
A Comparison of Leibniz and Lie
Cohomology and Deformations

Alice Fialowski

Abstract In this talk we compare Leibniz and Lie algebra cohomology and
deformations of a given Lie algebra.We get some sufficient conditions for not getting
more Leibniz deformations just the Lie ones. These conditions are easy to verify. As
an example, we describe the universal infinitesimal versal Leibniz deformation of
the 4-dimensional diamond algebra.

1 Introduction

Leibniz algebras were introduced in [10] as a non antisymmetric version of Lie
algebras. Lie algebras are special Leibniz algebras, and Pirashvili introduced [16]
a spectral sequence, that, when applied to Lie algebras, measures the difference
between the Lie algebra cohomology and the Leibniz cohomology. Lie algebras
have deformations as Leibniz algebras and those are piloted by the adjoint Leibniz
2-cocycles. In the present talk, we focus on the second Leibniz cohomology groups
HL2(g, g), HL2(g,C) with adjoint and trivial representations of a complex Lie alge-
bra g. We adopt a very elementary approach, to compare HL2(g, g) and HL2(g,C) to
H2(g, g) and H2(g,C) respectively. In both cases, HL2 is the direct sum of 3 spaces:
H2 ⊕ ZL2

0 ⊕ C wher H2 is the Lie algebra cohomology group, ZL2
0 is the space of

symmetric Leibniz 2-cocycles and C is a space of coupled Leibniz 2-cocycles, the
nonzero elements of which have the property that their symmetric and antisymmetric
parts are not Leibniz cocycles. Our comparison gives some useful practical informa-
tion about the structure of Lie and Leibniz cocycles. As an example, we analyse the
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4-dimensional diamond algebra which is used to construct a Wess-Zumino-Witten
model. We completely describe its universal infinitesimal Leibniz and Lie deforma-
tion by computing Massey products.

The talk is based on joint work with Mandal and Magnin [5].

2 Leibniz Cohomology and Deformations

Leibniz algebras were introduced by J.-L. Loday [10, 12]. Let K denote a field.

Definition 2.1 ALeibniz algebra is aK-moduleL, equippedwith a bracket operation
that satisfies the Leibniz identity:

[x, [y, z]] = [[x, y], z] − [[x, z], y], for x, y, z ∈ L.

Any Lie algebra is automatically a Leibniz algebra, as in the presence of anti-
symmetry, the Jacobi identity is equivalent to the Leibniz identity. More examples of
Leibniz algebras were given in [10–12], and recently Leibniz algebras are intesively
studied.

Let L be a Leibniz algebra and M a representation of L. By definition, M is a
K-module equipped with two actions (left and right) of L,

[−,−] : L × M −→ M and [−,−] : M × L −→ M such that

[x, [y, z]] = [[x, y], z] − [[x, z], y]

holds, whenever one of the variables is from M and the two others from L. Define
CLn(L; M) := HomK(L⊗n, M), n ≥ 0. Let

δn : CLn(L; M) −→ CLn+1(L; M)

be a K-homomorphism defined by

δnf (x1, . . . , xn+1)

:= [x1, f (x2, . . . , xn+1)] +
n+1∑

i=2
(−1)i[f (x1, . . . , x̂i, . . . , xn+1), xi]

+ ∑

1≤i<j≤n+1
(−1)j+1f (x1, . . . , xi−1, [xi, xj], xi+1, . . . , x̂j, . . . , xn+1).

Then (CL∗(L; M), δ) is a cochain complex, whose cohomology is called the coho-
mology of the Leibniz algebra L with coefficients in the representation M. The n-th
cohomology is denoted by HLn(L; M). In particular, L is a representation of itself
with the obvious action given by the bracket in L. The n-th cohomology of L with
coefficients in itself is denoted by HLn(L; L).
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Let Sn be the symmetric group. Recall that a permutation σ ∈ Sp+q is called a
(p, q)-shuffle, if σ(1) < σ(2) < · · · < σ(p), and σ(p + 1) < σ(p + 2) < · · · <

σ(p + q). We denote the set of all (p, q)-shuffles in Sp+q by Sh(p, q).
For α ∈ CLp+1(L; L) and β ∈ CLq+1(L; L), define α ◦ β ∈ CLp+q+1(L; L) by

α ◦ β(x1, . . . , xp+q+1)

=
p+1∑

k=1
(−1)q(k−1){ ∑

σ∈Sh(q,p−k+1)
sgn(σ )α(x1, . . . , xk−1, β(xk, xσ(k+1), . . . ,

xσ(k+q)), xσ(k+q+1), . . . , xσ(p+q+1))}.

