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Preface

This work presents the proceedings of the Algebra, Geometry and Mathematical
Physics Conference, which was held at the University of Haute Alsace (Mulhouse,
France) from 24 to 26 October, 2011. This international conference brought
together 126 researchers from 33 different countries, who are working on these
topics. In total, there were 12 plenary talks and 10 sessions with 86 contributed
talks. We would like to thank all of the conference participants and speakers for
making it such a successful and fruitful event.

The specific fields covered by the conference were

• Deformation theory and quantization,
• Hom-algebras and n-ary algebraic structures,
• Hopf algebra and quantum algebra,
• Integrable systems and related math structures,
• Jet theory and Weil bundles,
• Lie theory and applications,
• Noncommutative and Lie algebra,
• Number theoretical methods in string theory,
• Spectral and comp methods in physics, and
• Ternary algebras and applications.

This volume collects contributions which are divided into four main parts:
Algebra, Geometry, Dynamical Symmetries and Conservation Laws, and a final
part dedicated to Mathematical Physics and Applications. The common denomi-
nator of all the contributions is that they are mostly based on algebraic tools.

Part I, which is also the largest, includes contributions on Algebra. It covers
topics in ring theory, Lie algebras, ternary algebras, and deformation theory. The
‘‘Poincaré Duality for Koszul Algebras’’ offers a complete study of the conse-
quences of the Poincaré duality versus the AS-Gorenstein property for Koszul
algebras (homogeneous and nonhomogeneous). The ‘‘Quantized Reduced Fusion
Elements and Kostant’s Problem’’ provides a partial solution to Kostant’s problem
concerning a description of the locally finite endomorphisms of highest weight
irreducible modules. Two further chapters deal with commuting elements. The first
examines the algebraic dependence in the Weyl algebra and generalizations, while
the second focuses on centers in a six-parameter family of quadratically linked
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quantum plane algebras. A description of the C1-algebra on the cohomology of
the free two-nilpotent Lie algebra is also provided, drawing on T. Kadeishvili’s
homotopy transfer theorem. Moreover, we present a study of subalgebra depths, in
generalized triangular matrix algebras, within the path algebra of an acyclic
quiver.

The proceedings also include papers dedicated to some classes of Lie algebras,
such as the anisotropic, regular, minimal nonabelian, algebras of depth two, and
symplectic quadratic Lie algebras related to Poisson algebras. Lie algebras gen-
eralize naturally to 3-Lie algebras. We highlight a comparison of the structure and
the cohomology spaces of Lie algebras with induced 3-Lie algebras and a
description of Peirce decomposition for unitary (1,1)-Freudenthal Kantor triple
systems. For Hom-algebras, algebras involving a linear map twisting the usual
identities, a universal algebra theory is developed, mainly for Hom-associative
algebras. It covers the envelopment problem, operads, and the Diamond Lemma.
Furthermore, quadratic n-ary Hom-Nambu algebras are studied and various con-
structions are presented. Afterwards, there is a long series of chapters concerning
deformations, the first of which compares Leibniz and Lie algebra cohomology
and deformations of a given Lie algebra. The second chapter studies deformations
of finite dimensional current Lie algebras and their rigidity. Then, using a func-
torial point of view, a deformation theory for diagrams is described and non-
commutative varieties are constructed using a polynomial matrix algebra and
deformations (noncommutative deformation theory), as well as computations of
noncommutative deformation. The last chapter in this series provides a geometric
classification of four-dimensional superalgebras, based on the concept of degen-
eration. The purely algebraic contributions in the first part are rounded out with a
survey on distributivity in quasigroup theory and in quandle theory, in connection
with knot theory.

Part II is more geometrical, even if it also involves several algebraic structures.
The contributions concern differential geometry and projective geometry with an
algebraic treatment. The ‘‘Torsors and Ternary Moufang Loops Arising in
Projective Geometry’’ deals with torsors and ternary Moufang loops, which arise
in projective geometry. Concerning differential geometry, we present a study of
connections through a graded q-differential algebra of polynomials, a classification
of principal connections on a principal prolongation of a principal bundle, and an
interpretation of higher order connections. Utilizing a differential geometrical
approach, parallel transport on path spaces is studied using representations of
categorical groups. A differential geometry of microlinear Frölicher spaces, which
is mainly concerned with jet bundles, is presented. Moreover, this part includes a
contribution that collects key material on the generic rank of A-modules for the
purposes of differential geometrical applications, and closes with a geometrical
approach to ghost fields appearing in quantized gauge theory.

Part III is concerned with dynamical symmetries and conservation laws. The
idea of a conservation law can be traced back to the fields of mechanics and
physics. Many physical theories and ‘‘laws of nature’’ are usually expressed as
systems of nonlinear differential equations. The ‘‘Causality from Dynamical
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Symmetry: An Example from Local Scale-Invariance’’ studies causality from
dynamical symmetry and provides an example from local scale-invariance. Sub-
sequently, various systems are discussed: reaction-diffusion systems with constant
diffusivities, an inverse problem of reconstructing permittivity of an n-sectional
diaphragm in a rectangular waveguide, a class of Hamilton–Jacobi–Bellman
equations, and a generalized Dullin–Gottwald–Holm equation. Moreover, the
heat-mass transfer problem is studied using a group theoretical approach, and
Sinykov equations of the geodesic mappings of Riemannian manifolds are ana-
lyzed using the curvature operator of the second kind.

The last part concerns various applications of mathematics to physics. It starts

with a realization of the affine Lie algebra Að1Þ
1 and the relevant Z-algebra at

negative level k in terms of parafermions. Then, invariance and symmetries of
cubic and ternary algebras are discussed and a relationship of this construction
with the operators defining quark states is demonstrated. We then present a cal-
culation of decay times for simple modules, using the mathematical model of the
physical process of decay suggested by Laudal. As an application of number
theory to cryptography, an algorithmic study of the detection of permutation
polynomials follows. In connection with cosmology, we include a study on scalar-
tensor and multiscalar-tensor gravity and cosmological models. The last contri-
bution deals with quantum gravity and the quantum nature of the probes used to
unravel spacetime geometry.

One of the plenary speakers was Jean-Louis Loday, who gave a fascinating talk
on ‘‘Divided power algebras.’’ He has since, to our great sadness, passed away.
Jean-Louis Loday was a great mathematician with broad interests in mathematics,
such as the study of the interplay between algebraic K-theory and cyclic homol-
ogy, as well as the applications of the theory of algebraic operads. He was a great
mind and had a very generous spirit. We will always remember him, and we would
like to dedicate this volume to his memory.

We would like to thank the Region of Alsace, the City of Mulhouse and the
University of Haute Alsace for their financial support, as well as the AGMP
network for its technical support (http://www.astralgo.com/cweb/agmp). We are
grateful to the Faculty of Science and Technology and Dean Christophe Krembel
for the use of their facilities, our secretary Liliane Fricker for the great job she did
in organizing the conference, and Olivier Elchinger for his valued technical
assistance in the preparation of this volume.

Mulhouse, May 2013 Abdenacer Makhlouf
Eugen Paal

Sergei D. Silvestrov
Alexander Stolin
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Jean-Louis Loday (1946–2012)

Jean-Louis Loday was a French mathematician born in 1946 in Brittany (France).
After attending the high school Clémenceau in Nantes, he went to the famous
Lycée Louis-le-Grand to prepare for the competition to join the even more pres-
tigious Ecole Normale Supérieure, which he did in 1965. He passed the Agrégation
in 1969 before completing his Ph.D. under the guidance of Max Karoubi in 1975.
He would later become ‘‘Directeur de Recherche’’ at the CNRS. He spent his
entire career at the IRMA, part of the Department of Mathematics of the Uni-
versity of Strasbourg, where he later served as director.

His works deal with Algebra and Topology. He began by studying algebraic K-
theory in the 1970s, the golden age for this field. He then worked on algebraic
homotopy, most notably with Ronnie Brown. In the early 1980s, his focus shifted
to cyclic homology, the additive version of K-theory. Six months after its intro-
duction by Alain Connes, he and Dan Quillen discovered a seminal application in
the domain of matrix Lie algebra cohomology (a result found independently by
Boris Tsygan). The 1990s brought him into contact with the notion of algebraic
operads, which he developed until his death. Thanks to operads, he introduced and
studied in detail many types of algebras, including Leibniz algebras, dendriform
algebras, and generalized bialgebras. He was very much interested in combina-
torial Hopf algebras, like those appearing in renormalization theory, and was
fascinated by the Stasheff polytopes, also known as associahedra, which encode
associative algebras up to homotopy.

Over the course of his career Jean-Louis published 75 papers and two reference
books, one on cyclic homology and the other on algebraic operads. He supervised
15 Ph.D. theses and invited many postdoctoral students to Strasbourg, organizing
countless conferences and projects. Having recognized that research in mathe-
matics does not consist in individual researchers working on their own, he was
open and generous in sharing his time and ideas. Passionate about his work, not
only did he always find time for his students and colleagues, he was also unable to
refuse invitations to give a talk or a series of lectures, even if it meant traveling
halfway around the globe (e.g. to Montréal, Chile, Kazakhstan, and China over the
last few years).

Those of us mathematicians who were fortunate enough to meet him will
always remember him as a wonderful person with a great sense of humor, a wealth
of humanity, and an enduring love for mathematics.

Bruno Vallette
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Poincaré Duality for Koszul Algebras

Michel Dubois-Violette

Abstract We discuss the consequences of the Poincaré duality, versus
AS-Gorenstein property, for Koszul algebras (homogeneous and non homogeneous).
For homogeneous Koszul algebras, the Poincaré duality property implies the exis-
tence of twisted potentials which characterize the corresponding algebras while in
the case of quadratic linear Koszul algebras, the Poincaré duality is needed to get
a good generalization of universal enveloping algebras of Lie algebras. In the latter
case we describe and discuss the corresponding generalization of Lie algebras. We
also give a short review of the notion of Koszulity and of the Koszul duality for
N -homogeneous algebras and for the corresponding nonhomogeneous versions.

1 Introduction

Our aim in these notes is to review some important consequences of the Poincaré
duality versus AS-Gorenstein property for the Koszul algebras.

We shall first describe the AS-Gorenstein property [1] for graded algebras of finite
global dimensions and explain in what sense we consider it as a form of Poincaré
duality as well as its connection with the Frobenius property, [10, 28, 34].

We then review the Koszul duality [8] and the notion of Koszulity [3] for homo-
geneous algebras. We explain that for a homogeneous Koszul algebra the Gorenstein
property implies the existence of a homogeneous twisted potential which character-
izes algebra completely [18–20].

Lots of examples together with the corresponding twisted potentials (i.e. prereg-
ular multilinear forms) are given in [19] and [20]. Here, in these notes, we do not
describe them in order to save space and we refer to the above quoted papers.
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4 M. Dubois-Violette

We pass then to the description of the nonhomogeneous case and to the
Poincaré-Birkhoff-Witt (PBW) property and explain why for the quadratic-linear
algebras, the Poincaré duality is needed to obtain a good generalization of the uni-
versal enveloping algebras of Lie algebras, namely the enveloping algebras of Lie
prealgebras [21].

Throughout this paper K denotes a (commutative) field and all vector spaces,
algebras, etc. are over K. By an algebra without other specification we mean a unital
associative algebra with unit denoted by 1 whenever no confusion arises. By a graded
algebra we mean a N-graded algebraA = ⊕n≥0An . We use everywhere the Einstein
summation convention over the repeated up-down indices.

2 The AS-Gorenstein Property

In this section we describe our general framework and the AS-Gorenstein property
which is our version of the Poincaré duality.

2.1 Graded Algebras

We shall be concerned here with graded algebras A = ⊕n∈NAn of the form A =
T (E)/I where E is a finite-dimensional vector space and where I is a finitely gen-
erated graded ideal of the tensor algebra T (E) such that I = ⊕n≥2 In ⊂ ⊕n≥2 E⊗n

.
This class of graded algebras and the homomorphisms of degree 0 of graded algebras
define a category which will be denoted by GrAlg.

For such an algebra A = T (E)/I ∈ GrAlg choosing a basis (xλ)λ∈{1,...,d} of
E and a system of homogeneous independent generators ( fα)α∈{1,...,r} of I with

( fα) ∈ E⊗Nα and Nα ≥ 2 for α ∈ {1, . . . , r}, one can also write

A = K〈x1, . . . , xd〉/( f1, . . . , fr )

where ( f1, . . . , fr ) is the ideal I generated by the fα . Define Mαλ ∈ E⊗Nα−1
by

setting fα = Mαλ ⊗ xλ ∈ E⊗Nα . Then the presentation of A by generators and
relations is equivalent to the exactness of the sequence of left A -modules

A r M→ A d x→ A
ε→ K → 0 (1)

where M means right multiplication by the matrix (Mαλ), x means right multipli-
cation by the column (xλ) and where ε is the projection onto A0 = K, [1]. In more
intrinsic notations the exact sequence (1) reads

A ⊗ R → A ⊗ E
m→ A

ε→ K → 0 (2)
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where R is the graded subspace of T (E) spanned by the fα (α ∈ {1, . . . , r}), m is
the product in A (remind that E = A1) and where the first arrow is as in (1).

When R is homogeneous of degree N (N ≥ 2), i.e. R ⊂ E⊗N
, then A is said

to be a N -homogeneous algebra: for N = 2 one speaks of a quadratic algebra, for
N = 3 one speaks of a cubic algebra, etc. The N -homogeneous algebras form a full
subcategory HNAlg of GrAlg.

2.2 Global Dimension

The exact sequence (2) of presentation of A can be extended as a minimal projective
resolution of the trivial left module K, i.e. as an exact sequence of left modules

· · · → Mn → · · · → M2 → M1 → M0 → K → 0

where the Mn are projective i.e. in this graded case free left-modules [13], which is
minimal ; one has M0 = A , M1 = A ⊗ E , M2 = A ⊗ R and more generally here
Mn = A ⊗ En where the En are finite-dimensional vector spaces. If such a minimal
resolution has finite length D < ∞, i.e. reads

0 → A ⊗ ED → · · · → A ⊗ E → A → K → 0 (3)

with ED ∪= 0, then D is an invariant called the left projective dimension of K and it
turns out that D which coincide with the right projective dimension of K is also the
sup of the lengths of the minimal projective resolutions of the left and of the right
A -modules [13] which is called the global dimension of A . Furthermore it was
recently shown [5] that this global dimension D also coincides with the Hochschild
dimension in homology as well as in cohomology. Thus for an algebra A ∈ GrAlg,
there is a unique notion of dimension from a homological point of view which is its
global dimension gΔ dim(A ) = D whenever it is finite.

2.3 Poincaré Duality Versus AS-Gorenstein Property

Let A ∈ GrAlg be of finite global dimension D. Then one has a minimal free
resolution

0 → MD → · · · → M0 → K → 0

with Mn = A ⊗ En , dim(En) < ∞ and E2 ↔ R, E1 ↔ E and E0 ↔ K. By applying
the functor HomA (•,A ) to the chain complex of free left A -module

0 → MD → · · · → M0 → 0 (4)
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one obtains the cochain complex

0 → M ′
0 → · · · → M ′

D → 0 (5)

of free right A -modules with M ′
n ↔ E∗

n ⊗ A where for any vector space F , one
denotes by F∗ its dual vector space.

The algebra A ∈ GrAlg is said to be AS-Gorenstein whenever one has

{
Hn(M ′) = 0, for n ∪= D
H D(M ′) = K

which reads ExtnA (K,A ) = δnD
K by definition (δnD = 0 for n ∪= D and δDD = 1).

This implies that for 0 ≤ n ≤ D one has

E∗
D−n ↔ En (6)

which is a version of the Poincaré duality interesting by itself as shown e.g. by
Proposition 1.4 of [6]. However as pointed out in [6] (see the counterexample there),
this version of the Poincaré duality is not equivalent to the AS-Gorenstein property
(which is the version adopted in these notes for the Poincaré duality property).

Notice that one has
ExtnA (K, K) ↔ E∗

n

which follows easily from the definitions. The direct sum E(A ) = ⊕nExtnA (K, K)

is a graded algebra, the Yoneda algebra of A . One has the following result.

Theorem 2.1 Assume that A ∈ GrAlg has finite global dimension. Then A is
AS-Gorenstein if and only if E(A ) is a Frobenius algebra.

This result which is a weak version of a result of [28] is a generalization of a result
of [10] which is itself a generalization of a result of [34].

The Yoneda algebra E(A ) is the cohomology of a graded differential algebra, so
in view of the homotopy transfer theorem [26] (see also in [27]), it has besides its ordi-
nary product m = m2, a sequence of higher order product mn : E(A )⊗n → E(A )

for n ≥ 3 which satisfy together with m2 the axioms of A∞-algebras (introduced in
[36]) with m1 = 0 .

It is only when it is endowed with its A∞-structure that one can recover the original
algebra A from E(A ). In some cases one has mn = 0 for n ≥ 3; this is in particular
the case when A is a quadratic Koszul algebra but then the Yoneda algebra E(A )

identifies with the Koszul dual A ! of A (see below).

3 Homogeneous Algebras

We review here some definitions and basic properties of homogeneous algebras,
[3, 8]. Throughout the following N denotes an integer with N ≥ 2.
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3.1 Koszul Duality

LetA ∈ HNAlg be a N -homogeneous algebra, that is as explained above, an algebra
of the form

A = A(E, R) = T (E)/(R)

where E is a finite-dimensional vector space, where R is a linear subspace of E⊗N

and where (R) denotes the two-sided ideal of the tensor algebra T (E) = ⊕n∈NE⊗n

of E generated by R. The algebra A = A(E, R) is a graded connected algebra
A = ⊕n∈NAn generated in degree 1 by E = A1.

To A = A(E, R) one associates another N -homogeneous algebra, its Koszul
dual N -homogeneous algebra A ! defined by [8]

A ! = A(E∗, R⊥)

where E∗ is the dual vector space of E and where R⊥ ⊂ (E∗)⊗N
denotes the

orthogonal of R

R⊥ = {ω ∈ (E∗)⊗N |ω(r) = 0, ∀r ∈ R}

with the identification (E∗)⊗N = (E⊗N
)∗ which is allowed in view of the finite-

dimensionality of E .
One has

(A !)! = A

so this is a duality in HNAlg which is above the usual duality of the finite-dimensional
vector spaces. It is straightforward that this duality defines a contravariant involutive
endofunctor of HNAlg. This is the direct generalization of the usual Koszul duality
of quadratic algebras (case N = 2) [29, 30].

3.2 The Koszul N-complex K (A )

Let A = A(E, R) be a N -homogeneous algebra with Koszul dual A ! = ⊕nA !
n .

Then the dual vector space A !∗
n of A !

n is given by

A !∗
n = E⊗n

for n < N and by
A !∗

n = ∩r+s=n−N E⊗r ⊗ R ⊗ E⊗s
(7)

for n ≥ N . Consider the sequence of homomorphisms of (free) left A -modules

· · · d→ A ⊗ A !∗
n+1

d→ A ⊗ A !∗
n

d→ · · · d→ A → 0 (8)
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where the homomorphism d : A ⊗A !∗
n+1 → A ⊗A !∗

n is induced by the homomor-

phism d : A ⊗ E⊗n+1 → A ⊗ E⊗n
defined by

d(a ⊗ (e0 ⊗ e1 ⊗ · · · ⊗ en)) = ae0 ⊗ (e1 ⊗ · · · ⊗ en) (9)

for a ∈ A , e0 ⊗ · · · ⊗ en ∈ E⊗n+1
and where ae0 is the product in A of a and e0.

In view of (7), one has A !∗
n ⊂ R ⊗ E⊗n−N

for n ≥ N which implies

d N = 0 (10)

so the sequence (8) is a chain N -complex of left A -modules which is referred to as
the Koszul N -complex of A and is denoted by K (A ).

By applying the functor HomA (•,A ) to (8) one obtains a cochain N -complex
of right A -module

0 → A
d∗→ E∗ ⊗ A

d∗→ · · · d∗→ A !
n ⊗ A

d∗→ A !
n+1 ⊗ A

d∗→ · · · (11)

where d∗ is the right multiplication by θλ ⊗ xλ where (xλ) is a basis of E with dual
basis (θλ). This N -complex of right A -module is denoted by L(A ).

3.3 The Koszul Complexes K (A ,K) and K (A ,A )

From a N -complex like K (A ) one obtains ordinary complexes called contractions
by starting at some place and applying alternatively arrows dk and d N−k (1 ≤ k <

N ). Remembering that, see (2), the presentation of the N -homogeneous algebra
A = A(E, R) by generators and relation is equivalent to the exactness of

A ⊗ R
d N−1→ A ⊗ E

d→ A
ε→ K → 0 (12)

it is natural to consider the particular contraction extending

· · · d N−1→ A ⊗ A !∗
N+1

d→ A ⊗ A !∗
N

d N−1→ A ⊗ E
d→ A → 0

this is a chain complex of free left A -modules which will be denoted by K (A , K)

and called the left A -module Koszul complex of A or simply the Koszul complex
of A . One has {

K2m(A , K) = A ⊗ A !∗
Nm

K2m+1(A , K) = A ⊗ A !∗
Nm+1

(13)
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the differential δ of K (A , K) is given by

{
δ = d : K2m+1(A , K) → K2m(A , K)

δ = d N−1 : K2(m+1)(A , K) → K2m+1(A , K)
(14)

and it turns out that this complex identifies canonically with the Koszul complex
introduced originally in [3]. Moreover this complex is the only contraction of the
Koszul N -complex K (A ) whose acyclicity in positive degrees does not lead to a
trivial algebra A as shown in [8].

In the case N = 2, i.e. when A is quadratic, one has of course K (A , K) =
K (A ).

By reversing the order of tensor product in Sequence (8), one obtains similarly
the N -complex K ′(A ) of free right A -modules

· · · d ′→ A !∗
n+1 ⊗ A

d ′→ A !∗
n ⊗ A

d ′→ · · · d ′→ A → 0 (15)

with an obvious definition of d ′.
On the sequence of bimodules (A ⊗A !∗

n ⊗A )n∈N, one has the two commuting
N -differentials d ⊗ IA and IA ⊗d ′ which will be simply denoted again by d and d ′.
Following [4] one defines the bimodule Koszul complex ofA denoted byK (A ,A )

to be the chain complex of free (A ,A )-bimodules (i.e. of free A ⊗A opp-modules)
defined by {

K2m(A ,A ) = A ⊗ A !∗
Nm ⊗ A

K2m+1(A ,A ) = A ⊗ A !∗
Nm+1 ⊗ A

(16)

with differential δ′ of K (A ,A ) defined by

{
δ′ = d − d ′ : K2m+1(A ,A ) → K2m(A ,A )

δ′ = ∑N−1
r=0 dr (d ′)N−r−1 : K2(m+1)(A ,A ) → K2m+1(A ,A )

(17)

the identity δ′2 = 0 following from 0 = d N − d ′N = (d − d ′)
∑N−1

r=0 dr (d ′)N−r−1.
Notice that the presentation of A by generators and relations is also equivalent

to the exactness of

A ⊗ R ⊗ A
δ′→ A ⊗ E ⊗ A

δ′→ A ⊗ A
m→ A → 0 (18)

where the last arrow m is the multiplication in A .
Finally, by applying the functor HomA (•,A ) to the chain complex of free left

A -modules K (A , K), one obtains the cochain complex of free right A -modules
K ∗(A , K) = L (A , K)

· · · δ∗→ L n(A , K)
δ∗→ L n+1(A , K)

δ∗→ · · · (19)
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which is of course a contraction of the N -complex L(A ).

3.4 N-Koszul Algebras

One has the following result [3].

Theorem 3.1 Let A be a N-homogeneous algebra. Then the following properties
(i) and (i i) are equivalent:

(i) The complex K (A , K) is acyclic in degrees ≥ 1,
(ii) The complex K (A ,A ) is acyclic in degrees ≥ 1.

When A is such that the above equivalent properties are satisfied, A is said to
be a N -Koszul algebra or simply a Koszul algebra.

In view of the exact sequences (12) and (18), if A is Koszul then

K (A , K)
ε→ K → 0 (20)

is a free resolution of the trivial left A -module K while

K (A ,A )
m→ A → 0 (21)

is a free resolution of the (A ,A )-bimodule A . These resolutions are minimal pro-
jective in the graded category.

This last point is important since if M is a bimodule on the Koszul algebra A
then the chain complex M ⊗A ⊗A opp K (A ,A ) computes the Hochschild homol-
ogy H•(A ,M ), (i.e. its homology is H•(A ,M )), while the cochain complex
HomA ⊗A opp (K (A ,A ),M ) computes the Hochschild cohomology H•(A ,M ),
(i.e. its cohomology is H•(A ,M )), in view of the interpretations of H•(A ,M ) as
TorA ⊗A opp

(M ,A ) and of H•(A ,M ) as Ext•A ⊗A opp (A ,M ). In particular when
A has finite global dimension D, these complexes are “small” of lenght D.

Warning. For N = 2, that is for A quadratic, it is easy to show that A is Koszul

(i.e. 2-Koszul) if and only if its Koszul dual A ! is Koszul. However for N ≥ 3, the
Koszul dual A ! of a N -Koszul algebra A is generally not N -Koszul.

3.5 The A∞-structure of E(A )

Let A be a N -Koszul algebra.
If N = 2, that is if A is quadratic, then E(A ) = A ! and there are no non trivial

higher order products in the A∞-structure of E(A ).
Let us assume now that N ≥ 3. In this case, the Yoneda algebra E(A ) can be

extracted from the Koszul dual A ! of A in the following manner as show in [10].
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One sets E(A ) = ⊕n∈NEn(A ) with

{
E2m(A ) = A !

Nm
E2m+1(A ) = A !

Nm+1
(22)

and the product m2 of E(A ) is defined in terms of the product (x, y) �→ xy ofA ! by

m2(x, y) = xy

if x or y is of even degree in E(A ) which means of degree multiple of N in A !,
and by

m2(x, y) = 0

otherwise. Concerning the A∞-structure of E(A ), the only nontrivial higher order
product is the product m N which is given by

m N (x1, . . . , xN ) = x1 . . . xN

if all the xk are of odd degrees in E(A ) and

m N (x1, . . . , xN ) = 0

otherwise [25]. As an A∞-algebra, E(A ) is generated in degree 1.

4 Twisted Potentials and Algebras

In this section we recall the construction of algebras associated to preregular multi-
linear forms or which is the same to twisted potentials. We consider only the homo-
geneous case here.

4.1 Multilinear Forms and Twisted Potentials

Let V be a vector space and let n ≥ 1 be a positive integer, then a (n + 1)-linear
form w on V is said to be preregular [18, 19] iff it satisfies the following conditions
(i) and (ii).

(i) If X ∈ V is such that w(X, X1, . . . , Xn) = 0 for any X1, . . . , Xn ∈ V , then
X = 0.
(ii) There is an element Qw ∈ GL(V ) such that one has

w(X0, . . . , Xn−1, Xn) = w(Qw Xn, X0, . . . , Xn−1)
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for any X0, . . . , Xn ∈ V .
It follows from (i) that Qw as in (ii) is unique. Property (i) when combined with

(ii) implies the stronger property (i’).
(i’) For any 0 ≤ k ≤ n, if X ∈ V is such that

w(X1, . . . , Xk, X, Xk+1, . . . , Xn) = 0

for any X1, . . . , Xn ∈ V , then X = 0.
Property (i’) will be referred to as 1-site nondegeneracy while (ii) will be referred

to as twisted cyclicity with twisting element Qw. Thus a preregular multilinear form
is a multilinear form which is 1-site nondegenerate and twisted cyclic.

Note that then, by applying n times the relations of (ii) one obtains the invariance
of w by Qw that is

w(X0, . . . , Xn) = w(Qw X0, . . . , Qw Xn)

for any X0, . . . , Xn ∈ V .
Let w be an arbitrary Q-invariant m-linear form on V (with Q ∈ GL(V )) then,

assuming m ∪= 0 in K, the m-linear form πQ(w) defined by

πQ(w)(X1, . . . , Xm) = 1

m

m∑
k=1

w(Q Xk, . . . , Q Xm, X1, . . . , Xk−1)

for any X1, . . . , Xm ∈ V is twisted cyclic with twisting element Q, (in short is
Q-cyclic).

Let E be a finite-dimensional vector space, then an element w of E⊗m
is the same

thing as a m-linear form on the dual E∗ of E . To make contact with the terminology
of [23] we will say that w is a twisted potential of degree m on E if the corresponding
m-linear form on E∗ is preregular.

4.2 Algebras Associated with Twisted Potentials

Let w ∈ E⊗m
be a twisted potential and let wλ1...,λm be its components in the basis

(xλ)λ∈{1,...,dim(E)} of E , i.e. one has w = wλ1...λm xλ1 ⊗ · · · ⊗ xλm . Let (θλ) be the
dual basis of (xλ), the corresponding preregular multilinear form on E∗ is given
by w(θλ1 , . . . , θλm ) = wλ1...λm and we denote by Qw the twisting element. One has
Qw ∈ GL(E∗) and Qt

w ∈ GL(E) where Q �→ Qt denotes the transposition.
Assume that m is such that m ≥ 2 and let N be an integer such that m ≥ N ≥ 2.

One defines the N -homogeneous algebra A = A (w, N ) to be the graded algebra
generated in degree 1 by the elements xλ with relations

wλ1...λm−N μ1...μN xμ1 . . . xμN = 0 (23)



Poincaré Duality for Koszul Algebras 13

for λk ∈ {1, . . . , dim(E)}, 1 ≤ k ≤ m − N . In other words

A = A(E, RwN ) = T (E)/(RwN )

where RwN is the subspace of E⊗N
generated by the elements

wλ1...λm−N μ1...μN xμ1 ⊗ · · · ⊗ xμN

with λk ∈ {1, . . . , dim(E)}, 1 ≤ k ≤ m − N . The algebra A = A (w, N ) will be
refered to as the N -homogeneous algebra associated with w. The relations of A are
given by “the (m − N )-th derivatives” of w. Notice that the twisted cyclicity of w,
or more precisely its preregularity, implies that the relations (23) of A = A (w, N )

read equivalently for any 1 ≤ p ≤ m − N as

wλp ···λm−N μ1...μN λ1...λp−1 xμ1 . . . xμN = 0

for λk ∈ {1, . . . , dim(E)}, 1 ≤ k ≤ m − N .
Let us define the subspaces Wn ⊂ E⊗n

for m ≥ n ≥ 0 by

{
Wn = E⊗n

for N − 1 ≥ n ≥ 0
Wn = ∑

(λ) Kwλ1...λm−nμ1...μn xμ1 ⊗ · · · ⊗ xμn for m ≥ n ≥ N
(24)

so one has in particular Wm = Kw, WN = RwN , W1 = E and W0 = K. The twisted
cyclicity of w and (7) imply the following result.

Theorem 4.1 The sequence

0 → A ⊗ Wm
d→ A ⊗ Wm−1

d→ · · · d→ A → 0 (25)

is a sub-N-complex W (A ) of the Koszul N-complex K (A ) of A .

4.3 The Complexes W (A ,K) and W (A ,A )

In the case N = 2, the sequence (25) is a complex which is a subcomplex of the
Koszul complex and, from the very definition (24), one has the isomorphisms of

vector spaces W ∗
m−n

↔→ Wn defined by

ζ̇ �→ ζ λ1...λm−n wλ1...λm−nμ1...μn xμ1 ⊗ . . . xμn

where ζ = ζ λ1...λm−n θλ1 ⊗· · ·⊗θλm−n is any element of E∗⊗m−n
which projects onto

ζ̇ ∈ W ∗
m−n .

In the case N ≥ 3, to obtain a similar situation, one has to “jump” over the
appropriate degrees as for the definition of the Koszul complex K (A , K) and to
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assume that m = N p + 1 for some integer p ≥ 1. One then define the complex
W (A , K) by setting {

W2k(A , K) = A ⊗ WNk

W2k+1(A , K) = A ⊗ WNk+1
(26)

so that one has Wn(A , K) ⊂ Kn(A , K).
One verifies that δWn+1(A , K) ⊂ Wn(A , K) and therefore W (A , K) is a subcom-
plex of the Koszul complex with

Wn(A , K) = A ⊗ WνN (n)

where νN (2k) = Nk and νN (2k + 1) = Nk + 1.
One observes then that the complex W (A , K) is of length 2p + 1 and that one

has the canonical isomorphisms of vector spaces

W ∗
νN (2p+1−n)

↔→ WνN (n) (27)

similar to the ones of the case N = 2.
Similarily one defines in the same conditions a subcomplex W (A ,A ) of the

bimodule Koszul complex K (A ,A ) by setting

Wn(A ,A ) = A ⊗ WνN (n) ⊗ A

and verifying that δ′Wn+1(A ,A ) ⊂ Wn(A ,A ).
Notice that in view of (27) these complexes satisfy a Poincaré duality condition

similar to the one corresponding to (6) for AS-Gorenstein algebras. Furthermore the
complex of free bimodules W (A ,A ) is self dual in an obvious sense, see [11] .

Finally by applying HomA (•,A ) toW (A , K), one obtains the cochain complex
of free right A -modules W ∗(A , K)

· · · δ∗→ W ∗
νN (n) ⊗ A

δ∗→ W ∗
νN (n+1) ⊗ A

δ∗→ · · ·

which is a subcomplex of L (A , K).
The self duality of W (A ,A ) corresponds precisely to the duality between

W (A , K) and W ∗(A , K).

4.4 Automorphisms σw of A ! and σw of A , Modular Property of
σw and Pre-Frobenius Structure of A !

Let A = A (w, N ) be as in Sect. 4.2 and let Qw ∈ GL(E∗) be the corresponding
twisting element of w, (E = A1). Then Qw induces an automorphism of degree 0 of
T (E∗)which preserves R⊥

wN ⊂ E∗⊗N
while Qt

w ∈ GL(E) induces an automorphism

http://dx.doi.org/10.1007/978-3-642-55361-5_4
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of degree 0 of T (E) which preserves RwN ⊂ E⊗N
. It follows that Qw induces an

automorphism σw of the graded algebra A ! while Qt
w induces an automorphism σw

of the graded algebra A .
One has w ∈ A !∗

m since W (A ) is a sub-N -complex of K (A ) and one defines a
linear form ωw on the algebra A ! by setting

ωw = w ◦ pm (28)

where pm : A ! → A !
m is the canonical projection onto the degree m component.

One has the following theorem [19].

Theorem 4.2 The linear form ωw and the automorphism σw are connected by

ωw(xy) = ωw(σw(y)x) (29)

for any x, y ∈ A !. The subset of A !

I = {y ∈ A !|ωw(xy) = 0, ∀x ∈ A !}

is a two-sided ideal of A ! and the quotient algebra F (w, N ) = A !/I endowed
with the linear form induced by ωw is a graded Frobenius algebra.

The relation (29) is just a reformulation of the preregularity of w, it reflects the mod-
ular property of σw with respect to ωw. One clearly has F (w, N ) = ⊕m

n=0Fn(w, N )

so F (w, N ) is finite-dimensional and the pairing induced by (x, y) �→ ωw(xy) is
nondegenerate by construction and is a Frobenius pairing on F (w, N ).

Let wA be the (A ,A )-bimodule which coincides with A as right A -module
but whose left A -module structure is given by the left multiplication by (−1)(m−1)n

(σw)−1(a) for a ∈ An . Thus wA is a twisted version of the bimodule A . For N = 2,
one has the following result [19].

Proposition 4.1 For N = 2, that is for A = A (w, 2), the element 1⊗w of A ⊗m+1

is canonically a nontrivial wA -valued Hochschild m-cycle on A .

In this proposition 1 ∈ A is interpreted as an element of wA . This proposition
for N = 2 gives the interpretation of 1 ⊗ w as a twisted volume element since for
Qw = (−1)m−1 it would represent an element of H Hm(A ).

4.5 N-Koszul AS-Gorenstein Algebras

For N -Koszul algebras of finite global dimension which are AS-Gorenstein one has
the following result [18, 19], see also in [12] for the case N = 2.

Theorem 4.3 Let A be a N-Koszul algebra of finite global dimension D which
is AS-Gorenstein. Then A = A (w, N ) for some twisted potential of degree m on
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E = A1. For N = 2 one has m = D while for N ≥ 3 one has m = N p + 1 and
D = 2p + 1 for some integer p ≥ 1.

Under the assumptions of this theorem, the N -complex W (A ) of Sect. 4.2 coin-
cides with the Koszul N -complex K (A ) which implies that the Koszul resolution
of the trivial left A -module K reads

0 → A ⊗ WνN (D)
δ→ · · · δ→ A ⊗ WνN (k)

δ→ · · · δ→ A
ε→ K → 0 (30)

with νN (2n) = Nn and νN (2n + 1) = Nn + 1 for n ∈ N and where δ is as in (14),
that is

W (A , K)
ε→ K → 0

with the notations of Sect. 4.2. One has

dim(WνN (k)) = dim(WνN (D−k)) for 0 ≤ k ≤ D

since as observed in Sect. 4.2, one has the isomorphisms W ∗
νN (D−k) ↔ WνN (k) for

0 ≤ k ≤ D. In particular WνN (D) = Kw so 1 ⊗ w is the generator of the top free
module of the Koszul resolution of K.

Remark Under the assumptions of Theorem 4.3 the Yoneda algebra E(A ) of A is a
Frobenius algebra in view of Theorem 2.1, (endowed with its ordinary product m2).
If N = 2, one has E(A ) = A ! and therefore E(A ) = F (w, 2), however for N ≥ 3
the Frobenius algebras E(A ) and F (w, N ) are completely different, (we use here
the notations of Theorem 4.2). Indeed in the case N ≥ 3, E(A ) is obtained from A !
by dropping terms of degrees ν with N p + 1 < ν < N (p + 1) with p ≥ 1, while
F (w, N ) is a quotient of A ! by a graded ideal (which vanishes in some cases such
as for the Yang-Mills algebra of [15] and some generalizations [16]).

As observed in [11], there is a sort of converse in the sense that the acyclicity in
degrees ≥ 1 ofW (A , K) or ofW (A ,A ) implies thatA is Koszul of global dimen-
sion D and is AS-Gorenstein. Thus Theorem 4.3 admits the following refinement.

Theorem 4.4 Let N , m and D be as in Theorem 4.3 that is either N = 2 with
D = m or N ≥ 3 with m = N p + 1 and D = 2p + 1 for some integer p ≥ 1.
Then the following conditions (i), (ii) and (iii) are equivalent for a N-homogeneous
algebra A :

(i) A is N-Koszul of finite global dimension D and is AS-Gorenstein (or twisted
Calabi-Yau),
(ii)A = A (w, N ) for some twisted potential w of degree m andW (A , K) is acyclic
in degrees ≥ 1,
(iii) A = A (w, N ) for some twisted potential w of degree m and W (A ,A ) is
acyclic in degrees ≥ 1.

Under these equivalent conditions one has W (A , K) = K (A , K) and W (A ,

A ) = K (A ,A ).

http://dx.doi.org/10.1007/978-3-642-55361-5_4
http://dx.doi.org/10.1007/978-3-642-55361-5_4
http://dx.doi.org/10.1007/978-3-642-55361-5_4
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In practice, the acyclicity condition for W (A , K) or W (A ,A ) is hard to verify
and implies very nontrivial nondegeneracy conditions for w. For instance, in the case
m = N +1 the condition W (A , K) = K (A , K) is equivalent to the condition of 3-
regularity as shown in [19] (Proposition 16) which is a subtle 2-sites nondegeneracy
condition.

It is worth noticing here that, as pointed out in [10], forA of global dimension D =
2 or D = 3 the AS-Gorenstein condition implies already that A is N -homogeneous
and N -Koszul with N = 2 for D = 2.

Notice also that “N -Koszul of finite global dimension and AS-Gorenstein” is
equivalent to “N -Koszul of finite global dimension and twisted Calabi-Yau” [11].
This is connected with the equivalence (ii) ⇔ (iii) of Theorem 4.4 together with the
self duality of W (A ,A ).

5 Nonhomogeneous Algebras

All the nonhomogeneous algebras considered in this article will be obtained by
starting with homogeneous relations, say N -homogeneous, and by adding second
members of lower degrees to the homogeneous relations. We always assume that
these algebras are finitely generated with a finite presentation. This means that such
an algebra A is of the form

A = T (E)/({r − ϕ(r)|r ∈ R}) (31)

where E is a finite-dimensional vector space, R is a linear subspace of E⊗N
(N ≥ 2)

and ϕ : R → ⊕N−1
n=0 E⊗n

is a linear mapping of R into the space of tensors of degrees
strictly smaller than N .

5.1 The Poincaré-Birkhoff-Witt Property

Let A be the nonhomogeneous algebra given by (31). Then A is not naturally graded
since its relations are not homogeneous but it inherits a filtration Fn(A) induced by
the natural filtration Fn(T (E)) = ⊕k≤n E⊗k

of the tensor algebra associated to its
graduation.

There are two natural graded algebras associated to A :

1. the graded algebra
gr(A) = ⊕n Fn(A)/Fn−1(A) (32)

refered to as the associated graded algebra to the filtered algebra A,
2. the N -homogeneous algebra

A = A(E, R) (33)
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obtained by switching in the relations of A the terms of degrees strictly smaller
than N ; A is refered to as the N -homogeneous part of A or simply as the
homogeneous part of A.

We use the convention that F p(A) = 0 whenever p < 0. One has a canonical
surjective homomorphism of graded algebra

can : A → gr(A) (34)

which maps linearly A1 = E onto F1(A)/F0(A) = E .

The nonhomogeneous algebra A is said to have the Poincaré-Birkhoff-Witt prop-
erty (PBW property) whenever the canonical homomorphism can is an isomorphism.
If A has the PBW property and if its homogeneous part is N -Koszul, then A is said
to be a nonhomogeneous Koszul algebra, [9]. One has the following result [22], see
also in [9] for a more general context.

Theorem 5.1 Let us decompose ϕ as ϕ = ∑N−1
n=0 ϕn with ϕn : R → E⊗n

and set
VN+1 = (R ⊗ E) ∩ (E ⊗ R). Assume that A has the PBW property then one has
the following relations

(a) (ϕN−1 ⊗ I − I ⊗ ϕN−1)(VN+1) ⊂ R,
(b) (ϕn(ϕN−1 ⊗ I − I ⊗ ϕN−1) + ϕn−1 ⊗ I − I ⊗ ϕn−1)(VN+1) = 0

for 1 ≤ n ≤ N − 1, and
(c) ϕ0(ϕN−1 ⊗ I − I ⊗ ϕN−1)(VN+1) = 0

where I is the identity mapping of E onto itself.

Conversely, if the homogeneous partA of A is N-Koszul and if the above relations
are satisfied then A has the PBW property.

The assumption that A is N -Koszul is natural but not completely optimal for
the converse in the above theorem. In any case, this theorem implies that A is a
nonhomogeneous Koszul algebra if and only if its homogeneous part A is N -Koszul
and the relations (i), (ii), (iii) of the theorem are satisfied.

Notice that one has VN+1 = A !∗
N+1, (see in Sect. 3.2).

Instructive examples (with N > 2) of nonhomogeneous Koszul algebras obtained
by application of Theorem 5.1 are given in [9] and in [7].

5.2 Nonhomogeneous Koszul Duality for N = 2

In the following, we shall be concerned only with the case N = 2 and we call
nonhomogeneous quadratic algebra an algebra of the form (31) with R ⊂ E ⊗ E
and ϕ : R → E ⊕ K (here, E⊗0

is identified with K).
LetA be a nonhomogeneous quadratic algebra with quadratic partA = A(E, R),

and let ϕ1 : R → E and ϕ0 : R → K be as in 5.1 the decomposition ϕ = ϕ1 + ϕ0.

http://dx.doi.org/10.1007/978-3-642-55361-5_3
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Consider the transposed ϕt
1 : E∗ → R∗ and ϕt

0 : K → R∗ of ϕ1 and ϕ0 and notice
that one has by definition ofA ! thatA !

1 = E∗,A !
2 = R∗ andA !

3 = (R⊗E∩E⊗R)∗,
so one can write (the minus sign is put here to match the usual conventions)

− ϕt
1 : A !

1 → A !
2 , −ϕt

0(1) = F ∈ A !
2 (35)

and one has the following result [32].

Theorem 5.2 Conditions (a), (b) and (c) of Theorem 5.1 are equivalent for N = 2
to the following conditions (a′), (b′) and (c′):

(a′) −ϕt
1 extends as an antiderivation δ of A !

(b′) δ2(x) = [F, x], ∀x ∈ A !
(c′) δ(F) = 0.

A graded algebra equipped with an antiderivation δ of degree 1 and an element
F of degree 2 satisfying the conditions (b′) and (c′) above is refered to as a curved
graded differential algebra [32].

Thus the correspondence A �→ (A !, δ, F) define a contravariant functor from
the category of nonhomogeneous quadratic algebras satisfying the conditions (a), (b)
and (c) of Theorem 5.1 (for N = 2) to the category of curved differential quadratic
algebras (with the obvious appropriate notions of morphism). One can summarize
the Koszul duality of [32] for non homogeneous quadratic algebras by the following.

Theorem 5.3 The above correspondence defines an anti-isomorphism between the
category of nonhomogeneous quadratic algebras satisfying Conditions (a), (b) and
(c) of Theorem 5.1 (for N = 2) and the category of curved differential quadratic
algebras which induces an anti-isomorphism between the category of nonhomoge-
neous quadratic Koszul algebras and the category of curved differential quadratic
Koszul algebras.

There are two important classes of nonhomogeneous quadratic algebras A sat-
isfying the conditions (a), (b) and (c) of Theorem 5.1. The first one corresponds to
the case ϕ0 = 0 which is equivalent to F = 0 while the second one corresponds
to ϕ1 = 0 which is equivalent to δ = 0. An algebra A of the first class is called
a quadratic-linear algebra [31] and corresponds to a differential quadratic algebra
(A !, δ) while an algebra A of the second class corresponds to a quadratic algebra
A ! equipped with a central element F of degree 2.

5.3 Examples

1. Universal enveloping algebras of Lie algebras. Let g be a finite-dimensional Lie
algebras then its universal enveloping algebra A = U (g) is Koszul quadratic-
linear. Indeed one has A = Sg which is a Koszul quadratic algebra of finite
global dimension D = dim(g) while the PBW property is here the classical
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PBW property of U (g). The corresponding differential quadratic algebra (A !, δ)
is (∧g∗, δ), i.e. the exterior algebra of the dual vector space g∗ of g endowed
with the Koszul differential δ. Notice that this latter differential algebra is the
basic building block to construct the Chevalley-Eilenberg cochain complexes.
Notice also that A = Sg is not only Koszul of finite global dimension but is also
AS-Gorenstein (Poincaré duality property).

2. Adjoining a unit element to an associative algebra. Let A be a finite-dimensional
associative algebra and let

A = Ã = T (A)/ ({x ⊗ y − xy, y ∈ A})

be the algebra obtained by adjoining a unit 1 to A ( Ã = K1⊕ A, etc.). This is again
a Koszul quadratic-linear algebra. Indeed the PBW property is here equivalent
to the associativity of A while the quadratic part is A = T (A∗)! which is again
K1 ⊕ A as vector space but with a vanishing product between the elements of
A and is a Koszul quadratic algebra. The corresponding differential quadratic
algebra (A !, δ) is (T (A∗), δ) where δ is the antiderivation extension of minus
the transposed mt : A∗ → A∗ ⊗ A∗ of the product m of A. Again (T+(A∗), δ) is
the basic building block to construct the Hochschild cochain complexes. Notice
however that A = T (A∗)! is not AS-Gorenstein (no Poincaré duality).

3. A deformed universal enveloping algebra. Let A be the algebra generated by the
3 elements ∇0,∇1,∇2 with relations

⎧⎨
⎩

μ2∇2∇0 − ∇0∇2 = μ∇1

μ4∇1∇0 − ∇0∇1 = μ2(1 + μ2)∇0

μ4∇2∇1 − ∇1∇2 = μ2(1 + μ2)∇2.

(36)

This is again a Koszul quadratic-linear algebra with homogeneous part A which
is Koszul of global dimension D = 3 [24, 37] and is AS-Gorenstein. The cor-
responding differential quadratic algebra (A !, δ) is the algebra A ! generated by
ω0, ω1, ω2 with quadratic relations

⎧⎪⎪⎨
⎪⎪⎩

ω2
0 = 0, ω2

1 = 0, ω2
2 = 0

ω2ω0 + μ2ω0ω2 = 0
ω1ω0 + μ4ω0ω1 = 0
ω2ω1 + μ4ω1ω2 = 0

(37)

endowed with the differential δ given by

⎧⎨
⎩

δω0 + μ2(1 + μ2)ω0ω1 = 0
δω1 + μω0ω2 = 0
δω2 + μ2(1 + μ2)ω1ω2 = 0

(38)

which corresponds to the left covariant differential calculus on the twisted SU (2)

group of [38].
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4. Canonical commutation relations algebra. Let E = K
2n with basis (qλ, pμ),

λ,μ ∈ {1, . . . , n} and let i∅ ∈ K with ih ∪= 0. Consider the nonhomogeneous
quadratic algebra A generated by the qλ, pμ with relations

qλqμ − qμqλ = 0, pλ pμ − pμ pλ = 0, qλ pμ − pμqλ = i∅δλ
μ1

for λ,μ ∈ {1, . . . , n}. The quadratic part of A is the symmetric algebra A = SE
which is Koszul of global dimension D = 2n. One has ϕ1 = 0 and ϕ0 is such
that its transposed ϕt

0 is given by

−ϕt
0(1) = F = −(i∅)−1q∗

λ ∧ pλ∗

which is central in A ! = ∧(E∗) where (q∗
λ, pμ∗) is the dual basis of (qλ, pμ).

This implies that A has the PBW property and therefore is Koszul.
5. Clifford algebra (C.A.R. algebra). Let E = K

n with canonical basis (γλ),
λ ∈ {1, . . . , n} and consider the nonhomogeneous quadratic algebra A = C(n)

generated by the elements γλ, λ ∈ {1, . . . , n} with relations

γμγν + γνγμ = 2δμν1

forμ, ν ∈ {1, . . . , n}. The quadratic part ofA is then the exterior algebraA = ∧E
which is Koszul. One has again ϕ1 = 0 and ϕt

0 is given by

−ϕt
0(1) = F = −1

2

∑
γ λ∗ ∨ γ λ∗

which is a central element of A ! = SE∗ (which is commutative). It again follows
that A is Koszul (i.e. PBW + A Koszul).

6. Remarks on the generic case. LetA be a (homogeneous) quadratic algebra which
is Koszul. In general (for generic A ) any nonhomogeneous quadratic algebra A
which has A as quadratic part and has the PBW property is such that one has
both ϕ1 ∪= 0 and ϕ0 ∪= 0 or is trivial in the sense that it coincides with A , i.e.
ϕ1 = 0 and ϕ0 = 0. This is the case for instance when A is the 4-dimensional
Sklyanin algebra [14, 17, 33, 35] for generic values of its parameters [2].
Thus, Examples 1, 2, 3, 4, 5 above are rather particular from this point of view.
However the next section will be devoted to a generalization of Lie algebra which
has been introduced in [21] and which involves quadratic-linear algebras, i.e. for
which ϕ0 = 0.
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6 A Generalization of Lie Algebras

6.1 Prealgebras

By a (finite-dimensional) prealgebra we here mean a triple (E, R, ϕ) where E is
a finite-dimensional vector space, R ⊂ E ⊗ E is a linear subspace of E ⊗ E and
ϕ : R → E is a linear mapping of R into E . Given a supplementary R′ to R in E ⊗ E ,
R ⊕ R′ = E ⊗ E , the corresponding projector P of E ⊗ E onto R allows to define
a bilinear product ϕ ◦ P : E ⊗ E → E , i.e. a structure of algebra on E . The point
is that there is generally no natural supplementary of R. Exception are R = E ⊗ E
of course and R = ∧2 E ⊂ E ⊗ E for which there is the canonical GL(E)-invariant
supplementary R′ = S2 E ⊂ E ⊗ E which leads to an antisymmetric product on E ,
(e.g. case of the Lie algebras).

Given a prealgebra (E, R, ϕ), there are two natural associated algebras :

1. The nonhomogeneous quadratic algebra

AE = T (E)/({r − ϕ(r) | r ∈ R})

which will be called its enveloping algebra.
2. The quadratic part AE of AE

AE = T (E)/(R),

where the prealgebra (E, R, ϕ) is also simply denoted by E when no confusion
arises.

The enveloping algebra AE is a filtered algebras as explained before but it is also
an augmented algebra with augmentation

ε : AE → K

induced by the canonical projection of T (E) onto T 0(E) = K. One has the surjective
homomorphism

can : AE → gr(AE )

of graded algebras.
In the following we shall be mainly interested on prealgebras such that their

enveloping algebras are quadratic-linear. If (E, R, ϕ) is such a prealgebra, to AE

corresponds the differential quadratic algebra (A !
E , δ) (as in Sect. 5) where δ is the

antiderivation extension of minus the transposed ϕt of ϕ.
Notice that if AE has the PBW property one has

E = F1(AE ) ∩ Ker(ε)
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so that the canonical mapping of the prealgebra E into its enveloping algebra AE is
then an injection.

6.2 Lie Prealgebras

A prealgebra (E, R, ϕ) will be called a Lie prealgebra [21] if the following conditions
(1) and (2) are satisfied :

(1) The quadratic algebra AE = A(E, R) is Koszul of finite global dimension and
is AS-Gorenstein (Poincaré duality).

(2) The enveloping algebra AE has the PBW property.

If E = (E, R, ϕ) is a Lie prealgebra then AE is a Koszul quadratic linear algebra,
so to (E, R, ϕ) one can associate the differential quadratic algebra (A !

E , δ) and one
has the following theorem [21]:

Theorem 6.1 The correspondence (E, R, ϕ) �→ (A !
E , δ) defines an anti-isomor-

phism between the category of Lie prealgebra and the category of differential
quadratic Koszul Frobenius algebras.

This is a direct consequence of Theorem 5.3 and of the Koszul Gorenstein property
of AE by using [34].

Let us remind that a Frobenius algebra is a finite-dimensional algebra A such
that as left A -modules A and its vector space dual A ∗ are isomorphic (the left
A -module structure of A ∗ being induced by the right A -module structure of A ).
Concerning the graded connected case one has the following classical useful result.

Proposition 6.1 LetA = ⊕m≥0Am be a finite-dimensional graded connected alge-
bra with AD ∪= 0 and An = 0 for n > D. Then the following conditions (i) and (ii)
are equivalent:

(i) A is Frobenius,
(ii) dim(AD) = 1 and (x, y) �→ (xy)D is nondegenerate, where (z)D denotes the
component on AD of z ∈ A .

6.3 Some Representative Cases

1. Lie algebras. It is clear that a Lie algebrag is canonically a Lie prealgebra (g, R, ϕ)

with R = ∧2g ⊂ g ⊗ g, ϕ = [•, •], Ag = U (g) and Ag = Sg, (see Example 1
in Sect. 5.3).

2. Associative algebras are not Lie prealgebras. An associative algebra A is clearly
a prealgebra (A, A ⊗ A, m) with enveloping algebra AA = Ã as in Example 2 of
Sect. 5.3 but AA = T (A∗)! = K1⊕ A is not AS-Gorenstein although it is Koszul

http://dx.doi.org/10.1007/978-3-642-55361-5_5
http://dx.doi.org/10.1007/978-3-642-55361-5_5
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as well as AA = Ã, (see the discussion of Example 2 in Sect. 5.3). The missing
item is here the Poincaré duality.

3. A deformed version of Lie algebras. The algebra A of Example 3 of Sect. 5.3 is
the enveloping algebra of a Lie prealgebra (E, R, ϕ) with E = K

3, R ⊂ E ⊗ E
generated by
r1 = μ2∇2 ⊗ ∇0 − ∇0 ⊗ ∇2
r0 = μ4∇1 ⊗ ∇0 − ∇0 ⊗ ∇1
r2 = μ4∇2 ⊗ ∇1 − ∇1 ⊗ ∇2
and ϕ given by

ϕ(r1) = μ∇1, ϕ(r0) = μ2(1 + μ2)∇0, ϕ(r2) = μ2(1 + μ2)∇2

where (∇0,∇1,∇2) is the canonical basis of E .
4. Differential calculi on quantum groups. More generally most differential calculi

on the quantum groups can be obtained via the duality of Theorem 6 from Lie
prealgebras. In fact the Frobenius property is generally straightforward to verify,
what is less obvious to prove is the Koszul property.

6.4 Generalized Chevalley-Eilenberg Complexes

Throughout this section, E = (E, R, ϕ) is a fixed Lie prealgebra, its enveloping
algebra is simply denoted by A with quadratic part denoted by A and the associated
differential quadratic Koszul Frobenius algebra is (A !, δ).

A left representation of the Lie prealgebra E = (E, R, ϕ) is a left A-module. Let
V be a left representation of E = (E, R, ϕ), let (xλ) be a basis of E with dual basis
(θλ) of E∗ = A !

1 . One has

xμxνΦ ⊗ θμθν + xλΦ ⊗ δθλ = 0

for any Φ ∈ V . This implies that one defines a differential of degree 1 on V ⊗ A !
by setting

δV (Φ ⊗ α) = xλΦ ⊗ θλα + Φ ⊗ δα

so (V ⊗ A !, δV ) is a cochain complex. These cochain complexes generalize the
Chevalley-Eilenberg cochain complexes. Given a right representation of E , that is
a right A-module W , one defines similarily the chain complex (W ⊗ A !∗, δW ),
remembering that A !∗ is a graded coalgebra.

One has the isomorphisms

{
H•(V ⊗ A !) ↔ Ext•A(K, V )

H•(W ⊗ A !∗) ↔ TorA• (W, K)

http://dx.doi.org/10.1007/978-3-642-55361-5_5
http://dx.doi.org/10.1007/978-3-642-55361-5_5


Poincaré Duality for Koszul Algebras 25

which implies that one has the same relation with the Hochschild cohomology and
the Hochschild homology of A as the relation of the (co-)homology of a Lie algebra
with the Hochschild (co-)homology of its universal enveloping algebra.

7 Conclusion

In these notes, we have only considered algebras which are quotient of tensor algebras
of finite-dimensional vector spaces. One can extend the results described here in
much more general frameworks. For instance in [11] the results of [19] concerning
the homogeneous case have been extended to the quiver case. An even more general
framework has been adopted in [9] for the nonhomogeneous Koszul algebras. Namely
the algebras considered in [9] are quotient of tensor algebras of bimodules over von
Neumann regular rings. This latter context seems quite optimal.

Acknowledgments It is a pleasure to thank Roland Berger for his kind advices.
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Quantized Reduced Fusion Elements
and Kostant’s Problem

Eugene Karolinsky, Alexander Stolin and Vitaly Tarasov

Abstract Wefind a partial solution to the problemofKostant concerning description
of the locally finite endomorphisms of highest weight irreducible modules. The solu-
tion is obtained bymeans of its reduction to an extension of the quantization problem.
While the classical quantization problem consists in finding λ-product deformations
of the commutative algebras of functions, we consider the q-case when the initial
object is already a noncommutative algebra.

1 Introduction

Let Ǔqg be the quantized universal enveloping algebra “of simply connected type”
[8] that corresponds to a finite dimensional split semisimple Lie algebra g. Let L(α)

be the irreducible highest weight Ǔqg-module of highest weight α. The aim of this
paper is to show that for certain values of α, the action map Ǔqg ⊕ (

End L(α)
)
fin

is surjective. Here (End L(α)
)
fin stands for the locally finite part of End L(α) with

respect to the adjoint action of Ǔqg. For the Lie-algebraic case (q = 1), this problem
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is known as the classical Kostant’s problem, see [6, 7, 12, 15, 16]. The complete
answer to it is still unknown even in the q = 1 case. However, there are examples of
α for which the action map U (g) ⊕ (

End L(α)
)
fin is not surjective. Such examples

exist even in the case g is of type A [17].
The main idea of our approach to Kostant’s problem, both in the Lie-algebraic

and quantum group cases, is that
(
End L(α)

)
fin has two other presentations. First,

it follows from the results of [11] that
(
End L(α)

)
fin is canonically isomorphic to

HomU
(
L(α), L(α) ≥ F

)
, where U is U (g) (resp. Ǔqg), and F is the algebra of

(quantized) regular functions on the connected simply connected algebraic group G
corresponding to the Lie algebra g. In other words, F is spanned by matrix elements
of finite dimensional representations of U with an appropriate multiplication.

One more presentation of the algebra
(
End L(α)

)
fin comes from the fact that

HomU
(
L(α), L(α) ≥ F

)
is isomorphic as a vector space to a certain subspace F ∈ of

F . The subspace F ∈ can be equipped with a λ-multiplication obtained from themulti-
plication on F by applying the so-called reduced fusion element. Then

(
End L(α)

)
fin

is isomorphic as an algebra to F ∈ with this new multiplication. For certain values of
α, the same λ-multiplication on F ∈ can be defined by applying the universal fusion
element, that yields the affirmative answer to Kostant’s problem in such cases.

More exactly, consider the triangular decomposition U = U−U 0U+. We have
L(α) = M(α)/Kα1α, where M(α) is the corresponding Verma module, 1α is the
generator of M(α), and Kα ⊂ U−. Consider also the opposite Vermamodule M̃(−α)

with the lowest weight −α and the lowest weight vector 1̃−α. Then its maximal
U -submodule is of the form K̃α ·̃1−α, where K̃α ⊂ U+.We have F ∈ = F[0]Kα+K̃α—
the subspace of U 0-invariant elements of F annihilated by both Kα and K̃α. The
λ-product on F[0]Kα+K̃α has the form

f1 λα f2 = μ
(

J red(α)( f1 ≥ f2)
)

,

where μ is the multiplication on F , and the reduced fusion element J red(α) ⊗
U− ≥̂ U+ is computed in terms of the Shapovalov form on L(α). Notice that for
generic α the element J red(α) is equal up to an U 0-part to the fusion element J (α)

related to the Verma module M(α), see for example [4].
We also investigate limiting properties of J (α). In particular, for some values of

α0 we can guarantee that f1 λα f2 ⊕ f1 λα0 f2 as α ⊕ α0. Also, for any α0 having a
“regularity property” of this kind, the action map U ⊕ (End L(α0))fin is surjective.
This gives the affirmative answer to the (quantum version of) Kostant’s problem.

For some values of α, the subspace F[0]Kα+K̃α is a subalgebra of F[0], and can
be considered as (a flat deformation of) the algebra of regular functions on some
Poisson homogeneous space G/G1. In those cases, the algebra

(
F[0]Kα+K̃α , λα

)
is

an equivariant quantization of the Poisson algebra of regular functions on G/G1.
This paper is organized as follows. In Sect. 2 we recall the definition of the version

of quantized universal enveloping algebra used in this paper, and some related con-
structions that will be useful in the sequel. In Sect. 3 we construct an isomorphism
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HomU
(
L(α), L(α) ≥ F

) � F[0]Kα+K̃α and, as a corollary, provide a construction

of a star-product on F[0]Kα+K̃α in terms of the Shapovalov form on L(α). In Sect. 4
we study limiting properties of fusion elements and the corresponding star-products.
Namely, in Sect. 4.1 we introduce the notion of a J -regular weight. In a neighbor-
hood of a J -regular weight the fusion element behaves nicely, which allows one
to give a solution to the Kostant’s problem for such weights (see Theorem 4.1).
We also provide non-trivial examples of J -regular weights. Finally, in Sect. 4.2 we
apply limiting properties of fusion elements to quantize explicitly certain Poisson
homogeneous spaces (see Theorem 4.4).

