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Abstract Wefind a partial solution to the problemofKostant concerning description
of the locally finite endomorphisms of highest weight irreducible modules. The solu-
tion is obtained bymeans of its reduction to an extension of the quantization problem.
While the classical quantization problem consists in finding �-product deformations
of the commutative algebras of functions, we consider the q-case when the initial
object is already a noncommutative algebra.

1 Introduction

Let Ǔqg be the quantized universal enveloping algebra “of simply connected type”
[8] that corresponds to a finite dimensional split semisimple Lie algebra g. Let L(λ)

be the irreducible highest weight Ǔqg-module of highest weight λ. The aim of this
paper is to show that for certain values of λ, the action map Ǔqg → (

End L(λ)
)
fin

is surjective. Here (End L(λ)
)
fin stands for the locally finite part of End L(λ) with

respect to the adjoint action of Ǔqg. For the Lie-algebraic case (q = 1), this problem
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is known as the classical Kostant’s problem, see [6, 7, 12, 15, 16]. The complete
answer to it is still unknown even in the q = 1 case. However, there are examples of
λ for which the action map U (g) → (

End L(λ)
)
fin is not surjective. Such examples

exist even in the case g is of type A [17].
The main idea of our approach to Kostant’s problem, both in the Lie-algebraic

and quantum group cases, is that
(
End L(λ)

)
fin has two other presentations. First,

it follows from the results of [11] that
(
End L(λ)

)
fin is canonically isomorphic to

HomU
(
L(λ), L(λ) ⊗ F

)
, where U is U (g) (resp. Ǔqg), and F is the algebra of

(quantized) regular functions on the connected simply connected algebraic group G
corresponding to the Lie algebra g. In other words, F is spanned by matrix elements
of finite dimensional representations of U with an appropriate multiplication.

One more presentation of the algebra
(
End L(λ)

)
fin comes from the fact that

HomU
(
L(λ), L(λ) ⊗ F

)
is isomorphic as a vector space to a certain subspace F ′ of

F . The subspace F ′ can be equipped with a �-multiplication obtained from themulti-
plication on F by applying the so-called reduced fusion element. Then

(
End L(λ)

)
fin

is isomorphic as an algebra to F ′ with this new multiplication. For certain values of
λ, the same �-multiplication on F ′ can be defined by applying the universal fusion
element, that yields the affirmative answer to Kostant’s problem in such cases.

More exactly, consider the triangular decomposition U = U−U 0U+. We have
L(λ) = M(λ)/Kλ1λ, where M(λ) is the corresponding Verma module, 1λ is the
generator of M(λ), and Kλ ⊂ U−. Consider also the opposite Vermamodule M̃(−λ)

with the lowest weight −λ and the lowest weight vector 1̃−λ. Then its maximal
U -submodule is of the form K̃λ ·̃1−λ, where K̃λ ⊂ U+.We have F ′ = F[0]Kλ+K̃λ—
the subspace of U 0-invariant elements of F annihilated by both Kλ and K̃λ. The
�-product on F[0]Kλ+K̃λ has the form

f1 �λ f2 = μ
(

J red(λ)( f1 ⊗ f2)
)

,

where μ is the multiplication on F , and the reduced fusion element J red(λ) ∈
U− ⊗̂ U+ is computed in terms of the Shapovalov form on L(λ). Notice that for
generic λ the element J red(λ) is equal up to an U 0-part to the fusion element J (λ)

related to the Verma module M(λ), see for example [4].
We also investigate limiting properties of J (λ). In particular, for some values of

λ0 we can guarantee that f1 �λ f2 → f1 �λ0 f2 as λ → λ0. Also, for any λ0 having a
“regularity property” of this kind, the action map U → (End L(λ0))fin is surjective.
This gives the affirmative answer to the (quantum version of) Kostant’s problem.

