
Rigid Current Lie Algebras

Elisabeth Remm and Michel Goze

Abstract A current Lie algebra is constructed from a tensor product of a Lie algebra
and a commutative associative algebra of dimension greater than 2. In this work
we are interested in deformations of finite dimensional current Lie algebras and in
the problem of rigidity. In particular we prove that a complex finite dimensional
current Lie algebra with trivial center is rigid if it is isomorphic to a direct product
g × g × · · · × g where g is a rigid Lie algebra.

1 Current Lie Algebras

If g is a Lie algebra over a algebraically closed field K and A a K-associative
commutative algebra, then g ⊗ A , provided with the bracket

[X ⊗ a, Y ⊗ b] = [X, Y ] ⊗ ab

for every X, Y ∈ g and a, b ∈ A is a Lie algebra. If dim(A ) = 1 such an algebra is
isomorphic to g. If dim(A ) > 1 we will say that g⊗A with the previous bracket is
a current Lie algebra.

In [16] we have shown that if P is a quadratic operad, there is an associated
quadratic operad, noted P̃ such that the tensor product of a P-algebra by a P̃-
algebra is aP-algebra for the natural product. In particular, if the operadP isL ie,
then L̃ ie = L ie! = C om and a C om-algebra is a commutative associative algebra.
In this context we find again the notion of current Lie algebra.
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Remark In [3], the notion of duplication of algebras constructed by tensor product
is presented. If g is a Lie algebra, we define on g ⊗ g the product

μ(X ⊗ Y , X ′ ⊗ Y ′) = [X, Y ] ⊗ [X ′, Y ′].

But, in this case, g ⊗ g is not a Lie algebra, but is related with the notion of n-Lie
algebras.

In this work we study the deformations of finite dimensional current Lie algebras
and we study the rigidity. The notion of rigidity is related to the second group of
the Chevalley-Eilenberg cohomology. For the current Lie algebras, this group is not
well known. Recently some relations between H2(g ⊗ A , g ⊗ A ), H2(g, g) and
H2

H(A ,A ) have been given in [18] but often when g is abelian. Let us note also that
the scalar cohomology has been studied in [15].

2 Determination of Rigid Current Lie Algebras

In all this work, Lie algebras or associative algebras are of finite dimension over the
algebraically closed field K.

2.1 On the Rigidity of Lie Algebras

Let us remind briefly some properties of the variety of Lie algebras (for more details,
see [1]). Let g be a n-dimensional K-Lie algebra. Since the underlying vector space
is isomorphic to K

n, there exists a one-to-one correspondance between the set of
Lie brackets of n-dimensional Lie algebras and the skew-symmetric bilinear maps
μ : Kn ×K

n → K
n satisfying the Jacobi identity. We denote byμg this bilinear map

corresponding to g. In this framework, we can identify g with the pair (Kn, μg). Let
us fix definitively a basis {X1, . . . , Xn} ofKn. The structure constants (Ck

ij) of μg are
given by

μg(Xi, Xj) =
n∑

k=1

Ck
ij Xk

and we can identify μgwith the N-tuple (Ck
ij) with N = n2(n−1)

2 . The Jacobi identity
satisfied by μg is equivalent to the polynomial system :

∑

l=1,...,n

Cl
ijC

s
lk + Cl

jkCs
li + Cl

kiC
s
lj = 0. (1)
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In this context, a Lie algebra is a point ofKN whose coordinates (Ck
ij) satisfy (1). The

set of n-dimensional Lie algebras over K is identified with the algebraic variety Ln

embedded intoKN and defined by the system of polynomial Eq. (1). We will always
denote by μ a point of Ln. The algebraic group GL(n,K) acts on Ln by:

(f , μ) ∈ GL(n,K) × Ln −→ μf ∈ Ln (2)

where μf is given by μf (X, Y) = f −1(μ(f (X), f (Y)) for every X, Y ∈ K
n. The

orbit O(μ) of μ related to this action corresponds to the Lie algebras isomorphic to
g = (Kn, μ). We provide the algebraic variety Ln with the Zariski topology.

Definition 2.1 The Lie algebra g = (Kn, μ) is rigid if the orbit O(μ) is open in Ln.

