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Abstract We compare two ways of interpreting higher order connections. The
geometric approach lies in the decomposition of higher order tangent space into the
horizontal and vertical structures while the jet-like approach considers a higher order
connection as the section of a jet prolongation of a fibered manifold. Particularly, we
use the Ehresmann prolongation of a general connection and study the result from
the point of view of geometric theory. We pay attention to linear connections, too.

1 Introduction

Several models of real objects are given as a smooth manifold and one or more linear
connections, e.g. material elasticity, see [1]. To obtain a manifold with just one
characterization, one has to consider a concept of a higher order connection. In this
paper, we recall the basic concepts of higher order connections from both geometric
and jet–like point of view, Sects. 2 and 4. Let us note that the original ideas are those
of Ehresmann, i.e. the definition of a connection bymeans of a horizontal distribution
in a tangent space, the double fibered manifolds and holonomic and nonholonomic
jets of fibered mappings. The first idea can be found in [2], the second one in [3].
The second idea was used for the case of vector bundles by Pradines, [4]. Finally, the
concept of holonomic and nonholonomic jets is widely studied in [5–9]. The first idea
was extended in [10], where the main formulae of higher order objects in multiple
tangent spaces are derived, see also [11]. In this paper we compare the jet–like and
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geometric approach. We also recall a product of general connections which leads
to the so called Ehresmann prolongation and show the reason why this operation is
outstanding, especially concerning semiholonomic connections, Sect. 6.1. We study
Ehresmann prolongation of a connection from both points of view and show the
analogues in both approaches.

2 Jet Prolongation of a Fibered Manifold

Classical theory reads that r -th holonomic prolongation Jr Y of Y → M is the space
of r–jets of local sections M → Y . The nonholonomic prolongation ˜Jr Y of Y → M
is defined by the following iteration:

1. ˜J 1Y = J 1Y, i.e. ˜J 1Y is a space of 1-jets of sections M → Y over the target
space Y .

2. ˜Jr Y = J 1(˜Jr−1Y → M).

Clearly, we have an inclusion Jr Y ⊂ ˜Jr Y given by jr
x γ �→ j1x ( jr−1γ). Further, r -th

semiholonomic prolongation J
r
Y ⊂ ˜Jr Y is defined by the following induction. First,

by β1 = βY we denote the projection J 1Y → Y and by βr = β
˜Jr−1Y the projection

˜Jr Y = J 1
˜Jr−1Y → ˜Jr−1Y, r = 2, 3, . . . . If we set J

1
Y = J 1Y and assume we

have J
r−1

Y ⊂ ˜Jr−1Y such that the restriction of the projection βr−1 : ˜Jr−1Y →
˜Jr−2Y maps J

r−1
Y into J

r−2
Y, we can construct J 1βr−1 : J 1 J

r−1
Y → J 1 J

r−2
Y

and define

J
r
Y = {A ∈ J 1 J

r−1
Y ; βr (A) = J 1βr−1(A) ∈ J

r−1
Y }.

If we denote by FMm,n the category with objects composed of fibered man-
ifolds with m-dimensional bases and n-dimensional fibres and morphisms formed
by locally invertible fiber-preserving mappings, then, obviously, Jr , J

r
and ˜Jr are

bundle functors onFMm,n .
Alternatively, one can define the r -th order semiholonomic prolongation J

r
Y by

means of natural target projections of nonholonomic jets, see [9]. For r ≥ q ≥ 0
let us denote by πr

q the target surjection πr
q : ˜Jr Y → ˜J qY with πr

r being the
identity on ˜Jr Y. We note that the restriction of these projections to the subspace of
semiholonomic jet prolongations will be denoted by the same symbol. By applying
the functor J k wehave also the surjections J kπr−k

q−k : ˜Jr Y → ˜J qY and, consequently,

the element X ∈ ˜Jr Y is semiholonomic if and only if

(J kπr−k
q−k)(X) = πr

q(X) for any integers 1 ≤ k ≤ q ≤ r. (1)

