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Abstract Many authors have studied Riemannian manifolds admitting a geodesic
mapping. Fundamental results of the theory of geodesic mapping were settled by
Sinyukov. In the present paper we analyze the Sinykov equations of the geodesic
mappings of Riemannian manifolds by using the curvature operator of the second
kind. This approach to the study of geodesic mapping is essentially new.

1 Introduction

In a Riemannian manifold, the Riemannian curvature tensor R defines two kinds of
curvature operators: the operator

◦
R offirst kind, acting on2-forms, and the operator

◦
R

of second kind, acting on symmetric 2-tensors. In our paper we analyze the Sinyukov
equations of geodesic mappings of Riemannian manifolds by using the curvature
operator of the second kind.
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2 Equation Systems of Geodesic Mappings and Einstein
Manifolds

The condition, for which an n-dimensional (n ≥ 2) Riemannian manifold (M, g)
admits a geodesic mapping onto another n-dimensional Riemannian manifold
(M̄, ḡ), has the following form of differential equations of Cauchy type in covariant
derivatives

∇kai j = λig jk + λ jgik, (1)

n∇ jλi = μgi j − aik Rk
j + akl Rik jl , (2)

(n − 1)∇iμ = −2(n + 1)λk Rk
i + akl

(
∇i Rkl − 2gk j∇ j Rl

i

)
. (3)

These equations were obtained by Sinyukov more than fifty years ago (see [1–4]).
A geodesic mapping is non trivial (or non affine) if λ �≡ const.
Here a = (ai j ) is a regular symmetric 2-tensor, Ric = (Ri j ) is the Ricci ten-

sor whose components are given by R jl = gik Ri jkl for local components of the
Riemannian curvature tensor R = (Ri jkl); λi and μ are defined in the following way

λi = 1

2
∇i (g

klakl); (4)

μ = gkl∇kλl . (5)

With respect to the above Eqs. (4) and (5) Eq. (2) can be rewritten as

n ∇i∇ jλ = �λ · gi j − aik Rk
j + akl Rik jl , (6)

where
�λ = gi j∇i∇ jλ

is the Laplace operator acting on the scalar function λ = 1
2 gklakl .

From (6) follows (see [4, p. 138]):

aik Rk
j = Rk

i ak j . (7)

If we suppose that the manifold (M, g) is an Einstein manifold, then from Eq. (3)
we conclude the following

(n − 1)∇i�λ = −2
n + 1

n
S ∇iλ (8)

for the scalar curvature S (= const). After multiplying the left and right sides of (8)
by ∇ iλ and after integration over the compact manifold we have
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(n − 1)
∫

M
(�λ)2dν = 2

n + 1

n
S

∫

M

(
∇iλ · ∇ iλ

)
dν, (9)

because ∇i
(
�λ · ∇ iλ

) = ∇i�λ · ∇ iλ + (�λ)2. From (9) we conclude that S > 0.
This is in accordance with the paper Couty [5].

3 An Algebraic Operator Associated with the Curvature Tensor

Wewill consider the space of symmetric 2-forms S2M over theRiemannianmanifold
(M, g). In particular, the tensor a = (ai j ) is a smooth cross-section of S2M . The
space S2M (see [6]) has the pointwise orthogonal decomposition

S2M = C∞M · g ⊕ S2
0 M,

where C∞M is a space C∞-functions on M and S2
0 M is a subspace of the space

S2M , which contains symmetric 2-forms with zero traces.
We introduce (see [7, 8]) a curvature operator of second kind

◦
R: S2M → S2M

with components

Ri j
kl = 1

2

(
gim R j

kml + g jm Ri
kml

)

for the curvature tensor R = (Ri
jkl), whose actions are defined by the formulas

◦
R(bi j ) = Rik jlbkl for any smooth cross-section b = (bi j ) of S2M . On the basis
of the curvature operator of second kind (see [9]) we can define a linear symmetric
operator B2: S2M → S2

0 M with components

Bi j
kl = 1

2

(
gim R j

kml + g jm Ri
kml

)
+ 1

4

(
δi

k R j
l + δ

j
k Ri

l + δi
l R j

k + δ
j
l Ri

k

)
(10)

for the Ricci operator Ric∗ = (gim Rmj ). From (10) we have

B2(bi j ) = Rik jlb
kl − 1

2

(
Rm

i bmj + Rm
j bmi

)
(11)

for any smooth section b = (bi j ) on S2M . The operator B2: S2M → S2
0 M is a linear

and symmetric operator. Then there exists a pointwise orthogonal decomposition
S2M = I m B2 ⊕ K er B2 of the space S2M of symmetric 2-tensors on M . It is
obvious that C∞M · g ⊂ K er B2 and I m B2 ⊂ S2

