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Abstract We consider a family of associative algebras, defined as the quotient of a
free algebra with the ideal generated by a set of multi-parameter deformed commu-
tation relations between four generators consisting of five quantum plane relations
between pairs of generators and one sub-quadratic relation inter-linking all four gen-
erators. For generic parameter vectors, the center and the commutants of the two of
the generators are described and conditions on the parameters for these commutants
to be itself commutative or non-commutative are obtained.

1 Introduction

Commuting elements in non-commutative algebra are important for representation
theory, classifications, interplaywith harmonic analysis and spectral theory, topology
and algebraic geometry, operator algebras and applications in Physics and Engineer-
ing. For example, commutants or centralisers, maximal commutative subalgebras
of crossed product C∗-algebras and von Neumann algebras play a central role in
investigation of representations, classifications and in structure of state space [1–6].
In particular, maximal commutative subalgebras are essential objects for the famous
Kadison-Singer conjecture stated in apioneering1959—paper byKadison andSinger
[7], equivalent to the paving conjecture [8, 9] and several conjectures important
for wavelets and frames analysis and applications in signal and image processing,
one of them the well-known Feichtinger conjecture [10] in frame theory. For the
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key role of maximal commutative subalgebras for establishing interplay between
Kadison-Singer conjecture, properties of projections, topological dynamical sys-
tems and compactifications of topological spaces see for example [11]. Commutants
and maximal commutative subalgebras in generalized crossed product algebras aris-
ing from non-invertible dynamics and actions are used in the important ways in the
general operator and spectral theory approach to wavelets analysis and investigation
of wavelets on fractals [12–16]. The description of commuting elements and of cor-
responding commuting operators in the representing operator algebra, or in other
words the problem of explicit description of commutative subalgebras is important
in description and classifications of operator representations and applications of non-
commutative algebras [17–27]. The commuting operators and commuting elements
in rings and algebras also are important in study of integrable systems and non-linear
equations. Further discussions in connection to this topic and numerous references
can be found for instance in the book [28] devoted to commuting elements in the
algebra defined by the q-deformed Heisenberg relations (see also [29, 30]).

The centers and commutants of elements or subsets in non-commutative algebras
are fundamentally important subsets of an algebra or a ring in this context (see for
example [31–39] and references therein). The center consists of elements commut-
ing with all elements in the algebra, is the intersection of the commutants of all
elements in the algebra and so is always a commutative subalgebra. The commutants
of elements or subsets of elements in an associative algebra are subalgebras which
contain the center of the whole algebra as its subalgebra, but may be commutative
or may be not depending on the structure of the algebra and the subset for which the
commutant is considered.

In this article we consider the centers and commutants for an interesting multi-
parameter family of associative algebras generated by four generators and six sub-
quadratic relations involving six deformation parameters. The five of these relations
are the famous quantum plane relations playing important role in quantum groups,
q-calculus and quantum mechanics, operator algebras and non-commutative geom-
etry (rotation algebras, non-commutative tori, etc.). The sixth relation is intercon-
necting the four generators by a special q-deformed quadratic relation expressing
the sum of two generators as q-commutator of the other two of the generators:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

AB − q0BA = S + T (a)

AT − q1TA = 0 (b)

BS − q2SB = 0 (c)
AS − q3SA = 0 (d)

BT − q4TB = 0 (e)
ST − q5TS = 0 ( f )

(1)

where q = (q0, q1, q2, q3, q4, q5) ∈ C
6.

All of (1b)–(1f) are of the type XY − qYX = 0, which is the so called quan-
tum plane relation studied in non-commutative geometry. Equation (1a) resembles
the Sylvester equation AX−X B = C and the Lyapunov equation AX + X A∗ =
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−Q, both of which are encountered in control theory. Specializing S = λI and
T = (1 − λ)I (where I denotes the multiplicative identity) and q1, . . . , q5 = 1, the
relations (1b)–(1f) become trivial and (1a) becomes AB−q0BA = I . This is a gener-
alization of the Heisenberg canonical commutation (q0 = 1) and anti-commutation
(q0 = −1) relations, which are used in quantum mechanics to describe systems with
one degree of freedom. More on the algebras defined by q-deformed Heisenberg
relations (called also q-Weil relations) and commuting elements in such algebras
can be found in the monograph [28] and references there.

It is a well known interesting issue whether it is possible to realize a given family
of commutation relations in one or another way using matrices or differential opera-
tors or other types of linear operators, or any objects for which (1) makes sense, for
example elements of some associative algebra. When the realization by the operators
of a specific type is possible, further description and classifications of the represen-
tations of the relations by the operators of such type arise and often becomes a
problem of great interest. It often requires insights both in the algebraic structure
of the commutation relations and in the properties of the involved classes of oper-
ators. In algebraic contexts it often leads to interesting combinatorial identities and
problems, while in the context of ∗-representations (involutive representations) and
operator algebras it involves also spectral theory of possibly unbounded operators in
the finite-dimensional or infinite-dimensional spaces.

The relations (1) provide an interesting example in this respect. For a first taste
of what can happen in (1a)–(1c) when A, B, S, T are complex (n × n)-matrices,
consider the case when A and B are hermitian and q0 lies on the unit circle. Note
that ‖X‖2F = tr(X∗ X) defines a norm ‖X‖F onCn×n (this is the so called Frobenius
norm). Since A, B are hermitian andq0q∗

0 = 1, (AB−q0B A)∗ = −q∗
0 (AB−q0B A),

and thus

‖AB − q0B A‖2F = −q∗
0 tr((AB − q0B A)2) = −q∗

0 tr((AB − q0B A)(S + T ))

= −q∗
0 (tr(ABS) + tr(ABT ) − q0 tr(B AS) − q0 tr(B AT )) .

Using (1b,c) and the fact that tr(XY Z) = tr(Z XY ) for all (n × n)-matrices X, Y, Z ,
this implies that

‖AB − q0B A‖2F = −q∗
0 ((q2 − q0) tr(ASB) + (1 − q0q1) tr(BT A)).

Thus, if q2 = q0 and q0q1 = 1, A, B must satisfy AB − q0B A = 0, and S, T must
satisfy S = −T . In particular, if q0 = q1 = q2 = 1, A and B must commute. It is
not difficult to see that for many other conditions on the parameters this argument
breaks down. This could be interpreted as an indication that the algebraic structures
defined by these relations and their representations might have rich dependence on
the interplay between the values of the six deformation parameters.

