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Hirokazu Nishimura

Abstract The fourth paper of our series of papers entitled “Differential Geometry
of Microlinear Frölicher Spaces” is concerned with jet bundles. We present three
distinct approaches together with transmogrifications of the first into the second and
of the second to the third. The affine bundle theorem and the equivalence of the three
approaches with coordinates are relegated to a subsequent paper.

1 Introduction

As the fourth of our series of papers entitled “Differential Geometry of Microlinear
Frölicher Spaces” [14–16], this paper will discuss jet bundles. Since the paper has
become somewhat too long as a single paper, we have decided to divide it into two
parts. In this first part we will present three distinct approaches to jet bundles in
the general context of Weil exponentiable and microlinear Frölicher spaces. In the
subsequent part [17], we will establish the affine bundle theorem in the second and
the third approaches, and we will show that the three approaches are equivalent, as
far as coordinates are available (i.e., in the classical context).

This part consisits of 7 sections. The first section is this introduction, while
the second section is devoted to some preliminaries. We will present three distinct
approaches to jet bundles in Sects. 3, 4 and 5. In Sect. 6 we will show how to translate
the first approach into the second, while Sect. 7 is devoted to the transmogrification
of the second approach into the third.

We have already discussed these three approaches to jet bundles in the context of
synthetic differential geometry, for which the reader is referred to our previous work
[8–13]. Now we have emancipated them to the real world of Frölicher spaces.
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2 Preliminaries

2.1 Frölicher Spaces

Frölicher and his followers have vigorously and consistently developed a general
theory of smooth spaces, often called Frölicher spaces for his celebrity, which were
intended to be the maximal class of spaces where smooth structures can live. A
Frölicher space is an underlying set endowed with a class of real-valued functions
on it (simply called structure functions) and a class of mappings from the set R
of real numbers to the underlying set (simply called structure curves) subject to
the condition that structure curves and structure functions should compose so as to
yield smooth mappings from R to itself. It is required that the class of structure
functions and that of structure curves should determine each other so that each of
the two classes is maximal with respect to the other as far as they abide by the above
condition.What ismost important amongmany nice properties about the categoryFS
of Frölicher spaces and smooth mappings is that it is cartesian closed, while neither
the category of finite-dimensional smooth manifolds nor that of infinite-dimensional
smooth manifolds modelled after any infinite-dimensional vector spaces such as
Hilbert spaces, Banach spaces, Fréchet spaces or the like is so at all. For a standard
reference on Frölicher spaces, the reader is referred to [2].

2.2 Weil Algebras and Infinitesimal Objects

2.2.1 The Category of Weil Algebras and the Category of Infinitesimal Objects

The notion of a Weil algebra was introduced by Weil himself in [18]. We denote
by W the category of Weil algebras, which is well known to be left exact. Roughly
speaking, each Weil algebra corresponds to an infinitesimal object in the shade. By
way of example, the Weil algebra R[X ]/(X2) (=the quotient ring of the polynomial
ring R[X ] of an indeterminate X over R modulo the ideal (X2) generated by X2)
corresponds to the infinitesimal object of first-order nilpotent infinitesimals, while
the Weil algebra R[X ]/(X3) corresponds to the infinitesimal object of second-order
nilpotent infinitesimals. Although an infinitesimal object is undoubtedly imaginary
in the real world, as has harassed both mathematicians and philosophers of the 17th
and the 18th centuries such as philosopher Berkley (because mathematicians at that
time preferred to talk infinitesimal objects as if they were real entities), each Weil
algebra yields its corresponding Weil functor or Weil prolongation on the category
of smooth manifolds of some kind to itself, which is no doubt a real entity. By way
of example, the Weil algebra R[X ]/(X2) yields the tangent bundle functor as its
corresponding Weil functor. Intuitively speaking, the Weil functor corresponding to
aWeil algebra stands for the exponentiation by the infinitesimal object corresponding
to the Weil algebra at issue. For Weil functors on the category of finite-dimensional
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smooth manifolds, the reader is referred to §35 of [5], while the reader can find a
readable treatment of Weil functors on the category of smooth manifolds modeled
on convenient vector spaces in §31 of [6]. In [14] we have discussed how to assign,
to each pair (X, W ) of a Frölicher space X and a Weil algebra W , another Frölicher
space X ⊗W called theWeil prolongation Weil prolongation of X with respect to W ,
which is naturally extended to a bifunctor FS × W → FS. And we have shown that,
given a Weil algebra W , the functor assigning X ⊗ W to each object X in FS and
f ⊗ idW to each morphism f in FS, namely, the Weil functor on FS corresponding
to W is product-preserving. The proof can easily be strengthened to

Theorem 2.1 The Weil functor on the category FS corresponding to any Weil alge-
bra is left exact.

There is a canonical projectionπ : X⊗W → X . Given x ∈ X , wewrite (X ⊗ W )x
for the inverse image of x under the mapping π . We denote by Sn the symmetric
group of the set {1, ..., n}, which is well known to be generated by n−1 transpositions
〈i, i + 1〉 exchanging i and i + 1(1 ≤ i ≤ n − 1) while keeping the other elements
fixed. Given σ ∈ Sn and γ ∈ X ⊗ WDn , we define γ σ ∈ X ⊗ WDn to be

γ σ = (
idX ⊗ W(d1,...,dn)∈Dn �→(dσ(1),...,dσ(n))∈Dn

)
(γ )

Given α ∈ R and γ ∈ X ⊗WDn , we define α ·
i
γ ∈ γ ∈ X ⊗WDn (1 ≤ i ≤ n) to be

α ·
i
γ = (

idX ⊗ W(d1,...,dn)∈Dn �→(d1,...,di−1,αdi ,di+1,...,dn)∈Dn
)
(γ )

Given α ∈ R and γ ∈ X ⊗ WDn , we define αγ ∈ X ⊗ WDn (1 ≤ i ≤ n) to be

αγ = (
idX ⊗ Wd∈Dn �→αd∈Dn

)
(γ )

for any d ∈ Dn . The restriction mapping γ ∈ TDn+1
x (M) �→ γ |Dn ∈ TDn

x (M) is
often denoted by πn+1,n .

Between X ⊗ WDn and X ⊗ WDn+1 there are 2n+ 2 canonical mappings:

X ⊗ WDn+1
di−−−→←−−−si

X ⊗ WDn (1 ≤ i ≤ n + 1)

For any γ ∈ X ⊗ WDn , we define si (γ ) ∈ X ⊗ WDn+1 to be

si (γ ) =
(
idX ⊗ W(d1,...,dn+1)∈Dn+1 �→(d1,...,di−1,di+1,...,dn+1)∈Dn

)
(γ )

For any γ ∈ X ⊗ WDn+1 , we define di (γ ) ∈ X ⊗ WDn to be

di (γ ) =
(
idX ⊗ W(d1,...,dn)∈Dn �→(d1,...,di−1,0,di ,...,dn)∈Dn+1

)
(γ )
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These operations satisfy the so-called simplicial identities (cf. Goerss and Jardine
[3]), so that the family of X ⊗ WDn ’s together with mappings si ’s and di ’s form a
so-called simplicial set.

Synthetic differential geometry (usually abbreviated to SDG), which is a kind
of differential geometry with a cornucopia of nilpotent infinitesimals, was forced
to invent its models, in which nilpotent infinitesimals were visible. For a standard
textbook on SDG, the reader is referred to [7], while he or she is referred to [4] for
the model theory of SDG constructed vigorously by Dubuc [1] and others. Although
we do not get involved in SDG herein, we will exploit locutions in terms of infini-
tesimal objects so as to make the paper highly readable. Thus we prefer to writeWD

and WD2 in place of R[X ]/(X2) and R[X ]/(X3) respectively, where D stands for
the infinitesimal object of first-order nilpotent infinitesimals, and D2 stands for the
infinitesimal object of second-order nilpotent infinitesimals. To Newton and Leibniz,
D stood for

{d ∈ R | d2 = 0}

while D2 stood for
{d ∈ R | d3 = 0}

More generally, given a natural number n, we denote by Dn the set

{d ∈ R|dn+1 = 0},

which stands for the infinitesimal object corresponding to the Weil algebra R[X ]/
(Xn+1). Even more generally, given natural numbers m, n, we denote by D(m)n the
infinitesimal object

{(d1, ..., dm) ∈ R
m |di1 ...din+1 = 0},

where i1, ..., in+1 shall range over natural numbers between 1 and m including both
ends. It corresponds to the Weil algebra R[X1, ..., Xm]/I , where I is the ideal gen-
erated by Xi1 ...Xin+1 ’s. Therefore we have

D(1)n = Dn

D (m)1 = D (m)

Trivially we have

D(m)n ⊆ D(m)n+1

It is easy to see that

D(m1)n × D(m2)1 ⊆ D(m1 + m2)n+1

D(m1 + m2)n ⊆ D(m1)n × D(m2)n
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By convention, we have
D0 = D0 = {0} = 1

A polynomial ρ of d ∈ Dn is called a simple polynomial of d ∈ Dn if every
coefficient of ρ is either 1 or 0, and if the constant term is 0. A simple polynomial ρ
of d ∈ Dn is said to be of dimension m, in notation dim(ρ) = m, provided that m is
the least integer with ρm+1 = 0. By way of example, letting d ∈ D3, we have

dim (d) = dim (d + d2) = dim (d + d3) = 3

dim (d2) = dim (d3) = dim (d2 + d3) = 1

We will writeWd∈D2 �→d2∈D for the homomorphism of Weil algebras R[X ]/(X2)

→ R[X ]/(X3) induced by the homomorphism X → X2 of the polynomial ring
R[X ] to itself. Such locutions are justifiable, because the categoryW ofWeil algebras
in the real world and the category D of infinitesimal objects in the shade are dual to
each other in a sense. Thus we have a contravariant functor W from the category of
infinitesimal objects in the shade to the category of Weil algebras in the real world.
Its inverse contravariant functor from the category of Weil algebras in the real world
to the category of infinitesimal objects in the shade is denoted by D . By way of
example, DR[X ]/(X2) and DR[X ]/(X3) stand for D and D2, respectively. Since the
category W is left exact, the category D is right exact, in which we write D ⊕ D

′ for
the coproduct of infinitesimal objects D and D

′. For any two infinitesimal objects
D,D′ with D ⊆ D

′, we write i or iD→D′ for its natural injection of D into D
′. We

write m or mDn×Dm→Dn for the mapping
(
d, d ′) ∈ Dn × Dm �→ dd ′ ∈ Dn . Given

α ∈ R, we write

(
α·

i

)

Dn
for the mapping

(d1, ..., dn) ∈ Dn �→ (d1, ...di−1, αdi , di+1, ..., dn) ∈ Dn

To familiarize himself or herself with such locutions, the reader is strongly encour-
aged to read the first two chapters of [7], even if he or she is not interested in SDG
at all.

2.2.2 Simplicial Infinitesimal Objects

Definition 2.1 1. Simplicial infinitesimal spaces are objects of the form

D {m;S } = {(d1, ..., dm) ∈ Dm |di1 ...dik = 0 for any (i1, ..., ik) ∈ S },

where S is a finite set of sequences (i1, ..., ik) of natural numbers with 1 ≤
i1 < · · · < ik ≤ m.

2. A simplicial infinitesimal object D {m;S } is said to be symmetric if (d1, ..., dm)

∈ D {m;S } and σ ∈ Sm always imply (dσ(1), ..., dσ(m)) ∈ D {m;S }.
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To give examples of simplicial infinitesimal spaces, we have

D(2) = D {2; (1, 2)}
D(3) = D {3; (1, 2), (1, 3), (2, 3)} ,

which are all symmetric.

Definition 2.2 1. The number m is called the degree of D {m;S }, in notation:
m = deg D {m;S }.

2. The maximum number n such that there exists a sequence (i1, ..., in) of natural
numbers of length n with 1 ≤ i1 < · · · < in ≤ m containing no subsequence in
S is called the dimension of D {m;S }, in notation: n = dim D {m;S }.

By way of example, we have

deg D(3) = deg D {3; (1, 2)} = deg D {3; (1, 2), (1, 3)} = deg D3 = 3

dim D(3) = 1

dim D {3; (1, 2)} = dim D {3; (1, 2), (1, 3)} = 2

dim D3 = 3

It is easy to see that

Proposition 2.1 if n = dim D {m;S }, then

d1 + · · · + dm ∈ Dn

for any (d1, ..., dm) ∈ D {m;S }, so that we have the mapping

+D{m;S }→Dn
: D {m;S } → Dn

Definition 2.3 Infinitesimal objects of the form Dm are called basic infinitesimal
objects.

Definition 2.4 Given two simplicial infinitesimal objects D {m;S } and
D

{
m′;S ′}, a mapping

ϕ = (ϕ1, ..., ϕm′) : D {m;S } → D
{
m′;S ′}

is called a monomial mapping if every ϕ j is a monomial in d1, ..., dm with
coefficient 1.