Away of constructing rigidLie algebras rests on theNijenhuis-RichardsonTheorem :
Let H∗(g, g) be the Chevalley-Eilenberg cohomology of g. If H2(g, g) = 0 then g
is rigid. Let us note that the converse is false, numerous examples are described in
[1, 9] (in fact, a rigid Lie algebra whose cohomology H2(g, g) is not trivial is such
that the affine schema Ln given by the Jacobi ideal is not reduced to the point μ

defining g.)
An intuitive way of defining the notion of rigidity is to consider a rigid algebra as

not deformable, that is, any close algebra is isomorphic to it. A general definition of
deformations was proposed in [12]. Let A be a commutative K-algebra of valuation
such that the residual field A/m is isomorphic to K where m is the maximal ideal
of A. If g is a K-Lie algebra then the tensor product g ⊗ A is an A-algebra denoted
by gA.

Definition 2.2 A deformation of g is an A-Lie algebra g′
A such that the underlying

A-module is gA and the brackets [u, v]g′
A
and [u, v]gA of g′

A and gA satisfy

[u, v]g′
A

− [u, v]gA ∈ g ⊗ m.

When A = C[[t]]we find the classical notion of deformation given by Gerstenhaber.
When A is the ring of limited elements in a Robinson non archimedean extension of
C, we find the notion of perturbations [8]. If g′

A is a deformation of g then we have

[u, v]g′
A

− [u, v]gA =
k∑

i=1

ε1ε2 · · · εiφi

where εi ∈ m and {φ1, . . . , φk} a family of independent skew symmetric bilinear
maps on K

n × K
n with values in K

n. In particular φ1 ∈ Z2(g, g) and if g′
A is

isomorphic to gA this map belongs to B2(g, g). We deduce that the deformations of
g are parameterized by H2(g, g). In the following, we are going to determine the
current Lie algebras which are rigid.

Remark In [4, 6], we find a similar definition of deformations, but without the
hypothesis concerning the valuation. We assume that A is a commutative algebra
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over the field K which admits an augmentation ε : A → K. This says that ε is a
K-algebra homomorphism, e.g. ε(1A) = 1. The ideal mε := Ker(ε) is a maximal
ideal of A (Let us note that any maximal ideal of A gives an augmentation). Let us
consider a Lie algebra g over K, ε a fixed augmentation of A, and m = Ker(ε) the
associated maximal ideal. A global deformation λ of g with base (A,m), is a Lie
A-algebra structure on g ⊗ A with Lie bracket [., .]λ such that for all a, b ∈ A and
X, Y ∈ g,

1. [a ⊗ X, b ⊗ Y ]λ = (ab ⊗ id)[1 ⊗ X, 1 ⊗ Y ]λ,
2. ε ⊗ id([1 ⊗ X, 1 ⊗ Y ]λ) = 1 ⊗ [X, Y ].

2.2 The Manifold L(p,q)

Let g = g = gp ⊗ Aq be a pq-dimensional current K-Lie algebra where gp is a
p-dimensional K-Lie algebra and Aq a q-dimensional associative commutative K-
algebra. Let {X1, . . . , Xp} be a basis of gp and {e1, . . . , eq} a basis ofAq. If we denote
by {Ck

ij} and {Dc
ab} the structure constants of gp and Aq with regards to these basis,

then the Lie bracket μg = μgp ⊗ μAq of g where μgp is the multiplication of gp and
μAq the multiplication of Aq, satisfy:

μg(Xi ⊗ ea, Xj ⊗ eb) =
∑

k,c

Ck
ijD

c
abXk ⊗ ec,

and the structure constants of gwith respect to the basis {Xi ⊗ ea}i=1,...,p; a=1,...,q are
{Ck

ijD
c
ab}. Thus, the Jacobi relations are written as

∑

l,r

Cl
ijC

s
lkDr

abDt
rc + Cl

jkCs
liD

r
bcDt

ra + Cl
kiC

s
ljD

r
caDt

rb = 0

for any (s, t) in {{1, . . . , p} × {1, . . . , q}} . These polynomial relations define a struc-
ture of algebraic variety denoted by L(p,q) and embedded in the vector space whose
coordinates are the structure constants {Ck

ijD
c
ab}. It is a closed subvariety of Lpq. Let

G(p, q) be the algebraic group G(p, q) = GL(p)× GL(q). This group acts naturally
on L(p,q) by

(f , g).(μgp ⊗ μAq
)(X ⊗ a, Y ⊗ b) = f −1(μgp(f (X), f (Y))) ⊗ g−1(μAq

(g(a), g(b))).