In this article, we provide further indication of richness of the structure of this
family of algebras depending on the values of the deformation parameters, by con-
sidering some important properties of the algebra with generators and relations (1),
especially focussing on centers and commutants. As these algebras are defined as the
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quotient algebraF/J (q) of a free algebra on six generators by the ideal associated
to the commutation relations (1), in order to be able to compute in this algebra it is
particularly important to be able to decide the equality of the elements in the algebra,
since using the relations (1), the same element can be expressed in many ways, and
it is not obvious whether or not two given expressions are equal. To handle this,
one needs a normal form for elements in F/J (q), which for the relations of the
type (1) amounts to finding a basis forF/J (q) for various choices of parameters.
In Sect. 2, we indicate that relations are more subtle than it may seem on the first
sight as there are more relations than generators, and for many values of parameters
these relations imply some further much more special relations between generators
bringing significant restrictions on the size or the structure of the bases and thus on
various further properties and computations in the algebra. Finding in a systematic
way bases for the algebras for various choices of parameters becomes an elaborate
task requiring non-trivial use of the Bergman’s diamond lemma and relations (1) as
well as some symmetries of the relations and their consequences for case reductions
of various subtle parameter subsets. It appears in the course of this analysis, that
the basis takes a somewhat simpler form for a large subset of parameters given by a
system of certain inequalities. This set of “generic” parameters, as we call it, and the
bases yield useful grading structures, used in Sect. 3 to describe the commutants of
the main generators A and B by describing the spanning sets. In Sect. 4, the results
from the preceding sections combined with further computations are used to describe
explicitly the center by providing its basis depending on the deformation parameters.
While the center of an algebra is always a commutative subalgebra, as an intersec-
tion of commutants of all elements of the algebra, the commutants of elements or
non-trivial subsets of a non-commutative algebra are subalgebras which are not nec-
essarily themselves commutative. For some classes of algebras it is possible to prove
that commutants of the elements are commutative. Investigating whether this is a
case and finding examples and counterexamples for such commutativity property
for a particular family of algebras defined by generators and specific relations is an
important problem which is often highly non-trivial, especially so when the defining
relations are dependent on parameters. In Sect. 5, we provide necessary and sufficient
conditions on q within the set of “generic” parameters, for C (A) and C (B) to be
commutative, thus also providing necessary and sufficient conditions on “generic”
parameters for when these commutants are not-commutative. The results of these
paper suggest that the description and further in-depth analysis of the structure of
the commutants of these and other elements and subsets for the family of algebras
considered in this paper both for “generic” as well as for non-generic parameters is
an interesting and rich open problem.

2 First Steps: Reordering and Basis

LetF be the free unital associative algebra overC generated by the set {A, B, S, T }.
For q = (q0, q1, q2, q3, q4, q5) ∈ C

6 let J (q) be the ideal generated by the set
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G(q) = {AB − q0B A − S − T, AT − q1T A, BS − q2SB,

AS − q3S A, BT − q4T B, ST − q5T S}, (2)

or equivalently the ideal inF generated by the relations

AB − q0B A ≡ S + T
AT − q1T A ≡ 0
BS − q2SB ≡ 0
AS − q3S A ≡ 0
BT − q4T B ≡ 0
ST − q5T S ≡ 0,

(3)

where ≡ denotes equivalence modulo J (q).
From (3) it is not too hard to derive the additional relations

(1 − q2q3)S2 ≡ (q2q3q5 − 1)T S (4)

(1 − q1q4)T
2 ≡ (q1q4 − q5)T S. (5)

The implications of these relations depend on which of the involved scalar expres-
sions are zero and which are non-zero. There are also a few more expressions in the
parameters that change the situation if they are zero. Only the generic case will be
considered here.

Definition 2.1 A parameter vector q = (q0, q1, q2, q3, q4, q5) ∈ C
6 is generic if

⎧
⎨

⎩

q0, q1, q2, q3, q4, q5 �= 0,
1 − q5, 1 − q1q4, 1 − q2q3, q1 − q3, q2 − q4 �= 0, and
q1q4 − q5 �= 0 or q2q3q5 − 1 �= 0.

For generic q it follows from (3), (4) and (5) that

XY ≡ 0 for all X ∈ {S2, ST, T S, T 2}, Y ∈ {A, B, S, T }. (6)

Since (3) can be used to put the symbols in the monomials in the order T, S, B, A,
this means that any monomial that has two symbols from {S, T } and additionally
one symbol from {A, B, S, T } is ≡ 0. Thus it seems plausible that the set

B = {Bb Aa, SBb Aa, T Bb Aa, T S; a, b ∈ N}

is a basis for F/J (q). This can be shown using the Diamond Lemma for ring
theory [40].

Sums of the form
∑n−1

i=0 qi will often appear in what follows, so it is convenient
to have a more compact notation for them.
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Definition 2.2 For q ∈ C and n ∈ N, let

{n}q =
n−1∑

i=0

qi .

{n}q is called the n:th q-natural number.

To express the product of two general elements in the basis B, it is necessary to
be able to rewrite monomials of the form Am Bn so that the B:s are moved to the left
of the A:s.

Lemma 2.1 Let q = (q0, . . . , q5) ∈ C
6 be generic. Then the following formula

holds in F/J (q) for m, n ≥ 1, (m, n) �= (2, 2).

Am Bn ≡ qmn
0 Bn Am

+ q(m−1)n
0 {m} q3

q0
{n}q0q2 SBn−1Am−1

+ q(m−1)n
0 {m} q1

q0
{n}q0q4 T Bn−1Am−1. (7)

The formula can be proved for most (m, n) by induction first on m and then on
n, or by induction first on n and then on m. The exceptional point (m, n) = (2, 2)
makes it necessary to use both orders of induction to cover all (m, n) �= (2, 2). We
omit the elaborate details of the proof.

Equation (7) does not hold for (m, n) = (2, 2). The reordering formula for
(m, n) = (2, 2) is instead

A2B2 ≡ q4
0 B2A2 + q0(q0 + q3)(1 + q0q2)SB A + q0(q0 + q1)(1 + q0q4)T B A

+ (1 − q5)
q1 − q3 + q0q1q4 − q0q2q3 + q1q3q4 − q1q2q3

(1 − q1q4)(1 − q2q3)
T S. (8)

This formula agrees with (7) except for the extra T S-term on the right side.
Let M be the set of monomials inF and define for Y ∈ M

degA,S,T (Y ) = #A : s + #S : s + #T : s that occur in Y

degB,S,T (Y ) = #B : s + #S : s + #T : s that occur in Y.