The graded cochain module CL∗(L; L) = ⊕
r CLr(L; L) equipped with the bracket

defined by

[α, β] = α ◦ β + (−1)pq+1β ◦ α for α ∈ CLp+1(L; L) and β ∈ CLq+1(L; L)

and the differential map d by dα = (−1)|α|δα for α ∈ CL∗(L; L) is a differential
graded Lie algebra. (Here |α| denotes the degree of the cochain α.)

Let now K a field of zero characteristic and the tensor product over K will be
denoted by ⊗. We recall the notion of deformation of a Lie (Leibniz) algebra g (L)
over a commutative algebrawith identity baseAwith afixed augmentation ε : A → K

and maximal ideal M. Assume dim(Mk/Mk+1) < ∞ for every k (see [6]).

Definition 2.2 A deformation λ of a Lie algebra g (or a Leibniz algebra L) with
base (A,M), or simply with base A is an A-Lie algebra (or an A-Leibniz algebra)
structure on the tensor product A ⊗ g (or A ⊗ L) with the bracket [, ]λ such that

ε ⊗ id : A ⊗ g → K ⊗ g (or ε ⊗ id : A ⊗ L → K ⊗ L)

is an A-Lie algebra (A-Leibniz algebra) homomorphism.

A deformation of the Lie (Leibniz) algebra g (L) with base A is called infinitesimal,
or first order, if in addition to this, M2 = 0. We call a deformation of order k, if
Mk+1 = 0. A deformation with base is called local if A is a local algebra over K,
which means A has a unique maximal ideal.

Suppose A is a complete local algebra ( A = lim←−
n→∞

(A/Mn)), where M is the

maximal ideal in A. Then a deformation of g (L) with base A which is obtained
as the projective limit of deformations of g (L) with base A/Mn is called a formal
deformation of g (L).

Definition 2.3 Suppose λ is a given deformation of L with base (A,M) and aug-
mentation ε : A → K. Let A′ be another commutative algebra with identity and a
fixed augmentation ε′ : A′ → K. Suppose φ : A → A′ is an algebra homomorphism
with φ(1) = 1 and ε′ ◦ φ = ε. Let ker(ε′) = M′. Then the push-out φ∗λ is the
deformation of L with base (A′,M′) and bracket
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[a1′ ⊗A (a1 ⊗ l1), a′
2 ⊗A (a2 ⊗ l2)]φ∗λ = a′

1a′
2 ⊗A [a1 ⊗ l1, a2 ⊗ l2]λ

where a′
1, a′

2 ∈ A′, a1, a2 ∈ A and l1, l2 ∈ L. Here A′ is considered as an A-module
by the map a′ · a = a′φ(a) so that

A′ ⊗ L = (A′⊗AA) ⊗ L = A′⊗A(A ⊗ L).

Definition 2.4 (see [2]) Let C be a complete local algebra. A formal deformation η

of a Lie algebra g (Leibniz algebra L) with base C is called versal, if

(i) for any formal deformation λ of g (L) with base A there exists a homomorphism
f : C → A such that the deformation λ is equivalent to f∗η;

(ii) if A satisfies the condition M2 = 0, then f is unique.

Theorem 2.1 If H2(g; g) is finite dimensional, then there exists a of g (similarly
for L).

Proof Follows from the general theorem of Schlessinger [17], like it was shown for
Lie algebras in [2].

In [3] a construction for a versal deformation of a Lie algebra was given and it
was generalized to Leibniz algebras in [6]. The computation of a specific Leibniz
algebra example is given in [4].

3 Comparison of the Cohomology Spaces HL2 and H2 for a Lie
Algebra

In [16] the relation between Chevalley-Eilenberg and Leibniz homology with coef-
ficients in a right module is considered via a spectral sequence. The statements are
valid in the cohomological version as well. As a corollary, one deduces

Proposition 3.1 [16]Let g be a Lie algebra over a fieldK and M be a right g-module.
If

H∗(g, M) = 0, then HL∗(g, M) = 0.

