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Abstract We consider the problem of group classification and conservation laws
of some Generalized Dullin-Gottwald-Holm equations. We obtain the subclasses
of these general equations which are self-adjoint. By using the recent Ibragimov’s
Theorem on conservation laws, we establish some conservation laws of the self-
adjoint equations.

1 Introduction

Dullin, Gottwald and Holm derived a new equation describing unidirectional
propagation of surfacewaves on a shallow layer ofwaterwhich is at rest at infinity [4].

mt + 2ωux + 2mux + umx = −γ uxxx , t > 0, x ∈ R (1)

where m = u − α2uxx , u(x, t) stands for the fluid velocity, x ∈ R and t > 0. The
constants α2 and γ

c0
are squares of length scales, c0 = √

gh is the linear wave speed
for undisturbed water at rest at spatial infinity.

Equation (1) is completely integrable and its traveling wave solutions contains
both the Korteweg-de Vries solitons and the Camassa-Holm peakons as limiting
cases [4]. When α → 0, this equation becomes the Korteweg-de Vries equation

ut + 2ωux + 3uux = −γ uxxx
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which for ω = 0, has the famous smooth soliton solution u(x, t) = u0sech2(x −
ct)

√
u0γ /2. Instead taking γ− > 0 in the Eq. (1), it turns out to be the Camassa-

Holm equation

ut − α2uxxt + 2ωux + 3uux = α2(2ux uxx + uuxxx ).

Tian, Fang and Gui, applying Kato’s semigroup approach, obtained the well-
posedness of the equation and showed the existence of global smooth solutions.
The authors proved that the equation has solutions that exist for indefinite times as
well as solutions that blow up in finite time, [13].

Biswas and Kara [1] obtained the 1-soliton solution by the aid of solitary wave
ansatz. The conserved quantities were obtained by utilising the interplay between
the multipliers and underlying Lie point symmetry generators of the equation.

In [10] Liu and Yin established the local well-posedness by using Kato’s theory
for the generalized Dullin-Gottwald-Holm equation

ut − utxx + (h(u))x + buxxx = a

(
g′(u)

2
u2

x + g(u)uxx

)
x
. (2)

They proved the orbital stability of the peaked solitary waves.
Symmetry groups have several different applications in the context of nonlinear

differential equations. For example, they are used to obtain exact solutions and con-
servation laws of partial differential equations (PDEs) [3, 5]. The classical method
for finding symmetry groups of PDEs is the Lie group method [2, 6, 11, 12].

In this work, we study Eq. (2) with a, b �= 0 from the point of view of the theory of
symmetry group transformations in PDEs. We determine the subclasses of equations
which are self-adjoint.We also determine, by using the notation and techniques of the
work [8, 9], some nontrivial conservation laws for Eq. (2). The paper is organized as
follows. In Sect. 2we give the Lie symmetries of (2) equation. In Sect. 3we determine
the subclasses of equations of (2) which is self-adjoint. In Sect. 4 we obtain some
nontrivial conservation laws for Eq. (2). Finally, in Sect. 5 we give conclusions.

2 Classical Symmetries

To apply the Lie classical method to Eq. (2) we consider the one-parameter Lie group
of infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u) + O(ε2), (3)

t∗ = t + ετ(x, t, u) + O(ε2), (4)

u∗ = u + εη(x, t, u) + O(ε2), (5)

where ε is the group parameter. We require that this transformation leaves invariant
the set of solutions of Eq. (2). This yields to an overdetermined, linear system of
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equations for the infinitesimals ξ(x, t, u), τ (x, t, u) and η(x, t, u). The associated
Lie algebra of infinitesimal symmetries is the set of vector fields of the form

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (6)

Having determined the infinitesimals, the symmetry variables are found by solv-
ing the characteristic equation which is equivalent to solving the invariant surface
condition

η(x, t, u) − ξ(x, t, u)
∂u

∂x
− τ(x, t, u)

∂u

∂t
= 0. (7)

The set of solutions of Eq. (2) is invariant under the transformation (3)–(5) provided
that

pr(3)v(Δ) = 0 when Δ = 0,

where pr(3)v is the third prolongation of the vector field (6) given by

pr(3)v = v +
∑

J

ηJ (x, t, u(3))
∂

∂u J

where

ηJ (x, t, u(3)) = DJ(η − ξux − τut ) + ξuJx + ηu Jt ,

with J = ( j1, . . . , jk), 1 ≤ jk ≤ 2 y 1 ≤ k ≤ 3. Hence we obtain the following 13
determining equations for the infinitesimals:

τu = 0,
τx = 0,
ξu = 0,
ηuu = 0,
2ηux − ξxx = 0,
ηuxx − 2ξx = 0,
3guuηx + 8guηux − 4ξxx gu = 0,
guηu + guuη + τt gu − ξx gu = 0,
2guuηu + guuuη + τt guu − ξx guu = 0,
−agηxxx + bηxxx + huηx − ηt xx + ηt = 0,
aguη + aτt g − aξx g − bτt + bξx − ξt = 0,
2aguηx + 3agηux − 3bηux + ηtu − 3aξxx g + 3bξxx − 2ξt x = 0,
2aguηxx + 3agηuxx − 3bηuxx + 2ηtux − huuη − τt hu − ξx hu − aξxxx g
+bξxxx − ξt xx + ξt = 0.