Then F has an N
2-gradation {A(m,n)}(m,n)∈N2 given by

A(m,n) = Span{Y ∈ M ; degA,S,T (Y ) = m, degB,S,T (Y ) = n}.

All elements in the generating set of J (q) are homogeneous in this gradation and
thus the induced gradation of F/J (q) is well defined. If m, n ≥ 1 and (m, n) �=
(2, 2) then a basis for the homogeneous component of degree (m, n) is given by

{Bn Am, SBn−1Am−1, T Bn−1Am−1}.
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3 Commutants of A and B

The commutant of an element X ∈ F/J (q) is the set of all elements that commute
with X . It will be denoted by C (X). In this section, spanning sets for C (A) and
C (B) are described for generic q.

In general, a commutant of a homogeneous element is spanned by the homoge-
neous elements of the commutant. This means that it is enough to find all homoge-
neous elements that commute with A or B. Let Xm,n denote a general homogeneous
element of degree (m, n). For m, n ≥ 1, (m, n) �= (2, 2), such an element can be
uniquely written as

Xm,n ≡ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1, (9)

with c1, c2, c3 ∈ C. Since T S commutes with every Y ∈ {A, B, S, T } (in fact
Y T S ≡ T SY ≡ 0 by (6)), it is general enough to consider Xm,n of the form (9)
when (m, n) = (2, 2) as well. When m = 0 or n = 0, the homogeneous elements of
degree (m, n) are of the form X0,n = c1Bn and Xm,0 = c1Am respectively.

Using the defining relations (3) and the reordering formula (7), the commutators of
Xm,n with A and B can be computed. Form, n ≥ 1, (m, n) �= (1, 2), the commutator
of Xm,n with A is

[Xm,n, A] ≡ c1(1 − qn
0 )Bn Am+1

+
(
−c1 {n}q0q2 + c2(1 − qn−1

0 q3)
)

SBn−1Am

+
(
−c1 {n}q0q4 + c3(1 − qn−1

0 q1)
)

T Bn−1Am .

If (m, n) = (1, 2) then there is an additional term

(1 − q5)

(1 − q2q3)(1 − q1q4)
(c2q3(1 − q1q4) − c3q1(1 − q2q3))T S

on the right side. For m = 0, the commutator is

[X0,n, A] ≡ c1(1 − qn
0 )Bn A − c1 {n}q0q2 SBn−1 − c1 {n}q0q4 T Bn−1

and [Xm,0, A] ≡ 0 for all m.
For m, n ≥ 1, (m, n) �= (2, 1), the commutator of Xm,n with B is

[Xm,n, B] ≡ c1(q
m
0 − 1)Bn+1Am

+
(

c1qm−1
0 qn

2 {m}q3/q0 + c2(q
m−1
0 − q2)

)
SBn Am−1

+
(

c1qm−1
0 qn

4 {m}q1/q0 + c3(q
m−1
0 − q4)

)
T Bn Am−1.
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If (m, n) = (2, 1) then there is an additional term

− (1 − q5)

(1 − q2q3)(1 − q1q4)
(c2(1 − q1q4) − c3(1 − q2q3))T S

on the right side. For n = 0, the commutator is

[Xm,0, B] ≡ c1(q
m
0 − 1)B Am + c1qm−1

0 {m} q3
q0

S Am−1 + c1qm−1
0 {m} q1

q0
T Am−1.

and [X0,n, B] ≡ 0 for all n.
The computations are summarised in the following lemma.

Lemma 3.1 Let q = (q0, . . . , q5) ∈ C
6 be generic.

C (A) is the linear subspace of F/J (q) spanned by the elements listed in the
following table.

Element (m, n range over N+) Conditions

I —
T S —
Am —
Bn 1 − qn

0 = {n}q0q2 = {n}q0q4 = 0

c1Bn Am + (c2S + c3T )Bn−1Am−1 K(m,n)

[
c1 c2 c3

]T = 0

Here,

K(m,n) =
⎡

⎣
1 − qn

0 0 0
−{n}q0q2 1 − qn−1

0 q3 0
−{n}q0q4 0 1 − qn−1

0 q1

⎤

⎦

for (m, n) �= (1, 2) and

K(1,2) =

⎡

⎢
⎢
⎣

1 − q2
0 0 0

−(1 + q0q2) 1 − q0q3 0
−(1 + q0q4) 0 1 − q0q1

0 q3(1 − q1q4) −q1(1 − q2q3)

⎤

⎥
⎥
⎦ .

C (B) is the linear subspace of F/J (q) spanned by the elements listed in the
following table.

Element (m, n range over N+) Conditions

I —
T S —
Am qm

0 − 1 = {m}q1/q0 = {m}q3/q0 = 0
Bn —

c1Bn Am + (c2S + c3T )Bn−1Am−1 L(m,n)

[
c1 c2 c3

]T = 0
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Here,

L(m,n) =
⎡

⎣
qm
0 − 1 0 0

qm−1
0 qn

2 {m}q3/q0 qm−1
0 − q2 0

qm−1
0 qn

4 {m}q1/q0 0 qm−1
0 − q4

⎤

⎦

for (m, n) �= (2, 1) and

L(2,1) =

⎡

⎢
⎢
⎣

q2
0 − 1 0 0

q2(q0 + q3) q0 − q2 0
q4(q0 + q1) 0 q0 − q4

0 1 − q1q4 −(1 − q2q3)

⎤

⎥
⎥
⎦ .

4 The Center of F/J (q)

The center of F/J (q) is the set of elements that commute with every element of
F/J (q). It will be denoted by Z . In this section, Z is described for generic q.

Lemma 4.1 Let q = (q0, . . . , q5) ∈ C
6 be generic. Then Z = C (A) ∩ C (B).

Proof Let X be a general homogeneous element that commutes with both A and B.
Then X commutes with S + T by (3a). It will be shown that X commutes with S and
T as well. There are four cases depending on the degree of X .

If X has degree (0, n), then X ≡ c1Bn for some c1 ∈ C. Then

[X, S + T ] ≡ 0 =⇒ c1(q
n
2 − 1)SBn + c1(q

n
4 − 1)T Bn ≡ 0 =⇒

c1(q
n
2 − 1) = c1(q

n
4 − 1) = 0 =⇒ [X, S] ≡ [X, T ] ≡ 0.

If X has degree (m, 0), then X ≡ c1Am for some c1 ∈ C. Then

[X, S + T ] ≡ 0 =⇒ c1(q
m
3 − 1)S Am + c1(q

m
1 − 1)T Am ≡ 0 =⇒

c1(q
m
3 − 1) = c1(q

m
1 − 1) = 0 =⇒ [X, S] ≡ [X, T ] ≡ 0.