Notation 2.2 We denote by D {m}n the infinitesimal object

{(d1, ..., dm) ∈ Dm |di1 ...din+1 = 0},

where i1, ..., in+1 shall range over natural numbers between 1 and m including both
ends.
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2.2.3 Quasi-Colimit Diagrams

Definition 2.5 A diagram in the category D is called a quasi-colimit diagram if its
dually corresponding diagram in the category W is a limit diagram.

Theorem 2.3 (The Fundamental Theorem on Simplicial Infinitesimal Objects) Any
simplicial infinitesimal objectD of dimension n is the quasi-colimit of a finite diagram
whose objects are of the form Dk’s (0 ≤ k ≤ n) and whose arrows are natural
injections.

Proof Let D = D(m;S ). For any maximal sequence 1 ≤ i1 < · · · < ik ≤ m of
natural numbers containing no subsequence in S (maximal in the sense that it is
not a proper subsequence of such a sequence), we have a natural injection of Dk

into D. By collecting all such Dk’s together with their natural injections into D, we
have an overlapping representation of D in terms of basic infinitesimal spaces. This
representation is completed into a quasi-colimit representation of D by taking Dl

together with its natural injections into Dk1 and Dk2 for any two basic infinitesimal
spaces Dk1 and Dk2 in the overlapping representation of D, where if Dk1 and Dk2

come from the sequences 1 ≤ i1 < · · · < ik1 ≤ m and 1 ≤ i1 < · · · < i k2 ≤ m
in the above manner, then Dl together with its natural injections into Dk1 and Dk2

comes from the maximal common subsequence 1 ≤ ĩ1 < · · · < ĩl ≤ m of both the
preceding sequences of natural numbers in the above manner. By way of example,
the above method leads to the following quasi-colimit representation of D=D {3}2:

D2

i1 ↗ ↖ i2
D ↓ i12 D

i1 ↓ D(3)2 ↓ i1
D2 i13 ↗ ↖ i23 D2

i2 ↖ ↗ i2
D

In the above representation i jk’s and i j ’s are as follows:

1. the j-th and k-th components of i jk(d1, d2) ∈ D(3)2 are d1 and d2, respectively,
while the remaining component is 0;

2. the j-th component of i j (d) ∈ D2 is d, while the other component is 0.

Definition 2.6 The quasi-colimit representation of D depicted in the proof of the
above theorem is called standard.

Remark 2.1 Generally speaking, there are multiple ways of quasi-colimit represen-
tation of a given simplicial infinitesimal space. Byway of example, two quasi-colimit
representations of D {3; (1, 3), (2, 3)} (= (D×D)⊕D)were given inLavendhomme
[7, pp. 92–93] (§3.4, pp. 92–93), only the second one being standard.
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2.3 Weil-Exponentiability and Microlinearity

2.3.1 Weil-Exponentiability

We have no reason to hold that all Frölicher spaces credit Weil prolongations as
exponentiations by infinitesimal objects in the shade. Therefore we need a notion
which distinguishes Frölicher spaces that do so from those that do not.

Definition 2.7 A Frölicher space X is called Weil exponentiable if

(X ⊗ (W1 ⊗∞ W2))
Y = (X ⊗ W1)

Y ⊗ W2 (1)

holds naturally for any Frölicher space Y and any Weil algebras W1 and W2.

If Y = 1, then (1) degenerates into

X ⊗ (W1 ⊗∞ W2) = (X ⊗ W1) ⊗ W2

If W1 = R, then (1) degenerates into

(X ⊗ W2)
Y = XY ⊗ W2

The following three propositions have been established in our previous paper [14].

Proposition 2.2 Convenient vector spaces are Weil exponentiable.

Corollary 2.1 C∞-manifolds in the sense of [6] (cf. Section 27) are Weil exponen-
tiable.

Proposition 2.3 If X is a Weil exponentiable Frölicher space, then so is X ⊗ W for
any Weil algebra W .

Proposition 2.4 If X and Y are Weil exponentiable Frölicher spaces, then so is
X × Y .

The last proposition can be strengthened to

Proposition 2.5 The limit of a diagram in FS whose objects are all Weil-
exponentiable is also Weil-exponentiable.

Proof Let Γ be a diagram in FS. Given a Weil algebra W , we write Γ ⊗ W for the
diagram obtained from Γ by putting ⊗W to the right of every object in Γ and ⊗idW

to the right of every morphism in Γ .We have
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((Lim Γ ) ⊗ (W1 ⊗∞ W2))
Y

= (Lim (Γ ⊗ (W1 ⊗∞ W2)))
Y

= Lim (Γ ⊗ (W1 ⊗∞ W2))
Y

= Lim
(
(Γ ⊗ W1)

Y ⊗ W2

)

=
(
Lim (Γ ⊗ W1)

Y
)

⊗ W2

= (Lim (Γ ⊗ W1))
Y ⊗ W2

= ((Lim Γ ) ⊗ W1)
Y ⊗ W2

so that we have the coveted result.

We have already established the following proposition and theorem in in our
previous paper [14].

Proposition 2.6 If X is a Weil exponentiable Frölicher space, then so is XY for any
Frölicher space Y .

Theorem 2.4 Weil exponentiable Frölicher spaces, together with smooth mappings
among them, form a Cartesian closed subcategory FSWE of the category FS.

2.3.2 Microlinearity

The central object of study in SDG is microlinear spaces. Although the notion of a
manifold (=a pasting of copies of a certain linear space) is defined on the local level,
the notion of microlinearity is defined on the genuinely infinitesimal level. For the
historical account of microlinearity, the reader is referred to §§2.4 of [7] or Appendix
D of [4]. To get an adequately restricted cartesian closed subcategory of Frölicher
spaces, we have emancipated microlinearity from within a well-adapted model of
SDG to Frölicher spaces in the real world in [15]. Recall that

Definition 2.8 A Frölicher space X is called microlinear providing that any finite
limit diagram Γ in W yields a limit diagram X ⊗Γ in FS, where X ⊗Γ is obtained
from Γ by putting X⊗ to the left of every object in Γ and idX⊗ to the left of every
morphism in Γ .

Generally speaking, limits in the category FS are bamboozling. The notion of
limit in FS should be elaborated geometrically.

Definition 2.9 A finite cone Γ in FS is called a transversal limit diagram providing
that Γ ⊗ W is a limit diagram in FS for any Weil algebra W , where the diagram
Γ ⊗ W is obtained from Γ by putting ⊗W to the right of every object in Γ and
⊗idW to the right of every morphism in Γ . The limit of a finite diagram of Frölicher
spaces is said to be transversal providing that its limit diagram is a transversal limit
diagram.
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Remark 2.2 By taking W = R, we see that a transversal limit diagram in FS is
always a limit diagram in FS.

We have already established the following two propositions in [15].

Proposition 2.7 If Γ is a transversal limit diagram in FS whose objects are all Weil
exponentiable, then Γ X is also a transversal limit diagram for any Frölicher space
X, where Γ X is obtained from Γ by putting X as the exponential over every object
in Γ and over every morphism in Γ .

Proposition 2.8 If Γ is a transversal limit diagram in FS whose objects are all Weil
exponentiable, then Γ ⊗ W is also a transversal limit diagram for any Weil algebra
W .

The following results have been established in [15].

Proposition 2.9 Convenient vector spaces are microlinear.

Corollary 2.2 C∞-manifolds in the sense of [6] (cf. Section 27) are microlinear.

Proposition 2.10 If X is a Weil exponentiable and microlinear Frölicher space, then
so is X ⊗ W for any Weil algebra W .

Proposition 2.11 The class of microlinear Frölicher spaces is closed under transver-
sal limits.

Corollary 2.3 Direct products are transversal limits, so that if X and Y are micro-
linear Frölicher spaces, then so is X × Y .

Proposition 2.12 If X is a Weil exponentiable and microlinear Frölicher space, then
so is XY for any Frölicher space Y .

Proposition 2.13 If a Weil exponentiable Frölicher space X is microlinear, then any
finite limit diagram Γ in W yields a transversal limit diagram X ⊗ Γ in FS.

Theorem 2.5 Weil exponentiable and microlinear Frölicher spaces, together with
smooth mappings among them, form a cartesian closed subcategory FSWE,ML of the
category FS.

2.4 Convention

Unless stated to the contrary, every Frölicher space occurring in the sequel is assumed
to be microlinear andWeil exponentiable. We will fix a smooth mapping π : E → M
arbitrarily. In this paper we will naively speak of bundles simply as smoothmappings
of microlinear and Weil exponentiable Frölicher spaces, for which we will develop
three theories of jet bundles. We say that t ∈ M ⊗ WD is degenerate providing that
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t = (
i{x}→M ⊗ idWD

) (
t ′
)

for some x ∈ M and some t ′ ∈ {x} ⊗ WD . We say that t ∈ E ⊗ WD is vertical
provided that

(
π ⊗ idWD

)
(t) is degenerate. We write (E ⊗ WD)⊥ for the totality of

vertical t ∈ E ⊗ WD .

3 The First Approach to Jets

Definition 3.1 A 1-tangential over the bundle π : E → M at x ∈ E is a mapping
∇x : (M ⊗ WD)π(x) → (E ⊗ WD)x subject to the following three conditions:

1. We have (
π ⊗ idWD

)
(∇x (t)) = t

for any t ∈ (M ⊗ WD)π(x).
2. We have

∇x (αt) = α∇x (t)

for any t ∈ (M ⊗ WD)π(x) and any α ∈ R.
3. The diagram

(M ⊗ WD)π(x) idM ⊗ W(d,e)∈D×Dm �→ed∈D−−−−−−−−−−−−−−−−−−→ (M ⊗ WD)π(x) ⊗ WDm

∇x ↓ ↓ ∇x ⊗ idWDm

(E ⊗ WD)x
−−−−−−−−−−−−−−−−−−→
idE ⊗ W(d,e)∈D×Dm �→ed∈D (E ⊗ WD)x ⊗ WDm

is commutative, where m is an arbitrary natural number.

We note in passing that condition (1.2) implies that ∇x is linear by dint of Propo-
sition 10 in §1.2 of [7].

Notation 3.1 We denote by J1x (π) the totality of 1-tangentials ∇x over the bundle
π : E → M at x ∈ E. We denote by J1(π) the set-theoretic union of J1x (π)’s for all
x ∈ E. The canonical projection J1(π) → E is denoted by π1,0 with

π1 = (
π ⊗ idWD

) ◦ π1,0.

Definition 3.2 Let F be a morphism of bundles over M from π to π ′ over the same
base space M . We say that a 1 -tangential ∇x over π at a point x of E is F-related
to a 1-tangential ∇F(x) over π ′ at F(x) of E ′ provided that

(
F ⊗ idWD

)
(∇x (t)) = ∇F(x)(t)

for any t ∈ (M ⊗ WD)π(x).
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Notation 3.2 By convention, we let

J̃0(π) = Ĵ0(π) = J0(π) = E

with
π̃0,0 = π̂0,0 = π0,0 = idE

and
π̃0 = π̂0 = π0 = π

We let
J̃1(π) = Ĵ1(π) = J1(π)

with
π̃1,0 = π̂1,0 = π1,0

and
π̃1 = π̂1 = π1

Notation 3.3 Now we are going to define J̃k+1(π), Ĵk+1(π) and Jk+1(π) together
with mappings π̃k+1,k: J̃k+1(π) → J̃k(π), π̂k+1,k: Ĵk+1(π) → Ĵk(π) and πk+1,k:
Jk+1(π) → Jk(π) by induction on k ≥ 1. Intuitively speaking, these are intended for
non-holonomic, semi-holonomic and holonomic jet bundles in order. We let π̃k+1 =
π̃k ◦ π̃k+1,k , π̂k+1 = π̂k ◦ π̂k+1,k and πk+1 = πk ◦ πk+1,k .

1. First we deal with J̃k+1(π), which is defined to be J1(π̃k) with π̃k+1,k = (π̃k)1,0.
2. Next we deal with Ĵk+1(π), which is defined to be the subspace of J1(π̂k) con-

sisting of ∇x ’s with x = ∇y ∈ Ĵk(π) abiding by the condition that ∇x is π̂k,k−1-
related to ∇y .