In this short version of the paper the proofs are omitted. A complete version with
proofs will be published elsewhere.

2 Algebra Ǔqg

Let k be the field extension of C(q) by all fractional powers q1/n , n ⊗ N =
{1, 2, 3, . . .}. We use k as the ground field.

Let (ai j ) a finite type r × r Cartan matrix. Let di be relatively prime positive
integers such that di ai j = d j a ji . For any positive integer k, define

[k]i = qkdi − q−kdi

qdi − q−di
, [k]i ! = [1]i [2]i . . . [k]i .

The algebra U = Ǔqg is generated by the elements ti , t−1
i , ei , fi , i = 1, . . . , r ,

subject to the relations

ti t
−1
i = t−1

i ti = 1

ti e j t
−1
i = qdi εi j e j ,

ti f j t
−1
i = q−di εi j f j ,

ei f j − f j ei = εi j
ki − k−1

i

qdi − q−di
, where ki =

r∏
j=1

t
ai j
j ,

1−ai j∑
m=0

(−1)m

[m]i ! [1 − ai j − m]i !em
i e j e

1−ai j −m
i = 0 for i �= j,

1−ai j∑
m=0

(−1)m

[m]i ! [1 − ai j − m]i ! f m
i f j f

1−ai j −m
i = 0 for i �= j
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Notice that ki e j k
−1
i = qdi ai j e j , ki f j k

−1
i = q−di ai j f j .

The algebra U is a Hopf algebra with the comultiplication Δ, the counit δ, and
the antipode ω given by

Δ(ti ) = ti ≥ ti , δ(ti ) = 1, ω (ti ) = t−1
i

Δ(ei ) = ei ≥ 1 + ki ≥ ei , δ(ei ) = 0, ω (ei ) = −k−1
i ei

Δ( fi ) = fi ≥ k−1
i + 1 ≥ fi , δ( fi ) = 0, ω ( fi ) = − fi ki .

In what follows we will sometimes use the Sweedler notation for comultiplication.
LetU 0 be the subalgebra ofU generated by the elements t1, . . . , tr , t−1

1 , . . . , t−1
r .

Let U+ and U− be the subalgebras generated respectively by the elements e1, . . . ,
er and f1, . . . , fr . We have a triangular decompositionU = U−U 0U+. Denote by θ

the involutive automorphism of U given by θ(ei ) = − fi , θ( fi ) = −ei , θ(ti ) = t−1
i .

Notice that θ gives an algebra isomorphism U− ⊕ U+. Set π = ωθ , i.e., π is the
involutive antiautomorphismofU given byπ(ei ) = fi ki ,π( fi ) = k−1

i ei ,π(ti ) = ti .
Let (h,ζ,ζ→) be a realization of (ai j ) over Q, that is, h is (a rational form of)

a Cartan subalgebra of the corresponding semisimple Lie algebra, ζ = {ν1, . . . ,

νr } ⊂ h∞ the set of simple roots, ζ→ = {ν→
1 , . . . , ν→

r } ⊂ h the set of simple coroots.
Let R be the root system, R+ the set of positive roots, and W the Weyl group.

Let u1, . . . , ur ⊗ h be the simple coweights, i.e., ∪νi , u j ↔ = εi j . We denote by σ

the half sum of the positive roots.
Let

Q+ =
∑
ν⊗ζ

Z+ν.

For α,μ ⊗ h∞ we set α ≥ μ iff α − μ ⊗ Q+.
Denote by T the multiplicative subgroup generated by t1, . . . , tr . Any α ⊗ h∞

defines a character ϕ : T ⊕ k given by ti ∗⊕ qdi ∪α,ui ↔. We will write ϕ = qα.
Notice that qα(ki ) = qdi ∪α,ν→

i ↔. We extend qα to the subalgebra U 0 by linearity. We
say that an element x ⊗ U is of weight α if t xt−1 = qα(t)x for all t ⊗ T .

For a U -module V , we denote by

V [α] = {v ⊗ V | tv = qα(t)v for all t ⊗ T }

the weight subspace of weight α. We call the module V admissible if V is a direct
sum of finite-dimensional weight subspaces V [α].

The Verma module M(α) overU with highest weight α and highest weight vector
1α is defined in the standard way:

M(α) = U−1α, U+1α = 0, t1α = qα(t)1α, t ⊗ T .

The map U− ⊕ M(α), y ∗⊕ y1α is an isomorphism of U−-modules.
Set U±+ = Ker δ|U± and denote by x ∗⊕ (x)0 the projection U ⊕ U 0 along

U−+ · U + U · U++ . For any α ⊗ h∞ consider γα : U+ ≥ U− ⊕ k, γα(x ≥ y) =
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qα((ω (x)y)0), and Sα : U−≥U− ⊕ k, Sα(x ≥y) = γα(θ(x)≥y) = qα((π(x)y)0).
We call Sα the Shapovalov form on U− corresponding to α. We can regard Sα as a
bilinear form on M(α).

Set
Kα = {y ⊗ U− | γα(x ≥ y) = 0 for all x ⊗ U+},

K̃α = {x ⊗ U+ | γα(x ≥ y) = 0 for all y ⊗ U−}.

Clearly, Kα is the kernel of Sα, K̃α = θ(Kα). Notice that K (α) = Kα ·1α is the largest
proper submodule of M(α), and L(α) = M(α)/K (α) is the irreducible U -module
with highest weight α. Denote by 1α the image of 1α in L(α).

Let F = k[G]q be the quantized algebra of regular functions on a connected
simply connected algebraic group G that corresponds to the Cartan matrix (ai j ) (see
[8, 14]). We can consider F as a Hopf subalgebra in the dual Hopf algebra U λ. We
will use the left and right regular actions of U on F defined respectively by the
formulae (

−⊕a f )(x) = f (xa) and ( f ≤−a )(x) = f (ax). Notice that F is a sum of
finite-dimensional admissible U -modules with respect to both regular actions of U
(see [14]).

3 Star Products and Fusion Elements

3.1 Algebra of Intertwining Operators

Let us denote by Ufin ⊂ U the subalgebra of locally finite elements with respect to
the right adjoint action of U on itself. We will use similar notation for any (right)
U -module.

For any (left)U -module M we equip F with the left regularU -action and consider
the space HomU (M, M ≥ F). For any Φ,ψ ⊗ HomU (M, M ≥ F) define

Φ ∞ ψ = (id≥μ) ⊥ (Φ ≥ id) ⊥ ψ, (1)

where μ is the multiplication in F . We have Φ ∞ ψ ⊗ HomU (M, M ≥ F), and this
definition equips HomU (M, M ≥ F) with a unital associative algebra structure.

Consider the map Φ : HomU (M, M ≥ F) ⊕ End M , Φ ∗⊕ uΦ , defined
by uΦ(m) = (id≥δ)(Φ(m)); here δ( f ) = f (1) is the counit in F . Consider
Ufin, HomU (M, M ≥ F) and End M as right U -module algebras: Ufin via right
adjoint action, HomU (M, M ≥ F) via right regular action on F (i.e., (Φ · a)(m) =
(id≥≤−a )(Φ(m))), and End M in a standard way (i.e., u ·a = ∑

(a) ω (a(1))M ua(2)M ).
Then HomU (M, M ≥ F)fin = HomU (M, M ≥ F), andΦ : HomU (M, M ≥ F) −⊕
(End M)fin is an isomorphism of right U -module algebras (see [11, Proposition 6]).

Now we apply this to M = M(α) and M = L(α). Since Ufin ⊕ (End M(α))fin
is surjective (see [8, 9]), we have the following commutative diagram
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HomU (M(α), M(α) ≥ F)

ΦM(α)

��

�� HomU (L(α), L(α) ≥ F)

ΦL(α)

��
(End M(α))fin �� (End L(α))fin

(see [11, Proposition 9]).
For any Φ ⊗ HomU (L(α), L(α) ≥ F) the formula

Φ(1α) = 1α ≥ fΦ +
∑
μ<α

vμ ≥ fμ,

where vμ is of weight μ, defines a map

Θ : HomU (L(α), L(α) ≥ F) ⊕ F[0], Φ ∗⊕ fΦ.

Theorem 3.1 Θ is an embedding, and its image equals F[0]Kα+K̃α .

3.2 Reduced Fusion Elements

In this subsectionwe describeΘ−1 : F[0]Kα+K̃α ⊕ HomU (L(α), L(α)≥F) explic-
itly in terms of the Shapovalov form. Recall that we can regard Sα as a bilinear form
on M(α). Denote by Sα the corresponding bilinear form on L(α). For any β ⊗ Q+
denote by S

β

α the restriction of Sα to L(α)[α − β]. Let yi
β · 1α be an arbitrary basis

in L(α)[α − β], where yi
β ⊗ U−[−β].

Take f ⊗ F[0]Kα+K̃α and set Φ = Θ−1( f ),

Φ(1α) =
∑

β⊗Q+

∑
i

yi
β1α ≥ f β,i .

For β = 0 we have yi
β = 1 and f β,i = f .

Proposition 3.1 f β,i = ∑
j

(
S

β

α

)−1

i j

−−−−⊕
θ

(
y j
β

)
f .

For any α ⊗ h∞ consider

J red(α) =
∑

β⊗Q+

∑
i, j

(
S

β

α

)−1

i j
yi
β ≥ θ

(
y j
β

)
. (2)

One can regard J red(α) as an element in a certain completion of U− ≥ U+.
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Remark 3.1 This element J red(α) is not uniquely defined (e.g., becauseU− ⊕ L(α)

has a kernel), but this does not affect our further considerations.

Remark 3.2 For f ⊗ F[0]Kα+K̃α and Φ = Θ−1( f ) one has Φ(1α) = J red(α)(1α≥ f ).

Let us define an associative product λα on F[0]Kα+K̃α by means of Θ , i.e., for any
f1, f2 ⊗ F[0]Kα+K̃α we define f1 λα f2 = Θ(Φ1 ∞ Φ2), where Φ1 = Θ−1( f1),
Φ2 = Θ−1( f2), and ∞ is the product on HomU (L(α), L(α) ≥ F) given by (1). By
this definition, we get a right U -module algebra (F[0]Kα+K̃α , λα).

Theorem 3.2 We have

f1 λα f2 = μ

(−−−−⊕
J red(α)( f1 ≥ f2)

)
. (3)

Remark 3.3 Theorem 23 together with results of [11] implies that HomU (L(α),

L(α)≥ F), (End L(α))fin, and
(
F[0]Kα+K̃α , λα

)
are isomorphic as right Hopfmodule

algebras over U .

4 Limiting Properties of the Fusion Element

We say that α ⊗ h∞ is generic if ∪α + σ, β→↔ �⊗ N for all β ⊗ R+. In this case
L(α) = M(α), and we set J (α) = J red(α). Notice that J (α) up to a U 0-part equals
the fusion element related to the Verma module M(α) (see, e.g., [4]).

4.1 Regularity

Let α0 ⊗ h∞. Since J (α) is invariant w. r. to τ(θ ≥ θ) (where τ is the tensor per-
mutation), one can easily see that the following conditions on α0 are equivalent: 1)
for any U−-module M the family of operators J (α)M : M ≥ F[0]K̃α0 ⊕ M ≥ F
naturally defined by J (α) is regular at α = α0, 2) for any U+-module N the family
of operators J (α)N : F[0]Kα0 ≥ N ⊕ F ≥ N naturally defined by J (α) is regular
at α = α0. We will say that α0 is J-regular if these conditions are satisfied. Clearly,
any generic α0 is J -regular.

The following theorem collects some general properties of J -regular weights. In
particular, for J -regular weights the answer to Kostant’s question is affirmative.

Theorem 4.1 Assume that α0 ⊗ h∞ is J -regular. Then

(1) F[0]Kα0 = F[0]K̃α0 = F[0]Kα0+K̃α0 ,
(2) the natural map HomU (M(α0), M(α0) ≥ F) ⊕ HomU (L(α0), L(α0) ≥ F) is

surjective,
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(3) (Kostant’s problem) the action map Ufin ⊕ (End L(α0))fin is surjective,

(4) for any f, g ⊗ F[0]Kα0 we have
−−⊕
J (α)( f ≥ g) ⊕ −−−−−⊕

J red(α0)( f ≥ g) as α ⊕ α0,
(5) for any f, g ⊗ F[0]Kα0 we have f1 λα f2 ⊕ f1 λα0 f2 as α ⊕ α0.

The following two theorems provide examples of J -regular weights.

Theorem 4.2 Let ν ⊗ R+. Consider α0 ⊗ h∞ that satisfies ∪α0 + σ, ν→↔ ⊗ N,
∪α0 + σ, β→↔ �⊗ N for all β ⊗ R+ \ {ν}. Then α0 is J -regular.

Theorem 4.3 Let Γ ⊂ ζ . Consider α0 ⊗ h∞ that satisfies ∪α0 + σ, ν→
i ↔ ⊗ N for all

νi ⊗ Γ , ∪α0 + σ, β→↔ �⊗ N for all β ⊗ R+ \ SpanΓ . Then α0 is J -regular.

4.2 Application to Poisson Homogeneous Spaces

Let Γ ⊂ ζ . Assume that α ⊗ h∞ is such that ∪α, ν→↔ = 0 for all ν ⊗ Γ , and
∪α + σ, β→↔ �⊗ N for all β ⊗ R+ \ SpanΓ . By Theorem 4.3, α is J -regular. In
particular, F[0]Kα+K̃α = F[0]Kα .

In what follows it will be more convenient to write Fq , Jq , and Kq,α instead of
F , J , and Kα. We will also need the classical limits F1 = limq⊕1 Fq and K1,α =
limq⊕1 Kq,α. They can be defined in the same way as in ([8], Sects. 3.4.5 and 3.4.6).

Clearly, F1 is the algebra of regular functions on the connected simply connected
group G, whose Lie algebra is g. Let k be a reductive subalgebra of gwhich contains h
and is defined byΓ , K the corresponding subgroup of G, and F(G/K ) the algebra of
regular functions on the homogeneous space G/K . According to [11, Theorem 33],
we have F(G/K ) = F1[0]K1,α . Therefore we get

Proposition 4.1 limq⊕1 Fq [0]Kq,α = F(G/K ).

Furthermore, since Fq [0]Kq,α is a Hopf module algebra over U , G/K is a Poisson
homogeneous space over G equipped with the Poisson-Lie structure defined by the
Drinfeld-Jimbo classical r -matrix r0 = ∑

ν⊗R+ eν ∀ e−ν .
All such structures on G/K were described in [10]. It follows from [10] that any

such Poisson structure on G/K is uniquely determined by an an intermediate Levi
subalgebran satisfying k ⊂ n ⊂ g and someα ⊗ h∞ which satisfies certain conditions,
in particular, ∪α, ν→↔ = 0 for ν ⊗ Γ and ∪α, β→↔ �⊗ Z for β ⊗ SpanΓn \ SpanΓ .
Here Γn is the set of simple roots defining n.

Now we can describe the Poisson bracket on G/K defined by λα-multiplication
on Fq [0]Kq,α .

Theorem 4.4 Assume that ∪α0, ν→↔ = 0 for ν ⊗ Γ and ∪α0, β→↔ �⊗ Z for β ⊗
R+ \SpanΓ . Then the classical limit of (Fq [0]Kq,α0 , λα0) is the algebra F(G/K ) of
regular functions on G/K equipped with the Poisson homogeneous structure defined
by n = g and α0.
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Notice that an analogous result for simple Lie algebras of classical type was
obtained in [18] using reflection equation algebras.

Proposition 4.1 and Theorem 4.4 suggest a conjecture which we formulate below.
Let G be a connected Poisson affine algebraic group, g the corresponding Lie

bialgebra with the co-bracket ε, X a Poisson homogeneous G-variety, Y an affine
Zariski open dense subset of X . Consider the Poisson algebra F(Y ) of regular func-
tions on Y . Let Uqg be a quantized universal enveloping algebra corresponding
to g.

Conjecture 4.1 There exists a Hopf module algebra over Uqg whose classical limit
is F(Y ).

Let us show another example which confirms this conjecture. Consider the
case X = G. Let D(g) be the classical double of g. According to [2], Poisson
G-homogeneous structures on G are in one-to-one correspondence with Largangian
subalgebras of D(g) transversal to g ⊂ D(g). Consider such a Lagrangian subalge-
bra l ⊂ D(g), which corresponds to a certain Poisson G-homogeneous structure on
G. It is well known [1] that l also induces a new Poisson-Lie structure on G, which
differs from the original one by a so-called classical twist. Hence we obtain a new
Lie bialgebra structure ε1 on the Lie algebra g.

The following conjecture was made in [12] and later published in [13].

Conjecture 4.2 There exists an element T in a certain completion of (Uqg)
≥2 which

satisfies
T 12(Δ ≥ id)(T ) = T 23(id≥Δ)(T ) (4)

and (δ ≥ id)(T ) = (id≥δ)(T ) = 1 such that the Hopf algebra Uq,T g quantizes
(g, ε1). Here Uq,T g and Uqg are isomorphic as algebras, and the co-multiplication
on Uq,T g is given by ΔT (a) = T Δ(a)T −1.

This conjecture was proved in [3, 5].
Now let Fq(G) be the restricted dual of Uqg. It is well known that Fq(G)

quantizes F(G). Let us equip Fq(G) with a new product defined by f1 λT f2 =
μ

(−⊕
T ( f1 ≥ f2)

)
. According to (4), λT is associative. Hence we get

Corollary 4.1 The algebra (Fq(G), λT ) is a Hopf module algebra over Uqg which
quantizes the Poisson homogeneous structure on G defined by l.
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Commutants and Centers in a 6-Parameter
Family of Quadratically Linked Quantum
Plane Algebras

Fredrik Ekström and Sergei D. Silvestrov

Abstract We consider a family of associative algebras, defined as the quotient of a
free algebra with the ideal generated by a set of multi-parameter deformed commu-
tation relations between four generators consisting of five quantum plane relations
between pairs of generators and one sub-quadratic relation inter-linking all four gen-
erators. For generic parameter vectors, the center and the commutants of the two of
the generators are described and conditions on the parameters for these commutants
to be itself commutative or non-commutative are obtained.

1 Introduction

Commuting elements in non-commutative algebra are important for representation
theory, classifications, interplaywith harmonic analysis and spectral theory, topology
and algebraic geometry, operator algebras and applications in Physics and Engineer-
ing. For example, commutants or centralisers, maximal commutative subalgebras
of crossed product C⊕-algebras and von Neumann algebras play a central role in
investigation of representations, classifications and in structure of state space [1–6].
In particular, maximal commutative subalgebras are essential objects for the famous
Kadison-Singer conjecture stated in apioneering1959—paper byKadison andSinger
[7], equivalent to the paving conjecture [8, 9] and several conjectures important
for wavelets and frames analysis and applications in signal and image processing,
one of them the well-known Feichtinger conjecture [10] in frame theory. For the
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key role of maximal commutative subalgebras for establishing interplay between
Kadison-Singer conjecture, properties of projections, topological dynamical sys-
tems and compactifications of topological spaces see for example [11]. Commutants
and maximal commutative subalgebras in generalized crossed product algebras aris-
ing from non-invertible dynamics and actions are used in the important ways in the
general operator and spectral theory approach to wavelets analysis and investigation
of wavelets on fractals [12–16]. The description of commuting elements and of cor-
responding commuting operators in the representing operator algebra, or in other
words the problem of explicit description of commutative subalgebras is important
in description and classifications of operator representations and applications of non-
commutative algebras [17–27]. The commuting operators and commuting elements
in rings and algebras also are important in study of integrable systems and non-linear
equations. Further discussions in connection to this topic and numerous references
can be found for instance in the book [28] devoted to commuting elements in the
algebra defined by the q-deformed Heisenberg relations (see also [29, 30]).

The centers and commutants of elements or subsets in non-commutative algebras
are fundamentally important subsets of an algebra or a ring in this context (see for
example [31–39] and references therein). The center consists of elements commut-
ing with all elements in the algebra, is the intersection of the commutants of all
elements in the algebra and so is always a commutative subalgebra. The commutants
of elements or subsets of elements in an associative algebra are subalgebras which
contain the center of the whole algebra as its subalgebra, but may be commutative
or may be not depending on the structure of the algebra and the subset for which the
commutant is considered.

In this article we consider the centers and commutants for an interesting multi-
parameter family of associative algebras generated by four generators and six sub-
quadratic relations involving six deformation parameters. The five of these relations
are the famous quantum plane relations playing important role in quantum groups,
q-calculus and quantum mechanics, operator algebras and non-commutative geom-
etry (rotation algebras, non-commutative tori, etc.). The sixth relation is intercon-
necting the four generators by a special q-deformed quadratic relation expressing
the sum of two generators as q-commutator of the other two of the generators:


⎧

AB − q0BA = S + T (a)

AT − q1TA = 0 (b)

BS − q2SB = 0 (c)
AS − q3SA = 0 (d)

BT − q4TB = 0 (e)
ST − q5TS = 0 ( f )

(1)

where q = (q0, q1, q2, q3, q4, q5) ≥ C
6.

All of (1b)–(1f) are of the type XY − qYX = 0, which is the so called quan-
tum plane relation studied in non-commutative geometry. Equation (1a) resembles
the Sylvester equation AX−X B = C and the Lyapunov equation AX + X A⊕ =
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−Q, both of which are encountered in control theory. Specializing S = λI and
T = (1 − λ)I (where I denotes the multiplicative identity) and q1, . . . , q5 = 1, the
relations (1b)–(1f) become trivial and (1a) becomes AB−q0BA = I . This is a gener-
alization of the Heisenberg canonical commutation (q0 = 1) and anti-commutation
(q0 = −1) relations, which are used in quantum mechanics to describe systems with
one degree of freedom. More on the algebras defined by q-deformed Heisenberg
relations (called also q-Weil relations) and commuting elements in such algebras
can be found in the monograph [28] and references there.

It is a well known interesting issue whether it is possible to realize a given family
of commutation relations in one or another way using matrices or differential opera-
tors or other types of linear operators, or any objects for which (1) makes sense, for
example elements of some associative algebra. When the realization by the operators
of a specific type is possible, further description and classifications of the represen-
tations of the relations by the operators of such type arise and often becomes a
problem of great interest. It often requires insights both in the algebraic structure
of the commutation relations and in the properties of the involved classes of oper-
ators. In algebraic contexts it often leads to interesting combinatorial identities and
problems, while in the context of ⊕-representations (involutive representations) and
operator algebras it involves also spectral theory of possibly unbounded operators in
the finite-dimensional or infinite-dimensional spaces.

The relations (1) provide an interesting example in this respect. For a first taste
of what can happen in (1a)–(1c) when A, B, S, T are complex (n × n)-matrices,
consider the case when A and B are hermitian and q0 lies on the unit circle. Note
that ∈X∈2F = tr(X⊕ X) defines a norm ∈X∈F onCn×n (this is the so called Frobenius
norm). Since A, B are hermitian andq0q⊕

0 = 1, (AB−q0B A)⊕ = −q⊕
0 (AB−q0B A),

and thus

∈AB − q0B A∈2F = −q⊕
0 tr((AB − q0B A)2) = −q⊕

0 tr((AB − q0B A)(S + T ))

= −q⊕
0 (tr(ABS) + tr(ABT ) − q0 tr(B AS) − q0 tr(B AT )) .

Using (1b,c) and the fact that tr(XY Z) = tr(Z XY ) for all (n × n)-matrices X, Y, Z ,
this implies that

∈AB − q0B A∈2F = −q⊕
0 ((q2 − q0) tr(ASB) + (1 − q0q1) tr(BT A)).

Thus, if q2 = q0 and q0q1 = 1, A, B must satisfy AB − q0B A = 0, and S, T must
satisfy S = −T . In particular, if q0 = q1 = q2 = 1, A and B must commute. It is
not difficult to see that for many other conditions on the parameters this argument
breaks down. This could be interpreted as an indication that the algebraic structures
defined by these relations and their representations might have rich dependence on
the interplay between the values of the six deformation parameters.

In this article, we provide further indication of richness of the structure of this
family of algebras depending on the values of the deformation parameters, by con-
sidering some important properties of the algebra with generators and relations (1),
especially focussing on centers and commutants. As these algebras are defined as the
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quotient algebraF/J (q) of a free algebra on six generators by the ideal associated
to the commutation relations (1), in order to be able to compute in this algebra it is
particularly important to be able to decide the equality of the elements in the algebra,
since using the relations (1), the same element can be expressed in many ways, and
it is not obvious whether or not two given expressions are equal. To handle this,
one needs a normal form for elements in F/J (q), which for the relations of the
type (1) amounts to finding a basis forF/J (q) for various choices of parameters.
In Sect. 2, we indicate that relations are more subtle than it may seem on the first
sight as there are more relations than generators, and for many values of parameters
these relations imply some further much more special relations between generators
bringing significant restrictions on the size or the structure of the bases and thus on
various further properties and computations in the algebra. Finding in a systematic
way bases for the algebras for various choices of parameters becomes an elaborate
task requiring non-trivial use of the Bergman’s diamond lemma and relations (1) as
well as some symmetries of the relations and their consequences for case reductions
of various subtle parameter subsets. It appears in the course of this analysis, that
the basis takes a somewhat simpler form for a large subset of parameters given by a
system of certain inequalities. This set of “generic” parameters, as we call it, and the
bases yield useful grading structures, used in Sect. 3 to describe the commutants of
the main generators A and B by describing the spanning sets. In Sect. 4, the results
from the preceding sections combined with further computations are used to describe
explicitly the center by providing its basis depending on the deformation parameters.
While the center of an algebra is always a commutative subalgebra, as an intersec-
tion of commutants of all elements of the algebra, the commutants of elements or
non-trivial subsets of a non-commutative algebra are subalgebras which are not nec-
essarily themselves commutative. For some classes of algebras it is possible to prove
that commutants of the elements are commutative. Investigating whether this is a
case and finding examples and counterexamples for such commutativity property
for a particular family of algebras defined by generators and specific relations is an
important problem which is often highly non-trivial, especially so when the defining
relations are dependent on parameters. In Sect. 5, we provide necessary and sufficient
conditions on q within the set of “generic” parameters, for C (A) and C (B) to be
commutative, thus also providing necessary and sufficient conditions on “generic”
parameters for when these commutants are not-commutative. The results of these
paper suggest that the description and further in-depth analysis of the structure of
the commutants of these and other elements and subsets for the family of algebras
considered in this paper both for “generic” as well as for non-generic parameters is
an interesting and rich open problem.

2 First Steps: Reordering and Basis

LetF be the free unital associative algebra overC generated by the set {A, B, S, T }.
For q = (q0, q1, q2, q3, q4, q5) ≥ C

6 let J (q) be the ideal generated by the set



Commutants and Centers in a 6-Parameter Family 41

G(q) = {AB − q0B A − S − T, AT − q1T A, BS − q2SB,

AS − q3S A, BT − q4T B, ST − q5T S}, (2)

or equivalently the ideal inF generated by the relations

AB − q0B A ⊂ S + T
AT − q1T A ⊂ 0
BS − q2SB ⊂ 0
AS − q3S A ⊂ 0
BT − q4T B ⊂ 0
ST − q5T S ⊂ 0,

(3)

where ⊂ denotes equivalence modulo J (q).
From (3) it is not too hard to derive the additional relations

(1 − q2q3)S2 ⊂ (q2q3q5 − 1)T S (4)

(1 − q1q4)T
2 ⊂ (q1q4 − q5)T S. (5)

The implications of these relations depend on which of the involved scalar expres-
sions are zero and which are non-zero. There are also a few more expressions in the
parameters that change the situation if they are zero. Only the generic case will be
considered here.

Definition 2.1 A parameter vector q = (q0, q1, q2, q3, q4, q5) ≥ C
6 is generic if


⎧

q0, q1, q2, q3, q4, q5 ⊗= 0,
1 − q5, 1 − q1q4, 1 − q2q3, q1 − q3, q2 − q4 ⊗= 0, and
q1q4 − q5 ⊗= 0 or q2q3q5 − 1 ⊗= 0.

For generic q it follows from (3), (4) and (5) that

XY ⊂ 0 for all X ≥ {S2, ST, T S, T 2}, Y ≥ {A, B, S, T }. (6)

Since (3) can be used to put the symbols in the monomials in the order T, S, B, A,
this means that any monomial that has two symbols from {S, T } and additionally
one symbol from {A, B, S, T } is ⊂ 0. Thus it seems plausible that the set

B = {Bb Aa, SBb Aa, T Bb Aa, T S; a, b ≥ N}

is a basis for F/J (q). This can be shown using the Diamond Lemma for ring
theory [40].

Sums of the form
⎨n−1

i=0 qi will often appear in what follows, so it is convenient
to have a more compact notation for them.
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Definition 2.2 For q ≥ C and n ≥ N, let

{n}q =
n−1⎩
i=0

qi .

{n}q is called the n:th q-natural number.

To express the product of two general elements in the basis B, it is necessary to
be able to rewrite monomials of the form Am Bn so that the B:s are moved to the left
of the A:s.

Lemma 2.1 Let q = (q0, . . . , q5) ≥ C
6 be generic. Then the following formula

holds in F/J (q) for m, n ≥ 1, (m, n) ⊗= (2, 2).

Am Bn ⊂ qmn
0 Bn Am

+ q(m−1)n
0 {m} q3

q0
{n}q0q2 SBn−1Am−1

+ q(m−1)n
0 {m} q1

q0
{n}q0q4 T Bn−1Am−1. (7)

The formula can be proved for most (m, n) by induction first on m and then on
n, or by induction first on n and then on m. The exceptional point (m, n) = (2, 2)
makes it necessary to use both orders of induction to cover all (m, n) ⊗= (2, 2). We
omit the elaborate details of the proof.

Equation (7) does not hold for (m, n) = (2, 2). The reordering formula for
(m, n) = (2, 2) is instead

A2B2 ⊂ q4
0 B2A2 + q0(q0 + q3)(1 + q0q2)SB A + q0(q0 + q1)(1 + q0q4)T B A

+ (1 − q5)
q1 − q3 + q0q1q4 − q0q2q3 + q1q3q4 − q1q2q3

(1 − q1q4)(1 − q2q3)
T S. (8)

This formula agrees with (7) except for the extra T S-term on the right side.
Let M be the set of monomials inF and define for Y ≥ M

degA,S,T (Y ) = #A : s + #S : s + #T : s that occur in Y

degB,S,T (Y ) = #B : s + #S : s + #T : s that occur in Y.

Then F has an N
2-gradation {A(m,n)}(m,n)≥N2 given by

A(m,n) = Span{Y ≥ M ; degA,S,T (Y ) = m, degB,S,T (Y ) = n}.

All elements in the generating set of J (q) are homogeneous in this gradation and
thus the induced gradation of F/J (q) is well defined. If m, n ≥ 1 and (m, n) ⊗=
(2, 2) then a basis for the homogeneous component of degree (m, n) is given by

{Bn Am, SBn−1Am−1, T Bn−1Am−1}.
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3 Commutants of A and B

The commutant of an element X ≥ F/J (q) is the set of all elements that commute
with X . It will be denoted by C (X). In this section, spanning sets for C (A) and
C (B) are described for generic q.

In general, a commutant of a homogeneous element is spanned by the homoge-
neous elements of the commutant. This means that it is enough to find all homoge-
neous elements that commute with A or B. Let Xm,n denote a general homogeneous
element of degree (m, n). For m, n ≥ 1, (m, n) ⊗= (2, 2), such an element can be
uniquely written as

Xm,n ⊂ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1, (9)

with c1, c2, c3 ≥ C. Since T S commutes with every Y ≥ {A, B, S, T } (in fact
Y T S ⊂ T SY ⊂ 0 by (6)), it is general enough to consider Xm,n of the form (9)
when (m, n) = (2, 2) as well. When m = 0 or n = 0, the homogeneous elements of
degree (m, n) are of the form X0,n = c1Bn and Xm,0 = c1Am respectively.

Using the defining relations (3) and the reordering formula (7), the commutators of
Xm,n with A and B can be computed. Form, n ≥ 1, (m, n) ⊗= (1, 2), the commutator
of Xm,n with A is

[Xm,n, A] ⊂ c1(1 − qn
0 )Bn Am+1

+
⎪
−c1 {n}q0q2 + c2(1 − qn−1

0 q3)
⎝

SBn−1Am

+
⎪
−c1 {n}q0q4 + c3(1 − qn−1

0 q1)
⎝

T Bn−1Am .

If (m, n) = (1, 2) then there is an additional term

(1 − q5)

(1 − q2q3)(1 − q1q4)
(c2q3(1 − q1q4) − c3q1(1 − q2q3))T S

on the right side. For m = 0, the commutator is

[X0,n, A] ⊂ c1(1 − qn
0 )Bn A − c1 {n}q0q2 SBn−1 − c1 {n}q0q4 T Bn−1

and [Xm,0, A] ⊂ 0 for all m.
For m, n ≥ 1, (m, n) ⊗= (2, 1), the commutator of Xm,n with B is

[Xm,n, B] ⊂ c1(q
m
0 − 1)Bn+1Am

+
⎪

c1qm−1
0 qn

2 {m}q3/q0 + c2(q
m−1
0 − q2)

⎝
SBn Am−1

+
⎪

c1qm−1
0 qn

4 {m}q1/q0 + c3(q
m−1
0 − q4)

⎝
T Bn Am−1.
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If (m, n) = (2, 1) then there is an additional term

− (1 − q5)

(1 − q2q3)(1 − q1q4)
(c2(1 − q1q4) − c3(1 − q2q3))T S

on the right side. For n = 0, the commutator is

[Xm,0, B] ⊂ c1(q
m
0 − 1)B Am + c1qm−1

0 {m} q3
q0

S Am−1 + c1qm−1
0 {m} q1

q0
T Am−1.

and [X0,n, B] ⊂ 0 for all n.
The computations are summarised in the following lemma.

Lemma 3.1 Let q = (q0, . . . , q5) ≥ C
6 be generic.

C (A) is the linear subspace of F/J (q) spanned by the elements listed in the
following table.

Element (m, n range over N+) Conditions

I —
T S —
Am —
Bn 1 − qn

0 = {n}q0q2 = {n}q0q4 = 0

c1Bn Am + (c2S + c3T )Bn−1Am−1 K(m,n)

⎞
c1 c2 c3

⎫T = 0

Here,

K(m,n) =
⎡
⎣ 1 − qn

0 0 0
−{n}q0q2 1 − qn−1

0 q3 0
−{n}q0q4 0 1 − qn−1

0 q1

⎤
⎦

for (m, n) ⊗= (1, 2) and

K(1,2) =

⎡
⎢⎢⎣

1 − q2
0 0 0

−(1 + q0q2) 1 − q0q3 0
−(1 + q0q4) 0 1 − q0q1

0 q3(1 − q1q4) −q1(1 − q2q3)

⎤
⎥⎥⎦ .

C (B) is the linear subspace of F/J (q) spanned by the elements listed in the
following table.

Element (m, n range over N+) Conditions

I —
T S —
Am qm

0 − 1 = {m}q1/q0 = {m}q3/q0 = 0
Bn —

c1Bn Am + (c2S + c3T )Bn−1Am−1 L(m,n)

⎞
c1 c2 c3

⎫T = 0
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Here,

L(m,n) =
⎡
⎣ qm

0 − 1 0 0
qm−1
0 qn

2 {m}q3/q0 qm−1
0 − q2 0

qm−1
0 qn

4 {m}q1/q0 0 qm−1
0 − q4

⎤
⎦

for (m, n) ⊗= (2, 1) and

L(2,1) =

⎡
⎢⎢⎣

q2
0 − 1 0 0

q2(q0 + q3) q0 − q2 0
q4(q0 + q1) 0 q0 − q4

0 1 − q1q4 −(1 − q2q3)

⎤
⎥⎥⎦ .

4 The Center of F/J (q)

The center of F/J (q) is the set of elements that commute with every element of
F/J (q). It will be denoted by Z . In this section, Z is described for generic q.

Lemma 4.1 Let q = (q0, . . . , q5) ≥ C
6 be generic. Then Z = C (A) ∩ C (B).

Proof Let X be a general homogeneous element that commutes with both A and B.
Then X commutes with S + T by (3a). It will be shown that X commutes with S and
T as well. There are four cases depending on the degree of X .

If X has degree (0, n), then X ⊂ c1Bn for some c1 ≥ C. Then

[X, S + T ] ⊂ 0 =→ c1(q
n
2 − 1)SBn + c1(q

n
4 − 1)T Bn ⊂ 0 =→

c1(q
n
2 − 1) = c1(q

n
4 − 1) = 0 =→ [X, S] ⊂ [X, T ] ⊂ 0.

If X has degree (m, 0), then X ⊂ c1Am for some c1 ≥ C. Then

[X, S + T ] ⊂ 0 =→ c1(q
m
3 − 1)S Am + c1(q

m
1 − 1)T Am ⊂ 0 =→

c1(q
m
3 − 1) = c1(q

m
1 − 1) = 0 =→ [X, S] ⊂ [X, T ] ⊂ 0.

If X has degree (1, 1), then X ⊂ c1B A + c2S + c3T for some c1, c2, c3 ≥ C.
Then

[X, S + T ] ⊂ c1(q2q3 − 1)SB A + c1(q1q4 − 1)T B A + (c3 − c2)(1 − q5)T S.

The right side can be zero only if c1 = c3 − c2 = 0 since q is generic. But then
X ⊂ c3(S + T ), so

[X, B A] ⊂ c3(1 − q2q3)SB A + c3(1 − q1q4)T B A.
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Since X is assumed to commute with A and B, the right side must be zero, which
implies that c3 = 0 since q is generic. Thus X ⊂ 0, and so X commutes with S
and T .

Finally, if X has degree (m, n) with m, n ⊗= 0 and (m, n) ⊗= (1, 1) then

X ⊂ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 + c4T S,

for some c1, c2, c3, c4 ≥ C (with c4 = 0 unless (m, n) = (2, 2)). Then

[X, S + T ] ⊂ 0 =→ c1(q
n
2qm

3 − 1)SBn Am + c1(q
m
1 qn

4 − 1)T Bn Am ⊂ 0 =→
c1(q

n
2qm

3 − 1) = c1(q
m
1 qn

4 − 1) = 0 =→ [X, S] ⊂ [X, T ] ⊂ 0.

Theorem 4.1 Let q = (q0, . . . , q5) ≥ C
6 be generic and suppose that q0 is not

a root of unity. Then a basis for Z is given by the elements listed in the following
table.

Element (m, n range over N+) Conditions

I —
T S —
SBn−1Am−1 1 − qn−1

0 q3 = qm−1
0 − q2 = 0

T Bn−1 Am−1 1 − qn−1
0 q1 = qm−1

0 − q4 = 0

Moreover, this basis contains at most one element of the form SBn−1Am−1 and
at most one element of the form T Bn−1Am−1. Thus, Z has dimension at most four.

Proof By Lemma 4.1, it is enough to show that the listed elements form a basis for
C (A) ∩ C (B). Spanning sets for C (A) and C (B) are given by Lemma 3.1; denote
thembyB(A) andB(B) respectively. ThenC (A)∩C (B) is the linear space spanned
byB(A)∩B(A). Now, I, T S ≥ B(A)∩B(B) always. For m, n ≥ 1, Am /≥ B(B)

and Bn /≥ B(A) since q0 is not a root of unity, and thus Am, Bn /≥ B(A)∩B(B). An
element inB(A) ∩B(B) of the form c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1

with m, n ≥ 1 must have c1 = 0 since q0 is not a root of unity. The coefficient c2
may be non-zero if and only if 1 − qn−1

0 q3 = qm−1
0 − q2 = 0. Since q0 is not a

root of unity, this can happen for at most one value of (m, n). Similarly, c3 may be
non-zero if and only if 1 − qn−1

0 q1 = qm−1
0 − q4 = 0, and this can happen for at

most one value of (m, n). Thus the listed elements span C (A) ∩ C (B), and since
they are linearly independent they form a basis.

Theorem 4.2 Let q = (q0, . . . , q5) ≥ C
6 be generic and suppose that q0 is a root

of unity. Let d be the smallest positive integer such that qd
0 = 1. Then a basis for Z

is given by the elements listed in the following table.
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Element (m, n range over N+) Conditions

I —
T S —
Am d|m, qm

1 = qm
3 = 1, q1/q0, q3/q0 ⊗= 1

Bn d|n, qn
2 = qn

4 = 1, q0q2, q0q4 ⊗= 1
SBn−1 Am−1 d|m − 1 − r2, d|n − 1 + r3, q2 = qr2

0 , q3 = qr3
0

T Bn−1Am−1 d|n − 1 + r1, d|m − 1 − r4, q1 = qr1
0 , q4 = qr4

0
Bn Am + (cS S + cT T )Bn−1Am−1 d|m, d|n, qm

1 qn
4 = qn

2 qm
3 = 1

and in addition
q2 + 1/q2 = q4 + 1/q4 if (m, n) = (1, 2)
q1 + 1/q1 = q3 + 1/q3 if (m, n) = (2, 1)

Here,

cS =


⎧

1−qn
2

(1−q0q2)(1−q3/q0)
= 1−1/qm

3
(1−q0q2)(1−q3/q0)

if 1 − q0q2, 1 − q3/q0 ⊗= 0
−m

1−q0q2
if 1 − q0q2 ⊗= 0, 1 − q3/q0 = 0

n
1−q3/q0

if 1 − q0q2 = 0, 1 − q3/q0 ⊗= 0

and

cT =


⎧

1−qn
4

(1−q0q4)(1−q1/q0)
= 1−1/qm

1
(1−q0q4)(1−q1/q0)

if 1 − q0q4, 1 − q1/q0 ⊗= 0
−m

1−q0q4
if 1 − q0q4 ⊗= 0, 1 − q1/q0 = 0

n
1−q1/q0

if 1 − q0q4 = 0, 1 − q1/q0 ⊗= 0.

Proof By Lemma 4.1, it is enough to show that the listed elements form a basis
for C (A) ∩ C (B). Spanning sets for C (A) and C (B) are given by Lemma 3.1;
denote them byB(A) andB(B) respectively. ThenC (A)∩C (B) is the linear space
spanned by B(A) ∩ B(B). Now, I, T S ≥ B(A) ∩ B(B) always, and

Am ≥ B(A) ∩ B(B) ∞→ qm
0 − 1 = {m}q1/q0 = {m}q3/q0 = 0

∞→ qm
0 = qm

1 = qm
3 = 1, q1/q0, q3/q0 ⊗= 1

and

Bn ≥ B(A) ∩ B(B) ∞→ 1 − qn
0 = {n}q0q2 = {n}q0q4 = 0

∞→ qn
0 = qn

2 = qn
4 = 1, q0q2, q0q4 ⊗= 1.

Assume now that m, n ≥ 1, (m, n) ⊗= (1, 2) and (m, n) ⊗= (2, 1). An element of
the form c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 lies in B(A) ∩ B(B) if and
only if K(m,n)[c1 c2 c3]T = 0 and L(m,n)[c1 c2 c3]T = 0, where K(m,n) and L(m,n) are
defined as in Lemma 3.1. Regrouping these equations gives the equivalent equation
system
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⎧

(1 − qn
0 )c1 = (qm

0 − 1)c1 = 0 (first rows of K(m,n) and L(m,n))

MS
⎞
c1 c2

⎫T = 0 (second rows of K(m,n) and L(m,n))

MT
⎞
c1 c3

⎫T = 0 (third rows of K(m,n) and L(m,n)),

(10)

where

MS =
[ −{n}q0q2 1 − qn−1

0 q3
qm−1
0 qn

2 {m}q3/q0 qm−1
0 − q2

]
MT =

[ −{n}q0q4 1 − qn−1
0 q1

qm−1
0 qn

4 {m}q1/q0 qm−1
0 − q4

]
.

There are two types of possible solutions to (10): Those with c1 = 0 and those with
c1 ⊗= 0.Note that [0 c2 c3]T satisfies (10) if andonly if [0 c2 0]T and [0 0 c3]T do.Thus
for the case c1 = 0, it is enough to consider elements of the forms SBn−1Am−1 and
T Bn−1Am−1 separately, rather that a general linear combination c2SBn−1Am−1 +
c3T Bn−1Am−1.

Now, SBn−1Am−1 ≥ B(A) ∩ B(B) if and only if MS[0 1]T = 0, that is, iff

qn−1
0 q3 = 1 and qm−1

0 = q2. (11)

This implies (by raising both sides of the equations to the power of d) that qd
2 =

qd
3 = 1, so q2 and q3 are d:th roots of unity and thus q2 = qr2

0 and q3 = qr3
0 for some

r2, r3 ≥ {0, . . . , d − 1} (since q0 generates the group of d:th roots of unity). Then
(11) holds if and only if qn−1+r3

0 = qm−1−r2
0 = 1, that is, d divides both n − 1 + r3

and m − 1 − r2.
Similarly, T Bn−1Am−1 ≥ B(A) ∩B(B) if and only if MT [0 1]T = 0, that is, iff

qn−1
0 q1 = 1 and qm−1

0 = q4. (12)

This implies that qd
1 = qd

4 = 1 and thus that q1 = qr1
0 and q4 = qr4

0 for some

r1, r4 ≥ {0, . . . , d − 1}. Then (12) holds if and only if qn−1+r1
0 = qm−1−r4

0 = 1,
that is, d divides both n − 1 + r1 and m − 1 − r4.

If there is a solution of (10) with c1 ⊗= 0 then qm
0 = qn

0 = 1 so d|m and d|n. In
addition, det(MS) = det(MT ) = 0, which is equivalent (using qm

0 = qn
0 = 1 and

{k}q (1 − q) = 1 − qk) to qn
2qm

3 = qm
1 qn

4 = 1. When MS is singular, either of the
equations of the system MS[c1 c2]T = 0 can be used to solve for c2. One gets

c2 =


⎧

1−qn
2

(1−q0q2)(1−q3/q0)
c1 = 1−1/qm

3
(1−q0q2)(1−q3/q0)

c1 if 1 − q0q2, 1 − q3/q0 ⊗= 0
−m

1−q0q2
c1 if 1 − q0q2 ⊗= 0, 1 − q3/q0 = 0

n
1−q3/q0

c1 if 1 − q0q2 = 0, 1 − q3/q0 ⊗= 0
(13)

(the case 1− q0q2 = 1− q3/q0 = 0 is excluded since q2q3 ⊗= 1 when q is generic).
Similarly, when MT is singular, one can use either of the equations of the system
MT [c1 c3]T = 0 to solve for c3. One gets
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c3 =


⎧

1−qn
4

(1−q0q4)(1−q1/q0)
c1 = 1−1/qm

1
(1−q0q4)(1−q1/q0)

c1 if 1 − q0q4, 1 − q1/q0 ⊗= 0
−m

1−q0q4
c1 if 1 − q0q4 ⊗= 0, 1 − q1/q0 = 0

n
1−q1/q0

c1 if 1 − q0q4 = 0, 1 − q1/q0 ⊗= 0
(14)

(the case 1− q0q4 = 1− q1/q0 = 0 is excluded since q1q4 ⊗= 1 when q is generic).
When (m, n) = (1, 2) or (m, n) = (2, 1) then (10) is still a necessary condition

for c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 to lie in C (A, B), but c2, c3 must
also satisfy

{
c2q3(1 − q1q4) = c3q1(1 − q2q3) if (m, n) = (1, 2)
c2(1 − q1q4) = c3(1 − q2q3) if (m, n) = (2, 1).

(15)

If c1 = 0 in any of these cases then either c2 = 0 or c3 = 0, since if c2, c3 ⊗= 0
then (10) would imply q1 = q3 (= 1/qn−1

0 ) and q2 = q4 (= qm−1
0 ). But if one of

c2, c3 is = 0, then so is the other by (15). Thus, there are no non-trivial solutions
with c0 = 0 when (m, n) = (1, 2) or (m, n) = (2, 1). The element Bn Am +
c2SBn−1Am−1 + c3T Bn−1Am−1 lies in C (A, B) if and only if [1 c2 c3]T satisfies
both (10) and (15). Using the expressions (13) and (14) for c2 and c3 together with
q0 = qm

1 qn
4 = qn

2qm
3 = 1 (that is, using the conditions that have just been shown

to be equivalent to (10); note that when m = 1 or n = 1, d|m and d|n iff q0 = 1.
Also note that qm

1 qn
4 = qn

2qm
3 = 1 implies q2, q4 ⊗= 1 when (m, n) = (1, 2) and

q1, q3 ⊗= 1 when (m, n) = (2, 1) since q is generic), (15) can be simplified to

{
q2 + 1/q2 = q4 + 1/q4 if (m, n) = (1, 2)
q1 + 1/q1 = q3 + 1/q3 if (m, n) = (2, 1).

Thus, the elements listed in the theorem form a spanning set forC (A)∩C (B). To
see that they are linearly independent, note that for a fixed (m, n) it is impossible that
both Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 and SBn−1Am−1 lie in C (A) ∩
C (B), for that would imply

m ⊂ n (mod d)

m − 1 − r2 ⊂ n − 1 + r3 (mod d)

}
=→ −r2 ⊂ r3 (mod d) =→ q2q3 = 1.

Similarly, it is impossible that both Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 and
T Bn−1Am−1 lie in C (A) ∩ C (B), for that would imply q1q4 = 1. Thus, the listed
elements are linearly independent, and so they form a basis for C (A) ∩ C (B).

5 Commutativity of C (A) and C (B)

This section gives, for generic q, necessary and sufficient conditions on q for C (A)

and C (B) to be commutative. As before, it is enough to consider homogeneous
elements of C (A) and C (B), and the T S-components of the homogeneous elements
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of degree (2, 2) can be disregarded since T S ≥ Z . Thus, C (A) is commutative if
and only if the set

HA = { H ≥ C (A); H is homogeneous and has no T S-component}

is, and C (B) is commutative if and only if the set

HB = { H ≥ C (B); H is homogeneous and has no T S-component}

is. Define further the sets

XA = {
X ≥ HA; X is homogeneous of degree (m, n) and qn

0 = 1
}

YA = {
Y ≥ HA; Y is homogeneous of degree (m, n) and qn

0 ⊗= 1
} ∪ {0}

XB = {
X ≥ HB; X is homogeneous of degree (m, n) and qm

0 = 1
}

YB = {
Y ≥ HB; Y is homogeneous of degree (m, n) and qm

0 ⊗= 1
} ∪ {0}.

Then HA = XA ∪ YA and HB = XB ∪ YB , and XA ∩ YA = XB ∩ YB = {0},
since 0 is homogeneous of all degrees. (The reason for explicitly including 0 in YA

and YB is to make sure that they always contain 0: If 0 were not explicitly included
then the case q0 = 1 would be exceptional.) These sets do, of course, depend on q;
when this dependence needs to be emphasised the notation will be XA(q), YA(q)

and so on.
Consider two general homogeneous elements

Xk,l ⊂ b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1

Xm,n ⊂ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1

of degrees (k, l) and (m, n) respectively. A somewhat lengthy calculation using the
reordering formula (7) and Eq. (6) shows that

Xk,l Xm,n ⊂ . . .

⊂ b1c1qkn
0 Bl+n Ak+m

+ q(k−1)(n−1)
0

(
b1c1qk−1

0 ql
2 {k} q3

q0
{n}q0q2 + b1c2qn−1

0 ql
2qk

3 + b2c1qk−1
0

)

SBl+n−1Ak+m−1

+ q(k−1)(n−1)
0

(
b1c1qk−1

0 ql
4 {k} q1

q0
{n}q0q4 + b1c3qn−1

0 qk
1ql

4 + b3c1qk−1
0

)

T Bl+n−1Ak+m−1.

This holds for all k, l, m, n ≥ 1 except for k = l = m = n = 1 (if (k, l) = (2, 2)
or (m, n) = (2, 2) then there is an additional T S-term in the expression for Xk,l or
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Xm,n , but that makes no difference for the product because of (6)). The commutator
of Xk,l and Xm,n then is

[Xk,l , Xm,n] ⊂ b1c1(q
kn
0 − qml

0 )Bl+n Ak+m

+
(

q(k−1)(n−1)
0

(
b1c1qk−1

0 ql
2 {k} q3

q0
{n}q0q2 + b1c2qn−1

0 ql
2qk

3 + b2c1qk−1
0

)

− q(m−1)(l−1)
0

(
b1c1qm−1

0 qn
2 {m} q3

q0
{l}q0q2 + b2c1ql−1

0 qn
2qm

3 + b1c2qm−1
0

))

SBl+n−1Ak+m−1

+
(

q(k−1)(n−1)
0

(
b1c1qk−1

0 ql
4 {k} q1

q0
{n}q0q4 + b1c3qn−1

0 qk
1ql

4 + b3c1qk−1
0

)

− q(m−1)(l−1)
0

(
b1c1qm−1

0 qn
4 {m} q1

q0
{l}q0q4 + b3c1ql−1

0 qm
1 qn

4 + b1c3qm−1
0

))

T Bl+n−1Ak+m−1. (16)

The switch A ↔ B will be used in the proofs below. Assume that q0 ⊗= 0 (as is
the case when q is generic) and let f AB : F → F be the isomorphism defined by

f AB(A) = B, f AB(B) = A, f AB(S) = −q0S, f AB(T ) = −q0T .

The image under f AB of G(q), defined in (2), is

{ − q0(AB − 1

q0
B A − S − T ), −q0(BT − q1T B), −q0(AS − q2S A),

− q0(BS − q3SB), −q0(AT − q4T A), q2
0 (ST − q5T S)}.

Thus f AB(G(q)) generates the ideal J (q̂) where q̂ = ( 1
q0

, q4, q3, q2, q1, q5), and
consequently f AB(J (q)) = J (q̂). Thismakes it possible to define an isomorphism
h AB : F/J (q) → F/J (q̂) by

h AB(X + J (q)) = f AB(X) + J (q̂). (17)

It is easily checked that q̂ is generic whenever q is.
Also the switch S ↔ T will be used below. Let fST : F → F be the isomor-

phism defined by

fST (A) = A, fST (B) = B, fST (S) = T, fST (T ) = S.

The image under fST of G(q) is (assuming that q5 ⊗= 0)

{AB − q0B A − S − T, AS − q1S A, BT − q2T B,
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AT − q3T A, BS − q4SB, −q5(ST − 1

q5
T S)}.

Thus fST (G(q)) generates the ideal J (q̃), where q̃ = (q0, q3, q4, q1, q2,
1
q5

), so
fST (J (q)) = J (q̃) and an isomorphism hST : F/J (q) → F/J (q̃) can be
defined by

hST (X + J (q)) = fST (X) + J (q̃). (18)

Again, it is easily checked that q̃ is generic whenever q is.

Lemma 5.1 Let q = (q0, . . . , q5) ≥ C
6 be generic. Then the sets XA and XB are

commutative.

Proof Pick any X1, X2 ≥ XA. Then X1, X2 ≥ C (A) and they are homogeneous, say
of degrees (k, l) and (m, n) respectively with ql

0 = qn
0 = 1. If k = 0 then X1 ⊂ b1Bl

and Lemma 3.1 implies that X1 ⊂ 0 or ql
2 = ql

4 = 1. In either case, X1 ≥ Z , so
in particular X1 commutes with X2. Similarly, if m = 0 then X2 ≥ Z and thus
commutes with X1. If l = 0 then X1 = b1Ak and if n = 0 then X2 = c1Am ; in both
cases X1 and X2 commute. Thus it may be assumed that k, l, m, n ≥ 1, so that X1
and X2 can be written as

X1 ⊂ b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1 k, l ≥ 1

X2 ⊂ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 m, n ≥ 1

with coefficients that satisfy

K(k,l)[b1 b2 b3]T = 0, K(m,n)[c1 c2 c3]T = 0, (19)

where K(k,l), K(m,n) are defined as in Lemma 3.1. If k = l = m = n = 1 then X1
and X2 are parallel, because K(1,1) has rank at least two (using that q1 ⊗= q3 since
q is generic). Hence it may be assumed that at least one of k, l, m, n is ≥ 2, so that
the commutator [X1, X2] is given by (16). Since ql

0 = qn
0 = 1, the coefficient of

Bl+n Ak+m in (16) is 0—it has to be shown that the coefficients of SBl+n−1Ak+m−1

and T Bl+n−1Ak+m−1 are 0 as well.
If q3 ⊗= q0 then (19) implies that

b2 = {l}q0q2

1 − q3/q0
b1, c2 = {n}q0q2

1 − q3/q0
c1

and the SBl+n−1Ak+m−1-coefficient in (16) can be simplified to

b1c1ql
2
1 − (q3/q0)k

1 − q3/q0
{n}q0q2 + b1c1q−k

0 ql
2qk

3

{n}q0q2

1 − q3/q0
+ b1c1

{l}q0q2

1 − q3/q0

− b1c1qn
2
1 − (q3/q0)m

1 − q3/q0
{l}q0q2 − b1c1q−m

0 qn
2qm

3

{l}q0q2

1 − q3/q0
− b1c1

{n}q0q2

1 − q3/q0
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= b1c1
1 − q3/q0

⎪
ql
2 {n}q0q2 + {l}q0q2 − qn

2 {l}q0q2 − {n}q0q2

⎝
= 0. (20)

The last equality holds by the identity {a}q + qa {b}q = {a + b}q for q-natural
numbers, since ql

2 = (q0q2)l , qn
2 = (q0q2)n . Similarly if q1 ⊗= q0 then

b3 = {l}q0q4

1 − q1/q0
b1, c3 = {n}q0q4

1 − q1/q0
c1

and the T Bl+n−1Ak+m−1-coefficient in (16) can be simplified to

b1c1ql
4
1 − (q1/q0)k

1 − q1/q0
{n}q0q4 + b1c1q−k

0 qk
1ql

4

{n}q0q4

1 − q1/q0
+ b1c1

{l}q0q4

1 − q1/q0

− b1c1qn
4
1 − (q1/q0)m

1 − q1/q0
{l}q0q4 − b1c1q−m

0 qm
1 qn

4

{l}q0q4

1 − q1/q0
− b1c1

{n}q0q4

1 − q1/q0

= b1c1
1 − q1/q0

⎪
ql
4 {n}q0q4 + {l}q0q4 − qn

4 {l}q0q4 − {n}q0q4

⎝
= 0. (21)

Now there are three cases to consider (q1 = q3 = q0 is impossible since q is generic).
1. If q1, q3 ⊗= q0 then the coefficients of SBl+n−1Ak+m−1 and T Bl+n−1Ak+m−1

in (16) are 0 by (20) and (21).
2. If q1 = q0, q3 ⊗= q0, then the computation (20) is still valid, that is, the

coefficient of SBl+n−1Ak+m−1 in (16) is 0. Further, (19) implies that

{l}q0q4 b1 = {n}q0q4 c1 = 0

and thus also
(1 − ql

4)b1 = (1 − qn
4 )c1 = 0.

Then the T Bl+n−1Ak+m−1-coefficient in (16) can be simplified to

b1c3ql
4 + b3c1 − b3c1qn

4 − b1c3 = −b1c3(1 − ql
4) + b3c1(1 − qn

4 ) = 0.

3. Ifq1 ⊗= q0,q3 = q0 then the computation (21) is still valid, that is, the coefficient
of T Bl+n−1Ak+m−1 in (16) is 0. The condition (19) implies that

{l}q0q2 b1 = {n}q0q2 c1 = (1 − ql
2)b1 = (1 − qn

2 )c1 = 0,

and the SBl+n−1Ak+m−1-coefficient becomes

b1c2ql
2 + b2c1 − b2c1qn

2 − b1c2 = −b1c2(1 − ql
2) + b2c1(1 − qn

2 ) = 0.
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Thus it has been shown that XA is commutative.
In order to see that XB = XB(q) is commutative, let h AB : F/J (q) →

F/J (q̂) be the isomorphism defined as in (17). Then XA(q̂) is commutative by
the above proof, soXB(q) = h−1

AB(XA(q̂)) is commutative as well.

Lemma 5.2 Let q = (q0, . . . , q5) ≥ C
6 be generic. Then the sets YA and YB are

commutative.

Proof Pick any Y1, Y2 ≥ YA. Then Y1, Y2 ≥ C (A) and they are homogeneous, say
of degrees (k, l) and (m, n) respectively with ql

0, qn
0 ⊗= 1. It is then impossible that

l = 0 or n = 0, and by Lemma 3.1 it cannot be that Y1 = b1Bl or Y2 = c1Bn with
b1, c1 ⊗= 0. Thus it may be assumed that k, l, m, n ≥ 1, and Y1, Y2 can be written as

Y1 ⊂ b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1 k, l ≥ 1

Y2 ⊂ c1Bn Am + c2SBn−1Am−1 + c3T Bn−1Am−1 m, n ≥ 1

with coefficients that satisfy

K(k,l)[b1 b2 b3]T = 0, K(m,n)[c1 c2 c3]T = 0, (22)

where K(k,l), K(m,n) are defined as in Lemma 3.1. If k = l = m = n = 1 then Y1
and Y2 are parallel, because K(1,1) has rank at least two (using that q1 ⊗= q3 since
q is generic). Hence it may be assumed that at least one of k, l, m, n is ≥ 2. Since
ql
0, qn

0 ⊗= 1, (22) implies that b1 = c1 = 0. But then Y1Y2 ⊂ Y2Y1 ⊂ 0 by (6), so
Y1, Y2 commute.

To see that YB = YB(q) is commutative, let h AB : F/J (q) → F/J (q̂) be
the isomorphism defined as in (17). Then YA(q̂) is commutative by the above proof,
so YB(q) = h−1

AB(YA(q̂)) is commutative as well.

Because of Lemma 5.1 and Lemma 5.2, it is enough to checkwhether the elements
ofXA commute with the elements ofYA to see ifC (A) is commutative, and to check
whether the elements of XB commute with the elements of YB to see if C (B) is
commutative.

Theorem 5.1 Let q = (q0, . . . , q5) ≥ C
6 be generic and suppose that q0 is not a

root of unity. Then C (A) and C (B) are commutative.

Proof Since q0 is not a root of unity,

XA = {cAm; c ≥ C, m ≥ N}.

Thus, every element ofXA commutes with every element ofYA, and it follows from
Lemma 5.1 and Lemma 5.2 that C (A) is commutative. Similarly,

XB = {cBn; c ≥ C, n ≥ N};
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thus every element of XB commutes with every element of YB and thus C (B) is
commutative.