In [9], the proof of this property can be found and the author finds it useful when
handling semiholonomic connections and their prolongations.

http://dx.doi.org/10.1007/978-3-642-55361-5_6
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Now let us recall local coordinates on higher order jet prolongations of a fibered
manifold Y → M . Let us denote by xi , i = 1, . . . , m the local coordinates on
M and y p, p = 1, . . . , n the fiber coordinates of Y → M . We recall that the
induced coordinates on the holonomic prolongation Jr Y are given by (xi , y p

α ),where
α is a multiindex of range m satisfying |α| ≤ r. Clearly, the coordinates y p

α on
Jr Y are characterized by the complete symmetry in the indices of α. Having the
nonholonomic prolongation ˜Jr Y constructed by the iteration, we define the local
coordinates inductively as follows:

(1) Suppose that the induced coordinates on ˜Jr−1Y are of the form

(xi , y p
k1...kr−1

), k1, . . . , kr−1 = 0, 1, . . . , m.

(2) We define the induced coordinates on ˜Jr Y by

(xi , y p
k1...kr−10

= y p
k1...kr−1

, y p
k1...kr−1i = ∂

∂xi
y p

k1...kr−1
),

i.e. induced coordinates are partial derivatives are obtained as partial derivatives
of fiber coordinates with respect to the base coordinates.

It remains to describe coordinates on the semiholonomic prolongation J
r
Y . Let

(k1, . . . , kr ), k1, . . . , kr = 0, 1, . . . , m be a sequence of indices and denote by
〈k1, . . . , ks〉, s ≤ r the sequence of non-zero indices in (k1, . . . , kr ) respecting the
order. Then the definition of J

r
Y reads that the point (xi , y p

k1...kr
) ∈ ˜Jr Y belongs to

J
r
Y if and only if y p

k1...kr
= y p

l1...lr
whenever 〈k1, . . . , kr 〉 = 〈l1, . . . , lr 〉

3 Iterated Tangents

Another concept, in this paper called geometric, of a connection rises from the theory
of iterated tangent spaces. Let us recall that the bundle T k M → T k−1M is equipped
with the structure of a k-fold vector bundle. Particularly, T k M admits k different
projections to T k−1M ,

ρs := T k−sπs : T k M → T k−1M,

where πs is the natural projection T s M → T s−1M , s = 1, 2, . . . , k. Each pro-
jection defines a vector bundle with basis T k−1M and the total space is com-
posed of 2k−1n-dimensional vector spaces as fibers. The local coordinates on the
neighborhoods

T sU ⊂ T s M, where T s−1U = πs(T
sU ), s = 1, 2, . . . , k,
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are derived from coordinates, or coordinate mappings, (ui ), which are given on the
neighborhood U ⊂ M :

U : (ui ), i = 1, 2, . . . , n,

T U : (ui , ui
1), where ui := ui ◦ π1, ui

1 := dui ,

T 2U : (ui , ui
1, ui

2, ui
12),

where ui := ui ◦ π1π2, ui
1 := dui ◦ π2, ui

2 := d(ui ◦ π1), ui
12 := d2ui ,

etc.

Proposition 3.1 Coordinate mappings given on the neighborhood T s−1U induce
coordinate mappings on the neighborhood T sU with respect to the projection πs by
adding the differentials of these mappings.

Local coordinates are obtained by the following principle:
to the coordinates of a point of a manifold we attach the coordinates of the vector
tangent to the manifold at that point. We use the following notation : the coordinates
of a neighborhood T kU consist of two copies of local coordinates on T k−1U where
the second copy is equipped with an additional subscript k . This principle is suitable
in the sense that the coordinates with index s are recognized as the fiber coordinates
for projections ρs, s = 1, 2, . . . , k, i.e. the coordinates with index s disappear after
the application of projection ρs .

