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Abstract We have developed a numerical-analytical method of solution to the
inverse problem of reconstructing permittivities of n-sectional diaphragms in a
waveguide of rectangular cross section. For a one-sectional diaphragm, a solution in
the closed form is obtained and the uniqueness is proved.

1 Introduction

Determination of electromagnetic parameters of dielectric bodies that have compli-
cated geometry or structure is an urgent problem arising e.g. when nanocomposite or
artificial materials and media are used as elements of various devices. However, as a
rule, these parameters cannot be directly measured (because of composite character
of the material and small size of samples), which leads to the necessity of applying
methods of mathematical modeling and numerical solution of the corresponding for-
ward and inverse electromagnetic problems [21]. It is especially important to develop
the solution techniques when the inverse problem for bodies of complicated shape
are considered in the resonance frequency range, which is the case when permittivity
of nanocomposite materials must be reconstructed [19, 20].

One of possible applications of composites is the creation of radio absorbingmate-
rials that can be used in systems that provide electromagnetic compatibility ofmodern
electronic devices and in ‘Stealth’-type systems aimed at damping and decreasing
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reflectivity of microwave electromagnetic radiation from objects to be detected
[7, 17].When calculating reflection and absorption characteristics of electromagnetic
microwave radiation of radio absorbingmaterials, researchers usemodels employing
the data on the material constants (permittivity, permeability, conductivity) of these
materials in the microwave range. Such composites often contain carbon particles,
short carbon fibers, carbon nanofibers, and multilayer carbon nanotubes as fillers for
polymer dielectric matrices [7, 13, 17]. The use of carbon nanotubes enables one to
achieve a significant (up to 10 dB) absorption of microwave electromagnetic radia-
tion at relatively thin composite layers and low volume fractions of nanotubes and
hence a small weight, in a broad frequency range (up to 5 GHz). Such characteristics
are caused by both the geometrical sizes of individual nanotubes and their electro-
physical properties; among the most important parameters here are permittivity and
electric conductivity (which can vary over very wide ranges).

It is important to determine permittivity and conductivity not only of a composite
as a solid body (as in [7, 17]), but also of its components, e.g., nanotubes, whose
physical characteristics can vary substantially in the process of composite formation.

The forward scattering problem for a diaphragm in a parallel-plane waveguide
was considered in [14]. In papers [1, 3, 8, 9, 16, 23–25] the inverse problem of
reconstructing complex permittivity was analyzed from the measurements of the
transmission coefficient; in [8, 9, 15] the artificial neural networks method was
applied.

Several techniques for the permittivity determination of homogeneous materials
loaded in a waveguide are reported [1, 3, 6]. The permittivity reconstruction of
inhomogeneous structures are not as widely investigated and only a few studies exist
for multilayered materials [2, 10]. Note a recently developed advanced approach [5]
that can be also applied to numerical solution of this inverse problem.

However, the solution in closed form to the inverse problem of permittivity deter-
mination of materials loaded in a waveguide is not available in the literature, to
the best of our knowledge, even for the simplest configuration of a parallel-plane
dielectric insert in a guide of rectangular cross section. This fact dictates the aim of
this work: to develop a method of solution to the inverse problem of reconstructing
effective permittivity of layered dielectrics in the form of diaphragms in a waveguide
of rectangular cross section that would enable both obtaining solution in a closed
form for benchmark problems and efficient numerical implementation. We note that
the corresponding forward problem for a one-sectional diaphragm is considered in
[11] and [22].

2 Statement of the Problem

Assume that a waveguide P = {x : 0 < x1 < a, 0 < x2 < b,−∞ < x3 < ∞} with
the perfectly conducting boundary surface ∂P is given inCartesian coordinate system.
A three-dimensional body Q (Q ⊂ P)

Q = {x : 0 < x1 < a, 0 < x2 < b, 0 < x3 < l}



Solution to the Inverse Problem of Reconstructing Permittivity 557

is placed in the waveguide; the body has the form of a diaphragm (an insert), namely,
a parallelepiped separated into n sections adjacent to the waveguide walls. Domain
P\Q̄ is filled with an isotropic and homogeneous layered medium having constant
permeability (μ0 > 0) in whole waveguide P, the sections of the diaphragm

Q0 = {x : 0 < x1 < a, 0 < x2 < b,−∞ < x3 < 0}
Qj = {

x : 0 < x1 < a, 0 < x2 < b, lj−1 < x3 < lj
}
, j = 1, . . . , n

Qn+1 = {x : 0 < x1 < a, 0 < x2 < b, l < x3 < +∞}

are filled each with a medium having constant permittivity εj > 0; l0 := 0, ln := l.
The electromagnetic field inside and outside of the object in the waveguide is

governed by Maxwell’s equation:

rot H = −iωεE + j0E
rot E = iωμ0H,

(1)

where E and H are the vectors of the electric and magnetic field intensity, j is the
electric polarization current, and ω is the circular frequency.