(8)
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From (8) we obtain g, h, ξ = ξ(x, t), τ = τ(t), φ = (δ+ξx ) u
2 + ν with δ = δ(t) and

ν = ν(x, t) where ξ , τ , δ and ν are related by the following conditions:

ξxxx − 4ξx = 0,
guu (ξxx u + 2νx ) = 0,
2aξxx guu + δt + 4aguνx − 3aξxx g + 3bξxx − 3ξt x = 0,
(aguδ + aξx gu) u + 2aguν + (2aτt − 2aξx ) g − 2bτt + 2bξx − 2ξt = 0,
(guuδ + ξx guu) u + guδ + 2guuν + (2τt − ξx ) gu = 0,
(guuuδ + ξx guuu) u + 2guuδ + 2guuuν + 2τt guu = 0,
(huuδ + ξx huu − 2aξxxx gu) u − 4aguνxx

+2huuν + (2τt + 2ξx ) hu − aξxxx g + bξxxx − 2ξt = 0,
(δt + ξxx hu − aξxxxx g + bξxxxx − ξt xxx + ξt x ) u + (2b − 2ag) νxxx

+2hνx − 2νt xx + 2νt = 0.

(9)

Solving system (9) we obtain that if g and h are arbitrary functions the only symme-
tries admitted by (2) are

ξ = k1, τ = k2, η = 0. (10)

The generators are X1 = ∂

∂x
(corresponding to space translational invariance) and

X2 = ∂

∂t
(time translational invariance). In the following cases Eq. (2) have extra

symmetries:

Case 1: If g = (a1u + a2)n + a3 and h =
(

b1
a1

(a1u + a2)
)n+1 + (aa3 − b)u, n �= 1,

a1 �= 0,

ξ = (b − aa3)k1n t + k2, τ = −k1n t + k3, η = k1
a1

(a1u + a2).

The generators are: X1, X2 and X1
3 = (b − aa4)n

2
t

∂

∂x
− n

2
t

∂

∂t
+ 1

2a1
(a1u +a2)

∂

∂u
.

Case 2: If g = a1u + a2 and h = b1
2 u2 + b2u, a1 �= 0, b1 �= aa1,

ξ = c1k1t + k3, τ = k1t + k2, η = −k1(u + c2).

WehaveX1,X2 andX2
3 = c1t

∂

∂x
+t

∂

∂t
−(c2+u)

∂

∂u
, where c1 = − aa1b2+bb1−aa2b1

b1−aa1

and c2 = b2+b−aa2
b1−aa1

.

Case 3: If g = a1u + a2 and h = aa1
2 u2 + (aa2 − b)u, a1 �= 0

ξ = k1t + k2, τ = k3t + k4, η = −k3u + (b − aa2)k3 + k1
aa1

.
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The generators are X1, X2 and X3
3 = t

∂

∂x
+ 1

aa1

∂

∂u
, X3

4 = t
∂

∂t
− (u +c1)

∂

∂u
, where

c1 = b−aa2
aa1

.

Case 4: If g = c=constant and h = ku with k �= ac − b,

ξ = k1, τ = k2, η = k3u + α(x, t),

where
(ac − b)αxxx − kαx + αt xx − αt = 0. (11)

In this case besides X1 and X2 we obtain the generators X4
3 = u

∂

∂u
and X∞ =

α(x, t)
∂

∂u
.

Case 5: If g = c and h = (ac − b)u with c �= b
a ,

ξ = k1e2x+2(b−ac)t + k3e2(ac−b)t−2x + (ac − b)β(t) + k2, τ = β(t),

η = u
(

k1e2x+2(b−ac)t − k3e2(ac−b)t−2x + k5
)

+ α(x, t),

where α satisfies Eq. (11) with k = ac − b.

We obtain the generators: X1, X2, X∞, X5
3 =

(
∂

∂x
+ u

∂

∂u

)
e2[x+(b−ac)t], X5

4 =(
∂

∂x
− u

∂

∂u

)
e−2[x+(b−ac)t].

