elements φ0(P), φ1(P), . . . φn(P), in F[P], of which not all are zero, such that

φ0(P) + φ1(P)Q + · · · + φn(P)Qn = 0.

Setting f (s, t) = ∑n
i=0 φi(s)ti the corollary is proved.

Remark 2.1 Note that F, the field of constants, equals the center of R[x; idR, δ].
In [8] Goodearl has extended the results of Amitsur to a more general setting. The

following theorem is contained in [8, Theorem 1.2].

Theorem 2.3 Let R be a semiprime commutative ring with derivation δ and assume
that its ring of constants is a field, F. If P is an operator in R[x; idR, δ] of positive
degree n, where n is invertible in F, and has an invertible leading coefficient, then
CS(P) is a free F[P]-module of rank at most n.

We recall that a commutative ring is semiprime if and only if it has no nonzero
nilpotent elements.

Goodearl notes that if R is a semiprime ring of positive characteristic such that the
ring of constants is a field, then R must be a field. In this case he proves the following
theorem [8, Theorem 1.11].

Theorem 2.4 Let R be a field, with a derivation δ, and let F be its subfield of
constants. If P is an element of S = R[x; idR, δ] of positive degree n and with
invertible leading coefficient, then CS(P) is a free F[P]-module of rank at most n2.
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As before we get the following corollary (of both Theorem 2.3 and Theorem 2.4),
which is found in [8, Theorem 1.13].

Corollary 2.3 Let P and Q be commuting elements of R[x; idR, δ], where R is a
semiprime commutative ring, with a derivation δ such that the subring of constants
is a field. Suppose that the leading coefficient of P is invertible. Then there exists a
non-zero polynomial f (s, t) ∈ F[s, t] such that f (P, Q) = 0.

Note that Amitsur’s work does not quite generalize Burchnall’s and Chaundy’s
results since C∞(R,C) is not a field. Theorem 2.3 does however imply their results
since C∞(R,C) is certainly commutative, does not have any nonzero nilpotent
elements and its ring of constants is a field (isomorphic to C). The only point to
notice is that Theorem 2.3 requires P to have positive degree. If P is an element
of degree zero and with constant leading coefficient however, it is itself a constant.
Then f (s, t) = s − P will be an annihilating polynomial for P and any Q.

An earlier paper by Carlson and Goodearl, [5], contains results similar to Theo-
rems 2.3 and 2.4, in a different setting. Part of the theorem labelled Theorem 1 in [5]
can be formulated as follows.

Theorem 2.5 Let R be a commutative ring, with a derivation δ such that the ring
of constants is a field, F, of characteristic zero. Assume that, for all a ∈ R, if the
set {r ∈ R | δ(r) = ar} contains a nonzero element, then it contains an invertible
element. Let P be an element of R[x; idR, δ] of positive degree n with invertible leading
coefficient. Then CS(P) is a free F[P]-module of rank at most n. As before, this implies
that if Q commutes with P, there exists a nonzero polynomial f (s, t) ∈ F[s, t] such
that f (P, Q) = 0.

Note that the ring R in Example 2.1 satisfies the conditions of the theorem.

3 Burchnall-Chaundy Theory for Ore Extensions

Let k be a field and q a nonzero element of that field, not a root of unity. Set R = k[y],
a polynomial ring in one variable over k. There is an endomorphism σ of R such that
σ(y) = qy and the restriction of σ to k is the identity. For this σ there exists a unique
σ -derivation δ such that δ(y) = 1 and δ(α) = 0 for all α ∈ k. The Ore extension
R[x; σ, δ] for this choice of R, σ and δ is known as the (first) q-Weyl algebra. (An
alternative name is the q-Heisenberg algebra.)

Silvestrov and collaborators [6, 10, 12] have extended the result of Burchnall and
Chaundy to the q-Weyl algebra. The cited references contain two different proofs of
the fact that any pair of commuting elements ofR[x; σ, δ] are algebraically dependent
over k. In [6] an algorithm is given to compute an annihilating polynomial explicitly.

The algorithm is a variation of one presented by Burchnall and Chaundy in their
original papers and consists of forming a certain determinant that when evaluated
gives the annihilating polynomial.
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Mazorchuk [13] has presented an alternative approach to showing the algebraic
dependence of commuting elements in q-Weyl algebras. He proves the following
theorem.