Assume that π/a < k0 < π/b, where k0 is the wavenumber, k20 = ω2ε0μ0 [12].
In this case, only one wave H10 propagates in the waveguide without attenuation (we
have a single-mode waveguide [12]).

The incident electrical field is

E0 = e2A sin
(πx1

a

)
e−iγ0x3 (2)

with a known A and γ0 =
√

k20 − π2/a2.
Solving the forward problem for Maxwell’s equations with the aid of (1) and the

propagation scheme in Fig. 1, we obtain explicit expressions for the field inside every
section of diaphragm Q and outside the diaphragm:

E(0) = sin
(πx1

a

)
(Ae−iγ0x3 + Beiγ0x3), x ∈ Q0, (3)

E(j) = sin
(πx1

a

)
(Cje

−iγjx3 + Dje
iγjx3), (4)

j = 1, . . . , n + 1; Dn+1 = 0, x ∈ Qj,

where γj =
√

k2j − π2/a2 and k2j = ω2εjμ0.

From the transmission conditions on the boundary surfaces of the diaphragm
sections

[E(j)] = [E(j+1)] = 0; ∂[E(j)]
∂x3

= ∂[E(j+1)]
∂x3

= 0, j = 0, . . . , n + 1. (5)
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Fig. 1 Multilayered diaphragms in a waveguide

applied to (3) and (4) we obtain using conditions (5) a system of equations for the
unknown coefficients

⎧
⎪⎪⎨

⎪⎪⎩

A + B = C1 + D1

γ0 (B − A) = γ1 (D1 − C1)

Cje−iγj lj + Djeiγj lj = Cj+1e−iγj+1lj + Dj+1eiγj+1lj

γj(Djeiγj lj − Cje−iγj lj ) = γj+1(Dj+1eiγj+1lj − Cj+1e−iγj+1lj ), j = 1, . . . , n.

(6)

where Cn+1 = F, Dn+1 = 0. In system (6) coefficients A, B, Cj, Dj, εj, (j =
1, . . . , n) are supposed to be complex.

We can express Cj, Dj from Cj+1, Dj+1 in order to obtain a recurrent formula that
couples amplitudes A and F.

We prove that this recurrent formula has the form

A = 1

2
n∏

j=0
γj

(γnpn+1 + γ0qn+1)Fe−iγ0ln , (7)

where
pj+1 = γj−1pj cosαj + γjqji sin αj; p1 := 1, (8)

qj+1 = γj−1pji sin αj + γjqj cosαj; q1 := 1. (9)

Here αj = γj(lj − lj−1), j = 2, . . . , n. Note that similar formulas are obtained in
classical monographs dealing with wave propagation in layered media, e.g, in [4].

3 Inverse Problem for Multisectional Diaphragm

Formulate the inverse problem for a multisectional diaphragm that will be addressed
in this work.
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Inverse problem P: find (complex) permittivity εj of each section from the known
amplitude A of the incident wave and amplitude F of the transmitted wave at different
frequencies.

It is reasonable to consider the right-hand side of (7) as a complex-valued function
with respect to n variables εj. For n sections we must know amplitudes A and F for
each of n frequency values to have a consistent system of n equations with respect to
n unknown permittivity values εj. This system is then solved to obtain the sought-for
permittivity values.

Let us rewrite Eq. (7) in the form

G(h) = H, H := 2Aγ0eiγ0ln

F
, (10)

where

G(h) := 1
n∏

j=1
γj

(γnpn+1 + γ0qn+1), (11)

and h := (ε1, . . . , εn).

We will consider (11) as a complex function of n complex variables. It follows
from (8) and (9) that

(
pj+1
qj+1

)
=

(
cosαj i sin αj

i sin αj cosαj

) (
γj−1 0
0 γj

) (
pj

qj

)
(12)

(j = 1, . . . , n). Thus we can represent pn+1, qn+1 via finite multiplication ofmatrices
by formula (12). From representation (12) we select, for every fixed j, only the
matrices depending on γj. Finally we obtain

(
γj 0
0 γj+1

) (
cosαj i sin αj

i sin αj cosαj

)(
γj−1 0
0 γj

)
=

(
γjγj−1 cosαj iγ 2

j sin αj

iγj+1γj−1 sin αj γjγj+1 cosαj

)
. (13)

Dividing matrix (13) by γj we have

(
γj−1 cosαj iγj sin αj

iγj+1γj−1 sin αj/γj γj+1 cosαj

)
. (14)

Taking into account Taylor series for functions sin αj and cosαj and that αj =
γj(lj − lj−1) (14) we see that each coefficient of this matrix depends on γ 2

j . Since

γ 2
j = εjμ0ω

2 − π2/a2 we have that each coefficient of matrix (14) is an analytical
function w.r.t. εj. Hence function G(h) depends on εj analytically for every j, (j =
1, . . . , n).
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Using Hartogs’ theorem [18] we obtain the following statement

Theorem 3.1 G(h) is holomorphic on Cn as a function of n complex variables.