Case 6: If g = a1 ea2 u + a3 and hu = k ea2 u − b + a a3

ξ = a2 (b − a a3) k2 t + k1, τ = k3 − a2 k2 t, η = k2.

The generators are: X1, X2 and X6
3 = a2 (b − a a3) t

∂

∂x
− a2t

∂

∂t
+ ∂

∂u
.

Case 7: If g = a2 ln(a1 u + b1) + b2 and hu = aa2 ln(a1u + b1) + b3,

ξ = k3t + k1, τ = k2, η = k3
aa1a2

(a1u + b1).

The generators are X1, X2 and X7
3 = t

∂

∂x
+ a1u + b1

aa1a2

∂

∂u
.
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3 Determination of Self-Adjoint Equations

In [8] Ibragimov introduced a new theorem on conservation laws. The theorem is
valid for any system of differential equations where the number of equations is equal
to the number of dependent variables. The new theorem does not require existence
of a Lagrangian and this theorem is based on a concept of an adjoint equation for
nonlinear equations.

Consider an sth-order partial differential equation

F(x, u, u(1), . . . , u(s)) = 0 (12)

with independent variables x = (x1, . . . , xn) and a dependent variable u, where
u(1) = {ui }, u(2) = {ui j }, . . . denote the sets of the partial derivatives of the first,
second, etc. orders, ui = ∂u/∂xi , ui j = ∂2u/∂xi∂x j . The adjoint equation to (12)
is

F∗(x, u, ν, u(1), ν(1), . . . , u(s), ν(s)) = 0, (13)

with

F∗(x, u, ν, u(1), ν(1), . . . , u(s), ν(s)) = δ(νF)

δu
, (14)

where
δ

δu
= ∂

∂u
+

∞∑
s=1

(−1)s Di1 · · · Dis

∂

∂ui1···is

(15)

denotes the variational derivative (the Euler-Lagrange operator), and ν is a new
dependent variable. Here

Di = ∂

∂xi
+ ui

∂

∂u
+ ui j

∂

∂u j
+ · · ·

are the total differentiations.
Equation (12) is said to be self-adjoint if the equation obtained from the adjoint

Eq. (13) by the substitution ν = u :

F∗(x, u, u, u(1), u(1), . . . , u(s), u(s)) = 0,

is identical to the original Eq. (12). In other words, if

F∗(x, u, u(1), u(1), . . . , u(s), u(s)) = λ(x, u, u(1), . . .)F(x, u, u(1), . . . , u(s)).

(16)
Let us single out self-adjoint equations from the equation of the form (2). Equa-

tion (14) yields



Self-Adjointness and Conservation Laws 583

F∗ ≡ agνxxx − bνxxx + aguuxνxx + aguuxxνx − aguu (ux )
2 νx

−huνx + νt xx − νt − 3aguuux uxxν − 3
2aguuu (ux )

3 ν.
(17)

By substituting ν = u into (17) we obtain

F∗ ≡ aguxxx − buxxx − 3aguuuux uxx + 2aguux uxx − 3
2aguuuu (ux )

3

−aguu (ux )
3 − huux + utxx − ut .

(18)

Comparing F∗ with F we obtain the following result:

PropositionEquation F ≡ ut−utxx+(h(u))x+buxxx−a

(
g′(u)

2
u2

x + g(u)uxx

)
x
=

0 is self-adjoint if g and h are arbitrary functions.

4 General Theorem on Conservation Laws

We use the following theorem on conservation laws proved in [8]. Any Lie point,
Lie-Bäcklund or non-local symmetry

X = ξ i (x, u, u(1), . . .)
∂

∂xi
+ η(x, u, u(1), . . .)

∂

∂u
(19)

of Eq. (12) provides a conservation law Di (Ci ) = 0 for the simultaneous system
(12), (13). The conserved vector is given by

Ci = ξ iL + W

[
∂L

∂ui
− D j

(
∂L

∂ui j

)
+ D j Dk

(
∂L

∂ui jk

)
− · · ·

]

+D j (W )

[
∂L

∂ui j
− Dk

(
∂L

∂ui jk

)
+ · · ·

]
+ D j Dk(W )

[
∂L

∂ui jk
− · · ·

]
+ · · · ,

(20)

where W and L are defined as follows:

W = η − ξ j u j , L = ν F
(
x, u, u(1), . . . , u(s)

)
. (21)

The proof is based on the following operator identity (N.H. Ibragimov 1979):

X + Di (ξ
i ) = W

δ

δu
+ DiN

i , (22)

where X is operator (19) taken in the prolonged form:

X = ξ i ∂

∂xi
+ η

∂

∂u
+ ζi

∂

∂ui
+ ζi1i2

∂

∂ui1i2
+ · · · ,
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ζi = Di (η) − u j Di (ξ
j ), ζi1i2 = Di2(ζi1) − u ji1 Di2(ξ

j ), . . . .