Theorem 5.2 Let q = (q0, . . . , q5) ≥ C
6 be generic, and suppose that q0 is a root

of unity with d being the smallest positive integer such that qd
0 = 1. Then C (A) is

commutative if and only if

⎪
{d}q3/q0 ⊗= 0 or qd

2 = 1 or (q1 = q0 and qd
4 ⊗= 1)

⎝
(23)

and

⎪
{d}q1/q0 ⊗= 0 or qd

4 = 1 or (q3 = q0 and qd
2 ⊗= 1)

⎝
, (24)

and C (B) is commutative if and only if

⎪
{d}q0q2 ⊗= 0 or qd

3 = 1 or (q4 = q−1
0 and qd

1 ⊗= 1)
⎝

(25)

and

⎪
{d}q0q4 ⊗= 0 or qd

1 = 1 or (q2 = q−1
0 and qd

3 ⊗= 1)
⎝

. (26)

Proof It follows from Lemma 5.1 and Lemma 5.2 that C (A) is commutative if
and only if every element of XA commutes with every element of YA. A non-zero
element of YA cannot have degree (m, 0) since q0

0 = 1, and it cannot have degree
(0, n) by Lemma 3.1. Thus any non-zero Y ≥ YA is of the form

Y ⊂ c1Bn Am + c2SBn−1Am−1 + c3Bn−1Am−1

for some n with qn
0 ⊗= 1 and with coefficients that satisfy

⎡
⎣ 1 − qn

0 0 0
−{n}q0q2 1 − qn−1

0 q3 0
−{n}q0q4 0 1 − qn−1

0 q1

⎤
⎦

⎡
⎣c1

c2
c3

⎤
⎦ = 0. (27)

Since q1 ⊗= q3 (because q is generic), the matrix in (27) has one of the forms

⎡
⎣⊕ 0 0
? ⊕ 0
? 0 ⊕

⎤
⎦ ,

⎡
⎣⊕ 0 0
? 0 0
? 0 ⊕

⎤
⎦ ,

⎡
⎣⊕ 0 0
? ⊕ 0
? 0 0

⎤
⎦ ,

where ⊕ indicates a non-zero element and ? indicates an element that may or may
not be zero. Thus the solutions to (27) are
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c1 = c2 = c3 = 0 if qn−1
0 q3, qn−1

0 q1 ⊗= 1
c1 = c3 = 0 if qn−1

0 q3 = 1, qn−1
0 q1 ⊗= 1

c1 = c2 = 0 if qn−1
0 q3 ⊗= 1, qn−1

0 q1 = 1.

Since it is impossible that both c2 and c3 are non-zero, Y must actually have the form
c2SBn−1Am−1 or c3T Bn−1Am−1. Thus YA can be decomposed as Y S

A ∪Y T
A ∪ {0},

where

Y S
A =

{
cSBn−1Am−1 ≥ YA; qn

0 ⊗= 1, qn−1
0 q3 = 1

}

Y T
A =

{
cT Bn−1Am−1 ≥ YA; qn

0 ⊗= 1, qn−1
0 q1 = 1

}

(here, c ranges over C and m, n range over N+), and C (A) is commutative if and
only if every element of XA commutes with every element of Y S

A and Y T
A .

Consider firstY S
A and the conditions (23). If {d}q3/q0 ⊗= 0 then qd

3 ⊗= 1 or q3 = q0
and it cannot be that qn

0 ⊗= 1 and qn−1
0 q3 = 1; thus Y S

A = ∗. Otherwise, there is an
r3 ≥ {2, . . . , d} such that q3 = qr3

0 , and

Y S
A =

{
cSBn−1Am−1; qn−1+r3

0 = 1
}

is non-empty. Now pick any X ≥ XA. If X = b1Ak then X obviously commutes
with every element in Y S

A . Otherwise, X has one of the forms

b1Bl , b1Bl Ak + b2SBl−1Ak−1 + b3T Bl−1Ak−1

with d|l. Then the commutator of X with an element of Y S
A is (note that l = n = 1

is impossible and use (6))

[X, cSBn−1Am−1] ⊂ b1c(ql
2 − 1)SBl+n−1Ak+m−1. (28)

Thus if {d}q3/q0 ⊗= 0, qd
2 = 1 then X commutes with everything in Y S

A . Finally, if
q1 = q0 and qd

4 ⊗= 1 then Lemma 3.1 implies that b1 = 0, so that the commutator
(28) is 0, and again X commutes with everything in Y S

A .
On the other hand, if none of the conditions

qd
3 ⊗= 1, q3 = q0, qd

2 = 1, (q1 = q0 and qd
4 ⊗= 1)

is satisfied, then

Bd A2 + {d}q0q2

1 − qd−1+r3
0

SBd−1A + bT T Bd−1A ≥ XA,

where r3 ≥ {2, . . . , d} is such that q3 = qr3
0 , and
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bT =
{

{d}q0q4 /(1 − qd−1
0 q1) if q1 ⊗= q0

arbitrary if q1 = q0

(bT arbitrary if q1 = q0 works because then qd
4 = 1 and thus {d}q0q4 = 0 since q

generic implies q4 ⊗= q−1
0 ). This element of XA does not commute with SB2d−r3

in Y S
A ; their commutator is (qd

2 − 1)SB3d−r3 A2. Thus it has been shown that every
element of XA commutes with every element of Y S

A if and only if (23) is satisfied.
To see that every element of XA commutes with every element of Y T

A consider
the isomorphism hST : F/J (q) → F/J (q̃), where q̃ = (q0, q3, q4, q1, q2,

1
q5

),
as defined in (18). Note that q̃ is generic, q̃0 is a root of unity with d being the smallest
positive integer such that (q̃0)d = 1 and q̃ satisfies (23) if and only if q satisfies (24).
Furthermore, hST (XA(q)) = XA(q̃) and hST (Y T

A (q)) = Y S
A (q̃). Thus, using what

has already been proved,

q satisfies (24) ∞→ q̃ satisfies (23) ∞→
every X̃ ≥ XA(q̃) commutes with every Ỹ ≥ Y S

A (q̃) ∞→
every X ≥ XA(q) commutes with every Y ≥ Y T

A (q).

This concludes the proof of the first part of the theorem, namely that C (A) is com-
mutative if and only if (23) and (24) are satisfied.

For the second part of the theorem, consider the isomorphism h AB : F/J (q) →
F/J (q̂), where q̂ = ( 1

q0
, q4, q3, q2, q1, q5), as defined in (17). Note that q̂ is

generic, q̂0 is a root of unity with d being the smallest positive integer such that
(q̂0)d = 1 and q̂ satisfies (23) and (24) if and only if q satisfies (25) and (26).
Moreover, h AB(C (B)(q)) = C (A)(q̂) and thus using what has already been proved,

q satisfies (25) and (26) ∞→ q̂ satisfies (23) and (24) ∞→
C (A)(q̂) is commutative ∞→ C (B)(q) is commutative.
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Burchnall-Chaundy Theory for Ore Extensions

Johan Richter

Abstract We begin by reviewing a classical result on the algebraic dependence of
commuting elements in the Weyl algebra. We proceed by describing generalizations
of this result to various classes of Ore extensions, including both results that are
already known and one new result.

1 Introduction

LetR be a commutative ring and S anR-algebra. Let a, b be two commuting elements
of S. We are interested in the question whether they are algebraically dependent over
R. i.e., does there exist a non-zero polynomial f (s, t) ⊕ R[s, t] such that f (a, b) = 0?
Furthermore, can we find a proper subring F of R such that a, b are algebraically
dependent over F?

In this article S will typically be an Ore extension of R. We start by introducing the
notations and conventions wewill use in this article and define what an Ore extension
is. After that we review without giving proofs results obtained by other authors for
the case that S is a differential operator ring (a special case of Ore extensions). We
then proceed to describe results obtained by the present author and his collaborators
and we finish by describing a strengthening of these results we recently obtained.

1.1 Notation and Conventions

R will denote the field of real numbers, C the field of complex numbers. Z will
denote the integers.
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IfR is a ring thenR[x1, x2, . . . xn] denotes the ring of polynomials overR in central
indeterminates x1, x2, . . . , xn.

By a ring we will always mean an associative and unital ring. All morphisms
between rings are assumed to map the multiplicative identity element to the multi-
plicative identity element.

By an ideal we shall mean a two-sided ideal.
If R is a ring we can regard it as a module (indeed algebra) over Z by defining

0r = 0, nr = ∑n
i=1 r if n > 0 and nr = −(−n)r if n is a negative integer. If there is

a positive integer n such that n1R = 0, we call the smallest such positive integer the
characteristic of R. If no such integer exists we set say that the characteristic is zero.

Let R be a commutative ring and S an R-algebra. Two commuting elements,
p, q ⊕ S, are said to be algebraically dependent (over R) if there is a non-zero
polynomial, f (s, t) ⊕ R[s, t], such that f (p, q) = 0, in which case f is called an
annihilating polynomial.

If S is a ring and a is an element in S, the centralizer of a, denoted CS(a), is the
set of all elements in S that commute with a.

This article studies a class of rings called Ore extensions. For general references
on Ore extensions, see e.g. [9, 14]. We shall briefly recall the definition. If R is a
ring and σ is an endomorphism of R, then an additive map δ : R ≥ R is said to be a
σ -derivation if

δ(ab) = σ(a)δ(b) + δ(a)b

holds for all a, b ⊕ R.

Definition 1.1 Let R be a ring, σ an endomorphism of R and δ a σ -derivation. The
Ore extension R[x; σ, δ] is defined as the ring generated by R and an element x /⊕ R
such that 1, x, x2, . . . form a basis for R[x; σ, δ] as a left R-module and all r ⊕ R
satisfy

xr = σ(r)x + δ(r). (1)

Such a ring always exists and is unique up to isomorphism (see [9]). From δ(1 ·1) =
σ(1) · 1+ δ(1) · 1 we get that δ(1) = 0, and since σ(1) = 1 we see that 1R will be a
multiplicative identity for R[x; σ, δ] as well.

Any element r of R such that σ(r) = r and δ(r) = 0 will be called a constant. In
any ring with an endomorphism σ and a σ -derivation δ the constants form a subring.

If σ = idR, then a σ -derivation is simply called a derivation and R[x; idR, δ] is
called a differential operator ring.

An arbitrary non-zero element P ⊕ R[x; σ, δ] can be written uniquely as P =∑n
i=0 aixi for some n ⊕ Z∈0, with ai ⊕ R for i ⊕ {0, 1, . . . , n} and an ⊂= 0. The

degree of P will be defined as deg(P) := n. We set deg(0) := −⊗.
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2 Burchnall-Chaundy Theory for Differential Operator Rings

We shall begin by describing some results on the algebraic dependence of commuting
elements in differential operator rings. As the title of this subsection suggests, this
sort of question has its origin in a series of papers by the British mathematicians
Joseph Burchnall and Theodore Chaundy [2–4].

Proposition 2.1 Let R be a ring and δ : R ≥ R a derivation. Let C be the set of
constants of δ. Then

(i) 1 ⊕ C;
(ii) C is a subring of R, called the ring of constants;
(iii) for any c ⊕ C and r ⊕ R we have

δ(cr) = cδ(r),

δ(rc) = δ(r)c.

Proof We skip the simple calculational proof.

As expected any derivation satisfies a version of the quotient rule.

Proposition 2.2 Let R be a ring with a derivation, δ, and let a be any invertible
element of R. Then

δ(a−1) = −a−1δ(a)a−1.

Proof

0 = δ(1) = δ(a−1a) = a−1δ(a) + δ(a−1)a ⇒ δ(a−1) = −a−1δ(a)a−1.

Corollary 2.1 Let R be a ring with a derivation δ and C its ring of constants. If a
is an invertible element that lies in C, then so does a−1. If R is a field, then C is a
subfield of R.

Example 2.1 As the ring R we can take C⊗(R,C), the ring of all infinitely many
times differentiable complex-valued functions on the real line. For δ we can take
the usual derivative. The ring of constants in this case will consist of the constant
functions.

With R and δ as in Example 2.1 we can form the differential operator ring
R[x; idR, δ]. We will show that the name “differential operator ring” is apt by con-
structing a ring of concrete differential operators that is isomorphic to R[x; idR, δ].

The ring R = C⊗(R,C) can be seen as a vector space over C, with operations
defined pointwise. So we can consider the ring EndC(R) of all linear endomorphisms
ofR. (Note that the endomorphisms are not required to bemultiplicative.) EndC(R) is
in turn an algebra over R. One of the operators in EndC(R) is the derivation operator,
whichwe denote byD. Furthermore, for any f ⊕ R there is themultiplication operator
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Mf thatmaps any function g ⊕ R to fg. The operatorD and all theMf together generate
a subalgebra of EndC(R), which we denote by T .

It is clear that the set of all Mf , for f ⊕ R, is a subalgebra of T , isomorphic to
R. Thus we abuse notation and identify Mf with f . By doing this we can write any
element of T as a finite sum,

∑n
i=0 aiDi, where each ai is a function in C⊗(R,C).

Furthermore such a decomposition is unique, or in other words: the powers of D
form a basis for T as a free module over R.

We now compute the commutator of D and f for any f ⊕ R. We temporarily revert
to writing Mf for the element in T to make our calculations easier to understand. Let
g be an arbitrary function in R. We find that

(DMf − Mf D)(g) = DMf (g) − Mf D(g) = D(fg) − Mf (g
′)

= f ′g + fg′ − fg′ = f ′g = Mδ(f )(g).

Hence
DMf − Mf D = Mδ(f ).

Relapsing into our abuse of notation we write this as Df − fD = δ(f ) or equivalently
as Df = fD + δ(f ).

Denote the identity function on the real line by y. Then Dy − yD = 1, a relation
known as the Heisenberg relation. The elements y and D together generate a subal-
gebra of T known as the Weyl algebra or the Heisenberg algebra, which is of interest
in quantum mechanics, among other areas.

Any element, P, of T can be written as P = ∑n
i=0 piDi, for some non-negative

integer n and some pi ⊕ C⊗(R,C). Conversely every such sum is an element of T .
Thus T is isomorphic to R[x; idR, δ] with R and δ defined as in Example 2.1.

In a series of papers in the 1920s and 1930s [2–4], Burchnall and Chaundy studied
the properties of commuting pairs of ordinary differential operators. In our terminol-
ogy they may be said to study the properties of pairs of commuting elements of T .
(They do not specify what function space their differential operators are supposed to
act on.) The following theorem is essentially found in their papers.

Theorem 2.1 Let P = ∑n
i=0 piDi and Q = ∑m

j=0 qjDj be two commuting elements
of T with constant leading coefficients. Then there is a non-zero polynomial f (s, t)
in two commuting variables over C such that f (P, Q) = 0. Note that the fact that P
and Q commute guarantees that f (P, Q) is well-defined.

The result of Burchnall and Chaundy was rediscovered independently during the
1970s by researchers in the area of PDEs. It turns out that several important PDEs
are equivalent to the condition that a pair of differential operators commute. These
differential equations are completely integrable as a result, which roughly means that
they possess an infinite number of conservation laws.

Burchnall’s and Chaundy’s work rely on analytical facts, such as the existence
theorem for solutions of linear ordinary differential equations. However, it is possible
to give algebraic proofs for the existence of the annihilating polynomial. This was
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done later by authors such as Amitsur [1] and Goodearl [5, 8]. Once one casts
Burchnall’s and Chaundy’s results in an algebraic form one can also generalize them
to a broader class of rings.

More specifically, one can prove Burchnall’s and Chaundy’s result for certain
differential operator rings.

Amitsur [1, Theorem 1] (following work of Flanders [7]) studied the case when
R is a field of characteristic zero and δ is an arbitrary derivation on R. He obtained
the following theorem.

Theorem 2.2 Let k be a field of characteristic zero with a derivation δ. Let F denote
the subfield of constants. Form the differential operator ring S = k[x; id, δ], and let
P be an element of S of degree n. Denote by by F[P] the ring of polynomials in P with
constant coefficients, F[P] = {∑m

j=0 bjPj | bj ⊕ F }. Then CS(P) is a commutative
subring of S and a free F[P]-module of rank at most n.

The next corollary can be found in [1, Corollary 2].

Corollary 2.2 Let P and Q be two commuting elements of k[x; id, δ], where k is a
field of characteristic zero. Then there is a nonzero polynomial f (s, t), with coeffi-
cients in F, such that f (P, Q) = 0.

Proof Let P have degree n. Since Q belongs to CS(P) we know that 1, Q, . . . , Qn

are linearly dependent over F[P] by Theorem 2.2. But this tells us that there are
elements φ0(P), φ1(P), . . . φn(P), in F[P], of which not all are zero, such that

φ0(P) + φ1(P)Q + · · · + φn(P)Qn = 0.

Setting f (s, t) = ∑n
i=0 φi(s)ti the corollary is proved.

Remark 2.1 Note that F, the field of constants, equals the center of R[x; idR, δ].
In [8] Goodearl has extended the results of Amitsur to a more general setting. The

following theorem is contained in [8, Theorem 1.2].

Theorem 2.3 Let R be a semiprime commutative ring with derivation δ and assume
that its ring of constants is a field, F. If P is an operator in R[x; idR, δ] of positive
degree n, where n is invertible in F, and has an invertible leading coefficient, then
CS(P) is a free F[P]-module of rank at most n.

We recall that a commutative ring is semiprime if and only if it has no nonzero
nilpotent elements.

Goodearl notes that if R is a semiprime ring of positive characteristic such that the
ring of constants is a field, then R must be a field. In this case he proves the following
theorem [8, Theorem 1.11].

Theorem 2.4 Let R be a field, with a derivation δ, and let F be its subfield of
constants. If P is an element of S = R[x; idR, δ] of positive degree n and with
invertible leading coefficient, then CS(P) is a free F[P]-module of rank at most n2.
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As before we get the following corollary (of both Theorem 2.3 and Theorem 2.4),
which is found in [8, Theorem 1.13].

Corollary 2.3 Let P and Q be commuting elements of R[x; idR, δ], where R is a
semiprime commutative ring, with a derivation δ such that the subring of constants
is a field. Suppose that the leading coefficient of P is invertible. Then there exists a
non-zero polynomial f (s, t) ⊕ F[s, t] such that f (P, Q) = 0.

Note that Amitsur’s work does not quite generalize Burchnall’s and Chaundy’s
results since C⊗(R,C) is not a field. Theorem 2.3 does however imply their results
since C⊗(R,C) is certainly commutative, does not have any nonzero nilpotent
elements and its ring of constants is a field (isomorphic to C). The only point to
notice is that Theorem 2.3 requires P to have positive degree. If P is an element
of degree zero and with constant leading coefficient however, it is itself a constant.
Then f (s, t) = s − P will be an annihilating polynomial for P and any Q.

An earlier paper by Carlson and Goodearl, [5], contains results similar to Theo-
rems 2.3 and 2.4, in a different setting. Part of the theorem labelled Theorem 1 in [5]
can be formulated as follows.

Theorem 2.5 Let R be a commutative ring, with a derivation δ such that the ring
of constants is a field, F, of characteristic zero. Assume that, for all a ⊕ R, if the
set {r ⊕ R | δ(r) = ar} contains a nonzero element, then it contains an invertible
element. Let P be an element of R[x; idR, δ] of positive degree n with invertible leading
coefficient. Then CS(P) is a free F[P]-module of rank at most n. As before, this implies
that if Q commutes with P, there exists a nonzero polynomial f (s, t) ⊕ F[s, t] such
that f (P, Q) = 0.

Note that the ring R in Example 2.1 satisfies the conditions of the theorem.

3 Burchnall-Chaundy Theory for Ore Extensions

Let k be a field and q a nonzero element of that field, not a root of unity. Set R = k[y],
a polynomial ring in one variable over k. There is an endomorphism σ of R such that
σ(y) = qy and the restriction of σ to k is the identity. For this σ there exists a unique
σ -derivation δ such that δ(y) = 1 and δ(α) = 0 for all α ⊕ k. The Ore extension
R[x; σ, δ] for this choice of R, σ and δ is known as the (first) q-Weyl algebra. (An
alternative name is the q-Heisenberg algebra.)

Silvestrov and collaborators [6, 10, 12] have extended the result of Burchnall and
Chaundy to the q-Weyl algebra. The cited references contain two different proofs of
the fact that any pair of commuting elements ofR[x; σ, δ] are algebraically dependent
over k. In [6] an algorithm is given to compute an annihilating polynomial explicitly.

The algorithm is a variation of one presented by Burchnall and Chaundy in their
original papers and consists of forming a certain determinant that when evaluated
gives the annihilating polynomial.
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Mazorchuk [13] has presented an alternative approach to showing the algebraic
dependence of commuting elements in q-Weyl algebras. He proves the following
theorem.

Theorem 3.1 Let k be a field and q an element of k. Set R = k[y] and suppose that∑N
i=0 qi ⊂= 0 for any natural number N. Let P be an element of S = R[x; σ, δ] of

degree at least 1. Then CS(P) is a free k[P]-module of finite rank.

If P is as in the theorem and Q is any element of R[x; σ, δ] that commutes with P,
then there is an annihilating polynomial f (s, t) with coefficients in k. This is proven
in the same way as Corollary 2.2. The methods used to obtain Theorem 3.1 have
been generalized by Hellström and Silvestrov in [11].

In [15, Theorem 3] Silvestrov and the present author extend the algorithmic
method of [6] to more general Ore extensions.

Theorem 3.2 Let R be an integral domain with an injective endomorphism σ and a
σ -derivation δ. Let a, b be two commuting elements of R[x; σ, δ]. Then there exists
a nonzero polynomial f (s, t) ⊕ R[s, t] such that f (a, b) = 0.

Note that if we apply this theorem to the q-Weyl algebra with R = k[y] we get a
weaker result than the one stated above. We would like to be able to conclude that
if a, b are commuting elements of k[y][x; σ, δ] then there is a polynomial f (s, t) in
k[s, t] such that f (a, b) = 0.

Under certain assumptions on σ we have been able to prove this and we now
proceed to describe how. We begin with a general theorem that we use as a lemma.

Theorem 3.3 Let R be an integral domain, σ an injective endomorphism of R and
δ a σ -derivation on R. Suppose that the ring of constants, F, is a field. Let a be an
element of S = R[x; σ, δ] of degree n and assume that if b and c are two elements
in CS(a) such that deg(b) = deg(c) = m, then bm = αcm, where bm and cm are the
leading coefficients of b and c respectively, and α is some constant.

Then CS(a) is a free F[a]-module of rank at most n.

The proof we give is the same as used in [8] to prove Theorem 2.3.

Proof Denote by M the subset of elements of {0, 1, . . . , n − 1} such that an integer
0 → i < n is in M if and only if CS(a) contains an element of degree equivalent to i
modulo n. For i ⊕ M let pi be an element in CS(a) such that deg(pi) ∞ i(mod n) and
pi has minimal degree for this property. Take p0 = 1.

We will show that {pi|i ⊕ M} is a basis for CS(a) as a F[a]-module.
Since R is an integral domain and σ is injective, the degree of a product of two

elements in R[x; σ, δ] is the sum of the degrees of the two elements.
We start by showing that the pi are linearly independent over F[a]. Suppose∑
i⊕M fipi = 0 for some fi ⊕ F[a]. If fi ⊂= 0 then deg(fi) is divisible by n, in which

case

deg(fipi) = deg(fi) + deg(pi) ∞ deg(pi) ∞ i(mod n). (2)
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If
∑

i⊕M fipi = 0 but not all fi are zero, we must have two nonzero terms, fipi and
fjpj, that have the same degree despite i, j ⊕ M being distinct. But this is impossible
since i ⊂∞ j(mod n).

We now proceed to show that the pi span CS(a). Let W denote the submodule they
do span. We use induction on the degree to show that all elements of CS(a) belong
to W . If e is an element of degree 0 in CS(a) we find by the hypothesis on a applied
to e and p0 = 1 that e = α for some α ⊕ F. Thus e ⊕ W .

Now assume that W contains all elements in CS(a) of degree less than j. Let e be
an element in CS(a) of degree j. There is some i in M such that j ∞ i(mod n). Let m
be the degree of pi. By the choice of pi we now that m ∞ j(mod n) and m → j. Thus
j = m + qn for some non-negative integer q. The element aqpi lies in W and has
degree j. By hypothesis, the leading coefficient of e equals the leading coefficient of
aqpi times some constant α. The element e−αaqpi then lies in CS(a) and has degree
less than j. By the induction hypothesis it also lies in W , and hence so does e.

We aim to use Theorem 3.3 when R = k[y]. To that end we have obtained the
following proposition.

Proposition 3.1 Let k be a field and set R = k[y]. Let σ be an endomorphism of
R such that σ(α) = α for all α ⊕ k and σ(y) = p(y), where p(y) is a polynomial
of degree (in y) greater than 1. Let δ be a σ -derivation such that δ(α) = 0 for all
α ⊕ k. Form the Ore extension S = R[x; σ, δ]. We note that its ring of constants is
k. Let a /⊕ k be an element of R[x; σ, δ]. Assume that b, c are elements of S such
that deg(b) = deg(c) = m (here the degree is taken with respect to x) and b, c both
belong to CS(a). Then bm = αcm, where bm, cm are the leading coefficients of b and
c respectively, and α is some constant.

The author wishes to thank Fredrik Ekström for contributing a crucial idea to the
following proof.

Proof Let an be the leading coefficient of a. By comparing the leading coefficient
of ab and ba we see that

anσ
n(bm) = bmσm(an). (3)

Similarly

anσ
n(cm) = cmσm(an). (4)

By dividing Eq.3 by Eq.4 we see that

σ n(bm)

σ n(cm)
= bm

cm
. (5)

We can perform such a division by passing to the quotient field of k[y].
It thus suffices to prove that if f , g, p are polynomials in k[y], with deg(p) > 1,

and



Burchnall-Chaundy Theory for Ore Extensions 69

f (y)g(p(y)) = f (p(y))g(y), (6)

then f (y) = αg(y) for some α ⊕ k.
So suppose that such f , g and p are given. We will also assume that k is alge-

braically closed, which can be done without loss of generality. If f and g have a
common factor h we write f (y) = h(y)f̂ (y) and similarly for g. We find that

f̂ (y)h(y)h(p(y))ĝ(p(y)) = f̂ (p(y))h(p(y))h(y)ĝ(y) (7)

⇒ f̂ (y)ĝ(p(y)) = f̂ (p(y))ĝ(y). (8)

So we can assume without loss of generality that f and g are co-prime. It follows that
the composite polynomials f ∪ p and g ∪ p are also co-prime. For if f ∪ p and g ∪ p
had the common factor l(y) it would follow that f ∪ p and g ∪ p had a common zero
since k is algebraically closed. This would imply that f and g had a common zero,
contradicting their co-primeness.

From Eq.6 we see that f must divide f ∪ p and g must divide g ∪ p. So write
f (p(y)) = e(y)f (y) and g(p(y)) = ê(y)g(y). From (6) we see that e = ê. But this
implies that e is a constant polynomial, since otherwise f ∪ p and g ∪ p would be
co-prime. On the other hand deg(f ∪ p) = deg(p) · deg(f ), which is a contradiction
unless deg(f ) = 0. The proposition follows.

Proposition 3.2 Let k, σ, δ, a be as in Proposition 3.1. Then CS(a) is a free k[a]-
module of finite rank.

Proof This follows directly from Theorem 3.3.

The following theorem, which as far as the author knows is a new result, follows
from what we proved above.

Theorem 3.4 Let k be a field. Let σ be an endomorphism of k[y] such that σ(y) =
p(y), where deg(p) > 1, and let δ be a σ -derivation. Suppose that σ(α) = α and
δ(α) = 0 for all α ⊕ k. Let a, b be two commuting elements of k[y][x; σ, δ]. Then
there is a nonzero polynomial f (s, t) ⊕ k[s, t] such that f (a, b) = 0.

Proof Using the reasoning in the proof of Corollary 2.2 this follows from Theorem
3.3 and Proposition 3.1.

Note that the center of k[y][x; σ, δ] coincides with k and thus we have a parallel
with, for example, Corollary 2.2. We would like to generalize Theorem 3.4 to obtain
general conditions under which two commuting elements of S = R[x; σ, δ] are
algebraically dependent over the center of S. An example of a result in that direction
can be found in [10] where Hellström and Silvestrov prove the following theorem.

Theorem 3.5 ([10], Theorem 7.5). Let R = k[y], σ(y) = qy and δ(y) = 1, where
q ⊕ k and q is a root of unity. Form S = R[x; σ, δ] and let C be the center of S. If
a, b are commuting elements of S then there is a nonzero polynomial f (s, t) ⊕ C[s, t]
such that f (a, b) = 0.
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This theorem can not be strengthened to give algebraic dependence over k. Indeed,
suppose that qn = 1. One can check that xn and yn commute (in fact they both belong
to the center) but they are not algebraically dependent over k.
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Homotopy Commutative Algebra
and 2-Nilpotent Lie Algebra

Michel Dubois-Violette and Todor Popov

Abstract The homotopy transfer theorem due to Tornike Kadeishvili induces the
structure of a homotopy commutative algebra, or C⊕-algebra, on the cohomology
of the free 2-nilpotent Lie algebra. The latter C⊕-algebra is shown to be generated
in degree one by the binary and the ternary operations.

1 Introduction

Every Universal Enveloping Algebra (UEA) Ug of a finite dimensional positively
graded Lie algebra g belongs to the class of Artin-Schelter regular algebras(see e.g.
[4]). As every finitely generated graded connected algebra, Ug has a free minimal
resolution which is canonically built from the data of its Yoneda algebra E :=
ExtUg(K,K). By construction the Yoneda algebra E is isomorphic (as algebra) to
the cohomology of the Lie algebra (with coefficients in the trivial representation
provided by the ground field K)

E = Ext•Ug(K,K) ≥= H•(g,K) (1)

equipped with wedge product between cohomological classes in H•(g,K).
The homotopy transfer theorem of Kadeishvili [7] implies that the Yoneda algebra

E = Ext•Ug(K,K) has the structure of homotopy associative algebra, or A⊕-algebra.
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Since E ≥= H•(g,K) is the cohomology of the exteriour algebra
∧

g∈ which is
graded-commutative, it has the structure of homotopy commutative and associative
algebra, or C⊕-algebra.

Throughout the text g will be the free 2-nilpotent graded Lie algebra, with degree
one generators in the finite dimensional vector space V over a field K of character-
istic 0,

g = V ⊂
∧2

V .

The UEA U(V ⊂ ⊗2V) arises naturally in physics in the universal Fock-like space
of the parastatistics algebra introduced by Green [5] (see also [3]). Here we will
concentrate on the case when V is an ordinary (even) vector space V , when the
algebra Ug is the parafermionic algebra.

The aim of this note is to describe the Yoneda algebra E of the UEA Ug, i.e.,
the cohomology H•(g,K) with its C⊕-structure induced by the isomorphism (1)
through the homotopy transfer.

The cohomology space H•(g,K) has a natural GL(V)-action. The decomposition
of the GL(V)-module H•(g,K) into irreducible Schur modules Vλ is known since
the work of Józefiak and Weyman [6]; it contains all GL(V)-modules with self-
conjugated Young diagrams λ = λ′ once and exactly once. The decomposition of
E = H•(g,K) into Schur modules provides a powerful tool to handle itsC⊕-algebra
structure.

2 Artin-Schelter Regularity

Let g be the 2-nilpotent graded Lie algebra g = V ⊂ ∧2 V generated by the finite
dimensional vector space V having Lie bracket

[x, y] :=
{

x ⊗ y x, y ∈ V
0 otherwise

. (2)

We denote the Universal Enveloping Algebra Ug by PS and will refer to it as paras-
tatistics algebra (by some abuse1). The parastatistics algebra PS(V) generated in V
is graded

PS(V) := Ug = U(V ⊂
∧2

V) = T(V)/([[V , V ], V ]) .

We shall write simply PS when the space of generators V is clear from the context.
Artin and Schelter [1] introduced a class of regular algebras sharing some “good”

homological properties with the polynomial algebra K[V ]. These algebras were
dubbed Artin-Schelter regular algebras (AS-regular algebra for short).

1 Strictly speaking PS(V) is the creation parastatistics algebra, closed by creation operators alone.
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Definition 2.1 (AS-regular algebras) A connected graded algebra A = K ⊂ A1 ⊂
A2 ⊂ . . . is called Artin-Schelter regular of dimension d if

(i) A has finite global dimension d,
(ii) A has finite Gelfand-Kirillov dimension,
(iii) A is Gorenstein, i.e., ExtiA (K,A ) = αi,d

K.

A general theorem claims that the UEA of a finite dimensional positively graded
Lie algebra is an AS-regular algebra of global dimension equal to the dimension
of the Lie algebra [4]. Hence the parastatistics algebra PS is AS-regular of global
dimension d = dim V(dim V+1)

2 . In particular the finite global dimension of PS implies
that the ground fieldK has a minimal resolution P• by projective left PS-modules Pn

P• : 0 → Pd → · · · → Pn → · · · → P2 → P1 → P0
ε→ K → 0 . (3)

Here K is a trivial left PS-module, the action being defined by the projection ε onto
PS0 = K. Since PS is positively graded and, in the category of positively graded
modules over connected locally finite graded algebras, projective module is the same
as free module [2], we have Pn ≥= PS ∞ En where En are finite dimensional vector
spaces.

The minimal projective resolution is unique (up to an isomorphism). Minimality
implies that the complex K ∞PS P• has “zero differentials” hence

H•(K ∞PS P•) = K ∞PS P• = En .

One can calculate the derived functor TorPS
n (K,K) using the resolution P•, it yields

TorPS
n (K,K) = En . (4)

The data of a minimal resolution of K by free PS-modules provides an easy way to
find TorPS

n (K,K). Conversely if the spaces TorPS
n (K,K) are known, then one can

constuct a minimal free resolution of K.
The Gorenstein property guarantees that when applying the functor

HomPS(−, PS) to the minimal free resolution P• we get another minimal free reso-
lution P• := HomPS(P•, PS) of K by right PS-modules

P• : 0 ∪ K ∪ P
′

d ∪ · · · ∪ P
′

n ∪ · · · ∪ P
′
2 ∪ P

′
1 ∪ P

′
0 ∪ 0 (5)

with P
′

n
≥= E∈

n ∞ PS. Note that by construction E∈
n = ExtnPS(K,K), thus one has

vector space isomorphisms [2]

En ≥= E∈
n

≥= TorPS
n (K,K) ≥= ExtnPS(K,K) . (6)
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The Gorenstein property is an analog of the Poincaré duality, it implies E∈
d−n

≥= En .

The finite global dimension d of PS and the Gorenstein condition imply that its
Yoneda algebra

E • := Ext•PS(K,K) ≥=
d⊕

n=0

E∈
n

is Frobenius [10].More onGorenstein property you can find in the first autor’s lecture
“Poincaré duality for Koszul algebras” in the present volume.

3 Homology and Cohomology of g

A non-minimal projective (in fact free) resolution of K, C(g)
ε→ K is given by

the standard Chevalley-Eilenberg chain complex C•(g) = (Ug ∞K ⊗pg, dp) with
differential maps

dp(u ∞ x1 ⊗ . . . ⊗ xp) =
∑

i

(−1)i+1uxi ∞ x1 ⊗ . . . ⊗ x̂i ⊗ . . . ⊗ xp

+
∑
i<j

(−1)i+ju ∞ [xi, xj]⊗

x1 ⊗ . . . ⊗ x̂i ⊗ . . . ⊗ x̂j ⊗ . . . ⊗ xp. (7)

The resolution C•(g) calculates the homologies of the derived complexK∞PS C•(g)

En = TorPS
n (K,K) ≥= Hn(K ∞PS C•(g)) = Hn(g,K) ,

coincidingwith the homologiesHn(g,K) of the Lie algebra gwith trivial coefficients.
The derived complexK∞PS C•(g) is the chain complex with degrees

∧•g = K∞PS

PS ∞ ∧•g and differentials Δp := id ∞PS dp : ∧pg → ∧p−1g. One has

∧p
g =

∧p
(V ⊂

∧2
V) =

⊕
s+r=p

∧s
(
∧2

V) ∞
∧r

(V) (8)

and differentials Δp=r+s : ∧s
(
∧2V)∞∧r

(V) → ∧s+1
(
∧2V)∞∧r−2

(V) are given
by

Δp : ei1j1 ⊗ . . . ⊗ eisjs ∞ e1 ⊗ . . . ⊗ er ↔→∑
i<j

(−1)i+jeij ⊗ ei1j1 ⊗ . . . ⊗ eisjs ∞ e1 ⊗ . . . ⊗ êi ⊗ . . . ⊗ êj ⊗ . . . ⊗ er .
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The differential Δ is induced by the Lie bracket [ · , · ] : ∧2g → g, it identifies a pair
of degree 1 generators ei, ej ∈ with one degree 2 generator eij := (ei ⊗ ej) = [ei, ej].
The differential Δp is the extension of Δ2 := −[ · , · ] as coderivation on

∧pg.
The dual cochain complex HomPS(C(g),K) = (

∧•g∈, α) calculates
cohomology2

E∈
n = ExtnPS(K,K) ≥= Hn(HomPS(C(g),K)) = Hn(g,K) . (9)

The coboundary map αp : ∧pg∈ → ∧p+1g∈ is transposed to the differential Δp+1

αp : e∈
i1j1 ⊗ . . . ⊗ e∈

isjs ∞ e∈
l1 ⊗ . . . ⊗ e∈

lr ↔→ (10)
s∑

k=1

∑
ik<jk

(−1)i+je∈
i1j1 ⊗ . . . ⊗ ê∈

ik jk ⊗ . . . ⊗ e∈
isjs ∞ e∈

ik ⊗ e∈
jk ⊗ e∈

l1 ⊗ . . . ⊗ . . . ⊗ e∈
lr ,

it is (up to a conventional sign) the extension as derivation of the dualization of the
Lie bracket α1 := [ · , · ]∈ : g∈ → ∧2g∈. Thus the algebra (

∧•g∈, α) equipped with
α is a (graded-)commutative DGA.

4 Homology of g as a GL(V)-Module

An irreducible polynomial GL(V)-module Vλ is called Schur module, it has a basis
labelled by semistandard Young tableaux which are fillings of the Young diagram λ

with the numbers of the set {1, . . . , dim V}. The action of the linear group GL(V)

on the space V of the generators of the Lie algebra g induces a GL(V)-action on the
UEA PS = Ug ≥= S(V ⊂ δ2V) and on the space

∧•g ≥= ∧•
(V ⊂ ∧2V).

In the presence of metric g one has an identification V
g≥= V∈, and

∧•g
g≥= ∧•g∈.

The adjoint operator Δ∈
p : ∧pg → ∧p+1g is defined by g(Δ∈

p v, w) = g(v, Δp+1w). It
turns out that the action of Δ∈

p always takes the form (similar to the action of αp)

Δ∈
p : ei1j1 ⊗ . . . ⊗ eisjs ∞ el1 ⊗ . . . ⊗ elr ↔→ (11)

s∑
k=1

∑
ik<jk

(−1)i+jei1j1 ⊗ . . . ⊗ êik jk ⊗ . . . ⊗ eisjs ∞ eik ⊗ ejk ⊗ el1 ⊗ . . . ⊗ . . . ⊗ elr ,

It is obvious that the maps Δ and Δ∈ both commute with the GL(V)-action. The
Laplacian ω = ⊂p≥0ωp of the pair (g, g) is defined to be the self-adjoint operator

ωp = Δp+1Δ
∈
p+1 + Δ∈

p Δp ∈ End(
∧p

g) .

2 In the presence of metric one has α := Δ∈(see below).
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Its kernel is a complete set of representatives for the homology classes in Hp(g,K)

kerωp ≥= Hp(g,K) .

The decomposition of the GL(V)-module Hn(g,K) into irreducible polynomial rep-
resentations Vλ is given by the following theorem;

Theorem 4.1 (Józefiak and Weyman [6], Sigg [11]) The homology H•(g,K) of the
2-nilpotent Lie algebra g = V ⊂∧2V decomposes into irreducible GL(V)-modules

Hn(g,K) = Hn(
∧•

g, Δ) ≥= TorPS
n (K,K)(V) ≥=

⊕
λ:λ=λ′

Vλ (12)

where the sum is over self-conjugate Young diagrams λ such that n = 1
2 (|λ|+ r(λ)).

The data Hn(g,K) = TorPS
n (K,K) encodes the minimal free resolution P• (cf. (3)).

The Euler characteristics of P• implies an identity about the GL(V)-characters

ch PS(V) . ch

( ⊕
λ:λ=λ′

(−1)
1
2 (|λ|+r(λ))Vλ

)
= 1 .

The character of a Schur module Vλ is the Schur function, ch Vλ = sλ(x). Due to the
Poincaré-Birkhoff-Witt theorem ch PS(V) = ch S(V ⊂∧2V) thus the identity reads

∏
i

1

(1 − xi)

∏
i<j

1

(1 − xixj)

∑
λ:λ=λ′

(−1)
1
2 (|λ|+r(λ))sλ(x) = 1 . (13)

But the latter identity is nothing but rewriting of the Littlewood identity [6]. The
moral is that the Littlewood identity reflects a homological property of the algebra
PS, namely the above particular structure of the minimal projective (free) resolution
of K by PS-modules.

5 Homotopy Algebras A∞ and C∞

Definition 5.1 (A⊕-algebra) A homotopy associative algebra, or A⊕-algebra, over
K is a Z-graded vector space A = ⊕

i∈Z Ai endowed with a family of graded map-
pings (operations)

mn : A∞n → A, deg(mn) = 2 − n n ≥ 1

satisfying the Stasheff identities SI(n) for n ≥ 1



Homotopy Commutative Algebra and 2-Nilpotent Lie Algebra 77

∑
r+s+t=n

(−1)r+stmr+1+t(Id
∞r ∞ ms ∞ Id∞t) = 0 SI(n)

where the sum runs over all decompositions n = r + s + t.

Here we assume the Koszul sign convention (f ∞ g)(x ∞ y) = (−1)|g||x|f (x) ∞ g(y).
We define the shuffle product Shp,q : A∞p∞A∞q → A∞p+q throughout the expression

(a1 ∞ . . . ∞ ap) Δ (ap+1 ∞ . . . ∞ ap+q) =
∑

θ∈Shp,q

sgn(θ ) aθ−1(1) ∞ . . . ∞ aθ−1(p+q)

where the sum runs over all (p, q)-shuffles Shp,q, i.e., over all permutations θ ∈ Sp+q

such that θ(1) < θ(2) < . . . < θ(p) and θ(p + 1) < θ(p + 2) < . . . < θ(p + q) .

Definition 5.2 (C⊕-algebra [7]) A homotopy commutative algebra, or C⊕-algebra,
is anA⊕-algebra {A, mn} such that each operationmn vanishes on non-trivial shuffles

mn
(
(a1 ∞ . . . ∞ ap) Δ (ap+1 ∞ . . . ∞ an)

) = 0 , 1 ∗ p ∗ n − 1 . (14)

In particular for m2 we have m2(a ∞ b ± b ∞ a) = 0, so a C⊕-algebra such that
mn = 0 for n ≥ 3 is a (super-)commutative DGA.

Amorphism of twoA⊕-algebrasA andB is a family of gradedmaps fn : A∞n → B
for n ≥ 1 with deg fn = 1 − n such that the following conditions hold

∑
r+s+t=n

(−1)r+st fr+1+t(Id
∞r ∞ ms ∞ Id∞r) =

∑
1∗r∗n

(−1)Smr(fi1 ∞ fi2 ∞ . . . ∞ fir )

where the sum is on all decompositions i1 + . . . + ir = n and the sign on RHS is
determined by S = ∑r−1

k=1(r − k)(ik − 1). The morphism f is a quasi-isomorphism
of A⊕-algebras if f1 is a quasi-isomorphism. It is strict if fi = 0 for all i ≤= 1. The
identity morphism of A is the strict morphism f such that f1 is the identity of A.

A morphism of C⊕-algebras is a morphism of A⊕-algebras vanishing on non-
trivial shuffles fn

(
(a1 ∞ . . . ∞ ap) Δ (ap+1 ∞ . . . ∞ an)

) = 0 , 1 ∗ p ∗ n − 1 .

6 Homotopy Transfer Theorem

Lemma 6.1 Every cochain complex (A, d) of vector spaces over a field K has its
cohomology H•(A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex (A, d)

such that An ≥= Bn ⊂ Hn ⊂ Bn+1 where Hn is the cohomology and Bn is the space
of coboundaries, Bn = dAn−1. We choose a homotopy h : An → An−1 which
identifies Bn with its copy in An−1 and is 0 on Hn ⊂ Bn+1. The projection p to the
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cohomology and the cocycle-choosing inclusion i given by An
p ��

Hn

i
�� are chain

homomorphisms (satisfying the additional conditions hh = 0, hi = 0 and ph = 0).
With these choices done the complex (H•(A), 0) is a deformation retract of (A, d)

h
��
(A, d)

p ��
(H•(A), 0)

i
�� , pi = IdH•(A) , ip − IdA = dh + hd .

Let now (A, d, μ) be a DGA, i.e., A is endowed with an associative product μ

compatible with d. The cochain complexes (A, d) and its contraction H•(A) are
homotopy equivalent, but the associative structure is not stable under homotopy
equivalence. However the associative structure on A can be transferred to an A⊕-
structure on a homotopy equivalent complex, a particular interesting complex being
the deformation retract H•(A). For a friendly introduction to homotopy transfer
theorems inmuch boarder context we send the reader to the textbook [9], see Chap.9.

Theorem 6.1 (Kadeishvili [7]) Let (A, d, μ) be a (commutative) DGA over a field
K. There exists a A⊕-algebra (C⊕-algebra) structure on the cohomology H•(A)

and a A⊕(C⊕)-quasi-isomorphism fi : (∞iH•(A), {mi}) → (A, {d, μ, 0, 0, . . .})
such that the inclusion f1 = i : H•(A) → A is a cocycle-choosing homomorphism of
cochain complexes. The differential m1 on H•(A) is zero (m1 = 0) and m2 is strictly
associative operation induced by the multiplication on A. The resulting structure is
unique up to quasi-isomorphism.

Kontsevich and Soibelman [8] gave an explicit expressions for the higher operations
of the induced A⊕-structure as sums over decorated planar binary trees with one
root where all leaves are decorated by the inclusion i, the root by the projection p
the vertices by the product μ of the (commutative) DGA (A, d, μ) and the internal
edges by the homotopy h. The C⊕-structure implies additional symmetries on trees.
We will make use of the graphic representation for the binary operation on H•(A)

i ���
��

��
��

�

i����
��

��
��

m2(x, y) := pμ(i(x), i(y)) or m2 = μ

p

��

and the ternary one m3(x, y, z) = pμ(i(x), hμ(i(y), i(z))) − pμ(hμ(i(x), i(y)),
i(z)) being the sum of two planar binary trees with three leaves

http://dx.doi.org/10.1007/978-3-642-55361-5_9


Homotopy Commutative Algebra and 2-Nilpotent Lie Algebra 79

i
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Theorem 6.2 The cohomology H•(g,K) ≥= Ext•PS(K,K) of the 2-nilpotent graded

Lie algebra g = V ∞ ∧2V is a homotopy commutative algebra which is generated
in degree 1 (i.e., in H1(g,K)) by the operations m2 and m3.

Sketch of the proof Let us choose ametric g( · , · ) = ⊥ · , · ∀ on the vector space V and

an orthonormal basis ⊥ei, ej∀ = αij. The choice induces a metric on
∧•g

g≥= ∧•g∈.
Due to the isomorphismsTorPS

n (K,K) ≥= ExtnPS(K,K) (seeEq.6) andV ≥= V∈ the
theorem 4.1 implies the decomposition of H•(g,K) into irreducible GL(V)-modules

Hn(g,K) ≥= Hn(
∧

g∈, α) ≥= ExtnPS(K,K)(V∈) ≥=
⊕

λ:λ=λ′
Vλ

where the sum is over self-conjugate diagrams λ such that n = 1
2 (|λ| + r(λ)).

In the presence of metric g the differential α is identified with the adjoint of Δ ,

α
g:= Δ∈ while Δ plays the role of a homotopy. In view of lemma 1 we have the

cohomology H•(
∧•g∈, α•) as deformation retract of the complex (

∧•g∈, α•),

pi = IdH•(
∧•g∈) , ip − Id∧•g∈ = αα∈ + α∈α , α∈ g= Δ .

Here the projection p identifies the subspace ker α ∩ ker α∈ with H•(
∧•g∈), which

is the orthogonal complement of the space of the coboundaries imα. The cocycle-
choosing homomorphism i is Id on H•(

∧•g∈) and zero on coboundaries.
We apply the Kadeishvili homotopy transfer Theorem 6.1 for the commutative

DGA (
∧•g∈, μ, α•) and its deformation retractH•(

∧•g∈) ≥= H•(g,K) and conclude
that the cohomology H•(g,K) is a C⊕-algebra.

The Kontsevich and Soibelman tree representations of the operations mn provide
explicit expressions. Let us take μ to be the super-commutative product ⊗ on the
DGA (

∧•g∈, α•). The projection p maps onto the Schur modules Vλ with λ = λ′.
The binary operation on the degree 1 generators ei ∈ H1(g,K) is trivial, one gets

m2(ei, ej) = p(ei ⊗ ej) = 0 p(V(12)) = 0.

Hence H•(g,K) could not be generated in H1(g,K) as algebra with product m2.
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The ternary operation m3 restricted to H1(g,K) is nontrivial, indeed one has

m3(ei, ej, ek) = p
{
ei ⊗ Δ(ej ⊗ ek) − Δ(ei ⊗ ej) ⊗ ek

} = p
{
eij ⊗ ek − ei ⊗ ejk

}
= p

{
(eij ⊗ ek + ejk ⊗ ei + eki ⊗ ej) − eki ⊗ ej

}
= eik ⊗ ej ∈ H2(g,K)

The completely antisymmetric combination in the brackets (. . .) spans the Schur
module V(13), p(eij ⊗ ek + ejk ⊗ ei + eki ⊗ ej) = 0 yields a Jacobi-type identity.
The monomials eij ⊗ ek modulo V(13) span a Schur module V(2,1) ∈ H2(g,K) with

basis in bijection with the semistandard Young tableaux eik ⊗ ej ↔ i j
k

and

eij ⊗ ek ↔ i k
j

. We check the symmetry condition on ternary operation m3 in

C⊕-algebra; indeed m3 vanishes on the (signed) shuffles Sh1,2 and Sh2,1

m3(ei Δ ej ∞ ek) = m3(ei, ej, ek) − m3(ej, ei, ek)

+ m3(ej, ek, ei) = 0 = m3(ei ∞ ej Δ ek).

It is important that in the complexes (
∧pg, Δp) and (

∧pg∈, αp) two different
degees are involved; one is the homological degree p := r + s counting the number
of g-generators, while the second is the tensor degree t := 2s+r(also called weight).
The differentials Δ and α preserve the tensor degree t but the spaces Hn(g,K) and
Hn(g,K) are not homogeneous in t. The operationmn is bigraded by homological and
tensor gradings of bidegree (p, t) = (2− n, 0). The bi-grading impose the vanishing
of many higher products.

On the level of Schur modules the ternary operation glues three fundamental
GL(V)-representations V� into a Schur module V(2,1). By iteration of the process of
gluing boxes we generate all elementary hooks Vk := V(k+1,1k),

In our context the more convenient notation for Young diagrams is due to Frobenius:
λ := (a1, . . . , ar |b1, . . . br) stands for a diagram λ with ai boxes in the i-th row on
the right of the diagonal, and with bi boxes in the i-th column below the diagonal
and the rank r = r(λ) is the number of boxes on the diagonal.

For self-dual diagrams λ = λ′, i.e., ai = bi we set Va1,...,ar := V(a1,...,ar |a1,...ar)

when a1 > a2 > . . . > ar ≥ 0 (and set the convention Va1,...,ar := 0 otherwise).
Any two elementary hooks Va1 and Va2 can be glued together by the binary operation
m2, the decomposition of m2(Va1 , Va2)

≥= m2(Va2 , Va1) is given by
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m2(Va1 , Va2) = Va1,a2 ⊂ (

a2⊕
i=1

Va1+i,a2−i) a1 ≥ a2

where the “leading” term Va1,a2 has the diagram with minimal height. Hence any
m2-bracketing of the hooks Va1 , Va2 . . . , Var yields

3 a sum of GL(V)-modules

m2(. . . m2(m2(Va1 , Va2), Va3), . . . , Var ) = Va1,...,ar ⊂ . . .

whose module with minimal height is precisely Va1,...,ar . We conclude that all ele-
ments in the C⊕-algebra H•(g,K) can be generated in H1(g,K) by m2 and m3.
�
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Subalgebra Depths Within the Path Algebra
of an Acyclic Quiver

Lars Kadison and Christopher J. Young

Abstract Constraints are given on the depth of diagonal subalgebras in generalized
triangular matrix algebras. The depth of the top subalgebra B ⊕= A/rad A in a finite,
connected, acyclic quiver algebra A over an algebraically closed field K is then
computed. Also the depth of the primary arrow subalgebra 1K + rad A = B in A is
obtained. The two types of subalgebras have depths 3 and 4 respectively, independent
of the number of vertices. An upper bound on depth is obtained for the quotient of a
subalgebra pair.

1 Introduction

Given a subalgebra pair, one extracts a (minimum) depth from a comparison of
n-fold tensor products of the subalgebra pair with one another in a meaningful way.
The interesting case is when an (n + 1)-fold tensor product divides a multiple of the
n-fold tensor product in the sense of Krull-Schmidt unique factorization into inde-
composable bimodules, or more generally as a bimodule isomorphism with a direct
summand. The bimodule structures on the n-fold tensor products are naturally any
one of four possibilities as left and right modules over the subalgebra or overalgebra.
The least restrictive of these conditions is two-sided over the subalgebra and we
fix the depth in the situation mentioned above to be 2n + 1; for mixed bimodules,
we have the left and right depth 2n conditions [4]. The most stringent condition, as
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bimodules of the overalgebra, is H-depth 2n −1 [17], and is useful to ordinary depth
gauging as well when the overalgebra has nice bimodules such as a separable algebra
(see Proposition 2.1 below).

Comparing the tensor-square of an algebra extension with the overalgebra as
mixed bimodules leads to a characterization of the Galois extension [7, 15, 16]. Thus
not unexpectedly the depth two condition placed on Hopf subalgebras is equivalent
to the normality condition with respect to the adjoint actions [3]. The depth three
condition is satisfied by a subalgebra B ≥ A when, in a suitably nice category
of bimodules, A contains all Be-indecomposables that can possibly appear up to
isomorphism in decompositions of tensor products A∈B · · · ∈B A [3, 6]. Semisimple
complex subalgebra pairs of each depth n ⊂ N are noted in [5] via bipartite graphs
and inclusion matrices for K0(B) ⊗ K0(A).

In the paper [4] it was shown that the depth of a finite group algebra extension is
bounded by twice the index of the normalizer of the subgroup in the group. In the
papers [4, 5, 11–13] the depth of certain group algebra extensions are computed;
for example, [13] computes the depth of all the subgroups of P SL(2, q) viewed
as complex group algebras. In [5] the complex group algebras associated to the
permutation groups are shown to have depth d(Sn, Sn+1) = 2n −1; in [4], this same
result is shown to not depend on the ground ring.

It was noted in the paper [6] that a subalgebra B in a finite-dimensional algebra
A has finite depth d(B, A) if Be has finite representation type; below we note that
this holds if Ae has finite representation type. In addition it is possible in algebras
without involution that a subalgebra having left depth 2n may not have right depth
2n. Moreover, the matrix power inequality characterizing depth n subalgebra pairs
of semisimple complex algebras in [5, 11] breaks down in the presence of indecom-
posables of length greater than one. For these reasons, it becomes interesting to begin
a study of depth of subalgebras in path algebras of quivers. A reasonable place to
start is with acyclic quivers for whose path algebras there is a classic theorem about
which have finite representation type in terms of Dynkin diagrams and the underly-
ing graphs [1]. This paper computes the depth of the top and arrow subalgebras of
the path algebra of a finite, connected, acyclic quiver. In Sect. 3 we note constraints
on the depth of a diagonal subalgebra of a generalized matrix ring. We also note an
inequality of depth in case the subalgebra contains ideals of the overalgebra, perhaps
useful in computing depth of certain subalgebras of bounded quiver algebras. In the
last Sect. 6 of concluding remarks we discuss other subalgebras of certain quiver
algebras and their depth.

2 Preliminaries on Depth

Given a unital associative ring R and unital R-modules M and N , we say that
M divides N and write M | N if N ⊕= M ⊕ ∗ as R-module for some (unnamed)
complementary module. If there are natural numbers r and s such that N | r M =
M⊕ · · · ⊕M and M | s N , then M and N areH-equivalent (or similar), as R-modules;
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denoted by M ⊕ N . Note that this is indeed an equivalence relation. In this case
their endomorphism rings End MR and End NR are Morita equivalent with Morita
context bimodules Hom (MR, NR) and Hom (NR, MR) (with module actions and
Morita pairings given by composition).

If M and N are in a category of finitely generated R-modules having unique
factorization into indecomposables, then M and N have the same indecomposable
constituents if and only if M and N are H-equivalent modules. If F is an additive
endofunctor of the category of R-modules, then M ⊕ N implies F(M) ⊕ F(N );
which in practice means that H-equivalent bimodules may replace one another in
certain H-equivalences of tensor products. In addition, M ⊕ N andU ⊕ V implies
M ⊕ U ⊕ N ⊕ V .

Throughout this paper, let A be a unital associative ring and B ≥ A a subring
where 1B = 1A. Note the natural bimodules B AB obtained by restriction of the
natural A-A-bimodule (briefly A-bimodule) A, also to the natural bimodules B AA,
A AB or B AB , which are referred to with no further notation. Equivalently we denote
the proper ring extension A → B occasionally by A | B. (Often results are valid as
well for a ring homomorphism B ⊗ A and its induced bimodules on A.)

Let C0(A, B) = B, and for n ∞ 1,

Cn(A, B) = A ∈B · · · ∈B A (n times A)

For n ∞ 1, the Cn(A, B) has a natural A-bimodule structure given by a(a1 ∈ · · · ∈
an)a∪ = aa1∈ · · · ∈ana∪. Of course, this bimodule structure restricts to B-A-, A-B-
and B-bimodule structures as we may need them. Let C0(A, B) denote the natural
B-bimodule B itself. Recall from [4, 6] that a subring B ≥ A has right depth 2n if

Cn+1(A, B) ⊕ Cn(A, B) (1)

as natural A-B-bimodules; left depth 2n if the same condition holds as B-A-
bimodules; if both left and right conditions hold, it has depth 2n; and depth 2n + 1
if the same condition holds as B-bimodules. If condition (1) holds in its strongest
form as A-A-modules for n ∞ 1 the subring B ≥ A is said to have H-depth 2n − 1;
H-depth is investigated in [17].

Note that if the subring has left or right depth 2n, it automatically has depth 2n+1
by restriction to B-bimodules. Also note that if the subring has depth 2n + 1, it has
depth 2n + 2 by tensoring the H-equivalence by − ∈B A or A ∈B −. The minimum
depth (or just depth when the context makes it clear) is denoted by d(B, A); if B ≥ A
has no finite depth, write d(B, A) = ↔. There is hidden in this a subtlety: if there is
a subring B ≥ A of left depth 2n but not of right depth 2n, then it has depth 2n + 1,
left and right depth 2n + 2, and nevertheless its minimum depth is 2n. There is not
a published example of such a subring at present (but a search for this must occur
outside the class of QF extensions [6, Theorem 2.4]). Note too that if B ≥ A has
H-depth 2n − 1, it has depth 2n by restriction.

In practice one only need check half of the condition in (1) to establish depth 2n
or 2n + 1 of a ring extension A → B. This is due to the fact that it is always the case
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that Cn(A, B) | Cn+1(A, B) for n ∞ 1 via appropriate face and degeneracy maps in
the relative homological bar complex; e.g. the A-A-epimorphism a1 ∈ a2 ⊗ a1a2
is split by the B-A-monomorphism a ⊗ 1 ∈B a, whence C1(A, B) | C2(A, B) as
B-A-bimodules.

For a k-algebra B let Be denote B ∈k Bop. For a finite dimensional algebra A let
n A denote the cardinal number of isomorphism classes of indecomposable finitely
generated A-modules. Of course each of the Be-modules Cn(A, B) are finitely gen-
erated when A is a finite dimensional algebra.

Proposition 2.1 Let B ≥ A be a subring pair of finite dimensional algebras. If Be

has finite representation type, then d(B, A) ∗ 1 + 2nBe . If Ae has finite represen-
tation type, then d(B, A) ∗ 2n Ae . If A ∈ Bop has finite representation type, then
d(B, A) ∗ 2n A∈Bop .

Proof If Be has finite representation type, it is shown in [6] that subring depth
d(B, A) is finite based on two basic facts. First, a finitely generated module M over
a finite dimensional algebra divides a multiple of another module N if and only if
their Krull-Schmidt unique factorization into indecomposable modules possess the
indecomposable constituents satisfying Indec (M) ≥ Indec (N ); then M and N are
H-equivalent iff Indec (M) = Indec (N ). Secondly, fromCn(A, B) | Cn+1(A, B)we
obtain IndecCn(A, B) as sequence of subsets of a finite number of indecomposables
that grows with n.

If Ae has finite representation type, then one applies the same argument with
growing IndecCn(A, B), this time as A-A-bimodules,which shows thatCN+1(A, B)

and CN (A, B) are H-equivalent after at most N = n Ae steps. Then the minimum H-
depth dH (B, A) ∗ 2N −1, and one notes by restrictingmodules that d(B, A) ∗ 2N .
The last statement is proven similarly using the definition of even depth.

Corollary 2.1 Suppose B ≥ A is a subalgebra pair where either A or B is a
separable algebra. Then depth d(B, A) is finite.

3 Constraints on Subring Depth in Triangular Matrix Rings

Let R and S be unital associative rings. Suppose S MR is a unital S-R-bimodule as
suggested by the notation. There is a triangular matrix ring, denoted by A, associated
with this data,

A :=
(

R 0
M S

)
(2)

with the obvious matrix addition and multiplication, which defines a well-known
class of examples in the demonstration of independence of axioms in ring theory
such as left and right noetherian property of rings.

Note the subring of diagonal matrices in A is isomorphic (and identified) with
R × S. The obvious split epimorphism of rings A ⊗ R × S is denoted by
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λ :
(

r 0
m s

)
⊗ (r, s). The mapping λ is of course an isomorphism if M = 0.

Also note the orthogonal idempotents e1 = (1R, 0) and e2 = (0, 1S), where
A = e1A ⊕ e2Ae1 ⊕ Ae2.

Let R∪ be a unital subring of R, and S∪ a unital subring of S. Then B := R∪ × S∪ is
a subalgebra of diagonal matrices in A. We will be interested in the depth d(B, A).
At first we will dispose of the case M = 0 and note that d(R∪ × S∪, R × S) =
max{d(R∪, R), d(S∪, S)}. (This proposition should be comparedwith [5, Prop. 3.15].)

Proposition 3.1 The depth of a subalgebra of a direct product of rings is given by

d(R∪ × S∪, R × S) = max{d(R∪, R), d(S∪, S)}.

Proof Let A = R×S and B = R∪×S∪. Note that the central orthogonal idempotents
e1, e2 ⊂ B ≥ A. It follows that there is the following isomorphism of n-fold tensor
products (any n ⊂ N ),

Cn(A, B) ⊕= Cn(R, R∪) ⊕ Cn(S, S∪) (3)

as B-B-, A-B- and B-A-bimodules up to a trivial extension of for example R-module
to A-module by S · x = 0, all elements x in the module. Such a decomposition holds
as well for bimodule homomorphisms between n- and n + 1-fold tensor products.

Let 2m + 1 ∞ max{d(R∪, R), d(S∪, S)}. Then the righthand-side of (3) where
n = m + 1 divides a multiple of the m-fold tensor product of the same form, then
so does the lefthand-side. Hence d(B, A) ∗ 2m + 1. If both depths d(R∪, R) and
d(S∪, S) are even, the same argument replacing 2m + 1 with 2m suffices to establish
d(B, A) ∗ max{d(R∪, R), d(S∪, S)}. Note that the argument works for 0-fold tensor
product and depth one case too. The reverse inequality follows from applying the
central idempotents to Cn(A, B) ⊕ Cn+1(A, B).