3. Finally we deal with Jk+1(π), which is defined to be the subspace of J1(πk)

consisting of ∇x ’s with x = ∇y ∈ Jk(π) abiding by the conditions that ∇x is
πk,k−1-related to ∇y and that the composition of mappings

(
M ⊗ WD2

)
πk (x)〈

idM ⊗ Wd∈D �→(d,0)∈D2 , idM ⊗ W(d1.d2)∈D2 �→(d2.d1)∈D2
〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(M ⊗ WD) ×M⊗WD

(
M ⊗ WD2

))
πk (x)

∇x × idM⊗WD2−−−−−−−−−−→((
Jk(π) ⊗ WD

)
×M⊗WD

(
M ⊗ WD2

))

πk (x)

=
((

Jk(π) ⊗ WD

)
×M⊗WD ((M ⊗ WD) ⊗ WD)

)

πk (x)

=
((

Jk(π) ×M (M ⊗ WD)
)

⊗ WD

)

πk (x)
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(
(∇, t) ∈ Jk(π) ×M (M ⊗ WD) �→ ∇ (t) ∈

(
Jk−1(π) ⊗ WD

))
⊗ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(

Jk−1(π) ⊗ WD

)
⊗ WD

= Jk−1(π) ⊗ WD2

is equal to the composition of mappings

(
M ⊗ WD2

)
πk (x)〈

idM ⊗ Wd∈D �→(0,d)∈D2 , idM⊗WD2

〉

−−−−−−−−−−−−−−−−−−−−−−−−→(
(M ⊗ WD) ×M⊗WD

(
M ⊗ WD2

))
πk (x)

∇x × idM⊗WD2−−−−−−−−−−→((
Jk(π) ⊗ WD

)
×M⊗WD

(
M ⊗ WD2

))

πk (x)

=
((

Jk(π) ⊗ WD

)
×M⊗WD ((M ⊗ WD) ⊗ WD)

)

πk (x)

=
((

Jk(π) ×M (M ⊗ WD)
)

⊗ WD

)

πk (x)(
(∇, t) ∈ Jk(π) ×M (M ⊗ WD) �→ ∇ (t) ∈

(
Jk−1(π) ⊗ WD

))
⊗ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(

Jk−1(π) ⊗ WD

)
⊗ WD

= Jk−1(π) ⊗ WD2

idJk−1(π) ⊗ W(d1,d2)∈D2 �→(d2,d1)∈D2−−−−−−−−−−−−−−−−−−−−−−−→
Jk−1(π) ⊗ WD2

Definition 3.3 Elements of J̃n(π) are called n-subtangentials, while elements of
Ĵn(π) are called n-quasitangentials. Elements of Jn(π) are called n-tangentials.

4 The Second Approach to Jets

Definition 4.1 Let n be a natural number. A Dn-pseudotangential over the bundle
π : E → M at x ∈ E is a mapping ∇x : (M ⊗ WDn )π(x) → (E ⊗ WDn )x abiding by
the following conditions:

1. We have (
π ⊗ idWDn

)
(∇x (γ )) = γ

for any γ ∈ (M ⊗ WDn )π(x).
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2. We have
∇x (α ·

i
γ ) = α ·

i
∇x (γ ) (1 ≤ i ≤ n)

for any γ ∈ (M ⊗ WDn )π(x) and any α ∈ R.
3. The diagram

(M ⊗ WDn )π(x) → (M ⊗ WDn )π(x) ⊗ WDm

∇x ↓ ↓ ∇x ⊗ idWDm

(E ⊗ WDn )x → (E ⊗ WDn )x ⊗ WDm

is commutative, where m is an arbitrary natural number, the upper horizontal
arrow is

idM ⊗ W(d1,...,dn ,e)∈Dn×Dm �→(d1,...,di−1,edi ,di+1,...dn)∈Dn ,

and the lower horizontal arrow is

idE ⊗ W(d1,...,dn ,e)∈Dn×Dm �→(d1,...,di−1,edi ,di+1,...dn)∈Dn .

4. We have
∇x (γ

σ ) = (∇x (γ ))σ

for any γ ∈ (M ⊗ WDn )π(x) and for any σ ∈ Sn .

Remark 4.1 The third condition in the above definition claims what is called infini-
tesimal multilinearity, while the second claims what is authentic multilinearity.

Notation 4.1 We denote by Ĵ
Dn

x (π) the totality of Dn-pseudotangentials ∇x over
the bundle π : E → M at x ∈ E. We denote by Ĵ

Dn
(π) the set-theoretic union of

Ĵ
Dn

x (π)’s for all x ∈ E. In particular, ĴD0
(π) = E by convention.

Lemma 4.1 The diagram

E ⊗ WDn

idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ E ⊗ WDn+1

idE⊗WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dn ,0)∈Dn+1

E ⊗ WDn+1

is an equalizer.

Proof It is well known that the diagram

WDn

W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−→WDn+1

idWDn+1−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−→
W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dn ,0)∈Dn+1

WDn+1

is an equalizer in the category of Weil algebras, so that the desired result follows
from the microlinearity of E .
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Corollary 4.1 γ ∈ E ⊗ WDn+1 is in the equalizer of

E ⊗ WDn+1

idE⊗WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dn ,0)∈Dn+1

E ⊗ WDn+1

iff
γ = (sn+1 ◦ dn+1) (γ )

Proof This follows simply from

sn+1 ◦ dn+1 = idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dn ,0)∈Dn+1

Proposition 4.1 Let ∇x be a Dn+1-pseudotangential over the bundle π : E → M
at x ∈ E. Let γ ∈ (M ⊗ WDn )π(x). Then we have

∇x (sn+1(γ )) =
(
idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dn ,0)∈Dn+1

)
(∇x (sn+1(γ )))

so that

∇x (sn+1(γ )) = (sn+1 ◦ dn+1) (∇x (sn+1(γ )))

Proof For any α ∈ R, we have

α ·
n+1

(∇x (sn+1(γ )))

= ∇x (α ·
n+1

(sn+1(γ )))

= ∇x (sn+1(γ ))

Therefore we have the desired result by letting α = 0 in the above calculation.

Corollary 4.2 The assignment

γ ∈ (M ⊗ WDn )π(x) �−→ dn+1 (∇x (sn+1(γ ))) ∈ (E ⊗ WDn )x

is an n-pseudotangential over the bundle π : E → M at x.

Notation 4.2 By this Corollary, we have canonical projections π̂n+1,n: ĴDn+1
(π) →

Ĵ
Dn

(π). By assigning π(x) ∈ M to each n-pseudotangential ∇x over the bundle π :
E → M at x ∈ E, we have the canonical projections π̂n : ĴDn

(π) → M. Note that
π̂n ◦ π̂n+1,n = π̂n+1 For any natural numbers n, m with m ≤ n, we define π̂n,m:
Ĵ

Dn
(π) → Ĵ

Dm
(π) to be π̂m+1,m ◦ ... ◦ π̂n,n−1.

Now we are going to show that



408 H. Nishimura

Proposition 4.2 Let ∇x ∈ Ĵ
Dn+1

(π). Then the following diagrams are commutative:

(
M ⊗ WDn+1

)
π(x)

∇x−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x

si ↑ ↑ si

(M ⊗ WDn )π(x)

−−−−−−−−−−−−−→
π̂n+1,n(∇x ) (E ⊗ WDn )x(

M ⊗ WDn+1
)
π(x)

∇x−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x

di ↓ ↓ di

(M ⊗ WDn )π(x)

−−−−−−−−−−−−−→
π̂n+1,n(∇x ) (E ⊗ WDn )x

Proof By the very definition of π̂n+1,n , we have

sn+1(π̂n+1(∇x )(γ )) = ∇x (sn+1(γ ))

for any γ ∈ (M ⊗ WDn )π(x). For i �= n + 1, we have

si (π̂n+1,n(∇x )(γ ))

=
((

sn+1(π̂n+1,n(∇x )(γ ))
)〈i,n+1〉)〈i+1,i+2,...,n,n+1〉

=
(
(∇x (sn+1(γ )))〈i,n+1〉)〈i+1,i+2,...,n,n+1〉

=
(
∇x

(
(sn+1(γ ))〈i,n+1〉))〈i+1,i+2,...,n,n+1〉

= ∇x

((
(sn+1(γ ))〈i,n+1〉)〈i+1,i+2,...,n,n+1〉)

= ∇x (si (γ ))

Now we are going to show that

di (∇x (γ )) = (π̂n+1,n(∇x ))(di (γ ))

for any γ ∈ (
M ⊗ WDn+1

)
π(x)

. First we deal with the case of i = n + 1. We have

dn+1(∇x (γ ))

= dn+1(0 ·
n+1

∇x (γ ))

= dn+1(∇x (0 ·
n+1

γ ))

= dn+1(∇x (sn+1(dn+1(γ ))))

= (π̂n+1,n(∇x ))(dn+1(γ ))

For i �= n + 1, we have
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di (∇x (γ ))

=
(

dn+1

(
(∇x (γ ))〈i,n+1〉))〈n,n−1,...,i+1,i〉

=
(

dn+1(∇x (γ
〈i,n+1〉))

)〈n,n−1,...,i+1,i〉

= (((π̂n+1,n(∇x ))
(

dn+1(γ
〈i,n+1〉))

)〈n,n−1,...,i+1,i〉

= (π̂n+1,n(∇x ))

((
dn+1(γ

〈i,n+1〉)
)〈n,n−1,...,i+1,i〉)

= (π̂n+1,n(∇x )) (di (γ ))

Thus we are done through.

Corollary 4.3 Let ∇+
x , ∇−

x ∈ Ĵ
Dn+1

(π) with

π̂n+1,n(∇+
x ) = π̂n+1,n(∇−

x )

Then
(
idE ⊗ WiD{n+1}n→Dn+1

) (∇+
x (γ )

) =
(
idE ⊗ WiD{n+1}n→Dn+1

) (∇−
x (γ )

)

for any γ ∈ (
M ⊗ WDn+1

)
π(x)

.

Definition 4.2 The notion of a Dn-tangential over the bundle π : E → M at x is
defined by induction on n. The notion of a D-tangential over the bundle π : E → M
at x shall be identical with that of a D-pseudotangential over the bundle π : E → M
at x . Now we proceed inductively. A Dn+1-pseudotangential

∇x : (
M ⊗ WDn+1

)
π(x)

→ (
E ⊗ WDn+1

)
x

over the bundle π : E → M at x ∈ E is called a Dn+1-tangential over the bundle π :
E → M at x if it acquiesces in the following two conditions:

1. π̂n+1,n(∇x ) is a Dn-tangential over the bundle π : E → M at x .
2. For any γ ∈ (M ⊗ WDn )π(x), we have

∇x

((
idM ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn

)
(γ )

)

=
(
idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn+1

) ((
π̂n+1,n(∇x )

)
(γ )

)

Notation 4.3 We denote by JDn

x (π) the totality of Dn-tangentials ∇x over the bundle
π : E → M at x ∈ E. We denote by J

Dn
(π) the set-theoretic union of JDn

x (π)’s for

all x ∈ E. In particular, JD0
(π) = Ĵ

D0
(π) = E by convention and J

D(π) =
Ĵ

D(π) by definition. By the very definition of Dn-tangential, the projections π̂n+1,n:



410 H. Nishimura

Ĵ
Dn+1

(π) → Ĵ
Dn

(π) are naturally restricted to mappings πn+1,n: J
Dn+1

(π) →
J

Dn
(π). Similarly for πn: JDn

(π) → M and πn,m: JDn
(π) → J

Dm
(π) with m ≤ n.

It is easy to see that

Proposition 4.3 Let m, n be natural numbers with m ≤ n. Let k1, ..., km be positive
integers with k1 + · · · + km = n. For any ∇x ∈ J

Dn
(π), any γ ∈ (M ⊗ WDm )π(x)

and any σ ∈ Sn, we have

∇x

((
idM ⊗ W

(d1,...,dn)∈Dn �→
(

dσ(1)...dσ(k1),dσ(k1+1)...dσ(k1+k2),...,dσ(k1+...+km−1+1)...dσ(n)

)
)

(γ )

)

=
(
idE ⊗ W

(d1,...,dn)∈Dn �→
(

dσ(1)...dσ(k1),dσ(k1+1)...dσ(k1+k2),...,dσ(k1+...+km−1+1)...dσ(n)

)
)

((
πn,m(∇x )

)
(γ )

)

Interestingly enough, any Dn-pseudotangential naturally gives rise to what might
be called aD-pseudotangential for any simplicial infinitesimal spaceD of dimension
less than or equal to n.

Theorem 4.4 Let n be a natural number. Let D be a simplicial infinitesimal space of
dimension less than or equal to n. Any Dn-pseudotangential ∇x over the bundle π :
E → M at x ∈ E naturally induces a mapping ∇D

x : (M ⊗ WD)π(x) → (E ⊗ WD)x
abiding by the following three conditions:

1. We have (
π ⊗ idWD

) (
∇D

x (γ )
)

= γ

for any γ ∈ (M ⊗ WD)π(x).
2. We have

∇D
x (α ·

i
γ ) = α ·

i

(
∇D

x (γ )
)

for any α ∈ R and any γ ∈ (M ⊗ WD)π(x), where i is a natural number with
1 ≤ i ≤ degD.