If X has degree (1, 1), then X ≡ c1B A + c2S + c3T for some c1, c2, c3 ∈ C.
Then

[X, S + T ] ≡ c1(q2q3 − 1)SB A + c1(q1q4 − 1)T B A + (c3 − c2)(1 − q5)T S.

The right side can be zero only if c1 = c3 − c2 = 0 since q is generic. But then
X ≡ c3(S + T ), so

[X, B A] ≡ c3(1 − q2q3)SB A + c3(1 − q1q4)T B A.
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Since X is assumed to commute with A and B, the right side must be zero, which
implies that c3 = 0 since q is generic. Thus X ≡ 0, and so X commutes with S
and T .

Finally, if X has degree (m, n) with m, n �= 0 and (m, n) �= (1, 1) then

X ≡ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 + c4T S,

for some c1, c2, c3, c4 ∈ C (with c4 = 0 unless (m, n) = (2, 2)). Then

[X, S + T ] ≡ 0 =⇒ c1(q
n
2qm

3 − 1)SBn Am + c1(q
m
1 qn

4 − 1)T Bn Am ≡ 0 =⇒
c1(q

n
2qm

3 − 1) = c1(q
m
1 qn

4 − 1) = 0 =⇒ [X, S] ≡ [X, T ] ≡ 0.

Theorem 4.1 Let q = (q0, . . . , q5) ∈ C
6 be generic and suppose that q0 is not

a root of unity. Then a basis for Z is given by the elements listed in the following
table.

Element (m, n range over N+) Conditions

I —
T S —
SBn−1Am−1 1 − qn−1

0 q3 = qm−1
0 − q2 = 0

T Bn−1 Am−1 1 − qn−1
0 q1 = qm−1

0 − q4 = 0

Moreover, this basis contains at most one element of the form SBn−1Am−1 and
at most one element of the form T Bn−1Am−1. Thus, Z has dimension at most four.

Proof By Lemma 4.1, it is enough to show that the listed elements form a basis for
C (A) ∩ C (B). Spanning sets for C (A) and C (B) are given by Lemma 3.1; denote
thembyB(A) andB(B) respectively. ThenC (A)∩C (B) is the linear space spanned
byB(A)∩B(A). Now, I, T S ∈ B(A)∩B(B) always. For m, n ≥ 1, Am /∈ B(B)

and Bn /∈ B(A) since q0 is not a root of unity, and thus Am, Bn /∈ B(A)∩B(B). An
element inB(A) ∩B(B) of the form c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1

with m, n ≥ 1 must have c1 = 0 since q0 is not a root of unity. The coefficient c2
may be non-zero if and only if 1 − qn−1

0 q3 = qm−1
0 − q2 = 0. Since q0 is not a

root of unity, this can happen for at most one value of (m, n). Similarly, c3 may be
non-zero if and only if 1 − qn−1

0 q1 = qm−1
0 − q4 = 0, and this can happen for at

most one value of (m, n). Thus the listed elements span C (A) ∩ C (B), and since
they are linearly independent they form a basis.

Theorem 4.2 Let q = (q0, . . . , q5) ∈ C
6 be generic and suppose that q0 is a root

of unity. Let d be the smallest positive integer such that qd
0 = 1. Then a basis for Z

is given by the elements listed in the following table.
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Element (m, n range over N+) Conditions

I —
T S —
Am d|m, qm

1 = qm
3 = 1, q1/q0, q3/q0 �= 1

Bn d|n, qn
2 = qn

4 = 1, q0q2, q0q4 �= 1
SBn−1 Am−1 d|m − 1 − r2, d|n − 1 + r3, q2 = qr2

0 , q3 = qr3
0

T Bn−1Am−1 d|n − 1 + r1, d|m − 1 − r4, q1 = qr1
0 , q4 = qr4

0
Bn Am + (cS S + cT T )Bn−1Am−1 d|m, d|n, qm

1 qn
4 = qn

2 qm
3 = 1

and in addition
q2 + 1/q2 = q4 + 1/q4 if (m, n) = (1, 2)
q1 + 1/q1 = q3 + 1/q3 if (m, n) = (2, 1)

Here,

cS =

⎧
⎪⎨

⎪⎩

1−qn
2

(1−q0q2)(1−q3/q0)
= 1−1/qm

3
(1−q0q2)(1−q3/q0)

if 1 − q0q2, 1 − q3/q0 �= 0
−m

1−q0q2
if 1 − q0q2 �= 0, 1 − q3/q0 = 0

n
1−q3/q0

if 1 − q0q2 = 0, 1 − q3/q0 �= 0

and

cT =

⎧
⎪⎨

⎪⎩

1−qn
4

(1−q0q4)(1−q1/q0)
= 1−1/qm

1
(1−q0q4)(1−q1/q0)

if 1 − q0q4, 1 − q1/q0 �= 0
−m

1−q0q4
if 1 − q0q4 �= 0, 1 − q1/q0 = 0

n
1−q1/q0

if 1 − q0q4 = 0, 1 − q1/q0 �= 0.

Proof By Lemma 4.1, it is enough to show that the listed elements form a basis
for C (A) ∩ C (B). Spanning sets for C (A) and C (B) are given by Lemma 3.1;
denote them byB(A) andB(B) respectively. ThenC (A)∩C (B) is the linear space
spanned by B(A) ∩ B(B). Now, I, T S ∈ B(A) ∩ B(B) always, and

Am ∈ B(A) ∩ B(B) ⇐⇒ qm
0 − 1 = {m}q1/q0 = {m}q3/q0 = 0

⇐⇒ qm
0 = qm

1 = qm
3 = 1, q1/q0, q3/q0 �= 1

and

Bn ∈ B(A) ∩ B(B) ⇐⇒ 1 − qn
0 = {n}q0q2 = {n}q0q4 = 0

⇐⇒ qn
0 = qn

2 = qn
4 = 1, q0q2, q0q4 �= 1.