Next we continue the notation B = R∪ × S∪ and A as the triangular matrix ring
formed from the rings R, S and the bimodule S MR ≤= 0. Let M denote a category
of modules or bimodules, where left and right subscripts denote the rings in action.

Lemma 3.1 As abelian categories,

BMB ⊕= R∪MR∪ ⊕ R∪MS∪ ⊕ S∪MR∪ ⊕ S∪MS∪

Proof This isomorphism is induced on objects by B VB ⊗ e1V e1⊕e1V e2⊕e2V e1⊕
e2V e2. Conversely, an object (W1, W2, W3, W4) on the right side is sent to a matrix(

W1 W2
W3 W4

)
with left action by row vectors (r, s) and right action by column vectors(

r ∪
s∪

)
. A B-bimodule homomorphism f :V ⊗ W commuteswith e1, e2 from left and

right, so that f sends ei V e j into ei W e j for all i, j = 1, 2. Conversely, a morphism
of 2 × 2 matrices as before commutes with row and column vectors, and so is a
B-bimodule homomorphism.
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We now apply the lemma to the B-bimodules, the n-fold tensor products of the
triangular matrix ring A over the diagonal subalgebra B.

Lemma 3.2 For integer n ∞ 1, e1Cn(A, B)e1 = Cn(R, R∪), e1Cn(A, B)e2 = 0,
and e2Cn(A, B)e2 = Cn(S, S∪); also

e2Cn(A, B)e1 =
n−1∑
r=0

⊕ Cr (S, S∪) ∈S∪ M ∈R∪ Cn−1−r (R, R∪) (4)

Proof For a1, . . . , an ⊂ A, the computations follow from e1a1 ∈B · · · ∈B an =
e1a1e1∈ · · · ∈B an = · · · = e1a1∈B · · · ∈B e1an ; moreover, a1∈B · · · ∈B ane2 =
a1 ∈B · · · ∈B e2ane2 = · · · = a1e2 ∈B · · · ∈B ane2; furthermore, e1a1 ∈B · · · ∈B

ane2 = 0 by referring to the last computation and noting e1Ae2 = 0. Naturally,
Cn(e1A, B) = Cn(R, R∪) since B = R∪ × S∪ and S∪ acts as zero, so the relative
tensor product is given by factoring out by only the nonzero relations; the same is
true of Cn(Ae2, B) = Cn(S, S∪).

Finally, the last equation follows from e2a1 ∈B · · · ∈B ane1 = (e2a1e2 +
e2a1e1)∈B · · · ∈B (e2ane1+e1ane1)= · · · =⎧n

i=1 a1e2∈B · · · ∈e2ai e1∈B · · · ∈B

e1an . This follows fromcancellations of the type · · · ∈ai e1∈B · · · ∈B e2a j ∈B · · · =
0 since e1ak = e1ake1, ake2 = e2ake2 for all ak ⊂ A and of course e1e2 = 0.

Let dodd(B, A) be the smallest odd number greater than or equal to d(B, A), which
we call the odd depth of the subring B ≥ A. If the depth is finite and already odd,
then dodd(B, A) = d(B, A), and otherwise dodd(B, A) = d(B, A) + 1. In other
words, a ring extension A | B has dodd(B, A) = 2n+1 if the natural B-B-bimodules
Cn+1(A, B) ⊕ Cn(A, B) and n is the smallest such natural number.

Theorem 3.1 The odd depth dodd(B, A) satisfies the inequalities,

d(B, R ⊕ S) ∗ dodd(B, A) ∗ dodd(R∪, R) + dodd(S∪, S) + 1 (5)

Proof If B ≥ A has depth 2n + 1, then there is q ⊂ N such that Cn+1(A, B)⊕ V ⊕=
qCn(A, B) for some B-B-bimodule V . It follows that ei Cn+1(A, B)ei ⊕ ei V ei ⊕=
qei Cn(A, B)ei for i = 1, 2, so that Cn+1(R, R∪) | qCn(R, R∪) and Cn+1(S, S∪) |
qCn(S, S∪). It follows that R∪ ≥ R and S∪ ≥ S both have depth 2n + 1. Then
max{d(R∪, R), d(S∪, S)} ∗ dodd(B, A). This completes the proof of the first of the
two inequalities.

Next let R∪ ≥ R and S∪ ≥ S have depths 2n + 1 and 2m + 1 respectively.
This means that for each integer s ∞ 1 and r ∞ 0 there is q ⊂ N such that
Cn+s(R, R∪) | qCn+r (R, R∪) as B-B-bimodules (and similarly for S∪ ≥ S). Con-
sider Cn+m+2(A, B) as a natural B-B-bimodule. By the lemma, Cn+m+2(A, B) ⊕=

Cn+m+2(R, R∪)⊕Cn+m+2(S, S∪)⊕
n+m+1∑

i=0

⊕Ci (S, S∪)∈S∪ M ∈R∪ Cn+m+1−i (R, R∪)
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which divides as B-B-bimodules (due to the depth hypotheses) a multiple of

Cn+m+1(R, R∪) ⊕ Cn+m+1(S, S∪) ⊕
n+m∑
j=0

C j (S, S∪) ∈S∪ M ∈R∪ Cn+m− j (R, R∪),

which is isomorphic to a multiple of Cn+m+1(A, B). Hence B ≥ A has depth
2(n + m + 1) + 1 = 2n + 2m + 3. This establishes that d(B, A) ∗ dodd(B, A) ∗
dodd(R∪, R) + dodd(S∪, S) + 1.

Note that the proof shows that if R∪ ≥ R and S∪ ≥ S are subrings of finite depth,
then so is B ≥ A, and conversely.

3.1 Quotient Algebras and Depth Bounds

Let B ≥ A be an arbitrary algebra extension and let I ≥ B be an A-ideal. For
purposes of expedient notation we write BI := B/I and similarly for AI . The main
purpose of this section is to give some depth bounds for BI ≥ AI as another algebra
extension. It turns out that if d(B, A) is finite, then so is d(BI , AI ).

Recall that if the extension B ≥ A has odd depth 2n + 1 (even depth 2n) then

Cn+1(A, B) ⊕ Cn(A, B)

as B-bimodules (A-B- and B-A-bimodules), which is in general equivalent to
saying that there’re two B-B-homomorphisms (A-B- and B-A-homomorphisms)
f : Cn+1(A, B) ⊗ mCn(A, B) and g : mCn(A, B) ⊗ Cn+1(A, B) such that
g ⊥ f = id.

Lemma 3.3 (λ and α properties) Suppose that B ≥ A and I ≥ B are as above.
We define the following maps:

λ : Cn(A, B) ⊗ Cn(AI , BI )

: a1 ∈ . . . ∈ an ⊗ a1 ∈ . . . ∈ an .

α : Cn+1(A, B) ⊗ Cn+1(AI , BI )

: a1 ∈ . . . ∈ an+1 ⊗ a1 ∈ . . . ∈ an+1

These two maps are well-defined and will be k-linear as well as satisfying

λ(x∀y) = xλ(∀)y and α(x∩y) = xα(∩)y,

∀x, y ⊂ A, ∀∀ ⊂ Cn(A, B) and ∀∩ ⊂ Cn+1(A, B).
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As will be necessary in our next result we “raise λ to the mth power” in that we
define λ ∪ : mCn(A, B) ⊗ mCn(AI , BI ) in the obvious way:

(∀i ) ⊗ (λ(∀i )).

The important thing to note however is that λ ∪(x∀i y) = xλ ∪(∀i )y, where x, y ⊂ A
and ∀i ⊂ mCn(A, B), furthermore λ ∪ is k-linear over elements of mCn(A, B).

Theorem 3.2 Suppose that B ≥ A is an algebra extension with depth 2n + 1 (2n),
suppose also that I ≥ B ≥ A is an A-ideal. Then BI ≥ AI also has depth 2n + 1
(2n). Indeed we can say d(BI , AI ) ∗ d(B, A).

Proof We prove the odd case because it involves B-bimodules and the proof can be
extended to the even casewith A-B-bimodules. First, because B ≥ A has depth 2n+1
we have B-bimodule maps f : Cn+1(A, B) ⊗ mCn(A, B) and g : mCn(A, B) ⊗
Cn+1(A, B) such that g⊥ f = id, wherem ∞ 1.We’d like first to find a BI -bimodule
map ⎨f : Cn+1(AI , BI ) ⊗ mCn(AI , BI )

and secondly another BI -bimodule map

⎨g : mCn(AI , BI ) ⊗ Cn+1(AI , BI )

such that⎨g ⊥ ⎨f = id. This enforcing the depth 2n + 1 condition on BI ≥ AI .
We define ⎨f as follows:

⎨f (a1 ∈ . . . ∈ an) := λ ∪ ⊥ f (a1 ∈ . . . ∈ an) (6)

We must show that ⎨f is well-defined, and to that end with some 1 ∗ p ∗ n let
ap = y, that is ap = y + t, for t ⊂ I . Thus

⎨f (a1 ∈ . . . ∈ ap ∈ . . . ∈ an) = λ ∪ f (a1 ∈ . . . ∈ y + t ∈ . . . ∈ an)

= λ ∪ f (a1 ∈ . . . ∈ y ∈ . . . ∈ an)

+λ ∪ f (a1 ∈ . . . ∈ t ∈ . . . ∈ an)

= λ ∪ f ((a1 ∈ . . . ∈ y ∈ . . . ∈ an))

= ⎨f (a1 ∈ . . . ∈ y ∈ . . . ∈ an)

since λ ∪ f (a1 ∈ . . . ∈ ap−1 ∈ t ∈ ap+1 ∈ . . . ∈ an) = λ ∪ f (a1 ∈ . . . ∈ t1 ∈ 1 ∈
ap+1 ∈ . . . ∈ an) etc until we have λ ∪(tp f (1 ∈ . . . ∈ 1 ∈ ap+1 ∈ . . . ∈ xn)) =
tp(λ

∪ f (1∈ . . .∈an)) = 0 (where each ti ⊂ I ). This all follows because I ≥ B is an
A-ideal with the properties of lemma (3.3) in effect. Repeating such a process over
all 1 ∗ p ∗ n the map will be well-defined.
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Now we describe⎨g:
⎨g((a1 ∈ . . . ∈ an+1)i ) := α ⊥ g((a1 ∈ . . . ∈ an+1)i ) (7)

Proving that⎨g is well-defined is so similar to the (6) case it can be considered a minor
exercise. Furthermore we should notice that ⎨g ⊥ λ ∪ = α ⊥ g straight off. Using (6)
and (7) we demonstrate that⎨g ⊥ ⎨f = id:

⎨g ⊥ ⎨f (a1 ∈ . . . ∈ an) = ⎨g ⊥ λ ∪ ⊥ f (a1 ∈ . . . ∈ an)

= α ⊥ g ⊥ f (a1 ∈ . . . ∈ an)

= α ⊥ id(a1 ∈ . . . ∈ an)

= a1 ∈ . . . ∈ an

Corollary 3.1 Given a chain of A-ideals J0 ≥ J1 ≥ . . . ≥ B we have

1 ∗ · · · ∗ d(BJ1 , AJ1) ∗ d(BJ0 , AJ0) ∗ d(B, A)

Proof The second isomorphism theorem tells us that (B/J0)/(J1/J0) ⊕= B/J1.
Apply our last theorem to see that the depth of (B/J0)/(J1/J0) ≥ (A/J0)/(J1/J0)
is less than or equal to the depth of (B/J0) ≥ (A/J0), but then we’re done.

4 Depth of Top Subalgebra in Path Algebra of Acyclic Quiver

Let Q = (V, E, s, t) denote a finite connected acyclic quiver with vertices V of
cardinality |V | = n and oriented edges E such that |E | < ↔, where an oriented
edge or arrow is denoted by ε : a ⊗ b, or (a|ε|b) ⊂ E , where a = s(ε) and
b = t (ε) define the source and target mappings E ⊗ V , respectively. Since Q is
acyclic, there is no loop in E , i.e., no arrow Δ ⊂ E such that s(Δ) = t (Δ); moreover,
there are no other cycles, i.e., paths (a|ε1, . . . , εr |a) of length r > 1 beginning at a
vertex a and ending there (where all εi ⊂ E and s(εi+1) = t (εi ), i = 1, . . . , r − 1).

LetK be an algebraically closed field and let A = KQ be the path algebra on the
quiver A [1, 8] with basis the set of all paths, including stationary paths denoted by
δa = (a||a) for each a ⊂ V , such that the product of two basis elements is given by
the following concatenation formula:

(a|ε1, . . . , εr |b)(c|Δ1, . . . , Δs |d) = ωbc(a|ε1, . . . , εr , Δ1, . . . , Δs |d). (8)

The product on A is given by this formula and linearization, which clearly makes A
into a graded algebra where As denotes the K -vector subspace spanned by paths of
length s, a complete set of primitive orthogonal idempotents are {δa |a ⊂ V } ⊂ A0
and the radical ideal is rad A = A1 ⊕ A2 ⊕ · · · , also known as the arrow ideal.
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There is always a numbering of the vertices from 1, . . . , n such that (i |ε| j) ⊂ E
implies i > j [8, Corollary 8.6]. The vertex n is then a source and 1 a sink. With
such a numbering the algebra A = KQ is embeddable in a lower triangular matrix
algebra [1, Lemma 1.12] of the form,

A =

⎩
⎪⎪⎪⎝

δ1(KQ)δ1 0 · · · 0
δ2(KQ)δ1 δ2(KQ)δ2 · · · 0

...
...

...

δn(KQ)δ1 δn(KQ)δ2 · · · δn(KQ)δn

⎞
⎫⎫⎫⎡ (9)

Note that δi (KQ)δi ⊕= K for each i = 1, . . . , n since there are no cycles. For
example, if the quiver Q has no multiple arrows between vertices and its underlying
graph is a tree, then there is at most one path between two points i > j , so that
dim δi (KQ)δ j ∗ 1, and A = KQ is isomorphic to a subalgebra of the full triangular
matrix algebra Tn(K ) = ⎧

n∞i∞ j∞1K ei j (in terms of matrix units ei j ).
Another example: if Q = (V, E) where V = {1, 2} and E = {ε, Δ : 2 ⊗ 1},

then

A = KQ =
(

K 0
K

2
K

)
(10)

From the result of the previous section, we note that with M = K
2, and B =

K δ1 + K δ2, the depth of B in A is bounded by

1 ∗ d(B, A) ∗ 3. (11)

For this algebra, one constructs from nilpotent Jordan blocks of orderm an infinite
sequence of indecomposable A-modules [1, pp. 75–76], a tame Kronecker algebra
[2, V111.7]. The algebra A = KQ has finite representation type if and only if
the underlying (multi-) graph of Q is one of the Dynkin diagrams An(n ∞ 1), Dn

(n ∞ 4), E6, E7, E8: see for example [1, Gabriel’s Theorem, 5.10] or [2, VIII.5.2].
Coming back to the algebra A in (9), note that A has n augmentations θi : A ⊗ K

given by θi (π1, . . . , πn) = πi . Let A+
i denote ker θi , and for a subalgebra B ≥ A, let

B+
i denote ker θi ◦ B. Denote the n A-simples of dimension one by θiK , and the n2

Ae-simples byK i j where a ·1·b = θi (a)θ j (b)1 for all a, b ⊂ A and i, j = 1, . . . , n.
We have the following

Lemma 4.1 Suppose B ≥ A is a subalgebra of an algebra with augmentations
θ1, . . . , θn. If B ≥ A has right depth 2, then AB+

i ≥ B+
i A for each i = 1, . . . , n.

If B ≥ A has left depth 2, then B+
i A ≥ AB+

i for each i = 1, . . . , n.

Proof We prove the statement about a subalgebra having left depth two, namely,
A ∈B A | q A as B-A-bimodules. To this apply the additive functor−∈A θiK , which
results in A/AB+

i | qK as left B-modules. The annihilator of qK restricted to B is
of course B+

i , which then also annihilates A/AB+
i , so B+

i A ≥ AB+
i . This holds for
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each i = 1, . . . , n. The opposite inclusion is similarly shown to be satisfied by a
right depth 2 extension of augmented algebras.

The next theorem computes the depth d(B, A) of the top subalgebra A/rad A ⊕= K
n ,

or subalgebra of diagonal matrices, in the path algebra A of an acyclic quiver as given
in (9).

Theorem 4.1 Suppose the number of vertices n > 1 in the quiver Q, A = KQ and
B = K

n. Then depth d(B, A) = 3.

Proof If the subalgebra in question has depth 1, it has depth 2. But if it has left
depth 2, the lemma above applies, so that B+

i A ≥ AB+
i for each i = 1, . . . , n. Note

that AB+
i are all the lower triangular matrices of the form in (9) having only 0’s

on column i ; similarly, B+
i A are the triangular matrices having only zeroes on row

i . It follows that δ j Aδi = 0 for each j = i + 1, . . . , n. But δ j (KQ)δi consists of
all the paths from j to i . Since this holds for each i , Q consists of n points with
no edges; thus we have contradicted the assumption that Q is connected. The same
contradiction is reached assuming B ⇔ A has right depth 2.

Next it is shown that B A∈B AB divides a multiple of B AB . Let dim δi Aδ j = ni j .
Then it is clear from (9) and simple matrix arithmetic that B AB ⊕= ⊕n∞i∞ j∞1ni jK i j .

Now
A ∈B A = ⊕n

i, j=1⊕i∞k∞ j δi Aδk ∈B δk Aδ j

since each δ j ⊂ B and for each r ≤= k, δkδr = 0. It follows that B A ∈B AB ⊕=
⊕n∞i∞ j∞1mi jK i j where mi j = ⎧

i∞k∞ j niknk j . Since nii = 1 for each i , it follows
that mi j ∞ ni j ; moreover, ni j = 0 implies mi j = 0, since otherwise there is a path
from i to j via some k such that i ∞ k ∞ j .

From the last remark it follows that there is q ⊂ N such that A ∈B A | q A as
B-B-bimodules. Thus the minimum depth d(B, A) = 3.

5 Depth of Arrow Subalgebra in Acyclic Quiver Algebra

In this section we compute the depth of the primary arrow subalgebra B = K 1A ⊕
A1 ⊕ A2 ⊕ · · · = K 1A + rad A in the path algebra A of an acyclic quiver Q, which
is of the form

A =

⎩
⎪⎪⎪⎝

K 0 · · · 0
δ2(KQ)δ1 K · · · 0

...
...

...

δn(KQ)δ1 δn(KQ)δ2 · · · K

⎞
⎫⎫⎫⎡ (12)

Note that B is a local algebra and augmented algebra with one augmentation δ :
B ⊗ K equal to the canonical quotient map B ⊗ B/rad B ⊕= K . We denote the
B-simple byK δ as a pullbackmodule. Again there are n augmentations of A denoted
by θi defining n simple A-B-bimodules denoted by iK δ, i = 1, . . . , n.
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Lemma 5.1 The natural B-B-bimodule A is indecomposable.

Proof It suffices to show that End B AB is a local ring [1, 8]. Let F ⊂ End B AB

and choose an ordered basis of A given by I = ∧δ1, . . . , δn, ε1, . . . , εm∇ where the
length of the path εi is less than or equal to the length of εi+1, all i = 1, . . . , m − 1.
Consider the matrix with K -coefficients, M = (Mε

Δ )ε,Δ⊂I of F relative to I ; then
F(ε) = ⎧

Δ⊂I Mε
Δ Δ.

Given a path of length r ∞ 1, (i |ε| j) ⊂ Ar , note that F(ε) = εF(δ j ) = F(δi )ε,
so that ∑

Δ⊂I

Mε
Δ Δ =

∑
ζ⊂I

M
δ j
ζ εζ =

∑
ω⊂I

Mδi
ω ωε.

It follows that M
δ j
ζ = 0 for paths ( j |ζ |k) and Mδi

ω = 0 for all paths (ν|ω|i). Also
Mε

Δ = 0 for all path Δ ≤⊂ δi Aδ j , i.e. not a path from i to j . Finally deduce that

Mε
Δ = 0 if Δ ⊂ δi Aδ j but Δ ≤= ε and Mε

ε = Mδi
δi = M

δ j
δ j .

For i ≤= j and ε ⊂ δk Aδi , note that εF(δ j ) = F(εδ j ) = 0, so that⎧
Δ⊂I M

δ j
Δ εΔ = 0 implies M

δ j
Δ = 0 whenever s(Δ) = i . In particular, M

δ j
δi = 0. It

follows that the set of F ⊂ End B AB has the form of a triangular matrix algebra with
constant diagonal, like B, and is a local algebra.

Theorem 5.1 The depth of the primary arrow subalgebra B in the path algebra A
defined above is d(B, A) = 4.

Proof We first compute A ∈B A and show d(B, A) > 3. Note that two paths of
nonzero length, ε, Δ where s(ε) = i satisfy ε ∈B Δ = δi ∈B εΔ, which is zero
unless t (ε) = s(Δ). It follows that

A ∈B A = ⊕n
i=1K δi ∈B δi ⊕n

i=2 ⊕i−1
j=1δi ∈B δi Aδ j ⊕i ≤= j K δi ∈B δ j .

It is obvious that the first two summations above are isomorphic as B-B-bimodules
to B AB . Note that when i ≤= j , for all paths ε, Δ,

εδi ∈B δ j = 0 = δi ∈B δ jΔ

since εδi ⊂ B is either zero or a path ending at i , whence εδiδ j = 0. It follows that
A ∈B A ⊕= A ⊕ n(n − 1)δK δ as B-B-bimodules; moreover, as A-B-bimodules, we
note for later reference

A A ∈B AB ⊕= A AB ⊕ ⊕n
i=1(n − 1)iK δ (13)

By lemma, B AB is an indecomposable, but the B-B-bimodule A ∈B A contains
another nonisomorphic indecomposable, in fact δK δ, so that as B-bimodules, A ∈B

A ⊕ ∗ ≤⊕= q A for any multiple q by Krull-Schmidt.
Now we establish that the subalgebra B ≥ A has right depth 4 by comparing (13)

with the computation below:
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A∈B A∈B A = ⊕n
i=1 K δi ∈δi ∈δi ⊕n

i=2⊕i−1
j=1 δi ∈δi ∈δi Aδ j ⊕i ≤= j ≤=k K δi ∈δ j ∈δk

⊕= A ⊕ (n2 − 1) 1K δ ⊕ · · · ⊕ (n2 − 1) nK δ

as A-B-bimodules, where i ≤= j ≤= k symbolizes i ≤= j , j ≤= k or i ≤= k. It is
clear that since no new bimodules appear in a decomposition of A A ∈B A ∈B AB

as compared with A A ∈B AB , that there is q ⊂ N (in fact q = n + 1 will do) such
that A ∈B A ∈B A | q A ∈B A as A-B-bimodules. It follows that the minimum depth
d(B, A) = 4.

It is easy to see from the proof that as natural B-A bimodules A ∈B A ∈B A | (n +
1)A ∈B A for very similar reasons. Note the general fact that A AB or B AA are
indecomposable modules if End A AB ⊕= AB , the centralizer subalgebra of B in A,
is a local algebra.

6 Concluding Remarks

It is well-known and easily computed from (12) that the path algebra KQ of the
quiver

Q : n −⊗ n − 1 −⊗ · · · −⊗ 2 −⊗ 1

is the lower triangular matrix algebra Tn(K ). Then we have shown above that for the
subalgebras B1 = Dn(K ) equal to the set of diagonal matrices, and B2 = Un(K )

defined by

Un(K ) = {

⎩
⎪⎪⎪⎪⎪⎝

a 0 0 · · · 0
a21 a 0 · · · 0
a31 a32 a · · · 0
...

...

an1 an2 an3 · · · a

⎞
⎫⎫⎫⎫⎫⎡

|a, ai j ⊂ K } (14)

the depths are given by d(Dn(K ), Tn(K )) = 3 and d(Un(K ), Tn(K )) = 4. Both
are not dependent on the order n of matrices.

This situation is different for another interesting series of subalgebras within
Tn(K ) given by

Jn(K ) = {

⎩
⎪⎪⎪⎪⎪⎝

a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...

an an−1 an−2 · · · a1

⎞
⎫⎫⎫⎫⎫⎡

|a1, . . . , an ⊂ K } (15)
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also known as the Jordan algebra. This is isomorphic as algebras to K [x]/(xn),
a Gorenstein dimension zero local ring. Notice that U2(K ) = J2(K ), so

d(J2(K ), T2(K )) = 4.

The interesting fact worth mentioning here is that d(J3(K ), T3(K )) ∞ 6. This is
based on computations comparing A ∈B A and A ∈B A ∈B A as B-B-bimodules,
since a new 2-dimensional indecomposable turns up in the tensor-cube of the ring
extension.

The following seems to be an interesting problem not accessible by the techniques
of the previous sections:

d(Jn(K ), Tn(K )) = ? (16)

Acknowledgments The authors would like to thank Sebastian Burciu for visiting Porto in May
2012 and discussing topics related to this paper. Research on this paper was partially funded by the
European Regional Development Fund through the programme COMPETE and by the Portuguese
Government through the FCT under the project PE-C/MAT/UI0144/2011.

References
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Lie Algebras with Given Properties
of Subalgebras and Elements

Pasha Zusmanovich

Abstract We study finite-dimensional Lie algebras with given properties of
subalgebras (like all proper subalgebras being abelian) and elements (like all ele-
ments being semisimple). We get results on both the structure of the whole class of
algebras with the given property, and the structure of individual algebras in the class.

We study the following classes of Lie algebras: anisotropic (i.e., Lie algebras for
which each adjoint operator ad x is semisimple), regular (i.e., Lie algebras in which
each nonzero element is regular), minimal nonabelian (i.e., nonabelian Lie algebras
all whose proper subalgebras are abelian), and algebras of depth 2 (i.e., Lie algebras
all whose proper subalgebras are abelian or minimal nonabelian).

All algebras, Lie and associative, are assumed to be finite-dimensional and defined
over a fixed field of characteristic zero (though some of the results, in a weaker form
or under additional restrictions, will hold also in positive characteristic). We stress
that the base field is not assumed to be algebraically closed (all the things considered
here are collapsing to vacuous trivialities in the case of an algebraically closed base
field).

Our notations are standard and largely follow Bourbaki [2]. The symbols �, ⊕,
and +≥ denote direct sum of vector spaces, direct sum of Lie algebras, and semidirect
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1 Anisotropic Algebras

It is shown in [3, Propostion 1.2] that any anisotropic solvable Lie algebra is abelian.
From this and the Levi–Malcev decomposition follows that any anisotropic Lie
algebra is reductive.

Theorem 1.1 For a reductive Lie algebra L the following are equivalent:

(i) L is anisotropic;
(ii) all proper subalgebras of L are anisotropic;
(iii) all proper subalgebras of L are reductive;
(iv) all 2-dimensional subalgebras of L are abelian;
(v) L does not contain subalgebras isomorphic to sl(2).

Proof (i) ∈ (ii). If S is a subalgebra of L, then for any x ⊂ S, adS x is a restriction of
adL x, hence the semisimplicity of the latter implies the semisimplicity of the former.

(ii) ∈ (iii) follows from the observation above that any anisotropic Lie algebra is
reductive.

(iii) ∈ (iv) follows from the obvious fact that a 2-dimensional reductive Lie
algebra is abelian.

(iv) ∈ (v) follows from the obvious fact that sl(2) contains a 2-dimensional
nonabelian subalgebra.

(v) ∈ (i). Write L as a direct sum L = g ⊕ A, where g is semisimple and A
is abelian. Suppose g is not anisotropic. As g contains semisimple and nilpotent
components of each of its elements ([2, Chap. I, Sect. 6, Theorem 3]), g contains a
nonzero nilpotent element, and by the Jacobson–Morozov theorem ([2, Chap.VIII,
Sect. 11, Proposition 2]) g contains sl(2) as a subalgebra, a contradiction. Hence g
is anisotropic and L is anisotropic.

Though the proof is elementary, and all the necessary ingredients are contained
in [3] anyway (in particular, the implication (i) ∈ (iv) is noted in [3, Sect. 1], and
the equivalence (i) ⊗ (v) in the case of semisimple L is proved, with a slightly
different argument, in [3, Theorem2.1]), we find this explicit formulation of Theorem
1.1 interesting enough. There are many works in the literature devoted to study of
minimal non-P Lie algebras, i.e. Lie algebras not satisfying P and such that all
their proper subalgebras satisfy P , where P is a certain “natural” property of Lie
algebras (abelianity, nilpotency, solvability, simplicity, modularity of the lattice of
subalgebras, …). In all the cases studied so far, the class of minimal non-P algebras
turns out to be highly nontrivial (without further assumptions about the base field,
such as algebraic or quadratic closedness, triviality of the Brauer group, etc.), with
lot of simple objects. To the contrary, from the Levi–Malcev decomposition and
Theorem 1.1 it follows that the class of minimal nonanisotropic Lie algebras is
relatively trivial: those are exactly solvable minimal nonabelian Lie algebras. One
may ask a “philosophical” question: what makes the condition of being anisotropic
different in that regard from other conditions? Where is a borderline for a property
P which makes the class of minimal non-P Lie algebras small and “simple” (or
even empty)?



Lie Algebras with Given Properties of Subalgebras and Elements 101

Corollary 1.1 A simple Lie algebra all whose proper subalgebras are not simple,
is either minimal nonabelian, or isomorphic to sl(2).

Proof Let L be a reductive Lie algebra all whose proper subalgebras are not simple.
By implication (v)∈ (iii) of Theorem1.1, eitherL is isomorphic to sl(2), or all proper
subalgebras of L are reductive. As any nonabelian reductive Lie algebra contains a
simple subalgebra, in the latter case all proper subalgebras of L are abelian.

In [16, Theorem 2.2] a statement similar to the corollary is proved about simple
Lie algebras, all whose proper subalgebras are supersolvable.

Theorem 1.2 Let L be a nonempty class of Lie algebras satisfying the following
properties:

(i) L is closed with respect to subalgebras;
(ii) if each proper subalgebra of a reductive Lie algebra L belongs to L , then L

belongs to L ;
(iii) solvable Lie algebras belonging to L are abelian.

Then L is the class of all anisotropic Lie algebras.

Proof Any class of Lie algebras satisfying conditions (i) and (iii) consists of
anisotropic algebras. Indeed, from the Levi–Malcev decomposition and condition
(iii) it follows that any algebra in L is reductive. Then from implication (iii) ∈ (i)
of Theorem 1.1 and condition (i), it follows that any algebra in L is anisotropic.

Now, suppose that there is an anisotropic Lie algebra not belonging toL , and con-
sider such algebra L of the minimal possible dimension. Then all proper subalgebras
of L belong toL , and by condition (ii) L itself belongs toL , a contradiction.

2 Regular Algebras

If N is a nilpotent subalgebra of a Lie algebra L, by L0(N) is denoted the Fitting
0-component with respect to the N-action on L (i.e., the set of all elements of L on
which N acts nilpotently).

Recall ([2, Chap.VII, Sect. 2.2]) that rank rk L of a Lie algebra L is the minimal
possible non-vanishing power of the characteristic polynomial of ad x, x ⊂ L, and
elements of L for which this minimal number is attained are called regular. Another
characterization of x ⊂ L to be a regular element is the equality dim L0(x) = rk L.

If each nonzero element of L is regular, then L itself is called regular.
It is clear that any nilpotent Lie algebra is regular, with rank equal the dimension

of the algebra. If a regular Lie algebra L is not semisimple, i.e., contains a nonzero
abelian ideal I , then for any x ⊂ I , (ad x)2 = 0, hence each element in L is nilpotent,
and by the Engel theorem L is nilpotent. It is clear also that a regular semisimple
Lie algebra is simple (see [2, Chap.VII, Sect. 2.2, Proposition 7]), and that a regular
simple Lie algebra is anisotropic (see [2, Chap.VII, Sect. 2.4, Corollary 2]).
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Theorem 2.1 For a simple Lie algebra L the following are equivalent:

(i) L is regular;
(ii) all proper subalgebras of L are regular;
(iii) all proper subalgebras of L are either simple, or abelian.

Proof (i) ∈ (ii) follows from the fact that if S is a subalgebra of L, and x ⊂ S is
a regular element in L, then x is a regular element in S ([2, Chap.VII, Sect. 2.2,
Proposition 9]).

(ii)∈ (iii). By the observation above, any proper subalgebra of L is either simple,
or nilpotent. Hence L does not contain a 2-dimensional nonabelian Lie algebra, and
by implication (iv) ∈ (iii) of Theorem 1.1, all proper subalgebras of L are reductive,
and all its nilpotent subalgebras are abelian.

(iii) ∈ (i). By implication (iii) ∈ (i) of Theorem 1.1, L is anisotropic. In any Lie
algebra, Cartan subalgebras are exactly nilpotent subalgebrasN such thatL0(N) = N
([2, Chap.VII, Sect 2.1, Proposition 4]). But nilpotent subalgebras of L are abelian,
and L0(N) coincides with the centralizer of N , so Cartan subalgebras of L are exactly
abelian subalgebras coinciding with their own centralizer. For an arbitrary nonzero
element x ⊂ L, its centralizer ZL(x) cannot be simple, hence it is abelian. But, obvi-
ously, ZL(x) coincides with its own centralizer, hence ZL(x) is a Cartan subalgebra
of L, dim ZL(x) = dim L0(x) = rk L, and x is regular.

Note that similar to the anisotropic case, minimal nonregular Lie algebras are
exactly solvable minimal nonnilpotent Lie algebras.

Theorem 2.2 Let L be a nonempty class of Lie algebras satisfying the following
properties:

(i) L is closed with respect to subalgebras;
(ii) if each proper subalgebra of a Lie algebra L belongs to L , then L belongs

to L ;
(iii) non-semisimple Lie algebras belonging to L are nilpotent.

Then L is the class of all regular Lie algebras.

Proof Any class of Lie algebras satisfying conditions (i) and (iii) consists of regular
algebras. Indeed, from the Levi–Malcev decomposition and condition (iii) it follows
that any algebra L in L is either semisimple, or nilpotent. In the former case, write
L = g1 ⊕· · ·⊕gn as the direct sum of simple components. If n > 1, by condition (i)
the subalgebra of L of the form g1 ⊕ Kx, where x is an arbitrary nonzero element of
g2, belongs toL , and by condition (iii) it is nilpotent, a contradiction. Hence n = 1,
that is, L is simple. By conditions (i) and (iii) L does not contain 2-dimensional
nonabelian subalgebra, andby implication (iv)∈ (iii) ofTheorem1.1, all subalgebras
of L are reductive. This, together with conditions (i) and (iii) again, implies that all
subalgebras of L are either simple, or abelian, and by implication (iii) ∈ (i) of
Theorem 2.1, L is regular.

Now, the same elementary reasoning utilizing condition (ii) as at the end of the
proof of Theorem 1.2, shows that any regular Lie algebra belongs toL .
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3 Minimal Nonabelian Algebras

It follows from the Levi–Malcev decomposition that any minimal nonabelian Lie
algebra is either simple, or solvable. Solvable minimal nonabelian Lie algebras (even
in a slightly more general minimal nonnilpotent setting) were described in [7], [14],
and [15]. A simple minimal nonabelian Lie algebra is regular. Simple minimal non-
abelian Lie algebras were studied in [4] and [6], but their full description remains an
open problem.

Recall that an algebra is called central if its centroid coincides with the base field.
For simple algebras this is equivalent to the condition that the algebra remains simple
under extension of the base field.

Theorem 3.1 There are no central simple minimal nonabelian Lie algebras of types
Bl (l ≥ 2), Cl (l ≥ 3, l �= 2k), Dl (l ≥ 5, l �= 2k), G2, and F4.

Proof The proof follows from the known classification of central simple Lie algebras
of these types (see, for example, [13, Chap. IV]).

Types B–D. Each central simple Lie algebra of this type (with the exception
of D4) is isomorphic to a Lie algebra of J-skew-symmetric elements S−(A, J) =
{x ⊂ A | J(x) = −x}, where A is a central simple associative algebra of dimension
n2 > 16 with involution J of the first kind (smaller dimensions of A are covered by
“occasional” isomorphisms between “small” algebras of different types, including
type A). By a known description of such algebras (see, for example, [10, Theorem
5.1.23]), A is isomorphic to Mm(D), a matrix algebra of size m × m over a central
division algebra D with involution j, and J has the form

(dkλ)
m
k,λ=1 →∞ diag(g1, . . . , gm)(j(dkλ))

∪ diag(g−1
1 , . . . , g−1

m )

for some g1, . . . , gm ⊂ D such that j(gk) = gk , k = 1, . . . , m.
IfD coincideswith the base field, i.e.A is a fullmatrix algebra, than the Lie algebra

S−(A, J) is split and, obviously, contains a lot of proper nonabelian subalgebras.
Hence we may assume dim D ≥ 4. From the description above it is clear that,
provided m > 1, the subalgebra B of A of all matrices with vanishing last row
and column, is isomorphic to Mm−1(D) and is stable under J , hence S−(B, J) is
a Lie subalgebra of S−(A, J). Since dim A = m2 dim D ≥ 25, we have dim B =
(m − 1)2 dim D = s2 ≥ 9, and this subalgebra is a central simple Lie algebra of
dimension s(s−1)

2 or s(s+1)
2 . Therefore, ifm > 1, S−(A, J) contains proper nonabelian

subalgebras, and it remains to consider the case where A = D is a division algebra.
Since D has an involution, its exponent is equal to 2, and its dimension n2 is equal

to some power of 4. This excludes all the types mentioned in the statement of the
theorem.

Type G2. Each central simple Lie algebra of this type is a derivation algebra of
a 8-dimensional Cayley algebra O. The latter is obtained by the doubling (Cayley–
Dickson) process from the 4-dimensional associative quaternion algebra H, and it
is known that each derivation of H can be extended to a derivation of O (see, for
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example [12, Theorem 2]). Thus, Der(O) always contains a 3-dimensional central
simple Lie algebra Der(H) as a subalgebra, and hence cannot beminimal nonabelian.

Type F4. Each central simple Lie algebra of this type is a derivation algebra of a
27-dimensional exceptional simple Jordan algebra J. It is known that derivations of
Jmapping a cubic subfield of J to zero form a central simple Lie algebra of type D4
(see, for example, [9, Chap. IX, Sect. 11, Exercise 5]).

We conjecture that the remaining types not covered by Theorem 3.1—C2k and
D2k—cannot occur as well.

Conjecture 3.1 There are no central simple minimal nonabelian Lie algebras of
types B–D (except of D4).

Let us provide some evidence in support of this conjecture.

Lemma 3.1 Let D be a central division algebra of dimension n2 over a field K with
involution J of the first kind, such that S−(D, J) is a minimal nonabelian Lie algebra.
Then for any J-symmetric or J-skew-symmetric element x in D, not lying in K, one
of the following holds:

(i) x is J-symmetric and of degree 2;
(ii) K[x] is of degree n

2 , and dimK[x] CD(x) = 4;
(iii) K[x] is a maximal subfield of D.

Proof The associative centralizer of x inD, CD(x), is a proper simple associative sub-
algebra ofD. By the Double Centralizer Theorem (see, for example, [11, Sect. 12.7]),

dim K[x] · dim CD(x) = n2, (1)

and the associative center of CD(x) coincides with K[x].
As CD(x) is stable under J , S−(CD(x), J) is a Lie subalgebra of S−(D, J). If it

coincides with the whole S−(D, J), then S−(D, J) ↔ CD(x), and by (1), dim K[x] ≤
n2

n(n−1)
2

< 3, hence dim K[x] = 2, i.e. K[x] is a quadratic extension of K , the case (i).

Note that in this case x cannot be J-skew-symmetric, as otherwise it lies in the Lie
center of S−(D, J), a contradiction.

If S−(CD(x), J) is a proper subalgebra of S−(D, J), then it is abelian, and
by [8, Theorem 2.2], CD(x) is either commutative (i.e., a subfield of D), or
is 4-dimensional over its center K[x]. In the former case, since the degree (= dimen-
sion) over K of each intermediate field between K and D is ≤ n (actually, a divi-
sor of n), and since K[x] ↔ CD(x), we have dim K[x] = dim CD(x) = n, and
CD(x) = K[x], the case (iii). In the latter case, from (1) we have dim K[x] = n

2 and
dim CD(x) = 2n, the case (ii).

For example, if the division algebra D is cyclic (what always happens over num-
ber fields), then, considering the conditions of the lemma simultaneously for a
J-skew-symmetric element x generating a cyclic extension of the base field, and
even powers of x (which are J-symmetric), one quickly arrives to a contradiction.
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For the remaining exceptional types, the question seems to bemuchmore difficult,
and it is treated in [5] using the language and technique of algebraic groups andGalois
cohomology. There are central simple minimal nonabelian Lie algebras of types D4
and E8. For types E6 and E7 partial answers are available.

Central simple minimal nonabelian Lie algebras of type A of the form D(−)/K1
(i.e., quotient of D, considered as a Lie algebra subject to commutator [a, b] =
ab − ba, by the 1-dimensional center spanned by the unit 1 of D), where D is a cen-
tral division associative algebra, were studied in [6]. A necessary, but not sufficient
condition for such Lie algebra to be minimal nonabelian is D to be minimal non-
commutative (i.e., all proper subalgebras of D are commutative). In this connection
the following observation is of interest:

Theorem 3.2 Let D be a central division associative algebra. Then the Lie algebra
D(−)/K1 is regular if and only if D is a minimal noncommutative algebra.

Proof Let the dimension of D over the base field K is equal to n2, so dim D(−)/K1 =
n2 − 1. The Lie algebra D(−)/K1 is regular if and only if the Lie centralizer of any
nonzero element x ⊂ D(−)/K1 is a Cartan subalgebra of dimension n − 1, what, in
associative terms, is equivalent to the condition that the associative centralizer CD(x)
of any element x ⊂ D\K , is a maximal subfield of D of dimension n over K . Taking
this into account, the proof is an easy application of the Double Centralizer Theorem,
with reasonings similar to those used in the proof of the lemma above.

The “only if” part. Suppose that for any x ⊂ D\K , CD(x) is a maximal subfield
of D. Consider a subfield K[x] ↔ CD(x) of D. We have CD(x) = CD(K[x]), and
by the Double Centralizer Theorem, dim K[x] · dim CD(x) = n2. But the degree
(= dimension) over K of each intermediate field between K and D is ≤ n (actually,
a divisor of n), hence dim K[x] = dim CD(x) = n, and CD(x) = K[x]. That means
that there are no intermediate fields between K and the maximal subfields of D.

If A is a noncommutative proper subalgebra of D, then, obviously, A is a division
algebra. Its center Z(A), being a field extension of K , either coincides with K , or
is a maximal subfield of D. In the former case A is central of dimension m2, where
1 < m < n, and its maximal subfield has degree m over K , a contradiction. In the
latter case, we have dim A > dim Z(A) = n. Applying again the Double Central-
izer Theorem, we have dim A · dim CD(A) = n2. Since Z(A) ↔ CD(A), we have
dim CD(A) ≥ dim Z(A) = n, a contradiction.

The “if” part. Suppose D is minimal noncommutative. For an arbitrary x ⊂ D not
lying in the base field K , its centralizer CD(x) is a subfield of D. By the Double
Centralizer Theorem, CD(CD(x)) is a simple subalgebra of D (and, hence, is
also a subfield), and dim CD(x) · dim CD(CD(x)) = n2. By the same argument
as above about degrees of intermediate fields between K and D, dim CD(x) =
dim CD(CD(x)) = n. Since CD(x) ↔ CD(CD(x)), this implies CD(x) = CD(CD(x)),
and CD(x) is a maximal subfield of D.
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4 Algebras of Depth 2

Define the depth of a Lie algebra in the following inductive way: a Lie algebra has
depth 0 if and only if it is abelian, and has depth n > 0 if and only if it does not have
depth < n and all its proper subalgebras have depth < n. Thus, minimal nonabelian
Lie algebras are exactly algebras of depth 1.

Many of the algebras considered below arise as semidirect sums L +≥ V of a Lie
algebra L and an L-module moduleV (in such a situation, wewill always assume that
V is an abelian ideal: [V , V ] = 0). It is clear that the depth of such semidirect sums
is related to depth of L and the maximal length of chains of subspaces of V invariant
under action of subalgebras of L, though the exact formulation in the general case
seems to be out of reach. In the particular case where L is 1-dimensional, the depth
of such semidirect sum is equal to the maximal length of chains in V of invariant
subspaces with nontrivial L-action.

The following can be considered as an extension of the corresponding results from
[7], [14], and [15].

Theorem 4.1 A non-simple Lie algebra of depth 2 over a field K is isomorphic to
one of the following algebras:

(i) A 4-dimensional solvable Lie algebra having the basis {x, y, z, t} and the fol-
lowing multiplication table:

[x, y] = z, [x, z] = 0, [y, z] = 0, [z, t] = 0,

with ad t acting on the space Kx�Ky invariantly, without nonzero eigenvectors,
and with trace zero.

(ii) A 4-dimensional solvable Lie algebra having the basis {x, y, z, t} and the fol-
lowing multiplication table:

[x, y] = z, [x, z] = 0, [y, z] = 0, [z, t] = z,

with ad t acting on the space Kx�Ky invariantly, without nonzero eigenvectors,
and with trace 1.

(iii) A direct sum of a simple minimal nonabelian Lie algebra and 1-dimensional
algebra.

(iv) A semidirect sum S +≥ V, where S is either the 2-dimensional nonabelian Lie
algebra, or a 3-dimensional simple minimal nonabelian Lie algebra, and V is
an S-module such that each nonzero element of S acts on V irreducibly.

(v) A semidirect sum S +≥ V, where S is an abelian 1- or 2-dimensional Lie algebra,
and V is an S-module such that for each nonzero element x ⊂ S, the maximal
length of chains of x-invariant subspaces of V is equal to 2 (what is equiva-
lent to saying that any proper x-invariant subspace does not contain proper
x-invariant subspaces).
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Proof It is a straightforward verification that in each of these cases the corresponding
Lie algebras have depth 2, so let us prove that each non-simple Lie algebra L of depth
2 has one of the indicated forms.

Note that L cannot be semisimple. For, in this case it is decomposed into the direct
sum of simple components: L = g1 ⊕ · · · ⊕ gn, n > 1, and any subalgebra of the
form g1 ⊕ Kx, x ⊂ g2, x �= 0, is not minimal nonabelian.

Suppose that L is non-semisimple and non-solvable, and let L = g+≥ Rad(L) be
its Levi–Malcev decomposition. Then g is minimal nonabelian and hence is simple.
Further, Rad(L) abelian, as otherwise g+≥ [Rad(L),Rad(L)] is a proper subalgebra
of L which is not minimal nonabelian. Suppose now that rk g > 1, and g acts on
Rad(L) nontrivially. Then taking x ⊂ g with a nontrivial action on Rad(L), and
the Cartan subalgebra H of g of dimension > 1 containing x, we get a subalgebra
H+≥ Rad(L) of L which is not minimal nonabelian. Hence in the case rk g > 1,
Rad(L) is a trivial (and then, obviously, 1-dimensional) g-module, and we arrive at
case (iii). If rk g = 1, then g is 3-dimensional. If some nonzero x ⊂ g acts on Rad(L)

trivially, then so is [x, g], and, since g is generated by the latter subspace, the whole
g acts on Rad(L) trivially, a case covered by (iii). Assume that any nonzero x ⊂ g
acts on Rad(L) nontrivially. The Lie subalgebra Kx +≥ Rad(L) contains, in its turn, a
subalgebra Kx +≥ V for any proper ad x-invariant subspace V of Rad(L), what shows
that x acts trivially on V . Letting here V to be the Fitting 1-component with respect to
the x-action on Rad(L), we see that Rad(L) = V , what means that x acts on Rad(L)

nondegenerately, and hence, irreducibly. We arrive at case (iv).
It remains to consider the case of L solvable. Take any subspace A of L of codi-

mension 1 containing [L, L], and a complimentary 1-dimensional subspace:

L = Kt � A, (2)

ad t acts onA. SinceA is a proper ideal ofL, it is either abelian orminimal nonabelian.
In the former case, we arrive at the semidirect sum Kt +≥ A, and it is easy to see that
any proper nonabelian subalgebra of L is isomorphic to the semidirect sum Kt +≥ V ,
where V is a proper ad t-invariant subspace of A. Thus, for L to be of depth 2 is
equivalent to the condition described in case (v) (with S 1-dimensional).

Suppose now that A is minimal nonabelian. According to [7, Theorem 4] (also
implicit in [14] and [15]), each solvable minimal nonabelian Lie algebra is either
isomorphic to the 3-dimensional nilpotent Lie algebra, or to the semidirect sum
Kx +≥ V such that ad x acts on V irreducibly (in particular, ad x|V is nondegenerate).
Further, ad t is a derivation of A, and subtracting from t an appropriate element of A,
wemay assume that either t is central, i.e. (2) is the direct sum ofA and 1-dimensional
algebra, or ad t is an outer derivation of A.

Suppose first that A is 3-dimensional nilpotent, i.e., has a basis {x, y, z} with
multiplication table [x, y] = z, [x, z] = [y, z] = 0. If t is central, we arrive at a
particular case of (i). Straightforward computation shows that each outer derivation
of A is equivalent to a derivation d which acts invariantly on the space Kx � Ky, and
either d|Kx�Ky has trace zero, and d(z) = 0, or d|Kx�Ky has trace 1, and d(z) = z.
These two cases correspond to the cases (i) and (ii) respectively, with the condition
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of absence of nonzero eigenvectors to ensure the absence of subalgebras which are
not minimal nonabelian.

Suppose now that A = Kx +≥ V , ad x acts on V irreducibly. If t is central, L ∗
Kx +≥ (V � Kt) (with ad x acting on t trivially), a case covered by (v) (with S
1-dimensional). Straightforward computation shows that each outer derivation of A
is equivalent to a derivation d which acts on V invariantly, and either [ad x, d] = 0
in the Lie algebra gl(V), and d(x) = 0, or [ad x, d] = ad x and d(x) = x. These
two cases correspond to the cases (v) and (iv) respectively (with S 2-dimensional),
with the respective conditions to ensure the absence of subalgebras which are not
minimal nonabelian.

Corollary 4.1 (to Theorems 1.1 and 2.1) A simple Lie algebra of depth 2 is either
isomorphic to sl(2), or regular.

Proof It is clear that sl(2) has depth 2. Hence a simple Lie algebra L of depth 2
is either isomorphic to sl(2), or does not contain sl(2) as a proper subalgebra. In
the latter case, by implication (v) ∈ (iii) of Theorem 1.1, all subalgebras of L are
reductive. But as each minimal nonabelian Lie algebra is either simple, or solvable,
all subalgebras of L are either simple, or abelian, and by implication (iii) ∈ (i) of
Theorem 2.1, L is regular.

In group theory, a notion analogous to depth in the class of finite p-groups is
called An-groups, see [1, Sect. 65] for their discussion and for a partial description
of A2-groups.
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Construction of Symplectic Quadratic Lie
Algebras from Poisson Algebras

Saïd Benayadi

Abstract We introduce the notion of quadratic (resp. symplectic quadratic) Poisson
algebras and we show how one can construct new interesting quadratic (resp. sym-
plectic quadratic) Lie algebras from quadratic (resp. symplectic quadratic) Poisson
algebras. Finally, we give inductive descriptions of symplectic quadratic Poisson
algebras.

1 Introduction

In this paper, we consider finite dimensional algebras over a commutative field K of
characteristic zero.

Recall that the Lie algebraG of a Lie groupGwhich admits a bi-invariant pseudo-
Riemannian structure is quadratic (i.e.G is endowedwith a symmetric nondegenerate
invariant (or associative) bilinear form B). Conversely, any connected Lie group
whose Lie algebra G is quadratic, is endowed with bi-invariant pseudo-Riemannian
structure [14]. The semisimpleLie algebras are quadratic.Many solvableLie algebras
are also quadratic. Quadratic Lie algebras appear, in particular, in connection with
Lie bialgebras and physical models based on Lie algebras. Recall that quadratic Lie
algebras are precisely the Lie algebras for which a Sugawara construction exists [9].
Several papers provided interesting results on the structure of quadratic Lie algebras
[4, 5, 8–10, 12, 13].

In [13], Medina and Revoy have introduced the concept of double extension in
order to give an inductive description of quadratic Lie algebras. This concept is also
a tool to construct a new quadratic Lie algebra from a quadratic Lie algebra (g1, B1)

and a Lie algebra g2 (not necessarily quadratic) which acts on g1 by skew-symmetric
derivations with respect to B1. Let us remark that the non-trivial new quadratic
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Lie algebra will be obtained if g2 acts by non-inner skew-symmetric derivations on
(g1, B1). In general, it is difficult to find a Lie algebra g2 of dimension upper or
equal to 2. In the first part of this paper, we will show how from quadratic Poisson-
admissible algebra (A , B) we can find a Lie algebra g2 of dimension upper or
equal to 2 acting on a quadratic Lie algebra (g1, B1) by non-inner skew-symmetric
derivations.

In addition, we introduce the concept of symplectic quadratic Poisson algebra
and we show how one constructs interesting symplectic quadratic Lie algebras from
symplectic quadratic Poisson algebras. Let us recall that the Lie algebra of a Lie
groupwhich admits a bi-invariant pseudo-Riemannianmetric and also a left-invariant
symplectic form is a symplectic quadratic Lie algebra. These Lie groups are nilpotent
and their geometry (and, consequently, that of their associated homogeneous spaces)
is very rich. In particular, they carry two left-invariant affine structures: one defined
by the symplectic form and another which is compatible with a left-invariant pseudo-
Riemannian metric. Moreover, if the symplectic form is viewed as a solution r of
the classical Yang Baxter equation of Lie algebras (i.e. r is an r -matrix), then the
Poisson-Lie tensor λ = r+ − r− and the geometry of double Lie groups D(r)

can be nicely described in [7]. In addition, symplectic quadratic Lie algebras were
described by methods of double extensions in [1, 2]. Further, in [2], it is proved that
every symplectic quadratic Lie algebra (G , B, α), over an algebraically closed field
K, may be constructed by T ⊕−extension of nilpotent Lie algebra which admits an
invertible derivation.

In the last section, we study structures of symplectic quadratic Poisson algebras
and we give inductive descriptions of symplectic quadratic Poisson algebras over an
algebraically closed field with characteristic zero by using some results of [2, 3].

2 Definitions and Preliminary Results

Definition 2.1 Let A be a vector space endowed with two bilinear operations [ , ]
and ≥. (A , [ , ], ≥) is called a Poisson algebra if (A , [ , ]) is a Lie algebra and (A , ≥)

is a commutative associative algbra (not necessarily unital) such that

[a, b ≥ c] = [a, b] ≥ c + b ≥ [a, c], ∈a, b, c,⊂ A (Leibniz rule).

Definition 2.2 LetA be an algebra, we denote by . its multiplication. On the under-
lying vector space of A one can defined the two following new products:

[x, y]: = x .y − y.x; x ≥ y: = 1

2
(x .y + y.x), ∈x, y ⊂ A .

A (or .) is called Poisson-admissible if (A , [ , ], ≥) is a Poisson algebra.
We denote by A − (resp. A +) the algebra (A , [ , ]) (resp.(A , ≥)).
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Definition 2.3 1. Let (A , .) be an algebra and B : A × A ⊗ K be a bilinear
form. We say that B is associative (or invariant) if

B(a.b, c) = B(a, b.c), ∈a, b, c ⊂ A .

2. Let (g, [ , ]) be a Lie algebra and B : g × g ⊗ K be a bilinear form. (g, B) is
called a quadratic Lie algebra if B is symmetric, non-degenerate and invariant.
In this case, B is called an invariant scalar product on g.

3. Let (A , ≥) be an associative algebra and B : A × A ⊗ K be a bilinear form.
(A , B) is called symmetric algebra if B is symmetric, non-degenerate and asso-
ciative. In this case, B is called an invariant scalar product on A .

4. Let (A , .) be a Poisson-admissible algebra and B : A × A ⊗ K be a bilinear
form. (A , B) will be called quadratic if B is symmetric, non-degenerate and
associative. In this case, B is called an invariant scalar product on A .

5. Let (A , [ , ], ≥) be a Poisson algebra and B : A × A ⊗ K be a bilinear form.
(A , B) will be called quadratic if B is symmetric, non-degenerate such that:-

B([a, b], c) = B(a, [b, c]) and B(a ≥ b, c) = B(a, b ≥ c), ∈a, b, c ⊂ A .

Remark 2.1 1. Let (A , .) be a Poisson-admissible algebra and B : A × A ⊗ K

be a bilinear form. It is clear that (A , B) is quadratic if and only if (A −, B) is
a quadratic Lie algebra and (A +, B) is a symmetric algebra.

2. (A , ., B) is a quadratic Poisson-admissible algebra if and only if (A , [ , ], ≥, B)

is a quadratic Poisson algebra (where [x, y] := x .y − y.x and x ≥ y := 1
2 (x .y +

y.x),∈x, y ⊂ A ).

Now, we are going to give some examples of quadratic Poisson-admissible (or Pois-
son) algebras

1. Let (A , [ , ], ≥) be a Poisson algebra and A ⊕ is the dual vector space of
underlying vector space ofA .An easy computation prove that the following bracket
[ , ]∼ and multiplication ε define a Poisson algebra structure on the vector space
A ⊕ A ⊕ :

[x + f, y + h]∼: = [x, y] − h ≥ adx + f ≥ ady;

(x + f ) ε (y + h): = x ≥ y + h ≥ Lx + f ≥ L y, ∈(x, f ), (y, h) ⊂ A × A ⊕,

where Lx is the left multiplication by x in the algebra (A , ≥).

Moreover, if we consider the bilinear form B : (A ⊕ A ⊕) × (A ⊕ A ⊕) ⊗ K

defined by:

B(x + f, y + h): = f (y) + h(x), ∈(x, f ), (y, h) ⊂ A × A ⊕,

then (A ⊕ A ⊕, B) is a quadratic Poisson algebra.
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Let us remak that if (A , .) is a Poisson-admissible algebra, then the following
multiplication →∞ on the vector spaceA ⊕A ⊕ define a Poisson-admissible structure
on A ⊕ A ⊕:

(x + f ) →∞ (y + h): = x .y + h ≥ Rx + f ≥ L y, ∈(x, f ), (y, h) ⊂ A × A ⊕,

where L y (resp. Rx ) is the left (resp. right) multiplication by y (resp. y) in the algebra
(A , .).

In addition, the bilinear form B : (A ⊕ A ⊕) × (A ⊕ A ⊕) ⊗ K defined by:

B(x + f, y + h): = f (y) + h(x), ∈(x, f ), (y, h) ⊂ A × A ⊕,

is an invariant scalar product on A ⊕ A ⊕ (ie. (A , B) is a quadratic Poisson-
admissible algebra).

2. Let (A , ., B) be a quadratic Poisson-admissible algebra and (H, ε, Δ) be a
symmetric commutative algebra.

The commutativity and the associativity of ε imply that the vector space A ∪ H
with the multiplication:

(a ∪ x) • (b ∪ y): = a.b ∪ x ε y, ∈(a, x), (b, y) ⊂ A × H,

is the Poisson-admissible algebra.
Moreover, the bilinear form B ∪ Δ : (A ∪ H) × (A ∪ H) ⊗ K defined by:

B ∪ Δ(a ∪ x, b ∪ y): = B(a, b)Δ(x, y), , ∈(a, x), (b, y) ⊂ A × H,

define a quadratic structure on the Poisson-admissible algebra (A ∪ H, •).

Definition 2.4 Let (A , .) be an algebra and α:A ×A ⊗ K be a bilinear form. We
say that (A , α) is a symplectic algebra (or α is a symplectic structure on (A , .)) if:

1. α(x, y) = −α(y, x)∈x, y ⊂ A , (ie. α is skew-symmetric);
2. α is non-degenerate;
3. α(x .y, z) + α(y.z, x) + α(z.x, y) = 0,∈x, y, z ⊂ A .

Definition 2.5 If (A , .) is an algebra, B an associative scalar product on A and
α is a symplectic structure on A , we say that (A , B, α) is a symplectic quadratic
algebra.

If (A , .) is an associative algebra, we can also say that (A , B, α) is a symplectic
symmetric algebra.

Proposition 2.1 If (A , B) is a quadratic algebra, α is a symplectic structure on
A if and only if there exists a unique skew-symmetric (with respect to B) invertible
derivation of (A , ., B) such that:
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α(x, y) = B(D(x), y), ∈x, y ⊂ A .

Proof It is straightforward calculation considering α(x, y) = B(D(x), y), for all
x, y ⊂ A .

We finish this section by showing how to construct symplectic quadratic Poisson-
admissible algebras from an arbitrary Poisson-admissible algebras.

Let (P, .) be a Poisson-admissible algebra. Let O := XK[X ] be the ideal of
K[X ] generated by X and R := O/XnO , where n ⊂ N

⊕. R is a commutative and
associative algebra and {X̄ , X̄2, . . . , X̄n} is a basis of the underlying vector space of
R. The vector space P̃ := P ∪ R endowed with the multiplication defined by:

(x ∪ P̄) • (y ∪ Q̄): = x .y ∪ ¯P Q, ∈x, y ⊂ P,∈P, Q ⊂ O,

is a nilpotent Poisson-admissible algebra. Next, (A := P̃ ⊕ P̃⊕, →∞, B) is a
quadratic Poisson-admissible algebra, where:

(x + f ) →∞ (y + h): = x • y + h ≥ Rx + f ≥ L y,

and

B(x + f, y + h): = f (y) + h(x), ∈(x, f ), (y, h) ⊂ P̃ × P̃⊕.

Now, let us consider the endomorphism D of P̃ defined by:

D(x ∪ X̄ i ): = i x ∪ X̄ i , ∈x ⊂ P,∈i ⊂ {1, . . . , n},

is an invertible derivation of P̃. It easy to verify that the endomorphism D̃ of A
defined by:

D̃(x + f ): = D(x) − f ≥ D, ∈(x, f ) ⊂ P̃ × P̃⊕,

is an invertible derivation ofA which is skew-symmetric with respect to B. Conse-
quently, the bilinear form α on A defined by:

α(x + f, y + h): = B(D̃(x + f ), y + h), ∈(x, f ), (y, h) ⊂ P̃ × P̃⊕,

is a symplectic structure on A . Then, (A , B, α) is symplectic quadratic Poisson-
admissible algebra.
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3 Construction of Quadratic (Resp. Symplectic Quadratic) Lie
Algebras from Quadratic (Resp. Symplectic Quadratic)
Poisson-Admissible Algebras

First, let us recall the concept of the double extension in the case of quadratic Lie
algebras.

Let (g1, [ , ]1, B1) be a quadratic Lie algebra and (g2, [ , ]2) be aLie algebrawhich
is not necessarily quadratic such that there exists a morphism of Lie algebras Δ :
g2 ⊗ Dera(g1, B1)where Dera(g1, B1) is the set of the skew-symmetric derivations
with respect to B1, this set is a Lie subalgebra of gl(g1). Since Δ(g2) ↔ Dera(g1, B1),

then the bilinear mapδ : g1 ×g1 ⊗ (g2)
⊕ is a 2−cocycle where (g2)

⊕ is considered
as a trivial g1−module. Consequently, the vector space g1 ⊕ (g2)

⊕ endowed with the
multiplication:

[X1 + f, Y1 + h]c: = [X1, Y1]1 + δ(X1, Y1), ∈X1, Y1 ⊂ g1, f, h ⊂ (g2)
⊕,

is a Lie algebra. This Lie algebra is the central extension of g1 by means of δ.