As the similar statement is true for cohomologies, it implies that rigid Lie algebras
are Leibniz rigid as well.

Now we describe the Leibniz 2-cohomology spaces with the help of Lie 2-
cohomology space of a Lie algebra g.

Recall that a symmetric bilinear form B ∈ S2g∗ is invariant, i.e. B ∈ (
S2g∗)g

if and only if B([Z, X], Y) = −B(X, [Z, Y ]) for every X, Y , Z ∈ g. The Koszul

map [9] I : (
S2g∗)g →

(∧3 g∗
)g ⊂ Z3(g,C) is defined by I (B) = IB, with

IB(X, Y , Z) = B([X, Y ], Z) for every X, Y , Z ∈ g. Since the projection π : g →
g/C 2g induces an isomorphism



A Comparison of Leibniz and Lie Cohomology and Deformations 237

� : kerI → S2
(
g/C 2g

)∗
,

(whereC 2g = [g, g]), dim (
S2g∗)g = p(p+1)

2 + dim ImI ,with p = dim H1(g,C).

For reductive g, dim
(
S2g∗)g = dim H3(g,C). Note also that the restriction of δC to

(
S2g∗)g is −I .

Definition 3.1 g is said to be I -null (resp. I -exact) if I = 0 (resp. ImI ⊂
B3(g,C)).

Example 3.1 The (2N + 1)-dimensional complex Heisenberg Lie algebra HN

(N � 1) with basis (xi)1�i�2N+1 and nonzero commutation relations (with anticom-

mutativity) [xi, xN+i] = x2N+1 (1 � i � N) is I -null, for any B ∈ (
S2HN

∗)HN
,

B(xi, x2N+1) = B(xi, [xi, xN+i]) = −B([xi, xi], xN+i) = 0 (similarly with xN+i

instead of xi) (1 � i � N), and B(x2N+1, x2N+1) = B(x2N+1, [x1, xN+1]) =
−B([x1, x2N+1], xN+1) = 0.

If c denotes the center of g, then c ⊗ (
S2g∗)g is the space of invariant c-valued

symmetric bilinear maps and we denote F = Id ⊗I : c ⊗ (
S2g∗)g → C3(g, g) =

g ⊗ ∧3 g∗. Then ImF = c ⊗ ImI .

Theorem 3.1 Let g be any finite dimensional complex Lie algebra and ZL2
0(g, g)

(resp. ZL2
0(g,C)) the space of symmetric adjoint (resp. trivial) Leibniz 2-cocycles.

(i) ZL2
0(g, g) = c ⊗ kerI . In particular, dim ZL2

0(g, g) = c p(p+1)
2 where

c = dim c and p = dim g/C 2g = dim H1(g,C).

(ii) ZL2(g, g)
/ (

Z2(g, g) ⊕ ZL2
0(g, g)

) ∼= (c ⊗ ImI ) ∩ B3(g, g).

(iii) HL2(g, g) ∼= H2(g, g) ⊕ (c ⊗ kerI ) ⊕ (
(c ⊗ ImI ) ∩ B3(g, g)

)
.

(iv) ZL2
0(g,C) = kerI .

(v) ZL2(g,C)
/ (

Z2(g,C) ⊕ ZL2
0(g,C)

) ∼= ImI ∩ B3(g,C).

(vi) HL2(g,C) ∼= H2(g,C) ⊕ kerI ⊕ (
ImI ∩ B3(g,C)

)
.

Proof (i) The Leibniz 2-cochain space CL2(g, g) = g ⊗ (g∗)⊗2 decomposes as(
g ⊗ ∧2 g∗

)
⊕ (

g ⊗ S2 g∗) with g ⊗ S2 g∗ the space of symmetric elements in

CL2(g, g). By definition of the Leibniz coboundary δ, one has for ψ ∈ CL2(g, g)
and X, Y , Z ∈ g

(δψ)(X, Y , Z) = u + v + w + r + s + t (1)

withu = [X, ψ(Y , Z)], v = [ψ(X, Z), Y ], w = −[ψ(X, Y), Z], r = −ψ([X, Y ], Z),

s = ψ(X, [Y , Z]), t = ψ([X, Z], Y). δ coincideswith the usual coboundary operator
on g⊗∧2 g∗.Now, letψ = ψ1+ψ0 ∈ CL2(g, g) ,ψ1 ∈ g⊗∧2 g∗, ψ0 ∈ g⊗S2 g∗.