3. The diagram
(M ⊗ WD)π(x) → (M ⊗ WD)π(x) ⊗ WDm

∇x ↓ ↓ ∇x ⊗ idWDm

(E ⊗ WD)x → (E ⊗ WD)x ⊗ WDm

is commutative, where m is an arbitrary natural number, the upper horizontal
arrow is

idM ⊗ W(d1,...,dk ,e)∈D×Dm �→(d1,...,di−1,edi ,di+1,...dk )∈D,

and the lower horizontal arrow is

idE ⊗ W(d1,...,dk ,e)∈D×Dm �→(d1,...,di−1,edi ,di+1,...dk )∈D
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with k = degD and 1 ≤ i ≤ k.

If the simplicial infinitesimal space D is symmetric, the induced mapping ∇D
x :

(M ⊗ WD)π(x) → (E ⊗ WD)x acquiesces in the following condition of symmetry
besides the above ones:

• We have
∇D

x (γ σ ) = (∇D
x (γ ))σ

for any σ ∈ Sk and any γ ∈ (M ⊗ WD)π(x).

Proof For the sake of simplicity in description, we deal, by way of example, with the
case that n = 3 andD = D {3}2, for which the standard quasi-colimit representation
was given in the proof of Theorem 2.3. Therefore, giving γ ∈ (

M ⊗ WD{3}2
)
π(x)

is equivalent to giving γ12, γ13, γ23 ∈ (
M ⊗ WD2

)
π(x)

with d2(γ12) = d2(γ13),
d1(γ12) = d2(γ23) and d1(γ13) = d1(γ23). By Proposition 4.2, we have

d2(π̂3,2 (∇x ) (γ12)) = π̂3,2 (∇x ) (d2(γ12)) = π̂3,2 (∇x ) (d2(γ13)) = d2(π̂3,2 (∇x ) (γ13))

d1(π̂3,2 (∇x ) (γ12)) = π̂3,2 (∇x ) (d1(γ12)) = π̂3,2 (∇x ) (d2(γ23)) = d2(π̂3,2 (∇x ) (γ23))

d1(π̂3,2 (∇x ) (γ13)) = π̂3,2 (∇x ) (d1(γ13)) = π̂3,2 (∇x ) (d1(γ23)) = d1(π̂3,2 (∇x ) (γ23)),

which determines a unique ∇D{3}2
x (γ ) ∈ (

E ⊗ WD{3}2
)

x with

d1(∇D{3}2
x (γ )) = π̂3,2 (∇x ) (γ23)

d2(∇D{3}2
x (γ )) = π̂3,2 (∇x ) (γ13)

d3(∇D{3}2
x (γ )) = π̂3,2 (∇x ) (γ12).

The proof that ∇D{3}2
x :

(
M ⊗ WD{3}2

)
π(x)

→ (
E ⊗ WD{3}2

)
x acquiesces in the

desired four properties is safely left to the reader.

Remark 4.2 The reader should note that the induced mapping∇D
x is defined in terms

of the standard quasi-colimit representation of D. The concluding corollary of this
subsection will show that the induced mapping ∇D

x is independent of our choice of
a quasi-colimit representation of D to a large extent, whether it is standard or not, as
long as ∇ is not only a Dn-pseudotangential but also a Dn-tangential. We note in
passing that π̂n,m(∇) with m ≤ n is no other than ∇Dm

x .

Proposition 4.4 Let π ′: P → E be another bundle with x ∈ P. If ∇π ′(x) is a n-
tangential2 over the bundle π : E → M at π ′(x) ∈ E and ∇x is a n-tangential2
over the bundle π ′: P → E at x ∈ E, then the composition ∇x ◦ ∇π ′(x) is a n-
tangential2 over the bundle π ◦ π ′: P → M at x ∈ E, and πn,n−1(∇x ◦ ∇π ′(x)) =
πn,n−1(∇x ) ◦ πn,n−1(∇π ′(x)) provided that n ≥ 1.

Proof In case of n = 0, there is nothing to prove. It is easy to see that if ∇π ′(x) is
a n-tangential2 over the bundle π : E → M at π ′(x) ∈ E and ∇x is a n-tangential2
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over the bundle π ′: P → E at x ∈ E , then the composition ∇x ◦ ∇π ′(x) is an
n-pseudoconnection over the bundle π : E → M at x ∈ P . If ∇π ′(x) is a (n + 1)-
tangential2 over the bundle π : E → M at π ′(x) ∈ E and∇x is a (n + 1)-tangential2
over the bundle π ′: P → E at x ∈ P , then we have

πn+1,n(∇x ◦ ∇π ′(x)) = dn+1 ◦ ∇x ◦ ∇π ′(x) ◦ sn+1

= dn+1 ◦ ∇x ◦ sn+1 ◦ dn+1 ◦ ∇π ′(x) ◦ sn+1

[By Proposition 4.1]

= πn+1,n(∇x ) ◦ πn+1,n(∇π ′(x))

Therefore we have

∇x ◦ ∇π ′(x)(
(
idM ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn

)
(γ ))

= ∇x
(∇π ′(x)

((
idM ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn

)
(γ )

))

= ∇x
((
idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn

) (
πn+1,n(∇π ′(x))(γ )

))

= (
idP ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn

) (
πn+1,n (∇x )

(
πn+1,n(∇π ′(x))(γ )

))

= (
idP ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn

) (
πn+1,n(∇x ◦ ∇π ′(x))

)

Thus we can prove by induction on n that if ∇π ′(x) is a n-tangential2 over the bundle
π : E → M at π ′(x) ∈ E and ∇x is a n-tangential2 over the bundle π ′: P → E at
x ∈ E , then the composition ∇x ◦ ∇π ′(x) is a n-tangential2 over the bundle π ◦ π ′:
P → M at x ∈ E .

Theorem 4.5 Let ∇ be a Dn-tangential over the bundle π : E → M at x ∈ E. Let
D and D

′ be simplicial infinitesimal spaces of dimension less than or equal to n. Let
χ be a monomial mapping from D to D

′. Let γ ∈ TD
′

x (M). Then we have

∇D(
(
idM ⊗ Wχ

)
(γ )) = (

idE ⊗ Wχ

)
(∇D′(γ ))

Remark 4.3 The reader should note that the above far-flung generalization of Propo-
sition 4.3 subsumes Proposition 4.2.

Proof In place of giving a general proof with formidable notation, we satisfy our-
selves with an illustration. Here we deal only with the case thatD = D3,D′ = D(3)
and χ is

χ(d1, d2, d3) = (d1d2, d1d3, d2d3)

for any (d1, d2, d3) ∈ D3. We assume that n ≥ 3. We note first that the monomial
mapping χ : D3 → D(3) is the composition of two monomial mappings

χ1 : D3 → D {6; (1, 2), (3, 4), (5, 6)}
χ2 : D {6; (1, 2), (3, 4), (5, 6)} → D(3)
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with
χ1(d1, d2, d3) = (d1, d1, d2, d2, d3, d3)

for any (d1, d2, d3) ∈ D3 and

χ2(d1, d2, d3, d4, d5, d6) = (d1d3, d2d5, d4d6)

for any (d1, d2, d3, d4, d5, d6) ∈ D {6; (1, 2), (3, 4), (5, 6)}, while the former mono-
mial mapping χ1: D3 → D {6; (1, 2), (3, 4), (5, 6)} is in turn the composition of
three monomial mappings

χ1
1 : D3 → D {4; (1, 2)}

χ2
1 : D {4; (1, 2)} → D {5; (1, 2), (3, 4)}

χ3
1 : D {5; (1, 2), (3, 4)} → D {6; (1, 2), (3, 4), (5, 6)}

with
χ1
1 (d1, d2, d3) = (d1, d1, d2, d3)

for any (d1, d2, d3) ∈ D3,

χ2
1 (d1, d2, d3, d4) = (d1, d2, d3, d3, d4)

for any (d1, d2, d3, d4) ∈ D {4; (1, 2)} and

χ3
1 (d1, d2, d3, d4, d5) = (d1, d2, d3, d4, d5, d5)

for any (d1, d2, d3, d4, d5) ∈ D {5; (1, 2), (3, 4)}. Therefore it suffices to prove that

∇
((

idM ⊗ Wχ1
1

) (
γ ′)) =

(
idE ⊗ Wχ1

1

) (∇D{4;(1,2)}(γ ′)
)

(2)

for any γ ′ ∈ (
M ⊗ WD{4;(1,2)}

)
π(x)

, that

∇D{4;(1,2)}
((

idM ⊗ Wχ2
1

) (
γ ′′)) =

(
idE ⊗ Wχ2

1

) (∇D{5;(1,2),(3,4)}(γ ′′)
)

(3)

for any γ ′′ ∈ (
M ⊗ WD{5;(1,2),(3,4)}

)
π(x)

, that

∇D{5;(1,2),(3,4)}
((

idM ⊗ Wχ3
1

) (
γ ′′′)) =

(
idE ⊗ Wχ3

1

) (∇D{6;(1,2),(3,4),(5,6)}(γ ′′′)
)

(4)
for any γ ′′′ ∈ (

M ⊗ WD{6;(1,2),(3,4),(5,6)}
)
π(x)

, and that

∇D{6;(1,2),(3,4),(5,6)}(
(
idM ⊗ Wχ2

) (
γ ′′′′)) = (

idE ⊗ Wχ2

) (∇D(3)(γ
′′′′)

)
(5)
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for any γ ′′′′ ∈ (
M ⊗ WD(3)

)
π(x)

TD(3)
x (M). Since D {4; (1, 2)} = D(2) × D2, it is

easy to see that

∇
((

idM ⊗ Wχ1
1

) (
γ ′)) = ∇(γ ′

1 +
1

γ ′
2) = ∇(γ ′

1) + ∇(γ ′
2)

where γ ′
1 = γ ′ ◦ (i1 × idD2) and γ ′

2 = γ ′ ◦ (i2 × idD2) with i1(d) = (d, 0) ∈ D(2)
and i2(d) = (0, d) ∈ D(2) for any d ∈ D. On the other hand, we have

(
idE ⊗ Wχ1

1

) (∇D(4;(1,2))(γ ′)
) =

(
idE ⊗ Wχ1

1

) (
l(∇(γ ′

1),∇(γ ′
2))

)
= ∇(γ ′

1) + ∇(γ ′
2)

where l(∇(γ ′
1),∇(γ ′

2))
is the unique element of E ⊗ WD(2)×D2 with

(
idE ⊗ Wi1×idD2

) (
l(∇(γ ′

1),∇(γ ′
2))

)
= ∇(γ ′

1)

and (
idE ⊗ Wi2×idD2

) (
l(∇(γ ′

1),∇(γ ′
2))

)
= ∇(γ ′

2)

Thus we have established (2). By the same token, we can establish (3) and (4). In
order to prove (5), it suffices to note that

(
idE ⊗ Wi135

) (∇D{6;(1,2),(3,4),(5,6)}(
(
idM ⊗ Wχ2

) (
γ ′′′′))

)

= (
idE ⊗ Wχ2◦i135

) (∇D(3)(γ
′′′′)

)

together with the seven similar identities obtained from the above by replacing i135
by seven other i jkl : D3 → D {6; (1, 2), (3, 4), (5, 6)} in the standard quasi-colimit
representation of D {6; (1, 2), (3, 4), (5, 6)}, where i jkl : D3 → D {6; (1, 2), (3, 4),
(5, 6)} (1 ≤ j < k < l ≤ 6) is a mapping with i jkl(d1, d2, d3) = (..., d1

j
, ..., d2

k
, ...,

d3
l
, ...) (d1, d2 and d3 are inserted at the j-th, k-th and l-th positions respectively,

while the other components are fixed at 0). Its proof goes as follows. Since

(
idE ⊗ Wi135

) (∇D{6;(1,2),(3,4),(5,6)}(
(
idM ⊗ Wχ2

) (
γ ′′′′))

)

= ∇(
(
idM ⊗ Wχ2◦i135

) (
γ ′′′′)),

it suffices to show that

∇(
(
idM ⊗ Wχ2◦i135

) (
γ ′′′′)) = (

idE ⊗ Wχ2◦i135

) ∇D(3)(γ
′′′′)

However the last identity follows at once by simply observing that the mapping
χ2 ◦ i135: D3 → D(3) is the mapping

(d1, d2, d3) ∈ D3 �−→ (d1d2, 0, 0) ∈ D(3),
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which is the successive composition of the following three mappings:

(d1, d2, d3) ∈ D3 �−→ (d1, d2) ∈ D2

(d1, d2) ∈ D2 �−→ d1d2 ∈ D

d ∈ D �−→ (d, 0, 0) ∈ D(3).