The coordinate form of the three projections ρs : T 3U → T 2U, s = 1, 2, 3, is
given by the following diagram:

(ui , ui
1, ui

2, ui
12, ui

3, ui
13, ui

23, ui
123)

ρ1 ↙ ρ2 ↓ ↘ ρ3

(ui , ui
2, ui

3, ui
23) (ui , ui

1, ui
3, ui

13) (ui , ui
1, ui

2, ui
12).

Remark 3.1 Let us note that the semiholonomity condition is connected to the notion
of the osculating bundle, see [11], and can be defined as the equalizer of all possible
projections, which corresponds to (1).

4 Connections

We start with the jet–like approach to connections. This rather structural description
is quite suitable for determining natural operators on connections, for details see [5].

Definition 4.1 A general connection on the fibered manifold Y → M is a section
Γ : Y → J 1Y of the first jet prolongation J 1Y → Y.

Further generalization of this idea leads us to the definition of r -th order connection,
which is a sectionof r -th order jet prolongationof afiberedmanifold.According to the
character of the target space we distinguish holonomic, semiholonomic and nonholo-
nomic general connections. The coordinate form of a second order nonholonomic
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connection Δ : Y → ˜J 2Y is given by

y p
i = F p

i (x, y), y p
0i = G p

i (x, y), y p
i j = H p

i j (x, y),

where F, G, H are arbitrary smooth functions. In case of linear connections all
functions are linear in fiber coordinates.

Let us now recall the geometric concept of a connection and its extension to higher
order connections. The following section is based on the paper [11].

Definition 4.2 A connection on bundle π : M1 → M is defined by the structure
�h ⊕ �v on a manifold M1 where �v = ker T π is vertical distribution tangent to
the fibers and �h is horizontal distribution complementary to the distribution �v .
The transport of the fibers along the path γ ⊂ M is realized by the horizontal lifts
given by the distribution �h on the surface π−1(γ). If the bundle is a vector one and
the transport of fibers along an arbitrary path is linear, then the connection is called
linear.

We will assume that the base manifold M is of dimension n and the fibers are of
dimension r . Then

dim�h = n , dim�v = r .

On the neighborhood U ⊂ M1, let us consider local base and fiber coordinates:

(ui , uα) , i = 1, 2, . . . , n ; α = n + 1, . . . , n + r.

Base coordinates (ui ) are determined by the projection π and the coordinates
(ūi ) on a neighborhood Ū = π(U ), ui = ūi ◦ π .

Definition 4.3 On a neighborhood U ⊂ M1 we define a local (adapted) basis of the
structure �h ⊕ �v ,

(Xi Xα) =
(

∂

∂u j

∂

∂uβ

)

·
(

δ
j
i 0

Γ
β

i δ
β
α

)

,

(

ωi

ωα

)

=
(

δi
j 0

−Γ α
j δα

β

)

·
(

du j

duβ

)

.

The horizontal distribution �h is the linear span of the vector fields (Xi ) and the
annihilator of the forms (ωα),

Xi = ∂i + Γ
β

i ∂β, ωα = duα − Γ α
i dui .

Definition 4.4 A classical affine connection on manifold M is seen as a linear con-
nection on the bundle π1 : TM → M . On the tangent bundle TM → M one can
define the structure�h ⊕�v. The indices in the formulas are denoted by Latin letters
all of them ranging from 1 to n. The functions Γ α

i , Xi ,ωα are of the form (in Γ α
i

the sign is changed to comply with the classical theory) :
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Γ α
i � −Γ i

jkuk
1 ,

Xi = ∂i + Γ α
i ∂α � Xi = ∂i − Γ k

i j u
i
1∂

1
k ,

ωα = duα − Γ α
i dui � Ui

12 = ui
12 + Γ i

jkuk
1u j

2 .

Definition 4.5 Higher order connections are defined as follows: on tangent bundle
TM the structure � ⊕ �1 is defined where ker T ρ1 = �1, on T (TM) the structure
Δ ⊕ Δ1 ⊕ Δ2 ⊕ Δ12 is defined where ker T ρs = Δs ⊕ Δ12 , s = 1, 2, etc.