For some values of λ, the subspace F[0]Kλ+K̃λ is a subalgebra of F[0], and can
be considered as (a flat deformation of) the algebra of regular functions on some
Poisson homogeneous space G/G1. In those cases, the algebra

(
F[0]Kλ+K̃λ , �λ

)
is

an equivariant quantization of the Poisson algebra of regular functions on G/G1.
This paper is organized as follows. In Sect. 2 we recall the definition of the version

of quantized universal enveloping algebra used in this paper, and some related con-
structions that will be useful in the sequel. In Sect. 3 we construct an isomorphism
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HomU
(
L(λ), L(λ) ⊗ F

) � F[0]Kλ+K̃λ and, as a corollary, provide a construction

of a star-product on F[0]Kλ+K̃λ in terms of the Shapovalov form on L(λ). In Sect. 4
we study limiting properties of fusion elements and the corresponding star-products.
Namely, in Sect. 4.1 we introduce the notion of a J -regular weight. In a neighbor-
hood of a J -regular weight the fusion element behaves nicely, which allows one
to give a solution to the Kostant’s problem for such weights (see Theorem 4.1).
We also provide non-trivial examples of J -regular weights. Finally, in Sect. 4.2 we
apply limiting properties of fusion elements to quantize explicitly certain Poisson
homogeneous spaces (see Theorem 4.4).

In this short version of the paper the proofs are omitted. A complete version with
proofs will be published elsewhere.

2 Algebra Ǔqg

Let k be the field extension of C(q) by all fractional powers q1/n , n ∈ N =
{1, 2, 3, . . .}. We use k as the ground field.

Let (ai j ) a finite type r × r Cartan matrix. Let di be relatively prime positive
integers such that di ai j = d j a ji . For any positive integer k, define

[k]i = qkdi − q−kdi

qdi − q−di
, [k]i ! = [1]i [2]i . . . [k]i .

The algebra U = Ǔqg is generated by the elements ti , t−1
i , ei , fi , i = 1, . . . , r ,

subject to the relations

ti t
−1
i = t−1

i ti = 1

ti e j t
−1
i = qdi δi j e j ,

ti f j t
−1
i = q−di δi j f j ,

ei f j − f j ei = δi j
ki − k−1

i

qdi − q−di
, where ki =

r∏

j=1

t
ai j
j ,

1−ai j∑

m=0

(−1)m

[m]i ! [1 − ai j − m]i !em
i e j e

1−ai j −m
i = 0 for i �= j,

1−ai j∑

m=0

(−1)m

[m]i ! [1 − ai j − m]i ! f m
i f j f

1−ai j −m
i = 0 for i �= j
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Notice that ki e j k
−1
i = qdi ai j e j , ki f j k

−1
i = q−di ai j f j .

The algebra U is a Hopf algebra with the comultiplication Δ, the counit ε, and
the antipode σ given by

Δ(ti ) = ti ⊗ ti , ε(ti ) = 1, σ (ti ) = t−1
i

Δ(ei ) = ei ⊗ 1 + ki ⊗ ei , ε(ei ) = 0, σ (ei ) = −k−1
i ei

Δ( fi ) = fi ⊗ k−1
i + 1 ⊗ fi , ε( fi ) = 0, σ ( fi ) = − fi ki .

In what follows we will sometimes use the Sweedler notation for comultiplication.
LetU 0 be the subalgebra ofU generated by the elements t1, . . . , tr , t−1

1 , . . . , t−1
r .

Let U+ and U− be the subalgebras generated respectively by the elements e1, . . . ,
er and f1, . . . , fr . We have a triangular decompositionU = U−U 0U+. Denote by θ

the involutive automorphism of U given by θ(ei ) = − fi , θ( fi ) = −ei , θ(ti ) = t−1
i .