Let us formulate inverse problem P for n-sectional diaphragm in the following
form. Consider n different frequencies Ω = (ω1, . . . , ωn) and functions Gj(h) :=
G(h, ωj), j = 1, . . . , n. It is necessary find a solution to the (nonlinear) system of n
equations w.r.t. n variables ε1, . . . , εn:

Gj(h) = Hj, Hj = H(ωj), j = 1, . . . , n. (15)

Theorem 3.1 implies [18].

Theorem 3.2 If Jacobian ∂(G1,...,Gn)
∂(h1,...,hn)

�= 0 at the point h∗ then function G(h) is locally
invertible in a vicinity of h∗ and inverse problem P has unique solution for every h
from that vicinity.

Below we present an example of numerical solutions to inverse problem P for a
three-sectional diaphragm. The table shows the test results of numerical solution to
the inverse problem of reconstructing permittivities of a three-section diaphragm at
three frequencies. The test values of the transmission coefficient are taken from the
solution to the forward problem.

F(ω1,2,3) Calculated ε1,2,3 True ε1,2,3

0.012 + i · 0.036
0.025 − i · 0.012
0.029 + i · 0.014

−1.713 + i · 0.078,
1.523 − 0.085
4.01 + i · 0.13

−1.7
1.5
4

0.073 − i · 0.177
−0.269 − i · 0.197
−0.052 − i · 0.22

1.702 − i · 0.0004,
−1.499 + i · 0.006
3.996 + i · 0.003

1.7
−1.5
4

0.106 + i · 0.061
0.096 − i · 0.023
0.102 + i · 0.046

1.716 − i · 0.0004,
1.48 − i · 0.013
−3.928 + i · 0.037

1.7
1.5
−4

−0.0004 − i · 0.00376
−0.0045 + i · 0.00368
−0.0057 − i · 0.00134

−1.708 − i · 0.008,
1.5 + i · 0.0007
−3.982 + i · 0.017

−1.7
1.5
−4

−0.00005 − i · 0.0005
−0.002 + i · 0.001
−0.002 − i · 0.0004

−1.708 + i · 0.03,
−1.499 − i · 0.03
−3.982 − i · 0.044

−1.7
−1.5
−4

Parameters of the three-section diaphragm are a = 2, b = 1, c = 2, A = 1,
l1 = 1, l2 = 1.5; the excitation frequencies ω1 = 2.5, ω2 = 1.7, and ω3 = 2.
The first, second, and third columns of the table shows, respectively, the values of
transmission coefficient F, calculated values of permittivity of a section, and true
values of (real) permittivity of a section.

We see that in all examples the error of computations does not exceed 3% which
proves high efficiency of the method.
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4 One-Sectional Diaphragm: Explicit Solution
to the Inverse Problem

From (7) for a one-sectional diaphragm we have

Aeiγ0l1

F
= g(z),

g(z) = cos z + i

(
z

2γ0l1
+ γ0l1

2z

)
sin z, (16)

z = γ1l1 = l1

√

k21 − π2

a2
,

where z is generally a complex variable. From (16) we obtain a relation for the
transmission coefficient

F = Aeiγ0l1

g(z)
, (17)

which, together with formulas (3) and (4), gives an explicit solution to the forward
problem under study.

When the inverse problem is solved, ε1 is considered as an unknown quantity that
should be determined from Eq. (16) in terms of F.

List the most important properties of g(z) which easily follows from its explicit
representation:

(i) g(z) is an entire function.
(ii) g(z) has neither real zeros nor poles. This fact is in line with physical require-

ments that the transmission coefficient does not vanish and is a bounded quantity
at real frequencies.

(iii) g(z), also considered as a function of real τ , is not invertible locally at the origin
because it is easy to check that g′(0) = 0. Next, the inverse of g(z) is a multi-
valued function. In fact, the inverse function does not exist globally according
to the statement in Remark concerning violation of uniqueness.

(iv) g(z) is not a fractional-linear function; therefore g(z) performs one-to-one con-
formal mappings only of certain regions of the complex plane onto regions of
the complex plane.

(v) It is easy to check up that g′(τ ) �= 0 for (real) τ �= 0. Hence, g(z) is invertible
locally at the real point τ �= 0.