Theorem 3.1 Let k be a field and q an element of k. Set R = k[y] and suppose that∑N
i=0 qi �= 0 for any natural number N. Let P be an element of S = R[x; σ, δ] of

degree at least 1. Then CS(P) is a free k[P]-module of finite rank.

If P is as in the theorem and Q is any element of R[x; σ, δ] that commutes with P,
then there is an annihilating polynomial f (s, t) with coefficients in k. This is proven
in the same way as Corollary 2.2. The methods used to obtain Theorem 3.1 have
been generalized by Hellström and Silvestrov in [11].

In [15, Theorem 3] Silvestrov and the present author extend the algorithmic
method of [6] to more general Ore extensions.

Theorem 3.2 Let R be an integral domain with an injective endomorphism σ and a
σ -derivation δ. Let a, b be two commuting elements of R[x; σ, δ]. Then there exists
a nonzero polynomial f (s, t) ∈ R[s, t] such that f (a, b) = 0.

Note that if we apply this theorem to the q-Weyl algebra with R = k[y] we get a
weaker result than the one stated above. We would like to be able to conclude that
if a, b are commuting elements of k[y][x; σ, δ] then there is a polynomial f (s, t) in
k[s, t] such that f (a, b) = 0.

Under certain assumptions on σ we have been able to prove this and we now
proceed to describe how. We begin with a general theorem that we use as a lemma.

Theorem 3.3 Let R be an integral domain, σ an injective endomorphism of R and
δ a σ -derivation on R. Suppose that the ring of constants, F, is a field. Let a be an
element of S = R[x; σ, δ] of degree n and assume that if b and c are two elements
in CS(a) such that deg(b) = deg(c) = m, then bm = αcm, where bm and cm are the
leading coefficients of b and c respectively, and α is some constant.

Then CS(a) is a free F[a]-module of rank at most n.

The proof we give is the same as used in [8] to prove Theorem 2.3.

Proof Denote by M the subset of elements of {0, 1, . . . , n − 1} such that an integer
0 ≤ i < n is in M if and only if CS(a) contains an element of degree equivalent to i
modulo n. For i ∈ M let pi be an element in CS(a) such that deg(pi) ≡ i(mod n) and
pi has minimal degree for this property. Take p0 = 1.

We will show that {pi|i ∈ M} is a basis for CS(a) as a F[a]-module.
Since R is an integral domain and σ is injective, the degree of a product of two

elements in R[x; σ, δ] is the sum of the degrees of the two elements.
We start by showing that the pi are linearly independent over F[a]. Suppose∑
i∈M fipi = 0 for some fi ∈ F[a]. If fi �= 0 then deg(fi) is divisible by n, in which

case

deg(fipi) = deg(fi) + deg(pi) ≡ deg(pi) ≡ i(mod n). (2)
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If
∑

i∈M fipi = 0 but not all fi are zero, we must have two nonzero terms, fipi and
fjpj, that have the same degree despite i, j ∈ M being distinct. But this is impossible
since i �≡ j(mod n).

We now proceed to show that the pi span CS(a). Let W denote the submodule they
do span. We use induction on the degree to show that all elements of CS(a) belong
to W . If e is an element of degree 0 in CS(a) we find by the hypothesis on a applied
to e and p0 = 1 that e = α for some α ∈ F. Thus e ∈ W .

Now assume that W contains all elements in CS(a) of degree less than j. Let e be
an element in CS(a) of degree j. There is some i in M such that j ≡ i(mod n). Let m
be the degree of pi. By the choice of pi we now that m ≡ j(mod n) and m ≤ j. Thus
j = m + qn for some non-negative integer q. The element aqpi lies in W and has
degree j. By hypothesis, the leading coefficient of e equals the leading coefficient of
aqpi times some constant α. The element e−αaqpi then lies in CS(a) and has degree
less than j. By the induction hypothesis it also lies in W , and hence so does e.

We aim to use Theorem 3.3 when R = k[y]. To that end we have obtained the
following proposition.