Notice that θ gives an algebra isomorphism U− → U+. Set ω = σθ , i.e., ω is the
involutive antiautomorphismofU given byω(ei ) = fi ki ,ω( fi ) = k−1

i ei ,ω(ti ) = ti .
Let (h,Π,Π∨) be a realization of (ai j ) over Q, that is, h is (a rational form of)

a Cartan subalgebra of the corresponding semisimple Lie algebra, Π = {α1, . . . ,

αr } ⊂ h∗ the set of simple roots, Π∨ = {α∨
1 , . . . , α∨

r } ⊂ h the set of simple coroots.
Let R be the root system, R+ the set of positive roots, and W the Weyl group.

Let u1, . . . , ur ∈ h be the simple coweights, i.e., 〈αi , u j 〉 = δi j . We denote by ρ

the half sum of the positive roots.
Let

Q+ =
∑

α∈Π

Z+α.

For λ,μ ∈ h∗ we set λ ≥ μ iff λ − μ ∈ Q+.
Denote by T the multiplicative subgroup generated by t1, . . . , tr . Any λ ∈ h∗

defines a character Λ : T → k given by ti �→ qdi 〈λ,ui 〉. We will write Λ = qλ.
Notice that qλ(ki ) = qdi 〈λ,α∨

i 〉. We extend qλ to the subalgebra U 0 by linearity. We
say that an element x ∈ U is of weight λ if t xt−1 = qλ(t)x for all t ∈ T .

For a U -module V , we denote by

V [λ] = {v ∈ V | tv = qλ(t)v for all t ∈ T }

the weight subspace of weight λ. We call the module V admissible if V is a direct
sum of finite-dimensional weight subspaces V [λ].

The Verma module M(λ) overU with highest weight λ and highest weight vector
1λ is defined in the standard way:

M(λ) = U−1λ, U+1λ = 0, t1λ = qλ(t)1λ, t ∈ T .

The map U− → M(λ), y �→ y1λ is an isomorphism of U−-modules.
Set U±+ = Ker ε|U± and denote by x �→ (x)0 the projection U → U 0 along

U−+ · U + U · U++ . For any λ ∈ h∗ consider πλ : U+ ⊗ U− → k, πλ(x ⊗ y) =
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qλ((σ (x)y)0), and Sλ : U−⊗U− → k, Sλ(x ⊗y) = πλ(θ(x)⊗y) = qλ((ω(x)y)0).
We call Sλ the Shapovalov form on U− corresponding to λ. We can regard Sλ as a
bilinear form on M(λ).

Set
Kλ = {y ∈ U− | πλ(x ⊗ y) = 0 for all x ∈ U+},

K̃λ = {x ∈ U+ | πλ(x ⊗ y) = 0 for all y ∈ U−}.

Clearly, Kλ is the kernel of Sλ, K̃λ = θ(Kλ). Notice that K (λ) = Kλ ·1λ is the largest
proper submodule of M(λ), and L(λ) = M(λ)/K (λ) is the irreducible U -module
with highest weight λ. Denote by 1λ the image of 1λ in L(λ).

Let F = k[G]q be the quantized algebra of regular functions on a connected
simply connected algebraic group G that corresponds to the Cartan matrix (ai j ) (see
[8, 14]). We can consider F as a Hopf subalgebra in the dual Hopf algebra U �. We
will use the left and right regular actions of U on F defined respectively by the
formulae (

−→a f )(x) = f (xa) and ( f ←−a )(x) = f (ax). Notice that F is a sum of
finite-dimensional admissible U -modules with respect to both regular actions of U
(see [14]).

3 Star Products and Fusion Elements

3.1 Algebra of Intertwining Operators

Let us denote by Ufin ⊂ U the subalgebra of locally finite elements with respect to
the right adjoint action of U on itself. We will use similar notation for any (right)
U -module.

For any (left)U -module M we equip F with the left regularU -action and consider
the space HomU (M, M ⊗ F). For any ϕ,ψ ∈ HomU (M, M ⊗ F) define

ϕ ∗ ψ = (id⊗μ) ◦ (ϕ ⊗ id) ◦ ψ, (1)

where μ is the multiplication in F . We have ϕ ∗ ψ ∈ HomU (M, M ⊗ F), and this
definition equips HomU (M, M ⊗ F) with a unital associative algebra structure.