Suppose ψ ∈ ZL2(g, g) : δψ = 0 = δψ1 + δψ0 = dψ1 + δψ0. Then δψ0 =
−dψ1 ∈ g⊗∧3 g∗ is antisymmetric. Then permuting X and Y in formula (1) for ψ0
yields (δψ0)(Y , X, Z) = −v − u + w − r + t + s. As δψ0 is antisymmetric, we get
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w + s + t = 0. (2)

Now, the circular permutation (X, Y , Z) in (1) for ψ0 yields (δψ0)(Y , Z, X) = −v −
w + u − s − t + r. Again, by antisymmetry,

v + w + s + t = 0, (3)

i.e. (δψ0)(X, Y , Z) = u + r.
From (2) and (3), v = 0.Applying twice the circular permutation (X, Y , Z) to v,we

get first w = 0 and then u = 0. Hence (δψ0)(X, Y , Z) = r = −ψ0([X, Y ], Z). Note
first that u = 0 reads [X, ψ0(Y , Z)] = 0.AsX, Y , Z are arbitrary,ψ0 is c-valued.Now
the permutation of Y and Z changes r to −t = s (from (3)). Again, by antisymmetry
of δψ0, r = t = −s. As X, Y , Z are arbitrary, one gets ψ0 ∈ c ⊗ (

S2g∗)g . Now
F(ψ0) = −r = −δψ0 = dψ1 ∈ B3(g, g). Hence

ψ0 ∈ ZL2
0(g, g) ⇔ F(ψ0) = 0 ⇔ ψ1 ∈ Z2(g, g) ⇔ ψ0 ∈ c ⊗ kerI .

Consider now the linear map Φ : ZL2(g, g) → F−1(B3(g, g))
/

ker F defined
by ψ �→ [ψ0] (mod ker F). Φ is onto: for any [ϕ0] ∈ F−1(B3(g, g))

/
ker F,

ϕ0 ∈ c ⊗ (
S2g∗)g , one has F(ϕ0) ∈ B3(g, g), hence F(ϕ0) = dϕ1, ϕ1 ∈ C2(g, g),

and then ϕ = ϕ0 + ϕ1 is a Leibniz cocycle such that Φ(ϕ) = [ϕ0]. Now
kerΦ = Z2(g, g) ⊕ ZL2

0(g, g), since condition [ψ0] = [0] reads ψ0 ∈ ker F
which is equivalent to ψ ∈ Z2(g, g) ⊕ ZL2

0(g, g). Hence Φ yields an isomor-
phism ZL2(g, g)

/ (
Z2(g, g) ⊕ ZL2

0(g, g)
) ∼= F−1(B3(g, g))

/
ker F. The latter is

isomorphic to ImF ∩ B3(g, g) ∼= (c ⊗ ImI ) ∩ B3(g, g).

(ii) results from the invariance of ψ0 ∈ ZL2
0(g, g).

(iii) results immediately from (i) and (ii) since BL2(g, g) = B2(g, g) as the Leibniz
differential on CL1(g, g) = g∗ ⊗ g = C1(g, g) coincides with the usual one.

(iv)-(vi) are similar.

Remark 3.1 Since kerI ⊕ (
ImI ∩ B3(g,C)

) ∼= ker h where h denotes I com-
posed with the projection of Z3(g,C) onto H3(g,C), the result (vi) is the same as in
[13].

Remark 3.2 Any supplementary subspace to Z2(g,C) ⊕ ZL2
0(g,C) in ZL2(g,C)

consists of coupled Leibniz 2-cocycles, i.e. the nonzero elements have the property
that their symmetric and antisymmetric parts are not cocycles. To get such a sup-
plementary subspace, pick any supplementary subspace W to kerI in

(
S2g∗)g and

take C = {
B + ω ; B ∈ W ∩ I −1(B3(g,C)), IB = dω

}
.

