
Noncommutative Algebraic Varieties

Arvid Siqveland

Abstract For a natural number r , we define the free r × r matrix polynomial
algebras and their quotients. We define algebraic sets and tangent spaces between
different points. We then study their naive geometry by deformation theory, and
prove that this defines noncommutative varieties in a natural way.

1 Introduction

Algebraic geometry has a long tradition, and in fact comes from a natural place.
Then after making algebraic geometry to a categorical theme, it is possible to define
noncommutative algebraic geometry. In this text we try to take noncommutative alge-
braic geometry back to the natives. We will use deformation theory to define higher
order derivatives between points, and then use this to construct a noncommutative
variety. Our main commutative reference is Hartshorne’s classical book [2].

Through this notes, k is an algebraically closed field of characteristic 0.

2 Polynomial Matrix Algebras

Let r ∈ N and let (di j ) be an r × r -matrix with entries di j ∈ N. We start by defining
the free r × r matrix polynomial algebra generated by the matrix variables ti j (l),
1 ≤ l ≤ di j , in entry 1 ≤ i, j ≤ r . To get into the language, consider the following
(in which r = 2 and di j = 1, 1 ≤ i, j ≤ 2):
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Example 2.1 Let the matrices

X =
(

x 0
0 0

)
, Y =

(
0 y
0 0

)
, Z =

(
0 0
z 0

)
, and W =

(
0 0
0 w

)

be given. Together with the idempotents e1 =
(
1 0
0 0

)
and e2 =

(
0 0
0 1

)
these matrix

variables generates a k2-algebra which is denoted

S =
(

k〈x〉 ky
kz k〈w〉

)
.

By the notation
(
Si j

)
where Sii is a k-algebra for each i , 1 ≤ i ≤ r , and Si j is a

k-vector space, we mean the kr -algebra generated by the matrices M = (mi j ) with
mi j ∈ Si j , 1 ≤ i, j ≤ r .

Definition 2.1 For a positive integer r , for each pair (i, j), 1 ≤ i, j ≤ r , let di j ∈ N.
Then the free polynomial algebra in the matrix variables ti j (l), 1 ≤ i, j ≤ di j , is the
kr -algebra generated by the matrix elements in

⎛
⎜⎝

k〈t11(1), . . . , t11(d11)〉 · · · ∑d1r
v=1 kt1r (v)

...
. . .

...∑dr1
v=1 ktr1(v) · · · k〈trr (1), . . . , trr (drr )〉

⎞
⎟⎠ .

Alternatively, we consider the kr -module V generated by ti j (l), and let S be the
tensor algebra

S = Tkr (V ) .

Definition 2.2 For a positive integer r , a finitely generated r × r matrix polynomial
algebra is a quotient of a free r × r matrix polynomial algebra.

Lemma 2.1 Let π : R � S be a surjective k-algebra homomorphism sending
non-units to non-units, and let m ⊂ R be a maximal ideal. Then π(m) is maximal
in S.

Proof First of all, as sπ(m) = π(r)π(m) = π(rm) ∈ π(m) for some r ∈ R, π(m)

is an ideal. Assume π(m) � a and let a = π(r) ∈ a \ π(m). Then r ∈ π−1(a) \ m
so that m � π−1(a) so that π−1(a) = R. But then 1 = π(1) ∈ a implying a = S
and we conclude that π(m) is maximal.

Remark 2.1 We could have simplified by working only with commutative polyno-
mial algebras on the diagonal. However, for obvious reasons, we choose to be as
general as reasonable.

Lemma 2.2 The maximal (right or left or both) ideals, corresponding to one-
dimensional simple modules, of the free noncommutative k-algebra k〈t1, . . . , td〉
are the ideals generated by (t1 − a1, . . . , td − ad) with a1, . . . , ad ∈ k.
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Proof Let m be a maximal ideal in S = k〈t1, . . . , td〉. We have a surjection π0 :
S � k[t1, . . . , td ]. We let m0 = π0(m) which is a maximal ideal, and because k
is algebraically closed, k[t1, . . . , td ]/m0 � k. Letting π : S → k be the canonical
homomorphism and letting π(ti ) = ai , we findm = ker π = (t1 − a1, . . . , td − ad).

Lemma 2.3 For each i ≤ r , let Sii = k〈tii (1), . . . , tii (dii )〉, and let πi i : S � Sii

be the natural morphism. Then the maximal ideals of the free matrix algebra S are
the ideals mi i = π−1

i i (m) where m ⊂ Sii is a maximal ideal. This means that the
maximal ideals of S are the maximal ideals on the diagonal.

Proof For a maximal ideal mi i ⊂ Sii , we have an isomorphism

S/π−1
i i (mi i )

�→ Sii/mi i .