Assume now that m, n ≥ 1, (m, n) �= (1, 2) and (m, n) �= (2, 1). An element of
the form c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 lies in B(A) ∩ B(B) if and
only if K(m,n)[c1 c2 c3]T = 0 and L(m,n)[c1 c2 c3]T = 0, where K(m,n) and L(m,n) are
defined as in Lemma 3.1. Regrouping these equations gives the equivalent equation
system
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⎧
⎪⎨

⎪⎩

(1 − qn
0 )c1 = (qm

0 − 1)c1 = 0 (first rows of K(m,n) and L(m,n))

MS
[
c1 c2

]T = 0 (second rows of K(m,n) and L(m,n))

MT
[
c1 c3

]T = 0 (third rows of K(m,n) and L(m,n)),

(10)

where

MS =
[ −{n}q0q2 1 − qn−1

0 q3
qm−1
0 qn

2 {m}q3/q0 qm−1
0 − q2

]

MT =
[ −{n}q0q4 1 − qn−1

0 q1
qm−1
0 qn

4 {m}q1/q0 qm−1
0 − q4

]

.

There are two types of possible solutions to (10): Those with c1 = 0 and those with
c1 �= 0.Note that [0 c2 c3]T satisfies (10) if andonly if [0 c2 0]T and [0 0 c3]T do.Thus
for the case c1 = 0, it is enough to consider elements of the forms SBn−1Am−1 and
T Bn−1Am−1 separately, rather that a general linear combination c2SBn−1Am−1 +
c3T Bn−1Am−1.

Now, SBn−1Am−1 ∈ B(A) ∩ B(B) if and only if MS[0 1]T = 0, that is, iff

qn−1
0 q3 = 1 and qm−1

0 = q2. (11)

This implies (by raising both sides of the equations to the power of d) that qd
2 =

qd
3 = 1, so q2 and q3 are d:th roots of unity and thus q2 = qr2

0 and q3 = qr3
0 for some

r2, r3 ∈ {0, . . . , d − 1} (since q0 generates the group of d:th roots of unity). Then
(11) holds if and only if qn−1+r3

0 = qm−1−r2
0 = 1, that is, d divides both n − 1 + r3

and m − 1 − r2.
Similarly, T Bn−1Am−1 ∈ B(A) ∩B(B) if and only if MT [0 1]T = 0, that is, iff

qn−1
0 q1 = 1 and qm−1

0 = q4. (12)

This implies that qd
1 = qd

4 = 1 and thus that q1 = qr1
0 and q4 = qr4

0 for some

r1, r4 ∈ {0, . . . , d − 1}. Then (12) holds if and only if qn−1+r1
0 = qm−1−r4

0 = 1,
that is, d divides both n − 1 + r1 and m − 1 − r4.

If there is a solution of (10) with c1 �= 0 then qm
0 = qn

0 = 1 so d|m and d|n. In
addition, det(MS) = det(MT ) = 0, which is equivalent (using qm

0 = qn
0 = 1 and

{k}q (1 − q) = 1 − qk) to qn
2qm

3 = qm
1 qn

4 = 1. When MS is singular, either of the
equations of the system MS[c1 c2]T = 0 can be used to solve for c2. One gets

c2 =

⎧
⎪⎨

⎪⎩

1−qn
2

(1−q0q2)(1−q3/q0)
c1 = 1−1/qm

3
(1−q0q2)(1−q3/q0)

c1 if 1 − q0q2, 1 − q3/q0 �= 0
−m

1−q0q2
c1 if 1 − q0q2 �= 0, 1 − q3/q0 = 0

n
1−q3/q0

c1 if 1 − q0q2 = 0, 1 − q3/q0 �= 0
(13)

(the case 1− q0q2 = 1− q3/q0 = 0 is excluded since q2q3 �= 1 when q is generic).
Similarly, when MT is singular, one can use either of the equations of the system
MT [c1 c3]T = 0 to solve for c3. One gets
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c3 =

⎧
⎪⎨

⎪⎩

1−qn
4

(1−q0q4)(1−q1/q0)
c1 = 1−1/qm

1
(1−q0q4)(1−q1/q0)

c1 if 1 − q0q4, 1 − q1/q0 �= 0
−m

1−q0q4
c1 if 1 − q0q4 �= 0, 1 − q1/q0 = 0

n
1−q1/q0

c1 if 1 − q0q4 = 0, 1 − q1/q0 �= 0
(14)

(the case 1− q0q4 = 1− q1/q0 = 0 is excluded since q1q4 �= 1 when q is generic).
When (m, n) = (1, 2) or (m, n) = (2, 1) then (10) is still a necessary condition

for c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 to lie in C (A, B), but c2, c3 must
also satisfy

{
c2q3(1 − q1q4) = c3q1(1 − q2q3) if (m, n) = (1, 2)
c2(1 − q1q4) = c3(1 − q2q3) if (m, n) = (2, 1).

(15)

If c1 = 0 in any of these cases then either c2 = 0 or c3 = 0, since if c2, c3 �= 0
then (10) would imply q1 = q3 (= 1/qn−1

0 ) and q2 = q4 (= qm−1
0 ). But if one of

c2, c3 is = 0, then so is the other by (15). Thus, there are no non-trivial solutions
with c0 = 0 when (m, n) = (1, 2) or (m, n) = (2, 1). The element Bn Am +
c2SBn−1Am−1 + c3T Bn−1Am−1 lies in C (A, B) if and only if [1 c2 c3]T satisfies
both (10) and (15). Using the expressions (13) and (14) for c2 and c3 together with
q0 = qm

1 qn
4 = qn

2qm
3 = 1 (that is, using the conditions that have just been shown

to be equivalent to (10); note that when m = 1 or n = 1, d|m and d|n iff q0 = 1.
Also note that qm

1 qn
4 = qn

2qm
3 = 1 implies q2, q4 �= 1 when (m, n) = (1, 2) and

q1, q3 �= 1 when (m, n) = (2, 1) since q is generic), (15) can be simplified to

{
q2 + 1/q2 = q4 + 1/q4 if (m, n) = (1, 2)
q1 + 1/q1 = q3 + 1/q3 if (m, n) = (2, 1).

Thus, the elements listed in the theorem form a spanning set forC (A)∩C (B). To
see that they are linearly independent, note that for a fixed (m, n) it is impossible that
both Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 and SBn−1Am−1 lie in C (A) ∩
C (B), for that would imply

m ≡ n (mod d)

m − 1 − r2 ≡ n − 1 + r3 (mod d)

}

=⇒ −r2 ≡ r3 (mod d) =⇒ q2q3 = 1.

Similarly, it is impossible that both Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 and
T Bn−1Am−1 lie in C (A) ∩ C (B), for that would imply q1q4 = 1. Thus, the listed
elements are linearly independent, and so they form a basis for C (A) ∩ C (B).