For the expression of operatorN i and a discussion of the identity (22) in the general
case of several dependent variables to see [7] (Sect. 8.4.4).

We will write the generators of a point transformation group admitted by Eq. (2)
in the form

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u

by setting t = x1, x = x2. The conservation law will be written

Dt (C
1) + Dx (C

2) = 0. (23)

Now we use the Ibragimov’s Theorem on conservation laws to establish some
conservation laws of Eq. (2). We obtain trivial conservation laws for g = a1u + a2,
from generators X1 and X2.
For Case 2, g = a1u+a2, h = | b1

2 +b2u, from generatorX3
2 we obtain the conserved

vector associated,

C1 = − (ux )
2 − u2 − b2+b−aa2

b1−aa1
u,

C2 = 1
6(b1−aa1)

[((
12aa1b1 − 12a2a12

)
u2

+ (
6aa1b2 + (12aa2 − 12b) b1 + 18aa1b − 18a2a1a2

)
u

+ (6aa2 − 6b) b2 − 6b2 + 12aa2b − 6a2a22
)

uxx

+ (
3aa1b2 + (6b − 6aa2) b1 − 3aa1b + 3a2a1a2

)
(ux )

2

+ ((12b1 − 12aa1) u + 6b2 + 6b − 6aa2) utx + (
4aa1b1 − 4b12

)
u3

+ ((6aa1 − 9b1) b2 + (3aa2 − 3b) b1) u2 + (
(6aa2 − 6b) b2 − 6b22

)
u
]
.

We use the symmetry of the Case 3 of Eq. (2) for g = a1u + a2 and h = aa1
2 u2 +

(aa2 − b)u with a1 �= 1. Proceeding as before we obtain the conserved vector
associated with the following symmetries.
For X3

3:

C1 = 1

aa1
u,

C2 = −uuxx + b

aa1
uxx − a2

a1
uxx − 1

2
(ux )

2 − 1

aa1
utx + 1

2
u2 − b

aa1
u + a2

a1
u.

(24)
For X3

4:

C1 = − (ux )
2 − u2 +

(
b

aa1
− a2

a1

)
u,
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C2 = 2aa1u2uxx + 3(aa2 − b)uuxx + (b − aa2)2

aa1
uxx + b − aa2

2
(ux )

2 + 2uutx

+ a2a − b

a1
utx − 2

3
aa1u3 + 3

2
(b − aa2)u

2 − (b − aa2)2

aa1
u.

(25)
For Case 4, if g = c and h = ku, from generator X∞ = α(x, t), where α satisfies
Eq. (11), the normal form for this group is W = α(x, t). By applying (20) the vector
components are

C1 = − 1
3ανxx + 1

3αxνx − 1
3αxxν + αν = 0.

C2 = −aαcνxx + αbνxx + aαx cνx − αx bνx + 1
3αtνx − 2

3ανt x + 1
3αxνt

+αkν − aαxx cν + αxx bν − 2
3αt xν.

(26)

Setting ν = u in (26)

C1 = −αuxx
3 + αx ux

3 − αxx u
3 + αu.

C2 = −aαcuxx + αbuxx + aαx cux − αx bux + 1
3αt ux − 2

3αutx + 1
3αx ut

+αku − aαxx cu + αxx bu − 2
3αt x u.

(27)

We simplify the conserved vector (27) by transferring the terms of the form Dx (. . .)

from C1 to C2 and obtain

C1 = (α − αxx )u.

C2 = α(b − ac)uxx + αx (ac − b)ux − αutx + αx ut + αku − αxx (ac − b)u.

For Case 5, if g = c and h = (ac − b)u, from generators X5
3 = ∂

∂x
+ u

∂

∂u
and

X5
4 = ∂

∂x
− u

∂

∂u
, proceeding as in the Case 1 we obtain the conserved vector

associated,

C1 = n
(
(ux )

2 + u2
)
,

C2 = 2 (b − ac) nuuxx + (ac − b) n (ux )
2 − 2nuutx + (ac − b) nu2,

where n = ±1.

5 Conclusions

In this work we have considered the generalized Dullin-Gottwald-Holm Eq. (2).
We have derived the Lie classical symmetries. We have determined the subclasses
of Eq. (2) which are self-adjoint. By using a general theorem on conservation laws
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proved by Nail Ibragimov we found conservation laws for some of these partial
differential equations without classical Lagrangians. We point out that in physical
systems, many conservation laws that arise can usually be identified with a physical
quantity, like energy or linear momentum, being conserved. Finally, we remark that
the search for conservation laws is also useful to determine potential symmetries.
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