This proves that π−1
i i (mi i ) is a maximal ideal. For the converse, assume m ⊂ S

is maximal. If πi i (m) = Sii for all i , it follows that 1 = ∑
ei is in m which is

impossible. Thus there exists an i whereπi i (m) ⊆ mi i for amaximal idealmi i ⊂ Sii .
Thenm ⊆ π−1

i i (πi i (m)) ⊆ π−1
i i (mi i ) � S. Thenm = π−1

i i (mi i ) by maximality, and
the lemma is proved.

3 Algebraic Spaces and Matrix Coordinate Algebras

For ordinary polynomial algebras, the evaluation in points of affine space is clear.
We give the definition for the r × r polynomial matrix algebras. Let S = (Si j ) be
an r × r matrix polynomial algebra. Let as before Sii = k〈tii (1), . . . , tii (dii )〉 and
let πi i : S → Sii be the morphism defined by sending tii (l) ∈ S to tii (l) ∈ Sii ,
and all other generators to 0. We have seen that the maximal ideals in S are in one
to one correspondence with the collection of maximal ideals in the k-algebras Sii ,
1 ≤ i ≤ r .

Definition 3.1 The affine r × r -space A
r×r
S is the set of points (maximal ideals) in

the free r × r matrix polynomial algebra S. (Together with the additional structure
given by S to be defined in the next section).

We define the evaluation of f ∈ S in the point p = mii ∈ Sii as f (p) = πi i ( f ),
the class of πi i ( f ) ∈ Sii/mi i . So, in the situation with polynomial matrix algebras,
we have the following naive definition.

Definition 3.2 Let S = (Si j ) be a free r × r matrix polynomial algebra, and let
I = (Ii j ) ⊆ S be an ideal. Then an algebraic set is a set on the form Z(I ) = {p ∈
A

r×r
S : f (p) = 0,∀ f ∈ I }. Conversely, let V ⊆ A

r×r
S . Then the ideal of V is

I (V ) = { f ∈ S : f (p) = 0,∀p ∈ V }, and the affine matrix ring coordinate ring is
defined as S(V ) = S/I (V ).
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4 Tangent Spaces for Finitely Generated Matrix Algebras

Speaking differential geometric, for an affine variety V = Z(I ) ⊆ A
n , I ⊆

k[x1, . . . , xd ] an ideal, the tangent directions are the directions along which we
can differentiate, so that the total differential is a sum of the differentials along the
directions. Even better, the k-vector space of derivations has a basis indexed over the
tangent directions. Translated to algebraic geometry, for a pointm ∈ V , we consider
the A(V )-module A(V )/m � k and find a basis for the vector space of k-derivations
Derk(A(V ), k) indexed over what we could call tangent directions, spanning the
tangent space. So we just call Derk(A(V ), k) the tangent space. To recognize this in
other textbooks, e.g. Hartshorne [2], we notice the following:

Lemma 4.1 For a general vector space W , letting W ∗ denote the dual vector space,
we have that

Derk(A(V ), k) � (m/m2)∗ .

Proof As A(V ) is generated in degree one by m, a derivation is determined by its
value on the generators on m. In addition, as the target module is k = A(V )/m, any
derivation δ satisfies δ(m2) = 0 giving a linear transformation δ : m/m2 → k. Also,
given such a linear transformation δ with δ(m2) = 0, δ defines a derivation.

Now, we generalize this to the noncommutative situation, that is to the finitely
generated matrix polynomial algebras. For any two points in a variety V , that is
for any two maximal ideals m1 and m2, put V1 = S(V )/m1 and V2 = S(V )/m2.
Then we have proved above that S(V )/mi � S j j/m

′
i for i = 1, 2 and some j’s,

so we can consider Homk(V1, V2) as an S-bimodule by defining (sφ)(v) = φ(sv)
and (φs)(v) = sφ(v), with the given multiplication by s. We then define the tangent
space between two closed points as

TV1,V2 = Ext1S(V )(V1, V2) = HH1(S(V ),Homk(V1, V2))

= Derk(S(V ),Homk(V1, V2))/ Inner .

In the commutative situation, for a commutative k-algebra A, and two different
simple A-modules V1 = A/m1, V2 = A/m2, it is well known that Ext1A(V1, V2) ∼=
Derk(A,Homk(V1, V2))/ Inner = 0. In the noncommutative case however, this is
is different. The noncommutative information is contained in the different tangent
spaces and higher order derivations between the different points. For simplicity,
we give the following definition in all generality, even if it makes sense only for
noncommutative k-algebras.