5 Commutativity of C (A) and C (B)

This section gives, for generic q, necessary and sufficient conditions on q for C (A)

and C (B) to be commutative. As before, it is enough to consider homogeneous
elements of C (A) and C (B), and the T S-components of the homogeneous elements
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of degree (2, 2) can be disregarded since T S ∈ Z . Thus, C (A) is commutative if
and only if the set

HA = { H ∈ C (A); H is homogeneous and has no T S-component}

is, and C (B) is commutative if and only if the set

HB = { H ∈ C (B); H is homogeneous and has no T S-component}

is. Define further the sets

XA = {
X ∈ HA; X is homogeneous of degree (m, n) and qn

0 = 1
}

YA = {
Y ∈ HA; Y is homogeneous of degree (m, n) and qn

0 �= 1
} ∪ {0}

XB = {
X ∈ HB; X is homogeneous of degree (m, n) and qm

0 = 1
}

YB = {
Y ∈ HB; Y is homogeneous of degree (m, n) and qm

0 �= 1
} ∪ {0}.

Then HA = XA ∪ YA and HB = XB ∪ YB , and XA ∩ YA = XB ∩ YB = {0},
since 0 is homogeneous of all degrees. (The reason for explicitly including 0 in YA

and YB is to make sure that they always contain 0: If 0 were not explicitly included
then the case q0 = 1 would be exceptional.) These sets do, of course, depend on q;
when this dependence needs to be emphasised the notation will be XA(q), YA(q)

and so on.
Consider two general homogeneous elements

Xk,l ≡ b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1

Xm,n ≡ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1

of degrees (k, l) and (m, n) respectively. A somewhat lengthy calculation using the
reordering formula (7) and Eq. (6) shows that

Xk,l Xm,n ≡ . . .

≡ b1c1qkn
0 Bl+n Ak+m

+ q(k−1)(n−1)
0

(

b1c1qk−1
0 ql

2 {k} q3
q0

{n}q0q2 + b1c2qn−1
0 ql

2qk
3 + b2c1qk−1

0

)

SBl+n−1Ak+m−1

+ q(k−1)(n−1)
0

(

b1c1qk−1
0 ql

4 {k} q1
q0

{n}q0q4 + b1c3qn−1
0 qk

1ql
4 + b3c1qk−1

0

)

T Bl+n−1Ak+m−1.

This holds for all k, l, m, n ≥ 1 except for k = l = m = n = 1 (if (k, l) = (2, 2)
or (m, n) = (2, 2) then there is an additional T S-term in the expression for Xk,l or
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Xm,n , but that makes no difference for the product because of (6)). The commutator
of Xk,l and Xm,n then is

[Xk,l , Xm,n] ≡ b1c1(q
kn
0 − qml

0 )Bl+n Ak+m

+
(

q(k−1)(n−1)
0

(

b1c1qk−1
0 ql

2 {k} q3
q0

{n}q0q2 + b1c2qn−1
0 ql

2qk
3 + b2c1qk−1

0

)

− q(m−1)(l−1)
0

(

b1c1qm−1
0 qn

2 {m} q3
q0

{l}q0q2 + b2c1ql−1
0 qn

2qm
3 + b1c2qm−1

0

))

SBl+n−1Ak+m−1

+
(

q(k−1)(n−1)
0

(

b1c1qk−1
0 ql

4 {k} q1
q0

{n}q0q4 + b1c3qn−1
0 qk

1ql
4 + b3c1qk−1

0

)

− q(m−1)(l−1)
0

(

b1c1qm−1
0 qn

4 {m} q1
q0

{l}q0q4 + b3c1ql−1
0 qm

1 qn
4 + b1c3qm−1

0

))

T Bl+n−1Ak+m−1. (16)

The switch A ↔ B will be used in the proofs below. Assume that q0 �= 0 (as is
the case when q is generic) and let f AB : F → F be the isomorphism defined by

f AB(A) = B, f AB(B) = A, f AB(S) = −q0S, f AB(T ) = −q0T .

The image under f AB of G(q), defined in (2), is

{ − q0(AB − 1

q0
B A − S − T ), −q0(BT − q1T B), −q0(AS − q2S A),

− q0(BS − q3SB), −q0(AT − q4T A), q2
0 (ST − q5T S)}.

Thus f AB(G(q)) generates the ideal J (q̂) where q̂ = ( 1
q0

, q4, q3, q2, q1, q5), and
consequently f AB(J (q)) = J (q̂). Thismakes it possible to define an isomorphism
h AB : F/J (q) → F/J (q̂) by

h AB(X + J (q)) = f AB(X) + J (q̂). (17)

It is easily checked that q̂ is generic whenever q is.
Also the switch S ↔ T will be used below. Let fST : F → F be the isomor-

phism defined by

fST (A) = A, fST (B) = B, fST (S) = T, fST (T ) = S.

The image under fST of G(q) is (assuming that q5 �= 0)

{AB − q0B A − S − T, AS − q1S A, BT − q2T B,
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AT − q3T A, BS − q4SB, −q5(ST − 1

q5
T S)}.

Thus fST (G(q)) generates the ideal J (q̃), where q̃ = (q0, q3, q4, q1, q2,
1
q5

), so
fST (J (q)) = J (q̃) and an isomorphism hST : F/J (q) → F/J (q̃) can be
defined by

hST (X + J (q)) = fST (X) + J (q̃). (18)

Again, it is easily checked that q̃ is generic whenever q is.

Lemma 5.1 Let q = (q0, . . . , q5) ∈ C
6 be generic. Then the sets XA and XB are

commutative.

Proof Pick any X1, X2 ∈ XA. Then X1, X2 ∈ C (A) and they are homogeneous, say
of degrees (k, l) and (m, n) respectively with ql

0 = qn
0 = 1. If k = 0 then X1 ≡ b1Bl

and Lemma 3.1 implies that X1 ≡ 0 or ql
2 = ql

4 = 1. In either case, X1 ∈ Z , so
in particular X1 commutes with X2. Similarly, if m = 0 then X2 ∈ Z and thus
commutes with X1. If l = 0 then X1 = b1Ak and if n = 0 then X2 = c1Am ; in both
cases X1 and X2 commute. Thus it may be assumed that k, l, m, n ≥ 1, so that X1
and X2 can be written as

X1 ≡ b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1 k, l ≥ 1

X2 ≡ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 m, n ≥ 1

with coefficients that satisfy

K(k,l)[b1 b2 b3]T = 0, K(m,n)[c1 c2 c3]T = 0, (19)

where K(k,l), K(m,n) are defined as in Lemma 3.1. If k = l = m = n = 1 then X1
and X2 are parallel, because K(1,1) has rank at least two (using that q1 �= q3 since
q is generic). Hence it may be assumed that at least one of k, l, m, n is ≥ 2, so that
the commutator [X1, X2] is given by (16). Since ql