Let λ be the co-adjoint representation of g2. If X2 ⊂ g2, an easy computation
prove that the endomorphism Δ̄(X2) of g1 ⊕ (g2)

⊕ defined by: Δ̄(X2)(X1 + f ) :=
Δ(X2)(X1) + λ(X2)( f ),∈X1 ⊂ g1, f ⊂ (g2)

⊕, is a derivation of Lie algebra (g1 ⊕
(g2)

⊕, [ , ]c). Next, it is easy to see that the linear map Δ̄ : g2 ⊗ Der(g1 ⊕ (g2)
⊕) is

a morphism of Lie algebras. Therefore, one can consider g := g2 ∅Δ̄ (g1 ⊕ (g2)
⊕)

the semi-direct product of g1 ⊕ (g2)
⊕ by g2 by means of Δ̄. As vector space g =

g2 ⊕ g1 ⊕ (g2)
⊕ and the bracket of the Lie algebra g is gien by:

[X2 + X1 + f, Y2 + Y1 + h] = [X2, Y2]2 +
(
[X1, Y1]1 + Δ(X2)(Y1) − Δ(Y2)(X1)

)

+
(
λ(X2)(h) − λ(Y2)( f ) + δ(X1, Y1)

)
,

∈(X2, X1, f ), (Y2, Y1, h) ⊂ g2 × g1 × (g2)
⊕. Moreover, if ω : g2 × g2 ⊗ K is

an invariant, symmetric bilinear form on g2, it is easy to see that the bilinear form
Bω : g × g ⊗ K defined by:

Bω (X2 + X1 + f, Y2 + Y1 + h): = ω (X2, Y2) + B(X1, Y1) + f (Y2) + h(X2),

∈(X2, X1, f ), (Y2, Y1, h) ⊂ g2 × g1 × (g2)
⊕, is an invariant scalar product on g. g

(or (g, B0)) is called the double extension of (g1, [ , ]1, B1) by g2 by means of Δ.
Now, we are going to construct quadratic Lie algebras from quadratic Poisson-

admissible algebras by using this concept of double extension.
Let (A , ., B) be a quadratic Poisson-admissible algebra. Then, (A −, [., .], B) is

a quadratic Lie algebra and (A +, ≥, B) is a symmetric commutative algebra. Let
us consider the three-dimensional Lie algebra sl(2). Recall that there exists a basis
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{H, E, F} of sl(2) such that [H, E] = E, [H, F] = −F, [E, F] = 2H. The vector
space sl(2) ∪ A + with the bracket [., .]1 defined by:

[x ∪ a, y ∪ b]1: = [x, y] ∪ a ≥ b, ∈(x, a), (y, b) ⊂ sl(2) × A ,

is a Lie algebra.Moreover, the bilinear form B1 : (sl(2)∪A +)×(sl(2)∪A +) ⊗ K

defined by:

B1(x ∪ a, y ∪ b): = K (x, y)B(a, b), ∈(x, a), (y, b) ⊂ sl(2) × A ,

is an invariant scalar product on the Lie algebra (sl(2) ∪ A +, [., .]1) (ie. (sl(2) ⊕
A +, [., .]1, B1) is a quadratic Lie algebra) whereK is the Killing form of sl(2).

It is cleat that if D is a derivation of (A +, ≥), then the endomorphism D̄: =
idsl(2) ∪ D of sl(2) ∪ A + defined by:

D̄(x ∪ a): = x ∪ D(a), ∈(x, a) ⊂ sl(2) × A ,

is a derivation of the Lie algebra (sl(2) ∪ A +, [., .]1). In addition, if D is skew-
symmetric with respect to B, then D̄ is skew-symmetric with respect to B1. In fact,
let (x, a), (y, b) be two elements of sl(2) × A ,

B1(D̄(x ∪ a), y ∪ b) = K (x, y)B(D(a), b)

= −K (x, y)B(a, D(b)) = −B1(x ∪ a, D̄(y ∪ b)).

Claim D̄ is an inner derivation of the Lie algebra (sl(2) ∪A +, [., .]1) if and only if
D = 0.

Proof of claim Let us suppose that the derivation D̄ is inner, then

D̄ = ad(H ∪ a1) + ad(E ∪ a2) + ad(F ∪ a3),

where a1, a2, a3 ⊂ A . Let a ⊂ A , then H ∪ D(a) = −E ∪ a ≥ a2 + F ∪ a ≥ a3,
so D(a) = 0. We conclude that D = 0.

Since (A , .) is a Poisson-amissible algebra, then for all X ⊂ A we have θX : =
adA − X is a derivation of (A +, ≥) and in addition this derivation is skew-symmetric
with respect to B because B is associative. Therefore for all X ⊂ A , ¯θX is a skew-
symmetric derivation of (sl(2) ∪A +, [., .]1, B1) and ¯θX is not inner if adA − X = 0
(ie. X is not in the center of A −). Then we can consider g(A ) := A − ⊕ (sl(2) ∪
A +) ⊕ (A −)⊕ the double extension of (sl(2) ∪A +, [., .]1, B1) by the Lie algebra
A − by means the morphism of Lie algebra Δ : A − ⊗ Dera(sl(2) ∪ A +, B1)

definedby:Δ(X) := θX , ∈ X ⊂ A .Let us remark that the dimension of this quadratic
Lie algebra obtained by double extension is 5n where n is the dimension ofA .Recall
that the bilinear form T0 : g(A ) × g(A ) ⊗ K defined by:
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T0(X + s ∪ a + f, Y + s∗ ∪ b + h): = K (s, s∗)B(a, b) + f (Y ) + h(X),

for all X, Y, a, b ⊂ A , f, h ⊂ A ⊕, is an invariant scalar product on g(A ).

Remark 3.1 In the construction above, one can replace sl(2) by an arbitrary simple
Lie algebra.

In [2], symplectic quadratic Lie algebras are studied. Now, we are going to show
how we can construct symplectic quadratic Lie algebras from symplectic quadratic
Poisson-admissible algebras.

By easy computation, we prove the following lemma.

Lemma 3.1 If D is a derivation of a quadratic Poisson-admissible algebra
(A , ., B), then the endomorphism D̃ of g(A ) defined by:

D̃(x): = D(x), D̃( f ): = − f ≥ D; D̃(s ∪ a): = s ∪ D(a),

∈a, x ⊂ A , f ⊂ A ⊕, s ⊂ sl(2),

is a derivation of Lie algebra g(A ). Moreover, if D is invertible (resp. skew-
symmetric with respect to B), then D̃ is invertible (resp. skew-symmetric with respect
to T0).

Consequently, if (A , B, α) is a symplectic quadratic Poisson-admissible algebras
and D the skew-symmetric (with respect to B) invertible derivation of A such that
α(x, y) = B(D(x), y), ∈x, y ⊂ A , then (g(A ), T,π) is a symplectic quadratic
Lie algebra where π is the symplectic structure on Lie algebra g(A ) defined by:

π(X, Y ): = T (D̃(X), Y ), ∈X, Y ⊂ g(A ).

3.1 Structures of Symplectic Quadratic Poisson-Admissible
Algebras

Recall that if (A , ≥, B) is a commutative associative algebra, we denote by Ends

(A , B) the set of symmetric endomorphisms of the vector space A with respect to
B. It is clear that Ends(A , B) is a subalgebra of End(A ) (the associative algebra of
the endomorphisms of A ).

Let (θ, a0) ⊂ Ends(A , B) ×A . In [3], (θ, a0) is called a pre-admissible element
of Ends(A , B) × A if

θ≥Lx = Lx ≥θ and θ2 = La0 (ie. θ(x ≥ y) = x ≥θ(y), θ2(x) = a0≥x, ∈x, y ⊂ A ).

Now, Let (W , ., B) be a quadratic Poisson-admissible algebra. Let ζ ⊂ Dera
(W −, B) and (θ, a0) be a pre-admissible element of Ends(W +, B) × W +. Then,
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1. The vector space A := Ke ⊕ W ⊕ Ke⊕ with the skew-symmetric bilinear map
[ , ] : A × A ⊗ A defined by:

[x, y]: = [x, y]W − + B(ζ(x), y)e⊕; [e, x]: = ζ(x); [e⊕,A ] = {0},

∈x, y ⊂ W , is a Lie algebra.
2. The vector space A := Ke ⊕ W ⊕ Ke⊕ with the symmetric bilinear map ε :

A × A ⊗ A defined by:

x ε y: = x ≥ y + B(θ(x), y)e⊕; e ε x : = θ(x) + B(a0, x)e⊕;
e ε e: = a0 + ke⊕; e⊕ ε A = {0},

∈x, y ⊂ W , is an associative commutative algebra.

Moreover, if we consider the symmetric bilinear form T :A × A ⊗ K defined by:

T|W ×W : = B; T (e, e⊕) = 1; T (e, Ke ⊕ W ) = T (e⊕, Ke⊕ ⊕ W ) = {0},

then (A , [ , ], T ) is a quadratic Lie algebra (called the double extension of (W −,

[ , ]W − , B) by the one-dimensional Lie algebra by means of D (see [13])) and
(A , ε, T ) is a symmetric commutative associative algebra (called generalized dou-
ble extension of (W +, ≥, B) by the one dimensional algebra with null product by
means of (θ, a0) (see [3])).

In addition, if we suppose that

ζ ≥ θ = θ ≥ ζ = 1

2
adW −(a0) (ie. = 1

2
[a0, .]W −); ζ(a0) = 0;

ζ ⊂ Der(W +); θ([x, y]W −) = ζ(x) ≥ y + [x, θ(y)]W − , ∈ x, y ⊂ W ,

then (A , [ , ], ε) is a Poisson algebra, so (A , [ , ], ε, T ) is a quadratic Poisson alge-
bra. We call this quadratic Poisson algebra the double extension of the quadratic
Poisson algebra (W , [ , ]W − , ≥, B) by means of (ζ, θ, a0, k).

Now, the vector space A with the product:

X � Y : = 1

2
[X, Y ] + X ε Y, ∈ X, Y ⊂ A ,

is Poisson-admissible algebra. Then (A ,�, T ) is a quadratic Poisson-admissible
algebra called the double extension of the quadratic Poisson-admissible algebra
(W , ., B) by means of (ζ, θ, a0, k).

More precisely, the product � is given by:

x � y = x .y + B(π(x), y)e⊕,

e � x = π(x) + B(a0, x)e⊕, x � e = π⊕(x) + B(a0, x)e⊕,
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e � e = e ε e: = a0 + ke⊕; e⊕ ε A = A ε e⊕ = {0},∈x, y ⊂ W ,

where π := 1
2ζ + θ and π⊕ := − 1

2ζ + θ.

Let us consider a symplectic quadratic Poisson-admissible algebra (W , ., B, α).

Then there exists a unique invertible skew-symmetric derivation of W such that
α(x, y) = B(D(x), y), ∈x, y ⊂ W .Next,we consider a double extension (A ,�, T )

of (W , ., B) by means (ζ, θ, a0, k).

By [2, 3], if there exist ł ⊂ K and c0 ⊂ W such that:

[D,ζ] + łζ = adW −(c0),

[D, θ] + łθ = Lc0 and θ(c0) = ła0 + 1

2
D(a0),

Then the endomorphism ν of A defined by:

ν (x): = D(x) − B(c0, x)e⊕; ν (e⊕): = łe⊕; ν (e): = c0 − łe⊕,

is an invertible derivation of (A ,�) and ν is skew-symmetric with respect to T . It
follows that the skew-symmetric bilinear form ≤:A × A ⊗ K defined by:

≤(X, Y ): = T (ν (X), Y ), ∈X, Y ⊂ A ,

is a symplectic structure on (A ,�). Therefore, (A ,�, T,≤) is a symplectic
quadratic Poisson-admissible algebra called the double extension of (W , ., B, α)

(by means of (ζ, θ, a0, c0, k, ł)).

Proposition 3.1 Let (A ,�, T ) be a quadratic Poisson-admissible algebra. Sup-
pose that there exists e⊕ ⊂ Ann(A )\{0} such that B(e⊕, e⊕) = 0. Then, (A ,�, T )

is a double extension of a quadratic Poisson-admissible algebra (W , ., B). More
precisely, W : = (Ke⊕)⊥/Ke⊕ and

(x + Ke⊕).(y + Ke⊕): = (x � y) + Ke⊕,

B(x + Ke⊕, (y + Ke⊕): = T (x, y), ∈x, y ⊂ (Ke⊕)⊥.

Proof Since B is non-degenerate, then there exists e ⊂ A such that B(e⊕, e) = 1.
Consequently, ifW : = (Ke⊕⊕Ke)⊥ denotes the orthogonal ofKe⊕⊕Kewith respect
to T , with the Poisson-admissible structure . induced by the one of (Ke⊕)⊥/Ke⊕, one
easily verifies that B: = T|W ×W is an invariant scalar product on Poisson-admissible
algebra (W , .)

Let us remark that there exit a0 ⊂ W and k ⊂ K such that e � e = a0 + ke⊕
because B(e � e, e⊕) = B(e, e � e⊕) = 0,

Let us consider π the endomorphism of W defined by:
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π(x): = PW (e � x), ∈x ⊂ W ,

where PW :A ⊗ W is the natural projection.
Next, we considerζ: = π −π⊕, θ: = 1

2 (π +π⊕),whereπ⊕ the endomorphism
ofW defined by B(π(x), y) = B(x,π⊕(y)), for all x, y ⊂ W (ie.π⊕ is the adjoint
of π with respect to B). It easy to verify that (A ,�, T ) is the double extension of
the quadratic Poisson-admissible algebra (W , ., B) by means of (ζ, θ, a0, k).

Lemma 3.2 Let (A , .) be a Poisson-admissible algebra. If A admits an invertible
derivation, then Ann(A ) = {0}.
Proof If (A , .) admits an invertible derivation ν then ν is either an invertible
derivation of (A −, [ , ]) and an invertible derivation of (A +, ≥). Consequently, by
[11] (rep. by [3]), (A −, [ , ]) is a nilpotent Lie algebra (resp. (A +, ≥) is a nilpotent
associative algebra). It follows that z(A −) = {0} and Ann(A +) = {0}. Since
adA − X is a derivation of (A +, ≥), for all X ⊂ A , then Ann(A +) is an ideal of
(A −, [ , ]). Therefore Ann(A +) ∀ z(A −) = {0} because (A −, [ , ]) is a nilpotent
Lie algebra. The fact that Ann(A +) ∀ z(A −) ↔ Ann(A ) implies that Ann(A ) =
{0}.
Theorem 3.1 If K is algebraically closed, then every non-zero symplectic quadratic
Poisson-admissible algebra (A ,�, T,≤) is a double extension of a symplectic
quadratic Poisson-admissible algebra (W , ., B, α)

Proof Let (A ,�, T,≤) is a non-zero symplectic quadratic Poisson-admissible.
There exists a unique skew-symmetric (with respect to T ) invertible derivation ν of
(A ,�) such that ≤(X, Y ) = T (ν (X), Y ), for all X, Y ⊂ A . Then, By Lemma 3.2,
Ann(A ) = {0}. Since ν is a derivation of (A ,�), then ν (Ann(A )) ↔ Ann(A ).

It follows that there exist e⊕ ⊂ Ann(A )\{0} and ł ⊂ K\{0} such that ν (e⊕) = łe⊕.
The fact that ν is skew-symmetric with respect to T implies that T (e⊕, e⊕) = 0. By,
Proposition 3.1, (A ,�, T ) is a double extension of a quadratic Poisson-admissible
algebra (W = Ke⊕)⊥/Ke⊕, ., B) by means of (ζ, θ, a0, k) (see the proof of Propo-
sition 3.1 for definitions of ζ, θ, a0 and k). Therefore, A = Ke⊕ ⊕ W ⊕ Ke with
T (e, e⊕) = 1 and W = (Ke⊕ ⊕ Ke)⊥.

Since the idealKe⊕ of (A ,�) is invariant by the skew-symmetric derivationν, so
is its orthogonal (with respect to T ) Ke⊕ ⊕W . Now, if p : Ke⊕ ⊕W ⊗ W denotes
the projection p(te⊕ + x) := x, for t ⊂ K, x ⊂ W , then one can easily verify that
D: = p ≥ ν|W is an invertible skew-symmetric derivation of (W , ., B). Since ν is
skew-symmetric with respect to T and T (e⊕, e) = 1, one immediately obtains that
there exists c0 ⊂ W such that ν (e): = c0 − łe⊕ and ν|W = D − B(c0, .)e⊕. Since
ν is a derivation of (A ,�), then ν is either a derivation ofA − and a derivation of
A +, one easily deduces that

[D,ζ] + łζ = adW −(c0),

[D, θ] + łθ = Lc0 and θ(c0) = ła0 + 1

2
D(a0).
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Therefore (A ,�, T,≤) is the double extension of (W , ., B, α: = B(D(.), .)) (by
means of (ζ, θ, a0, c0, k, ł)).

Now, we denote byM the 2−dimensional Poisson-admissible algebra with zero
product. If {e, f } is a basis of the vector space M , the symmetric (resp. skew-
symmetric) bilinear form B0 (resp. α0) of M defined by B0(e, e) = B0( f, f ) =
1, B0(e, f ) = 0 (resp. α0(e, f ) = 1), is quadratic (resp. symplectic) structure on
M . By Theorem 3.1, The following result follows easily:

Corollary 3.1 If K is algebraically closed, then every non-zero symplectic quadratic
Poisson-admissible algebra (A ,�, T,≤) is obtained from the 2−dimensional sym-
plectic quadratic Poisson-admissible algebra (M , B0, α0) by a sequence of double
extensions.
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Structure and Cohomology of 3-Lie
Algebras Induced by Lie Algebras

Joakim Arnlind, Abdennour Kitouni, Abdenacer Makhlouf
and Sergei Silvestrov

Abstract The aim of this paper is to compare the structure and the cohomology
spaces of Lie algebras and induced 3-Lie algebras.

1 Introduction

Lie algebras have held a very important place in mathematics and physics for a
long time. Ternary Lie algebras appeared first in Nambu’s generalization of Hamil-
tonian mechanics [11] which uses a generalization of Poisson algebras with a ternary
bracket. The algebraic formulation is due to Takhtajan. The structure of n-Lie algebra
was studied by Filippov [8] and Kasymov [10].

The Lie algebra cohomology complex is well known under the name of
Chevalley-Eilenberg cohomology complex. The cohomology of n-Lie algebras was
first introduced by Takhtajan [13] in its simplest form, later a complex adapted to the
study of formal deformations was introduced by Gautheron [9], then reformulated
by Daletskii and Takhtajan [5] using the notion of base Leibniz algebra of a n-Lie
algebra.
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In [3], the authors introduce a realization of the quantum Nambu bracket in terms
of matrices (using the commutator and the trace of matrices). This construction is
generalized in [1] to the case of any Lie algebra where the commutator is replaced
by the Lie bracket, and the matrix trace is replaced by linear forms having similar
properties, which we call 3-Lie algebras induced by Lie algebras. This construction
is generalized to the case of n-Lie algebras in [2]. We investigate in this paper
the connections between the structure properties (solvability, nilpotency,...) and the
cohomology of a Lie algebra and its induced 3-Lie algebra.

The paper is organized as follows: in Sect. 2 we recall main definitions and results
concerning n-Lie algebras, and construction of (n + 1)-Lie algebras induced by
n-Lie algebras. In Sect. 3 we study some structural properties of 3-Lie algebras
induced by Lie algebras, in particular: common subalgebras and ideals, solvability
and nilpotency. In Sect. 4, we recall the cohomology complexes for Lie algebras and
3-Lie algebras, then we study relations between 1 and 2 cocycles of a Lie algebra and
the induced 3-Lie algebra. In Sect. 5, we give definitions of central extensions of Lie
algebras and n-Lie algebras, then we study the relation between central extension of
a Lie algebra and those of a 3-Lie algebra it induces. In Sect. 6 we give a method to
recognize 3-Lie algebras that are induced by some Lie algebra, and applying it, we
determine all 3-Lie algebras induced by Lie algebras up to dimension 5, based on
classifications given in [4, 8], then we give a list of Lie algebras up to dimension 4
and all the possible induced 3-Lie algebras. In Sect. 7 we present computations on 4
chosen Lie algebras together with a trace map. We compare the set of 1-cocycles and
1 coboundaries of the Lie algebras and the induced 3-Lie algebras using the computer
algebra software Mathematica; the algorithm is briefly explained there too.

2 n-Lie Algebras

In this paper, all considered vector spaces are over a field K of characteristic 0. n-Lie
algebras were introduced in [8], then deeper investigated in [10]. Let us recall some
basic definitions.

Definition 2.1 A n-Lie algebra (A, [·, . . . , ·]) is a vector space together with a skew-
symmetric n-linear map [·, . . . , ·] : An ⊕ A such that:

[
x1, . . . , xn−1, [y1, . . . , yn]

] =
n∑

i=1

[
y1, . . . ,

[
x1, . . . , xn−1, yi

]
, . . . , yn

]
. (1)

for all x1, . . . , xn−1, y1, . . . , yn ≥ A. This condition is called the fundamental iden-
tity or Filippov identity. For n = 2, the identity (1) becomes the Jacobi identity and
we get the definition of a Lie algebra.
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Definition 2.2 Let (A, [·, . . . , ·]) be a n-Lie algebra, and I a subspace of A. We
say that I is an ideal of A if, for all i ≥ I, x1, . . . , xn−1 ≥ A, it holds that[
i, x1, . . . , xn−1

] ≥ I .

Lemma 2.1 Let (A, [·, . . . , ·]) be a n-Lie algebra, and I1, . . . ., In be ideals of A,
then I = [I1, . . . , In] is an ideal of A.

Definition 2.3 Let (A, [·, . . . , ·]) be a n-Lie algebra, and I an ideal of A. Define the
derived series of I by:

D0(I ) = I and D p+1(I ) = [
D p(I ), . . . , D p(I )

]
.

and the central descending series of I by:

C0(I ) = I and C p+1(I ) = [
C p(I ), I, . . . , I

]
.

Definition 2.4 Let (A, [·, . . . , ·]) be a n-Lie algebra, and I an ideal of A. The ideal
I is said to be solvable if there exists p ≥ N such that D p(I ) = {0}. It is said to be
nilpotent if there exists p ≥ N such that C p(I ) = {0}.
Definition 2.5 A n-Lie algebra (A, [·, . . . , ·]) is said to be simple if D1(A) ∈= {0}
and if it has no ideals other than {0} and A. A direct sum of simple n-Lie algebras is
said to be semi-simple.

In [1, 2] a construction of a 3-Lie algebra from a Lie algebra, and more generally
a (n + 1)-Lie algebra from a n-Lie algebra was introduced. We recall the main
definitions and results.

Definition 2.6 Let φ : An ⊕ A be a n-linear map and τ be a linear map from A to
K. Define φτ : An+1 ⊕ A by:

φτ (x1, . . . , xn+1) =
n+1∑
k=1

(−1)kτ(xk)φ(x1, . . . , x̂k, . . . , xn+1), (2)

where the hat over x̂k on the right hand side means that xk is excluded, that is φ is
calculated on (x1, . . . , xk−1, xk+1, . . . , xn+1).

We will not be concerned with just any linear map τ , but rather maps that have a
generalized trace property. Namely:

Definition 2.7 For φ : An ⊕ A we call a linear map τ : A ⊕ K a φ-trace (or
trace) if τ (φ(x1, . . . , xn)) = 0 for all x1, . . . , xn ≥ A.

Lemma 2.2 Let φ : An ⊕ A be a skew-symmetric n-linear map and τ a linear map
A ⊕ K. Then φτ is a (n + 1)-linear totally skew-symmetric map. Furthermore, if τ

is a φ-trace then τ is a φτ -trace.
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Theorem 2.1 Let (A, φ) be a n-Lie algebra and τ a φ-trace, then (A, φτ ) is a
(n + 1)-Lie algebra. We shall say that (A, φτ ) is induced by (A, φ). In particular,
let (A, [., .]) be a Lie algebra and τ : A ⊕ K be a trace map, the ternary bracket
[., ., .] given by: [x, y, z] = �

x,y,z
τ (x) [y, z] defines a 3-Lie algebra; we refer to A

when considering the Lie algebra and Aτ when considering induced 3-Lie algebra.

3 Structure of 3-Lie Algebras Induced by Lie Algebras

Let (A, [., .]) be a Lie algebra, τ a [., .]-trace and (A, [., ., .]τ ) the induced 3-Lie
algebra.

Proposition 3.1 If B is a subalgebra of (A, [., .]) then B is also a subalgebra of
(A, [., ., .]τ ).

Proof Let B be a subalgebra of (A, [., .]) and x, y, z ≥ B:

[x, y, z]τ = τ(x) [y, z] + τ(y) [z, x] + τ(z) [x, y] ,

which is a linear combination of elements of B and then belongs to B. �

Proposition 3.2 Let J be an ideal of (A, [., .]). Then J is an ideal of (A, [., ., .]τ )
if and only if:

[A, A] ⊂ J or J ⊂ ker τ.

Proof Let J be an ideal of (A, [., .]), and let j ≥ J and x, y ≥ A, then we have:

[x, y, j]τ = τ(x) [y, j] + τ(y) [ j, x] + τ( j) [x, y] .

Wehave that τ(x) [y, j]+τ(y) [ j, x] ≥ J , then, to have [x, y, j]τ ≥ J it is necessary
and sufficient to have τ( j) [x, y] ≥ J , which is equivalent to τ( j) = 0 or [x, y]
≥ J . �

Theorem 3.1 Let (A, [., .]) be a Lie algebra, τ a [., .]-trace and (A, [., ., .]τ ) the
induced 3-Lie algebra. The 3-Lie algebra (A, [., ., .]τ ) is solvable, more precisely
D2(Aτ ) = 0 i.e.

⎧
D1(Aτ ) = [A, A, A]τ , [., ., .]τ

⎨
is abelian.

Proof Let x, y, z ≥ [A, A, A]τ , x = [x1, x2, x3]τ , y = [y1, y2, y3]τ and z =
[z1, z2, z3]τ , then:

[x, y, z]τ = τ ([x1, x2, x3]τ )
[
[y1, y2, y3]τ , [z1, z2, z3]τ

]
+ τ

⎧
[y1, y2, y3]τ

⎨ [
[z1, z2, z3]τ , [x1, x2, x3]τ

]
+ τ ([z1, z2, z3]τ )

[
[x1, x2, x3]τ , [y1, y2, y3]τ

]
= 0.
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Because τ ([., ., .]) = 0. �

Remark 3.1 ([8]) Let (A, [., ., .]) be a 3-Lie algebra. If we fix a ≥ A, the bracket

[., .]a = [a, ., .]

is skew-symmetric and satisfies Jacobi identity. Indeed, we have, for x, y, z ≥ A:

[
x, [y, z]a

]
a = [a, x, [a, y, z]]

= [[a, x, a] , y, z] + [a, [a, x, y] , z] + [a, y, [a, x, z]]

= [a, [a, x, y] , z] + [a, y, [a, x, z]]

= [
[x, y]a , z

]
a + [

x, [y, z]a
]

a .

Proposition 3.3 Let (A, [., .]) be a Lie algebra, τ be a trace and (A, [., ., .]τ ) the
induced algebra, let (C p(A)) be the central descending series of (A, [., .]), and
(C p(Aτ )) be the central descending series of (A, [., ., .]τ ). Then we have:

C p(Aτ ) ⊗ C p(A),∀p ≥ N.

If there exists i ≥ A such that [i, x, y]τ = [x, y] ,∀x, y ≥ A then:

C p(Aτ ) = C p(A),∀p ≥ N.

Proof We proceed by induction over p ≥ N. The case of p = 0 is trivial, for p = 1
we have:

∀x = [a, b, c]τ ≥ C1(Aτ ), x = τ(a) [b, c] + τ(b) [c, a] + τ(c) [a, b] ,

which is a linear combination of element of C1(A) and then is an element of C1(A).
Suppose now that there exists i ≥ A such that [i, x, y]τ = [x, y] ,∀x, y ≥ A, then
for x = [a, b] ≥ C1(A), x = [i, a, b]τ and then is an element of C1(Aτ ).

Now, we suppose this proposition is true for some p ≥ N, and let x ≥ C p+1(Aτ ),
then x = [a, u, v]τ with u, v ≥ A and a ≥ C p(Aτ )

x = [a, u, v]τ = τ(u) [v, a] + τ(v) [a, u] (τ (a) = 0)

which is an element of C p+1(A) because a ≥ C p(Aτ ) ⊗ C p(A). If there exists
i ≥ A such that [i, x, y]τ = [x, y] ,∀x, y ≥ A then, if x ≥ C p+1(A) then x = [a, u]
with a ≥ C p(A) and u ≥ A and we have:

x = [a, u] = [i, a, u]τ = [a, u, i]τ ≥ C p+1(Aτ ). �

Remark 3.2 It also results from the precedingproposition that D1(Aτ ) = [A, A, A]τ
⊗ D1(A) = [A, A], and that if there exists i ≥ A such that [i, x, y]τ =
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[x, y] ,∀x, y ≥ A, then D1(Aτ ) = D1(A). For the rest of the derived series, we
have obviously the first inclusion by Theorem 3.1.

Theorem 3.2 Let (A, [., .]) be a Lie algebra, τ be a trace and (A, [., ., .]τ ) the
induced 3-Lie algebra, then we have:

(A, [., .]) is nilpotent of class p =⇒ (A, [., ., .]τ ) is nilpotent of class at most p.

Moreover, if there exists i ≥ A such that [i, x, y]τ = [x, y] ,∀x, y ≥ A then:

(A, [., .]) is nilpotent of class p →⇒ (A, [., ., .]τ ) is nilpotent of class p.

Proof 1. Suppose that (A, [., .]) is nilpotent of class p ≥ N, then C p(A) = {0}.
By the preceding proposition, C p(Aτ ) ⊂ C p(A) = {0}, therefore (A, [., ., .]τ )
is nilpotent of class at most p.

2. We suppose now that (A, [., ., .]τ ) is nilpotent of class p ≥ N, and that there
exists i ≥ A such that [i, x, y]τ = [x, y] ,∀x, y ≥ A, then C p(Aτ ) = {0}.
By the preceding proposition, C p(A) = C p(Aτ ) = {0}. Therefore (A, [., .]) is
nilpotent, since C p−1(A) = C p−1(Aτ ) ∈= {0}, (A, [., ., .]τ ) and (A, [., .]) have
the same nilpotency class.

�

4 Lie and 3-Lie Algebras Cohomology

In this section, we study the connections between the Chevalley-Eilenberg cohomol-
ogy for Lie algebras and the cohomology of 3-Lie algebras induced by Lie algebras.

Now, let us recall the main definitions of Lie algebra and n-Lie algebra cohomol-
ogy, for reference and further details, see [5, 6, 9, 13].

Definition 4.1 Let (A, [., .]) be a Lie algebra, ρ a representation of A in a vector
space M . A M-valued p-cochains on A is a skew-symmetric p-linear map ϕ : Ap ⊕
M , the set of M-valued p-cochains is denoted by C p(A, M).

The coboundary operator is the linear map δ p : C p(A, M) ⊕ C p+1(A, M) given
by:

δ pϕ(x1, . . . , x p+1) =
p+1∑
j=1

(−1) j+1ρ(xk)ϕ(x1, . . . , x̂ j , . . . , x p+1)

+
p+1∑
j=1

p+1∑
k= j+1

(−1) j+kϕ([x j , xk], x1, . . . , x̂ j , . . . , x̂k, . . . , x p+1).

We will study two particular cases, the adjoint cohomology M = A, ρ = ad and
the scalar cohomology M = K, ρ = 0.
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Definition 4.2 Let (A, [., ., .]) be a 3-Lie algebra. An A-valued p-cochain is a linear
map ψ : (∞2A)∪p−1 ∞ A ⊕ A.

Definition 4.3 The coboundary operator for the adjoint action is given by:

d pψ(x1, . . . , x2p+1) =
p∑

j=1

2p+1∑
k=2 j+1

(−1) jψ(x1, . . . , x̂ j−1, x̂ j , . . . ada j xk, . . . , x2p+1)

+
p∑

k=1

(−1)k−1adak ψ(x1, . . . , x̂2k−1, x̂2k, . . . , x2p+1)

+ (−1)p+1 [
x2p−1, ψ(x1, . . . , x2p−2, x2p), x2p+1

]
+ (−1)p+1 [

ψ(x1, . . . , x2p−1, x2p, x2p+1
]
,

where ak = (x2k−1, x2k).

Definition 4.4 Let (A, [., ., .]) be a 3-Lie algebra. A K-valued p-cochain is a linear
map ψ : (∞2A)∪p−1 ∞ A ⊕ K.

Definition 4.5 The coboundary operator for the trivial action is given by:

d pψ(x1, . . . , x2p+1) =
p∑

j=1

2p+1∑
k=2 j+1

(−1) jψ(x1, . . . , x̂ j−1, x̂ j , . . . ada j xk, . . . , x2p+1),

where ak = (x2k−1, x2k).

The elements of Z p(A, M) = ker δ p are called p-cocycles, those of Bn(A, M) =
Im δ p−1 are called coboundaries. H p(A, M) = Z p(A,M)

Bn(A,M)
is the p-th cohomology

group. We sometimes add in subscript the representation used in the cohomology
complex, for example Z p

ad(A, A) denotes the set of p-cocycle for the adjoint coho-
mology and Z p

0 (A, K) denotes the set of p-cocycle for the scalar cohomology.
In particular, the elements of Z1(A, A) are the derivations. Recall that a derivation

of a n-Lie algebra is a linear map f : A ⊕ A satisfying:

f ([x1, . . . , xn]) =
n∑

i=1

[x1, . . . , f (xi ), . . . , xn] ,∀x1, . . . , xn ≥ A.

4.1 Derivations and 2-Cocycles Correspondence

Let (A, [., .]) be a Lie algebra, τ a [., .]-trace and (A, [., ., .]τ ) the induced 3-Lie
algebra. Then we have the following correspondence between 1 and 2-cocycles of
(A, [., .]) and those of (A, [., ., .]τ ).
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Lemma 4.1 Let f : A ⊕ A be a Lie algebra derivation, then τ ↔ f is a [., .]-trace.

Proof for all x, y ≥ A, we have:

τ ( f ([x, y])) = τ ([ f (x), y] + [x, f (y)]) = τ ([ f (x), y]) + τ ([x, f (y)]) = 0.

�

Theorem 4.1 Let f : A ⊕ A be a derivation of the Lie algebra A, then f is a
derivation of the induced 3-Lie algebra if and only if:

[x, y, z]τ↔ f = 0,∀x, y, z ≥ A.

Proof Let f be a derivation of A and x, y, z ≥ A:

f
⎧
[x, y, z]τ

⎨ = τ(x) f ([y, z]) + τ(y) f ([z, x]) + τ(z) f ([x, y])

= τ(x) [ f (y), z] + τ(y) [ f (z), x] + τ(z) [ f (x), y]

+ τ(x) [y, f (z)] + τ(y) [z, f (x)] + τ(z) [x, f (y)]

+ τ( f (x)) [y, z] + τ( f (y)) [z, x] + τ( f (z)) [x, y]

− τ( f (x)) [y, z] + τ( f (y)) [z, x] + τ( f (z)) [x, y]

= [ f (x), y, z]τ + [x, f (y), z]τ + [x, y, f (z)]τ − [x, y, z]τ↔ f .

�

Theorem 4.2 Let ϕ ≥ Z2
ad(A, A) and ω : A ⊕ K be a linear map satisfying:

1. τ(x)ω(y) = τ(y)ω(x),
2. ω([x, y]) = 0,
3. �

x,y,z
ω (x) τ (ϕ (y, z)) = 0.

Then ψ (x, y, z) = �
x,y,z

ω (x) ϕ (y, z) is a 2-cocycle of the induced 3-Lie algebra.

Proof Let ϕ ≥ Z2
ad(A, A) and ω : A ⊕ K a linear map satisfying conditions 1, 2

and 3 above, and let ψ (x, y, z) = �
x,y,z

ω (x) ϕ (y, z), then we have:

d2ψ (x1, x2, y1, y2, z) = ψ
⎧
x1, x2, [y1, y2, z]τ

⎨ − ψ
⎧
[x1, x2, y1]τ , y2, z

⎨
− ψ

⎧
y1, [x1, x2, y2]τ , z

⎨ − ψ (y1, y2, [x1, x2, z]τ ) + [x1, x2, ψ (y1, y2, z)]τ

− [ψ (x1, x2, y1) , y2, z]τ − [y1, ψ (x1, x2, y2) , z]τ − [y1, y2, ψ (x1, x2, z)]τ

= τ (y1) ψ (x1, x2, [y2, z]) + τ (y2) ψ (x1, x2, [z, y1]) + τ (z) ψ (x1, x2, [y1, y2])

− τ (x1) ψ (y1, y2, [x2, z]) − τ (x2) ψ (y1, y2, [z, x1]) − τ (z) ψ (y1, y2, [x1, x2])

− τ (x1) ψ ([x2, y1] y2, z, ) − τ (x2) ψ ([y1, x1] y2, z, ) − τ (y1) ψ ([x1, x2] y2, z, )

− τ (x1) ψ (y1, [x2, y2] , z) − τ (x2) ψ (y1, [y2, x1] , z) − τ (y2) ψ (y1, [x1, x2] , z)

+ τ (x1) [x2, ψ (y1, y2, z)] + τ (x2) [ψ (y1, y2, z) , x1] + τ (ψ (y1, y2, z)) [x1, x2]

− τ (y1) [y2, ψ (x1, x2, z)] − τ (y2) [ψ (x1, x2, z) , y1] − τ (ψ (x1, x2, z)) [y1, y2]
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− τ (ψ (x1, x2, y1)) [y2, z] − τ (y2) [z, ψ (x1, x2, y1)] − τ (z) [ψ (x1, x2, y1) , y2]

− τ (y1) [ψ (x1, x2, y2) , z] − τ (ψ (x1, x2, y2)) [z, y1] − τ (z) [y1, ψ (x1, x2, y2)]

= τ (y1)
⎩
ω (x1) ϕ (x2, [y2, z]) + ω (x2) ϕ ([y2, z] , a) − ω (y2) ϕ (z, [x1, x2])

− ω (z) ϕ ([x1, x2] , y2) − ω (x1) [y2, ϕ (x2, z)] − ω (x2) [y2, ϕ (z, x1)]

− ω (z) [y2, ϕ (x1, x2)] − ω (x1) [ϕ (x2, y2) , z] − ω (x2) [ϕ (y2, x1) , z]

− ω (y) [ϕ (x1, x2) , z]
⎪

+ τ (y2)
⎩
ω (x1) ϕ (x2, [z, y1]) + ω (x2) ϕ ([z, y1] , x1) − ω (x1) [ϕ (x2, z) , y1]

− ω (x2) [ϕ (z, x1) , y1] − ω (z) [ϕ (x1, x2) , y1] − ω (x1) [z, ϕ (x2, y1)]

− ω (x2) [z, ϕ (y1, x1)] − ω (y1) [z, ϕ (x1, x2)] − ω (y1) ϕ ([x1, x2] , z)

− ω (z) ϕ (y1, [x1, x2])
⎪

+ τ (z)
⎩
ω (x1) ϕ (x2, [y1, y2]) + ω (x2) ϕ ([y1, y2] , x1) − ω (y1) ϕ (y2, [x1, x2])

− ω (y2) ϕ ([x1, x2] , y1) − ω (x1) [ϕ (x2, y1) , y2] − ω (x2) [ϕ (y1, x1) , y2]

−ω (y1) [ϕ (x1, x2) , y2] − ω (x1) [y1, ϕ (x2, y2)] − ω (x2) [y1, ϕ (y2, x1)]

− ω (y2) [y1, ϕ (x1, x2)]
⎪

+ τ (x1)
⎩
ω (y1) [x2, ϕ (y2, z)] + ω (y2) [x2, ϕ (z, y1)] + ω (z) [x2, ϕ (y1, y2)]

− ω (y1) ϕ (y2, [x2, z]) − ω (y2) ϕ ([x2, z] , y1) − ω (y2) ϕ (z, [x2, y1])

− ω (z) ϕ ([x2, y1] , y2) − ω (y1) ϕ ([x2, y2] , z) − ω (z) ϕ (y1, [x2, y2])
⎪

+ τ (x2)
⎩
ω (y1) [ϕ (y2, z) , x1] + ω (y2) [ϕ (z, y1) , x1] + ω (z) [ϕ (y1, y2) , x1]

− ω (y1) ϕ (y2, [z, x1]) − ω (y2) ϕ ([z, x1] , y1) − ω (y2) ϕ (z, [y1, x1])

− ω (z) ϕ ([y1, x1] , y2) − ω (y1) ϕ ([y2, x1] , z) − ω (z) ϕ (y1, [y2, x1])
⎪

+
⎩
ω (y1) τ (ϕ (y2, z)) + ω (y2) τ (ϕ (z, y1)) + ω (z) τ (ϕ (y1, y2))

⎪
[x1, x2]

−
⎩
ω (x1) τ (ϕ (x2, y1)) + ω (x2) τ (ϕ (y1, x1)) + ω (y1) τ (ϕ (x1, x2))

⎪
[y2, z]

−
⎩
ω (x1) τ (ϕ (x2, z)) + ω (x2) τ (ϕ (z, x1)) + ω (z) τ (ϕ (x1, x2))

⎪
[y1, y2]

−
⎩
ω (x1) τ (ϕ (x2, y2)) + ω (x2) τ (ϕ (y2, x1)) + ω (y2) τ (ϕ (x1, x2))

⎪
[z, y1]

= − τ (y1) ω (x1) δ2ϕ (z, y2, x2) − τ (y1) ω (x2) δ2ϕ (y2, z, x1)

− τ (y2) ω (x1) δ2ϕ (y1, z, x2) − τ (y2) ω (x2) δ2ϕ (z, y1, x1)

− τ (z) ω (x1) δ2ϕ (y2, y1, x2) − τ (z) ω (x2) δ2ϕ (y1, y2, x1)

+
⎩
ω (y1) τ (ϕ (y2, z)) + ω (y2) τ (ϕ (z, y1)) + ω (z) τ (ϕ (y1, y2))

⎪
[x1, x2]

−
⎩
ω (x1) τ (ϕ (x2, y1)) + ω (x2) τ (ϕ (y1, x1)) + ω (y1) τ (ϕ (x1, x2))

⎪
[y2, z]

−
⎩
ω (x1) τ (ϕ (x2, z)) + ω (x2) τ (ϕ (z, x1)) + ω (z) τ (ϕ (x1, x2))

⎪
[y1, y2]

−
⎩
ω (x1) τ (ϕ (x2, y2)) + ω (x2) τ (ϕ (y2, x1)) + ω (y2) τ (ϕ (x1, x2))

⎪
[z, y1] .

Since
�

x,y,z
ω (x) τ (ϕ (y, z)) = 0,∀x, y, z ≥ A,
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we get
d2ψ = 0.

�

Theorem 4.3 Every 1-cocycle for the scalar cohomology of (A, [., .]) is a 1-cocycle
for the scalar cohomology of the induced 3-Lie algebra.

Proof Let ω be a 1-cocycle for the scalar cohomology of (A, [., .]), then

∀x, y ≥ A, δ1ω(x, y) = ω ([x, y]) = 0,

which is equivalent to [A, A] ⊗ ker ω. By Remark 3.2 [A, A, A]τ ⊗ [A, A] and
then [A, A, A]τ ⊗ ker ω, that is

∀x, y, z ≥ A, ω
⎧
[x, y, z]τ

⎨ = d1ω (x, y, z) = 0,

which means that ω is a 1-cocycle for the scalar cohomology of (A, [., ., .]τ ). �

Theorem 4.4 Let ϕ ≥ Z2
0(A, K) and ω : A ⊕ K a linear map satisfying:

1. τ(x)ω(y) = τ(y)ω(x),
2. ω([x, y]) = 0,
3. ω(y2) (τ (x1)ϕ ([x1, z] x2) + τ(x2)ϕ ([z, y1] x1)) = 0.

Then ψ (x, y, z) = �
x,y,z

ω (x) ϕ (y, z) is a 2-cocycle of the induced 3-Lie algebra.

Proof Let ϕ ≥ Z2
0(A, K) and ω : A ⊕ K a linear map satisfying conditions 1, 2

and 3 above, and let ψ (x, y, z) = �
x,y,z

ω (x) ϕ (y, z), then we have:

d2ψ (x1, x2, y1, y2, z) = ψ
⎧
x1, x2, [y1, y2, z]τ

⎨ − ψ
⎧
[x1, x2, y1]τ , y2, z

⎨
− ψ

⎧
y1, [x1, x2, y2]τ , z

⎨ − ψ (y1, y2, [x1, x2, z]τ )

= τ (y1) ψ (x1, x2, [y2, z]) + τ (y2) ψ (x1, x2, [z, y1]) + τ (z) ψ (x1, x2, [y1, y2])

− τ (x1) ψ ([x2, y1] , y2, z) − τ (x2) ψ ([y1, x1] , y2, z) − τ (y1) ψ ([x1, x2] , y2, z)

− τ (x1) ψ (y1, [x2, y2] , z) − τ (x2) ψ (y1, [y2, x1] , z) − τ (y2) ψ (y1, [x1, x2] , z)

− τ (x1) ψ (y1, y2, [x2, z]) − τ (x2) ψ (y1, y2, [z, x1]) − τ (z) ψ (y1, y2, [x1, x2])

= τ (y1) (ω (x1) ϕ (x2, [y2, z]) + ω (x2) ϕ ([y2, z] , x1))

+ τ (y2) (ω (x1) ϕ (x2, [y1, z]) + ω (x2) ϕ ([y1, z] , x1))

+ τ (z) (ω (x1) ϕ (x2, [y1, y2]) + ω (x2) ϕ ([y1, y2] , x1))

− τ (x1) (ω (y2) ϕ (z, [x2, y1]) + ω (z) ϕ ([x2, y1] , y2))

− τ (x2) (ω (y2) ϕ (z, [y1, x1]) + ω (z) ϕ ([y1, x1] y2))

− τ (y1) (ω (y2) ϕ (z, [x1, x2]) + ωzϕ ([x1, x2] , y2))

− τ (x1) (ω (y1) ϕ ([x2, y2] , z) + ω (z) ϕ (y1, [x2, y2]))

− τ (x2) (ω (y1) ϕ ([y2, x1] , z) + ω (z) ϕ (y1, [y2, x1]))

− τ (y2) (ω (y1) ϕ ([x1, x2] , z) + ω (z) ϕ (y1, [x1, x2]))



Structure and Cohomology of 3-Lie Algebras Induced by Lie Algebras 133

− τ (x1) (ω (y1) ϕ (y2, [x2, z]) + ω (y2) ϕ ([x2, z] , y1))

− τ (x2) (ω (y1) ϕ (y2, [z, x1]) + ω (y2) ϕ ([z, x1] , y1))

− τ (z) (ω (y1) ϕ (y2, [x1, x2]) + ω (y2) ϕ ([x1, x2] , y1))

= τ (x1) ω (y1) δ2ϕ (y2, z, x2) + τ (x1) ω (y2) δ2ϕ (z, y1, x2)

+ τ (x2) ω (y1) δ2ϕ (z, y2, x1) + τ (x2) ω (y2) δ2ϕ (x1, y1, z)

+ τ (x1) ω (z) δ2ϕ (y1, y2, x2) + τ (x2) ω (z) δ2ϕ (y2, y1, x1)

− 2ω (y2) (τ (x1) ϕ ([y1, z] , x2) + τ (x2) ϕ ([z, y1] , x1)) .

Since
ω (y2) (τ (x1) ϕ ([y1, z] , x2) + τ (x2) ϕ ([z, y1] , x1)) = 0,

it follows that d2ψ = 0. �

Remark 4.1 Condition 1 in Theorems 4.2 and 4.4 are equivalent to ω = λτ, λ ≥ K,
and therefore one may remove condition 2, which is redundant.

Lemma 4.2 Let α ≥ C1(A, K). Then:

d1α (x, y, z) = �
x,y,z

τ (x) δ1α (y, z) ,∀x, y, z ≥ A.

Proof Let α ≥ C1(A, K), x, y, z ≥ A, then we have:

d1α (x, y, z) = α ([x, y, z]) = �
x,y,z

τ (x) α ([y, z]) = �
x,y,z

τ (x) δ1α (y, z)

�

Proposition 4.1 Let ϕ1, ϕ2 ≥ Z2
0(A, K) satisfying conditions of Theorem 4.4. If

ϕ1, ϕ2 are in the same cohomology class then ψ1, ψ2 defined by:

ψi (x, y, z) = �
x,y,z

τ (x) ϕi (y, z) , i = 1, 2

are in the same cohomology class.

Proof Let ϕ1, ϕ2 ≥ Z2
0(A, K) be two cocycles in the same cohomology class, that is

ϕ2 − ϕ1 = δ1α, α ≥ C1(A, K)

satisfying conditions of Theorem 4.4, and

ψi (x, y, z) = �
x,y,z

τ (x) ϕi (y, z) : i = 1, 2,

then we have:



134 J. Arnlind et al.

ψ2 (x, y, z) − ψ1 (x, y, z) = �
x,y,z

τ (x) ϕ2 (y, z) − �
x,y,z

τ (x) ϕ1 (y, z)

= �
x,y,z

τ (x) (ϕ2 − ϕ1) (y, z)

= �
x,y,z

τ (x) δ1α (y, z)

= d1α (x, y, z) ,

which means that ψ1 and ψ2 are in the same cohomology class. �

5 Central Extensions of 3-Lie Algebras Induced by Lie Algebras

Definition 5.1 Let A, B, C be n-Lie algebras (n ≥ 2). An extension of B by A is a
short sequence:

A
λ⊕ C

μ⊕ B,

such that λ is an injective homomorphism, μ is a surjective homomorphism, and
Im λ ⊗ kerμ. We say also that C is an extension of B by A.

Definition 5.2 Let A, B be n-Lie algebras, and A
λ⊕ C

μ⊕ B be an extension of B
by A.

• The extension is said to be trivial if there exists an ideal I of C such that C =
kerμ ∗ I .

• It is said to be central if kerμ ⊗ Z(C).

We may equivalently define central extensions by a 1-dimensional algebra (we will
simply call it central extension) this way:

Definition 5.3 Let A be a n-Lie algebra, we call central extension of A the space
Ā = A ∗ Kc equipped with the bracket:

∀x1, . . . , xn ≥ A, [x1, ..., xn]c = [x1, . . . , xn] + ω (x1, . . . , xn) c and
[
x1, . . . , xn−1, c

]
c = 0,

where ω is a skew-symmetric n-linear form such that [·, . . . , ·] satisfies the funda-
mental identity (or Jacobi identity for n = 2).

Proposition 5.1 ([6])

1. The bracket of a central extension satisfies the fundamental identity (resp. Jacobi
identity) if and only if ω is a 2-cocycle for the scalar cohomology of n-Lie algebras
(resp. Lie algebras).

2. Two central extensions of a n-Lie algebra (resp. Lie algebra) A given by two
maps ω1 and ω2 are isomorphic if and only if ω2 − ω1 is a 2-coboundary for the
scalar cohomology of n-Lie algebras (resp. Lie algebras).
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Now, we look at the question of whether a central extension of a Lie algebra may
give a central extension of the induced 3-Lie algebra (by some trace τ ), the answer
is given by the following theorem:

Theorem 5.1 Let (A, [., .]) be a Lie algebra, τ be a trace and (A, [., ., .]τ ) be the
induced 3-Lie algebra. If

⎧
Ā, [., .]c

⎨
is a central extension of (A, [., .]) where

Ā = A ∗ Kc and [x, y]c = [x, y] + ω (x, y) c,

and we extend τ to Ā by assuming τ(c) = 0. Then
⎧

Ā, [., ., .]c,τ
⎨

the 3-Lie algebra
induced by

⎧
Ā, [., .]c

⎨
, is a central extension of (A, [., ., .]τ ).

Proof Let x, y, z ≥ A:

[x, y, z]c,τ = τ (x) [y, z]c + τ (y) [z, x]c + τ (z) [x, y]c
= τ (x) ([y, z] + ω (y, z) c) + τ (y) ([z, x] + ω (z, x) c) + τ (z) ([x, y] + ω (x, y) c)

= (τ (x) [y, z] + τ (y) [z, x] + τ (z) [x, y])

+ (τ (x) ω (y, z) + τ (y) ω (z, x) + τ (z) ω (x, y)) c.

= [x, y, z]τ + ωτ (x, y, z) c.

The map ωτ (x, y, z) = τ (x) ω (y, z) + τ (y) ω (z, x) + τ (z) ω (x, y) is a skew-
symmetric 3-linear form, and [., ., .]c,τ satisfies the fundamental identity, we have
also:

[x, y, c]c,τ = τ (x) [y, c]c + τ (y) [c, x]c + τ (c) [x, y]c

= 0.
⎩
[y, c]c = [c, x]c = 0 and τ (c) = 0.

⎪

Therefore
⎧

Ā, [., ., .]c,τ
⎨
is a central extension of (A, [., ., .]τ ). �

Example 5.1 Consider the 4-dimensionalLie algebra (A, [., .])withbasis {e1, e2, e3,
e4} defined by:

[e2, e4] = e3 ; [e3, e4] = e3,

(remaining brackets are either obtained by skew-symmetry or zero), and let ω be a
skew-symmetric bilinear form on A. ω is fully defined by the scalars

ωi j = ω
⎧
ei , e j

⎨
, 1 ≤ i < j ≤ 4.

By solving the equations for ω to be a 2-cocycle:

δ2ω
⎧
ei , e j , ek

⎨ = 0, 1 ≤ i < j < k ≤ 4,
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we get the conditions:

ω13 = 0 and ω23 = 0.

Now, let α be a linear form on A, defined by α (ei ) = αi , 1 ≤ i ≤ 4, we find that
δ1α (e2, e4) = δ1α (e3, e4) = α3 and δ1α

⎧
ei , e j

⎨ = 0 for other values of i and j
(i < j). Now consider the trace map τ such that τ (e1) = 1 and τ (ei ) = 0, i ∈= 1,
and the 2-cocycles λ and μ defined by:

λ (e1, e2) = 1

and

μ (e2, e4) = 1 ; μ (e3, e4) = −1.

Central extensions of (A, [., .]) by λ and μ are respectively given by ( Ā = A ∗ Kc):

[e1, e2]λ = c ; [e2, e4]λ = e3 ; [e3, e4]λ = e3

and

[e2, e4]μ = e3 + c ; [e3, e4]μ = e3 − c.

3-Lie algebras induced by (A, [., .]) and by these central extensions are given by:

[e1, e2, e4]τ = e3 ; [e1, e3, e4]τ = e3,

[e1, e2, e4]τ,λ = e3 ; [e1, e3, e4]τ,λ = e3

and

[e1, e2, e4]τ,μ = e3 + c ; [e1, e3, e4]τ,μ = e3 − c.

We can see that, here, the central extension given by λ induces a trivial one, while the
one given by μ induces a non-trivial one. This example shows also that the converse
of Lemma 4.1 is, in general, not true.

6 3-Lie Algebras Induced by Lie Algebras in Low Dimensions

In this section,wegive a list of all 3-Lie algebras inducedbyLie algebras in dimension
d ≤ 5, based on the classifications given in [4, 8]. For this, we shall use the following
result:
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Proposition 6.1 Let (A, [., ., .]) be a 3-Lie algebra, (ei )1≤i≤d a basis of A. If there
exists ei0 in this base, such that the multiplication table of (A, [., ., .]) is given by:

[
ei0 , e j , ek

] = x jk; j ∈= i0, k ∈= i0, k ∈= j,

with ei0 and x jk linearly independent, then (A, [., ., .]) is induced by a Lie algebra

Proof We define a bilinear skew-symmetric map [., .] on A and a form τ : A ⊕ K

by:

[
e j , ek

] = x jk, j ∈= i0, k ∈= i0, k ∈= j and
[
ei0 , e j

] = 0

and

τ(x) = τ

⎝
d∑

k=0

xkek

⎞
= xi0 .

The bracket [., .] satisfies the Jacobi identity:

[
e j ,

[
ek , el

]] = [
ei0 , e j ,

[
ei0 , ek , el

]]
= [[

ei0 , e j , ei0
]
, ek , el

] + [
ei0 ,

[
ei0 , e j , ek

]
, el

] + [
ei0 , ek ,

[
ei0,e j , el

]]
= [[

e j , ek
]
, el

] + [
ek ,

[
e j , el

]]

The obtained Lie bracket [., .] and the trace τ given above indeed induce the ternary
bracket considered above:

[
ei0 , e j , ek

]
τ

= τ(ei0)
[
e j , ek

] + τ(e j )
[
ek, ei0

] + τ(ek)
[
ei0 , e j

]
= τ(ei0)

[
e j , ek

]
= x jk

= [
ei0 , e j , ek

]

for i ∈= i0:

[
ei , e j , ek

]
τ

= τ(ei )
[
e j , ek

] + τ(e j ) [ek, ei ] + τ(ek)
[
ei , e j

] = 0 = [
ei , e j , ek

]
.

�

Theorem 6.1 ([8] 3 -Lie algebras of dimension less than or equal to 4 ) Any 3-Lie
algebra A of dimension less than or equal to 4 is isomorphic to one of the following
algebras: (omitted brackets are obtained by skew-symmetry, (ei )1≤i≤dim A is a basis
of A)

1. If dim A < 3 then A is abelian.
2. If dim A = 3, then we have 2 cases:



138 J. Arnlind et al.

a. A is abelian.
b. [e1, e2, e3] = e1.

3. if dim A = 4 then we have the following cases:

a. A is abelian.
b. [e2, e3, e4] = e1.
c. [e1, e2, e3] = e1.

d. [e1, e2, e4] = ae3 + be4; [e1, e2, e3] = ce3 + de4, with C =
⎫

a b
c d

⎡
an

invertible matrix. Two such algebras, defined by matrices C1 and C2, are
isomorphic if and only if there exists a scalar α and an invertible matrix B
such that C2 = αBC1B−1.

e. [e2, e3, e4] = e1; [e1, e3, e4] = ae2; [e1, e2, e4] = be3 (a, b ∈= 0).
f. [e2, e3, e4] = e1; [e1, e3, e4] = ae2; [e1, e2, e4] = be3; [e1, e2, e3] = ce4

(a, b, c ∈= 0).

Theorem 6.2 ([4] 5-dimensional 3-Lie algebras) Let K be an algebraically closed
field. Any5-dimensional3-Lie algebra A defined with respect to a basis {e1, e2, e3, e4,
e5} is isomorphic to one of the algebras listed below, where A1 denotes [A, A, A]:

1. If dim A1 = 0 then A is abelian.
2. If dim A1 = 1, let A1 = ⊥e1∀, then we have:

a. A1 ⊂ Z(A): [e2, e3, e4] = e1.
b. A1

∅ Z(A): [e1, e2, e3] = e1.

3. If dim A1 = 2, let A1 = ⊥e1, e2∀, then we have:

a. [e2, e3, e4] = e1; [e3, e4, e5] = e2.
b. [e2, e3, e4] = e1; [e2, e4, e5] = e2; [e1, e4, e5] = e1.
c. [e2, e3, e4] = e1; [e1, e3, e4] = e2.
d. [e2, e3, e4] = e1; [e1, e3, e4] = e2; [e2, e4, e5] = e2; [e1, e4, e5] = e1.
e. [e2, e3, e4] = αe1 + e2; [e1, e3, e4] = e2.
f. [e2, e3, e4] = αe1 + e2; [e1, e3, e4] = e2; [e2, e4, e5] = e2; [e1, e4, e5] =

e1.
g. [e1, e3, e4] = e1; [e2, e3, e4] = e2.

where α ≥ K \ {0}
4. If dim A1 = 3, let A1 = ⊥e1, e2, e3∀, then we have:

a. [e2, e3, e4] = e1; [e2, e4, e5] = −e2; [e3, e4, e5] = e3.
b. [e2, e3, e4] = e1; [e3, e4, e5] = e3 + αe2; [e2, e4, e5] = e3; [e1, e4, e5] =

e1.
c. [e2, e3, e4] = e1; [e3, e4, e5] = e3; [e2, e4, e5] = e2; [e1, e4, e5] = 2e1.
d. [e2, e3, e4] = e1; [e1, e3, e4] = e2; [e1, e2, e4] = e3.
e. [e1, e4, e5] = e1; [e2, e4, e5] = e3; [e3, e4, e5] = βe2 + (1 + β)e3, β ≥

K \ {0, 1}.
f. [e1, e4, e5] = e1; [e2, e4, e5] = e2; [e3, e4, e5] = e3.
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g. [e1, e4, e5] = e2; [e2, e4, e5] = e3; [e3, e4, e5] = se1+ te2+ue3. And 3-Lie
algebras corresponding to this case with coefficients s, t, u and s∩, t ∩, u∩ are
isomorphic if and only if there exists a non-zero element r ≥ K such that:

s = r3s∩; t = r2t ∩; u = ru∩.

5. If dim A1 = 4, let A1 = ⊥e1, e2, e3, e4∀, then we have:

a. [e2, e3, e4] = e1; [e3, e4, e5] = e2; [e2, e4, e5] = e3; [e2, e3, e5] = e4.
b. [e2, e3, e4] = e1; [e1, e3, e4] = e2; [e1, e2, e4] = e3; [e1, e2, e3] = e4.

The 3-Lie algebras which are induced by Lie algebras are given by the following
proposition:

Proposition 6.2 Let K be an algebraically closed field of characteristic0. According
to Theorems 6.1 and 6.2, the 3-Lie algebras induced by Lie algebras of dimension
d ≤ 5 are:

• d = 3 Theorem 6.1: 2.
• d = 4 Theorem 6.1: 3.: a,b,c,d,e.
• d = 5 Theorem 6.2: 1. 2. 3. 4.

Proof By applying Proposition 6.1, the algebras given in Theorem 6.1, 6.2, and 6.3:
a,b,c,d,e andTheorem6.2: 1, 2, 3 and 4. are all induced byLie algebras, the remaining
algebras have derived algebras which are not abelian and then they cannot be induced
by Lie algebras (Theorem 3.1). �

6.1 From Lie Algebras to 3-Lie Algebras

We list, below, all 3 and 4-dimensional Lie algebras and all 3-Lie algebras they
may induce; 3-dimensional algebras are classified in [12] and 4-dimensional ones,
partially, in [7]. For every Lie algebra, we compute all the trace maps and the induced
3-Lie algebras using these trace maps.

Theorem 6.3 (3-dimensionalLie algebras [12])Letgbe a Lie algebra and {e1, e2, e3}
a basis of g, then g is isomorphic to one of the following algebras: (Remaining brack-
ets are either obtained by skew-symmetry or zero)

1. The abelian Lie algebra [x, y] = 0,∀x, y ≥ g.
2. L(3,−1) : [e1, e2] = e2.
3. L(3, 1) : [e1, e2] = e3.
4. L(3, 2, a) : [e1, e3] = e1; [e2, e3] = ae2; 0 < |a| ≤ 1.
5. L(3, 3) : [e1, e3] = e1; [e2, e3] = e1 + e2.
6. L(3, 4, a) : [e1, e3] = ae1 − e2; [e2, e3] = e1 + ae2; a ≥ 0.
7. L(3, 5) : [e1, e2] = e1; [e1, e3] = −2e2; [e2, e3] = e3.
8. L(3, 6) : [e1, e2] = e3; [e1, e3] = −e2; [e2, e3] = e1.
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Remark 6.1 The classification given above is for the ground field K = R, if K = C

then L
⎩
3, 2, x−i

x+i

⎪
is isomorphic to L(3, 4, x) and L(3, 5) is isomorphic to L(3, 6).