Definition 3.2 g is said to be an adjoint (resp. trivial) ZL2-uncoupling if

(c ⊗ ImI ) ∩ B3(g, g) = {0}
(
resp. ImI ∩ B3(g,C) = {0}

)
.
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The class of adjoint ZL2-uncoupling Lie algebras is rather extensive since
it contains all zero-center Lie algebras and all I -null Lie algebras. For non
zero-center, adjoint ZL2-uncoupling implies trivial ZL2-uncoupling, since c ⊗(
ImI ∩ B3(g,C)

) ⊂ (c ⊗ ImI ) ∩ B3(g, g). The reciprocal holds obviously true
for I -exact Lie algebras. However we do not know if it holds true in general (e.g.
we do not know of a nilpotent Lie algebra which is not I -exact).

Corollary 3.1 (i) HL2(g, g) ∼= H2(g, g) ⊕ (c ⊗ kerI ) if and only if g is adjoint
ZL2-uncoupling.

(ii) HL2(g,C) ∼= H2(g,C) ⊕ kerI if and only if g is trivial ZL2-uncoupling.

Corollary 3.2 For any Lie algebra g with trivial center c = {0}, HL2(g, g) =
H2(g, g).

Remark 3.3 This fact also follows from the cohomological version of Theorem A
in [16].

Proof Let g be a Lie algebra and M be a right g-module. Consider the product map
m : g ⊗ Λng −→ Λn+1 in the exterior algebra. This map yields an epimorphism of
chain complexes

C∗(g, g) −→ C∗(g,K)[−1],

where C∗(g,K) is the reduced chain complex:

C0(g,K) = 0, Ci(g,K) = Ci(g,K) for i > 0.

Define the reduced chain complex CR∗(g) such that CR∗(g[1]) is the kernel of the
epimorphism C∗(g, g) −→ C∗(g,K)[−1]. Denote the cohomology of CR∗(g) by
HR∗(g).

Let us recall Theorem A in [16]. It states that there exists a spectral sequence

E2
pq = HRp(g ⊗ HLq(g, M)) =⇒ Hrel

p+q(g, M).

As the center of our Lie algebra is 0, it follows that E2
00 = 0, and so we get

Hrel
0 (g, g) = 0.
But then from the exact sequence in [16]

0 ← H2(g, M) ← HL2(g, M) ← Hrel
0 (g, M) ← H3(g, M) ← ...

we get
HL2(g, M) = H2(g, M).

Corollary 3.3 For any reductive Lie algebra g with center c, HL2(g, g) = H2(g, g)

⊕ (
c ⊗ S2c∗

)
, and dim H2(g, g) = c2(c−1)

2 with c = dim c.
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Proof g = s ⊕ c with s = C 2g semisimple. We first prove that g is adjoint ZL2-

uncoupling. We have c ⊗ (
S2g∗)g =

(
c ⊗ (

S2s∗)s
)

⊕ (
c ⊗ S2c∗

) = c
(
S2s∗)s ⊕

c
(
S2c∗

)
. Suppose first s simple. Then any bilinear symmetric invariant form on s

is some multiple of the Killing form K . Hence c ⊗ (
S2g∗)g = c (CK) ⊕ c

(
S2c∗

)
.

For any ψ0 ∈ c ⊗ (
S2g∗)g , F(ψ0) is then some linear combination of copies of

IK . It is well-known, IK is not a coboundary. Hence if we suppose that F(ψ0) is a
coboundary, necessarily F(ψ0) = 0. The Lie algebra g is adjoint ZL2-uncoupling
when s is simple. Now, if s is not simple, s can be decomposed as a direct sum
s1⊕· · ·⊕sm of simple ideals of s.Then

(
S2s∗)s = ⊕m

i=1

(
S2si

∗)si = ⊕m
i=1 CKi (Ki

Killing form of si.) The same reasoning then applies and shows that g is adjoint ZL2-
uncoupling. From (ii) in Theorem 3.1, we have ZL2

0(g, g) = c ⊗S2c∗.Now, g = s⊕c
with s = C 2g semisimple. The subalgebra s can be decomposed as a direct sum
s1⊕· · ·⊕sm of ideals of s, hence of g.ThenH2(g, g) = ⊕m

i=1 H2(g, si) ⊕ H2(g, c).
As si is a nontrivial g-module, H2(g, si) = {0} ([8], Prop. 11.4, page 154). So we
get H2(g, g) = H2(g, c) = c H2(g,C). By the Künneth formula and Whitehead’s
lemmas,

H2(g,C) =
(

H2(s,C) ⊗ H0(c,C)
)

⊕
(

H1(s,C)

⊗H1(c,C)
)

⊕
(

H0(s,C) ⊗ H2(c,C)
)

= H0(s,C) ⊗ H2(c,C)

= C ⊗ H2(c,C).