Corollary 4.4 Let ∇ be a Dn-tangential over the bundle π : E → M at x ∈ E. Let
D be a simplicially infinitesimal spaces of dimension less than or equal to n. Any
nonstandard quasi-colimit representation of D, if any mapping into D in the repre-
sentation is monomial, induces the same mapping as ∇D (induced by the standard
quasi-colimit representation of D) by the method in the proof of Theorem 4.4.

Proof It suffices to note that

∇Dm (
(
idM ⊗ Wχ

)
(γ )) = (

idE ⊗ Wχ

)
(∇D(γ ))

for any mapping χ : Dm → D in the given nonstandard quasi-colimit representation
of D, which follows directly from the above theorem.

5 The Third Approach to Jets

Definition 5.1 Let n be a natural number. A Dn-pseudotangential over the bundle
π : E → M at x ∈ E is a mapping

∇x : (
M ⊗ WDn

)
π(x)

→ (
E ⊗ WDn

)
x

abiding by the following two conditions:

1. We have (
π ⊗ idWDn

)
(∇x (γ )) = γ

for any γ ∈ (
M ⊗ WDn

)
π(x)

.

2. For any γ ∈ (
E ⊗ WDn

)
x and any α ∈ R, we have

∇x (αγ ) = α∇x (γ )

3. The diagram

(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn×Dm �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDm

∇x ↓ ↓ ∇x ⊗ idWDm(
E ⊗ WDn

)
x idE ⊗ W(d1,d2)∈Dn×Dm �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−→

(
E ⊗ WDn

)
x ⊗ WDm
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commutes, where m is an arbitrary natural number.

Remark 5.1 The third condition in the above definition claims what is called infini-
tesimal linearity.

Notation 5.1 We denote by Ĵ
Dn
x (π) the totality of Dn-pseudotangentials over the

bundle π : E → M at x ∈ E. We denote by Ĵ
Dn (π) the set-theoretic union of

Ĵ
Dn
x (π)’s for all x ∈ E.

It is easy to see that

Lemma 5.1 The following diagram is an equalizer in the category of Weil algebras:

WDn W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−→WDn+1×Dn

W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1,d2d3)∈Dn+1×Dn

WDn+1×Dn+1×Dn

Proposition 5.1 Let ∇x be a Dn+1-pseudotangential overthe bundle π : E → M at
x ∈ E and γ ∈ (

M ⊗ WDn

)
π(x)

. Then th ere exists a unique γ ′ ∈ (
E ⊗ WDn

)
x such

that the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn (6)

applied to γ results in

(
idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

) (
γ ′) (7)

Proof By dint of Lemma 5.1, it suffices to show that the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn

idE ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1,d2d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
E ⊗ WDn+1

)
x ⊗ WDn+1×Dn (8)

is equal to the composition of mappings
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(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn

idE ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
E ⊗ WDn+1

)
x ⊗ WDn+1×Dn (9)

Since ⊗ is a bifunctor, the diagram

(
M ⊗ WDn+1

)
π(x)

⊗ WDn → (
M ⊗ WDn+1

)
π(x)

⊗ WDn+1×Dn

∇x ⊗ idWDn
↓ ↓ ∇x ⊗ idWDn+1×Dn(

E ⊗ WDn+1

)
x ⊗ WDn → (

E ⊗ WDn+1

)
x ⊗ WDn+1×Dn

commutes, where the upper horizontal arrow is

idM ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1,d2d3)∈Dn+1×Dn ,

while the lower horizontal arrow is

idE ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1,d2d3)∈Dn+1×Dn .

Therefore the composition ofmappings in (8) is equal to the composition ofmappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

idM ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1,d2d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn+1×Dn

∇x ⊗ idWDn+1×Dn−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn+1×Dn (10)

Since the composition of mappings

M ⊗ WDn idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→ M ⊗ WDn+1×Dn

idM ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1,d2d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M ⊗ WDn+1×Dn+1×Dn

is trivially equal to the composition of mappings

M ⊗ WDn idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→M ⊗ WDn+1×Dn

idM ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M ⊗ WDn+1×Dn+1×Dn ,

the composition of mappings in (10) is equal to the composition of mappings
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(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

idM ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn+1×Dn

∇x ⊗ idWDn+1×Dn−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn+1×Dn (11)

By dint of the third condition in Definition 5.1.1, the diagram

(
M ⊗ WDn+1

)
π(x)

⊗ WDn → (
M ⊗ WDn+1

)
π(x)

⊗ WDn+1×Dn

∇x ⊗ idWDn
↓ ↓ ∇x ⊗ idWDn+1×Dn(

E ⊗ WDn+1

)
x ⊗ WDn → (

E ⊗ WDn+1

)
x ⊗ WDn+1×Dn

commutes, where the upper horizontal arrow is

idM ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1d2,d3)∈Dn+1×Dn ,

and the lower horizontal arrow is

idE ⊗ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �→(d1d2,d3)∈Dn+1×Dn .

Therefore the composition of mappings in (11) is equal to the composition of map-
pings in (9), which completes the proof.

It is not difficult to see that

Proposition 5.2 Given a Dn+1-pseudotangential ∇x overthe bundle π : E → M
at x ∈ E, the assignment γ ∈ (

M ⊗ WDn

)
π(x)

�→ γ ′ ∈ (
E ⊗ WDn

)
x in the above

proposition, denoted by π̂n+1,n(∇x ), is a Dn-pseudotangential over the bundle π :
E → M at x ∈ E.

Proof We have to verify the three conditions in Definition 5.1 concerning the map-
ping π̂n+1,n(∇x ):

(
M ⊗ WDn

)
π(x)

→ (
E ⊗ WDn

)
x .

1. To see the first condition, it suffices to show that

(
idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

) ◦ (
π ⊗ idWDn

) ((
π̂n+1,n(∇x )

)
(γ )

) = γ ,

which is equivalent to

(
π ⊗ idWDn+1×Dn

)
◦(
idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

) ((
π̂n+1,n(∇x )

)
(γ )

) = γ ,

since ⊗ is a bifunctor. Therefore it suffices to show that the composition of
mappings
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(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn π ⊗ idWDn+1×Dn−−−−−−−−−−→

(
M ⊗ WDn+1

)
x ⊗ WDn

applied to γ results in

(
idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

)
(γ ) ,

which follows directly from the first condition in Definition 5.1.
2. To see the second, let us note first that the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ Wd∈Dn �→αd∈Dn−−−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

is equal to the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

idM ⊗ W(d1,d2)∈Dn+1×Dn �→(αd1,d2)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

Since ∇x is a Dn+1-pseudotangential over the bundle π : E → M at x ∈ E , the
diagram (

M ⊗ WDn+1

)
π(x)

⊗ WDn → (
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn
↓ ↓ ∇x ⊗ idWDn(

E ⊗ WDn+1

)
x ⊗ WDn → (

E ⊗ WDn+1

)
x ⊗ WDn

commutes, where the upper horizontal arrow is

idM ⊗ W(d1,d2)∈Dn+1×Dn �→(αd1,d2)∈Dn+1×Dn ,

while the lower horizontal arrow is

idE ⊗ W(d1,d2)∈Dn+1×Dn �→(αd1,d2)∈Dn+1×Dn .

Therefore the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ Wd∈Dn �→αd∈Dn−−−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn

is equal to the composition of mappings



420 H. Nishimura

(
M ⊗ WDn

)
π(x)

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn idE ⊗ W(d1,d2)∈Dn+1×Dn �→(αd1,d2)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(

E ⊗ WDn+1

)
x ⊗ WDn

The former composition of mappings applied to γ ∈ (
M ⊗ WDn

)
π(x)

results in

(
idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

) (
π̂n+1,n(∇x )(αγ )

)
,

while the latter composition of mappings applied to γ results in

(
idE ⊗ W(d1,d2)∈Dn+1×Dn �→(αd1,d2)∈Dn+1×Dn

) ◦
(
idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

) (
π̂n+1,n(∇x )(γ )

)

= (
idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

) (
α

(
π̂n+1,n(∇x )(γ )

))
.

Therefore we have

π̂n+1,n(∇x )(αγ ) = α
(
π̂n+1,n(∇x )(γ )

)

3. To see the third, we have to show that the diagram

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dm→Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDm

π̂n+1,n(∇x ) ↓ ↓ π̂n+1,n(∇x ) ⊗ idWDm(
E ⊗ WDn

)
x idE ⊗ WmDn×Dm→Dn−−−−−−−−−−−−−→

(
E ⊗ WDn

)
x ⊗ WDm

(12)

commutes, where m is an arbitrary natural number. Since the lower square of the
diagram

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dm →Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDm

π̂n+1,n(∇x ) ↓ ↓ π̂n+1,n(∇x ) ⊗ idWDn(
E ⊗ WDn

)
x idE ⊗ WmDn×Dm →Dn−−−−−−−−−−−−−→

(
E ⊗ WDn

)
x ⊗ WDm

idE ⊗ WmDn+1×Dn→Dn
↓ ↓ idE ⊗ WmDn+1×Dn→Dn ×idDm(

E ⊗ WDn+1

)
x ⊗ WDn idE ⊗ WidDn+1×mDn×Dm →Dn−−−−−−−−−−−−−−−−−−→

(
E ⊗ WDn+1

)
x ⊗ WDn×Dm

(13)
commutes, so that the commutativity of the diagram in (12) is equivalent to the
commutativity of the outer square of the diagram in (13). .The composition of
mappings

(
M ⊗ WDn

)
π(x)

π̂n+1,n(∇x )−−−−−−−→
(
E ⊗ WDn

)
x idE ⊗ WmDn+1×Dn→Dn−−−−−−−−−−−−−−−→

(
E ⊗ WDn+1

)
x ⊗ WDn

is equal to the composition of mappings
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(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn+1×Dn→Dn−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn ,

while the composition of mappings

(
M ⊗ WDn

)
π(x)

⊗ WDm π̂n+1,n(∇x ) ⊗ idWDm−−−−−−−−−−−−−−→
(
E ⊗ WDn

)
x ⊗ WDm

idE ⊗ WmDn+1×Dn→Dn ×idDm−−−−−−−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn×Dm

is equal to the composition of mappings

(
M ⊗ WDn

)
π(x)

⊗ WDm idM ⊗ WmDn+1×Dn→Dn ×idDm−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn×Dm ∇x ⊗ idWDn×Dm−−−−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn×Dm

It is easy to see that the diagram

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dm →Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDm

idM ⊗ WmDn+1×Dn→Dn
↓ ↓ idM ⊗ WmDn+1×Dn→Dn ×idDm(

M ⊗ WDn+1

)
π(x)

⊗ WDn idM ⊗ WidDn+1×mDn×Dm →Dn−−−−−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn×Dm

∇x ⊗ idWDn
↓ ↓ ∇x ⊗ idWDn×Dm(

E ⊗ WDn+1

)
x ⊗ WDn idE ⊗ WidDn+1×mDn×Dm →Dn−−−−−−−−−−−−−−−−−−→

(
E ⊗ WDn+1

)
x ⊗ WDn×Dm

commutes, which implies that the outer square of the diagram in (13) commutes.
This completes the proof.

Notation 5.2 By the above proposition, we have the canonical projection π̂n+1,n:

Ĵ
Dn+1(π) → Ĵ

Dn (π) so that, given ∇x ∈ Ĵ
Dn+1
x (π) and γ ∈ (

M ⊗ WDn

)
π(x)

, the
composition of mappings in (6) applied to γ results in

(
idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn

) (
π̂n+1,n(∇x )(γ )

)

For any natural numbers n, m with m ≤ n, we define π̂n,m: ĴDn (π) → Ĵ
Dm (π) to

be π̂m+1,m ◦ ... ◦ π̂n,n−1.

Proposition 5.3 Let ∇x be a Dn+1-pseudotangential over the bundle π : E → M
at x ∈ E. Then the diagram
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(
M ⊗ WDn+1

)
π(x)

∇x−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x

π̂n+1,n ↓ ↓ π̂n+1,n(
M ⊗ WDn

)
π(x)

−−−−−−−−−−−−−→
π̂n+1,n(∇x )

(
E ⊗ WDn

)
x

is commutative.

