Rigid Current Lie Algebras

Elisabeth Remm and Michel Goze

Abstract A current Lie algebra is constructed from a tensor product of a Lie algebra
and a commutative associative algebra of dimension greater than 2. In this work
we are interested in deformations of finite dimensional current Lie algebras and in
the problem of rigidity. In particular we prove that a complex finite dimensional
current Lie algebra with trivial center is rigid if it is isomorphic to a direct product
g X g x ---x gwhere g is arigid Lie algebra.

1 Current Lie Algebras

If g is a Lie algebra over a algebraically closed field K and &/ a K-associative
commutative algebra, then g ® o7, provided with the bracket

X®a,YQRD=[X,Y|®ab

forevery X, Y € gand a, b € &/ is a Lie algebra. If dim(</) = 1 such an algebra is
isomorphic to g. If dim(<7) > 1 we will say that g ® .7 with the previous bracket is
a current Lie algebra.

In [16] we have shown that if & is a quadratic operad, there is an associated
quadratic operad, noted 2 such that the tensor product of a &7-algebra by a P-
algebra is a &7-algebra for the natural product. In particular, if the operad & is Zie,
then Lie = Lie' = €om and a € om-algebra is a commutative associative algebra.
In this context we find again the notion of current Lie algebra.
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Remark In [3], the notion of duplication of algebras constructed by tensor product
is presented. If g is a Lie algebra, we define on g ® g the product

nX®Y.X'®Y)=[XYI®X, Y]

But, in this case, g ® g is not a Lie algebra, but is related with the notion of n-Lie
algebras.

In this work we study the deformations of finite dimensional current Lie algebras
and we study the rigidity. The notion of rigidity is related to the second group of
the Chevalley-Eilenberg cohomology. For the current Lie algebras, this group is not
well known. Recently some relations between H>(g ® <7, g ® /), H*(g, g) and
HIZ{ («f, o) have been given in [18] but often when g is abelian. Let us note also that
the scalar cohomology has been studied in [15].

2 Determination of Rigid Current Lie Algebras

In all this work, Lie algebras or associative algebras are of finite dimension over the
algebraically closed field K.

2.1 On the Rigidity of Lie Algebras

Let us remind briefly some properties of the variety of Lie algebras (for more details,
see [1]). Let g be a n-dimensional K-Lie algebra. Since the underlying vector space
is isomorphic to K", there exists a one-to-one correspondance between the set of
Lie brackets of n-dimensional Lie algebras and the skew-symmetric bilinear maps
w: K x K" — K" satisfying the Jacobi identity. We denote by (44 this bilinear map
corresponding to g. In this framework, we can identify g with the pair (K", i g). Let
us fix definitively a basis {X1, ..., X,,} of K". The structure constants (ij) of pug are
given by

n
neXi, Xj) = > Cp Xi
k=1

and we can identify ug with the N-tuple (Cl{‘j) with N = "ZO‘T*D The Jacobi identity
satisfied by g is equivalent to the polynomial system :

> CiCh + CLCl+ €€l = 0. (1)
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In this context, a Lie algebra is a point of K¥ whose coordinates (Cf‘j) satisfy (1). The
set of n-dimensional Lie algebras over K is identified with the algebraic variety L,
embedded into KV and defined by the system of polynomial Eq. (1). We will always
denote by p a point of L,,. The algebraic group GL(n, K) acts on L, by:

(f,n) € GL(n,K) x L, — ur €Ly 2)

where wuy is given by us(X,Y) = FNu(f (X), f(Y)) for every X, Y e K". The
orbit &'(u) of w related to this action corresponds to the Lie algebras isomorphic to
g = (K", ). We provide the algebraic variety L" with the Zariski topology.

Definition 2.1 The Lie algebra g = (K", w) is rigid if the orbit &'(1) is open in Lj,.