5 Connections on Two-Fold Fibered Manifolds

More generally, one can define a second order connection by means of a two-fold
fibered manifold. Note that the Definition 4.5 is a special case of the following. A
two-fold fibered manifold is a commutative diagram

M
ρ2

����
��

��
�� ρ1

����
��

��
��

M1

π1 ����
��

��
��

M2

π2����
��

��
��

M

where ρ1, ρ2 and π1,π2—four fibered manifolds
dim M = n, dimM1 = n + r1, dimM2 = n + r2, dimM = n + r1 + r2 + r12.
The double projection

π = π1 ◦ ρ2 = π2 ◦ ρ1 : M → M

divides a manifoldM to n-parameter family of fibers of dimensions (r1 + r2 + r12).
Each fiber carries structure of another two fibers of dimensions r1 + r12 and r2 + r12
and these two fibers have the common intersection of dimension r12.

A two-fold fibered manifold is called a vector bundle if both fibrations π1, π2, ρ1
and ρ2—form vector bundles.

An example of a two-fold fibered manifold is the second order tangent bundle
T 2M of a manifold M . In this case n = r1 = r2 = r12.

Definition 5.1 A connection on a two-fold fibered manifold is defined by a structure
on a manifold M :

Δ ⊗ Δ1 ⊗ Δ2 ⊗ Δ12 , (2)

dimΔ = n, dimΔ1 = r1 , dimΔ2 = r2 , dimΔ12 = r12 ,
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KerT ρ2 = Δ2 ⊕ Δ12 , KerT ρ1 = Δ1 ⊕ Δ12

T ρ2(Δ ⊕ Δ1) = TM1, T ρ1(Δ ⊕ Δ2) = TM2 ,

T πΔ = TM.

Remark 5.1 A connection on a two-fold vector fibered manifold is called linear if
the structure (2) induces on the manifolds π1,π2, ρ1 and ρ2 linear connections.

Remark 5.2 Similarly, one can define a connection on a k–fold fibered manifold. In
such case the commutative diagram would be represented by a k–dimensional cube.
Thesemanifolds would correspond to the k–th tangent bundle T k M of amanifold M .

On the neighborhoods

U ⊂ M , U1 = ρ2(U ) ⊂ M1, U2 = ρ1(U ) ⊂ M2, U = π(U ) ⊂ M

we have the coordinate systems
(ui , uα1 , uα2 , uα12), (ui , uα1), (ui , uα1), (ui ).

The transformation of coordinates on the neighborhoods U ,

(ui , uα1 , uα2 , uα12) � (ũi , ũα1 , ũα2 , ũα12) = (ai , aα1 , aα2 , aα12),

gives a Jacobi matrix:
⎛

⎜

⎜

⎜

⎝

ai
j 0 0 0

aα1
j aα1

β1
0 0

aα2
j 0 aα2

β2
0

aα12
j aα12

β1
aα12
β2

aα12
β12

⎞

⎟

⎟

⎟

⎠

.

See [10, 12]. Let us mention that the local (adapted) basis of such decomposition
is represented by a matrix of the form

⎛

⎜

⎜

⎜

⎝

δi
j 0 0 0

Γ
α1
j δα1

β1
0 0

Γ
α2
j 0 δα2

β2
0

Γ
α12
j Γ

α12
β1

Γ
α12
β2

δα12
β12

⎞

⎟

⎟

⎟

⎠

. (3)

The dual frame is given by the system of 1–forms:

ωi = dui ,

ωα1 = duα1 − Γ
α1

i dui ,

ωα2 = duα2 − Γ
α2

i dui ,

ωα12 = duα12 − Γ α12
α1

duα1 − Γ α12
α2

duα2 − Γ̄
α12

i dui ,
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where Γ
α12

i − Γ̄
α12

i = Γ
α12
β1

Γ
β1

i + Γ
α12
β2

Γ
β2

i .