0 = qn
0 = 1, the coefficient of

Bl+n Ak+m in (16) is 0—it has to be shown that the coefficients of SBl+n−1Ak+m−1

and T Bl+n−1Ak+m−1 are 0 as well.
If q3 �= q0 then (19) implies that

b2 = {l}q0q2

1 − q3/q0
b1, c2 = {n}q0q2

1 − q3/q0
c1

and the SBl+n−1Ak+m−1-coefficient in (16) can be simplified to

b1c1ql
2
1 − (q3/q0)k

1 − q3/q0
{n}q0q2 + b1c1q−k

0 ql
2qk

3

{n}q0q2

1 − q3/q0
+ b1c1

{l}q0q2

1 − q3/q0

− b1c1qn
2
1 − (q3/q0)m

1 − q3/q0
{l}q0q2 − b1c1q−m

0 qn
2qm

3

{l}q0q2

1 − q3/q0
− b1c1

{n}q0q2

1 − q3/q0
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= b1c1
1 − q3/q0

(
ql
2 {n}q0q2 + {l}q0q2 − qn

2 {l}q0q2 − {n}q0q2

)
= 0. (20)

The last equality holds by the identity {a}q + qa {b}q = {a + b}q for q-natural
numbers, since ql

2 = (q0q2)l , qn
2 = (q0q2)n . Similarly if q1 �= q0 then

b3 = {l}q0q4

1 − q1/q0
b1, c3 = {n}q0q4

1 − q1/q0
c1

and the T Bl+n−1Ak+m−1-coefficient in (16) can be simplified to

b1c1ql
4
1 − (q1/q0)k

1 − q1/q0
{n}q0q4 + b1c1q−k

0 qk
1ql

4

{n}q0q4

1 − q1/q0
+ b1c1

{l}q0q4

1 − q1/q0

− b1c1qn
4
1 − (q1/q0)m

1 − q1/q0
{l}q0q4 − b1c1q−m

0 qm
1 qn

4

{l}q0q4

1 − q1/q0
− b1c1

{n}q0q4

1 − q1/q0

= b1c1
1 − q1/q0

(
ql
4 {n}q0q4 + {l}q0q4 − qn

4 {l}q0q4 − {n}q0q4

)
= 0. (21)

Now there are three cases to consider (q1 = q3 = q0 is impossible since q is generic).
1. If q1, q3 �= q0 then the coefficients of SBl+n−1Ak+m−1 and T Bl+n−1Ak+m−1

in (16) are 0 by (20) and (21).
2. If q1 = q0, q3 �= q0, then the computation (20) is still valid, that is, the

coefficient of SBl+n−1Ak+m−1 in (16) is 0. Further, (19) implies that

{l}q0q4 b1 = {n}q0q4 c1 = 0

and thus also
(1 − ql

4)b1 = (1 − qn
4 )c1 = 0.

Then the T Bl+n−1Ak+m−1-coefficient in (16) can be simplified to

b1c3ql
4 + b3c1 − b3c1qn

4 − b1c3 = −b1c3(1 − ql
4) + b3c1(1 − qn

4 ) = 0.

3. Ifq1 �= q0,q3 = q0 then the computation (21) is still valid, that is, the coefficient
of T Bl+n−1Ak+m−1 in (16) is 0. The condition (19) implies that

{l}q0q2 b1 = {n}q0q2 c1 = (1 − ql
2)b1 = (1 − qn

2 )c1 = 0,

and the SBl+n−1Ak+m−1-coefficient becomes

b1c2ql
2 + b2c1 − b2c1qn

2 − b1c2 = −b1c2(1 − ql
2) + b2c1(1 − qn

2 ) = 0.
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Thus it has been shown that XA is commutative.
In order to see that XB = XB(q) is commutative, let h AB : F/J (q) →

F/J (q̂) be the isomorphism defined as in (17). Then XA(q̂) is commutative by
the above proof, soXB(q) = h−1

AB(XA(q̂)) is commutative as well.

Lemma 5.2 Let q = (q0, . . . , q5) ∈ C
6 be generic. Then the sets YA and YB are

commutative.

Proof Pick any Y1, Y2 ∈ YA. Then Y1, Y2 ∈ C (A) and they are homogeneous, say
of degrees (k, l) and (m, n) respectively with ql

0, qn
0 �= 1. It is then impossible that

l = 0 or n = 0, and by Lemma 3.1 it cannot be that Y1 = b1Bl or Y2 = c1Bn with
b1, c1 �= 0. Thus it may be assumed that k, l, m, n ≥ 1, and Y1, Y2 can be written as

Y1 ≡ b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1 k, l ≥ 1

Y2 ≡ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 m, n ≥ 1

with coefficients that satisfy

K(k,l)[b1 b2 b3]T = 0, K(m,n)[c1 c2 c3]T = 0, (22)

where K(k,l), K(m,n) are defined as in Lemma 3.1. If k = l = m = n = 1 then Y1
and Y2 are parallel, because K(1,1) has rank at least two (using that q1 �= q3 since
q is generic). Hence it may be assumed that at least one of k, l, m, n is ≥ 2. Since
ql
0, qn

0 �= 1, (22) implies that b1 = c1 = 0. But then Y1Y2 ≡ Y2Y1 ≡ 0 by (6), so
Y1, Y2 commute.

To see that YB = YB(q) is commutative, let h AB : F/J (q) → F/J (q̂) be
the isomorphism defined as in (17). Then YA(q̂) is commutative by the above proof,
so YB(q) = h−1

AB(YA(q̂)) is commutative as well.

Because of Lemma 5.1 and Lemma 5.2, it is enough to checkwhether the elements
ofXA commute with the elements ofYA to see ifC (A) is commutative, and to check
whether the elements of XB commute with the elements of YB to see if C (B) is
commutative.

Theorem 5.1 Let q = (q0, . . . , q5) ∈ C
6 be generic and suppose that q0 is not a

root of unity. Then C (A) and C (B) are commutative.

Proof Since q0 is not a root of unity,

XA = {cAm; c ∈ C, m ∈ N}.

Thus, every element ofXA commutes with every element ofYA, and it follows from
Lemma 5.1 and Lemma 5.2 that C (A) is commutative. Similarly,

XB = {cBn; c ∈ C, n ∈ N};
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thus every element of XB commutes with every element of YB and thus C (B) is
commutative.