A way of constructing rigid Lie algebras rests on the Nijenhuis-Richardson Theorem :
Let H*(g, g) be the Chevalley-Eilenberg cohomology of g. If H*(g, g) = 0 then g
is rigid. Let us note that the converse is false, numerous examples are described in
[1, 9] (in fact, a rigid Lie algebra whose cohomology H?(g, g) is not trivial is such
that the affine schema ., given by the Jacobi ideal is not reduced to the point p
defining g.)

An intuitive way of defining the notion of rigidity is to consider a rigid algebra as
not deformable, that is, any close algebra is isomorphic to it. A general definition of
deformations was proposed in [12]. Let A be a commutative K-algebra of valuation
such that the residual field A/m is isomorphic to K where m is the maximal ideal
of A. If g is a K-Lie algebra then the tensor product g ® A is an A-algebra denoted

by ga.

Definition 2.2 A deformation of g is an A-Lie algebra g/, such that the underlying
A-module is g4 and the brackets [u, v] g, and [u, v]g, of g; and gy satisfy

[u, v]gj4 —[u,v]g, € g@m.

When A = C[[¢]] we find the classical notion of deformation given by Gerstenhaber.
When A is the ring of limited elements in a Robinson non archimedean extension of
C, we find the notion of perturbations [8]. If g/, is a deformation of g then we have

k
[, vlg, — [u.vlg, = > eier- et
i=1

where ¢; € m and {¢y, ..., ¢} a family of independent skew symmetric bilinear
maps on K” x K" with values in K", In particular ¢; € Z%(g, g) and if g is
isomorphic to g4 this map belongs to B>(g, g). We deduce that the deformations of
g are parameterized by H>(g, g). In the following, we are going to determine the
current Lie algebras which are rigid.

Remark In [4, 6], we find a similar definition of deformations, but without the
hypothesis concerning the valuation. We assume that A is a commutative algebra
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over the field K which admits an augmentation ¢ : A — K. This says that ¢ is a
K-algebra homomorphism, e.g. €(14) = 1. The ideal m; := Ker(¢) is a maximal
ideal of A (Let us note that any maximal ideal of A gives an augmentation). Let us
consider a Lie algebra g over K, ¢ a fixed augmentation of A, and m = Ker(e) the
associated maximal ideal. A global deformation A of g with base (A, m), is a Lie
A-algebra structure on g ® A with Lie bracket [., .], such that for all a,b € A and
X,Y eg,

. [a®@X,bR@Y]), =@id[1®X,1 Y],
2. e@UA([1X, 1Y) =1Q[X,Y].

2.2 The Manifold L, 4

Let g = g = g, ® &, be a pg-dimensional current K-Lie algebra where g, is a
p-dimensional K-Lie algebra and <7, a g-dimensional associative commutative K-
algebra. Let (X1, ..., X,} beabasisof g, and {ey, ..., ¢,} abasis ofsz{q. If we denote
by {Cfl.} and {D{,} the structure constants of g, and .«7; with regards to these basis,

then the Lie bracket pg = Kg, ® [, of g where g, is the multiplication of g, and
M7, the multiplication of <7, satisfy:

no(Xi ® eq, X; ® ey) = D CiDoy X ® ec,
k,c

and the structure constants of g with respect to the basis {X; @ e4}i=1,....p; a=1,...,q aT€
{C{;Dzh}. Thus, the Jacobi relations are written as

I s I s I s
> CiChDy,Dre + Cjt CpiDpe Dy + CyCiiDyDyyy = 0
Lr

forany (s, t)in {{1, ..., p} x {1, ..., q}}. These polynomial relations define a struc-
ture of algebraic variety denoted by Ly, 4) and embedded in the vector space whose

coordinates are the structure constants {Cf‘ijlb}. It is a closed subvariety of L,,. Let

G (p, q) be the algebraic group G(p, g) = GL(p) x GL(q). This group acts naturally
on L 4 by

( 9)-(g, ® ey )X ®a, Y ®b) =" (g, (FX), F(¥)) ® g (11,57, (2(@), g(B))-

We denote by &), ,(g, ® ) the orbit in L, 4) of pg corresponding to this action.
Thus, there are two types of deformations:

e The deformations of g in the manifold L,,. These deformations are parameterized
by the second Chevalley-Eilenberg cohomology space H é (g, 9).
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o The deformations of g in the manifold Ly 4. They are parameterized by the space
H(zj (gp, 9p) @ Hf] (e, <7,) where HE, (e, <4) is the Hochschild cohomology of
the associative commutative algebra @/q [13, 14, 17].