Definition 4.1 Let S be any k-algebra. The tangent space between two S-modules
M1 and M2 is

Ext1S(M1, M2) ∼= HH1(S,Homk(M1, M2))

where HH· is the Hochschild cohomology.
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Example 4.1 Let S =
(

k[t11] kt12
kt21 k[t22]

)
and consider two general points

V1 = k[t11]/(t11 − a) , V2 = k[t22]/(t22 − b) .

First, we compute

Ext1S(Vi , Vj ) ∼= Derk(S,Homk(Vi , Vj ))/ Inner

by derivations:
Ext1S(V1, V1): Let δ ∈ Derk(S,Endk(V1)). Then

δ(ei ) = δ(e2i ) = 2δ(ei ) ⇒ δ(ei ) = 0, i = 1, 2 .

δ(t12) = δ(t12e2) = δ(t12)e2 = 0 ,

δ(t21) = δ(e2t21) = e2δ(t21) = 0 ,

δ(t22) = δ(t22)e2 = 0 ,

and finally
δ(t11) = α .

Asall inner derivations are zero (easily seen from the computation above),wefind that
Ext1S(V1, V1) is generated by the derivation sending t11 to α, and all other generators
to 0.
Ext1S(V1, V2):
For δ ∈ Derk(S,Endk(V1, V2)) things are slightly different. δ(e1) = δ(e21) =

e1δ(e1) + δ(e1)e1 = δ(e1), that is, the above trick doesn’t work quite the same way.
However, as δ(1) = δ(e1 + e2) = 0, for every derivation δ : S → Endk(V1, V2), we
find δ(e1) = α, δ(e2) = −α,

δ(e1) = α, δ(e2) = −α,

δ(t11) = δ(t11e1) = δ(t11)e1 + t11δ(e1) = aα,

δ(t21) = δ(t21e1) = δ(t21)e1 = 0,

δ(t22) = δ(e2t22) = δ(e2)t22 = −bα,

δ(t12) = ρ .

So a general derivation can be written, the ∗ denoting the dual,

δ = αe∗
1 − αe∗

2 + aαt∗11 − bαt∗22 + ρt∗12 .
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For the inner derivations, we compute

adβ(e1) = βe1 − e1β = −β ,

adβ(e2) = βe2 − e2β = β ,

adβ(t11) = −βa ,

adβ(t22) = βb ,

saying that

adβ = γ e∗
1 − γ e∗

2 + aγ t∗11 − bγ t∗22, where we have put γ = −β .

So as adβ(t12) = 0, and there are no conditions on δ(t12), we get

Ext1S(V1, V2) = kt∗12 = kdt12 .

The cases Ext1S(V2, V1) and Ext1S(V2, V2) are exactly similar.
Generalizing the computation in the above example,wehaveproved the following:

Lemma 4.2 Let S be a general free r × r matrix polynomial algebra, and let
Vi = Vii (pii ) be the point pii in entry i, i . Then the tangent space from Vi to

Vj is Ext1S(Vi , Vj ) = ⊕di j
l=1kdti j (l).

Now, we will explain what happens in the case with relations, that is, quotients
of a matrix polynomial algebra.

Example 4.2 We let R =
(

k[t11] kt12
kt21 k[t22]

)
/(t11t12 − t12t22). The polynomial in

the ideal is really in the entry (1, 2), but there is no ambiguity writing it like
this. The points are still the simple modules along the diagonal, but a derivation
δ ∈ Derk(R,Homk(Vii (pii ), Vj j (p j j ))), must this time respect the quotient;

δ(t11t12 − t12t22) = 0 .

This says

δ(t11t12 − t12t22) = t11δ(t12) + δ(t11)t12 − t12δ(t22) − δ(t12)t22 = 0 ,

and is fulfilled for any δ ∈ Ext1R(Vi , Vj ), (i, j) �= (1, 2). When δ ∈ Ext1R(V1, V2),
we get that the above equation is equivalent to

t11δ(t12) − δ(t12)t22 = δ(t12)(t11 − t22) = 0 .

Thus in the case that p11 �= p22 the tangent direction is annihilated: This quotient
has no tangent direction from V1(p1) to V2(p2) unless p1 = p2.
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This example illustrates the geometry of matrix polynomial algebras, and is of
course nothing else than the obvious generalization of the the ordinary tangent space:

Lemma 4.3 Let S be a finitely generated r × r matrix polynomial algebra with
residue ρ : S → kr and radical m = ker ρ. Let p1, p2 be two points on the
diagonal of S with respective quotients V1 ∼= V2 ∼= k. Then Tp1,p2 = Ext1S(V1, V2) =
Homk(m/m2, k) where the action on k ∼= Homk(V1, V2) is the left-right action
defined by (sφ)(v) = φ(vs), (φs)(v) = φ(v)s (for right modules).