Proposition 3.1 Let k be a field and set R = k[y]. Let σ be an endomorphism of
R such that σ(α) = α for all α ∈ k and σ(y) = p(y), where p(y) is a polynomial
of degree (in y) greater than 1. Let δ be a σ -derivation such that δ(α) = 0 for all
α ∈ k. Form the Ore extension S = R[x; σ, δ]. We note that its ring of constants is
k. Let a /∈ k be an element of R[x; σ, δ]. Assume that b, c are elements of S such
that deg(b) = deg(c) = m (here the degree is taken with respect to x) and b, c both
belong to CS(a). Then bm = αcm, where bm, cm are the leading coefficients of b and
c respectively, and α is some constant.

The author wishes to thank Fredrik Ekström for contributing a crucial idea to the
following proof.

Proof Let an be the leading coefficient of a. By comparing the leading coefficient
of ab and ba we see that

anσ
n(bm) = bmσm(an). (3)

Similarly

anσ
n(cm) = cmσm(an). (4)

By dividing Eq.3 by Eq.4 we see that

σ n(bm)

σ n(cm)
= bm

cm
. (5)

We can perform such a division by passing to the quotient field of k[y].
It thus suffices to prove that if f , g, p are polynomials in k[y], with deg(p) > 1,

and
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f (y)g(p(y)) = f (p(y))g(y), (6)

then f (y) = αg(y) for some α ∈ k.
So suppose that such f , g and p are given. We will also assume that k is alge-

braically closed, which can be done without loss of generality. If f and g have a
common factor h we write f (y) = h(y)f̂ (y) and similarly for g. We find that

f̂ (y)h(y)h(p(y))ĝ(p(y)) = f̂ (p(y))h(p(y))h(y)ĝ(y) (7)

⇒ f̂ (y)ĝ(p(y)) = f̂ (p(y))ĝ(y). (8)

So we can assume without loss of generality that f and g are co-prime. It follows that
the composite polynomials f ◦ p and g ◦ p are also co-prime. For if f ◦ p and g ◦ p
had the common factor l(y) it would follow that f ◦ p and g ◦ p had a common zero
since k is algebraically closed. This would imply that f and g had a common zero,
contradicting their co-primeness.

From Eq.6 we see that f must divide f ◦ p and g must divide g ◦ p. So write
f (p(y)) = e(y)f (y) and g(p(y)) = ê(y)g(y). From (6) we see that e = ê. But this
implies that e is a constant polynomial, since otherwise f ◦ p and g ◦ p would be
co-prime. On the other hand deg(f ◦ p) = deg(p) · deg(f ), which is a contradiction
unless deg(f ) = 0. The proposition follows.

Proposition 3.2 Let k, σ, δ, a be as in Proposition 3.1. Then CS(a) is a free k[a]-
module of finite rank.

Proof This follows directly from Theorem 3.3.

The following theorem, which as far as the author knows is a new result, follows
from what we proved above.

Theorem 3.4 Let k be a field. Let σ be an endomorphism of k[y] such that σ(y) =
p(y), where deg(p) > 1, and let δ be a σ -derivation. Suppose that σ(α) = α and
δ(α) = 0 for all α ∈ k. Let a, b be two commuting elements of k[y][x; σ, δ]. Then
there is a nonzero polynomial f (s, t) ∈ k[s, t] such that f (a, b) = 0.

Proof Using the reasoning in the proof of Corollary 2.2 this follows from Theorem
3.3 and Proposition 3.1.

Note that the center of k[y][x; σ, δ] coincides with k and thus we have a parallel
with, for example, Corollary 2.2. We would like to generalize Theorem 3.4 to obtain
general conditions under which two commuting elements of S = R[x; σ, δ] are
algebraically dependent over the center of S. An example of a result in that direction
can be found in [10] where Hellström and Silvestrov prove the following theorem.

Theorem 3.5 ([10], Theorem 7.5). Let R = k[y], σ(y) = qy and δ(y) = 1, where
q ∈ k and q is a root of unity. Form S = R[x; σ, δ] and let C be the center of S. If
a, b are commuting elements of S then there is a nonzero polynomial f (s, t) ∈ C[s, t]
such that f (a, b) = 0.
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This theorem can not be strengthened to give algebraic dependence over k. Indeed,
suppose that qn = 1. One can check that xn and yn commute (in fact they both belong
to the center) but they are not algebraically dependent over k.
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