Definition 2.3 The Lie algebra g, ® <7, is rigid in Ly 4) if the orbit &, ;(114) is open
(in the Zariski sense). It is rigid if the orbit &'(u) related to the action of GL(pg) in
Ly, is open.

It is clear that the rigidity implies the rigidity in L, ).

Proposition 2.1 A current Lie algebra g = g, ® <, is rigid in L, o) if and only if
gp is rigid in L, and <7 is rigid in € om(q), the variety of q-dimensional associative
commutative K-algebras.

In fact, if g, (respectively 7,) is not rigid in L, (respectively in €om(q)), then we
can find a non isomorphic deformation of g, (respectively .2%), this gives a non
isomorphic deformation of g. For the general notion of associative rigid algebras see
[11].

The main part of this work is to describe rigid current algebras which are rigid (in
Ly, that is, rigid in the variety of pg-dimensional Lie algebras).

Example p = 2,q = 2 (K = C). There is, up to isomorphism, only one 2-
dimensional rigid Lie algebra. It is defined by [X1, X»] = X». There is only one 2-
dimensional associative commutative algebra. Itis given by e% =ey, e% = ey, e1er =
0 and corresponds to the semi-simple algebra A% = M (K) x M;(K) where M,,(K)
is the algebra of n-matrices on K. The Lie algebra g, ® A% is rigid in L3 ). This

algebra is isomorphic to g» x go. It is also rigid in L4.

2.3 Structure of Rigid Current Lie Algebras

Recall that a finite dimensional rigid K-Lie algebra g is algebraic (that is, isomorphic
to a Lie algebra of an algebraic Lie group) and then admits the decomposition g =
s@tdn where t@nis the radical of g, tis a maximal abelian subalgebra whose adjoint
operators ad X, X € t, are semi-simple and n is the nilradical [5, 7]. If g = g, ® %,
is rigid, then g, is rigid in L. If g, is solvable, then so is g and we have

gp=tL®&n, and g=tdn.
Since n, ® qu is a nilpotent ideal of g, n, ® .27, C n.
Lemma 2.1 Ifg = g, ® 4, is rigid, then <7, has a non zero idempotent.

Remark 1f 7 is a nilalgebra, then g is nilpotent. In fact if X € g, and a € .7, we
have [ad(X®a)]|" = (ad X)" @ (L,)"™ where L, : &, — 7, is the left multiplication
by a. Since .7, is a nilalgebra, every element is nilpotent and there exits mg such that
(Ly)™ = 0. Thus ad(X ® a) is a nilpotent operator for any X and a. This implies that
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gis nilpotent (this doesn’timply that g, is nilpotent). Let f be a derivation of g,,. Then
f ®1d is a derivation of g. Since g, is rigid, we can find a inner non trivial derivation
ad X which is diagonal. In this case ad X ® Id is a non trivial diagonal derivation of
g. By hypothesis g is rigid. But any rigid nilpotent Lie algebra is characteristically
nilpotent [9], that is, every derivation is nilpotent. We have a contradiction and .27,
can not be anilalgebra. Since it is finite dimensional, it admits a non zero idempotent.

Proposition 2.2 Ifg = g, ® o, is rigid then <7, is an associative commutative rigid
unitary algebra in € om(q).