Hence

dim H2(g, g) = c2(c − 1)

2
.

4 The Diamond Algebra

The 4-dimensional complex solvable “diamond” Lie algebra d has basis (x1, x2,
x3, x4) and nonzero commutation relations (with anticommutativity)

[x1, x2] = x3, [x1, x3] = −x2, [x2, x3] = x4. (4)

The relations show that d is an extension of the one-dimensional abelian Lie algebra
Cx1 by the Heisenberg algebra n3 with basis x2, x3, x4. It is also known as the Nappi-
Witten Lie algebra [14] or the central extension of the Poincaré Lie algebra in two
dimensions. It is a solvable quadratic Lie algebra, as it admits a nondegenerate
bilinear symmetric invariant form. Because of these properties, it plays an important
role in conformal field theory.
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We can use d to construct a Wess-Zumino-Witten model, which describes a
homogeneous four-dimensional Lorentz-signature space time [14].

It is easy to check that d is I -exact. In fact, one verifies that all other solvable
4-dimensional Lie algebras are I -null (for a list, see e.g. [15]).

Consider d as Leibniz algebra with basis {e1, e2, e3, e4} overC. Define a bilinear
map [ , ] : d × d −→ d by [e2, e3] = e1, [e3, e2] = −e1, [e2, e4] = e2, [e4, e2] =
−e2, [e3, e4] = e2 − e3 and [e4, e3] = e3 − e2, all other products of basis elements
being 0.

We get a basis satisfying the usual commutation relations (4) by letting

x1 = ie4, x2 = e3, x3 = i(−e2 + e3), x4 = ie1. (5)

One should mention that even though these two forms are equivalent overC, they
represent the two nonisomorphic real forms of the complex diamond algebra.

We found that by considering Leibniz algebra deformations of d one gets more
structures. Indeed it gives not only extra structures but also keeps the Lie structures
obtained by considering Lie algebra deformations. To get the precise deformations
we need to consider the cohomology groups.

We compute cohomologies necessary for our purpose. Let us use the simpler
notation L for the diamond algebra. First consider the Leibniz cohomology space
HL2(L; L). Our computation consists of the following steps:

(i) determine a basis of the space of cocycles ZL2(L; L),
(ii) determine a basis of the coboundary space BL2(L; L),
(iii) determine a basis of the quotient space HL2(L; L).

(i) Let ψ ∈ ZL2(L; L). Then ψ : L ⊗ L −→ L is a linear map and δψ = 0, where

δψ(ei, ej, ek) = [ei, ψ(ej, ek)] + [ψ(ei, ek), ej] − [ψ(ei, ej), ek] − ψ([ei, ej], ek)

+ψ(ei, [ej, ek]) + ψ([ei, ek], ej) for 0 ≤ i, j, k ≤ 4.

Suppose ψ(ei, ej) =
4∑

k=1
ak

i,jek where ak
i,j ∈ C ; for 1 ≤ i, j, k ≤ 4. Since δψ = 0,

equating the coefficients of e1, e2, e3 and e4 in δψ(ei, ej, ek) we get the following
relations:

(i) a11,1 = a21,1 = a31,1 = a41,1 = a11,2 = a31,2 = a41,2 = 0;
(ii) a41,3 = a31,4 = a41,4 = a12,1 = a32,1 = a42,1 = a12,2 = a22,2 = a32,2 = a42,2 = 0;
(iii) a43,1 = a23,3 = a33,3 = a43,3 = a34,1 = a44,1 = a24,4 = a34,4 = a44,4 = 0;
(iv) a21,2 = −a22,1 = a21,3 = −a31,3 = −a23,1 = a33,1;
(v) a11,3 = −a13,1 = a21,4 = −a24,1;
(vi) a32,3 = −a33,2 = −a42,4 = a44,2; a42,3 = −a43,2; a22,3 = −a23,2;
(vi) a12,4 = −a14,2; a22,4 = −a24,2; a32,4 = −a34,2;
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(vii) a13,4 = −a14,3; a23,4 = −a24,3; a33,4 = −a34,3; a43,4 = −a44,3

(ix) a33,4 = (a114 − a224); a43,4 = (a214 + a223)

(x) a133 = 1
2 (a

1
23 + a132); a141 = −(a114 + a123 + a132).