The tangent space is not enough to reconstruct the algebra, not even in the com-
mutative situation. As always, to get the full geometric picture we also need the
higher order derivatives. Even if we cannot reconstruct the algebra in all cases, we
get an algebra that is geometrically equivalent (Morita equivalent), and that suffices
in construction of moduli.

5 Noncommutative Deformation Theory

For ordinary, commutative, varieties V , for each closed pointm, we have the ring of
local regular functions. For noncommutative k-algebras, there are serious challenges
with localizing. These challenges are already present when it comes to finitely gen-
erated matrix polynomial algebras, and as the noncommutative deformation theory
is the solution, we need to go through the basics of this. However, the constructive
proof of existence of a local formal moduli is found in the classical works of Laudal
[3], also formulated by Eriksen in [1].

Definition 5.1 The objects in the category ar are the k-algebras S with morphisms
commuting in the diagram

kr ι ��

Id ���
��

��
��

S

ρ

��
kr

,

such that ker(ρ)n = 0. We call ker(ρ) = rad(S) the radical, the morphisms are
the morphisms commuting with ι and ρ. The category ar is called the category of
r -pointed Artinian k-algebras. The notation âr denotes the procategory of ar , the
category of objects that are projective limits of objects in ar .

Definition 5.2 Let A be a k-algebra, let V = {V1, . . . , Vr } be A-modules. The
noncommutative deformation functor DefV : ar → Sets is given by:

DefV (S) = {S ⊗k A-Mod VS , flat overS : kr ⊗S VS � V }/ ∼=

where the equivalence of MS and M ′
S is given as an isomorphism
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MS

���
��

��
��

�
� �� M ′

S

����
��

��
��

M

.

Lemma 5.1 (Yoneda). Consider a covariant functor F : C → Sets. Then there is
an isomorphism

ψ : F(R) → Hom(Hom(R,−), F)

given by ψ(ξ)(η) = F(η)(ξ), for ξ ∈ F(R) and η : R → R′ any morphism.

Definition 5.3 In the above situation, (Ĥ , ξ̂ ) is said to prorepresent DefV : âr →
Sets if ψ(ξ̂) is an isomorphism. If ψ(ξ̂) is smooth and an isomorphism for the r × r
matrix polynomial algebra R in the variables εi j , 1 ≤ i, j ≤ r , (εi j )

2 = 0, we call
(Ĥ , ξ̂ ) a prorepresenting hull, or a local formal moduli.

Theorem 5.1 There exists a local formal moduli (ĤV , ξ̂V ) for the noncommutative
deformation functor DefV . There is a homomorphism

ι : A → (Hi j ) ⊗kr Homk(Vi , Vj ) .

Its kernel is given by ker ι = ∩
i,n
an

i where ai = ker ρi : A → Endk(Vi ).

Proof The proof is given by Laudal in [3].

In our situation, what we need is the following:

Corollary 5.1 For V = {V1, . . . , Vr } a collection of simple S-modules where S is
a finitely generated matrix polynomial algebra, there exists an injection

ι : S ↪→ ĤV

such that ι( f ) is a unit if f ∈ S \∪r
i=1mi , where mi , 1 ≤ i ≤ r , is the maximal ideal

corresponding to Vi .

We notice that this holds also in the ordinary commutative situation, allowing us
to replace a localization with the image of S.

Definition 5.4 For a finite family of simple modules V = {V1, . . . , Vr }, the local-
ization of S in V is the k-algebra SV generated by the image of ι in ĤV , together with
the inverses of the images of elements not contained in any of the maximal ideals.
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6 Definition of Noncommutative Varieties

In this final section, we make the direct translation of the general theory in [4] to
the affine varieties. As in the commutative situation, we let A(S) denote the set of
maximal ideals in S. We define a topology on A(S) by letting the closed sets be the
algebraic sets Z(I ) where I ⊆ S is an ideal. Alternatively, the sets D( f ), f ∈ S,
given by D( f ) = {m : f /∈ m}, is a generating set for the topology.

For any set U , let Pf(U ) denote the set of finite subsets of U . We define a sheaf
of rings on the topological space: For an open U we let

OS(U ) = { f : Pf(U) →
∐

c∈Pf(U)

Sc}

such that f is locally regular: For each c ∈ Pf(U) there exists an open sub-
set V ⊆ U containing c and elements f, g ∈ S with g not in the unions of the
corresponding maximal ideals of any of the subsets c′ ∈ Pf(V ).

Then all theorems from the commutative situations are prolonged, and we have
the category of noncommutative varieties

(A(S),OS) .
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