Theorem 6.4 (Solvable 4-dimensional Lie algebras [7]) Let g be a solvable Lie
algebra, and {e1, e2, e3, e4} a basis of g, then g is isomorphic to one of the following
algebras: (Remaining brackets are either obtained by skew-symmetry or zero)

1. The abelian Lie algebra [x, y] = 0,∀x, y ≥ g.
2. M2: [e1, e4] = e1; [e2, e4] = e2; [e3, e4] = e3.
3. M3

a : [e1, e4] = e1; [e2, e4] = e3; [e3, e4] = −ae2 + (a + 1)e3.
4. M4: [e2, e4] = e3; [e3, e4] = e3.
5. M5: [e2, e4] = e3.
6. M6

a,b: [e1, e4] = e2; [e2, e4] = e3; [e3, e4] = ae1 + be2 + e3.

7. M7
a,b: [e1, e4] = e2; [e2, e4] = e3; [e3, e4] = ae1 + be2 (a = b ∈= 0 or a = 0

or b = 0).
8. M8: [e1, e2] = e2; [e3, e4] = e4.
9. M9

a : [e1, e4] = e1+ae2; [e2, e4] = e1; [e1, e3] = e1; [e2, e3] = e2 (X2− X −a
has no root in K).

10. M11: [e1, e4] = e1; [e3, e4] = e3; [e1, e3] = e2.
11. M12: [e1, e4] = e1; [e2, e4] = e2; [e3, e4] = e3; [e1, e3] = e2.
12. M13

a : [e1, e4] = e1 + ae3; [e2, e4] = e2; [e3, e4] = e1; [e1, e3] = e2.
13. M14

a : [e1, e4] = ae3; [e3, e4] = e1; [e1, e3] = e2. (M14
a is isomorphic to M14

b if
and only if a = α2b for some α ∈= 0).

Lemma 6.1 Let g be a non solvable 4-dimensional Lie algebra. Then [g, g] is simple.

Proof g is not semi-simple (dimg = 4, g cannot be simple, and cannot be a direct
sum of simple Lie algebras, 4 = 3+ 1 or 2+ 2), if dim [g, g] ≤ 2 then g is solvable,
if dimg = 3 then from the classification above, if it is not simple (isomorphic to
L(3, 5) or L(3, 6)) then it is solvable, and then g is solvable too. �

Proposition 6.3 Let g be a non solvable 4-dimensional Lie algebra, then g ∼= S ×K

where S is a 3-dimensional simple Lie algebra.

Proof From the preceding lemma, [g, g] is simple, which implies that g is reductive,
that is, a product of a semi-simple and an abelian Lie algebra. �

In the following, we will give all the traces τ on the Lie algebras listed above, and
the induced 3-Lie algebras: (for a Lie algebra g, (ei )1≤i≤dimg is a basis of g, and for
x ≥ g, (xi )1≤i≤dimg are its coordinates in this basis).
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Lie algebra Trace Induced 3-Lie algebra

Abelian Lie algebra All linear forms Abelian 3-Lie algebra
L(3,−1) τ (x) = t1x1 + t3x3 [e1, e2, e3] = t3e2
L(3, 1) τ (x) = t1x1 + t2x2 Abelian 3-Lie algebra

L(3, 2, a), L(3, 3)
L(3, 4, a) τ (x) = t3x3 Abelian 3-Lie algebra

L(3, 5), L(3, 6) τ (x) = 0 Abelian 3-Lie algebra
M2, M3

a
M6

a,b; M7
a,b (a ∈= 0) τ(x) = t4x4 Abelian 3-Lie algebra
M3

0 τ(x) = t2x2 + t4x4 [e1, e2, e4] = −t2e1
M4 τ(x) = t1x1 + t2x2 + t4x4 [e1, e2, e4] = t1e3

[e1, e3, e4] = t1e3
[e2, e3, e4] = t2e3

M5 τ(x) = t1x1 + t2x2 + t4x4 [e1, e2, e4] = t1e3
M6

0b τ(x) = t1x1 + t4x4 [e1, e2, e4] = t1e3
[e1, e3, e4] = t1(be2 + e3)

M7
0b τ(x) = t1x1 + t4x4 [e1, e2, e4] = t1e3

[e1, e3, e4] = t1be2
M8 τ(x) = t1x1 + t3x3 [e1, e2, e3] = t3e2

[e1, e3, e4] = t1e4
M9

a τ(x) = t3x3 + t4x4 [e1, e3, e4] = −t3(e1 + ae2) + t4e1
[e2, e3, e4] = t3e1 + t4e2

M11 τ(x) = t4x4 [e1, e3, e4] = t4e2
[e2, e3, e4] = t4e1

M12, M13
a

M14
a , a ∈= 0 τ(x) = t4x4 [e1, e3, e4] = t4e2

M13
0 τ(x) = t3x3 + t4x4 [e1, e3, e4] = −t3e1 + t4e2

[e2, e3, e4] = −t3e2
M14

0 τ(x) = t3x3 + t4x4 [e1, e3, e4] = t4e2
gl2(K) τ (x) = t4x4 [e1, e2, e4] = 2t4e2

[e1, e3, e4] = −2t4e3
[e2, e3, e4] = t4e1

E3 × K (K = R) τ(x) = t4x4 [e1, e2, e4] = t4e3
[e1, e3, e4] = −t4e2
[e2, e3, e4] = t4e1

where E3 denotes the 3-dimensional Euclidean space equipped with the cross prod-
uct.

7 Examples

7.1 Adjoint Representation 1-Cocycles and Coboundaries

Here, we give the set of 1-cocycles/coboundaries of 4 chosen Lie algebras (gl2(K
and M4, M5 and M8) in the classification above and 1-cocycles/coboundaries of the
induced algebras using a chosen trace map for each one; the computations were done
using the computer algebra software Mathematica.
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Shortly explained, the computation goes this way:
Let (A, [., .]) be a Lie algebra of dimension n with a basis B = {e1, . . . , en},

τ a trace and (A, [., ., .]τ ) the induced algebra. Denote the structure constants of

(A, [., .]) with respect to this basis B by
⎩

ck
i j

⎪
1≤i, j,k≤n

and by
⎩

ctq
i jk

⎪
1≤i, j,k,q≤n

those of (A, [., ., .]τ ). The linear form τ is represented by the one-line matrix T =
(ti )1≤i≤n . A given linear map f : A ⊕ A (1-cochain) may be represented by a
n × n matrix, Z = ⎧

zi j
⎨
1≤i, j≤n . In terms of structure constants, the condition for f

(represented by the matrix Z ) to be a cocycle writes for the Lie algebra:

n∑
k=1

⎩
ck

i j zqk − cq
k j zki − cq

ik zk, j

⎪
= 0,∀i, j, q,

and for the induced ternary algebra

n∑
p=1

⎩
ct p

i jk zqp − ctq
pjk z pi − ctq

ipk z pj − ctq
i jpz pk

⎪
= 0,∀i, j, k, q.

By solving these equations, we get a set of conditions, that we apply to Z to
get the matrices listed in the tables below, under “Cocycle” and “Ternary cocycle”
respectively.

Matrices listed under “Coboundary” and “Ternary coboundary” are obtained by
putting in column j respectively

[
y, e j

]
or

[
x, y, e j

]
τ
, where x = (x1, . . . , xn) and

y = (y1, . . . , yn), and xi j = xi y j − x j yi .

• gl2(K):

Cocycle Coboundary dim H1⎣
⎤⎤⎦

0 z12 z13 0
−2z13 z22 0 0
−2z12 0 z22 0

0 0 0 z44

⎢
⎥⎥

⎣
⎤⎤⎦

0 −y3 y2 0
−2y2 2y1 0 0
2y3 0 −2y1 0
0 0 0 0

⎢
⎥⎥ 1

Trace: τ(x) = x4
Ternary cocycle Ternary cobounary dim H1

τ⎣
⎤⎤⎦

z11 z12 z13 z14
−2z13 z22 0 z24
−2z12 0 2z11 − z22 z34

0 0 0 −z11

⎢
⎥⎥

⎣
⎤⎤⎦

0 x34 x42 x23
−2x42 −2x14 0 2x12
−2x34 0 2x14 −2x13

0 0 0 0

⎢
⎥⎥ 1
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• M4:

Cocycle Coboundary dim H1⎣
⎤⎤⎦

z11 z12 0 z14
z21 z22 0 z24

−z21 z32 z22 + z32 z34
0 0 0 0

⎢
⎥⎥

⎣
⎤⎤⎦
0 0 0 0
0 0 0 0
0 −y4 −y4 y2 + y3
0 0 0 0

⎢
⎥⎥ 6

Trace: τ(x) = x1 + x2 + x4
Ternary cocycle⎣

⎤⎤⎦
z11 z12 0 z14
z21 z11 − z12 + z21 0 z24
z31 z32 z11 − z12 − z31 + z32 z34
z41 z41 0 −z11 − z21

⎢
⎥⎥

Ternary cobounary dim H1
τ⎣

⎤⎤⎦
0 0 0 0
0 0 0 0

x24 + x34 x34 − x14 −x14 − x24 x12 + x13 + x23
0 0 0 0

⎢
⎥⎥ 6

• M5:

Cocycle Coboundary dim H1⎣
⎤⎤⎦

z11 z12 0 z14
0 z22 0 z24

z31 z32 z33 z34
0 z42 0 z33 − z22

⎢
⎥⎥

⎣
⎤⎤⎦
0 0 0 0
0 0 0 0
0 −y4 0 y2
0 0 0 0

⎢
⎥⎥ 8

Trace: τ(x) = x1
Ternary cocycle Ternary cobounary dim H1

τ⎣
⎤⎤⎦

−z22 + z33 − z44 z12 0 z14
z21 z22 0 z24
z31 z32 z33 z34
z41 z42 0 z44

⎢
⎥⎥

⎣
⎤⎤⎦

0 0 0 0
0 0 0 0

x24 −x14 0 x12
0 0 0 0

⎢
⎥⎥ 9

• M8:

Cocycle Coboundary dim H1⎣
⎤⎤⎦

0 0 0 0
z21 z22 0 0
0 0 0 0
0 0 z43 z44

⎢
⎥⎥

⎣
⎤⎤⎦

0 0 0 0
−y2 y1 0 0
0 0 0 0
0 0 −y4 y3

⎢
⎥⎥ 0

Trace: τ(x) = x1 + x3
Ternary cocycle Ternary cobounary dim H1

τ⎣
⎤⎤⎦

−z33 0 z13 0
z21 z22 z23 0
z31 0 z33 0
z41 0 z43 z44

⎢
⎥⎥

⎣
⎤⎤⎦

0 0 0 0
x23 −x13 x12 0
0 0 0 0

x34 0 −x14 x13

⎢
⎥⎥ 4
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A Review of Peirce Decomposition for Unitary
(−1,−1)-Freudenthal Kantor Triple Systems

Noriaki Kamiya, Daniel Mondoc and Susumu Okubo

Abstract In this paper we discuss a Peirce decomposition for unitary
(−1,−1)-Freudenthal Kantor triple systems.

1 Introduction

Lie algebra is rich in algebraic structures and provides an important common ground
for various branches of mathematics, not only for geometry and analysis, but also for
physics. The historical background of our study goes back to Freudenthal [9], Tits
[54], Kantor [36–38] and Koecher [41] who studied constructions of Lie algebras
from nonassociative algebras and triple systems, in particular Jordan algebras. Alli-
son [1, 2] defined the concept of structurable algebras, containing Jordan algebras.
We have studied constructions of Lie algebras and superalgebras from triple systems
[24, 26, 29–31].

As a continuation of [29, 30, 32] we are interested to characterize the structure
properties [7, 19, 27, 34, 40] of the subspace L−1 of the five graded Lie (super)algebra
L(ε, δ) := L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, [Li, Lj] ≥ Li+j, associated with an (ε, δ)-
Freudenthal Kantor triple system. Thus we discuss here a Peirce decomposition for
unitary (−1,−1)-Freudenthal Kantor triple systems. A Peirce decomposition for
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(−1, 1)-Freudenthal Kantor triple systems was discussed in [40] and examples were
given in [34].

Jordan and Lie (super) algebras [12, 53] play an important role in many mathe-
matical and physical subjects [5, 10–13, 15, 25, 28, 39, 48, 49, 56, 57]. We also
note that the construction and characterization of these algebras can be expressed in
terms of triple systems [19, 22, 23, 27, 40, 50] by using the standard embedding
method [21, 42, 43, 51, 55] and motivating the study of triple systems.

Summarizing the content we give the introduction in Sect. 1, definitions and
preamble in Sect. 2, the main theorem in Sect. 3, examples in Sect. 4 and concluding
remark in Sect. 5.

2 Definitions and Preamble

2.1 (ε, δ)-Freudenthal Kantor Triple Systems

We are concerned in this paper with triple systems which have finite dimension over
a field Φ of characteristic ∈= 2 or 3.

In order to render this paper as self-contained as possible, we recall first the
definition of a generalized Jordan triple system of second order (for short GJTS of
2nd order).

A vector space V over a field Φ endowed with a trilinear operation V×V×V ⊂ V ,
(x, y, z) ⊗−⊂ (xyz) is said to be a GJTS of 2nd order if the following conditions are
fulfilled:

(ab(xyz)) = ((abx)yz) − (x(bay)z) + (xy(abz)), (1)

K(K(a, b)x, y) − L(y, x)K(a, b) − K(a, b)L(x, y) = 0, (2)

where L(a, b)c := (abc) and K(a, b)c := (acb) − (bca).
A Jordan triple system (for short JTS) satisfies (1) and the identity (abc) = (cba).
We can generalize the concept of GJTS of 2nd order as follows (see [13, 14,

17–21, 55] and the earlier references therein). For ε = ±1, δ = ±1, a triple product
that satisfies

(ab(xyz)) = ((abx)yz) + ε(x(bay)z) + (xy(abz)), (3)

K(K(a, b)x, y) − L(y, x)K(a, b) + εK(a, b)L(x, y) = 0, (4)

where
L(a, b)c := (abc), K(a, b)c := (acb) − δ(bca), (5)

is called an (ε, δ)-Freudenthal Kantor triple system (for short (ε, δ)-FKTS).
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Remark We note that the concept of GJTS of 2nd order coincides with that of (−1, 1)-
FKTS. Thus we can construct the simple Lie algebras by means of the standard
embedding method [6, 13–17, 21, 24, 26, 38, 55].

For an (ε, δ)-FKTS U we denote

A(a, b) := L(a, b) − εL(b, a), (6)

where L(a, b) is defined by (5). Then A(a, b) is an anti-derivation of U [30], that is

[A(a, b), L(c, d)] = L(A(a, b)c, d) − L(c, A(a, b)d). (7)

An (ε, δ)-FKTS U is called unitary if the identity map Id is contained in κ :=
K(U, U) i.e., if there exist ai, bi ∈ U, such that ΣiK(ai, bi) = Id.

Remark We note that a balanced triple system (i.e. it fulfills K(x, y) =< x|y >′ Id,
where < | >′ is a symmetric bilinear form) is unitary, since Id ∈ κ = K(U, U).

We show in the following remark the equivalence between the balanced notion
defined above and the one of [7].

Remark We note that for a triple system U with product (xyz), x, y, z ∈ U, the notion
of balanced (−1,−1)-FKTS is equivalent to saying that the triple system satisfies
(3) and

(xxy) = (xyx) =< x|x > y, x, y ∈ U, (8)

where < | > is a symmetric bilinear form.
Indeed, if U is a (−1,−1)-FKTS then (3) is fulfilled and, by (4),

K(K(a, b)x, y) − L(y, x)K(a, b) − K(a, b)L(x, y) = 0, a, b, x, y ∈ U,

that is K(x, y) = L(y, x) + L(x, y) =< x|y >′ Id, since K(x, y) =< x|y >′ Id,
hence

(xwy) + (ywx) = (xyw) + (yxw) =< x|y >′ w, x, y, w ∈ U.

If we put now x = y in the last line follows 2(xwx) = 2(xxw) =< x|x >′ w, that is
(8) is valid for the symmetric form < | >= 1

2 < | >′.
Opposite, by linearizing (8), we have

(xzy) + (yzx) = (xyz) + (zyx) =< x|z > y+ < z|x > y, x, y, z ∈ U,

hence, by (5), K(x, z) = 2 < x|z >, x, z ∈ U, so K(x, y) =< x|y >′ Id, x, y ∈ U.

Remark We note that for an unitary (−1,−1)-FKTS U we have, by [30] (Proposition
2.17 for ε = −1), that K(a, b) = A(a, b), for all a, b ∈ U, thus by (6), for δ = −1,
follows
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K(a, b) = L(a, b) + L(b, a), (9)

where L(a, b) is defined by (5). Moreover, by [30] (Proposition 2.17),

K(u, v)K(x, y) + K(x, y)K(u, v) = K(K(u, v)x, y) + K(x, K(u, v)y), u, v, x, y ∈ U, (10)

thus, by [30] (Proposition 2.18), the commutative product in κ defined by

K(u, v) → K(x, y) = K(u, v)K(x, y) + K(x, y)K(u, v)

defines a Jordan algebra.
Let U be a triple system with product (xyz), x, y, z ∈ U. An element e ∈ U is

called a left unit element if
(eex) = x. (11)

An element e ∈ U is called a tripotent if

(eee) = e. (12)

We denote

L(x) := (eex), Q(x) := (exe), R(x) := (xee), x ∈ U. (13)

2.2 δ-Structurable Algebras

Within the framework of (ε, δ)-FKTSs (ε, δ = ±1) and the standard embedding Lie
(super) algebra construction [6, 7, 13–15, 26] we defined δ-structurable algebras
[29] as a class of nonassociative algebras with involution which coincides with the
class of structurable algebras for δ = 1 as introduced in [1, 2]. Structurable algebras
are a class of nonassociative algebras with involution related to (−1, 1)-FKTSs as
introduced in [36, 37] (and further studied in [3, 4, 35, 44–47, 52]). Their impor-
tance lies with constructions of five graded Lie algebras L(−1, 1). For δ = −1 the
anti-structurable algebras [29] are a class of nonassociative algebras that may sim-
ilarly shed light on (−1,−1)-FKTSs hence (by [6, 7]) on the construction of Lie
superalgebras and Jordan algebras.

Let (A ,− ) be a finite dimensional nonassociative unital algebra with involu-
tion (involutive anti-automorphism, i.e. x = x, xy = y x, x, y ∈ A ) over Φ. Since
charΦ ∈= 2, by [1] we have A = H ⊕ S , where H = {a ∈ A |a = a} and
S = {a ∈ A |a = −a}.

Suppose x, y, z ∈ A . Put [x, y] := xy − yx and [x, y, z] := (xy)z − x(yz) so
[x, y, z] = −[z, y, x]. The operators Lx and Rx are defined by Lx(y) := xy, Rx(y) :=
yx.

For δ = ±1 and x, y ∈ A define
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δVx,y := LLx(y) + δ(RxRy − RyRx), (14)

δBA (x, y, z) :=δ Vx,y(z) = (xy)z + δ[(zy)x − (zx)y], x, y, z ∈ A . (15)

+BA (x, y, z) is called the triple system obtained from the algebra (A ,− ). We will
call −BA (x, y, z) the anti-triple system obtained from the algebra (A ,− ). We write
for short

Vx,y := δVx,y, BA := (δBA ,A ). (16)

A unital non-associative algebra with involution (A ,− ) is called a structurable
algebra if

[Vu,v, Vx,y] = VVu,v(x),y − Vx,Vv,u(y), (17)

for Vu,v = +Vu,v, Vx,y = +Vx,y, u, v, x, y ∈ A , and we call (A ,− ) an anti-
structurable algebra if the identity (17) is fulfilled for Vu,v =−Vu,v, Vx,y =−Vx,y.

If (A ,− ) is structurable then, by [37], the triple system BA is called a generalized
Jordan triple system (abbreviated GJTS) and by [8], BA is a GJTS of 2nd order.

3 Main Theorem

We give first two lemmas.

Lemma 3.1 Let U be an unitary (−1,−1)-FKTS with a tripotent e ∈ U. Then

Q(x) = L(x) = L2(x), RL(x) = LR(x), R2(x) − L2(x) + LR(x) = R(x), x ∈ U,

where L(x), Q(x), R(x) are defined by (13). Moreover the following decomposition
is valid

U = U0 ⊕ U1, Ui := {x ∈ U|L(x) = ix}, i = 0, 1. (18)

Proof We remark first that by (5), for δ = −1, it follows K(e, e)x = 2Q(x), for
all x ∈ U. Further, by (9), it follows K(e, e)x = 2L(x) hence Q(x) = L(x), for all
x ∈ U. Moreover, by (5), for δ = −1, and (12) it follows K(e, e)e = 2e. Then, by
(10), it follows

2K(e, e)(K(e, e)x) = K(K(e, e)e, e)x + K(e, K(e, e)e)x,

hence Q2(x) = Q(x) for all x ∈ U. Then L2(x) = L(x) since Q(x) = L(x), for all
x ∈ U.

Further, by (3),

(ee(xee)) = ((eex)ee) − (x(eee)e) + (xe(eee)),
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or equivalently, by (12),

(ee(xee)) = ((eex)ee) − (xee) + (xee),

that is LR(x) = RL(x), for all x ∈ U.
Now, by (3), it follows (xe(eee)) = ((xee)ee)− (e(exe)e)+ (ee(xee)), or equiva-

lently, by (12), R(x) = R2(x)−Q2(x)+LR(x), that is R(x) = R2(x)−L2(x)+LR(x)
since Q(x) = L(x), for all x ∈ U.

Finally, since L2 = L then the decomposition (18) is straightforward.

Remark Note that, by (18), e ∈ U1 since L(e) = (eee) = e, by (12).

Lemma 3.2 Let U be an unitary (−1,−1)-FKTS with a tripotent e ∈ U and decom-
position (18). If xi ∈ Ui, i = 0, 1, then R2(x0) = R(x0), R2(x1) = x1, where R(x) is
defined by (13).

Proof Since, by Lemma 3.1, R2(xi) − L2(xi) + LR(xi) = R(xi), xi ∈ Ui then the
assertions follow straightforward from the definition of the decomposition (18).

Theorem 3.1 Let U be an unitary (−1,−1)-FKTS with a tripotent e ∈ U. Then we
have a Peirce decomposition U = U0 ⊕ U1, Ui := {x ∈ U|L(x) = ix}, i = 0, 1,
such that

(U1U1U1) ≥ U1, (U0U0U0) ≥ U0, (U0U1U1) ≥ U0,

(U1U1U0) ≥ U0, (U0U0U1) ≥ U1, (U1U0U0) ≥ U1,

(U0U1U0) = 0, (U1U0U1) = 0.

(19)

Proof The existence of the Peirce decomposition has been proved in Lemma 3.1.
Let now xi ∈ Ui, yj ∈ Uj, zk ∈ Uk, i, j, k ∈ {0, 1}. Then, by (3), it follows

(ee(xiyjzk)) = ((eexi)yjzk) − (xi(eeyj)zk) + (xiyj(eezk)).

Since L(x) = ix, i = 0, 1, then from the last identity it follows

L(xiyjzk) = (i − j + k)(xiyjzk), i, j, k ∈ {0, 1}.

It is then a straightforward calculation to show (19), since e.g. L(x0y0z0) = 0, but
also remarking that L(x0y1z0) = −(x0y1z0) = 0, L(x1y0z1) = 2(x0y1z0) = 0.

Corollary 3.1 Let U be an unitary (−1,−1)-FKTS with a tripotent e ∈ U. Then
the subspace U1 defined by (18) is an unitary (−1,−1)-FKTS such that e ∈ U1
and moreover L(x1) = Q(x1) = R2(x1) = x1, x1 ∈ U1, where L(x), Q(x), R(x) are
defined by (13).

Remark By [33], Theorem 3.2, a (−1,−1)-FKTS U with product (xyz), x, y, z ∈ U,
and left unit element e can be determined in terms of the bilinear product of U defined
by

x · y = (exy), x, y ∈ U, (20)
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while by [40], a (−1, 1)-FKTS U with product (xyz), x, y, z ∈ U, and left unit
element e can be determined in terms of the bilinear product of U defined by x ∞ y =
(xey), x, y ∈ U, that is, by Theorem 3.3 [40], U = U+

11 ⊕ U−
11 ⊕ U+

13 ⊕ U−
13 with the

product

(xyz) = (Q−1(y) ∞ x) ∞ z + x ∞ (Q−1(y) ∞ z) − Q−1(y) ∞ (x ∞ z),

where Q(x) =
{ ±x, if x∈U±

11
±3x, if x∈U±

13
and U1i := {x ∈ U|R(x) = ix}.

4 Examples

4.1 Balanced (−1,−1)-FKTSs

Let U be a balanced (−1,−1)-FKTS with product

(xyz) =< z|x > y− < z|y > x+ < x|y > z, x, y, z ∈ U,

where < .|. >: U ∪ U ⊂ Φ is a symmetric bilinear form. Then, by Sect. 2.1, U is
an unitary (−1,−1)-FKTS. Further, if U = {e1, . . . , en}span such that < ei|ej >=
δij, i, j = 1 . . . , n and e := ei then the following decomposition is valid

U = U0 ⊕ U1, where U0 = {0} and U1 = U = {x ∈ U|L(x) = (eex) = x}.

In fact, R(x) = (xee) = 2 < e|x > e − x. Then R(x) = x, x ∈ U, if and only if x ∈
{ei}span and R(x) = −x, x ∈ U, if and only if x ∈ {e1, . . . , ei−1, ei+1, . . . , en}span.
Thus we have a decomposition of U1 with respect to R(x) as follows

U1 = U1,1 ⊕ U1,−1, where U1,1 = {ei}span and U1,−1

= {e1, . . . , ei−1, ei+1, . . . , en}span.

4.2 Anti-Structurable Algebras

LetMm,n(Φ) denote the vector space of m×n matrices over Φ and for x ∈ Mm,n(Φ)

denote by x↔ the transposed matrix. Then U := Mn,n(Φ) with the product

(xyz) = xy↔z − zy↔x + zx↔y, x, y, z ∈ Mn,n(Φ) (21)

is an anti-structurable algebra and a (−1,−1)-FKTS [33]. Further, by (5), straight-
forward calculations give K(x, y)z = (xy↔ + (xy↔)↔)z, x, y, z ∈ U, hence U is
unitary.
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If e = En is the identity matrix of order n then the following decomposition is
valid

U = U0 ⊕ U1, where U0 = {0n} and U1 = U = {x ∈ U|L(x) = (eex) = x}.

Remark If e =
{(

El 0
0 0

)
|El ∈ Ml,l(Φ), l < n

}
and

U =
{(

A B
C D

)
|A ∈ Ml,l(Φ), B ∈ Ml,n−l(Φ), C ∈ Mn−l,l(Φ), D ∈ Mn−l,n−l(Φ)

}

then the following decomposition is valid

U = U0 ⊕ U1, where U0 =
{(

0 0
C D

)}
and U1 =

{(
A B
0 0

)}
.

4.3 Non Unitary Example

Let U be a vector space with product

(xyz) =< y|z > x, x, y, z ∈ U,

where < .|. >: U ∪ U ⊂ Φ is a symmetric bilinear form. Then U is a (−1,−1)-
FKTS but not balanced and not unitary.

5 Concluding Remark

By [26], the following construction of Lie superalgebras is obtained by the stan-
dard embedding method. If U(−1,−1) := M2n,m(Φ) with the product (21) then
the corresponding standard embedding Lie superalgebra is osp(2n|2m) = D(n, m)

(as defined by [12]), hence the standard embedding Lie superalgebra of the anti-
structurable algebra M2n,2n(Φ) is osp(2n|4n).

Similarly, if U(−1,−1) := M2n+1,m(Φ) with the product (21) then the cor-
responding standard embedding Lie superalgebra is osp(2n + 1|2m) = B(n, m)

[12], hence the standard embedding Lie superalgebra of the anti-structurable algebra
M2n+1,2n+1(Φ) is osp(2n+1|4n+2). Hence the construction of Lie (super)algebras
from triple systems motivates the study of the structure properties of triple systems.
Finally and briefly describing, it seems that the concept of Peirce decomposition is
closely related to the inner structure within the quarks theory in physics as well as
the structure of Lie algebras or superalgebras.
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Universal Algebra Applied to Hom-Associative
Algebras, and More

Lars Hellström, Abdenacer Makhlouf and Sergei D. Silvestrov

Abstract The purpose of this paper is to discuss the universal algebra theory of
hom-algebras. This kind of algebra involves a linear map which twists the usual
identities. We focus on hom-associative algebras and hom-Lie algebras for which
we review the main results. We discuss the envelopment problem, operads, and the
Diamond Lemma; the usual tools have to be adapted to this new situation. Moreover
we study Hilbert series for the hom-associative operad and free algebra, and describe
them up to total degree equal 8 and 9 respectively.

1 Introduction

Abstract algebra is a subject that may be investigated on many different levels of
maturity. At the most elementary level that still meets the standards of mathematical
rigor, the investigator simply postulates some set of axioms (usually in the form
of a definition) and then goes on to derive random consequences of these axioms,
hopefully topping it off with examples to illustrate the range of possible outcomes
for the results that are stated (as there have been some spectacular instances of
mathematical theories that died due to having no nontrivial examples where they
were applicable). This level of investigation may produce a nicely whole theory of
something, but in the hands of an immature investigator it runs a significant risk of
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ending up as a random collection of facts that don’t combine to anything greater than
themselves; the whole of a good theory should be greater than the sum of its parts.

One way of reaching a higher level can be to investigate matters using the tech-
niques of universal algebra, since these combine looking at concrete examples with
the generality of investigating the generic case. Another way is to employ the lan-
guage of category theory to investigate matters on a level that is even more abstract.
Indeed, category theory has become so fashionable that modern presentations of uni-
versal algebra may treat it as a mere application of the categorical formalism. This
has the advantage of allowing definitions of for example free algebras to be given
that do not presuppose a specific construction machinery, but on the other hand it
runs the risk of losing itself in the heavens of abstraction, because the difficulties
have been postponed rather than taken care of; doing any nontrivial example may
bring them all back with a vengeance. Therefore we were glad to see howYau in [44]
would proceed from an abstract categorical definition to concrete constructions of
many free algebras of relevance to hom-associative and hom-Lie algebras—glad, but
also a bit curious as to why the constructions were not more systematic.

For better or worse, there is probably a simple reason for someone doing ad
hoc constructions rather than the standard systematic ones here: even though the
systematic constructions are well known within the Formal languages, Logic, and
Discrete mathematics communities, they are not so within the Algebra community.
Therefore one aim for us in writing this paper has been to bring to the attention of
the Algebra community this veritable treasure-trove of methods and techniques that
universal algebra and formal languages have to offer. Another aim was of course to
find out more about hom-algebras, as what as come so far is only the beginning of
the exploration of these.

The first motivation to study nonassociative hom-algebras comes from quasi-
deformations of Lie algebras of vector fields, in particular q-deformations of Witt
andVirasoro algebras [1, 6, 8–10, 13, 15, 25, 27, 32]. The deformed algebras arising
in connection with λ -derivation are no longer Lie algebras. It was observed in the
pioneering works that in these examples a twisted Jacobi identity holds. Motivated
by these examples and their generalisation on the one hand, and the desire to be
able to treat within the same framework such well-known generalisations of Lie
algebras as the color and Lie superalgebras on the other hand, quasi-Lie algebras
and subclasses of quasi-hom-Lie algebras and hom-Lie algebras were introduced by
Hartwig, Larsson and Silvestrov in [19, 29–31].

The hom-associative algebras play the role of associative algebras in the hom-Lie
setting. They were introduced by Makhlouf and Silvestrov in [35]. Usual functors
between the categories of Lie algebras and associative algebras were extended to
hom-setting, see [44] for the construction of the enveloping algebra of a hom-Lie
algebra. Likewise, many classical structures as alternative, Jordan, Malcev, graded
algebras and n-ary algebras of Lie and associative type, were considered in this
framework, see [2–5, 7, 34, 36–39, 41, 46–50]. Notice that Hom-algebras over
a PROP were defined and studied in [51] and deformations of hom-type of the
Associative operad from the point of view of the confluence property discussed
in [26].
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The main feature of all these algebras is that classical identities are twisted by a
homomorphism. Pictorially, drawing the multiplication m as a circle and the linear
map α as a square, hom-associativity may be written as

(1)

In this paper, we summarize the basics of hom-algebras in the first section. We
emphasize on hom-associative and hom-Lie algebras. We show first the paradig-
matic example of q-deformation of sl2 using λ -derivations, leading to an interesting
example of hom-Lie algebra. We provide the general method and some other proce-
dures to construct examples of hom-associative or hom-Lie algebras.We describe the
free hom-nonassociative algebra constructed by Yau. It leads to free hom-associative
algebra and to the enveloping algebra of a hom-Lie algebra. In Sect. 3 we recall the
basic concepts in universal algebra as signature ε , ε-algebra, formal terms, nor-
mal form, rewriting system, and quotient algebra. We emphasize on hom-associative
algebras and discuss the envelopment problem. Section 4 is devoted to operadic
approach. We discuss this concept and universal algebra for operads. We provide a
diamond lemma for operads and discuss ambiguities for symmetric operads. Then
we focus on hom-associative algebras operad for which attempt to resolve the ambi-
guities. Likewise we study congruence modulo hom-associativity and Hilbert series
in this case. Moreover we study Hilbert series for the hom-associative operad and
compute several dozen terms of it exactly using techniques from formal languages
(notably regular tree languages).

2 Hom-Algebras: Definitions, Constructions and Examples

We summarize in this section the basics about hom-associative algebras and hom-Lie
algebras.

The hom-associative identity α(x) · (y · z) = (x · y) · α(z) is a generalisation of
the ordinary associative identity x · (y · z) = (x · y) · z. Study of it could be motivated
simply by the creed that “one should always generalise”, and in Sect. 4.5 we will
briefly consider the view that hom-associativity (in a rather abstract setting) can be
considered as homogenisation of ordinary associativity, but historically the hom-
associative identity was first suggested by an application; the line of thought went
from λ -derivations, then to hom-Lie algebras, before finally touching upon hom-
associative algebras. We sketch the λ -derivation development in the first section
below, but the rest of the text does not depend on the material presented there, so the
reader who prefers to skip to Sect. 2.2 now should have no problem doing so.
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2.1 q-Deformations and σ -Derivations

Let A be an associative K-algebra with unity 1. Let λ be an endomorphism on A.
By a twisted derivation or λ -derivation on A, we mean a K-linear map Δ : A −⊕ A
such that a λ -twisted product rule (Leibniz rule) holds:

Δ(ab) = Δ(a)b + λ(a)Δ(b). (2)

The ordinary derivative (δ a)(t) = a≥(t) on the polynomial ring A = K[t] is a λ -
derivation for λ = id. If on a superalgebra A = A0 ∈ A1 one defines λ(a) = a
for a ⊂ A0 but λ(a) = −a for a ⊂ A1, then (2) precisely captures the parity
adjustments of the product rule that derivations in such settings tend to exhibit, and it
does so in a manner that unifies the even and odd cases. Returning to the polynomial
ring A = K[t], the λ -derivation concept offers a unified framework for various
derivation-like operators, perhaps most famously the Jackson q-derivation operator
(Dqa)(t) = 1

(q−1)t

(
a(qt) − a(t)

)
for some q ⊂ K, that has the ordinary derivative as

the q ⊕ 1 limit and the product rule Dq(ab)(t) = Dq(a)(t) b(t) + a(qt) Dq(b)(t);
this is thus a λ -derivation for λ(a)(t) = a(qt), which acts on the standard basis for
K[t] as λ(tn) = qntn. (See [24] and references therein.)

The big algebraic insight about derivations is that they form Lie algebras, from
which one can go on to universal enveloping algebras and exploit the connections
to formal groups and Lie groups. What about twisted derivations, then? A quick
calculation will reveal that they do not form a Lie algebra in the usual way, but there
can still be a Lie-algebra-like structure on them.

We let Dλ (A) denote the set of λ -derivations on A. As with vector fields in
differential geometry, one may define the product of some a ⊂ A and Δ ⊂ Dλ (A) to
be the a · Δ ⊂ Dλ (A) defined by (a · Δ)(b) = a Δ(b) for all b ⊂ A; hence Dλ (A)

can be regarded as a left A-module. The annihilator Ann(Δ) of some Δ ⊂ D(A) is
the set of all a ⊂ A such that a · Δ = 0. By [19, Theorem 4], if A is a commutative
unique factorisation domain then Dλ (A) is as a left A-module free and of rank one,
which lets us use the following construction to exhibit a Lie-algebra-like structure
on Dλ (A).

Theorem 2.1 ([19, Theorem 5]) Let A be a commutative associative K-algebra with
unit 1 and let λ : A −⊕ A be an algebra homomorphism other than the identity map.
Fix some Δ ⊂ Dλ (A) such that λ

(
Ann(Δ)

) ⊗ Ann(Δ). Define a binary operation
[·, ·]λ on the left A-module A · Δ by

[a · Δ, b · Δ]λ = (λ (a) · Δ) ◦ (b · Δ) − (λ (b) · Δ) ◦ (a · Δ) for all a, b ⊂ A, (3)

where ◦ denotes composition of functions. This operation is well-defined and satisfies
the two identities
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[a · Δ, b · Δ]λ = (λ (a)Δ(b) − λ(b)Δ(a)) · Δ, (4)

[b · Δ, a · Δ]λ = −[a · Δ, b · Δ]λ (5)

for all a, b ⊂ A. If there in addition is some ω ⊂ A such that

Δ(λ(a)) = ωλ (Δ(a)) for all a ⊂ A, (6)

then [·, ·]λ satisfies the deformed six-term Jacobi identity

�a,b,c
([λ(a) · Δ, [b · Δ, c · Δ]λ ]λ + ω · [a · Δ, [b · Δ, c · Δ]λ ]λ

) = 0 (7)

for all a, b, c ⊂ A.

The algebra A · Δ in the theorem is then a quasi-hom-Lie algebra with, in the
notation of [29], α(a · Δ) = λ(a) · Δ, θ(a · Δ) = (ωa) · Δ, and π = −idA·Δ. For
ω ⊂ K, as is the case with Δ = Dq, (7) further simplifies to the deformed three-term
Jacobi identity (12) of a hom-Lie algebra.

As example of how themethod in Theorem1.1 ties inwithmore basic deformation
approaches, we review the results in [30, 31] concerned with this quasi-deformation
scheme when applied to the simple Lie algebra sl2(K). Recall that the Lie algebra
sl2(K) can be realized as a vector space generated by elements H, E and F with the
bilinear bracket product defined by the relations

[H, E] = 2E, [H, F] = − 2F, [E, F] = H. (8)

A basic starting point is the following representation of sl2(K) in terms of first order
differential operators acting on some vector space of functions in a variable t:

E �⊕ δ, H �⊕ − 2tδ, F �⊕ − t2δ.

To quasi-deform sl2(K) means that we firstly replace δ by some twisted derivation
Δ in this representation. At our disposal as deformation parameters are now A (the
“algebra of functions”) and the endomorphism λ . After computing the bracket on
A · Δ by Theorem 1.1 the relations in the quasi-Lie deformation are obtained by
pullback.

Let A be a commutative, associative K-algebra with unity 1, let t be an element
of A, and let λ denote a K-algebra endomorphism on A. As above, Dλ (A) denotes
the linear space of λ -derivations on A. Choose an element Δ ofDλ (A) and consider
the K-subspace A · Δ of elements on the form a · Δ for a ⊂ A. The elements e := Δ,
h := −2t · Δ, and f := −t2 · Δ span a K-linear subspace

S := LinSpanK{Δ,−2t · Δ,−t2 · Δ} = LinSpanK{e, h, f }

ofA·Δ.We restrict themultiplication (4) to Swithout, at this point, assuming closure.
Now, Δ(t2) = Δ(t · t) = λ(t)Δ(t) + Δ(t)t = (

λ(t) + t
)
Δ(t). Under the natural
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(see [30]) assumptions λ(1) = 1 and Δ(1) = 0, (4) leads to

[h, f ] = 2λ(t)tΔ(t) · Δ, (9a)

[h, e] = 2Δ(t) · Δ, (9b)

[e, f ] = − (
λ(t) + t

)
Δ(t) · Δ, (9c)

hence as long as λ and Δ, similarly to their untwisted counterparts, yield that the
degrees of t in the expressions on the right hand side remain among those present
in the generating set for the K-linear subspace S, it follows that S indeed is closed
under this bracket.

In the particular case that λ(t) = qt for some q ⊂ K and Δ = Dq, we obtain a
family of hom-Lie algebras deforming sl2, defined with respect to the basis {e, f , h}
by the brackets and the linear map α as follows:

[h, f ] = −2qf , α(f ) = q2f , (10a)

[h, e] = 2e, α(e) = qe, (10b)

[e, f ] = 1
2 (1 + q)h, α(h) = qh. (10c)

This is a hom-Lie algebra for all q ⊂ K but not a Lie algebra unless q = 1, in which
case we recover the classical sl2.

2.2 Hom-Algebras: Lie and Associative

An ordinary Lie or associative algebra may informally be described as an under-
lying linear space (often assumed to be a vector space, but we will typically allow
it to be a more general module) on which is defined some bilinear map m called
the multiplication (or in the Lie case sometimes the bracket). Depending on what
identities this multiplication satisfies, the algebra is classified as being associative,
commutative, anticommutative, Lie, etc. A hom-algebra may similarly be described
as an underlying linear space on which is defined two maps m and α. The multipli-
cation m is again required to be bilinear, whereas α is merely a linear map from the
underlying set to itself. The ‘hom-’ prefix is historically because α in many examples
turn out to be a homomorphism with respect to some operation (not necessarily the
m of the hom-algebra, even though that is certainly not uncommon), but the modern
understanding is that α may be any linear map.

Practically, the point of incorporating some extra map α in the definition of an
algebra is that this can be used to “twist” or “deform” the identities defining a variety
of algebras, and thus offer greater opportunities for capturing within an abstract
axiomatic framework the many concrete “twisted” or “deformed” algebras that have
emerged in recent decades. It was shown in [19] that hom-Lie algebras are closely
related to discrete and deformed vector fields and differential calculus and that some



Universal Algebra Applied to Hom-Associative Algebras, and More 163

q-deformations of theWitt and the Virasoro algebras have the structure of a hom-Lie
algebra. Theparadigmatic example (given above) is the sl2 Lie algebrawhichdeforms
to a new nontrivial hom-Lie algebra by means of λ -derivations. Hom-associative
algebras are likewise a generalisation of a usual associative algebras. A common
recipe for producing the hom-analogueof a classical identity is to insertα applications
wherever some variable is not acted upon by m as many times as the others.

Definition 2.1 LetR be some associative and commutative unital ring. Formally, an
R-hom-algebra A is a triplet (A, m, α), where A is an R-module, m : A × A −⊕ A
is a bilinear map, and α : A −⊕ A is a linear map. As usual, the algebra A and its
carrier set A are notationally identified whenever there is no risk of confusion.

The hom-associative identity for A is the formula

m
(
α(x), m(y, z)

) = m
(
m(x, y), α(z)

)
for all x, y, z ⊂ A. (11)

A hom-algebra which satisfies the hom-associative identity is said to be a hom-
associative algebra. Similarly, the hom-Jacobi identity for A is the formula

m
(
α(x), m(y, z)

) + m
(
α(y), m(z, x)

) + m
(
α(z), m(x, y)

) = 0 for all x, y, z ⊂ A.

(12)

For a hom-algebraA to be a hom-Lie algebra, it must satisfy the hom-Jacobi identity
and the ordinary anticommutativity (skew-symmetry) identity

m(x, x) = 0 for all x ⊂ A. (13)

A hom-algebraA is said to be multiplicative if α is an endomorphism of the algebra
(A, m), i.e., if

m
(
α(x), α(y)

) = α
(
m(x, y)

)
for all x, y ⊂ A. (14)

Now let A = (A, m, α) and A≥ = (A≥, m≥, α≥) be two hom-algebras. A morphism
f : A −⊕ A≥ of hom-algebras is a linear map f : A −⊕ A≥ such that

m
(
f (x), f (y)

) = f
(
m(x, y)

)
for all x, y ⊂ A, (15)

α
(
f (x)

) = f
(
α(x)

)
for all x ⊂ A. (16)

A linear map f : A −⊕ A≥ that merely satisfies the first condition (15) is called a
weak morphism of hom-algebras.

The concept of weak morphism is somewhat typical of the classical algebra atti-
tude towards hom-algebras: the multiplication m is taken as part of the core struc-
ture, whereas the map α is seen more as an add-on. In both universal algebra and
the categorical setting, it is instead natural to view m and α as equally important
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for the hom-algebra concept, even though it is of course also possible to treat weak
morphisms (for example with the help of a suitable forgetful functor) within these
settings, should weak morphisms turn out to be of interest for the problems at hand.
Yau [44] goes one step in the opposite direction and considers hom-algebras as being
hom-modules with a multiplication; this makes α part of the core structure whereas
m is the add-on.

As usual, the squaring form (13) of the anticommutative identity implies the more
traditional

m(x, y) = −m(y, x) for all x, y ⊂ A (17)

in any hom-algebra A. The two are equivalent in an algebra over a field of char-
acteristic →= 2, but (17) implies nothing about m(x, x) in an algebra over a field of
characteristic equal to 2, and for hom-algebras over other rings more intermediate
outcomes are possible.

An example of a hom-Lie algebra was given in the previous section. A similar
example of a hom-associative algebra would be:

Example 2.1 Let {e1, e2, e3} be a basis of a 3-dimensional linear space A over some
field K. Let a, b ⊂ K be arbitrary parameters. The following equalities

m(e3, e2) = m(e3, e3) = 0, m(e1, e1) = a e1, α(e1) = a e1,

m(e1, e2) = m(e2, e1) = a e2, m(e2, e3) = b e3, α(e2) = a e2,

m(e1, e3) = m(e3, e1) = b e3, m(e2, e2) = a e2, α(e3) = b e3,

define the multiplication m and linear map α on a hom-associative algebra on K
3.

This algebra is not associative when a →= b and b →= 0, since m
(
m(e1, e1), e3

) −
m

(
e1, m(e1, e3)

) = (a − b)be3.

Example 2.2 (Polynomial hom-associative algebra [45]) Consider the polynomial
algebra A = K[x1, · · · xn] in n variables. Let α be an algebra endomorphism of A
which is uniquely determined by the n polynomials α(xi) = ∑

ζi;r1,...,rn xr1
1 · · · xrn

n

for 1 � i � n. Define m by

m(f , g) = f (α(x1), . . . , α(xn))g(α(x1), . . . , α(xn)) (18)

for f , g in A. Then (A, m, α) is a hom-associative algebra. (This example is a special
case of Corollary 1.1.)

Example 2.3 ([47]) Let (A, m, α) be a hom-associativeR-algebra. Denote byMn(A)

theR-module of n×n matrices with entries in A. Then (Mn(A), m≥, α≥) is also a hom-
associative algebra, in which α≥ : Mn(A) −⊕ Mn(A) is themap that applies α to each
matrix element and the multiplication m≥ is the ordinary matrix multiplication over
(A, m).
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The following result states that hom-associative algebra yields another hom-
associative algebra when its multiplication and twisting map are twisted by a mor-
phism. The following results work as well for hom-Lie algebras and more generally
G-hom-associative algebras. These constructions introduced in [45] and generalized
in [50] were extended to many other algebraic structures.

Theorem 2.2 Let A = (A, m, α) be a hom-algebra and θ : A −⊕ A be a weak
morphism. Then Aθ = (A, mθ, αθ) where mθ = θ ◦ m and αθ = θ ◦ α is also a
hom-algebra. Furthermore:

1. If A is hom-associative then Aθ is hom-associative.
2. If A is hom-Lie then Aθ is hom-Lie.
3. If A is multiplicative and θ is a morphism then Aθ is multiplicative.

Proof For the hom-associative and hom-Jacobi identities, it suffices to consider what
a typical term in these identities looks like. We have

mθ

(
αθ(x), mθ(y, z)

) = (θ ◦ m)
(
(θ ◦ α)(x), (θ ◦ m)(y, z)

)
= θ

(
(m ◦ θ ∞ θ)

(
α(x), m(y, z)

)) = θ
(
(θ ◦ m)

(
α(x), m(y, z)

))

= (θ ◦ θ)
(

m
(
α(x), m(y, z)

))

Hence either side of the hom-associative and hom-Jacobi respectively identities for
Aθ comes out as θ◦2 of the corresponding side of the corresponding identity for
A, and thus these identities for Aθ follow directly from their A counterparts. The
anticommutativity identity similarly follows from its counterpart, as does the multi-
plicative identity via

mθ

(
αθ(x), αθ(y)

) = θ
(

m
(
θ
(
α(x), θ

(
α(y)

))) = θ◦2(m
(
α(x), α(y)

))

= θ◦2(α
(
m(x, y)

)) = θ
(
α
(
(θ ◦ m)(x, y)

)) = αθ

(
mθ(x, y)

)

for all x, y ⊂ A.

The α = id special case of Theorem 1.2 yields.

Corollary 2.1 Let (A, m) be an associative algebra and θ : A −⊕ A be an algebra
endomorphism. Then Aθ = (A, mθ, θ) where mθ = θ ◦ m is a multiplicative hom-
associative algebra.

That result also has the following partial converse.

Corollary 2.2 ([18]) LetA = (A, m, α) be a multiplicative hom-algebra in which α

is invertible. Then A≥ = (A, α−1 ◦ m, id) is a hom-algebra. In particular, any multi-
plicative hom-associative or hom-Lie algebra where α is invertible may be regarded
as an ordinary associative or Lie respectively algebra, albeit with an awkwardly
defined operation.
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Proof Take θ = α−1 in Theorem 1.2.

An application of that corollary is the identity

m
(
x0, m(x1, x2)

) = m
(

m
(
α−1(x0), x1

)
, α(x2)

)

which hold in multiplicative hom-associative algebras with invertible α, and gener-
alises to change the “tilt” of longer products. The idea is to rewrite the product in
terms of the corresponding associative multiplication m̃ = α−1 ◦ m, with respect to
which α and α−1 are also algebra homomorphisms, and apply the ordinary associa-
tive law to change the “tilt” of the product before converting the result back to the
hom-associative product m.

Since many (hom-)Lie algebras of practical interest are finite-dimensional, and
injectivity implies invertibility for linear operators on a finite-dimensional space, one
might expect hom-Lie algebras to be particularly prone to fall under the domain of
that corollary, but the important condition that should not be forgotten is that of the
algebra being multiplicative. For example the q-deformed sl2 of (10) is easily seen
to not be multiplicative for general q.

An identity that may seem conspicuously missing from Definition 1.1 is that
of the unit; although they do not make sense in Lie algebras due to contradicting
anticommutativity, units are certainly a standard feature of associative algebras, so
why has there been no mention of hom-associative unital algebras? The reason is
that they, by the following theorem, constitute a subclass of that of hom-associative
algebras which is evenmore restricted than that of themultiplicative hom-associative
algebras. Unitality of hom-associative algebras were discussed first in [18].

Theorem 2.3 Let A be a hom-associative algebra. If there is some e ⊂ A such that

m(e, x) = x = m(x, e) for all x ⊂ A (19)

then
m

(
α(x), y

) = m
(
x, α(y)

) = α
(
m(x, y)

)
for all x, y ⊂ A. (20)

Proof For the first equality,

m
(
α(x), y

) = m
(
α(x), m(e, y)

) = m
(
m(x, e), α(y)

) = m
(
x, α(y)

)

by hom-associativity. For the second equality,

m
(
x, α(y)

) = m
(
m(e, x), α(y)

) = m
(
α(e), m(x, y)

)
= m

(
e, α

(
m(x, y)

)) = α
(
m(x, y)

)

by hom-associativity and the first equality.
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An identity such as (20) has profound effects on the structure of a hom-associative
algebra. Basically, it means applications ofα are not located in any particular position
in a product, but can move around unhindered. At the same time, even a single α

somewhere will act as a powerful lubricant that lets the hom-associative identity
shuffle around parentheses as easily as the ordinary associative identity. In particular,
any product of n algebra elements x1, . . . , xn where at least one is in the image of α

will effectively be an associative product; probably not the wanted outcome if one’s
aim is to create new structures through deformations of old ones.

On the other hand, α satisfying (20) obviously have some rather special prop-
erties. One may for any algebra A = (A, m) define the centroid Cent(A) of A as
the set of all linear self-maps α : A −⊕ A satisfying the condition α

(
m(x, y)

) =
m

(
α(x), y

) = m
(
x, α(y)

)
for all x, y ⊂ A. Notice that if α ⊂ Cent(A), then we

have m
(
αp(x), αq(y)

) = (αp+q ◦ m)(x, y) for all p, q � 0. The construction of hom-
algebras using elements of the centroid was initiated in [5] for Lie algebras. We
have

Proposition 2.1 Let (A, m) be an associative algebra and α ⊂ Cent(A). Set for
x, y ⊂ A

m1(x, y) = m
(
α(x), y

)
,

m2(x, y) = m
(
α(x), α(y)

)
.

Then (A, m1, α) and (A, m2, α) are hom-associative algebras.

Indeed we have

m1
(
α(x), m1(y, z)

) = m
(
α2(x), m

(
α(y), z

)) = α
(

m
(
α(x), m(α(y), z)

))

= m
(
α(x), α

(
m

(
α(y), z

))) = m
(
α(x), m

(
α(y), α(z)

))
.

Remark 2.1 The definition of unitality which fits with Corollary 1.1 was introduced
in [18] and then used for hom-bialgebra and hom-Hopf algebras in [7].

Let (A, m, α) be a hom-associative algebra. It is said to be unital if there is some
e ⊂ A such that

m(e, x) = α(x) = m(x, e) for all x ⊂ A. (21)

Therefore, similarly to Corollary 1.1, a unital associative algebra gives rise a unital
hom-associative algebra.
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2.3 Admissible and Enveloping Hom-Algebras

Two concepts that are of key importance in the theory of ordinary Lie algebras are
those of Lie-admissible and enveloping algebras. In the setting of hom-algebras,
these concepts are defined as follows, with the classical non-hom concepts arising
in the special case α = id.

Definition 2.2 Let a hom-algebra A = (A, m, α) be given. Define b(x, y) =
m(x, y) − m(y, x) to be the commutator (bracket) corresponding to m, and let A−
be the hom-algebra (A, b, α). The algebra A is said to be hom-Lie-admissible if the
hom-algebra A− is hom-Lie.

Now let L be a hom-Lie algebra. A is said to be an enveloping algebra for L if
L is isomorphic to some hom-subalgebra B = (

B, b|B×B, α|B) of A− such that B
generates A.

It was shown in [35, Proposition 1.6] that any hom-associative algebra is hom-Lie-
admissible. On one hand, this becomes another method of constructing new hom-Lie
algebras, but it is more interesting when wielded to the opposite end of studying a
given hom-Lie algebra through a corresponding enveloping algebra. To explain why
this is so, we will briefly review the classical theory of ordinary Lie and associative
algebras.

On a Lie group, the exponential map v �⊕ exp(v) allows transitioning from
tangent vectors to non-infinitesimal shifts; exp(tv) is the point where you end up if
travelling from the identity point at velocity v for time t. Under the interpretation
that identifies vectors with invariant vector fields, and vector fields with derivations
on the ring of scalar-valued functions (“scalar fields”, in the physicist terminology),
the exponential map may in fact be defined via the elementary power series formula
exp(v) = ∑∪

n=0
vn

n! (where multiplication of vectors is composition of differential

operators) and in the Lie group (R,+) this turns out to be Taylor’s formula: exp
(

t d
dx

)
is the shift operatormapping an analytic function f to the shifted variant x �⊕ f (x+t).
When doing the same in a more general Lie group, one must however be careful to
note that vector fields need not commute, and that already the degree 2 term of for
example exp(u + v) contains uv and vu terms that need not be equal. The role of
the Lie algebra is precisely to keep track of the extent to which vector fields do not
commute, so the proper place to do algebra with vector fields to the aim of studying
the exponential map must be in an enveloping algebra of the Lie algebra of invariant
vector fields on the underlying Lie group.

Conversely, one may start with a Lie algebra g and ask oneself what the corre-
sponding Lie groupwould be like, by studying formal series in the basic vector fields,
while keeping in mind that these should satisfy the commutation relations encoded
into g; this leads to the concept of formal groups. An important step towards it is
the construction of the (associative) universal enveloping algebra U(g), which starts
with the free associative algebra generated by g as a module and imposes upon it the
relations that
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xy − yx = [x, y] for all x, y ⊂ g, (22)

where on the left hand side we have multiplication in U(g) but on the right hand
side the bracket operation of the Lie algebra g. More technically, the free associative
algebra in question can be constructed as the tensor algebra T(g) = ⊕∪

n=0 g
∞n where

the product of x1 ∞ · · · ∞ xm ⊂ g∞m and y1 ∞ · · · ∞ yn ⊂ g∞n is x1 ∞ · · · ∞ xm ∞
y1 ∞ · · · ∞ yn ⊂ g∞(m+n). Imposing the commutation relations can then be done
by taking the quotient by the two-sided ideal J(g) in T(g) that is generated by all
xy − yx − [x, y] for x, y ⊂ g, i.e.,

U(g) := T(g)
/

J(g) = T(g)

/〈 {
xy − yx − [x, y] ∣∣ x, y ⊂ g

}〉
.

With this in mind, it is only natural to generalise this construction to the hom-case,
and in [44] Yau does so. Since he in the non-associative case cannot take advantage of
familiar concepts such as the tensor algebra, this construction will however involve
a few steps more than one might be used to from the non-hom setting. Notably, Yau
begins with setting up the free hom-algebra FHNAs(g): neither hom-associativity
nor ordinary associativity is inherent. Then he goes on to impose hom-associativity
by taking a quotient, which results in the free hom-associative algebra FHAs(g);
this is what corresponds to the tensor algebra T(g). Another quotient imposes also
the commutation relations, to finally yield the universal enveloping hom-associative
algebra UHLie(g).

When reading through the technical details of these constructions, which we shall
quote below for the reader’s convenience, they may seem a daring plunge forward
into very general algebra, that harnesses advanced combinatorial objects to achieve
a clear picture of the algebra. It may be that they are that, but our main point in the
next section is that they are also an entirely straightforward application of the basic
methods of universal algebra, so there is in fact very little that was novel in these
constructions. The reader who has grasped the material in Sect. 3 will be able to
recreate something equivalent to the following (modulo some minor optimisations)
from scratch.

For n � 1, let Tn denote the set of isomorphism classes of plane1 binary trees
with n leaves and one root. The first Tn are depicted below.

1 Yau, likemany other algebraists, actually uses the term ‘planar’ rather than ‘plane’, but this practice
is simply wrong as the two words refer to slightly different graph-theoretical properties: a graph is
planar if it can be embedded in a genus 0 surface, but plane if it is given with such an embedding. To
speak of a ‘planar tree’ is a tautology, because trees by definition contain no cycles, will therefore
have no subdivided K5 or K3,3 as subgraph, and thus by Kuratowski’s Theorem be planar. What is
of utmost importance here is rather that the trees are given with a (combinatorial) embedding into
the plane, since that specifies a local cyclic order on edges incident with a vertex, which is what
the isomorphisms spoken of are required to preserve. As rooted trees, the two elements of T3 are
isomorphic, but as plane rooted trees they are not.
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T1 = , T2 = , T3 = , ,

T4 = , , , , .

Each dot represents either a leaf, which is always depicted at the top, or an internal
vertex. An element in Tn will be called an n-tree. The set of nodes (= leaves and
internal vertices) in a tree ν is denoted by N(ν). The node of an n-tree ν that is
connected to the root (the lowest point in the n-tree) will be denoted by vlow. In other
words, vlow is the lowest internal vertex in ν if n ↔ 2 and is the only leaf if n = 1.

Given an n-treeν and anm-tree σ, their grafting ν∨σ ⊂ Tn+m is the tree obtained
by placing ν on the left and σ on the right and joining their roots to form the new
lowest internal vertex, which is connected to the new root. Pictorially, we have

ψ ∨ϕ =
ψ ϕ

Note that grafting is a nonassociative operation. As we will discuss below, the
operation of grafting is for generating the multiplication m of a free nonassociative
algebra.

To handle hom-algebras, we need to introduce weights on plane trees. A weighted
n-tree is a pair ϕ = (ν, w), in which ν ⊂ Tn is an n-tree and w is a function from the
set of internal vertices of ν to the set N of non-negative integers. If v is an internal
vertex of ν , then we call w(v) the weight of v. The n-tree ν is called the underlying
n-tree of ϕ , and w is called the weight function of ϕ . The set of all weighted n-trees
is denoted Twt

n . Since the 1-tree has no internal vertex, we have that T1 = Twt
1 .

Likewise, the grafting of two weighted trees is defined as above by connecting them
to a new root for which the weight is 0. There is also an operation to change the
weight; for ϕ = (ν, w), we define ϕ [r] = (ν, w≥) where w≥(vlow) = w(vlow)+ r and
w≥(v) = w(v) for all internal vertices v →= vlow.

Now let an R-module A and a linear map α : A −⊕ A be given. As a set,

FHNAs(A) =
⊕
n↔1

⊕
ϕ⊂Twt

n

A∞n.

We write A∞n
ϕ for the component in this direct sum that corresponds to the values n

and ϕ of these summation indices. There is a canonical isomorphism A∞n
ϕ

∗= A∞n.
For any n � 1, ϕ ⊂ Twt

n , and x1, . . . , xn ⊂ A, we write (x1∞· · ·∞xn)ϕ for the element
of A∞n

ϕ that corresponds to x1 ∞ · · · ∞ xn ⊂ A∞n. The linear map α is extended to a
linear map αF : FHNAs(A) −⊕ FHNAs(A) by the rule

αF
(
(x1 ∞ · · · ∞ xn)ϕ

) = (x1 ∞ · · · ∞ xn)ϕ [1] for ϕ /⊂ T1

and the multiplication mF on FHNAs(A) is defined by

mF
(
(x1 ∞ · · · ∞ xn)ϕ , (xn+1 ∞ · · · ∞ xn+m)λ

) = (x1 ∞ · · · ∞ xn+m)ϕ∨λ
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and bilinearity. This
(
FHNAs(A), mF , αF

)
is the free (nonassociative)R-hom-algebra

generated by the hom-module (A, α).
From there, the corresponding free hom-associative algebra is constructed as the

quotient
FHAs(A) := FHNAs(A)

/
J∪

where J∪ = ⋃
n↔1 Jn and J1 ⊗ J2 ⊗ · · · ⊗ J∪ ≤ FHNAs(A) is an ascending chain

of two-sided ideals defined by

J1 =
〈
Im

(
mF ◦ (mF ∞ αF − αF ∞ mF

)〉
,

Jn+1 = 〈
Jn ⊥ αF(Jn)

〉
for n � 1.