We denote by Op,q(gp ⊗ Aq) the orbit in L(p,q) of μg corresponding to this action.
Thus, there are two types of deformations:

• The deformations of g in the manifold Lpq. These deformations are parameterized
by the second Chevalley-Eilenberg cohomology space H2

C(g, g).
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• The deformations of g in the manifold L(p,q). They are parameterized by the space
H2

C(gp, gp) ⊕ H2
H(Aq,Aq) where H2

H(Aq,Aq) is the Hochschild cohomology of
the associative commutative algebra Aq [13, 14, 17].

Definition 2.3 The Lie algebra gp ⊗Aq is rigid in L(p,q) if the orbitOp,q(μg) is open
(in the Zariski sense). It is rigid if the orbit O(μg) related to the action of GL(pq) in
Lpq is open.

It is clear that the rigidity implies the rigidity in L(p,q).

Proposition 2.1 A current Lie algebra g = gp ⊗ Aq is rigid in L(p,q) if and only if
gp is rigid in Lp and Aq is rigid in C om(q), the variety of q-dimensional associative
commutative K-algebras.

In fact, if gp (respectively Aq) is not rigid in Lp (respectively in C om(q)), then we
can find a non isomorphic deformation of gp (respectively Aq), this gives a non
isomorphic deformation of g. For the general notion of associative rigid algebras see
[11].

The main part of this work is to describe rigid current algebras which are rigid (in
Lpq, that is, rigid in the variety of pq-dimensional Lie algebras).

Example p = 2, q = 2 (K = C). There is, up to isomorphism, only one 2-
dimensional rigid Lie algebra. It is defined by [X1, X2] = X2. There is only one 2-
dimensional associative commutative algebra. It is given by e21 = e1, e22 = e2, e1e2 =
0 and corresponds to the semi-simple algebra A2

1 = M1(K) × M1(K) where Mn(K)

is the algebra of n-matrices on K. The Lie algebra g2 ⊗ A2
1 is rigid in L(2,2). This

algebra is isomorphic to g2 × g2. It is also rigid in L4.

2.3 Structure of Rigid Current Lie Algebras

Recall that a finite dimensional rigidK-Lie algebra g is algebraic (that is, isomorphic
to a Lie algebra of an algebraic Lie group) and then admits the decomposition g =
s⊕t⊕nwhere t⊕n is the radical of g, t is amaximal abelian subalgebrawhose adjoint
operators ad X, X ∈ t, are semi-simple and n is the nilradical [5, 7]. If g = gp ⊗Aq

is rigid, then gp is rigid in Lp. If gp is solvable, then so is g and we have

gp = tp ⊕ np and g = t ⊕ n.

Since np ⊗ Aq is a nilpotent ideal of g, np ⊗ Ap ⊂ n.

Lemma 2.1 If g = gp ⊗ Aq is rigid, then Aq has a non zero idempotent.

Remark If Aq is a nilalgebra, then g is nilpotent. In fact if X ∈ gp and a ∈ Aq, we
have [ad(X⊗a)]m = (ad X)m⊗(La)

m where La : Aq → Aq is the left multiplication
by a. SinceAq is a nilalgebra, every element is nilpotent and there exits m0 such that
(La)

m0 = 0. Thus ad(X ⊗a) is a nilpotent operator for any X and a. This implies that
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g is nilpotent (this doesn’t imply that gp is nilpotent). Let f be a derivation of gp.Then
f ⊗ Id is a derivation of g. Since gp is rigid, we can find a inner non trivial derivation
ad X which is diagonal. In this case ad X ⊗ Id is a non trivial diagonal derivation of
g. By hypothesis g is rigid. But any rigid nilpotent Lie algebra is characteristically
nilpotent [9], that is, every derivation is nilpotent. We have a contradiction and Ap

can not be a nilalgebra. Since it is finite dimensional, it admits a non zero idempotent.

Proposition 2.2 If g = gp ⊗Aq is rigid then Aq is an associative commutative rigid
unitary algebra in C om(q).