Remark Let e # 0 be in 7, and satisfying ¢*> = e. The associated Pierce
decomposition
— 700 10 01 11
dy= A ® ) © o) @ o,

where

%jz{xe% such that e - x = ix, x - e = jx}

reduces to .27, = %” & %00 because .o7; is commutative and we have ;a/q] L. ,52%(100 =
{0}. Thus 27 is a direct sum of two commutative algebras. Since .27 is rigid, the
algebras %“ and Jz%qoo are also rigid. The subalgebra szfq“ is unitary (e is the unit ele-

ment). From the previous lemma %00 has an idempotent and admits a decomposition
00 _ /0011 0000
AP =AM @ o,
with 711 £ {0}. By induction we deduce that
| p
Ay =y ... D]

with o7/ with unit e; and {eq, . .., ey} is a system of pairwise orthogonal idempotents.
Then ey + - - - + ¢p is a unit of .27;.

Theorem 2.1 Let g, be a rigid Lie algebra with solvable non nilpotent radical such
that Z(g,) = {0}. Then g = g, @ o, is rigid if and only if <7, = Mil(K) is given by

e~2=e,-,i=1,...,q and e; - ¢; =0ifi #j.

1

Proof Since .27, is unitary, the radical of g solvable and non nilpotent. Moreover
Z(gp) = {0} implies that Z(g) = {0}. In factif U = Zj,a ajuX; ® X, is in the center
of g, then [U, X ® 1] = 0 for each X € g,. Thus

> 0j.alX), X1 ® x4 = 0.

We have [Zj ®j.Xj, X] = 0 for each a and X. So Zj wj.Xj € Z(gp) for any a.
Therefore oj, = 0 for any a and U = 0.
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Consequently, g is a rigid Lie algebra with trivial center whose radical is non
nilpotent. This implies that all derivations are inner. Let f be a non trivial derivation
of ;zfq. Since ;z/q is commutative, it is necessarily an outer derivation. Then Id ® f is
a derivation of g and satisfies (/d @ f)(X ® 1) = X ® f(1) = 0 because f(1 - 1) =
2f(1) =f(1) = 0. Suppose that Id @ f € Int(g), thatis Id @ f = ad (D> «;jX; ® x;).
Thus (Id ® /)X ® 1) = > «;[X;, X] ® x; = 0 which implies > «;;[X;, X] = 0
for any j and X. So > «;X; € Z(g,) for any j. Since the center is trivial, then
> «;jX; =0foranyjand Id ® f ¢ Int(g). There is a contradicion. Therefore <7 is
such that any external derivation is trivial. We deduce that @7, = M f (K).

Remark 1. The current Lie algebra g, ® M{ (K) is isomorphic to g, x - - - x g, with
q factors. If g is a rigid current algebra with Z(g),) trivial, then it is isomorphic
togpy X+ X gp.

2. Inthe theorem, we have a hypothesis concerning the center of g,,. This hypothesis
is probably superfluous. In fact, since the orbit in L,, of a rigid n-dimensional Lie
algebra is Zariski open, the Zariski closure of this orbit is an algebraic component
of L,. This assures that, for a fixed dimension, there exist only a finite number
of non isomorphic rigid Lie algebras. But, for all the known examples of rigid
Lie algebras, the center is trivial. We can naturally conjecture that any finite
dimensional complex rigid Lie algebra has a trivial center.

3 Cohomology and Deformations

The Chevalley-Eilenberg cohomology of current Lie algebras was computed in [18]
for the degrees 1 and 2. It is shown that the algebra of derivations of g = g, ® 7 is
equal to

Der(g) = Der(gp) @ Fy & Homg, (9. 9p) ®M@er(%)
End
©Hom(9p/1g,.5,1- (@) ® 7 iy

and the first space of cohomology H' (g, g) is

H'(g, 9) = H'(gp. gp) ® Fy ® Homg, (@, % ®%@)er<%)
eaHom(gP/[gp»Qp]’ Z(gp))] ® %'

Assume that g = g, ® <7, is a rigid current Lie algebra. Then g, is rigid. Assume
also that Z(g,) = 0. Then

H'(g,9) = H'(gy. 0)) ® ;& Homg, (9. 8y) @ Der ().