Theorem 5.2 Let q = (q0, . . . , q5) ∈ C
6 be generic, and suppose that q0 is a root

of unity with d being the smallest positive integer such that qd
0 = 1. Then C (A) is

commutative if and only if

(
{d}q3/q0 �= 0 or qd

2 = 1 or (q1 = q0 and qd
4 �= 1)

)
(23)

and

(
{d}q1/q0 �= 0 or qd

4 = 1 or (q3 = q0 and qd
2 �= 1)

)
, (24)

and C (B) is commutative if and only if

(
{d}q0q2 �= 0 or qd

3 = 1 or (q4 = q−1
0 and qd

1 �= 1)
)

(25)

and

(
{d}q0q4 �= 0 or qd

1 = 1 or (q2 = q−1
0 and qd

3 �= 1)
)

. (26)

Proof It follows from Lemma 5.1 and Lemma 5.2 that C (A) is commutative if
and only if every element of XA commutes with every element of YA. A non-zero
element of YA cannot have degree (m, 0) since q0

0 = 1, and it cannot have degree
(0, n) by Lemma 3.1. Thus any non-zero Y ∈ YA is of the form

Y ≡ c1Bn Am + c2SBn−1Am−1 + c3Bn−1Am−1

for some n with qn
0 �= 1 and with coefficients that satisfy

⎡

⎣
1 − qn

0 0 0
−{n}q0q2 1 − qn−1

0 q3 0
−{n}q0q4 0 1 − qn−1

0 q1

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ = 0. (27)

Since q1 �= q3 (because q is generic), the matrix in (27) has one of the forms

⎡

⎣
∗ 0 0
? ∗ 0
? 0 ∗

⎤

⎦ ,

⎡

⎣
∗ 0 0
? 0 0
? 0 ∗

⎤

⎦ ,

⎡

⎣
∗ 0 0
? ∗ 0
? 0 0

⎤

⎦ ,

where ∗ indicates a non-zero element and ? indicates an element that may or may
not be zero. Thus the solutions to (27) are
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c1 = c2 = c3 = 0 if qn−1
0 q3, qn−1

0 q1 �= 1
c1 = c3 = 0 if qn−1

0 q3 = 1, qn−1
0 q1 �= 1

c1 = c2 = 0 if qn−1
0 q3 �= 1, qn−1

0 q1 = 1.

Since it is impossible that both c2 and c3 are non-zero, Y must actually have the form
c2SBn−1Am−1 or c3T Bn−1Am−1. Thus YA can be decomposed as Y S

A ∪Y T
A ∪ {0},

where

Y S
A =

{
cSBn−1Am−1 ∈ YA; qn

0 �= 1, qn−1
0 q3 = 1

}

Y T
A =

{
cT Bn−1Am−1 ∈ YA; qn

0 �= 1, qn−1
0 q1 = 1

}

(here, c ranges over C and m, n range over N+), and C (A) is commutative if and
only if every element of XA commutes with every element of Y S

A and Y T
A .

Consider firstY S
A and the conditions (23). If {d}q3/q0 �= 0 then qd

3 �= 1 or q3 = q0
and it cannot be that qn

0 �= 1 and qn−1
0 q3 = 1; thus Y S

A = ∅. Otherwise, there is an
r3 ∈ {2, . . . , d} such that q3 = qr3

0 , and

Y S
A =

{
cSBn−1Am−1; qn−1+r3

0 = 1
}

is non-empty. Now pick any X ∈ XA. If X = b1Ak then X obviously commutes
with every element in Y S

A . Otherwise, X has one of the forms

b1Bl , b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1

with d|l. Then the commutator of X with an element of Y S
A is (note that l = n = 1

is impossible and use (6))

[X, cSBn−1Am−1] ≡ b1c(ql
2 − 1)SBl+n−1Ak+m−1. (28)

Thus if {d}q3/q0 �= 0, qd
2 = 1 then X commutes with everything in Y S

A . Finally, if
q1 = q0 and qd

4 �= 1 then Lemma 3.1 implies that b1 = 0, so that the commutator
(28) is 0, and again X commutes with everything in Y S

A .
On the other hand, if none of the conditions

qd
3 �= 1, q3 = q0, qd

2 = 1, (q1 = q0 and qd
4 �= 1)

is satisfied, then

Bd A2 + {d}q0q2

1 − qd−1+r3
0

SBd−1A + bT T Bd−1A ∈ XA,

where r3 ∈ {2, . . . , d} is such that q3 = qr3
0 , and
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bT =
{

{d}q0q4 /(1 − qd−1
0 q1) if q1 �= q0

arbitrary if q1 = q0

(bT arbitrary if q1 = q0 works because then qd
4 = 1 and thus {d}q0q4 = 0 since q

generic implies q4 �= q−1
0 ). This element of XA does not commute with SB2d−r3

in Y S
A ; their commutator is (qd

2 − 1)SB3d−r3 A2. Thus it has been shown that every
element of XA commutes with every element of Y S

A if and only if (23) is satisfied.
To see that every element of XA commutes with every element of Y T

A consider
the isomorphism hST : F/J (q) → F/J (q̃), where q̃ = (q0, q3, q4, q1, q2,

1
q5

),
as defined in (18). Note that q̃ is generic, q̃0 is a root of unity with d being the smallest
positive integer such that (q̃0)d = 1 and q̃ satisfies (23) if and only if q satisfies (24).
Furthermore, hST (XA(q)) = XA(q̃) and hST (Y T

A (q)) = Y S
A (q̃). Thus, using what

has already been proved,

q satisfies (24) ⇐⇒ q̃ satisfies (23) ⇐⇒
every X̃ ∈ XA(q̃) commutes with every Ỹ ∈ Y S

A (q̃) ⇐⇒
every X ∈ XA(q) commutes with every Y ∈ Y T

A (q).

This concludes the proof of the first part of the theorem, namely that C (A) is com-
mutative if and only if (23) and (24) are satisfied.

For the second part of the theorem, consider the isomorphism h AB : F/J (q) →
F/J (q̂), where q̂ = ( 1

q0
, q4, q3, q2, q1, q5), as defined in (17). Note that q̂ is

generic, q̂0 is a root of unity with d being the smallest positive integer such that
(q̂0)d = 1 and q̂ satisfies (23) and (24) if and only if q satisfies (25) and (26).
Moreover, h AB(C (B)(q)) = C (A)(q̂) and thus using what has already been proved,

q satisfies (25) and (26) ⇐⇒ q̂ satisfies (23) and (24) ⇐⇒
C (A)(q̂) is commutative ⇐⇒ C (B)(q) is commutative.
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