In case of linear connection the elements of the matrix (3) are of the form

Γ
α1
j = Γ

α1
jβ1

uβ1, Γ
α2
j = Γ

α2
jβ2

uβ2 ,

Γ
α12
β1

= Γ
α12
β1β2

uβ2 , Γ
α12
β2

= Γ
α12
β2β1

uβ1 ,

Γ
α12
j = Γ

α12
jβ1β2

uβ1uβ2 + Γ
α12
jβ12

uβ12 , Γ̄
α12
j = Γ̄

α12
jβ1β2

uβ1uβ2 + Γ̄
α12
jβ12

uβ12 ,

Γ
α12
jβ1β2

− Γ̄
α12
jβ1β2

= Γ
α12
γ2β1

Γ
γ2
jβ2

,

where the coefficients depend on the base coordinates ui only.

6 Ehresmann Prolongation

First, let us now recall a concept of a product of two connections.
Given two higher order connections Γ : Y → ˜Jr Y and Γ : Y → ˜J sY, the

product of Γ and Γ is the (r + s)-th order connection Γ ∗ Γ : Y → ˜Jr+sY defined
by

Γ ∗ Γ = ˜J sΓ ◦ Γ .

Particularly, if both Γ and Γ are of the first order, then Γ ∗ Γ : Y → ˜J 2Y is
semiholonomic if and only if Γ = Γ and Γ ∗ Γ is holonomic if and only if Γ is
curvature-free, [9, 13].

As an example we show the coordinate expression of an arbitrary nonholonomic
second order connection and of the product of two first order connections. The
coordinate form of Δ : Y → ˜J 2Y is

y p
i = F p

i (x, y), y p
0i = G p

i (x, y), y p
i j = H p

i j (x, y),

where F, G, H are arbitrary smooth functions. Further, if the coordinate expressions
of two first order connections Γ, Γ : Y → J 1Y are

Γ : y p
i = F p

i (x, y), Γ : y p
i = G p

i (x, y), (4)

then the second order connection Γ ∗ Γ : Y → ˜J 2Y has equations

y p
i = F p

i , y p
0i = G p

i , y p
i j = ∂F p

i

∂x j
+ ∂F p

i

∂yq
Gq

j .

For linear connections, the coordinate form would be obtained by substitution
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F p
i = F p

iq yq ,

G p
i = G p

iq yq

in the Eq. (4), where F p
iq and G p

iq are functions of the base manifold coordinates xi .

For order three see [8].
In the above process, if Γ = Γ , the connection Γ ∗ Γ is called the Ehresmann

prolongation of Γ , iteratively we obtain the r–th Ehresmann prolongation of Γ . We
show that Ehresmann prolongation plays an important role in determining all natural
operators transforming first order connections into higher order connections. Let us
note that also natural transformations of semiholonomic jet prolongation functor J

r

are involved. To find the details about this topic we refer to [5–7]. For our purposes,
it is enough to consider r = 2. We use the notation of [5], where the map e :
J
2
Y → J

2
Y is obtained from the natural exchange map e� : J 1 J 1Y → J 1 J 1Y as

a restriction to the subbundle J
2
Y ⊂ J 1 J 1Y . Note thatwhile e� depends on the linear

connection � on M , its restriction e is independent of any auxiliary connections. We
remark, that originally the map e� was introduced by M. Modugno. We also recall

that J. Pradines introduced a natural map J
2
Y → J

2
Y with the same coordinate

expression.
Now we are ready to recall the following assertion, see [7] for the proof.

Proposition 6.1 All natural operators transforming first order connection Γ : Y →
J 1Y into second order semiholonomic connection Y → J

2
Y form a one parameter

family
Γ �→ k · (Γ ∗ Γ ) + (1 − k) · e(Γ ∗ Γ ), k ∈ R.

This shows the importance of Ehresmann prolongation in the theory of prolonga-
tions of connections.