Remark Let e 	= 0 be in Aq and satisfying e2 = e. The associated Pierce
decomposition

Aq = A 00
q ⊕ A 10

q ⊕ A 01
q ⊕ A 11

q

where
A ij

q = {x ∈ Aq such that e · x = ix, x · e = jx}

reduces toAq = A 11
q ⊕A 00

q becauseAq is commutative and we haveA 11
q ·A 00

q =
{0}. Thus Aq is a direct sum of two commutative algebras. Since Aq is rigid, the
algebrasA 11

q andA 00
q are also rigid. The subalgebraA 11

q is unitary (e is the unit ele-
ment). From the previous lemmaA 00

q has an idempotent and admits a decomposition

A 00
q = A 0011

q ⊕ A 0000
q

with A 0011
q 	= {0}. By induction we deduce that

Aq = A 1
q ⊕ . . . ⊕ A p

q

withA i
q with unit ei and {e1, . . . , ep} is a system of pairwise orthogonal idempotents.

Then e1 + · · · + ep is a unit of Aq.

Theorem 2.1 Let gp be a rigid Lie algebra with solvable non nilpotent radical such
that Z(gp) = {0}. Then g = gp ⊗Aq is rigid if and only if Aq = Mq

1 (K) is given by

e2i = ei , i = 1, . . . , q and ei · ej = 0 if i 	= j.

Proof Since Aq is unitary, the radical of g solvable and non nilpotent. Moreover
Z(gp) = {0} implies that Z(g) = {0}. In fact if U = ∑

j,a αjaXj ⊗ xa is in the center
of g, then [U, X ⊗ 1] = 0 for each X ∈ gp. Thus

∑
αj,a[Xj, X] ⊗ xa = 0.

We have [∑j αjaXj, X] = 0 for each a and X. So
∑

j αjaXj ∈ Z(gp) for any a.

Therefore αja = 0 for any a and U = 0.



Rigid Current Lie Algebras 253

Consequently, g is a rigid Lie algebra with trivial center whose radical is non
nilpotent. This implies that all derivations are inner. Let f be a non trivial derivation
ofAq. SinceAq is commutative, it is necessarily an outer derivation. Then Id ⊗ f is
a derivation of g and satisfies (Id ⊗ f )(X ⊗ 1) = X ⊗ f (1) = 0 because f (1 · 1) =
2f (1) = f (1) = 0. Suppose that Id ⊗ f ∈ Int(g), that is Id ⊗ f = ad(

∑
αijXi ⊗ xj).

Thus (Id ⊗ f )(X ⊗ 1) = ∑
αij[Xi, X] ⊗ xj = 0 which implies

∑
αij[Xi, X] = 0

for any j and X. So
∑

αijXi ∈ Z(gp) for any j. Since the center is trivial, then∑
αijXj = 0 for any j and Id ⊗ f /∈ Int(g). There is a contradicion. Therefore Aq is

such that any external derivation is trivial. We deduce that Aq = Mq
1 (K).

Remark 1. The current Lie algebra gp ⊗Mq
1 (K) is isomorphic to gp ×· · ·×gp with

q factors. If g is a rigid current algebra with Z(gp) trivial, then it is isomorphic
to gp × · · · × gp.

2. In the theorem,we have a hypothesis concerning the center of gp. This hypothesis
is probably superfluous. In fact, since the orbit in Ln of a rigid n-dimensional Lie
algebra is Zariski open, the Zariski closure of this orbit is an algebraic component
of Ln. This assures that, for a fixed dimension, there exist only a finite number
of non isomorphic rigid Lie algebras. But, for all the known examples of rigid
Lie algebras, the center is trivial. We can naturally conjecture that any finite
dimensional complex rigid Lie algebra has a trivial center.

3 Cohomology and Deformations

The Chevalley-Eilenberg cohomology of current Lie algebras was computed in [18]
for the degrees 1 and 2. It is shown that the algebra of derivations of g = gp ⊗Aq is
equal to

Der(g) = Der(gp) ⊗ Aq ⊕ Homgp(gp, gp) ⊗ Der(Aq)

⊕Hom(gp/[gp,gp], Z(gp))] ⊗ End(Aq)

Aq+DerAq

and the first space of cohomology H1(g, g) is

H1(g, g) = H1(gp, gp) ⊗ Aq ⊕ Homgp(gp, gp) ⊗ Der(Aq)

⊕Hom(gp/[gp,gp], Z(gp))] ⊗ Hom(Aq,Aq)

Aq+DerAq
.

Assume that g = gp ⊗ Aq is a rigid current Lie algebra. Then gp is rigid. Assume
also that Z(gp) = 0. Then

H1(g, g) = H1(gp, gp) ⊗ Aq ⊕ Homgp(gp, gp) ⊗ Der(Aq).
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If gp is a rigid Lie algebra with non nilpotent radical (we do not know examples of
rigid Lie algebras with a nilpotent radical), any derivation of gp is inner. This implies
that H1(gp, gp) = 0 and H1(g, g) = Homgp(gp, gp) ⊗ Der(Aq).