Proof It is easy to see that the following four diagrams are commutative:

M ⊗ WDn+1 idM ⊗ W(d1,d2)∈Dn+1×Dn+1 �→d1d2∈Dn+1−−−−−−−−−−−−−−−−−−−−−−−−−−→ M ⊗ WDn+1×Dn+1

idM ⊗ WiDn⊆Dn+1
↓ ↓ idM ⊗ WiDn+1×Dn⊆Dn+1×Dn+1

M ⊗ WDn

−−−−−−−−−−−−−−−−−−−−−−−→
idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn M ⊗ WDn+1×Dn

M ⊗ WDn+1×Dn+1 ∇x ⊗ idWDn+1−−−−−−−−−→
E ⊗ WDn+1×Dn+1

idM ⊗ WiDn+1×Dn⊆Dn+1×Dn+1
↓ ↓ idE ⊗ WiDn+1×Dn⊆Dn+1×Dn+1

M ⊗ WDn+1×Dn

−−−−−−−→∇x ⊗ idWDn
E ⊗ WDn+1×Dn

M ⊗ WDn+1 idM ⊗ W(d1,d2)∈Dn+1×Dn+1 �→d1d2∈Dn+1−−−−−−−−−−−−−−−−−−−−−−−−−−→ M ⊗ WDn+1×Dn+1

∇x ↓ ↓ ∇x ⊗ idWDn+1

E ⊗ WDn+1

−−−−−−−−−−−−−−−−−−−−−−−−−→
idE ⊗ W(d1,d2)∈Dn+1×Dn+1 �→d1d2∈Dn+1 E ⊗ WDn+1×Dn+1

[By the second condition in Definition 5.1]

E ⊗ WDn+1 idE ⊗ W(d1,d2)∈Dn+1×Dn+1 �→d1d2∈Dn+1−−−−−−−−−−−−−−−−−−−−−−−−−→ E ⊗ WDn+1×Dn+1

idE ⊗ WiDn⊆Dn+1
↓ ↓ idE ⊗ WiDn+1×Dn⊆Dn+1×Dn+1

E ⊗ WDn

−−−−−−−−−−−−−−−−−−−−−−−→
idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn E ⊗ WDn+1×Dn

Therefore the composition of mappings

M ⊗ WDn+1 idM ⊗ WiDn⊆Dn+1−−−−−−−−−−−→
M ⊗ WDn

idM ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→ M ⊗ WDn+1×Dn

= (
M ⊗ WDn+1

) ⊗ WDn ∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

) ⊗ WDn

= E ⊗ WDn+1×Dn

is equal to the composition of mappings

M ⊗ WDn+1 ∇x−→ E ⊗ WDn+1 idE ⊗ WiDn→Dn+1−−−−−−−−−−−→
E ⊗ WDn

idE ⊗ W(d1,d2)∈Dn+1×Dn �→d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−→ E ⊗ WDn+1×Dn
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which yields the coveted result.

Corollary 5.1 Let ∇x be a Dn+1-pseudotangential over the bundle π : E → M at
x ∈ E. For any γ, γ ′ ∈ (

M ⊗ WDn+1

)
π(x)

, if

πn+1,n (γ ) = πn+1,n
(
γ ′)

then
πn+1,n (∇x (γ )) = πn+1,n

(∇x (γ
′)
)

Proof By the above proposition, we have

πn+1,n(∇x (γ )) = π̂n+1,n(∇x )(πn+1,n(γ ))

= π̂n+1,n(∇x )(πn+1,n(γ
′)) = πn+1,n(∇x (γ

′)),

which establishes the coveted proposition.

Definition 5.2 The notion of a Dn-tangential over the bundle π : E → M at x ∈ E
is defined inductively on n. The notion of a D0-tangential over the bundleπ : E → M
at x ∈ E and that of a D1-tangential over the bundle π : E → M at x ∈ E shall
be identical with that of a D0-pseudotangential over the bundle π : E → M at
x ∈ E and that of a D1-pseudotangential over the bundle π : E → M at x ∈ E
respectively. Now we proceed by induction on n. A Dn+1-pseudotangential ∇x :(
M ⊗ WDn+1

)
π(x)

→ (
E ⊗ WDn+1

)
x over the bundle π : E → M at x ∈ E is called

a Dn+1-tangential over the bundle π : E → M at x ∈ E if it acquiesces in the
following two conditions:

1. π̂n+1,n(∇x ) is a Dn-tangential over the bundle π : E → M at x ∈ E .
2. For any simple polynomial ρ of d ∈ Dn+1 with l = dim ρ and any γ ∈(

M ⊗ WDl

)
π(x)

, we have

∇x (γ ◦ ρ) = (πn+1,l(∇x )(γ )) ◦ ρ

Notation 5.3 We denote by JDn
x (π) the totality of Dn-tangentials over the bundle π :

E → M at x ∈ E, while we denote by JDn (π) the totality of Dn-tangentials over the
bundle π : E → M. By the very definition of a Dn-tangential, the projection π̂n+1,n:
Ĵ

Dn+1(π) → Ĵ
Dn (π) is naturally restricted to a mapping πn+1,n: J

Dn+1(π) →
J

Dn (π). Similarly for πn,m: JDn (π) → J
Dm (π) with m ≤ n.

6 From the First Approach to the Second

Definition 6.1 Mappings ϕn : Jn(π) → J
Dn

(π) (n = 0, 1) shall be the identity
mappings. We are going to define ϕn : Jn(π) → J

Dn
(π) for any natural number n by
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induction on n. Let xn = ∇xn−1 ∈ Jn(π) and ∇xn ∈ Jn+1(π). We define ϕn+1(∇xn )

as the composition of mappings

(
M ⊗ WDn+1

)
π(xn)

= ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

ϕn(xn)×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) ×

M
(M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

Surely we have to show that

Lemma 6.1 We have
ϕn+1(∇xn ) ∈ Ĵ

n+1(π)

Proof We have to show that for any γ ∈ Tn+1
πn(xn)(M), any α ∈ R and any σ ∈ Sn+1,

we have

γ =
(
π ⊗ idWDn+1

)
◦ (

ϕn+1(∇xn )
)
(γ ) (14)

ϕn+1(∇xn )(α ·
i
γ ) = α ·

i
ϕn+1(∇xn )(γ ) (1 ≤ i ≤ n + 1) (15)

ϕn+1(∇xn )(γ
σ ) = (ϕn+1(∇xn )(γ ))σ (16)

We proceed by induction on n.

1. First we deal with (14). The mapping

(
π⊗idWDn+1

) (
ϕn+1(∇xn )

)
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is the composition of mappings

(
M⊗WDn+1

)
π(xn)

= ((M⊗WDn )⊗WD)(M⊗WDn )π(xn )〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

ϕn(xn)×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) ×

M
(M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

π ⊗ idWDn+1−−−−−−−−→
(
M ⊗ WDn+1

)
π(xn)

It is easy to see that the composition of mappings

(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

{ϕn(xn)}×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) ×

M
(M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

π ⊗ idWDn+1−−−−−−−−→
(
M ⊗ WDn+1

)
π(xn)
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is no other than the canonical projection of

(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

to the second factor ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )
. It is also easy to see that

the composition of mappings

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

is

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )〈(
ϕn ⊗ idWD

) ◦ ∇xn ◦
(
π

M⊗WDn

M ⊗ idWD

)
, id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )
.

Therefore (14) follows at once.
2. Now we deal with (15), the treatment of which is divided into two cases, namely,

i ≤ n and i = n + 1. Since both of them are almost trivial, they can safely be left
to the reader.

3. Finally we must deal with (16), for which it suffices to consider only transposi-
tions σ = 〈i, i + 1〉 (1 ≤ i ≤ n). Here we deal only with the most difficult case
of σ = 〈n, n + 1〉. We consider the composition of mappings

(
M ⊗ WDn+1

)
π(xn)

γ ∈ (
M ⊗ WDn+1

)
π(xn)

�→ γ 〈n,n+1〉 ∈ (
M ⊗ WDn+1

)
π(xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(

M ⊗ WDn+1
)
π(xn)

= ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )
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〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

ϕn(xn)×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) ×

M
(M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

(17)

By the very definition of ϕn , the composition of mappings

(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

ϕn(xn)×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) ×

M
(M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

is equivalent to the composition of mappings

(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )
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= (
Jn(π) ⊗ WD

)
xn

×
M⊗WD(((

M ⊗ WDn−1
) ⊗ WD

) ⊗ WD
)
((

M⊗WDn−1
)⊗WD

)(
M⊗W

Dn−1

)

π(xn )

=
((

Jn(π) ×
M

((
M ⊗ WDn−1

) ⊗ WD
)) ⊗ WD

)

∗
[∗ = xn × ((

M ⊗ WDn−1
) ⊗ WD

)
(
M⊗WDn−1

)
π(xn )

]
(
idJn(π) ×

〈
π

M⊗WDn−1

M ⊗ idWD , id(
M⊗WDn−1

)⊗WD

〉)
⊗ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→((

Jn(π) ×
M

(M ⊗ WD) ×
M

((
M ⊗ WDn−1

) ⊗ WD
)) ⊗ WD

)

∗
[∗ = xn × π (xn) × ((

M ⊗ WDn−1
) ⊗ WD

)
(
M⊗WDn−1

)
π(xn )

]
((

(∇, t) ∈ Jn(π) × (M ⊗ WD) �→
∇ (t) ∈ Jn−1(π) ⊗ WD

)
× id((

M⊗WDn−1
)⊗WD

)
)

⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(((
Jn−1(π) ⊗ WD

)
×
M

((
M ⊗ WDn−1

) ⊗ WD
)
)

⊗ WD

)

∗
[∗ =

(
Jn−1(π) ⊗ WD

)

πn−1(xn)
× ((

M ⊗ WDn−1
) ⊗ WD

)
(
M⊗WDn−1

)
π(xn )

]

=
((

Jn−1(π) ×
M

(
M ⊗ WDn−1

)) ⊗ WD2

)

πn−1(xn)×(
M⊗WDn−1

)
π(xn )

ϕn−1 × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−→((
J

Dn−1
(π) ×

M

(
M ⊗ WDn−1

)) ⊗ WD2

)

π0(xn)×(
M⊗WDn−1

)
π(xn )(

(∇, γ ) ∈ J
Dn−1

(π) × (
M ⊗ WDn−1

) �→ ∇ (γ ) ∈ E ⊗ WDn−1

)
⊗ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→((

E ⊗ WDn−1
) ⊗ WD2

)
(
E⊗WDn−1

)
π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

Therefore (17) is no other than the composition of mappings

(
M ⊗ WDn+1

)
π(xn)

γ ∈ (
M ⊗ WDn+1

)
π(xn)

�→ γ 〈n,n+1〉 ∈ (
M ⊗ WDn+1

)
π(xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(

M ⊗ WDn+1
)
π(xn)

= ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )
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〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

= (
Jn(π) ⊗ WD

)
xn

×
M⊗WD(((

M ⊗ WDn−1
) ⊗ WD

) ⊗ WD
)
((

M⊗WDn−1
)⊗WD

)(
M⊗W

Dn−1

)

π(xn )

=
((

Jn(π) ×
M

((
M ⊗ WDn−1

) ⊗ WD
)) ⊗ WD

)

∗
[∗ = xn × ((

M ⊗ WDn−1
) ⊗ WD

)
(
M⊗WDn−1

)
π(xn )

]
(
idJn(π) ×

〈
π

M⊗WDn−1

M ⊗ idWD , id(
M⊗WDn−1

)⊗WD

〉)
⊗ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→((

Jn(π) ×
M

(M ⊗ WD) ×
M

((
M ⊗ WDn−1

) ⊗ WD
)
)

⊗ WD

)

∗
[∗ = xn × π (xn) × ((

M ⊗ WDn−1
) ⊗ WD

)
(
M⊗WDn−1

)
π(xn )

]

((
(∇, t) ∈ Jn(π) × (M ⊗ WD) �→

∇ (t) ∈ Jn−1(π) ⊗ WD

)
× id((

M⊗WDn−1
)⊗WD

)
)

⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(((
Jn−1(π) ⊗ WD

)
×
M

((
M ⊗ WDn−1

) ⊗ WD
)
)

⊗ WD

)

∗
[∗ =

(
Jn−1(π) ⊗ WD

)

πn−1(xn)
× ((

M ⊗ WDn−1
) ⊗ WD

)
(
M⊗WDn−1

)
π(xn )

]

=
((

Jn−1(π) × (
M ⊗ WDn−1

)) ⊗ WD2

)

πn−1(xn)×(
M⊗WDn−1

)
π(xn )

ϕn−1 × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−→((
J

Dn−1
(π) ×

M

(
M ⊗ WDn−1

)) ⊗ WD2

)

π0(xn)×(
M⊗WDn−1

)
π(xn )(

(∇, γ ) ∈ J
Dn−1

(π) × (
M ⊗ WDn−1

) �→ ∇ (γ ) ∈ E ⊗ WDn−1

)
⊗ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→((

E ⊗ WDn−1
) ⊗ WD2

)
(
E⊗WDn−1

)
π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)
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On the other hand, the composition of mappings

(
M ⊗ WDn+1

)
π(xn)

= ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

ϕn(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

ϕn(xn)×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) ×

M
(M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

γ ∈ E ⊗ WDn+1 �→ γ 〈n,n+1〉 ∈ E ⊗ WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
π0(xn)

is the composition of mappings

(
M ⊗ WDn+1

)
π(xn)

= ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→(
Jn(π) ⊗ WD

)
xn

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

= (
Jn(π) ⊗ WD

)
xn

×
M⊗WD
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(((
M ⊗ WDn−1

) ⊗ WD
) ⊗ WD

)
((

M⊗WDn−1
)⊗WD

)(
M⊗W

Dn−1

)

π(xn )

= ((
Jn(π) × ((

M ⊗ WDn−1
) ⊗ WD

)) ⊗ WD
)
∗

[∗ = xn × ((
M ⊗ WDn−1

) ⊗ WD
)
(
M⊗WDn−1

)
π(xn )

]
(
idJn(π) ×

〈
π

M⊗WDn−1

M ⊗ idWD , id(
M⊗WDn−1

)⊗WD

〉)
⊗ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→((

Jn(π) ×
M

(M ⊗ WD) ×
M

((
M ⊗ WDn−1

) ⊗ WD
)) ⊗ WD

)

∗
[∗ = xn × π (xn) × ((

M ⊗ WDn−1
) ⊗ WD

)
(
M⊗WDn−1

)
π(xn )

]
((

(∇, t) ∈ Jn(π) × (M ⊗ WD) �→
∇ (t) ∈ Jn−1(π) ⊗ WD

)
× id((

M⊗WDn−1
)⊗WD

)
)

⊗idWD−−−−→(((
Jn−1(π) ⊗ WD

)
×

M⊗WD

((
M ⊗ WDn−1

) ⊗ WD
)) ⊗ WD

)

∗
[∗ =

(
Jn−1(π) ⊗ WD

)

πn−1(xn)
×

M⊗WD

((
M ⊗ WDn−1

) ⊗ WD
)
(
M⊗WDn−1

)
π(xn )

]

=
((

Jn−1(π) × (
M ⊗ WDn−1

)) ⊗ WD2

)

πn−1(xn)×(
M⊗WDn−1

)
π(xn )

followed by the composition of mappings

((
Jn−1(π) × (

M ⊗ WDn−1
)) ⊗ WD2

)

πn−1(xn)×(
M⊗WDn−1

)
π(xn )

ϕn−1 × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−→((
J

Dn−1
(π) ×

M

(
M ⊗ WDn−1

)) ⊗ WD2

)

π0(xn)×(
M⊗WDn−1

)
π(xn )(

(∇, γ ) ∈ J
n−1(π) × (

M ⊗ WDn−1
) �→ ∇ (γ ) ∈ E ⊗ WDn−1

)
⊗ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(

E ⊗ WDn−1
) ⊗ WD2 = (

E ⊗ WDn+1
)
π0(xn)

γ ∈ E ⊗ WDn+1 �→ γ 〈n,n+1〉 ∈ E ⊗ WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
π0(xn)

,

which is easily seen to be equivalent to the composition of mappings

((
Jn−1(π) × (

M ⊗ WDn−1
)) ⊗ WD2

)

πn−1(xn)×(
M⊗WDn−1

)
π(xn )
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idJn−1(π)×(
M⊗WDn−1

) ⊗ W(d1.d2)∈D2 �→(d2.d1)∈D2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→((
Jn−1(π) × (

M ⊗ WDn−1
)) ⊗ WD2

)

πn−1(xn)×(
M⊗WDn−1

)
π(xn )

ϕn−1 × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−→((
J

Dn−1
(π) ×

M

(
M ⊗ WDn−1

)) ⊗ WD2

)

π0(xn)×(
M⊗WDn−1

)
π(xn )(

(∇, γ ) ∈ J
Dn−1

(π) × (
M ⊗ WDn−1

) �→ ∇ (γ ) ∈ E ⊗ WDn−1

)
⊗ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→((

E ⊗ WDn−1
) ⊗ WD2

)
(
E⊗WDn−1

)
π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

Therefore the desired result follows from the second condition in the item 3 of
Notation 3.3.

Lemma 6.2 The diagram

Jn+1(π) ϕn+1−−−−−−−−−−−−−−→ Ĵ
Dn+1

(π)

πn+1,n ↓ ↓ π̂n+1,n

Jn(π) −−−−−−−−−−−−→ϕn Ĵ
Dn

(π)

is commutative.

Proof Given ∇xn ∈ Jn+1(π),
(
π̂n+1,n ◦ ϕn+1

) (∇xn

)
is, by the very definition of

π̂n+1,n , the composition of mappings

(M ⊗ WDn )π(xn) sn+1−−→
(
M ⊗ WDn+1

)
π(xn)

ϕn+1(∇xn )−−−−−−→(
E ⊗ WDn+1

)
π0(xn)

dn+1−−→ (E ⊗ WDn )π0(xn)

which is equivalent, by the very definition of ϕn+1(∇xn ), to the composition of
mappings

(M ⊗ WDn )π(xn) sn+1−−→
(
M ⊗ WDn+1

)
π(xn)

= ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→(
(M ⊗ WD) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)

)

{π(xn)}×(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→
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((
Jn(π) ⊗ WD

) ×
M⊗WD

((M ⊗ WDn ) ⊗ WD)

)

{π(xn)}×(M⊗WDn )π(xn )(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→((
J

Dn
(π) ⊗ WD

)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)

)

{π(xn)}×(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

{π(xn)}×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) × (M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

dn+1−−→ (E ⊗ WDn )π0(xn)

This is easily seen to be equivalent to ϕn(πn+1,n
(∇xn

)
), which completes the proof.

Lemma 6.1 can be strengthened as follows:

Lemma 6.3 We have
ϕn+1(∇xn ) ∈ J

n+1(π)

Proof With due regard to Lemmas 6.1 and 6.2, we have only to show that

(
ϕn+1(∇xn )

) ◦
(
idM ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn

)

=
(
idE ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn+1

)
◦

(
π̂n+1,n(ϕn+1(∇xn ))

)
(18)

For n = 0, there is nothing to prove. We proceed by induction on n. By the very
definition of ϕn+1, the left-hand side of (18) is the composition of mappings

(M ⊗ WDn )π(xn)

idM ⊗ W(d1,...,dn ,dn+1)∈Dn+1 �→(d1,...,dndn+1)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
M ⊗ WDn+1

)
π(xn)

= ((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )〈
π

M⊗WDn

M ⊗ idWD , id(M⊗WDn )⊗WD

〉

−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WD)π(xn) ×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

∇xn × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−→
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(
Jn(π) ⊗ WD

)
π(xn)

×
M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

(
ϕn ⊗ idWD

) × id(M⊗WDn )⊗WD−−−−−−−−−−−−−−−−−−−−−→(
J

Dn
(π) ⊗ WD

)

π(xn)
×

M⊗WD

((M ⊗ WDn ) ⊗ WD)(M⊗WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊗ WDn )

)
⊗ WD

)

{π(xn)}×(M⊗WDn )π(xn )(
(∇, γ ) ∈ J

Dn
(π) × (M ⊗ WDn ) �→ ∇ (γ ) ∈ E ⊗ WDn

)
⊗ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

((E ⊗ WDn ) ⊗ WD)(E⊗WDn )π0(xn )

= (
E ⊗ WDn+1

)
π0(xn)

which is easily seen, by dint of Lemma 6.1, to be equivalent to the right-hand side
of (18).

Thus we have established the mappings ϕn : Jn(π) → J
Dn

(π).

7 From the Second Approach to the Third

The principal objective in this section is to define a mappingψn : JDn
(π) → J

Dn (π).
Let us begin with

Proposition 7.1 Let ∇x be a Dn-pseudotangential over the bundle π : E → M at
x ∈ E and γ ∈ (

M ⊗ WDn

)
π(x)

. Then there exists a unique γ ′ ∈ (
E ⊗ WDn

)
x such

that

∇x (
(
idM ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

)
(γ ))

= (
idE ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

) (
γ ′)

Proof This stems easily from the following simple lemma.

Lemma 7.1 The diagram

WDn W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−→WDn

Wτ1−→
...

Wτi−→
...

Wτn−1−−−→

WDn



Differential Geometry of Microlinear Frölicher Spaces IV-1 435

is a limit diagram in the category of Weil algebras, where τi : Dn → Dn is the
mapping permuting the i-th and (i + 1)-th components of Dn while fixing the other
components.

Notation 7.1 We will denote by ψ̂n(∇x )(γ ) the unique γ ′ in the above proposition,
thereby getting a function ψ̂n(∇x ):

(
M ⊗ WDn

)
π(x)

→ (
E ⊗ WDn

)
x .

Proposition 7.2 For any ∇x ∈ Ĵ
Dn

x (π), we have ψ̂n(∇x ) ∈ Ĵ
Dn
x (π).

Proof We have to verify the three conditions in Definition 5.1 concerning the map-
ping ψ̂n(∇x ):

(
M ⊗ WDn

)
π(x)

→ (
E ⊗ WDn

)
x .

1. To see the first condition, it suffices to show that

(
idM ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

)
(γ )

= (
idE ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

) ((
π ⊗ idWDn

) (
ψ̂n(∇x ) (γ )

))
,

which follows from

(
idM ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

) ((
π ⊗ idWDn

) (
ψ̂n(∇x ) (γ )

))

= (
π ⊗ idWDn

) ((
idE ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

) (
ψ̂n(∇x ) (γ )

))

[By the bifunctionality of ⊗ ]

= (
π ⊗ idWDn

) (∇x (
(
idM ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

)
(γ ))

)

[By the very definition of ψ̂n(∇x )]

= (
idM ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn

)
(γ )

2. Now we are going to deal with the second condition. It is easy to see that the
composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W(α·)Dn−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−→
(M ⊗ WDn )π(x)

is equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−→ (M ⊗ WDn )π(x)

idM ⊗ W(
α ·
1

)

Dn−−−−−−−−−−→
(M ⊗ WDn )π(x) ...idM ⊗ W(

α ·
n

)

Dn−−−−−−−−−−→
(M ⊗ WDn )π(x) ,

while the composition of mappings
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(M ⊗ WDn )π(x) idM ⊗ W(
α ·
1

)

Dn−−−−−−−−−−→
(M ⊗ WDn )π(x) ... idM ⊗ W(

α ·
n

)

Dn−−−−−−−−−−→
(M ⊗ WDn )π(x) ∇x−→ (E ⊗ WDn )x

is equivalent to the composition of mappings

(M ⊗ WDn )π(x) ∇x−→ (E ⊗ WDn )x idE ⊗ W(
α ·
1

)

Dn−−−−−−−−−−→
(E ⊗ WDn )x ...

idE ⊗ W(
α ·

n

)

Dn−−−−−−−−−→
(E ⊗ WDn )x

Therefore the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W(α·)Dn−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−→ (M ⊗ WDn )π(x) ∇x−→ (E ⊗ WDn )x

is equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−→ (M ⊗ WDn )π(x) ∇x−→
(E ⊗ WDn )x idE ⊗ W(

α ·
1

)

Dn−−−−−−−−−−→
(E ⊗ WDn )x ... idE ⊗ W(

α ·
n

)

Dn−−−−−−−−−−→
(E ⊗ WDn )x ,

which should be equivalent in turn to

(
M ⊗ WDn

)
π(x)

ψ̂n(∇x )−−−−−→
(
E ⊗ WDn

)
x idE ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−→

(E ⊗ WDn )x idE ⊗ W(
α ·
1

)

Dn−−−−−−−−−−→
(E ⊗ WDn )x ... idE ⊗ W(

α ·
n

)

Dn−−−−−−−−−−→
(E ⊗ WDn )x

Since the composition of mappings

(
E ⊗ WDn

)
x W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−→ (E ⊗ WDn )x idE ⊗ W(

α ·
1

)

Dn−−−−−−−−−−→
(E ⊗ WDn )x ...idE ⊗ W(

α ·
n

)

Dn−−−−−−−−−→
(E ⊗ WDn )x

is equivalent to the composition of mappings
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(
E ⊗ WDn

)
x idE ⊗ W(α·)Dn−−−−−−−−−→

(
E ⊗ WDn

)
x idE ⊗ W(d1,...,dn)∈Dn �−→(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−→

(E ⊗ WDn )x ,

the coveted result follows.
3. We are going to deal with the third condition. We have to show that the diagram

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dm→Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDm

ψ̂n(∇x ) ↓ ↓ ψ̂n(∇x ) ⊗ idWDm(
E ⊗ WDn

)
x idE ⊗ WmDn×Dm→Dn−−−−−−−−−−−−−→

(
E ⊗ WDn

)
x ⊗ WDm

(19)

commutes. It is easy to see that the diagram

(
E ⊗ WDn

)
x idE ⊗ W+Dn→Dn

(E ⊗ WDn )x
idE ⊗ WmDn×Dm→Dn

↓ ↓ idE ⊗ Wη(
E ⊗ WDn

)
x ⊗ WDm idE ⊗ W+Dn→Dn ×idDm

(E ⊗ WDn )x ⊗ WDm

commutes, where η stands for

(d1, ..., dn, e) ∈ Dn × Dm �−→ (d1e, ..., dne) ∈ Dn

so that the commutativity of the diagram in (19) is equivalent to the commutativity
of the outer square of the diagram