7 Tangent Functor and Ehresmann Prolongation

If we apply the tangent functor T two times on a projection π : E → M and a section
σ : M → E we obtain

T π : TE → TM , T 2π : T 2E → T 2M,

T σ : TM → TE, T 2σ : T 2M → T 2E,

respectively. The mappings σ, T σ and T 2σ define the sections of fibered manifolds
π, T π and T 2π.

Let us consider local coordinates on the following manifolds in the form

on M, TM, T 2M : (xi ), (xi , xi
1), (xi , xi

1, xi
2, xi

12),

and on E, TE, T 2E : (y p), (y p, y p
1 ), (y p, y p

1 , y p
2 , y p

12).
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Let us also consider for a function f defined on a manifold M , its following differ-
entials on T 2M in local coordinate form:

f1
.= fi xi

1, f2
.= fi xi

2, f12
.= fi j x i

1x j
2+ fi xi

12, where fi = ∂ f

∂xi
, fi j = ∂2 f

∂xi∂x j
.

Furthermore, f1 = d f ◦ ρ1 , f2 = d f ◦ ρ2 , f12 = d 2 f . We use these notations in
the formulae bellow.

If the section σ is defined by local functions Γ p, then the sections T σ and T 2σ
are defined by its differentials Γ

p
1 , Γ p

2 and Γ
p
12,

σ : xi � y p = Γ p,

T σ : (xi , xi
1) � (y p, y p

1 ) = (Γ p, Γ
p
1 ),

T 2σ : (xi , xi
1, xi

2, xi
12) � (y p, y p

1 , y p
2 , y p

12) = (Γ p, Γ
p
1 , Γ

p
2 , Γ

p
12),

where Γ
p
1 = Γ

p
i xi

1, Γ
p
2 = Γ

p
i xi

2, Γ
p
12 = Γ

p
i j xi

1x j
2 + Γ

p
i xi

12. (5)

The casewhen the coefficientsΓ
p

i , Γ
p

i j in (5) are arbitrary functions, corresponds
to a nonholonomic connection on the fibered manifold π.

The case when Γ
p

i j = ∂Γ
p

i

∂x j
, where Γ

p
i are arbitrary functions corresponds to a

semiholonomic connection on the fibered manifold π.
The case when Γ

p
1 = dΓ p ◦ ρ1 , Γ

p
2 = dΓ p ◦ ρ2 , Γ

p
12 = d 2Γ p , corresponds

to a holonomic connection on the fibered manifold π.
The functionsΓ p

i , Γ
p

i j definenonholonomic, semiholonomicor holonomicEhres-
mann prolongation of a connection, respectively.

Remark 7.1 Nonholonomic prolongation induces a connection on a double fibered
manifold

J → E → M : y p
i � y p � xi .

On the fibered manifold E → M the fiber transformations are given by the Pfaff
system

ω p ≡ dy p − Γ
p

i dxi = 0,

more precisely, along a curve xi (t) – by the system of first order ODEs

ẏ p = Γ
p

i ẋ i . (6)

In case (Γ
p
12, xi

1, x j
2 , xi

12) � (ÿ p , ẋ i , ẋ j , ẍ i ) we obtain the system of second
order ODEs:

Γ
p
12 = Γ

p
i j xi

1x j
2 + Γ

p
i xi

12 � ÿ p = Γ
p

i j ẋ i ẋ j + Γ
p

i ẍ i .
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Considering the system (6), we obtain for fiber coordinates yα, yα
i system of first

order ODEs

{

ẏ p = Γ
p

i ẋ i ,

ẏ p
i = Γ

p
i j ẋ j .

The sections of fibers along a curve xi (t) are given.
The horizontal distribution �h is n-dimensional and described by the vector field

Xi = ∂i + Γ
p

i ∂p + Γ
p

i j ∂
j
p , where ∂i = ∂

∂xi
, ∂p = ∂

∂y p
, ∂

j
p = ∂

∂y p
j

.
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