Assuming that ε1 is real it is reasonable to introduce a real variable

τ = γ1l1 = l1

√

k21 − π2

a2
> 0 (18)
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which may be used for parametrization. Extract the real and imaginary part of g(τ ),
denoting them by x and y,

{
x = cos τ,

y = h(τ ) sin τ,
where h(τ ) = τ

2C
+ C

2τ
, C = γ0l1. (19)

Equation (16) is equivalent to the system

⎧
⎨

⎩

cos τ = p, p = Re
(

Ae−iγ0 l1

F

)
,

h(τ ) sin(τ ) = q, q = Im
(

Ae−iγ0 l1

F

)
,

(20)

where p and q are known values. Using the results of Appendix I we finally obtain
from (20) an explicit formula for the sought (real) permittivity

ε1 = 1

ω2μ0

(
(π

a

)2 +
(

τ

l1

)2
)

, (21)

here

τ = τ1 = C

(
|q| + √

p2 + q2 − 1
√
1 − p2

)

(22)

when ε1 > ε0 and

τ = τ2 = C

( √
1 − p2

|q| + √
p2 + q2 − 1

)

(23)

when π2

a2ω2μ0
< ε1 < ε0.

Formulas (21)–(23) constitute explicit solution of inverse problem P under study.
Using the reasoning and results ofAppendix Iwe prove the following result stating

the existence and uniqueness of solution to the inverse problemof finding permittivity
of a one-sectional diaphragm in a waveguide of rectangular cross-section.

Theorem 4.1 Assume that |p| < 1 and p2+q2 ≥ 1. Then inverse problem P has only
one solution expressed by (22) if τ1

C > 1, cos τ1 = p, and sign(q) = sign(sin(τ1)).
If τ2

C < 1, cos τ2 = p, and sign(q) = sign(sin(τ2)), inverse problem P has only one
solution expressed by (23). Otherwise, inverse problem P has no solution.

Remark 4.1 If p = 1, then q must be equal zero and τ = 2πn, n ∈ Z . If p = −1,
then q must be equal to zero and τ = π +2πn, n ∈ Z . In these cases inverse problem
P has has infinitely many solutions; therefore they are excluded from Theorem.
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5 Conclusion

We have developed a numerical-analytical method of solution to the inverse problem
of reconstructing permittivities of n-sectional diaphragms in a waveguide of rectan-
gular cross-section. For a one-sectional diaphragm, a solution in the closed form
is obtained and the uniqueness is proved. These results make it possible to use the
case of a one-sectional diaphragm in a waveguide of rectangular cross-section as a
benchmark test problem and perform a complete analysis of the inverse scattering
problem for arbitrary n-sectional diaphragms.

Acknowledgments This work is partially supported by Russian Foundation of Basis Research
11-07-00330-a and Visby Program of the Swedish Institute.

Appendix 1

Reduce Eq. (16) to a quadratic equation. From (18) it follows that (on the domain of
all the functions involved):

p2 + q2

h2(τ )
= 1, h(τ ) > 0.

From (20) we obtain:

h2(τ ) = q2

1 − p2
, |p| < 1. (24)

Then

h(τ ) = Q, h(τ ) := τ

2C
+ C

2τ
, Q := |q|

√
1 − p2

> 0, (25)

and we obtain a quadratic equation

τ 2 − 2CQτ + C2 = 0 (26)

which has the roots

τ1 = C(Q +
√

Q2 − 1), τ2 = C

Q + √
Q2 − 1

. (27)

τ1,2 are real if Q ≥ 1; therefore,

p2 + q2 ≥ 1. (28)



564 Y. G. Smirnov et al.

Inequality (28) constitutes the existence condition for the solution of equation
(16). Since τ = γ1l1 and C = γ0l1, we have

τ

C
= γ1

γ0
=

√
ω2μ0ε1 − π2

a2√
ω2μ0ε0 − π2

a2

,

so that, in view of the assumption ε1 > ε0,

τ

C
> 1.

Similarly, for π2

a2ω2μ0
< ε1 < ε0,

τ

C
< 1.

Thus, for ε1 > ε0 we obtain

τ1

C
= Q +

√
Q2 − 1 (> 1).

For π2

a2ω2μ0
< ε1 < ε0

τ2

C
= 1

Q + √
Q2 − 1

(< 1).

Thus, when ε1 > ε0 Eq. (25) has only one root (24) τ1. Similarly, Eq. (27) has the
only one root (25) τ2 for π2

a2ω2μ0
< ε1 < ε0.

It should be noted that reduction of (16) to quadratic equation (26) is not an equiv-
alent transformation. It is necessary to complement (26) with one of the equations
of system (19), for example, with the first, and take into accounts the signs of p and
q. As a result, (16) will be equivalent to the system

{
cos τ = p, sign(q) = sign(sin(τ )),

p2 + q2

h2(τ )
= 1.
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