254 E. Remm and M. Goze

If g, is arigid Lie algebra with non nilpotent radical (we do not know examples of
rigid Lie algebras with a nilpotent radical), any derivation of g, is inner. This implies
that H'(gp, gp) = 0 and H' (g, g) = Homg, (8, 8p) ® Der ().

Proposition 3.1 Let g = g, ® @ be a current Lie algebra such that g, is rigid
with trivial center and a non nilpotent radical. Then H' (g, g) = 0 if and only if
Der(oy) = {0}.

Example Consider <7, = Mf (K). Let {e;} be a basis of &7, satisfying e? =e¢;, eej =
0. Let f be in ZYer(«,;). We have

f(€2) =f(e) =2eif ().

This induces f (e;) = 0 and finally f = 0.
A Chevalley-Eilenberg 2-cochain of g = g, ® %7, decomposes as a finite sum of
bilinear forms of type:

P=v1Q¢2+¢3® Y4

with ¥ € %2(91)’ gp) 92 € jﬂz(gp, gp) and @3 € yz(gpv gp), V4 € %2(%, %)7
where %2 (gp» gp) denotes the space of Chevalley-Eilenberg 2-cochains of g,
2 (gp, gp) the space of symmetric bilinear maps with values in g, and ¢? (Ay, y)
the space of 2-cochains of the Harrison cohomology of «7;,. We deduce using this
decomposition that H>(g, g) = (H%) @ (H?>)". The first space is computed in ([18],
proposition 3.1). We find

HE (A, )
P (A, Ag)

A Ay, )

H?) = H%(gy, gy) ® Zy ® B(gyp, 9p) @ Dl )
(H?) (9p. 9p) ® Ay ® B(gp, 8p) Py, Ay)

DS x(gp, Gp) ®

(see [18] for notations). But the second space was just computed when g, is abelian.

For example assume that we have a primitive infinitesimal deformation of u ®@u»,
thatis, u1 ® wa + € (Y1 ® @2 + @3 ® ¥4). The linear part of the Jacobi identity gives
the expression of a 2-cocycle of Chevalley-Eilenberg cohomology of 11 ® wna. We
find:

S ®ua (Y1 ® g2 + 93 @ Y4) (X1, X2, X3, a1, a2, a3)
= Y (Y1 (X1, X2), X3) ® ua(p2(ar, az), as)
+ Zui(p3(X1, X2), X3) @ n2(Yalar, az), az)
+ 2y (u1 (X1, X2), X3) @ ¢a(u2(ai, az), az)
+ T3 (1 (X1, X2), X3) ® Ya(ua(ar, az),a3) =0

for any X1,X>,X3 € gp and a1, az, a3 € <, and the sum is taken on the cyclic
permutations of (1, 2, 3). We deduce
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Proposition 3.2 If o7, is unitary then ¥ € Zz(gp, gp) as soon as ¢2(1, 1) # 0.

If X1 = X» = X3, the above identity reduce to:

m1(p3(X1, X1), X1) ® Y uz(Palar, az), az) = 0.

Proposition 3.3 If there exits X € g, such that pw1(¢3(X1, X1), X1) # 0 then

HreYs =0

with
12 @ Yalay, az, az) = Xux(Ya(ar, az), az).

Note that 14 is a 2-cocyle for the Harrison cohomology of 2 so o e Yu = 4 e s,
Suppose that g is rigid solvable with trivial center. Then .7, is unitary and ¥ €
Zz(gp, gp) as soon as (1, 1) # 0.