Therefore, in terms of the ordered basis {ei ⊗ ej}1≤i,j≤4 of L ⊗ L and {ei}1≤i≤4 of L,
the transpose of the matrix corresponding to ψ is of the form

Mt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 x1 0 0
x2 x1 −x1 0
x3 x2 0 0
0 −x1 0 0
0 0 0 0
x4 x5 x6 x7
x8 x9 x10 −x6

−x2 −x1 x1 0
x11 −x5 −x6 −x7

1
2 (x4 + x11) 0 0 0

x12 x13 (x3 − x9) (x2 + x5)
−(x4 + x3 + x11) −x2 0 0

−x8 −x9 −x10 x6
−x12 −x13 −(x3 − x9) −(x2 + x5)

x14 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where x1 = a21,2; x2 = a11,3; x3 = a11,4; x4 = a12,3; x5 = a22,3; x6 = a32,3;
x7 = a42,3; x8 = a12,4; x9 = a22,4; x10 = a32,4; x11 = a13,2; x12 = a13,4;
x13 = a23,4 and x14 = a14,4

are in C . Let φi ∈ ZL2(L; L) for 1 ≤ i ≤ 14, be the cocyle with xi = 1 and xj = 0
for i �= j in the above matrix ofψ . It is easy to check that {φ1, . . . , φ14} forms a basis
of ZL2(L; L).

(ii) Let ψ0 ∈ BL2(L; L). We have ψ0 = δg for some 1-cochain g ∈ CL1(L; L) =
Hom (L; L). Suppose the matrix associated to ψ0 is the same as the above matrix M.

Let g(ei) = a1i e1 + a2i e2 + a3i e3 + a4i e4 for i = 1, 2, 3, 4. The matrix associated
to g is given by

(aj
i)i,j=1,...,4

From the definition of the coboundary we get

δg(ei, ej) = [ei, g(ej)] + [g(ei), ej] − ψ([ei, ej])
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for 0 ≤ i, j ≤ 4. If we write out the transpose matrix of

δg,

and compare it with M (since ψ0 = δg is also a cocycle in CL2(L; L)), we conclude
that the transpose matrix of ψ0 is of the form

Mt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 x1 0 0
x2 x1 −x1 0
0 x2 0 0
0 −x1 0 0
0 0 0 0
x4 x5 x6 x1
x8 x9 x10 −x6

−x2 −x1 x1 0
−x4 −x5 −x6 −x1
0 0 0 0

x12 x13 −x9 (x2 + x5)
0 −x2 0 0

−x8 −x9 −x10 x6
−x12 −x13 x9 −(x2 + x5)
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let φi
′ ∈ BL2(L; L) for i = 1, 2, 4, 5, 6, 8, 9, 10, 12, 13 be the coboundary

with xi = 1 and xj = 0 for i �= j in the above matrix of ψ0. It follows that
{φ′

1, φ
′
2, φ

′
4, φ

′
5, φ

′
6, φ

′
8, φ

′
9, φ

′
10, φ

′
12, φ

′
13} forms a basis of the coboundary space

BL2(L; L).
(iii) It is straightforward to check that

{[φ3], [φ7], [φ11], [φ14]}

span HL2(L; L)where [φi] denotes the cohomology class represented by the cocycle
φi.

Thus dim(HL2(L; L)) = 4.
The representative cocycles of the cohomology classes forming a basis of

HL2(L; L) are given explicitely as the following.