The universal enveloping algebra of a hom-Lie algebra (g, b, α) is similarly obtained
as the quotient

UHLie(g) := FHNAs(g)
/

I∪

where I∪ is the two-sided ideal obtained if one starts with

I1 =
〈
Im

(
mF ◦ (mF ∞αF −αF ∞mF)

)⊥{
mF(x, y)−mF(y, x)−b(x, y)

∣∣ x, y ⊂ g
}〉

and then similarly lets In+1 = 〈
In ⊥ αF(In)

〉
for n � 1 and I∪ = ⋃

n�1 In. Since
In ∀ Jn for all n � 1, it follows that UHLie(g) may alternatively be regarded as
a quotient of FHAs(g). This further justifies labelling the hom-associative algebra
UHLie(g) as the hom-analogue for a hom-Lie algebra g of the universal enveloping
algebra of a Lie algebra.

There is however one important question regarding this UHLie which has not been
answered by the above, and in fact seems to be open in the literature: Is UHLie(g) for
every hom-Lie algebra g an enveloping algebra of g? It follows from the form of the
construction that there is a linear map j : g −⊕ UHLie(g) with the properties that

j
([x, y]) = j(x)j(y) − j(y)j(x) for all x, y ⊂ g,

j
(
α(x)

) = α
(
j(x)

)
for all x ⊂ g,

and hence j becomes a morphism of hom-Lie algebras g −⊕ UHLie(g)
−, but it is

entirely unknown whether j is injective. A failure to be injective would obviously
render these hom-associative enveloping algebras of hom-Lie algebras less important
than the ordinary associative enveloping algebras of ordinary Lie algebras, as they
would fail to capture all the information encoded into the hom-Lie algebra.

Anotherway of phrasing the conjecture that the canonical homomorphism is injec-
tive is that the ideal I∪ used to construct UHLie(g) does not contain any degree 1 ele-
ments; such elements would correspond to linear dependencies in UHLie(g) between
the images of basis elements in g. A simple argument for this conjecturewould be that
such dependencies do not occur in the associative case, and since the hom-associative



172 L. Hellström et al.

case has “more degrees of freedom” than the associative case, it shouldn’t happen
here either. An argument against it comes from the converse of the Poincaré–Birk-
hoff–Witt Theorem [43]: If the canonical homomorphism g −⊕ U(g) is injective,
then g is a Lie algebra; the ordinary universal enveloping algebra construction only
manages to envelop the algebra one starts with if that algebra is a Lie algebra. What
can be hoped for is of course that the conditions inherent in UHLie have precisely
those deformations relative to the conditions of ULie that makes everything work out
for hom-Lie algebras instead, but they could just as well end up going some other
way.

To positively resolve the envelopment problem, one would probably have to
prove a hom-analogue of the Poincaré–Birkhoff–Witt Theorem. Methods for this—
particularly the Diamond Lemma—are available, but the calculations required seem
to be rather extensive. To negatively resolve the envelopment problem, it would be
sufficient to find one hom-Lie algebra g for which the canonical homomorphism
g −⊕ UHLie(g) is not injective. Yau does show in [44, Theorem 2] that UHLie(g)
satisfies an universal property with respect to hom-associative enveloping algebras,
so a hom-Lie algebra g which constitutes a counterexample cannot arise as a subal-
gebra of A− for any hom-associative algebra A.

3 Classical Universal Algebra: Free Algebras and Their
Quotients

3.1 Discrete Free Algebras

A basic concept in universal algebra is that of the signature. A signature ε is a set
of formal symbols, together with a function arity : ε −⊕ N that gives the arity,
or “wanted number of operands”, for each symbol. Symbols with arity 0 are called
constants (or said to be nullary), symbols with arity 1 are said to be unary, symbols
with arity 2 are said to be binary, symbolswith arity 3 are said to be ternary, and so on;
one may also speak about a symbol being n-ary. A convenient shorthand, used in for
example [12], for specifying signatures is as a set of “functionprototypes”: symbols of
positive arity are followed by a parenthesis containing one comma less than the arity,
whereas constants are not followed by a parenthesis. Hence ε = {

a(), m(,), x, y
}

is the signature of four symbols a, m, x, and y, where a is unary, m is binary, and the
remaining two are constants. The signature for a hom-algebra is thus

{
a(), m(, )

}
,

whereas the signature for a unary hom-algebra would be
{
a(), m(, ), 1

}
; a unit would

be an extra constant symbol.
Given a signature ε , a set A is said to be an ε-algebra if it for every symbol

x ⊂ ε comes with a map fx : Aarity(x) −⊕ A; these maps are the operations of the
algebra. Note that no claim is made that the operations fulfill any particular property
(beyond matching the respective arities of their symbols), so theε-algebra structure
is not determined by A unless that set has cardinality 1; therefore one might want to
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be more formal and say it is A = (
A, {fx}x⊂ε

)
that is the ε-algebra, but we shall in

what follows generally be concerned with only one ε-algebra structure at a time on
each base set.

What the ε-algebra concept suffices for, despite imposing virtually no structure
upon the object in question, is the definition of an ε-algebra homomorphism: a map
γ : A −⊕ B is an ε-algebra homomorphism from

(
A, {fx}x⊂ε

)
to

(
B, {gx}x⊂ε

)
if

γ
(
fx(a1, . . . , aarity(x))

) = gx
(
γ(a1), . . . ,γ(aarity(x))

)
for all a1, . . . , aarity(x) ⊂ A and x ⊂ ε.

(23)

It is easy to verify that these homomorphisms obey the axioms for being the mor-
phisms in the category of ε-algebras, so that category ε−algebra is what one
gets. One may then define (up to isomorphism) the free ε-algebra as being the
free object in this category, or more technically state that Fε(X) together with
i : X −⊕ Fε(X) is the free ε-algebra generated by X if there for every ε-
algebra A and every map j : X −⊕ A exists a unique ε-algebra homomorphism
γ : Fε(X) −⊕ A such that j = γ ◦ i. An alternative claim to the same effect is
that Fε , interpreted as a functor from Set to ε−algebra, is left adjoint of the
forgetful functor mapping an ε-algebra to its underlying set.

Although these definitions may seem frightfully abstract, the objects in question
are actually rather easy to construct: Fε(X) is merely the set T(ε, X) of all formal
terms inε ⊥̇X, where the elements of X are interpreted as symbols of arity 0. Hence
the first few elements of T

({
a(), m(,)

}
, {x, y}) are

x, y, a(x), a(y), a(a(x)), a(a(y)), m(x, x), m(x, y), m(y, x), m(y, y), . . .

and the operations {fx}x⊂ε in the free ε-algebra T(ε, X) merely produce their
formal terms counterparts:

fx(t1, . . . , tarity(x)) := x(t1, . . . ,tarity(x))

for all t1, . . . , tarity(x) ⊂ T(ε, X) and x ⊂ ε.

Conversely, the unique morphism γ of the universal property turns out to evaluate
formal terms in the codomain ε-algebra, so for any given j : X −⊕ B it can be
defined recursively through

γ(t) =
{

j(x) if t = x ⊂ X,

gx
(
γ(t1), . . . , γ(tn)

)
if t = x(t1, . . . , tn) where x ⊂ ε

for all t ⊂ T(ε, X).
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3.2 Quotient Algebras

Completely free algebras might be cute, but most of the time one is rather inter-
ested in something with a bit more structure, in the sense that certain identities are
known to hold; in an associative algebra, the associativity identity holds, whereas in
a hom-associative algebra the hom-associative identity (11) holds. One approach to
imposing such properties on one’s algebras is to restrict attention to the subcategory
of ε-algebras which satisfy the wanted identities, and then look at the free object of
that subcategory. Another approach is to take a suitable quotient of the free object
from the full category.

In general ε-algebras, the denominator in a quotient is a congruence relation
on the numerator, and an ε-algebra congruence relation is an equivalence relation
which is preserved by the operations;∩ is a congruence relation onA = (

A, {fx}x⊂ε

)
if it is an equivalence relation on A and

fx(a1, . . . , an) ∩ fx(b1, . . . , bn)

for all a1, . . . , an, b1, . . . , bn ⊂ A, x ⊂ε, and n = arity(x)

such that a1 ∩ b1, a2 ∩ b2, . . . , and an ∩ bn.

The quotient
(
B, {gx}x⊂ε

) := A/∩ then has B equal to the set of ∩-equivalence
classes in A, and operations defined by

gx
([a1], . . . , [aarity(x)]) = [

fx(a1, . . . , aarity(x))
]

for all a1, . . . , aarity(x) ⊂ A and x ⊂ ε;

congruence relations are precisely those for which this definition makes sense. Con-
versely, the relation ∩ defined on some ε-algebra A by a ∩ b iff γ(a) = γ(b) will
be a congruence relation whenever γ is an ε-algebra homomorphism.

It should at this point be observed that defining specific congruence relations
to that they respect particular identities is not an entirely straightforward matter; it
would for example be wrong to expect a simple formula such as ‘b ∩ b≥ iff b =
m

(
a(b1), m(b2, b3)

)
and b≥ = m

(
m(b1, b2), a(b3)

)
for some b1, b2, b3 ⊂ Fε(X)’

to set up the congruence relation imposing hom-associativity onFε(X), as it actually
fails even to define an equivalence relation. Instead one considers the family of all
congruence relations which fulfill the wanted identities, and picks the smallest of
these, which also happens to be the intersection of the entire family; this makes
precisely those identifications of elements which would be logical consequences
of the given axioms, but nothing more. Thus to construct the free hom-associative{
a(), m(, )

}
-algebra generated by X, one would let ε = {

a(), m(, )
}
and form

T(ε, X)
/ ∩, where ∩ is defined by
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t ∩ t≥ ⇐◦ t ∗ t≥ for every congruence relation ∗ on T(ε, X)

satisfyingm
(
a(t1), m(t2, t3)

) ∗ m
(
m(t1, t2), a(t3)

)
for all

t1, t2, t3 ⊂ T(ε, X). (24)

Another thing that should be observed is that this construction of the free hom-
associative algebra is not effective, i.e., one cannot use it to implement the algebra on a
computer, nor to reliably carry out calculations with pen and paper. The construction
does suggest both an encoding of arbitrary algebra elements—since the algebra
elements are equivalence classes, just use any element of a class to represent it—
and an implementation of operations—just perform the corresponding operation of
Fε(X)on the equivalence representatives—but it does thennot suggest any algorithm
for deciding equality. Providing such an algorithm is of course equivalent to solving
the word problem for the algebra/congruence relation in question, so there cannot be
a universal method which works for arbitrary algebras, but nothing prevents seeking
a solution that works a particular algebra, and indeed one should always consider
this an important problem to solve for every class of algebras one considers.

One common form of solutions to the word problem is to device a normal form
map for the congruence relation ∩: a map N : T(ε, X) −⊕ T(ε, X) such that
N(t) ∩ t for all t ⊂ T(ε, X) and t ∩ t≥ iff N(t) = N(t≥); this singles out one element
from each equivalence class as being the normal form representative of that class,
thereby reducing the problem of deciding congruence to that of testing whether the
respective normal forms are equal. Normal form maps are often realised as the limit
of a system of rewrite rules derived directly from the defining relations; we shall
return to this matter in Sect. 4.3.

3.3 Algebras with Linear Structure

One thing that has so far been glossed over is that e.g. a hom-associative algebra is
not just supposed to have a non-associative multiplication m and a homomorphism
a, it is also supposed to have addition and multiplication by a scalar. The general
way to ensure this is of course to extend the signature with operations for these, and
then impose the corresponding axioms on the congruence relation used, but a more
practical approach is usually to switch to a category where the wanted linear structure
is in place from the start. As it turns out the free object in the category of algebras
with a linear structure can be constructed as the set of formal linear combinations
of elements in the free (without linear structure) algebra, our constructions above
remain highly useful.

Let R be an associative and commutative ring with unit. An ε-algebra
(
A, {fx}

x⊂ε

)
is R-linear if A is an R-module and each operation fx is R-multilinear, i.e.,

it is R-linear in each argument. An ε-algebra homomorphism γ : A −⊕ B is an
R-linear ε-algebra homomorphism if A and B are R-linear ε-algebras and γ is
an R-module homomorphism. An R-linear ε-algebra congruence relation ∩ is an
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ε-algebra congruence relation on an R-linear ε-algebra which is preserved also by
module operations, i.e., a1 ∩ b1 and a2 ∩ b2 implies ra1 ∩ rb1 (for all r ⊂ R) and
a1 + a2 ∩ b1 + b2.

The free R-linear ε-algebra generated by a set X can be constructed as the set
of all formal linear combinations of elements of T(ε, X), i.e., as the free R-module
with basis T(ε, X); we will denote this free algebra by R{ε, X} (continuing the
notation family R[X], R(X), R⇔X∧). The universal property it satisfies is that any
function j : X −⊕ A where A is an R-linear ε-algebra gives rise to a unique R-
linear ε-algebra homomorphism γ : R{ε, X} −⊕ A such that j = γ ◦ i, where
i is the function X −⊕ R{ε, X} such that i(x) is x, or more precisely the linear
combination which has coefficient 1 for the formal term x and coefficient 0 for all
other terms.

A consequence of the above is that R{∅, X} is the free R-module with basis X,
whichmight be seen as restrictive. There is an alternative concept of freeR-linearε-
algebra which is generated by an R-moduleM rather than a set X, in which case the
above universal property must instead hold for j being anR-module homomorphism
M −⊕ A; inmore categoric terms, this corresponds to the functor producing the free
algebra being left adjoint of not the forgetful functor fromR-linearε-algebra
to Set, but left adjoint of the forgetful functor from R-linear ε-algebra to
R-module. It is however quite possible to get to that also by going via R{ε, X},
as all one has to do is take X = M and then consider the quotient by the smallest
congruence relation ∩ which has i(a) + i(b) ∩ i(a + b) and ri(a) ∩ i(ra) for all
a, b ⊂ M and r ⊂ R (it is useful here to make the function i : X −⊕ R{ε, X}
figuring in the universal property of R{ε, X} explicit, as ∩ would otherwise seem
a triviality); the result is the free object in the category of R-linear ε-algebras that
are equipped with an R-module homomorphism i≥ from M, just like the alternative
universal property would require.

No doubt some readers may find this construction wasteful—a separate constant
symbol for every element of the module M, with a host of identities just to make
them “remember” this module structure, immediately rendering most of the symbols
redundant—and would rather prefer to construct the free R-linear ε-algebra on the
R-moduleM by direct sums of appropriate tensor products ofMwith itself, somehow
generalising the tensor algebra constructionT(M) = ⊕∪

n=0 M
∞n. However, from the

perspectives of constructive set theory and effectiveness, such constructions are guilty
of the exact same wastefulness; they only manage to sweep it under the proverbial
rug that is the definition of the tensor product. As is quite often the case, one ends
up doing the same thing either way, although the presentation may obscure the
correspondencies between the two approaches.

Another stylistic detail is that of whether the denominator in a quotient should
be a congruence relation or an ideal. For R-linear ε-algebras, the equivalence class
of 0 turns out to be an ideal, and conversely a congruence relation ∩ is uniquely
determined by its equivalence class of 0 since a ∩ b if and only if a − b ∩ 0. In our
experience, an important advantage of the congruence relation formalism is that it
makes the dependency on the signatureε more explicit, since it is not uncommon to
see authors continue to associate “ideal” and/or related concepts with the definition
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these have in a more traditional setting; particularly continuing to use ‘two-sided
ideal’ and ‘⇔S∧’ as theywould be defined in an {

m(,)
}
-algebra even though all objects

under consideration are really
{
m(,), a()

}
-algebras. To be explicit, an ideal I in an

R-linear ε-algebra
(
A, {fx}x⊂ε

)
is an R-submodule of A with the property that

fx(a1, . . . , aarity(x)) ⊂ I whevener {a1, . . . , aarity(x)} ∇ I →= ∅,

for all a1, . . . , aarity(x) ⊂ A and x ⊂ ε.

Note that for constants x, the left operand of ∇ above is always empty, and thus this
condition does not require that (the values of) constants would be in every ideal. It
does however imply that unary operations map ideals into themselves, and higher
arity operations take values within the ideal as soon as any operand is in the ideal.

3.4 Algebra Constructions Revisited

Modulo some minor details, this universal algebra machinery allows us to reproduce
quickly the constructions of free hom-nonassociative algebras, free hom-associative
algebras, and universal enveloping hom-associative algebras from Sect. 2.3, as well
as various others that [44] treat more cursory. The plane binary trees are simply an
alternative encoding of formal terms over the signature

{
m(, )

}
; the correspondence

of one to the other is arguably not entirely trivial, but well-known, and it is clearly
the binary trees that have the weaker link to the algebra. There is perhaps a slight
mismatch in that a formal term would encode an actual constant within each leaf,
whereas the binary trees as specified rather take the leaves to mark places where a
constant can be inserted, but we shall return to that in the next section.

The weighting added to the trees is a method of encoding also the α operation of a
hom-algebra; the unstated idea is that the weightw(v) of a node v specifies howmany
times α should be applied to the partial result of that node. This is thus why grafting
creates new nodes with weight 0—grafting is multiplication, so when the outermost
operation was a multiplication, no additional αs are to be applied—and why α raises
the weight of the root node vlow only. Onewould like to think of a weighted n-tree as a
specification of how n elements in a hom-algebra are being composed—for example
the term α3(m(α(m(α2(x1), x2)), α4(x3))) would correspond to the weighted 3-tree

(2) (0) (4)

(1)

(3)

—but there is a catch: weights were supposed to appear only on the internal vertices,
not on the leaves, so the above is not strictly a weighted tree as defined in [44].
This choice of disallowing weights on leaves corresponds to the dichotomy in the
definition of αF for FHNAs: as the underlying α on 1-tree terms, but as a shift [1]
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on n-tree terms for n > 1. This in turn corresponds to the choice of making FHNAs
a functor from R-hom-module to R-hom-algebra rather than a functor from
R-module to R-hom-algebra; the former produces objects that are less free
than those of the latter. It is arguably a strength of the universal algebra method that
this distinction appears so clearly, and also a strength that it prefers the more general
approach.

What one would do in the universal algebra setting to recover the exact same
FHNAs(A) as Yau defined is to impose a(x) ∩ α(x) for all x ⊂ A as conditions upon
a congruence relation ∩, and then take the quotient by that. Technically, one would
start out with the free R-linear ε-algebra R{ε, A} and impose upon it (in addition
to a(x) ∩ α(x)) the silly-looking congruences

rx ∩ (rx), x + y ∩ (x + y) for all x, y ⊂ A and r ⊂ R; (25)

the technical point here is that addition and multiplication in the left hand sides refer
to the operations inR{ε, A}, whereas those on the right hand side refer to operations
in A. What happens is effectively the same as in the set-theoretic construction of
tensor product of modules. Similarly, to recover the hom-associative FHAs(A) one
would start out with R{ε, A} for ε = {a(), m(, )} and quotient that by the smallest
R-linearε-algebra congruence relation∩ satisfying the linearity condition (25) and

a(x) ∩ α(x) for all x ⊂ A, (26a)

m
(
a(t1), m(t2, t3)

) ∩ m
(
m(t1, t2), a(t3)

)
for all t1, t2, t3 ⊂ T(ε, A). (26b)

Finally, in order to recover UHLie(g) for the hom-Lie algebra g = (A, b, α), one
needs only impose also the condition

m(x, y) − m(y, x) ∩ b(x, y) for all x, y ⊂ A (26c)

on the congruence relation ∩. What in this step has been noticeably simplified in
comparison to the presentation of Sect. 2.3 is that the infinite sequence of alternatingly
generating two-sided ideals and applying αF has been compressed into just one
operation, namely that of forming the generated congruence relation. This has not
made the whole thing more effective, but it greatly simplifies reasoning about it. For
the reader approaching the above as was it a deformation of the associative universal
enveloping algebra of a Lie algebra, it might instead be more natural to impose the
conditions in the order (26b) first, (26c) second, and (26a) last. Doing so might
also raise the question of why one should stop there, as opposed to imposing some
additional condition on a, such as a

(
m(t1, t2)

) ∩ m
(
a(t1), a(t2)

)
? The reason not

to ask for that particular condition is that it forces the resulting hom-algebra to be
multiplicative, and it is easily checked that ifA is a multiplicative hom-algebra, then
A− is multiplicative as well; doing so would immediately destroy all hope of getting
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an enveloping algebra, unless the hom-Lie algebra one started with was already
multiplicative.

For a hom-Lie algebra presented in terms of a basis, such as the q-deformed sl2
of (10), it is usually more natural to seek its UHLie by starting with only the basis
elements as constant symbols. In that example one would instead take X = {e, f, h}
and seek a congruence relation on K{ε, X}, namely that which satisfies

a(e) ∩ q e, a(f) ∩ q2f, a(h) ∩ q h, (27a)

m
(
a(t1), m(t2, t3)

) ∩ m
(
m(t1, t2), a(t3)

)
for all t1, t2, t3 ⊂ T(ε, X), (27b)

m(e, f) − m(f, e) ∩ 1
2 (1 + q)h, m(e, h) − m(h, e) ∩ −2e,

m(h, f) − m(f,h) ∩ −2q f.
(27c)

It suffices to impose hom-associativity for monomial terms (those that can be formed
using a, m, and elements of X only) as anything else is a finite linear combination
of such terms.

In these equations, it should be observed that (27a) and (27c) are three discrete
conditions each, whereas (27b) imposing hom-associativity is an infinite family of
conditions. This ismirrored in (26) by the difference in ranges: in (26a), x ranges only
over elements of A (i.e., terms that are constants), but in (26b) the variables range
over arbitrary terms. Comparing this to presentations of associative algebras on the
form R⇔x, y, z | . . . ∧, the discrete conditions are like prescribing a relation between
the generators x, y, and z, whereas the infinite family used for hom-associativity is
like prescribing a Polynomial Identity for the algebra. In rewriting theory, one would
rather say (27a) and (27c) are equations of ground termswhereas (27b) is an equation
involving variables (note that this is a different sense of ‘variable’ than in ‘variable’
as generator of R⇔x, y, z∧).

The exact same analysis can be carried out for the hom-dialgebras and diweighted
trees of [44, Sects. 5–6]; the main point of deviation is merely that one starts out
the signature

{
a(), l(, ), r(, )

}
(because a dialgebra has separate left multiplication ∨

and right multiplication ˇ) rather than the hom-algebra signature
{
a(), m(, )

}
. The

diweighted tree encoding takes another step away from the canonical formal terms by
bundling into the weight the left/right nature of each multiplication with the number
of αs to apply after it. This is not quite as ad hoc as it may seem, because in non-hom
dialgebras the associativity-like axioms have the effect that general products of n
elements look like (· · · (x1 ˇ x2) ˇ · · · ) ˇ xm ∨ (· · · ∨ (xn−1 ∨ xn) · · · ); the left/
right nature of a multiplication is pretty much determined by its position in relation
to the switchover factor xm, so there it makes sense to seek a mostly unified encoding
of the two. It is however far from clear that the same would be true also for general
hom-dialgebras; free hom-associative algebras are certainly far more complicated
than free associative algebras.
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4 A Newer Setting: Free Operads

One awkward point above is that for example the hom-associativity axiom, despite
in some sense being just one identity, required an infinite family of equations to be
imposed upon the free hom-associative algebra; shouldn’t there be away of imposing
it in just one step? Indeed there is, but it requires broadening one’s view, and to think
in terms of operads rather than algebras. A programme for this was outlined in [20].

4.1 What Is an Operad?

Nowadays, many introductions to the operad concept are available, for example [33,
40, 42]. What is important for us to stress is the analogy with associative algebras:
Operators acting on (say) a vector space can be added together, taken scalar multiples
of, and composed; any given set of operators will generate an associative algebra
under these operations. When viewed as functions, operators are only univariate
however, so one might wonder what happens if we instead consider multivariate
functions (still mapping some number of elements from a vector space into that
same space)? One way of answering that question is that we get an operad.

Composition in operads work as when one uses dots ‘·’ to mark the position of
“an argument” in an expression: From the bivariate functions f (·, ·) and g(·, ·), one
may construct the compositions f (g(·, ·), ·), f (·, g(·, ·)), g(f (·, ·), ·), and g(·, f (·, ·)),
which are all trivariate. Note in particular that the “variable-based” style of compo-
sition that permits forming e.g. the bivariate function (x, y) �⊕ f

(
g(x, y), y

)
from f

and g is not allowed in an operad, because it destroys multilinearity; f (x, y) = xy is
a bilinear map R

2 −⊕ R, but h(x) = f (x, x) = x2 is nonlinear.2 In an expression
that composes several operad elements into one, one is however usually allowed
to choose where the various arguments are used: g(f (x1, x2), x3), g(f (x2, x1), x3),
g(f (x3, x1), x2), etc. are all possible as operad elements. This is formalised by
postulating a right action of the group Φn of permutations of {1, . . . , n} on those
operad elements which take n arguments; in function notation one would have
f (xλ−1(1), . . . , xλ−1(n)) = (f λ)(x1, . . . , xn).

More formally, an operad P is a family
{
P(n)

}
n⊂N

of sets, where P(n) is “the
set of those operad elements which have arity n”. Alternatively, an operad P can
be viewed as a set with an arity function, in which case P(n) is a shorthand for{

a ⊂ P arity(a) = n
}
. Both approaches are (modulo some formal nonsense) equiv-

alent, and we will employ both since some concepts are easier under one approach
and others are easier under the other.

2 It may then seem serendipitous that Cohn [11, p. 127] citing Hall calls an algebraic structure
with the variable-based form of composition a clone, since it gets its extra power from being able
to “clone” input data, but he explains it as being a contraction of ‘closed set of operations’. In the
world of QuantumMechanics, the well-known ‘No cloning’ theorem forbids that kind of behaviour
(essentially because it violates multilinearity), so by sticking to operads we take the narrow road.
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Composition can be given the form of composing one element a ⊂ P(m) with the
m elements bi ⊂ P(ni) for i = 1, . . . , m (i.e., one for each “argument” of a) to form
a ◦ b1 ∞ · · · ∞ bm ⊂ P

(∑m
i=1 ni

)
; note that the ‘◦’ and the m − 1 ‘∞’ are all part of

the same operad composition. (There is a more general concept called PROP where
b1 ∞ · · · ∞ bm would be an actual element, but we won’t go into that here.) Operad
composition is associative in the sense that the unparenthesized expression

a ◦ b1 ∞ · · · ∞ bψ ◦ c1 ∞ · · · ∞ cm

is the same whether it is interpreted as

(a ◦ b1 ∞ · · · ∞ bψ) ◦ c1 ∞ · · · ∞ cm

or as

a ◦ (b1 ◦ c1 ∞ · · · ∞ cm1) ∞ · · · ∞ (bψ ◦ cm1+···+mψ−1+1 ∞ · · · ∞ cm1+···+mψ
)

where m = ∑ψ
i=1 mi and bi ⊂ P(mi) for i = 1, . . . , ψ.3

Since Φn acts on the right of each P(n), this action satisfies (aλ)ϕ = a(λϕ) for
all a ⊂ P(n) and λ, ϕ ⊂ Φn. There is also a condition called equivariance that

(aλ) ◦ b1 ∞ · · · ∞ bm = (a ◦ bλ−1(1) ∞ · · · ∞ bλ−1(m))ϕ

where ϕ is a block version of λ , such that the kth block has size equal to the arity
of bk . Finally, it is usually also required that there is an identity element id ⊂ P(1)
such that id ◦ a = a = a ◦ id∞n for all a ⊂ P(n) and n ⊂ N.

Example 4.1 For every set A, there is an operad MapA such that MapA(n) is the
set of all maps An −⊕ A; in particular, MapA(0) may be identified with A. For
a ⊂ MapA(m) and bi ⊂ MapA(ni) for i = 1, . . . , m, the composition a◦b1∞· · ·∞bm

is defined by

(a ◦ b1 ∞ · · · ∞ bm)(x1,1, . . . , x1,n1 , . . . , xm,1, . . . , xm,nm)

= a
(
b1(x1,1, . . . , x1,n1), . . . , bm(xm,1, . . . , xm,nm)

)

for all x1,1, . . . , xm,nm ⊂ A. id ⊂ MapA(1) is the identity map on A. The permutation
action is defined by (aλ)(x1, . . . , xn) = a(xλ−1(1), . . . , xλ−1(n)).

An alternative notation for composition is γ (a, b1, . . . , bm) = a ◦ b1 ∞ · · · ∞ bm;
that γ is then called the structure map, or structure maps if one requires each map
to have a signature on the form P(m) × P(n1) × · · · × P(nm) −⊕ P

(∑m
i=1 ni

)
.

3 As the number of ellipses (. . . ) above indicate, the axioms for operads are somewhat awkward
to state, even though they only express familiar properties of multivariate functions. The PROP
formalism may therefore be preferable even if one is only interested in an operad setting, since the
PROP axioms can be stated without constantly going ‘. . . ’.
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An alternative composition concept is the ith composition ◦i, which satisfies a ◦i

b = a ◦ id∞(i−1) ∞ b ∞ id∞(m−i) for a ⊂ P(m) and i = 1, . . . , m. Note that ith
composition, despite being a binary operation, is not at all associative in the usual
sense and expressions involving it must therefore be explicitly parenthesized; operad
associativity does however imply that subexpressions can be regrouped (informally:
“parentheses can be moved around”) provided that the position indices are adjusted
accordingly.

An operad homomorphism γ : P −⊕ Q is a map that is compatible with the
operad structures of P and Q: arityQ

(
γ(a)

) = arityP(a), γ(a ◦ b1 ∞ · · · ∞ bm) =
γ(a) ◦ γ(b1) ∞ · · · ∞ γ(bm), γ(aλ) = γ(a)λ , and γ(idP) = idQ for all a ⊂ P(m),
bi ⊂ P for i = 1, . . . , m, λ ⊂ Φm, and m ⊂ N. A suboperad of P is a subset of P
that is closed under composition, closed under permutation action, and contains the
identity element. The operad generated by some ε ⊗ P is the smallest suboperad
of P that contains ε .

Let R be an associative and commutative unital ring. An operad P is said to be
R-linear if (i) eachP(n) is anR-module, (ii) every structure map (a, b1, · · · , bm) �⊕
a ◦ b1 ∞ · · · ∞ bm is R-linear in each argument separately, and (iii) each action of a
permutation is R-linear.

Example 4.2 The MapA operad is in general not R-linear, but if A is an R-module,
then the suboperadEndA whereEndA(n) consists of allR-multilinear mapsAn −⊕ A
will be R-linear. EndA(0) can also be identified with A.

The operad concept defined above is sometimes called a symmetric operad,
because of the actions on it of the symmetric groups. Dropping everything involving
permutations above, one instead arrives at the concept of a nonsymmetric or non-Φ
operad. Much of what is done below could just as well be done in the non-Φ setting,
but we find the symmetric setting to be more akin to classical universal algebra.

4.2 Universal Algebra for Operads

Regarding universal algebra, an interesting thing about operads is that theymay serve
as generalisations of both the algebra concept and the signature concept. Theway that
an operad P may generalise a signature ε is that a set A is said to be a P-algebra if
it is given with an operad homomorphism γ : P −⊕ MapA; the operation fx of some
x ⊂ P is then simply γ(x). Being an operad-algebra is however a stronger condition
than being a signature-algebra, because the map γ will only be a homomorphism if
every identity in P is also satisfied in γ(P); this can be used to impose “laws” on
algebras, and several elementary operads are defined to precisely this purpose: an
algebra is an Ass-algebra iff it is associative, a Com-algebra iff it is commutative, a
Lie-algebra iff it is a Lie algebra, a Leib-algebra iff it is a Leibniz algebra, and so
on. It is therefore only natural that we will shortly construct an operad HAss whose
algebras are precisely the hom-associative algebras.
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Before taking on that problem, we should however give an example of how identi-
ties in an operad become laws of its algebras. To that end, considerN as an operad by
making arity(n) = n; this uniquely defines the operad structure, since the arity of any
particular composition is given by the axioms, and that in turn determines the value
since every N(n) only has one element. What can now be said about an N-algebra A
if f : N −⊕ MapA is the given operad homomorphism? Clearly f (2) : A2 −⊕ A is
a binary operation. If ϕ ⊂ Φ2 is the transposition, one furthermore finds that

f (2)(x, y) = f (2ϕ)(x, y) = (
f (2)ϕ

)
(x, y) = f (2)(y, x)

for all x, y ⊂ A, so f (2) is commutative. Similarly it follows from 2 ◦ 1 ∞ 2 = 3 =
2 ◦ 2 ∞ 1 that f (2)

(
x, f (2)(y, z)

) = f (2)
(
f (2)(x, y), z

)
for all x, y, z ⊂ A, and thus

f (2) is associative. Finally one may deduce from id = 1 = 2 ◦ 0 ∞ 1 that f (0) is
a unit element with respect to f (2), so in summary any N-operad algebra carries an
abelian monoid structure. This is almost the same as Com is supposed to accomplish,
so one might ask whether in fact Com = N, but traditionally Com, Ass, etc. are
taken to be the R-linear (for whatever ring R of scalars is being considered) operads
that impose the indicated laws on their algebras. Com is thus rather characterised by
having dim Com(n) = 1 for all n, and may if one wishes be constructed as R × N.

While specific operads may sometimes be constructed through elementary meth-
ods as above, the general approach to constructing an operad that corresponds to a
specific set of laws is instead the universal algebraic one, which rather employs the
point of view that an operad is a generalisation of an algebra. Obviously any spe-
cific ε-algebra

(
A, {fx}x⊂ε

)
gives rise to the operad MapA, but the operad that more

naturally generalises A as an ε-algebra is the suboperad of MapA that is generated
by {fx}x⊂ε . Conversely, if A is supposed to be some kind of free algebra, one may
choose to construct it as the constant component of the corresponding free operad.

An equivalence relation ∩ on an operad P is an operad congruence relation if:

1. a ∩ a≥ implies arity(a) = arity(a≥),
2. a ∩ a≥ and bi ∩ b≥

i for i = 1, . . . , arity(a) implies a ◦ b1 ∞ · · · ∞ barity(a) ∩
a≥ ◦ b≥

1 ∞ · · · ∞ b≥
arity(a), and

3. a ∩ a≥ implies aλ ∩ a≥λ for all λ ⊂ Φarity(a).

As for algebras, it follows that the quotient P/∩ carries an operad structure, and
the canonical map P −⊕ P/∩ is an operad homomorphism. If additionally P is
R-linear and ∩ is an R-module congruence relation on each P(n), then ∩ is an R-
linear operad congruence relation and the corresponding operad ideal I is defined
by I(n) = {

a ⊂ P(n) a ∩ 0
}
for all n ⊂ N (note that each P(n) has a separate 0

element). Equivalently, I ⊗ P is an operad ideal if each I(n) is a submodule of P(n),
each I(n) is closed under the action of Φn, and a ◦ b1 ∞ · · · ∞ bm ⊂ I whenever at
least one of a, b1, . . . , bm is an element of I.

So far, the operad formalism is very similar to that for algebras, but an important
difference occurs when one wishes to impose laws on a congruence. For an algebra,
the hom-associativity condition (24) required an infinite family of identities. The
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corresponding condition in the operad MapA requires only the single identity fm ◦
fa ∞ fm ∩ fm ◦ fm ∞ fa, as the infinite family is recovered from this using composition
on the right: fm ◦ fa ∞ fm ◦ t1 ∞ t2 ∞ t3 ∩ fm ◦ fm ∞ fa ◦ t1 ∞ t2 ∞ t3. The Ass, Com,
Leib, etc. operads can all be seen to be finitely presented, and the same holds for
their free algebras if generated as the arity 0 component of an operad, even though
they are not finitely presented within the ε-algebra formalism!

The universal property satisfied by the free operadF onε is that it is givenwith an
arity-preserving map i : ε −⊕ F such that there for every operad P and every arity-
preserving map j : ε −⊕ P exists a unique operad homomorphism γ : F −⊕ P

such that j = γ ◦ i. A practical construction of that free operad is to let F(n) be the
set of all n-variable contexts [12, p. 17], but since we’ll anyway need some notation
for these, we might as well give an explicit definition based on Polish notation for
expressions.

Definition 4.1 A(left-)Polish term on the signatureε is a finiteword onε⊥{�i}∪i=1
(where it is presumed that �i /⊂ ε and arity(�i) = 0 for all i), which is either �i

for some i � 1, or xμ1 · · ·μn where x ⊂ ε , n = arity(x), and μ1, . . . , μm are
themselves Polish terms on ε . A Polish term is an n-context if each symbol �i

for i = 1, . . . , n occurs exactly once and no symbol �i with i > n occurs at all.
For �1, . . . ,�9 we will write 1, . . . , 9 for short. Denote by Yε(n) the set of all
n-contexts on ε .

The action of λ ⊂ Φn on Yε(n) is that each �i is replaced by �λ−1(i). The
composition μ◦Θ1 ∞· · ·∞Θn is a combined substitution and renumbering: first each
�i in μ is replaced by the corresponding Θi, then the �k’s in the composite term are
renumbered so that the term becomes a context—preserving the differences within
each Θi and giving �k’s from Θi lower indices than those from Θj whenever i < j.

For any associative and commutative unital ringR, and for every n ⊂ N, denote by
R{ε}(n) the set of all formal R-linear combinations of elements of Yε(n). Extend
the action ofλ ⊂ Φn onYε(n) toR{ε}(n) by linearity. LetR{ε} = ⋃

n⊂N
R{ε}(n).

Extend the composition on Yε to R{ε} by multilinearity. When Yε is viewed as a
subset of R{ε}, its elements are called monomials.

With id = 1 = �1, this makes Yε the free operad on ε and R{ε} is the free
R-linear operad on ε .

Forε = {
x, a(), m(,)

}
, one may thus find in Yε(0) elements such as x, ax,mxx,

amxx, and maxx which in parenthesized notation would rather have been written
as x, a(x), m(x, x), a(m(x, x)), and m(a(x), x) respectively. In Yε(1) we similarly
find 1, a1, aa1,mx1,m1x, andmaxm1x which in parenthesized notation could have
been written as �1, a(�1), a(a(�1)), m(x,�1), m(�1, x), and m(a(x), m(�1, x)).
In R{ε}(2) there are elements such as m12 − m21 and m12 + m21 which would
be mapped to 0 by any operad homomorphism f to MapA for which f (m) is com-
mutative or anticommutative respectively. Finally there is in R{ε}(3) the elements
m1m23 − mm123 and ma1m23 − mm12a3 which have similar roles with respect
to associativity and hom-associativity respectively.

A practical problem, which is mostly common to the Polish and the parenthesized
notations, is that it can be difficult to grasp the structure of one of these expressions
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just from a quick glance at the written forms of them; small expressions may be
immediately recognised by the trained eye, but larger expressions almost always
require a conscious effort to parse. This is unfortunate, as the exact structure is very
important when working in a setting this general. The structure can however be
made more visible by drawing expressions rather than writing them; informally one
depicts an expression using its abstract syntax tree, but those of a more formalistic
persuasion may think of these drawings as graph-theoretical objects underlying the
trees (in the sense of [12, pp. 15–16]) of these terms. A few examples can be

m12 = m21 = mm312 =

and several more can be found below. A Polish term may even be read as a direct
instruction for how to draw these trees: in order to draw μ = xΘ1 · · · Θarity(x), first
draw a vertex for x as the root, and then draw the subtrees Θ1 through Θarity(x) above
the x vertex and side by side, letting the order of edges along the top of a vertex
show the order of the subexpressions. The “inputs” �k of a context are represented
by edges to the top side of the drawing, with �1 being leftmost, �2 being second to
left, and so on.

Definition 4.2 An element of Yε(n) is said to be plane if the �i symbols (if any)
occur in ascending order: none to the left of �1, only �1 to the left of �2, and
so on. (Equivalently, the drawing procedure described above will not produce any
crossing edges.) An element ofR{ε}(n) is plane if it is a linear combination of plane
elements. An element of R{ε}(n) is planar if it is of the form aλ for some plane
a ⊂ R{ε}(n) and λ ⊂ Φn. Finally, an ideal in R{ε} is said to be planar if it is
generated by planar elements.

Elements in a planar ideal need not be planar, but every element in a planar ideal
can be written as a sum of planar elements that are themselves in the ideal.

4.3 The Diamond Lemma for Operads

This and the following sections rely heavily on results and concepts from [21]. We
try to always give a reference, where a concept is first used that will not be explained
further here, to the exact definition in [21] of that concept.

Let a signature ε and an associative and commutative unital ring R be given.
Consider the free R-linear operad R{ε} and its suboperad of monomials Yε . Let
V(i, j) be the set of all maps R{ε}(j) −⊕ R{ε}(i) that are on the form

a �⊕ (
ζ ◦k (a ◦ Θ1 ∞ · · · ∞ Θj)

)
λ (28)

where Θr ⊂ Yε(nr) for r = 1, . . . , j, ζ ⊂ Yε(ψ), ψ � k � 1, λ ⊂ Φi, and
i = ψ − 1 + n1 + . . . + nj. The family V = ⋃

i,j⊂N
V(i, j) is then a category [21,
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Definition 6.8], and each v ⊂ V(i, j) is an injection Yε(j) −⊕ Yε(i). Also note that
with respect to the tree (drawing) forms of monomials, each v ⊂ V(i, j) defines an
embedding of μ ⊂ Yε(j) into v(μ); this will be important for identifying V -critical
ambiguities.

Definition 4.3 A rewriting system forR{ε} is a set S = ⋃
i⊂N

S(i) such that S(i) ⊗
Yε(i) ×R{ε}(i) for all i ⊂ N. The elements of a rewrite system are called (rewrite)
rules. The components of a rule s are often denoted μs and as, meaning s = (μs, as)

for all rules s.
For a given rewriting system S, define T1(S)(i) = ⋃

j⊂N
{tv,s}v⊂V(i,j),s⊂S(j), where

tv,s is the R-linear map R{ε}(i) −⊕ R{ε}(i) which satisfies

tv,s(ζ) =
{

v(as) if ζ = v(μs),

ζ otherwise,
for all ζ ⊂ Yε(i). (29)

The elements of T1(S)(i) are called the simple reductions (with respect to S) on
R{ε}(i). For each i ⊂ N, let T(S)(i) be the set of all finite compositions of maps in
T1(S)(i).

Sometimes, a claim that tv,s(a) = b is more conveniently written as a
s⊕ b (for

example when several such claims are being chained, as in a
s1⊕ b

s2⊕ c).When doing
that, wemay indicatewhat v is by inserting parentheses into the Polish term on the tail
side of the arrow that is being changed by the simple reduction: the outer parenthesis
then surrounds the μs ◦ Θ1 ∞ · · · ∞ Θj part, whereas inner parentheses surround the
various Θk subterms of it, although these inner parentheses are for brevity omitted
where Θk = id. See Example 3.3 for some examples of this.

With respect toT(S), allmaps inV are absolutely advanceable [21,Definition 6.1].
The following subsets of R{ε} are defined in [21, Definition 3.4], but so important
that we include the definitions here:

Irr(S)(i) = {
a ⊂ R{ε}(i) ∣∣ t(a) = a for all t ⊂ T(S)(i)

}
,

I(S)(i) =
∑

t⊂T(S)(i)

{
a − t(a)

∣∣ a ⊂ R{ε}(i) }

for all i ⊂ N. We write a ∩ b (mod S) for a − b ⊂ I(S). An a ⊂ Irr(S) is said to be
a normal form of b ⊂ R{ε} if a ∩ b (mod S).

I(S) is the operad ideal in R{ε} that is generated by { μs − as| s ⊂ S } .Irr(S) is
what we want to use as model for the quotient R{ε}/I(S), and we use Theorem 3.1
below to tell us that it really is. An ambiguity [21, Definition 5.9] of T1(S)(i) is a
triplet (tv1,s1 , μ, tv2,s2) such that v1(μs1) = μ = v2(μs2). The ambiguity is plane if
μ is plane.

Theorem 4.1 (Basic Diamond Lemma for Symmetric Operads) If P(i) is a well-
founded partial order on Yε(i) such that as ⊂ DSM

(
μs, P(i)

)
for all i ⊂ N, and

moreover for all i, j ⊂ N every v ⊂ V(i, j) is monotone [21, Definition 6.4] with
respect to P(j) and P(i), then the following claims are equivalent:
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(a) For all i ⊂ N, every ambiguity of T1(S)(i) is resolvable [21, Definition 5.9].
(a≥) For all i ⊂ N, every V-critical [21, Definition 6.8] ambiguity of T1(S)(i) is

resolvable.
(a≥≥) For all i ⊂ N, every plane V-critical ambiguity of T1(S)(i) is resolvable.
(b) Every element of R{ε} is persistently [21, Definition 4.1] and uniquely [21,

Definition 4.6] reducible, with normal form map tS [21, Definition 4.6].
(c) Every element of R{ε} has a unique normal form, i.e., R{ε}(i) = I(S)(i) ∈

Irr(S)(i) for all i ⊂ N.

Proof Taking M(i) = R{ε}(i) and Y(i) = Yε(i), this is mostly a combination of
Theorem 5.11, Theorem 6.9, and Construction 7.2 of [21]. Theorem 5.11 provides
the basic equivalence of (a), (b), and (c). Theorem 6.9 says (a≥) is sufficient, as
resolvability implies resolvability relative to P. Construction 7.2 shows the V , P, and
T1(S) defined above fulfill the conditions of these two theorems.

What remains to show is that (a≥≥) implies (a≥). Let (tv1,s1 , μ, tv2,s2) be a V -critical
ambiguity of some T1(S)(i), and let λ ⊂ Φi be such that μλ is plane. Then w : a �⊕
aλ and w−1 : a �⊕ aλ−1 are both elements of V(i, i), and hence (tv1,s1 , μ, tv2,s2)
is an absolute shadow of the plane and V -critical ambiguity (tw◦v1,s1 , μλ, tw◦v2,s2).
The latter is resolvable by (a≥≥), so it follows from [21, Lemma 6.2] that the former
is resolvable as well.

Remark 4.1 Theorem 3.1 may also be viewed as a slightly streamlined version of
[23, Corollary 10.26], but that approach is probably overkill for readers uninterested
in the PROP setting.

It may be observed that Irr(S)(i) is closed under the action of Φi, regardless of S;
this is thus a restriction of the applicability of this diamond lemma, as its conditions
can never be fulfilled when R{ε}(i)/I(S)(i) is fixed under a non-identity element
of Φi. All of that is however a consequence of the choice of V , and a different choice
of V (e.g. excluding the permutation λ from (28)) will result in a different (but very
similar-looking) diamond lemma, with a different set of critical ambiguities and a
different domain of applicability.

For an ambiguity (tv1,s1 , μ, tv2,s2) to be V -critical in this basic diamond lemma, it
is necessary that the graph-theoretical embeddings intoμ ofμs1 andμs2 have at least
one vertex in common (otherwise the ambiguity is a montage) and furthermore these
two embeddings must cover μ (otherwise the ambiguity is a proper V -shadow).
Enumerating the critical ambiguities formed by two given rules s1 and s2 is thus
mostly a matter of listing the ways of superimposing the two trees μs1 and μs2 .

Example 4.3 (Ass operad) Let ε = {
m(,)

}
. Consider the rewriting system S = {s}

where s = (m1m23, mm123). Graphically, this rule takes the form

→ (30)
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The (non-unital) associative operad Ass over R can then be defined as the quotient
R{ε}/I(S).

One way of partially ordering trees that will be compatible with this rule is to
count, separately for each input, the number of times the path from that input to the
root enters an m vertex from the right; denote this number for input i of the tree μ by
hi(μ). Then define μ � Θ in P≥(n) if and only if hi(μ) � hi(Θ) for all i = 1, . . . , n,
and define a partial order P(n) by μ > Θ in P(n) if and only if μ � Θ in P≥(n) and
μ →� Θ in P≥(n), i.e., let P(n) be the restriction to a partial order of the quasi-order
P≥(n). For the left hand side of s above one has h1 = 0, h2 = 1, and h3 = 2 whereas
the left hand side has h1 = 0, h2 = 1, and h3 = 1, so S is indeed compatible with
P. Furthermore P(n) is clearly well-founded;

∑n
i=1 hi(μ) is simply the rank of μ in

the poset (Yε(n), P(n)).
The only plane critical ambiguity of S is (tv1,s, m1m2m34, tv2,s), where v1(μ) =

μ ◦3 m12 and v2(μ) = m12 ◦2 μ. This is resolved as follows:

(m1m2(m34))

−−−s−−−→
(m(m12)m34)

−−−s−−−→

mmm1234

m1(m2m34) −s−→

(m1m(m23)4)

−s−→

m(m1m23)4

−s−→ mmm1234

Hence the conditions of Theorem 3.1 are fulfilled,R{ε}(n) = I(S)(n)∈Irr(S)(n)

for alln ⊂ N, andAss(n) ∗= Irr(S)(n) asR-modules for alln ⊂ N. Since amonomialμ
is irreducible iff it does not contain anm as right child of anm, i.e., iff every right child
of an m is an input, it follows that the only thing that distinguishes two irreducible
elements of Y(n) is the order of the inputs. On the other hand, every permutation of
the inputs gives rise to a distinct irreducible element, so dimAss(n) = |Φn| = n! for
all n � 1, exactly as one would expect.

For n = 0 one gets dimAss(0) = dimR{ε}(0) = ∣∣Y(0)
∣∣ = 0 however, which is

perhaps not quite what the textbooks say Ass should have. The reason it comes out
this way is that we tookAss to be the operad for associative algebras, period; had we
instead taken it to be the operad for unital associative algebras then dimAss(n) = n!
would have held also for n = 0. Obviously dimR{ε}(0) = 0 because ε doesn’t
contain any constants, but requiring a unit introduces such a constant u. Making that
constant behave like a unit requires two additional rules (mu1, 1) and (m1u, 1) in
the rewriting system however, and we felt the resolution of the resulting ambiguities
are perhaps better left as exercises.

Another useful exercise is to similarly construct the Leib operad, which merely
amounts to replacing the rewriting system S with S≥ = {s≥}, where s = (m1m23,
mm123−mm132). Using brackets as notation for the operation in a Leibniz algebra,
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this rule corresponds to the law that
[
x, [y, z]] = [[x, y], z

]− [[x, z], y
]
. Graphically,

s≥ takes the form

→ → (31)

which unlike associativity is not planar, but that makes no difference for the Diamond
Lemma machinery. The left hand side of s≥ is the same as the left hand side of s, so
Irr(S≥) = Irr(S) and both rewriting systems have the same sites of ambiguities. What
is different are the resolutions, where the resolution in the Leibniz case is longer
since it involves more terms; a compact notation such as the Polish one is highly
recommended when reporting the calculations. Still, it is well within the realm of
what can be done by hand.

4.4 The Hom-Associative Operad

When pursuing the same approach for the hom-associative identity, one of course
needs an extra symbol for the unary operation, so ε = {

m(,), a()
}
. Drawing m as

a circle and a as a square, hom-associativity is then the congruence

≡ (32)

which can be expressed as a rule s = (ma1m23, mm12a3). It is thus straightforward
to define HAss = R{ε}/I({s}), but not quite so straightforward to decide whether
two elements of R{ε} are congruent modulo I

({s}), because {s} is not a complete
rewriting system; the ambiguity one has to check fails to resolve:

s s s (33)

Failed resolutions should not be taken as disasters however; they are in fact oppor-
tunities to learn, since what the above demonstrates is that mm1a2am34 ∩
mm1m23aa4 (mod {s}) (or as a law:

(
xα(y)

)
α(zw) = (

x(yz)
)
α
(
α(w)

)
for all

x, y, z, w), which was probably not apparent from the definition of hom-associativity.
Therefore one’s response to this discovery should be to make a new rule out of this
new and nontrivial congruence, so that one can use it to better understand congruence
modulo hom-associativity.
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A problem with this congruence is however that the left and right hand sides
are not comparable under the same partial order as worked fine for the associa-
tive and Leibniz operads: (h0, h1, h2, h3) = (0, 1, 1, 2) for the left hand side but
(h0, h1, h2, h3) = (0, 1, 2, 1) for the right hand side; finding a compatible order
can be a rather challenging problem for complex congruences. In the case of hom-
associativity though, the fact that all inputs are at the same height in the left and right
hand sides makes it possible to use something very classical: a lexicographic order.
Recursively it may be defined as having μ > Θ if:

• μ = mμ≥μ≥≥ and Θ = mΘ≥Θ≥≥, where μ≥ > Θ≥, or
• μ = mμ≥μ≥≥ and Θ = mΘ≥Θ≥≥, where μ≥ = Θ≥ and μ≥≥ > Θ≥≥, or
• μ = aμ≥ and Θ = mΘ≥Θ≥≥, or
• μ = aμ≥ and Θ = aΘ≥, where μ≥ > Θ≥.

Equivalently, one may define it as the word-lexicographic order on the Polish
notation, over the order on letters which has m < a and each �i unrelated to all
other letters. With this order, it is clear that the congruence (33) should be turned
into the rule (mm1a2am34, mm1m23aa4).

In general, the idea to “find all ambiguities, try to resolve them,make new rules out
of everything that doesn’t resolve, and repeat until everything resolves” is called the
Critical Pairs/Completion (CPC) procedure; its most famous instance is the Buch-
berger algorithm for computing Gröbner bases. ‘Critical pairs’ corresponds to iden-
tifying ambiguities, whereas ‘completion’ is the step of adding new rules; a rewriting
system is said to be complete when all ambiguities are resolvable.

In the case at hand, the calculations quickly become extensive, so we make use
of a program [22] one of us has written that automates the CPC procedure in the
operadic setting (actually, in the more general PROP setting). Running it with (32)
as input quickly leads to the discovery of (33) and several more identities:

(32)≡ (33)≡ (32)≡ (34)

(33)≡ (33)≡ (33)≡ (35)
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(32)≡ (34)≡ (32)≡ (36)

(33)≡ (33)≡ (33)≡ (37)

(33)≡ (34)≡ (33)≡ (38)

(34)≡ (33)≡ (34)≡ (39)

(32)≡ (36)≡ (32)≡ (40)

(36)≡ (32)≡ (36)≡ (41)
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And so on… When we stopped it, the program had 1 rule (32) of order (number
of vertices) 3, 1 rule (33) of order 5, 1 rule (34) of order 7, 2 rules (35, 36) of order 8,
1 rule (37) of order 9, 4 rules (38–41) of order 10, 7 rules of order 11, 12 rules of
order 12, 19 rules of order 13, and 38 rules of order 14. Besides those 85 ambiguities
that had given rise to new rules, 280 had turned out to be resolvable and 22417 had
still not been processed; obviously the program wasn’t going to finish anytime soon,
and it’s a fair guess that the complete rewriting system it sought to compute is in fact
infinite. Certainly (32), (33), (34), and (37) look suspiciously like the beginning of
an infinite family of rules, and indeed the expected sequence with one tower of m’s
and another tower of a’s continues for as long as we have run the computations.

What is now our next step, when automated deduction has failed to deliver a
complete answer? One approach is to try to guess the general pattern for these rules,
and from that construct a provably complete rewriting system; we shall return to
that problem in a later article. Right here and now, it is however possible to wash
out several pieces of hard information even from the incomplete rewriting system
presented above.

4.5 Hilbert Series and Formal Languages

Auseful observation about the hom-associativity axiom (32) is that it is homogeneous
in pretty much every sense imaginable: there are the same number of m’s in the left
and right hand sides, there are the same number of a’s in the left and right hand
sides, and the inputs are all at the same height in the left as in the right hand sides.
(The last is not even true for the ordinary associativity rule (30), so from a very
abstract symbolic point of view, hom-associativity may actually be regarded as a
homogenised form of ordinary associativity.) It is a well-known principle in Gröbner
basis calculations that CPC procedures working on homogeneous rewriting systems
only generates homogeneous rules and never derives smaller rules from larger ones;
once the procedure has processed all ambiguities up to a particular order, one knows
for sure that no more rules of that order remain to be discovered. Hence the ten rules
shown above are all there are of order 10 or less, and since no advanceable map
of those used for Theorem 3.1 can reduce the order, it follows that those rules do
effectively describe HAss up to order 10. There is of course nothing special about
order 10, so we may state these observations more formally as follows.

Lemma 4.1 Let Yk,ψ be the subset ofYε whose elements contain exactly k vertices a
and exactly ψ vertices m; it follows that Yε(n) = ⋃∪

k=0 Yk,n−1. Let Sk,ψ be the set of
rules the CPC procedure has generated from (ma1m23, mm12a3) after processing
all ambiguities at sites in

⋃k
i=0

⋃ψ
j=0 Yi,j but no ambiguities with sites outside this

set. Let S = ⋃
k,ψ⊂N

Sk,ψ. Then the following holds:

1. S1,2 = {
(ma1m23, mm12a3)

}
.

2. Sk,ψ ⊗ Sk+1,ψ and Sk,ψ ⊗ Sk,ψ+1 for all k, ψ ⊂ N.
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3. Irr(Sk,ψ) ∀ Irr(Sk+1,ψ) and Irr(Sk,ψ) ∀ Irr(Sk,ψ+1) for all k, ψ ⊂ N.
4. All ambiguities of S are resolvable.
5. Irr(S) ∇ Yk,ψ = Irr(Sk,ψ) ∇ Yk,ψ.
6. Every element of Yk,ψ has a unique normal form modulo Si,j , for all i � k and

j � ψ.

To finish off, we shall apply a bit of formal language theory to compute the
beginning of the Hilbert series of HAss. The kind of information encoded in this
is, just like the dimAss(n) = n! result mentioned above, basically the numbers of
dimensions of the various components of the operad, although in the case ofHAss it
is trivial to see that dimHAss(n) = ∪ for all n � 0 since inserting more a’s into an
expression does not change its arity. Instead one should partition by both a and m
to get finite-dimensional components. Furthermore there is a rather boring factorial
factor which is due to the action of Φn, so we restrict attention to plane monomials,
factor out that factorial, and define the Hilbert series ofHAss to be the formal power
series

H(a, m) =
∑
i,j⊂N

∣∣Yi,j ∇ Irr(S)
∣∣

(j + 1)! aimj. (42)

Note that this is also the Hilbert series of the free hom-associative algebra with one
generator on which fa acts freely. Indeed, that algebra is preferably constructed as
R{ε ≥}(0)/I(S)(0) where ε ≥ = {

m(,), a(), x
}
, and since no rule in S changes x in

any way, it follows that Irr(S) ⊗ R{ε} is in bijective correspondence to Irr(S)(0) ⊗
R{ε ≥}(0)—just put anx in every input!However, if one prefers have theHilbert series
for the free algebra counting a and x rather than a and m, then it should instead be
stated as xH(a, x), since there is always one x more in an element of Yε ≥(0) than
there are m’s. Finally, the Hilbert series for the free hom-associative algebra with k
generators x1, . . . , xk is kxH(a, kx), since there for every constant symbol (which is
what x becomes the countingvariable for) are k choices ofwhat that symbol should be.

As approximations of H(a, m), we furthermore define

Hk,ψ(a, m) =
∑
i,j⊂N

∣∣Yi,j ∇ Irr(Sk,ψ)
∣∣

(j + 1)! aimj for all k, ψ ⊂ N. (43)

By claim 3 of Lemma 3.1, Hi,j � Hk,ψ coefficient by coefficient whenever i � k and
j � ψ. By claim 5, the coefficient of aimj in H(a, m) is equal to the coefficient in
Hk,ψ(a, m) whenever i � k and j � ψ. Therefore, when one wishes to compute the
beginning of H(a, m), one may alternatively compute the beginning of Hk,ψ(a, m)

for sufficiently large k and ψ.
To get an initial bound, let us first computeH0,0(a, m). From the basic observation

that a plane element of Yε is either id, a1◦Θ for some plane Θ ⊂ Yε , orm12◦Θ1∞Θ2
for some plane Θ1, Θ2 ⊂ Yε , it follows that the language4 L of all plane elements of

4 In formal language theory, a ‘language’ is simply some set of the kind of objects being considered.
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Yε satisfies the equation L = {id} ⊥ (a1 ◦ L) ⊥ (m12 ◦ L ∞ L), and consequently
that H0,0 satisfies the functional equation

H0,0(a, m) = 1 + aH0,0(a, m) + mH0,0(a, m)2; (44)

the details of this correspondence between combinatorial constructions and func-
tional equations can be found in for example [16, Chap. 1]. Solving that equation
symbolically yields

H0,0(a, m) = 1 − a − √
(1 − a)2 − 4m

2m
(45)

and using Newton’s generalised binomial theorem one can even get a closed form
formula for the coefficients:

H0,0(a, m) = 1

2m

(
1 − a −

∪∑
n=0

( 1
2
n

)(
(1 − a)2

) 1
2−n

(−4m)n
)

= − 1

2m

∪∑
n=1

( 1
2
n

)
(1 − a)1−2n (−4m)n (ψ=n−1)

= 2
∪∑

ψ=0

( 1
2

ψ + 1

)
(1 − a)−2ψ−1(−4m)ψ

=
∪∑

ψ=0

∪∑
k=0

2

( 1
2

ψ + 1

)(−2ψ − 1

k

)
(−a)k(−4m)ψ

=
∑

k,ψ⊂N

1

ψ + 1

(
k + 2ψ

k, ψ, ψ

)
akmψ.

As expected, the coefficients for ψ = 0 are all 1 and the coefficients for k = 0 are
the Catalan numbers. These remain that way in all Hk,ψ, but away from the axes the
various rules makes a difference. In order to determine how much, it is time to take
some rules into account.

For any finite set of rules, it is straightforward to set up a system of equations for
the language L0 of plane monomials that are reducible by at least one of these rules;
in the case of S1,2, one such equation system is

L0 = (a1 ◦ L0) ⊥ (m12 ◦ L0 ∞ L1) ⊥ (m12 ◦ L1 ∞ L0) ⊥ (m12 ◦ L2 ∞ L3), (46a)

L1 = (m12 ◦ L1 ∞ L1) ⊥ (a1 ◦ L1) ⊥ {id}, (46b)

L2 = a1 ◦ L1, (46c)

L3 = m12 ◦ L1 ∞ L1 (46d)
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(where we as usual consider operad composition of sets to denote the sets of operad
elements that can be produced by applying the composition to elements of the given
sets). A more suggestive presentation might however be as the BNF grammar

⇔reducible∧ :: = a⇔reducible∧ | m⇔reducible∧⇔arbitrary∧ | m⇔arbitrary∧⇔reducible∧
| m⇔left∧⇔right∧

⇔arbitrary∧ :: = a⇔arbitrary∧ | m⇔arbitrary∧⇔arbitrary∧ | �i

⇔left∧ :: = a⇔arbitrary∧
⇔right∧ :: = m⇔arbitrary∧⇔arbitrary∧

whose informal interpretation is that a Polish term is ⇔reducible∧ by S1,2 if one of
the children of the root node is itself ⇔reducible∧, or if the root node is an m whose
⇔left∧ child is an a and whose ⇔right∧ child is an m. This can be trivially extended
to larger sets of rules by adding to the formula for L0 one production for each new
rule (describing the root of the ms of that rule) and one new variable (together with
its defining equation) for every internal edge in the ms of the new rule. Hence if also
taking (33) into account, the system grows to

L0 = (a1 ◦ L0) ⊥ (m12 ◦ L0 ∞ L1) ⊥ (m12 ◦ L1 ∞ L0)

⊥ (m12 ◦ L2 ∞ L3) ⊥ (m12 ◦ L4 ∞ L5),

L1 = (m12 ◦ L1 ∞ L1) ⊥ (a1 ◦ L1) ⊥ {id},
L2 = a1 ◦ L1,

L3 = m12 ◦ L1 ∞ L1,

L4 = m12 ◦ L1 ∞ L6,

L5 = a1 ◦ L7,

L6 = a1 ◦ L1,

L7 = m12 ◦ L1 ∞ L1.

Smaller systems for the same L0 are often possible (and can save work in the next
step), but here we are content with observing that a finite system exists.