4 Application: Associative Commutative Real Rigid Algebras

4.1 Real Rigid Lie Algebras

The study of the rigid real Lie algebras was recently initiated in [2]. Let us point out
the principal results. An external torus of derivations of n is an abelian subalgebra
t of Yer(n), the Lie algebra of derivations of n, such as the elements are semi-
simple. This means that complex derivations f ® Id € t ® C are simultaneously
diagonalizable. If t is a maximal (with respect to inclusion) external torus of n then
t ® C is a maximal external torus of n ® C. From a result of Malcev (see e.g. [10]),
all the maximal tori of n ® C are conjugated with respect to Aut(n ® C) so they have
the same dimension (thus a maximal exterior torus is sometimes called a Malcev
torus). It is the same for the maximal tori t of n. This dimension is called the rank
of n. But contrary to the complex case, all the tori are not conjugated with respect to
the group of automorphisms.

Definition 4.1 Let n be a finite dimensional real nilpotent Lie algebra. We call a
toroidal index of n the number of conjugation classes of a maximal external torus
with respect to the group of automorphisms Autg (n) of n.

Example The toroidal index of the real abelian Lie algebra a, of dimension n is
equal to [n/2] + 1 where [p] is the integer part of the rational number p. In fact,
let {X1,...,X,} be a basis of a,. Let us denote by f; the derivation defined by

fi(X;) = 8/X; and by fi 5, the derivation given by
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f1,2p(X2p—l) = Xpr
f1,2p(x2p) = X2p—l-

Up to conjugation, the maximal exterior tori are the subalgebras of g/(n, R) generated
by

ti=R{f1,....[fu}

b =R{fi2.fi+2.05.- . fu)

t3 = R{fi2. fi + 2. f1.4. 3 Hfa S5, oo nd

bty = RUL2 Ao o i s+ Fbs oo frmfot o)

if n is even, if not the last relation is replaced by

t=R{fi2, fi+L. 6.6+ oo o fin—t o2 + fa=1,fu)-

4.2 Real Rigid Associative Commutative Algebras

Let v, be the real nonabelian 2-dimensional Lie algebra. There exists a basis {X1, X2}
with regard to which the bracket is given by [X], X»] = X». Let .o, be a n-dimensional
real rigid commutative associative algebra. Its complexification is isomorphic to
M7 (C). Thus the real current Lie algebra g = 12 ® 7, is rigid. We deduce that
its complexification is rigid and isomorphic to t7. These remarks allow to write the
following decomposition:

g=t2®%=tn@an

where a,, is the n-dimensional abelian Lie algebra. We can deduce from this the
structure of o7, In fact, if {Y, . .., ¥,,} is a basis of t,, corresponding to the derivations

A2+, o fl.2s, fas—1 /s, fas+1s - - -5 fn) described in the previous section, the
Lie bracket of g satisfies

[Y11X1] = _X27 [YlaXZ] :X19
[Y2, X1] =Xy, [Y2, X2] = Xo,

[Yos—1, Xo5—1] = —Xog, [Yos—1, Xo5] = X051,
[Yo5, Xo5—1] = Xog5—1, [Ya5, Xo5] = Xog,
Y, Xil=X;, i=2s+1,...,n.

Let {eq, ..., ey} be a basis of .27, such that the isomorphism between t; ® <7, and
t, @ a, is given by U1 ® ¢; = Y; and Xp; = Uz ® e2i1, Xoi-1 = Uz ® ey; for
i=1,...,sand X; = U ®¢j for j = 25 + 1, .., n. The rigid associative algebra <7,
is thus defined by
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e%i_lzezi_l, i=1,...,s;
eri_1ey = eyieri | =ez, I=1,...,s;
6%1-:—82[_1, i=1,...,s;
ejzzej, j=2s+1,...,n.

Proposition 4.1 Let <7, be a n-dimensional real rigid associative algebra. There ex-
ists anintegers, 1 < s < nandabasis{ey, ..., e,} of <, such that the multiplication
of <y, is given by

63,-,1:621'—1, i=1,...,s
€2j—1€2; = €2i€2i—1 = €2}, i = 1» e 8
€%i=—€2i—1, i=1,...,s;
ef:ej, j=2s+1,...,n
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