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dm→Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDm

ψ̂n(∇x ) ↓ ↓ ψ̂n(∇x ) ⊗ idWDm(
E ⊗ WDn

)
x idE ⊗ WmDn×Dm→Dn−−−−−−−−−−−−−→

(
E ⊗ WDn

)
x ⊗ WDm

idE ⊗ W+Dn→Dn
↓ ↓ idE ⊗ W+Dn→Dn ×idDm

(E ⊗ WDn )x idE ⊗ Wη−−−−−−→ (E ⊗ WDn )x ⊗ WDm

(20)

where +Dn→Dn stands for

(d1, ..., dn) ∈ Dn �−→ (d1 + ... + dn) ∈ Dn

The composition of mappings

(
M ⊗ WDn

)
π(x)

ψ̂n(∇x )−−−−−→
(
E ⊗ WDn

)
x idE ⊗ W+Dn→Dn−−−−−−−−−−−→

(E ⊗ WDn )x

is equal to the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W+Dn→Dn−−−−−−−−−−−→
(M ⊗ WDn )π(x) ∇x−→ (E ⊗ WDn )x
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while the composition of mappings

(
M ⊗ WDn

)
π(x)

⊗ WDm ψ̂n(∇x ) ⊗ idWDm−−−−−−−−−−−→
(
E ⊗ WDn

)
x ⊗ WDm

idE ⊗ W+Dn→Dn ×idDm−−−−−−−−−−−−−−−→
(E ⊗ WDn )x ⊗ WDm

is equal to the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W+Dn→Dn ×idDm−−−−−−−−−−−−−−−→
(M ⊗ WDn )π(x) ∇x ⊗ idWDm−−−−−−−−→

(E ⊗ WDn )x ⊗ WDm

Since the diagram

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dm→Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDm

idM ⊗ W+Dn→Dn
↓ ↓ idM ⊗ W+Dn→Dn ×idDm

(M ⊗ WDn )π(x) idM ⊗ Wη−−−−−−→ (M ⊗ WDn )π(x) ⊗ WDm

∇x ↓ ↓ ∇x ⊗ idWDm

(E ⊗ WDn )x idE ⊗ Wη−−−−−−→ (E ⊗ WDn )x ⊗ WDm

commutes, the outer square of the diagram in (20) commutes. This completes the
proof.

Proposition 7.3 The diagram

Ĵ
Dn+1

x (π) ψ̂n+1−−→ Ĵ
Dn+1
x (π)

π̂n+1,n ↓ ↓ π̂n+1,n

Ĵ
Dn

x (π)
−→̂
ψn Ĵ

Dn
x (π)

commutes.

Proof Given ∇x ∈ Ĵ
Dn+1

x (π), the composition of mappings

(
M ⊗ WDn

)
π(x)

π̂n+1,n
(
ψ̂n+1 (∇x )

)

−−−−−−−−−−−−−→
(
E ⊗ WDn

)
x idE ⊗ WmDn×Dn→Dn−−−−−−−−−−−−−→(

E ⊗ WDn

)
x ⊗ WDn idE ⊗ W+Dn→Dn ×idDn−−−−−−−−−−−−−−→

(E ⊗ WDn )x ⊗ WDn (21)

is equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

π̂n+1,n
(
ψ̂n+1 (∇x )

)

−−−−−−−−−−−−−→
(
E ⊗ WDn

)
x idE ⊗ WmDn+1×Dn→Dn−−−−−−−−−−−−−−→(

E ⊗ WDn+1

)
x ⊗ WDn idE ⊗ W+Dn+1→Dn+1

×idDn−−−−−−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x
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⊗ WDn dn+1 ⊗ idWDn−−−−−−−−−→
(E ⊗ WDn )x ⊗ WDn

which is in turn equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn+1×Dn→Dn−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn ψ̂n+1 (∇x ) ⊗ WidWDn−−−−−−−−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn idE ⊗ W+Dn+1→Dn+1

×idDn−−−−−−−−−−−−−−−−−→(
E ⊗ WDn+1

)
x ⊗ WDn dn+1 ⊗ idWDn−−−−−−−−−→

(E ⊗ WDn )x ⊗ WDn

This is to be supplanted by the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn+1×Dn→Dn−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn

idM ⊗ W+Dn+1→Dn+1
×idDn−−−−−−−−−−−−−−−−−→

(
M ⊗ WDn+1

)
π(x)

⊗ WDn ∇x ⊗ idWDn−−−−−−−→
(
E ⊗ WDn+1

)
x ⊗ WDn dn+1 ⊗ idWDn−−−−−−−−−→

(E ⊗ WDn )x ⊗ WDn ,

which is in turn equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn+1×Dn→Dn−−−−−−−−−−−−−−−→
(
M ⊗ WDn+1

)
π(x)

⊗ WDn idM ⊗ W+Dn+1→Dn+1
×idDn−−−−−−−−−−−−−−−−−→

(
M ⊗ WDn+1

)
π(x)

⊗ WDn dn+1 ⊗ idWDn−−−−−−−−−→
(M ⊗ WDn )π(x) ⊗ WDn π̂n+1,n (∇x ) ⊗ idWDn−−−−−−−−−−−−−−→

(E ⊗ WDn )x ⊗ WDn

by Proposition 4.2. This is to be supplanted by the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dn→Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDn idM ⊗ W+Dn→Dn ×idDn−−−−−−−−−−−−−−−→
(M ⊗ WDn )π(x) ⊗ WDn π̂n+1,n (∇x ) ⊗ idWDn−−−−−−−−−−−−−−→

(E ⊗ WDn )x ⊗ WDn ,

which is equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ WmDn×Dn→Dn−−−−−−−−−−−−−→
(
M ⊗ WDn

)
π(x)

⊗ WDn ψ̂n
(
π̂n+1,n (∇x )

) ⊗ idWDn−−−−−−−−−−−−−−−−−−→
(
E ⊗ WDn

)
x ⊗ WDn idE ⊗ W+Dn→Dn ×idDn−−−−−−−−−−−−−−→

(E ⊗ WDn )x ⊗ WDn
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This is really equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

ψ̂n
(
π̂n+1,n (∇x )

)

−−−−−−−−−−−→
(
E ⊗ WDn

)
x idE ⊗ WmDn×Dn→Dn−−−−−−−−−−−−−→(

E ⊗ WDn

)
x ⊗ WDn idE ⊗ W+Dn→Dn ×idDn−−−−−−−−−−−−−−→

E ⊗ WDn×Dn (22)

This just established fact that the composition of mappings in (21) and that in (22)
are equivalent implies the coveted result at once. This completes the proof.

Proposition 7.4 Let D be a simplicial infinitesimal space of dimension n and degree
m. Let ∇x be a Dn-pseudotangential over the bundle π : E → M at x ∈ E and
γ ∈ (

M ⊗ WDn

)
π(x)

. Then the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W+D→Dn−−−−−−−−−−→ (M ⊗ WD)π(x) ∇D
x−→ (E ⊗ WD)x

is equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

ψ̂n(∇x−−−→)
(
E ⊗ WDn

)
x idE ⊗ W+D→Dn−−−−−−−−−−→ (E ⊗ WD)x

Proof Let i : Dk → D be any mapping in the standard quasi-colimit representation
of D. The composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ W+D→Dn−−−−−−−−−−→ (M ⊗ WD)π(x) ∇D
x−→ (E ⊗ WD)x

idE ⊗ Wi−−−−−→
(
E ⊗ WDk

)
x (23)

is equivalent, by dint of Theorem 4.5, to the composition of mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ WiDk →Dn−−−−−−−−−−→
(

M ⊗ WDk

)
π(x)

idM ⊗ W+Dk →Dk−−−−−−−−−−−→
(
M ⊗ WDk

)
π(x)

∇Dk

x−−→
(
E ⊗ WDk

)
x ,

which is in turn equivalent, by the very definition of ψ̂k , to the composition of
mappings

(
M ⊗ WDn

)
π(x)

idM ⊗ WiDk →Dn−−−−−−−−−−→
(

M ⊗ WDk

)
π(x)

ψ̂k

(
∇Dk

x

)

−−−−−−−→
(
E ⊗ WDk

)
x

idE ⊗ W+Dk→Dk−−−−−−−−−−−→
(
E ⊗ WDk

)
x .

This is indeed equivalent, by dint of Proposition 7.3, to the composition of mappings
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(
M ⊗ WDn

)
π(x)

ψ̂n (∇x )−−−−→
(
E ⊗ WDn

)
x idE ⊗ WiDk →Dn−−−−−−−−−−→

(
E ⊗ WDk

)
x

idE ⊗ W+Dk →Dk−−−−−−−−−−−→
(
E ⊗ WDk

)
x ,

which is in turn equivalent to the composition of mappings

(
M ⊗ WDn

)
π(x)

ψ̂n (∇x )−−−−−→
(
E ⊗ WDn

)
x idE ⊗ W+D→Dn−−−−−−−−−−→ (E ⊗ WD)x

idE ⊗ Wi−−−−−−→
(
E ⊗ WDk

)
x (24)

The just established fact that the composition of mappings in (23) and that in (24)
are equivalent implies the coveted result at once. This completes the proof.

Theorem 7.1 For any ∇x ∈ J
Dn

x (π), we have ψ̂n (∇x ) ∈ J
Dn
x (π).

Proof In view of Proposition 7.2, it suffices to show that ψ̂n (∇x ) satisfies second
the condition in Definition 5.2. Here we deal only with the case that n = 3 and the
simple polynomial ρ at issue is d ∈ D3 �−→ d2 ∈ D, leaving the general case safely
to the reader. Since

(d1 + d2 + d3)
2 = 2(d1d2 + d1d3 + d2d3)

for any (d1, d2, d3) ∈ D3, we have the commutative diagram

D3 χ→ D(6)
+D3→D3

↓ ↓ +D(6)→D

D3 →
ρ

D
(25)

where χ stands for the mapping

(d1, d2, d3) ∈ D3 �→ (d1d2, d1d3, d2d3, d1d2, d1d3, d2d3) ∈ D(6)

Then the composition of mappings

(M ⊗ WD)π(x) idM ⊗ Wρ−−−−−−→
(
M ⊗ WD3

)
π(x)

ψ̂3 (∇x )−−−−→
(
E ⊗ WD3

)
x

idE ⊗ W+D3→D3−−−−−−−−−−−→
(
E ⊗ WD3

)
x

is equivalent, by the very definition of ψ̂3, to the composition of mappings

(M ⊗ WD)π(x) idM ⊗ Wρ−−−−−−→
(
M ⊗ WD3

)
π(x)

idM ⊗ W+D3→D3−−−−−−−−−−−→
(
M ⊗ WD3

)
π(x)

∇x−→
(
E ⊗ WD3

)
x
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which is in turn equivalent to the composition of mappings

(M ⊗ WD)π(x) idM ⊗ W+D(6)→D−−−−−−−−−−−→
(
M ⊗ WD(6)

)
π(x)

idM ⊗ Wχ−−−−−−→
(
M ⊗ WD3

)
π(x)

∇x−→
(
E ⊗ WD3

)
x

with due regard to the commutative diagram in (25). By Theorem 4.5, this is equiv-
alent to the composition of mappings

(M ⊗ WD)π(x) idM ⊗ W+D(6)→D−−−−−−−−−−−→
(
M ⊗ WD(6)

)
π(x)

∇D(6)
x−−−→

(
E ⊗ WD(6)

)
x

idE ⊗ Wχ−−−−−−→
(
E ⊗ WD3

)
x

which is in turn equivalent by Proposition 7.4 to the composition of mappings

(M ⊗ WD)π(x) ψ̂1(π3,1(∇x ))−−−−−−−−−→ (E ⊗ WD)x idE ⊗ W+D(6)→D−−−−−−−−−−−→
(
E ⊗ WD(6)

)
x

idE ⊗ Wχ−−−−−−→
(
E ⊗ WD3

)
x

Since
ψ̂1(π̂3,1(∇x )) = π̂3,1(ψ̂3(∇x ))

by Proposition 7.3 and the commutativity of the diagram (25), this is equivalent to
the composition of mappings

(M ⊗ WD)π(x) π3,1(ψ̂3(∇x ))−−−−−−−−−→ (E ⊗ WD)x idE ⊗ Wρ−−−−−−→
(
E ⊗ WD3

)
x

idE ⊗ W+D3→D3−−−−−−−−−−−→
(
E ⊗ WD3

)
x ,

which completes the proof.

Notation 7.3 Thus the mapping ψ̂n: ĴDn
(π) → Ĵ

Dn (π) is naturally restricted to a
mapping ψn: JDn

(π) → J
Dn (π).
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