Consider the map Φ : HomU (M, M ⊗ F) → End M , ϕ �→ uϕ , defined
by uϕ(m) = (id⊗ε)(ϕ(m)); here ε( f ) = f (1) is the counit in F . Consider
Ufin, HomU (M, M ⊗ F) and End M as right U -module algebras: Ufin via right
adjoint action, HomU (M, M ⊗ F) via right regular action on F (i.e., (ϕ · a)(m) =
(id⊗←−a )(ϕ(m))), and End M in a standard way (i.e., u ·a = ∑

(a) σ (a(1))M ua(2)M ).
Then HomU (M, M ⊗ F)fin = HomU (M, M ⊗ F), andΦ : HomU (M, M ⊗ F) −→
(End M)fin is an isomorphism of right U -module algebras (see [11, Proposition 6]).

Now we apply this to M = M(λ) and M = L(λ). Since Ufin → (End M(λ))fin
is surjective (see [8, 9]), we have the following commutative diagram
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HomU (M(λ), M(λ) ⊗ F)

ΦM(λ)

��

�� HomU (L(λ), L(λ) ⊗ F)

ΦL(λ)

��
(End M(λ))fin �� (End L(λ))fin

(see [11, Proposition 9]).
For any ϕ ∈ HomU (L(λ), L(λ) ⊗ F) the formula

ϕ(1λ) = 1λ ⊗ fϕ +
∑

μ<λ

vμ ⊗ fμ,

where vμ is of weight μ, defines a map

Θ : HomU (L(λ), L(λ) ⊗ F) → F[0], ϕ �→ fϕ.

Theorem 3.1 Θ is an embedding, and its image equals F[0]Kλ+K̃λ .

3.2 Reduced Fusion Elements

In this subsectionwe describeΘ−1 : F[0]Kλ+K̃λ → HomU (L(λ), L(λ)⊗F) explic-
itly in terms of the Shapovalov form. Recall that we can regard Sλ as a bilinear form
on M(λ). Denote by Sλ the corresponding bilinear form on L(λ). For any β ∈ Q+
denote by S

β

λ the restriction of Sλ to L(λ)[λ − β]. Let yi
β · 1λ be an arbitrary basis

in L(λ)[λ − β], where yi
β ∈ U−[−β].

Take f ∈ F[0]Kλ+K̃λ and set ϕ = Θ−1( f ),

ϕ(1λ) =
∑

β∈Q+

∑

i

yi
β1λ ⊗ f β,i .

For β = 0 we have yi
β = 1 and f β,i = f .

Proposition 3.1 f β,i = ∑
j

(
S

β

λ

)−1

i j

−−−−→
θ

(
y j
β

)
f .

For any λ ∈ h∗ consider

J red(λ) =
∑

β∈Q+

∑

i, j

(
S

β

λ

)−1

i j
yi
β ⊗ θ

(
y j
β

)
. (2)

One can regard J red(λ) as an element in a certain completion of U− ⊗ U+.
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Remark 3.1 This element J red(λ) is not uniquely defined (e.g., becauseU− → L(λ)

has a kernel), but this does not affect our further considerations.

Remark 3.2 For f ∈ F[0]Kλ+K̃λ and ϕ = Θ−1( f ) one has ϕ(1λ) = J red(λ)(1λ⊗ f ).

Let us define an associative product �λ on F[0]Kλ+K̃λ by means of Θ , i.e., for any
f1, f2 ∈ F[0]Kλ+K̃λ we define f1 �λ f2 = Θ(ϕ1 ∗ ϕ2), where ϕ1 = Θ−1( f1),
ϕ2 = Θ−1( f2), and ∗ is the product on HomU (L(λ), L(λ) ⊗ F) given by (1). By
this definition, we get a right U -module algebra (F[0]Kλ+K̃λ , �λ).