Proposition 3.1 Let g = gp ⊗ Aq be a current Lie algebra such that gp is rigid
with trivial center and a non nilpotent radical. Then H1(g, g) = 0 if and only if
Der(Aq) = {0}.

Example ConsiderAq = Mq
1 (K). Let {ei} be a basis ofAq satisfying e2i = ei, eiej =

0. Let f be in Der(Aq). We have

f (e2i ) = f (ei) = 2eif (ei).

This induces f (ei) = 0 and finally f = 0.
A Chevalley-Eilenberg 2-cochain of g = gp ⊗ Aq decomposes as a finite sum of

bilinear forms of type:
ϕ = ψ1 ⊗ ϕ2 + ϕ3 ⊗ ψ4

with ψ1 ∈ C 2(gp, gp) , ϕ2 ∈ S 2(gp, gp) and ϕ3 ∈ S 2(gp, gp), ψ4 ∈ C 2(Aq,Aq),

where C 2(gp, gp) denotes the space of Chevalley-Eilenberg 2-cochains of gp,
S 2(gp, gp) the space of symmetric bilinear maps with values in gp and C 2(Aq,Aq)

the space of 2-cochains of the Harrison cohomology of Aq. We deduce using this
decomposition that H2(g, g) = (H2)′ ⊕ (H2)′′. The first space is computed in ([18],
proposition 3.1). We find

(H2)′ = H2(gp, gp)⊗Aq ⊕B(gp, gp)⊗ H2
H(Aq,Aq)

P+(Aq,Aq)
⊕χ(gp, gp)⊗ A (Aq,Aq)

P+(Aq,Aq)

(see [18] for notations). But the second space was just computed when gp is abelian.
For example assume thatwe have a primitive infinitesimal deformation ofμ1⊗μ2,

that is, μ1 ⊗μ2 + ε(ψ1 ⊗ϕ2 +ϕ3 ⊗ψ4). The linear part of the Jacobi identity gives
the expression of a 2-cocycle of Chevalley-Eilenberg cohomology of μ1 ⊗ μ2. We
find:

δμ1⊗μ2(ψ1 ⊗ ϕ2 + ϕ3 ⊗ ψ4)(X1, X2, X3, a1, a2, a3)

= Σμ1(ψ1(X1, X2), X3) ⊗ μ2(ϕ2(a1, a2), a3)

+ Σμ1(ϕ3(X1, X2), X3) ⊗ μ2(ψ4(a1, a2), a3)

+ Σψ1(μ1(X1, X2), X3) ⊗ ϕ2(μ2(a1, a2), a3)

+ Σϕ3(μ1(X1, X2), X3) ⊗ ψ4(μ2(a1, a2), a3) = 0

for any X1, X2, X3 ∈ gp and a1, a2, a3 ∈ Aq, and the sum is taken on the cyclic
permutations of (1, 2, 3). We deduce
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Proposition 3.2 If Aq is unitary then ψ1 ∈ Z2(gp, gp) as soon as ϕ2(1, 1) 	= 0.

If X1 = X2 = X3, the above identity reduce to:

μ1(ϕ3(X1, X1), X1) ⊗ Σμ2(ψ4(a1, a2), a3) = 0.

Proposition 3.3 If there exits X ∈ gp such that μ1(ϕ3(X1, X1), X1) 	= 0 then

μ2 • ψ4 = 0

with
μ2 • ψ4(a1, a2, a3) = Σμ2(ψ4(a1, a2), a3).

Note that ψ4 is a 2-cocyle for the Harrison cohomology of μ2 so μ2 •ψ4 = ψ4 •μ2.

Suppose that g is rigid solvable with trivial center. Then Aq is unitary and ψ1 ∈
Z2(gp, gp) as soon as ϕ2(1, 1) 	= 0.