(1) φ3 : φ3(e1, e4) = e1, φ3(e4, e1) = −e1; φ3(e3, e4) = e3; φ3(e4, e3) = −e3;
(2) φ7 : φ7(e2, e3) = e4, φ7(e3, e2) = −e4;
(3) φ11 : φ11(e3, e2) = e1, φ11(e3, e3) = 1

2e1, φ11(e4, e1) = −e1;
(4) φ14 : φ14(e4, e4) = e1.
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Here φ3 and φ7 are skew-symmetric, so φi ∈ Hom(Λ2L; L) ⊂ Hom(L⊗2; L) for
i = 3 and 7.

Considerμi = μ0+tφi for i = 3, 7, 11, 14, whereμ0 denotes the original bracket
in L.

This gives 4 non-equivalent infinitesimal deformations of the Leibniz bracket μ0
with μ3 and μ7 giving the Lie algebra structure on the factor space L[[t]]/ < t2 >.

Now we have to compute the nontrivial Massey brackets which give relations on
the base of the miniversal deformation.

Let us start to compute the nonzero brackets [φi, φi] which are the obstructions
to extending infinitesimal deformations. We find

[φ3, φ3] = 0, [φ7, φ7] = 0.

That means that these two infinitesimal Lie deformations can be extended. In fact,
they can be extended to real Lie deformations as follows.

We give the new nonzero Lie brackets (and their anticommutative analogue).
The first deformation

[e2, e3]t = e1 + te4
[e2, e4]t = e2
[e3, e4]t = e2 − e3

is isomorphic to sl(2,C) ⊕ C for every nonzero value of t, see [7].
The second deformation represents a 2-parameter projective family d(λ, μ), for

which each projective parameter (λ, μ) defines a nonisomorphic Lie algebra (in fact,
the diamond algebra is a member of this family with (λ, μ) = (1,−1)):

[e2, e3]λ,μ = e1
[e2, e4]λ,μ = λe2
[e3, e4]λ,μ = e2 + μe3
[e1, e4]λ,μ = (λ + μ)e1.

Furthermore, we also have [φ14, φ14] = 0 which means that φ14 defines a real
Leibniz deformation:

[e2, e3]t = e1
[e2, e4]t = e2
[e3, e4]t = e2 − e3
[e4, e4]t = te1.

We note that this Leibniz algebra is not nilpotent.
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For the bracket [φ11, φ11]we get a nonzero 3-cocycle, so the infinitesimal Leibniz
deformation with infinitesimal part being φ11 can not be extended even to the next
order. That means it gives a relation on the base of the versal deformation.

The nontrivial mixed brackets [φi, φj] also determine relations on the base of the
versal deformation.

Among the six possible cases [φ3, φ11], [φ3, φ14] and [φ11, φ14] are nontrivial
3-cocycles, the others are represented by 3-coboundaries.

Thus we need to check the Massey 3-brackets which are defined, namely
< φ3, φ3, φ7 >, < φ3, φ7, φ7 >, < φ7, φ7, φ11 >,
< φ7, φ7, φ14 >, < φ7, φ14, φ14 >.
In these five possible Massey 3-brackets, only < φ3, φ3, φ7 > is represented by

nontrivial cocycle.
So we now proceed to compute the possible Massey 4-brackets. We get that four

of them are nontrivial:
< φ3, φ7, φ7, φ11 >, < φ3, φ7, φ7, φ14 >,
< φ7, φ7, φ14, φ11 >, < φ7, φ7, φ14, φ14 >.
At the next step, we get that all theMassey 5-brackets which are defined are trivial.
Sowe canwrite the universal infinitesimal Leibniz deformation of our Lie algebra:

[e1, e2]v = [e2, e1]v = [e1, e3]v = [e3, e1]v = 0,

[e1, e4]v = te1, [e4, e1]v = −(t + u)e1,

[e2, e3]v = e1 + se4, [e3, e2]v = (u − 1)e1 − se4,

[e2, e4]v = e2, [e4, e2] = −e2,

[e3, e4]v = e2 + (t − 1)e3, [e4, e3]v = −e2 + (1 − t)e3,

[e1, e1]v = [e2, e2]v = 0, [e3, e3]v = 1/2ue1,

[e4, e4]v = we1.

With the nontrivial Massey brackets and the identification t = φ3, s = φ7, u =
φ11, w = φ14, we get that the base of the infinitesimal deformation is

C[[t, s, u, w]]/{u2, tu, tw, uw; t2s; ts2u, ts2w, s2uw, s2w2}.
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