0 M . The following theorem holds.

Theorem 3.1 If a complete Riemannian manifold (M, g) of dimension n ≥ 2 admits
geodesic mapping is a non affine and the tensor a = (ai j ) belongs to the kernel of the
symmetric linear operator B2: S2M → S2

0 M then (M, g) is conformal to a sphere
Sn in (n + 1) dimensional Euclidean space.
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Proof According to (11) we can rewrite Eq. (6) in the following form

∇i∇ jλ − 1

n
�λgi j = −B2(ai j ). (12)

If we assume that B2(ai j ) = 0 in (12), then we have the following

∇i∇ jλ = 1

n
�λgi j . (13)

We note that (see [10]) the complete Riemannian manifold (M, g) of dimension
n ≥ 2 is conformal to a sphere Sn in (n + 1)-dimensional Euclidean space if on
(M, g) exists a non-constant function λ ∈ C∞M satisfying Eq. (13). Therefore a
complete Riemannian manifold (M, g) of dimension n ≥ 2 admitting geodesic
mappings onto another n-dimensional Riemannian manifold (M̄, ḡ) is conformal to
a sphere Sn in (n + 1)-dimensional Euclidean space if the tensor a = (ai j ) from
the equations of geodesic mappings (1–3) belongs to the kernel K er B2 of the linear
operator B2: S2M → S2

0 M .

As a corollary to the Theorem 3.1, we can deduce the following theorem.

Theorem 3.2 If a compact Riemannian manifold (M, g) of dimension n ≥ 2 admits
geodesic mapping is a non affine and the tensor a = (ai j ) belongs to the kernel of the
symmetric linear operator B2: S2M → S2

o M then (M, g) is isometric to a sphere
Sn in (n + 1)-dimensional Euclidean space.

Proof It is know (see [11]) that if a compact Riemannian manifold (M, g) of
n-dimension of n ≥ 2 admits an infinitesimal conformal transformation which is
not an isometry:

L Xgi j = 2ρgi j (14)

for ρ �= 0, and if the vector field X is a gradient of a scalar function then (M, g)
is isometric to a Euclidean n-sphere (see [11]). Here L X is the operator of the Lie
derivation with respect to X . If we assume that X = grad λ then (14) we can rewritten
as ∇i∇ jλ = 1

n �λ gi j . Then our Theorem 3.2 follows from Theorem 3.1 and the
above result by Lichnerowicz.

Remark The Lichnerowicz Laplacian (see [6], p. 54) acting on symmetric covariant
2-tensor is �L = �̄−2B2 where we denote by �̄ the rough Bochner Laplacian (see
[6], p. 52). Then B2(b) = 0 if and only if �Lb = �̄b for a symmetric covariant
2-tensor b.
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4 Principle Directions of the Ricci Tensor in the Case
of Degenerate Geodesic Mappings

From Eq. (7) we conclude that the Ricci tensor Ric = (Ri j ) can be diagonalised
in any point x ∈ M in the same orthonormal basis {e1, . . . , en} as the symmetric
non-degenerate tensor a = (ai j ). Therefore in any point x ∈ M vectors of the
orthonormal basis {e1, . . . , en} of the tangent space Tx M define principle directions
not only of the tensor a = (ai j ), but also principle directions of the Ricci tensor
(see [12, § 34]). In this case the basis {e1, . . . , en} gets an invariant meaning for the
manifold (M, g), independent of the tensor a = (ai j ).

The following theorem holds.

Theorem 4.1 Let the Riemannian manifold (M, g) of dimension n ≥ 2 admit a
geodesic mapping and the tensor a = (ai j ) belong to the kernel of the symmetric
linear operator B2 : S2M → S2

0 M. If in each point x ∈ M the sectional curvature
K (ei , e j ) > 0 (or K (ei , e j ) < 0) to the direction ei ∧ e j for the ortonormal basis
{e1, . . . , en} of the vectors of principle directions of the Ricci tensor then the geodesic
mapping is an affine mapping.

Proof The quadratic form Φ2(bi j ) = g(B2(bi j ), bi j ) can be written in the following
from (see [6, § 16.9]).

Φ2(bi j ) = −
∑
i< j

K (ei , e j )(bi − b j )
2,

where K (ei , e j ) is the sectional curvature to the direction ei ∧ e j for any vectors
of the orthonormal basis {e1, . . . , en} of eigenvectors of the tensor b = (bi j ) of the
space Tx M in any point x ∈ M i.e. b(ei , e j ) = biδi j , where δi j is the Kroneker
symbol. Then from the condition B2(ai j ) = 0 follows Φ2(ai j ) = 0 and under the
condition K (ei , e j ) > 0 (or K (ei , e j ) < 0) from the equality Φ2(gi j ) = 0 follows
that a(ei , e j ) = aδi j for the corresponding ortonormal basis {e1, . . . , en} of Tx M in
any point x ∈ M . This means that the geodesic mappings is an affine mapping (see
[3, p. 93]).
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