4 Application: Associative Commutative Real Rigid Algebras

4.1 Real Rigid Lie Algebras

The study of the rigid real Lie algebras was recently initiated in [2]. Let us point out
the principal results. An external torus of derivations of n is an abelian subalgebra
t of Der(n), the Lie algebra of derivations of n, such as the elements are semi-
simple. This means that complex derivations f ⊗ Id ∈ t ⊗ C are simultaneously
diagonalizable. If t is a maximal (with respect to inclusion) external torus of n then
t ⊗ C is a maximal external torus of n ⊗ C. From a result of Malcev (see e.g. [10]),
all the maximal tori of n⊗C are conjugated with respect to Aut(n⊗C) so they have
the same dimension (thus a maximal exterior torus is sometimes called a Malcev
torus). It is the same for the maximal tori t of n. This dimension is called the rank
of n. But contrary to the complex case, all the tori are not conjugated with respect to
the group of automorphisms.

Definition 4.1 Let n be a finite dimensional real nilpotent Lie algebra. We call a
toroidal index of n the number of conjugation classes of a maximal external torus
with respect to the group of automorphisms AutR(n) of n.

Example The toroidal index of the real abelian Lie algebra an of dimension n is
equal to [n/2] + 1 where [p] is the integer part of the rational number p. In fact,
let {X1, . . . , Xn} be a basis of an. Let us denote by fi the derivation defined by
fi(Xj) = δ

j
i Xj and by f1,2p the derivation given by
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{
f1,2p(X2p−1) = X2p,

f1,2p(X2p) = X2p−1.

Up to conjugation, themaximal exterior tori are the subalgebras of gl(n,R) generated
by

t1 = R{f1, . . . , fn}
t2 = R{f1,2, f1 + f2, f3 . . . , fn}
t3 = R{f1,2, f1 + f2, f1,4, f3 + f4, f5, . . . , fn}
. . .

tn = R{f1,2, f1 + f2, f1,4, f3 + f4, . . . , f1,n, fn−1 + fn}

if n is even, if not the last relation is replaced by

tn = R{f1,2, f1 + f2, f1,4, f3 + f4, . . . , f1,n−1, fn−2 + fn−1, fn}.

4.2 Real Rigid Associative Commutative Algebras

Let r2 be the real nonabelian 2-dimensional Lie algebra. There exists a basis {X1, X2}
with regard towhich the bracket is given by [X1, X2] = X2.LetAn be a n-dimensional
real rigid commutative associative algebra. Its complexification is isomorphic to
Mn

1 (C). Thus the real current Lie algebra g = r2 ⊗ An is rigid. We deduce that
its complexification is rigid and isomorphic to rn

2. These remarks allow to write the
following decomposition:

g = r2 ⊗ An = tn ⊕ an

where an is the n-dimensional abelian Lie algebra. We can deduce from this the
structure ofAn. In fact, if {Y1, . . . , Yn} is a basis of tn corresponding to the derivations
f1,2, f1+ f2, . . . , f1,2s, f2s−1+ f2s, f2s+1, . . . , fn} described in the previous section, the
Lie bracket of g satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[Y1, X1] = −X2, [Y1, X2] = X1,

[Y2, X1] = X1, [Y2, X2] = X2,

. . .

[Y2s−1, X2s−1] = −X2s, [Y2s−1, X2s] = X2s−1,

[Y2s, X2s−1] = X2s−1, [Y2s, X2s] = X2s,

[Yi, Xi] = Xi, i = 2s + 1, . . . , n.

Let {e1, . . . , en} be a basis of An such that the isomorphism between r2 ⊗ An and
tn ⊕ an is given by U1 ⊗ ei = Yi and X2i = U2 ⊗ e2i−1, X2i−1 = U2 ⊗ e2i for
i = 1, . . . , s and Xj = U2 ⊗ ej for j = 2s + 1, .., n. The rigid associative algebraAn

is thus defined by
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⎧
⎪⎪⎨

⎪⎪⎩

e22i−1 = e2i−1, i = 1, . . . , s;
e2i−1e2i = e2ie2i−1 = e2i, i = 1, . . . , s;
e22i = −e2i−1, i = 1, . . . , s;
e2j = ej, j = 2s + 1, . . . , n.

Proposition 4.1 LetAn be a n-dimensional real rigid associative algebra. There ex-
ists an integer s, 1 ≤ s ≤ n and a basis {e1, . . . , en} ofAn such that the multiplication
of An is given by

⎧
⎪⎪⎨

⎪⎪⎩

e22i−1 = e2i−1, i = 1, . . . , s;
e2i−1e2i = e2ie2i−1 = e2i, i = 1, . . . , s;
e22i = −e2i−1, i = 1, . . . , s;
e2j = ej, j = 2s + 1, . . . , n.
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