Theorem 3.2 We have

f1 �λ f2 = μ

(−−−−→
J red(λ)( f1 ⊗ f2)

)
. (3)

Remark 3.3 Theorem 23 together with results of [11] implies that HomU (L(λ),

L(λ)⊗ F), (End L(λ))fin, and
(
F[0]Kλ+K̃λ , �λ

)
are isomorphic as right Hopfmodule

algebras over U .

4 Limiting Properties of the Fusion Element

We say that λ ∈ h∗ is generic if 〈λ + ρ, β∨〉 �∈ N for all β ∈ R+. In this case
L(λ) = M(λ), and we set J (λ) = J red(λ). Notice that J (λ) up to a U 0-part equals
the fusion element related to the Verma module M(λ) (see, e.g., [4]).

4.1 Regularity

Let λ0 ∈ h∗. Since J (λ) is invariant w. r. to τ(θ ⊗ θ) (where τ is the tensor per-
mutation), one can easily see that the following conditions on λ0 are equivalent: 1)
for any U−-module M the family of operators J (λ)M : M ⊗ F[0]K̃λ0 → M ⊗ F
naturally defined by J (λ) is regular at λ = λ0, 2) for any U+-module N the family
of operators J (λ)N : F[0]Kλ0 ⊗ N → F ⊗ N naturally defined by J (λ) is regular
at λ = λ0. We will say that λ0 is J-regular if these conditions are satisfied. Clearly,
any generic λ0 is J -regular.

The following theorem collects some general properties of J -regular weights. In
particular, for J -regular weights the answer to Kostant’s question is affirmative.

Theorem 4.1 Assume that λ0 ∈ h∗ is J -regular. Then

(1) F[0]Kλ0 = F[0]K̃λ0 = F[0]Kλ0+K̃λ0 ,
(2) the natural map HomU (M(λ0), M(λ0) ⊗ F) → HomU (L(λ0), L(λ0) ⊗ F) is

surjective,



34 E. Karolinsky et al.

(3) (Kostant’s problem) the action map Ufin → (End L(λ0))fin is surjective,

(4) for any f, g ∈ F[0]Kλ0 we have
−−→
J (λ)( f ⊗ g) → −−−−−→

J red(λ0)( f ⊗ g) as λ → λ0,
(5) for any f, g ∈ F[0]Kλ0 we have f1 �λ f2 → f1 �λ0 f2 as λ → λ0.

The following two theorems provide examples of J -regular weights.

Theorem 4.2 Let α ∈ R+. Consider λ0 ∈ h∗ that satisfies 〈λ0 + ρ, α∨〉 ∈ N,
〈λ0 + ρ, β∨〉 �∈ N for all β ∈ R+ \ {α}. Then λ0 is J -regular.

Theorem 4.3 Let Γ ⊂ Π . Consider λ0 ∈ h∗ that satisfies 〈λ0 + ρ, α∨
i 〉 ∈ N for all

αi ∈ Γ , 〈λ0 + ρ, β∨〉 �∈ N for all β ∈ R+ \ SpanΓ . Then λ0 is J -regular.

4.2 Application to Poisson Homogeneous Spaces

Let Γ ⊂ Π . Assume that λ ∈ h∗ is such that 〈λ, α∨〉 = 0 for all α ∈ Γ , and
〈λ + ρ, β∨〉 �∈ N for all β ∈ R+ \ SpanΓ . By Theorem 4.3, λ is J -regular. In
particular, F[0]Kλ+K̃λ = F[0]Kλ .

In what follows it will be more convenient to write Fq , Jq , and Kq,λ instead of
F , J , and Kλ. We will also need the classical limits F1 = limq→1 Fq and K1,λ =
limq→1 Kq,λ. They can be defined in the same way as in ([8], Sects. 3.4.5 and 3.4.6).

Clearly, F1 is the algebra of regular functions on the connected simply connected
group G, whose Lie algebra is g. Let k be a reductive subalgebra of gwhich contains h
and is defined byΓ , K the corresponding subgroup of G, and F(G/K ) the algebra of
regular functions on the homogeneous space G/K . According to [11, Theorem 33],
we have F(G/K ) = F1[0]K1,λ . Therefore we get

Proposition 4.1 limq→1 Fq [0]Kq,λ = F(G/K ).

Furthermore, since Fq [0]Kq,λ is a Hopf module algebra over U , G/K is a Poisson
homogeneous space over G equipped with the Poisson-Lie structure defined by the
Drinfeld-Jimbo classical r -matrix r0 = ∑

α∈R+ eα ∧ e−α .
All such structures on G/K were described in [10]. It follows from [10] that any

such Poisson structure on G/K is uniquely determined by an an intermediate Levi
subalgebran satisfying k ⊂ n ⊂ g and someλ ∈ h∗ which satisfies certain conditions,
in particular, 〈λ, α∨〉 = 0 for α ∈ Γ and 〈λ, β∨〉 �∈ Z for β ∈ SpanΓn \ SpanΓ .
Here Γn is the set of simple roots defining n.

Now we can describe the Poisson bracket on G/K defined by �λ-multiplication
on Fq [0]Kq,λ .

Theorem 4.4 Assume that 〈λ0, α∨〉 = 0 for α ∈ Γ and 〈λ0, β∨〉 �∈ Z for β ∈
R+ \SpanΓ . Then the classical limit of (Fq [0]Kq,λ0 , �λ0) is the algebra F(G/K ) of
regular functions on G/K equipped with the Poisson homogeneous structure defined
by n = g and λ0.
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Notice that an analogous result for simple Lie algebras of classical type was
obtained in [18] using reflection equation algebras.

Proposition 4.1 and Theorem 4.4 suggest a conjecture which we formulate below.
Let G be a connected Poisson affine algebraic group, g the corresponding Lie

bialgebra with the co-bracket δ, X a Poisson homogeneous G-variety, Y an affine
Zariski open dense subset of X . Consider the Poisson algebra F(Y ) of regular func-
tions on Y . Let Uqg be a quantized universal enveloping algebra corresponding
to g.

Conjecture 4.1 There exists a Hopf module algebra over Uqg whose classical limit
is F(Y ).

Let us show another example which confirms this conjecture. Consider the
case X = G. Let D(g) be the classical double of g. According to [2], Poisson
G-homogeneous structures on G are in one-to-one correspondence with Largangian
subalgebras of D(g) transversal to g ⊂ D(g). Consider such a Lagrangian subalge-
bra l ⊂ D(g), which corresponds to a certain Poisson G-homogeneous structure on
G. It is well known [1] that l also induces a new Poisson-Lie structure on G, which
differs from the original one by a so-called classical twist. Hence we obtain a new
Lie bialgebra structure δ1 on the Lie algebra g.

The following conjecture was made in [12] and later published in [13].

Conjecture 4.2 There exists an element T in a certain completion of (Uqg)
⊗2 which

satisfies
T 12(Δ ⊗ id)(T ) = T 23(id⊗Δ)(T ) (4)

and (ε ⊗ id)(T ) = (id⊗ε)(T ) = 1 such that the Hopf algebra Uq,T g quantizes
(g, δ1). Here Uq,T g and Uqg are isomorphic as algebras, and the co-multiplication
on Uq,T g is given by ΔT (a) = T Δ(a)T −1.

This conjecture was proved in [3, 5].
Now let Fq(G) be the restricted dual of Uqg. It is well known that Fq(G)

quantizes F(G). Let us equip Fq(G) with a new product defined by f1 �T f2 =
μ

(−→
T ( f1 ⊗ f2)

)
. According to (4), �T is associative. Hence we get

Corollary 4.1 The algebra (Fq(G), �T ) is a Hopf module algebra over Uqg which
quantizes the Poisson homogeneous structure on G defined by l.
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