While the system (46) is of the same general type as the equation that was used
to derive (44), it would not be correct to simply convert it in the same way to an
equation system for H1,2, since there is a qualitative difference: the unions in (46)
are not in general disjoint, for example because L0 ≤ L1 and thus m12 ◦ L0 ∞ L0 ⊗
m12◦L0 ∞L1, m12◦L1 ∞L0. This may be possible to overcome through inclusion–
exclusion style combinatorics, but wewould rather like to attack this issue using tools
from formal language theory. In the terminology of [12], an equation system such as
(46) defines a nondeterministic finite top-down tree automaton; it is finite because
the set of states is {0, 1, 2, 3} (finite) and it is the nondeterminism that can cause the
unions to be non-disjoint. By the Subset Construction [12, Thorem 1.1.9] however,
there exists an equivalent deterministic finite bottom-up tree automaton whose states
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are subsets of the set of top-down states; moreover this bottom-up automaton may
be regarded as an ε-algebra

(
A, {fx}x⊂ε

)
. In the case of (46), this ε-algebra has

A = {{1}, {1, 2}, {1, 3}, {0, 1, 3}, {0, 1, 2}}

and operations given by the tables

First operand fa fm when second operad is:
{1} {1, 2} {1, 3} {0, 1, 3} {0, 1, 2}

{1} {1, 2} {1, 3} {1, 3} {1, 3} {0, 1, 3} {0, 1, 3}
{1, 2} {1, 2} {1, 3} {1, 3} {0, 1, 3} {0, 1, 3} {0, 1, 3}
{1, 3} {1, 2} {1, 3} {1, 3} {1, 3} {0, 1, 3} {0, 1, 3}
{0, 1, 3} {0, 1, 2} {0, 1, 3} {0, 1, 3} {0, 1, 3} {0, 1, 3} {0, 1, 3}
{0, 1, 2} {0, 1, 2} {0, 1, 3} {0, 1, 3} {0, 1, 3} {0, 1, 3} {0, 1, 3}

When such anε-algebra
(
A, {fx}x⊂ε

)
is given, the equation system of generating

functions takes the form

Gb(a, m) = a
∑
c⊂A

fa(c)=b

Gc(a, m) + m
∑

c,d⊂A
fm(c,d)=b

Gc(a, m)Gd(a, m) +
{
1 if b = {1},
0 otherwise

for all b ⊂ A
(47)

where the extra term for b = {1} is because that is the state that inputs are considered
to be in. The generating function for reducible plane monomials is the sum of all Gb
such that b ˆ 0, since 0 was the top-down ⇔reducible∧ state, and consequently the
generating function for irreducible plane monomials is the sum of all Gb such that
b →ˆ 0. Thus we have

H1,2(a, m) = G{1}(a, m) + G{1,2}(a, m) + G{1,3}(a, m),

G{1}(a, m) = 1,

G{1,2}(a, m) = aH1,2(a, m),

G{1,3}(a, m) = mH1,2(a, m)2 − mG{1,2}(a, m)G{1,3}(a, m)

where the definition of H1,2(a, m) was used to shorten the last two right hand sides a
bit. Solving as above is still possible, but results in the somewhat messier expression
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H1,2(a, m) = 1 − a − am2 − √
(1 − a − am2)2 + 4(1 − am + a2m)m

2(1 − am + a2m)m

=
∪∑

k=0

2

( 1
2

k + 1

)
(1 − a − am2)−1−2k4k(1 − am + a2m)kmk = · · ·

which is probably not so important to put on closed form; the interesting quantity
is H(a, m), and the terms in H1,2 which coincide with their counterparts in H(a, m)

can be determined by an ansatz in the equation system already.

Theorem 4.2 The Hilbert series H(a, m) for the hom-associative operad HAss sat-
isfies H(a, m) = 1 + m + a + 2m2 + 3am + a2 + 5m3 + 9am2 + 6a2m + a3 +
14m4 + 30am3 + 26a2m2 + 10a3m + a4 + 42m5 + 105am4 + 110a2m3 + 60a3m2 +
15a4m +a5 +132m6 +378am5 +465a2m4 +315a3m3 +120a4m2 +21a5m +a6 +
429m7 + 1386am6 + 1960a2m5 + 1575a3m4 + 770a4m3 + 217a5m2 + 28a6m +
a7 + 1430m8 + 5148am7 + 8232a2m6 + 7644a3m5 + 4494a4m4 + 1680a5m3 +
364a6m2 + 36a7m + a8 + · · · . In particular, the difference to the Hilbert series
H0,0(a, m) for the free hom-algebra operad is

H0,0(a,m)−H(a,m)=

= am2 + 4a2m2 + 10a3m2 + 20a4m2 + 35a5m2 + 56a6m2+
5am3 + 30a2m3 + 105a3m3 + 280a4m3 + 630a5m3 +

21am4 + 165a2m4 + 735a3m4 + 2436a4m4 +
84am5 + 812a2m5 + 4368a3m5 +

330am6 + 3780a2m6 +
1287am7 +

Remark 4.2 The interpretation of for example the term 4368a3m5 above is thus
that imposing the hom-associativity identity (32) reduces by 4368 the dimension of
the space of plane operad elements that can be formed with 3 operations α and 5
multiplications.

Proof As shown above for H1,2, but taking all of (32)–(36) into account, so that one
instead considers S5,3 ⊥ S4,4 and thus gets all terms of total degree � 8.
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Constructions of Quadratic n-ary Hom-Nambu
Algebras

Faouzi Ammar, Sami Mabrouk and Abdenacer Makhlouf

Abstract The aim of this paper is provide a survey on n-ary Hom-Nambu algebras
and study quadratic n-ary Hom-Nambu algebras, which are n-ary Hom-Nambu alge-
bras with an invariant, nondegenerate and symmetric bilinear forms that are also
λ-symmetric and α-invariant where λ and α are twisting maps. We provide various
constructions of quadratic n-ary Hom-Nambu algebras. Also is discussed their con-
nections with representation theory and centroids.

1 Introduction

The main motivations to study n-ary algebras came firstly from Nambu mechanics
[34] where a ternary bracket allows to use more than one hamiltonian and recently
from string theory and M-branes which involve naturally an algebra with ternary
operation called Bagger-Lambert algebra [11]. Also ternary operations appeared in
the study of some quarks models see [22–24]. For more general theory and further
results see references [5, 6, 15–17, 20, 21, 26, 27, 35, 38].

Algebras endowed with invariant nondegenerate symmetric bilinear form (scalar
product) appeared also naturally in several domains in mathematics and physics.
Such algebras were intensively studied for binary Lie and associative algebras. The
main results are that called double extension given by Medina and Revoy [33] and
T*-extension given by Bordemann [14]. These fundamental results were extended to
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n-ary algebras in [18]. The extension to Hom-setting for binary case was introduced
and studied in [13]. For further results about Hom-type algebras, see refs [2–4, 25,
28, 30–32, 41, 42].

In this paper we summarize in the Sect. 2 definitions of n-ary Hom-Nambu alge-
bras and recall the constructions using twisting principles and tensor product with
n-ary algebras of Hom-associative type. In Sect. 3, we introduce the notion of
quadratic n-ary Hom-Nambu algebra, generalizing the notion introduced for binary
Hom-Lie algebras in [13]. A more general notion called Hom-quadratic n-ary Hom-
Nambu algebra is introduced by twisting the invariance identity. In Sect. 4, we show
that a quadratic n-ary Hom-Nambu algebra gives rise to a quadratic Hom-Leibniz
algebra. A connection with representation theory is discussed in Sect. 5. We deal in
particular with adjoint and coadjoint representations, extending the representation
theory initiated in [13, 36]. Several procedures to built quadratic n-ary Hom-Nambu
algebras are provided in Sect. 6. We use twisting principles, tensor product and T*-
extension to construct quadratic n-ary Hom-Nambu algebras. Moreover we show
that one may derive from quadratic n-ary Hom-Nambu algebra ones of increasingly
higher arities and that under suitable assumptions it reduces to a quadratic (n − 1)-ary
Hom-Nambu algebra. Also real Faulkner construction is used to obtain ternary Hom-
Nambu algebras. The last Sect. 7 is dedicated to introduce and study the centroids of
n-aryHom-Nambu algebras and their properties.We supply a construction procedure
of quadratic n-ary Hom-Nambu algebras using elements of the centroid.

Most of the results concern n-ary Hom-Nambu algebras. Naturally they are valid
and may be stated for n-ary Hom-Nambu-Lie algebras.

2 The n-ary Hom-Nambu Algebras

Throughout this paper, K is an algebraically closed field of characteristic zero, even
though for most of the general definitions and results in the paper this assumption is
not essential.

2.1 Definitions

In this section, we summarize definitions of n-ary Hom-Nambu algebras and n-ary
Hom-Nambu-Lie algebras, introduced in [7], generalizing n-aryNambu algebras and
n-ary Nambu-Lie algebras (called also Filippov algebras or n-Lie algebras).

Definition 2.1 An n-ary Hom-Nambu algebra is a triple (N , [·, . . . , ·], λ̃) consist-
ing of a vector space N , an n-linear map [·, . . . , ·] : N n −⊕ N and a family
λ̃ = (λi )1≥i≥n−1 of linear maps λi : N −⊕ N , satisfying
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[
λ1(x1), . . . , λn−1(xn−1), [y1, . . . , yn]]

=
n⎧

i=1

[
λ1(y1), . . . , λi−1(yi−1), [x1, . . . , xn−1, yi ], λi (yi+1), . . . , λn−1(yn)

]
, (1)

for all (x1, . . . , xn−1) ∈ N n−1, (y1, . . . , yn) ∈ N n .

The identity (1) is called Hom-Nambu identity.

Let x = (x1, . . . , xn−1) ∈ N n−1, λ̃(x) = (λ1(x1), . . . , λn−1(xn−1)) ∈ N n−1

and y ∈ N . We define an adjoint map ad(x) as a linear map on N , such that

ad(x)(y) = [x1, . . . , xn−1, y]. (2)

Then the Hom-Nambu identity (1) may be written in terms of adjoint map as

ad (̃λ(x))([xn, . . . , x2n−1])

=
2n−1⎧
i=n

[λ1(xn), . . . , λi−n(xi−1), ad(x)(xi ), λi−n+1(xi+1), . . . , λn−1(x2n−1)].

Remark 2.1 When themaps (λi )1≥i≥n−1 are all identitymaps, one recovers the clas-
sical n-ary Nambu algebras. The Hom-Nambu Identity (1), for n = 2, corresponds
to Hom-Jacobi identity (see [29]), which reduces to Jacobi identity when λ1 = id.

Let (N , [·, . . . , ·], λ̃) and (N ⊂, [·, . . . , ·]⊂, λ̃⊂) be two n-ary Hom-Nambu alge-
bras where λ̃ = (λi )i=1,...,n−1 and λ̃⊂ = (λ⊂

i )i=1,...,n−1. A linear map f : N ⊕ N ⊂
is an n-ary Hom-Nambu algebras morphism if it satisfies

f ([x1, · · · , xn]) = [ f (x1), · · · , f (xn)]⊂
f ⊗ λi = λ⊂

i ⊗ f ∀i = 1, . . . , n − 1.

Definition 2.2 An n-ary Hom-Nambu algebra (N , [·, . . . , ·], λ̃) where λ̃ =
(λi )1≥i≥n−1 is called n-ary Hom-Nambu-Lie algebra if the bracket is skew-
symmetric that is

[xε(1), . . . , xε(n)] = Sgn(ε )[x1, . . . , xn], ∀ε ∈ Sn and ∀x1, . . . , xn ∈ N . (3)

where Sn stands for the permutation group of n elements.
The condition (1) may be written using skew-symmetry property of the bracket

as

[
λ1(x1), . . . , λn−1(xn−1), [y1, . . . , yn]]

=
n⎧

i=1

(−1)i+n[
λ1(y1), . . . , ⎨yi , . . . , λn−1(yn), [x1, . . . , xn−1, yi ]

]
, (4)
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In the sequel we deal sometimes with a particular class of n-ary Hom-Nambu
algebras which we call n-ary multiplicative Hom-Nambu algebras.

Definition 2.3 An n-ary multiplicative Hom-Nambu algebra (resp. n-ary multi-
plicative Hom-Nambu-Lie algebra) is an n-ary Hom-Nambu algebra (resp. n-ary
Hom-Nambu-Lie algebra) (N , [·, . . . , ·], λ̃) with λ̃ = (λi )1≥i≥n−1 where λ1 =
· · · = λn−1 = λ and satisfying

λ([x1, . . . , xn]) = [λ(x1), . . . , λ(xn)], ∀x1, . . . , xn ∈ N . (5)

For simplicity, we will denote the n-ary multiplicative Hom-Nambu algebra as
(N , [·, . . . , ·], λ) where λ : N ⊕ N is a linear map. Also by misuse of language
an element x ∈ N n refers to x = (x1, . . . , xn) andλ(x) denotes (λ(x1), . . . , λ(xn)).

2.2 Constructions

In this section we recall the construction procedures by twisting principles. The first
twisting principle, introduced for binary case in [39], was extend to n-ary case in [7].
The second twisting principle was introduced in [40]. Also we recall a construction
by tensor product of symmetric totally n-ary Hom-associative algebra by an n-ary
Hom-Nambu algebra given in [7].

The followingTheoremgives away to construct n-arymultiplicativeHom-Nambu
algebras starting from a classical n-ary Nambu algebras and algebra endomorphisms.

Theorem 2.1 ([7]). Let (N , [·, . . . , ·]) be an n-ary Nambu algebra and Δ : N ⊕
N be an n-ary Nambu algebra endomorphism. Then (N , Δ ⊗ [·, . . . , ·], Δ) is an
n-ary multiplicative Hom-Nambu algebra.

In the following we use the second twisting principal to generate new n-ary Hom-
Nambu algebra starting from a given multiplicative n-ary Hom-Nambu algebra.

Theorem 2.2 Let (N , [·, . . . , ·], λ) be a multiplicative n-ary Hom-Nambu algebra.
Then (N , λn−1 ⊗ [·, . . . , ·], λn), for any integer n, is an n-ary multiplicative Hom-
Nambu algebra.

Example 2.1 ([7]). The polynomial algebra N = K[x1, x2, x3] of 3 variables
x1, x2, x3, with the bracket defined by the functional jacobian:

[ f1, f2, f3] =

⎩⎩⎩⎩⎩⎩⎩⎩⎩

δ f1
δx1

δ f1
δx2

δ f1
δx3

δ f2
δx1

δ f2
δx2

δ f2
δx3

δ f3
δx1

δ f3
δx2

δ f3
δx3

⎩⎩⎩⎩⎩⎩⎩⎩⎩
,
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is a ternaryNambu-Lie algebra. By considering aNambu-Lie algebra endomorphism
of such algebra, we construct a Hom-Nambu-Lie algebra on the polynomial algebra
of 3 variables x1, x2, x3.

Let ω (x1, x2, x3) be a polynomial or more general differentiable transformation
of three variables mapping elements ofN to elements ofN and such that the deter-
minant of the functional Jacobian J (ω ) = 1. Any Δω : N ⊕ N , the composition
transformation defined by f ⊕ f ⊗ ω for any f ∈ N , defines an endomorphism of
the ternary Nambu-Lie algebra given above. Therefore, for any such transformation
ω , the triple (N , Δω ⊗ [·, ·, ·] , Δω ) is a ternary Hom-Nambu-Lie algebra.

Now, we define the tensor product of two n-ary Hom-algebras and prove some
results involving n-ary Hom-algebras of Lie type and Hom-associative type.

Let A be aK-vector space, μ be an n-linear map on A and θi , i ∈ {1, . . . , n − 1},
be linear maps on A. A triple (A, μ, θ̃ = (θ1, . . . , θn−1)) is said to be a symmetric
n-ary totally Hom-associative algebra over K if the following identities hold

μ(aε(1), . . . , aε(n)) = μ(a1, . . . , an), ∀ε ∈ Sn, (6)

μ(μ(a1, . . . , an), θ1(an+1), . . . , θn−1(a2n−1))

= μ(θ1(a1), μ(a2, . . . , an+1), θ2(an+2), . . . , θn−1(a2n−1)) (7)

= · · · = μ(θ1(a1), . . . , θn−1(an−1), μ(an, . . . , a2n−1)),

where a1, . . . , a2n−1 ∈ A.

Theorem 2.3 Let (A, μ, θ̃ = (θ1, . . . , θn−1)) be a symmetric n-ary totally Hom-
associative algebra and (N , [·, . . . , ·]N , λ̃) be an n-ary Hom-Nambu algebra. Then
the tensor product A ⊗N carries a structure of n-ary Hom-Nambu algebra over K
with respect to the n-linear operation defined by

[a1 ⊗ x1, . . . , an ⊗ xn] = μ(a1, . . . ,an) ⊗ [x1, . . . , xn]N , where

xl ∈ N , al ∈ A, l ∈ {1, . . . , n}, (8)

and linear maps π̃ = (π1, . . . , πn−1) where πi = θi ⊗ λi , for i ∈ {1, . . . , n − 1},
defined by

πi (a ⊗ x) = θi (a) ⊗ λi (x), ∀ a ⊗ x ∈ A ⊗ N . (9)

Proof For ak ⊗ xk, bl ⊗ yl ∈ A ⊗ N , 1 ≥ k ≥ n − 1 and 1 ≥ l ≥ n, we have

[π1(a1 ⊗ x1), . . . , πn−1(an−1 ⊗ xn−1), [b1 ⊗ y1, . . . , bn ⊗ yn]]
= μ(θ1(a1), . . . , θn−1(an−1), μ(b1, . . . , bn)) ⊗ [λ1(x1), . . . , λn−1(xn−1),

[y1, . . . , yn]N ]N .
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The symmetry and totally associativity of A lead to

[π1(b1 ⊗ y1), . . . , [a1 ⊗ x1, . . . , an−1 ⊗ xn−1, bl ⊗ yl ], . . . , πn−1(bn ⊗ yn)]
= μ(θ1(b1), . . . , μ(a1, . . . , an−1, bl), . . . , θn−1(bn−1))

⊗ [[λ1(y1), . . . , [x1, . . . , xn−1, yl ]N , . . . , λn−1(yn)]N
= μ(θ1(a1), . . . , θn−1(an−1), μ(b1, . . . , bn))

⊗ [λ1(y1), . . . , [x1, . . . , xn−1, yl ]N , . . . , λn−1(yn)]N .

Thus

n⎧
l=1

[π1(b1 ⊗ y1), . . . , [a1 ⊗ x1, . . . , an−1 ⊗ xn−1, bl ⊗ yl ], . . . , πn−1(bn ⊗ yn)]

= μ(θ1(a1), . . . , θn−1(an−1), μ(b1, . . . , bn))

⊗
⎪ n⎧

l=1

[λ1(y1), . . . , [x1, . . . , xn−1, yl ]N , . . . , λn−1(yn)]N
⎝

= μ(θ1(a1), . . . , θn−1(an−1), μ(b1, . . . , bn)) ⊗ [λ1(x1), . . . , λn−1(xn−1),

[y1, . . . , yn]N ]N .

Corollary 2.1 Let (A, μ, θ) be a multiplicative symmetric n-ary Hom-associative
algebra ( i.e. θ ⊗ μ = μ ⊗ θ⊗n) and (N , [·, . . . , ·]N , λ̃) be a multiplicative n-ary
Hom-Nambu algebra. Then A ⊗ N is a multiplicative n-ary Hom-Nambu algebra.

Remark 2.2 Let (A, ·) be a binary commutative associative algebra and
(N , [·, . . . , ·]N , λ̃) be an n-ary Hom-Nambu algebra. Then the tensor product
A ⊗ N carries a structure of n-ary Hom-Nambu algebra over K with respect to
the n-linear operation defined by

[a1 ⊗ x1, . . . , an ⊗ xn] = (a1 · . . . · an) ⊗ [x1, . . . , xn]N , (10)

and linear maps π̃ = (π1, . . . , πn−1) where πi = id ⊗ λi , for i ∈ {1, . . . , n − 1},
defined by

πi (a ⊗ x) = a ⊗ λi (x), ∀ a ⊗ x ∈ A ⊗ N . (11)

3 Definitions and Examples of Quadratic n-ary Hom-Nambu
Algebras

In this section we introduce a class of Hom-Nambu-Lie algebras which possess a
scalar product (a nondegenerate symmetric bilinear form which is invariant). This
class of algebras is important due to their appearance in a number of physical contexts.
They were extensively studied in the case of Lie algebras and Lie superalgebras, see
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[9, 10, 14, 33]. The study was extended to Hom-Lie algebras in [13]. See also [18]
for 3-Lie algebras.

Definition 3.1 Let (N , [., . . . , .], λ̃), λ̃ = (λi )1≥i≥n−1, be an n-ary Hom-Nambu
algebra and B : N × N ⊕ K be a nondegenerate symmetric bilinear form such
that, for all y, z ∈ N and x ∈ →n−1N

B([x1, · · · , xn−1, y], z) + B(y, [x1, · · · , xn−1, z]) = 0, (12)

B(λi (y), z) = B(y, λi (z)), ∀i ∈ {1, . . . , n − 1}. (13)

The quadruple (N , [·, . . . , ·.], λ̃, B) is called quadratic n-ary Hom-Nambu algebra.

Remark 3.1 If λi = I d for all i ∈ {1, . . . , n − 1}, we recover quadratic (metric)
n-ary Nambu algebras.

Definition 3.2 Ann-aryHom-Nambualgebra (N , [., . . . , .], λ̃), λ̃ = (λi )1≥i≥n−1,
is called Hom-quadratic if there exists a pair (B, α) where B : N × N ⊕ K is a
nondegenerate symmetric bilinear form and α ∈ End(N ) a linear map satisfying

B([x1, · · · , xn−1, y], α(z)) + B(α(y), [x1, · · · , xn−1, z]) = 0, (14)

We call the identity (14) the α-invariance of B. We recover the quadratic n-ary Hom-
Nambu algebras when α = id and the identity (12) is called the invariance of B.
The tuple (N , [·, . . . , ·], λ̃, B, α) denotes the Hom-quadratic n-ary Hom-Nambu
algebra.

Example 3.1 We consider an example of ternary Hom-Nambu algebra given in [40].
Let V be a K-module and B : V ⊗2 ⊕ K be a nondegenerate symmetric bilinear
form. Suppose λ : V ⊕ V is an involution, that is λ2 = id. Assume that λ is
B-symmetric, that is B(λ(x), y) = B(x, λ(y)) for all x, y ∈ V . We have also
B(λ(x), λ(y)) = B(λ2(x), y) = B(x, y). Then for any scalar ζ ∈ K, the triple
product

[x, y, z]λ = ζ(B(y, z)λ(x) − B(z, x)λ(y)) for all x, y, z ∈ V . (15)

gives aHom-quadratic ternaryHom-Nambu algebra (V, [., ., .]λ, (λ, λ)),λ-invariant
by the pair (B, λ). Indeed, for x, y, z, t ∈ V

B([x, y, z]λ, λ(t)) = ζ(B(B(y, z)λ(x) − B(z, x)λ(y), λ(t)))

= ζ(B(y, z)B(λ(x), λ(t)) − B(z, x)B(λ(y), λ(t)))

= ζ(B(y, z)B(x, t) − B(z, x)B(y, t))

= ζ(B(λ(y), λ(z))B(x, t) − B(λ(z), λ(x))B(y, t))

= ζ(B(λ(z), λ(y))B(x, t) − B(λ(z), λ(x))B(y, t))
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= ζ(B(λ(z), λ(y)B(x, t) − λ(x)By, t)))

= −ζ(B(λ(z), λ(x)B(y, t) − λ(y)B(t, x)))

= −B(λ(z), [x, y, t]λ).

Example 3.2 Let (N , [·, ·, ·], (λ1, λ2)) be a 3-dimensional ternary Hom-Nambu-
Lie algebras, defined with respect to a basis {e1, e2, e3} of N by

[e1, e2, e3] = e1 + 2e2 + e3, (16)

λ1(e1) = 0, λ1(e2) = ζe1 + ve2, λ1(e3) = ζ

2
e1 + v

2
e2, (17)

λ2(e1) = 0, λ2(e2) = 0, λ2(e3) = be3, (18)

where ζ, v, b are parameters with ζv ∞= 0. These 3-dimensional ternary algebras
admit symmetric bilinear forms B given, with respect to the previous basis, by the
following matrix

M =
⎞
⎫ − v

ζ
1 ( v

ζ
− 2)

1 −ζ
v (2ζ

v − 1)
( v
ζ

− 2) (2ζ
v − 1) (4 − 4ζ

v − v
ζ
)

⎡
⎣

The ternary Hom-Nambu-Lie algebras (N , [·, ·, ·], (λ1, λ2)), with respect to B, is
not quadratic because B is degenerate (det (M) = 0).

4 Relationship Between Quadratic n-ary Hom-Nambu-Lie
Algebra and Quadratic Hom-Leibniz Algebra

In the context of Hom-Lie algebras one gets the class of Hom-Leibniz algebras (see
[29]). A Hom-Leibniz algebra is a triple (V, [·, ·], λ) consisting of a linear space V ,
a bilinear map [·, ·] : V × V ⊕ V and a homomorphism λ : V ⊕ V with respect
to [·, ·] satisfying

[λ(x), [y, z]] = [[x, y], λ(z)] + [λ(y), [x, z]] (19)

We fix in the following notations. Let (N , [·, . . . , ·], λ̃) be an n-ary Hom-Nambu
algebra, we define
• a linear map L : ⊗n−1N −⊕ End(N ) by

L(x) · z = [x1, . . . , xn−1, z], (20)

for all x = x1 ⊗ . . . ⊗ xn−1 ∈ ⊗n−1N , z ∈ N and extending it linearly to all
⊗n−1N . Notice that L(x) · z = ad(x)(z).
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If the n-ary Hom-Nambu algebra N is multiplicative, then we define
• a linear map λ̂ : ⊗n−1N −⊕ ⊗n−1N by

λ̂(x) = λ(x1) ⊗ . . . ⊗ λ(xn−1) (21)

for all x = x1 ⊗ . . . ⊗ xn−1 ∈ ⊗n−1N ,
• a bilinear map [ , ]λ : ⊗n−1N × ⊗n−1N −⊕ ⊗n−1N defined by

[x, y]λ = L(x) •λ y =
n−1⎧
i=0

⎤
λ(y1), . . . , L(x) · yi , . . . , λ(yn−1)

⎦
, (22)

for all x = x1 ⊗ . . . ⊗ xn−1 ∈ ⊗n−1N , y = y1 ⊗ . . . ⊗ yn−1 ∈ ⊗n−1N

Lemma 4.1 Let (N , [·, . . . , ·], λ̃) be a multiplicative n-ary Hom-Nambu algebra
then the map L satisfies

L([x, y]λ) · λ(z) = L(λ̃(x)) · ⎤
L(y) · z

⎦ − L(λ̃(y)) · ⎤L(x) · z
⎦

(23)

for all x, y ∈ L (N ), z ∈ N .

If (N , [·, . . . , ·], λ̃) is amultiplicative n-aryHom-Nambu-Lie algebra, we denote
byL (N ) the space →n−1N and we call it the fundamental set.

Proposition 4.1 The triple
⎤
L (N ), [ , ]λ, λ̂

⎦
, where [ , ]λ and λ̂ are defined

respectively in (21) and (22), is a Hom-Leibniz algebra.

Remark 4.1 The invariance identity (12) of an n-ary Nambu algebra with respect to
a bilinear form B can be written

B(L(x) · y, z) + B(y, L(x) · z) = 0, (24)

and α-invariance identity (14) by

B(L(x) · y, α(z)) + B(α(y), L(x) · z) = 0, (25)

Proposition 4.2 Let (N , [·, . . . , ·], λ, B, λ) be a Hom-quadratic multiplicative
Hom-Nambu-Lie algebra λ-invariant and

⎤
L (N ), [ , ]λ, λ̂

⎦
be its associated

Hom-Leibniz algebra, then the natural scalar product on L (N ), ⎨B defined by

⎨B(x, y) = B(x1 → . . . → xn−1, y1 → . . . → yn−1) =
n−1⎢
i=0

B(xi , yi ) (26)

and later extending linearly to all of L (N ), is λ̃-invariant. That is, for all x, y, z ∈
L (N ): ⎨B([z, x]λ, λ̂(y)) + ⎨B(λ̂(x), [z, x]λ) = 0. (27)
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Proof Let x = (x1, . . . , xn−1), y = (y1, . . . , yn−1) and let z ∈ L (N ). Then using
equation (27) we have

⎨B([z, x]λ, λ̂(y)) = ⎨B(L(z) •λ x, λ̂(y))

=
n−1⎧
i=0

⎨B(
⎤
λ(x1), . . . , L(z) · xi , . . . , λ(xn−1)

⎦
,
⎤
λ(y1), . . . , λ(yn−1)

⎦
)

=
n−1⎧
i=0

B(L(z) · xi , λ(yi ))

n−1⎢
j=0 j ∞=i

B(λ(x j ), λ(x j ))

= −
n−1⎧
i=0

B(λ(xi ), L(z) · yi )

n−1⎢
j=0 j ∞=i

B(λ(x j ), λ(y j ))

= −
n−1⎧
i=0

⎨B(
⎤
λ(x1), . . . , λ(xn−1)

⎦
,
⎤
λ(y1), . . . , L(z) · yi , . . . , λ(yn−1)

⎦
)

= −⎨B(λ̂(x), L(z) •λ y)

= −⎨B(λ̂(x), [z, y]λ).

5 Representations and Quadratic n-ary Hom-Nambu Algebras

In this Section we study in the general case the representation theory of n-ary Hom-
Nambu algebras introduced for multiplicative n-ary Hom-Nambu algebras in [1].We
discuss in particular adjoint and coadjoint representations for quadratic n-ary Hom-
Nambu algebras. The results obtained in this Section generalize those given for binary
case in [13]. The representation theory of Hom-Lie algebras were independently
studied in [36].

Definition 5.1 A representation of an n-ary Hom-Nambu algebra (N , [·, . . . , ·], λ̃)

on a vector space V is a skew-symmetric multilinear map Δ : N n−1 −⊕ End(V ),
satisfying for x, y ∈ N n−1 the identity

Δ(λ̃(x))⊗Δ(y)−Δ(λ̃(y))⊗Δ(x) =
n−1⎧
i=1

Δ(λ1(x1), . . . , L(y)·xi , . . . , λn−2(xn−1))⊗v

(28)

where v is an endomorphismonV .Wedenote this representation by a triple (V, Δ, μ).

Two representations (V, Δ, μ) and (V ⊂, Δ⊂, μ⊂) ofN are equivalent if there exists
f : V ⊕ V ⊂ an isomorphism of vector space such that f (x · v) = x ·⊂ f (v) and
f ⊗ v = v⊂ ⊗ f where x · v = Δ(x)(v) and x ·⊂ v⊂ = Δ⊂(x)(v⊂) for x ∈ N n−1, v ∈ V
and v⊂ ∈ V ⊂. Then V and V ⊂ are viewed as N n−1-modules.
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Example 5.1 Let (N , [·, . . . , ·], λ̃) be an n-ary Hom-Nambu-Lie algebra. The map
L defined in (20) is a representation on N , where the endomorphism v is the twist
map λn−1. The identity (28) is equivalent to Hom-Nambu identity (1). It is called
the adjoint representation.

Proposition 5.1 Let (N , [., . . . , ], λ̃)be an n-ary Hom-Nambu algebra and (V, Δ, v)
be a representation of N . The triple (V ∪, Δ∪, ṽ), where Δ∪ : N n−1 ⊕ End(V ∪)
is given by Δ∪ = −tΔ and μ∪ : V ∪ ⊕ V ∪, f ↔⊕ v∪( f ) = f ⊗ v, defines a
representation of the n-ary Hom-Nambu-Lie algebra (N , [., . . . , ], λ̃) if and only if

Δ(x)⊗Δ(λ̃(y))−Δ(y)⊗Δ(λ̃(x)) =
n−1⎧
i=1

v⊗Δ(λ1(x1), . . . , L(y)·xi , . . . , λn−2(xn−1))

(29)

Proof Let f ∈ N ∪, x, y ∈ N n−1 and u ∈ N . We compute the right hand side of
the identity (28)

Δ∪(λ̃(x)) ⊗ Δ∪(y)( f )(u) − Δ∪(λ̃(y)) ⊗ Δ∪(x)( f )(u)

= (Δ∪(λ̃(x))(Δ∪(y)( f )) − Δ∪(λ̃(y))(Δ∪(x)( f )))(u)

= −(Δ∪(y)( f )(Δ(λ̃(x)))(u)) + (Δ∪(x)( f )(Δ(λ̃(y)))(u))

= f (Δ(y)(Δ(λ̃(x))(u))) − f (Δ(x)(Δ(λ̃(y))(u)))

= f (Δ(y)(Δ(λ̃(x))(u)) − Δ(x)(Δ(λ̃(y))(u))).

In the other hand, the left hand side of (28) writes

(

n−1⎧
i=1

Δ∪(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1)) ⊗ v∪( f ))(u)

= −
n−1⎧
i=1

(v∪( f )(Δ(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(u)))

= −
n−1⎧
i=1

f (v(Δ(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(u)))

= f (−
n−1⎧
i=1

v(Δ(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(u))).

Therefore we obtain the identity (29).

Corollary 5.1 Let (N , L , λn−1) be a representation of an n-ary Hom-Nambu
algebra (N , [·, . . . , ·], λ̃). We define the map L̃ : N n−1 ⊕ End(N ∪), for
x ∈ N n−1, f ∈ N ∪ and y ∈ N , by (L̃(x) · f )(y) = − f (L(x) · y).
Then (N ∪, L̃, λ∪

n−1) is a representation of N if and only if
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L(x) ⊗ L(λ̃(y))− L(y) ⊗ L(λ̃(x)) =
n−1⎧
i=1

λn−1 ⊗ L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1)).

(30)

We establish now a connection between quadratic n-ary Hom-Nambu algebras
and representation theory. We discuss coadjoint representations for quadratic n-ary
Hom-Nambu algebras.

Proposition 5.2 Let (N , [·, . . . , ·], λ̃) be an n-ary Hom-Nambu algebra. If there
exists B : N ×N ⊕ Ka bilinear form such that the quadruple (N , [·, . . . , ·], λ̃, B)

is a quadratic n-ary Hom-Nambu algebra then

1. (N ∪, L̃, λ∪
n−1) is a representation of N ,

2. the representations (N , L , λn−1) and (N ∪, L̃, λ∪
n−1) are isomorphic.

Proof To prove the first assertion, we should show that, for any z ∈ N , we have

L(x) ⊗ L(λ̃(y)) · z − L(y) ⊗ L(λ̃(x)) · z

=
n−1⎧
i=1

λn−1 ⊗ L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(z). (31)

Let u ∈ N

B(L(x) ⊗ L(λ̃(y)) · z − L(y) ⊗ L(λ̃(x)) · z, u)

= B(L(x) ⊗ L(λ̃(y)) · z, u) − (L(y) ⊗ L(λ̃(x)) · z, u)

= B(L(λ̃(y)) · z, L(x) · u) − (L(λ̃(x)) · z, L(y) · u)

= B(z, L(λ̃(y)) ⊗ L(x) · u) − (z, L(λ̃(x)) ⊗ L(y) · u)

= B(z, L(λ̃(y)) ⊗ L(x)(u) − L(λ̃(x)) ⊗ L(y)(u)).

and

B(λn−1 ⊗ L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(z), u)

= B(L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(z), λn−1(u))

= B(z, L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1)) ⊗ λn−1(u))

= B(z, L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1)) ⊗ λn−1(u)).

Since B is bilinear, then

B(

n−1⎧
i=1

λn−1 ⊗ L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(z), u)

= B(z,
n−1⎧
i=1

L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1)) ⊗ λn−1(u)).
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Hence

B(L(x) ⊗ L(λ̃(y)) · z − L(y) ⊗ L(λ̃(x)) · z

−
n−1⎧
i=1

λn−1 ⊗ L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1))(z), u)

= B(z, L(λ̃(y)) ⊗ L(x) · u − L(λ̃(x)) ⊗ L(y) · u

−
n−1⎧
i=1

L(λ1(x1), . . . , L(y) · xi , . . . , λn−2(xn−1)) ⊗ λn−1(u))

= 0.

Since B is nondegenerate then the identity (31) holds.
For the second assertion we consider the map ν : N ⊕ N ∪ defined by x ↔⊕

B(x, ·) which is bijective since B is nondegenerate and prove that it is also a module
morphism.

6 Constructions of Quadratic n-ary Hom-Nambu Algebras

We provide in this section some key constructions of Hom-quadratic n-ary Hom-
Nambu-Lie algebras. First we extend twisting principles, then the T ∪-extension
construction for Hom-quadratic n-ary Hom-Nambu-Lie algebras. Moreover, we
show constructions involving tensor product of Hom-quadratic commutative Hom-
associa-
tive algebra and Hom-quadratic Hom-Nambu-Lie algebra considered in Theorem
1.3.

6.1 Twisting Principles

Let (N , [·, . . . , ·], B) be a quadratic n-aryNambu algebras.We denote AutS(N , B)

by the set of symmetric automorphisms of N with respect of B, that is automor-
phisms f : N ⊕ N such that B( f (x), y) = B(x, f (y)),∀x, y ∈ N .

Proposition 6.1 Let (N , [·, . . . , ·], B) be a quadratic n-ary Nambu algebra and
Δ ∈ AutS(N , B).
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Then (N , [·, . . . , ·]Δ, Δ̃, B, Δ) where

[·, . . . , ·]Δ = Δ ⊗ [·, . . . , ·] (32)

is a Hom-quadratic n-ary Hom-Nambu algebra, and (N , [·, . . . , ·]Δ, Δ̃, BΔ) where

BΔ(x, y) = B(Δ(x), y) (33)

is a quadratic n-ary Hom-Nambu algebra.

Proof Let x = (x1, . . . , xn−1) ∈ N ⊗n−1 et y1, y2 ∈ N ,

B([x1, . . . , xn−1, y1]Δ, Δ(y2)) = B([Δ(x1), . . . , Δ(xn−1), Δ(y1)], Δ(y2))

= −B(Δ(y1), [Δ(x1), . . . , Δ(xn−1), Δ(y2)])
= −B(Δ(y1), Δ ⊗ [x1, . . . , xn−1, y2])
= −B(Δ(y1), [x1, . . . , xn−1, y2]Δ).

In the other hand we have

BΔ([x1, . . . , xn−1, y1]Δ, y2) = B(Δ[Δ(x1), . . . , Δ(xn−1), Δ(y1)], y2)

= B([Δ(x1), . . . , Δ(xn−1), Δ(y1)], Δ(y2))

= −B(Δ(y1), [Δ(x1), . . . , Δ(xn−1), Δ(y2)])
= −B(Δ(y1), Δ ⊗ [x1, . . . , xn−1, y2])
= −BΔ(y1, [x1, . . . , xn−1, y2]Δ).

Proposition 6.2 Let (N , [·, . . . , ·], λ, B) be a quadratic multiplicative n-ary Hom-
Nambu algebra. Then (N , λn−1 ⊗[·, . . . , ·], λn, B, λn−1) is a Hom-quadratic n-ary
Hom-Nambu algebra and (N , λn−1 ⊗ [·, . . . , ·], λn, Bλ), where

Bλ(x, y) = B(λn−1(x), y) = B(x, λn−1(y)), (34)

is a quadratic n-ary Hom-Nambu algebra,

Proof Using the second twisting principle construction of Theorem 2.2, (N , λn−1 ⊗
[·, . . . , ·], λn) is a n-ary Hom-Nambu algebra. Let now xi , y, z ∈ N , i ∈ {1, . . . ,
n − 1}, we have

Bλ(λn−1(y), z) = B(λ2n−2(y), z) = B(λn−1(y), λn−1(z)) = Bλ(y, λn−1(z)).

In the other hand, we have

Bλ(λn−1 ⊗ [x1, . . . , xn−1, y], z) = B(λn−1 ⊗ [x1, . . . , xn−1, y], λn−1(z))

= B([λn−1(x1), . . . , λ
n−1(xn−1), λ

n−1(y)], λn−1(z))

= −B(λn−1(y), [λn−1(x1), . . . , λ
n−1(xn−1), λ

n−1(z)])
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= −B(λn−1(y), λn−1 ⊗ [x1, . . . , xn−1, z)]
= −Bλ(y, λn−1 ⊗ [x1, . . . , xn−1, z)].

Therefore Bλ is invariant.

6.2 T∗-Extension of n-ary Hom-Nambu Algebras

We provide here a construction of n-ary Hom-Nambu algebra L which is a gener-
alization of the trivial T ∪-extension introduced in [14, 33].

Theorem 6.1 Let (N , [·, . . . , ·]N , B) be a quadratic n-ary Nambu-Lie algebra
and N ∪ be the underlying dual vector space. The vector space L = N ⊕ N ∪
equipped with the following product [·, . . . , ·]L : L n ⊕ L given, for ui = xi+ fi ∈
L where i ∈ {1, . . . , n} by

[u1, . . . , un]L = [x1, . . . , xn]N +
n⎧

i=1

(−1)i+n+1 fi ⊗ L(x1, . . . , ⎨xi , . . . , xn), (35)

and a bilinear form

BL : L × L −⊕ L
BL (x + f, y + g) = B(x, y) + f (y) + g(x)

(36)

is a quadratic n-ary Nambu algebra.

Proof σ) Set ui = xi + fi ∈ L and vi = yk + gk ∈ L . We show the following
Nambu identity on L

[u1, . . . , un−1, [v1, . . . , vn]L ]L =
n⎧

l=1

(−1)l+n[v1, . . . , ⎨vl , . . . , vn, [u1, . . . , un−1, vl ]L ]L .

(37)
Let us compute first [u1, . . . , un−1, [v1, . . . , vn]L ]L . This is given by

[u1, . . . , un−1, [v1, . . . , vn]L ]L

= [x1, . . . , xn−1, [y1, . . . , yn]N ]N +
n−1⎧
i=1

(−1)i+n+1 fi ⊗ L(x1, . . . , ⎨xi , . . . , xn−1,

[y1, . . . , yn]N )

+
n⎧

i=1

(−1)i+n gi ⊗ L(y1, . . . , ⎨yi , . . . , yn) ⊗ L(x1, . . . , xn−1).

Hence the right hand side of (37) gives, for any l ∈ {1, . . . , n}
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[v1, . . . , ⎨vl , . . . , vn, [u1, . . . , un−1, vl ]L ]L = [y1, . . . , ⎨yl , . . . , yn, [x1, . . . , xn−1, yl ]N ]N

+
n−1⎧
i=1

(−1)i+n fi ⊗ L(x1, . . . , ⎨xi , . . . , xn−1, yl ) ⊗ L(y1, . . . , ⎨yl , . . . , yn)

+
n⎧

i=1

(−1)i+n+1gi ⊗ L(y1, . . . , ⎨yi , . . . , ⎨yl , . . . , yn, [x1, . . . , xn−1, yl ]N )

+ gl ⊗ L(x1, . . . , xn−1) ⊗ L(y1, . . . , ⎨yl , . . . , yn).

• Using the Nambu identity on N , we obtain

[x1, . . . , xn−1, [y1, . . . , ⎨yl , . . . , yn, z]N ]N =
n⎧

i=1,i ∞=l

(−1)i+n[y1, . . . , ⎨yi , . . . , ⎨yl , . . . , yn−1, [x1, . . . , xn−1, yi ]N , z]N

+ [y1, . . . , ⎨yl , . . . , yn−1, [x1, . . . , xn−1, z]N ]N .

Equivalently

L(y1, . . . , ⎨yl , . . . , yn) ⊗ L(x1, . . . , xn−1)

= L(x1, . . . , xn−1) ⊗ L(y1, . . . , ⎨yl , . . . , yn)

+
n−1⎧
i=1

(−1)i+n+1L(y1, . . . , ⎨yi , . . . , ⎨yl , . . . , yn, [x1, . . . , xn−1, yl ]).

Thus for any l ∈ {1, . . . n}

gl ⊗ L(y1, . . . , ⎨yl , . . . , yn) ⊗ L(x1, . . . , xn−1) − gl ⊗ L(x1, . . . , xn−1) ⊗ L(y1, . . . , ⎨yl , . . . , yn)

=
n−1⎧
i=1

(−1)i+n gl ⊗ L(y1, . . . , ⎨yi , . . . , ⎨yl , . . . , yn, [x1, . . . , xn−1, yl ]).

• In the other hand we show that, for k ∈ {1, . . . n}

− fk ⊗ L(x1, . . . , ⎨xk , . . . , xn−1, [y1, . . . , yn]N )

=
n⎧

i=1

(−1)i+n fk ⊗ L(x1, . . . , ⎨xk , . . . , xn−1, yi ) ⊗ L(y1, . . . , ⎨yi , . . . , yn).

Using the Namby identity (37) on N and the invariance of B, we obtain

B([x1, . . . , ⎨xk , . . . , xn, [y1, . . . , yn]N ]N , z) = B(xn, [x1, . . . , ⎨xk , . . . , xn−1, [y1, . . . , yn]N , z]N ).

Hence

B(

n⎧
i=1

(−1)i+n[y1, . . . , ⎨yi , . . . , yn, [x1, . . . , ⎨xk , . . . , xn, yi ]N ]N , z)
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=
n⎧

i=1

(−1)i+n B([y1, . . . , ⎨yi , . . . , yn, [x1, . . . , ⎨xk , . . . , xn, yi ]N ]N , z)

= −
n⎧

i=1

(−1)i+n B([x1, . . . , ⎨xk , . . . , xn, yi ]N , [y1, . . . , ⎨yi , . . . , yn, z]N )

= −
n⎧

i=1

(−1)i+n B(xn, [x1, . . . , ⎨xk , . . . , xn−1, yi , [y1, . . . , ⎨yi , . . . , yn, z]N ]N )

= −B(xn,

n⎧
i=1

(−1)i+n[x1, . . . , ⎨xk , . . . , xn−1, yi , [y1, . . . , ⎨yi , . . . , yn, z]N ]N ).

Since B is nondegenerate, then

− [x1, . . . , ⎨xk , . . . , xn−1, [y1, . . . , yn]N , z]N

=
n⎧

i=1

(−1)i+n[x1, . . . , ⎨xk , . . . , xn−1, yi , [y1, . . . , ⎨yi , . . . , yn, z]N ]N ,

and equivalently

− L(x1, . . . , ⎨xk , . . . , xn−1, [y1, . . . , yn]N )

=
n⎧

i=1

(−1)i+n L(x1, . . . , ⎨xk , . . . , xn−1, yi ) ⊗ L(y1, . . . , ⎨yi , . . . , yn).

Finally, the Nambu identity (37) is satisfied. Thus (L , [·, . . . , ·]L ) is an n-ary Nambu algebra.

Theorem 6.2 Let (N , [·, . . . , ·]N , B) be a quadratic n-ary Nambu-Lie algebra
where λ ∈ AutS(N , B) is an involution. Then (L , [·, . . . , ·]ϕ, ϕ̃, BL ,ϕ), where
ϕ : L ⊕ L , x+ f ⊕ ϕ(x+ f ) = λ(x)+ f ⊗λ and [·, . . . , ·]ϕ = ϕ⊗[·, . . . , ·]L ,
is a Hom-quadratic multiplicative n-ary Hom-Nambu algebra.

Proof Let x1, . . . , xn ∈ N and f1, . . . , fn ∈ N ∪,

ϕ[x1 + f1, . . . , xn + fn]L = λ[x1, . . . , xn]N
+

n⎧
i=1

(−1)i fi ⊗ L(x1, . . . , ⎨xi , . . . , xn) ⊗ λ,

[ϕ(x1 + f1), . . . , ϕ(xn + fn)]L
= [λ(x1), . . . , λ(xn)]N +

n⎧
i=1

(−1)i fi⊗λ ⊗ L(λ(x1), . . . , ⎨xi , . . . , λ(xn)).

That is for all z ∈ N

λ ⊗ L(λ(x1), . . . , ⎨xi , . . . , λ(xn))(z) = λ[λ(x1), . . . , ⎨xi , . . . , λ(xn), z]N
= [λ2(x1), . . . , ⎨xi , . . . , λ

2(xn), λ(z)]N



218 F. Ammar et al.

= [x1, . . . , ⎨xi , . . . , xn, λ(z)]N
= L(x1, . . . , ⎨xi , . . . , xn) · λ(z).

Then ϕ[x1 + f1, . . . , xn + fn]L = [ϕ(x1 + f1), . . . ,ϕ(xn + fn)]L .
In the following we show that ϕ is symmetric with respect to BL .

Indeed, let x, y ∈ N and f, h ∈ N

BL (ϕ(x + f ), y + h) = BL (λ(x) + f ⊗ λ, y + h)

= B(λ(x), y) + f ⊗ λ(y) + h ⊗ λ(x)

= B(x, λ(y)) + f ⊗ λ(y) + h ⊗ λ(x)

= BL (x + f, λ(y) + h ⊗ λ) = BL (x + f,ϕ(y + h)).

Thus, using Proposition 6.1, (L , [·, . . . , ·]ϕ, ϕ̃, BL ,ϕ) is a Hom-quadratic multi-
plicative n-ary Hom-Nambu algebra. We have also that (L , [·, . . . , ·]ϕ,ϕ, BL ,ϕ),
where BL ,ϕ(u, v) = BL (ϕ(u), v), for all u, v ∈ L , is a quadratic multiplicative
n-ary Hom-Nambu algebra.

6.3 Tensor Product

Let (A, μ, θ̃, BA, αA) be a Hom-quadratic symmetric n-ary totally Hom-associative
algebra, that is a symmetric n-ary totally Hom-associative algebra together with a
symmetric nondegenerate form satisfying the following assertions

BA(θi (a), b) = BA(a, θi (b)), for all i ∈ {1, . . . , n − 1} (38)

BA(μ(a1, . . . , an−1, b), αA(c)) = BA(αA(a), μ(a1, . . . , an−1, c)),

for all ai , b, c ∈ A, i ∈ {1, . . . , n − 1}. (39)

We discuss now the tensor product as in Proposition 5.1.

Theorem 6.3 Let (N , [·, . . . , ·]N , λ, BN , αN ) be a Hom-quadratic n-ary Hom-
Nambu algebra, then (A ⊗ N , [·, . . . , ·], π, B̃, γ), where

B̃(a ⊗ x, b ⊗ y) = BA(a, b)BN (x, y), (40)

γ(a ⊗ x) = αA(a) ⊗ αN (x), (41)

is a Hom-quadratic n-ary Hom-Nambu algebra.
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6.4 Hom-quadratic Hom-Nambu-Lie Algebras Induced by
Hom-quadratic Hom-Lie Algebras

In [8] the authors provided a construction procedure of ternary Hom-Nambu-Lie
algebras starting from a bilinear bracket of a Hom-Lie algebra and a trace function
satisfying certain compatibility conditions including the twisting map.

The aim of this section is to prove that this procedure is still true for quadratic
ternary Hom-Nambu-Lie algebra. First we recall the result in [8].

Definition 6.1 Let (V, [·, ·]) be a binary algebra and Φ : V ⊕ K be a linear form.
The trilinear map [·, ·, ·]Φ : V × V × V ⊕ V is defined as

[x, y, z]Φ = Φ(x)[y, z] + Φ(y)[z, x] + Φ(z)[x, y]. (42)

Remark 6.1 If the bilinear multiplication [·, ·] is skew-symmetric, then the trilinear
map [·, ·, ·]Φ is skew-symmetric as well.

Theorem 6.4 ([8]). Let (V, [·, ·], λ) be a Hom-Lie algebra and ω : V −⊕ V be a
linear map. Furthermore, assume that Φ is a trace function on V fulfilling

Φ(λ(x))Φ (y) = Φ(x)Φ (λ(y)), (43)

Φ(ω (x))Φ (y) = Φ(x)Φ (ω (y)), (44)

Φ(λ(x))ω (y) = Φ(ω (x))λ(y), (45)

for all x, y ∈ V . Then (V, [·, ·, ·]Φ , (λ, ω )) is a ternary Hom-Nambu-Lie algebra,
and we say that it is induced by (V, [·, ·], λ).

Proposition 6.3 Let (V, [·, ·], λ, B, α) be a Hom-quadratic Hom-Lie algebra
satisfying

B(λ(x), y) = B(x, λ(y)), (46)

B(ω (x), y) = B(x, ω (y)), (47)

Φ(x)B(α(y), z) − Φ(y)B(α(x), z) = 0 for all x, y, z ∈ V . (48)

Then (V, [·, ·, ·]Φ , (λ, ω ), B, α) is a Hom-quadratic ternary Hom-Nambu-Lie alge-
bra.

Proof Let x1, x2, y1, y2 ∈ V

B([x1, x2, y1]Φ , α(y2)) = Φ(x1)B([x2, y1], α(y2)) − Φ(x2)B([x1, y1], α(y2))

+ Φ(y1)B([x1, x2], α(y2)).

B(α(y1), [x1, x2, y2]Φ ) = Φ(x1)B(α(y1), [x2, y2]) − Φ(x2)B(α(y1), [x1, y2])
− Φ(y2)B(α(y1), [x1, x2]).
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Since B is symmetric, then

B([x1, x2, y1]Φ , α(y2)) + B(α(y1), [x1, x2, y2]Φ ) = 0.

6.5 Quadratic Hom-Nambu Algebras of Higher Arities

The purpose of this section is to observe that every Hom-quadratic multiplicative
n-ary Hom-Nambu algebra gives rise to a sequence of quadratic multiplicative Hom-
Nambu algebras of increasingly higher arities. The construction of this sequence was
given first in [40].

Theorem 6.5 Let (N , [·, . . . , ·], λ, B, α) be a Hom-quadratic multiplicative n-ary
Hom-Nambu algebra. Define the (2n − 1)- ary product

[x1, . . . , x2n−1](1) = [[x1, . . . , xn], λ(xn+1), . . . , λ(x2n−1)] for xi ∈ V (49)

Then N 1 = (N , [·, . . . , ·](1), λ2, B, α ⊂), where α ⊂ = αλ, is a Hom-quadratic
multiplicative (2n − 1)-ary Hom-Nambu algebra.

Proof For the proof of the (2n−1)-ary Hom-Nambu identity and themultiplicativity
forN 1, see [40].

Let x1, . . . , x2n−2, y1, y2 ∈ N

B([x1, . . . , x2n−2, y1](1), α ⊂(y2)) = B([[x1, . . . , xn], λ(xn+1), . . . , λ(x2n−2), λ(y1)],
α(λ(y2)))

= −B(α(λ(y1)), [[x1, . . . , xn], λ(xn+1),

. . . , λ(x2n−2), λ(y2)])
= −B(α ⊂(y1), [x1, . . . , x2n−2, y2](1)).

Hence

B([x1, . . . , x2n−2, y1](1), α ⊂(y2)) + B(α ⊂(y1), [x1, . . . , x2n−2, y2](1)) = 0.

Corollary 6.1 Let (N , [·, . . . , ·], λ, B, α) be a Hom-quadratic multiplicative n-ary
Hom-Nambu algebra. For k ∗ 1 define the (2k(n − 1) + 1)- ary product [·, . . . , ·](k)

inductively by setting [·, . . . , ·](0) = [·, . . . , ·] and

[x1, . . . , x2k (n−1)+1](k)

= [[x1, . . . , x2k−1(n−1)+1](k−1), λ2k−1
(x2k−1(n−1)+2), . . . , λ

2k−1
(x2k (n−1)+1)](k−1)

(50)

for all xi ∈ N .
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Then N k = (N , [·, . . . , ·](k), λ2k
, B, α ⊂), where α ⊂ = αλ2k−1

, is a
Hom-quadratic multiplicative (2k(n − 1) + 1)-ary Hom-Nambu algebra.

6.6 Quadratic Hom-Nambu Algebras of Lower Arities

The purpose of this section is to observe that, under suitable assumptions, a quadratic
n-ary Hom-Nambu algebra with n ∗ 3 reduces to a quadratic (n − 1)-ary Hom-
Nambu algebra. We use the construction given in [40].

Theorem 6.6 Let n ∗ 3 and (N , [·, . . . , ·], λ = (λ1, . . . , λn−1), B, α) be a Hom-
quadratic n-ary Hom-Nambu algebra. Suppose a ∈ N satisfies

λ1(a) = a and [a, x1, . . . , xn−2, a] = 0 for all xi ∈ N .

Then Na = (N , [·, . . . , ·]a, λa = (λ2, . . . , λn−1), B, α), where

[x1, . . . , xn−1]a = [a, x1, . . . , xn−1] for all xi ∈ N ,

is a Hom-quadratic (n − 1)-ary Hom-Nambu algebra.

Proof Using [40], Na = (N , [·, . . . , ·]a, λa = (λ2, . . . , λn−1)) is an (n − 1)-ary
Hom-Nambu algebra.

Let x1, . . . , xn−2, y1, y2 ∈ N , then

B([x1, . . . , xn−2, y1]a, α(y2)) = B([a, x1, . . . , xn−2, y1], α(y2))

= −B(α(y1), [a, x1, . . . , xn−2, y2])
= −B(α(y1), [x1, . . . , xn−2, y2]a).

Hence

B([x1, . . . , xn−2, y1]a, α(y2)) + B(α(y1), [x1, . . . , xn−2, y2]a) = 0.

Corollary 6.2 Let (N , [·, . . . , ·], λ = (λ1, . . . , λn−1), B, α) be a Hom-quadratic
n-ary Hom-Nambu algebra, with n ∗ 3. Suppose for some k ∈ {1, . . . , n − 2} there
exist ai ∈ L for 1 ≥ i ≥ k satisfying

λi (ai ) = ai for 1 ≥ i ≥ k

and

[a1, . . . , a j , x j+1, . . . , xn−1, a j ] = 0 for 1 ≥ j ≥ k and all xl ∈ N .

Then Nk = (N , [·, . . . , ·]k, λk = (λk+1, . . . , λn−1), B, α), where
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[x1, . . . , xn−1]k = [a1, . . . , ak, xk, . . . , xn−1] for all xi ∈ N

is a Hom-quadratic (n − k)-ary Hom-Nambu algebra.

6.7 Ternary Nambu Algebras Arising from the Real Faulkner
Construction

Let (g, [·, ·], B) be a real finite-dimensional quadratic Lie algebra and g∪ be the dual
of g. We denote by ≤−,−⊥ the dual pairing between g and g∪.

For all x ∈ g and f ∈ g∪ we define an element ψ(x ⊗ f ) ∈ g by

B(y, ψ(x ⊗ f )) = ≤[y, x], f ⊥ = f ([y, x]) for all y ∈ g. (51)

Extending ψ linearly, defines a g-equivariant map ψ : g ⊗ g∪ −⊕ g, which is
surjective. To lighten the notation we will write ψ(x, f ) for ψ(x ⊗ f ) in the sequel.
The g-equivariance of ψ is equivalent to

[ψ(x, f ), ψ(y, g)] = ψ([ψ(x, f ), y], g) + ψ(y, ψ(x, f ) · g), (52)

for all x, y ∈ g and f, g ∈ g∪, where ψ(x, f ) · g is defined by

≤y, ψ(x, f ) · g⊥ = −≤[y, ψ(x, f )], g⊥, for all y ∈ g. (53)

The fundamental identity (52) suggests defining a bracket on g ⊗ g∪ by

[x ⊗ f, y ⊗ g] = [ψ(x, f ), y] ⊗ g + y ⊗ ψ(x, f ) · g. (54)

Proposition 6.4 ([19]). The bracket (54) turns g ⊗ g∪ into a Leibniz algebra.

Proposition 6.5 Let λ ∈ AutS(B, g) be an involution, then (g⊗g∪, [., .]ϕ,ϕ, Bϕ),
where

ϕ(x ⊗ f ) = λ(x) ⊗ f ⊗ λ, (55)

[x ⊗ f, y ⊗ g]ϕ = ϕ ⊗ [x ⊗ f, y ⊗ g], (56)

Bϕ(x ⊗ f, y ⊗ g) = ≤λ(x), g⊥≤λ(y), f ⊥, (57)

is a multiplicative quadratic Hom-Leibniz algebra.

Proof Let x, y, z ∈ N , f, g, h ∈ N ∪. Using (51) and (53), we have
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B(y, λ(ψ(x ⊗ f ))) = B(λ(y), ψ(x ⊗ f ))

= ≤[λ(y), x], f ⊥
= ≤λ([y, λ(x)]), f ⊥
= ≤[y, λ(x)], f ⊗ λ⊥
= B(y, ψ(λ(x) ⊗ f ⊗ λ)),

and

≤y, (ψ(x, f ) · g) ⊗ λ⊥ = ≤λ(y), ψ(x, f ) · g⊥
= −≤[λ(y), ψ(x, f )], g⊥
= −≤λ([y, λ(ψ(x, f ))]), g⊥
= −≤[y, λ(ψ(x, f ))], g ⊗ λ⊥
= −≤[y, ψ(λ(x), f ⊗ λ)], g ⊗ λ⊥
= ≤y, ψ(λ(x), f ⊗ λ) · (g ⊗ λ)⊥.

Thus, we obtain the following identity

λ(ψ(x ⊗ f )) = ψ(λ(x) ⊗ f ⊗ λ),

(ψ(x, f ) · g) ⊗ λ = ψ(λ(x), f ⊗ λ) · (g ⊗ λ).

Therefore

ϕ([x ⊗ f, y ⊗ g]) = λ([ψ(x, f ), y]) ⊗ g ⊗ λ + λ(y) ⊗ (ψ(x, f ) · g) ⊗ λ

= [λ(ψ(x, f )), λ(y)] ⊗ g ⊗ λ + λ(y) ⊗ (ψ(x, f ) · g) ⊗ λ

= [ψ(λ(x) ⊗ f ⊗ λ), λ(y)] ⊗ g ⊗ λ + λ(y) ⊗ ψ(λ(x), f ⊗ λ) · (g ⊗ λ)

= [λ(x) ⊗ f ⊗ λ, λ(y) ⊗ g ⊗ λ]
= [ϕ(x ⊗ f ),ϕ(y ⊗ g)].

Thus, ϕ([x ⊗ f, y ⊗ g]) = [ϕ(x ⊗ f ),ϕ(y ⊗ g)]. Then using Theorem 2.1,
(g ⊗ g∪, [., .]ϕ,ϕ) is a multiplicative Hom-Leibniz algebra.

Since λ is an involution, then

Bϕ([x ⊗ f, y ⊗ g]ϕ, z ⊗ h)

= Bϕ(λ([ψ(x, f ), y]) ⊗ g ⊗ λ, z ⊗ h) + Bϕ(λ(y) ⊗ (ψ(x, f ) · g) ⊗ λ, z ⊗ h)

= ≤[ψ(x, f ), y], h⊥≤λ(z), g ⊗ λ⊥ + ≤y, h⊥≤λ(z), (ψ(x, f ) · g) ⊗ λ⊥
= ≤[ψ(x, f ), y], h⊥≤z, g⊥ + ≤y, h⊥≤z, ψ(x, f ) · g⊥
= ≤[ψ(x, f ), y], h⊥≤z, g⊥ − ≤y, h⊥≤[z, ψ(x, f )], g⊥
= −(≤[z, ψ(x, f )], g⊥≤y, h⊥ − ≤z, g⊥≤[ψ(x, f ), y], h⊥)
= −Bϕ(y ⊗ g, [x ⊗ f, z ⊗ h]ϕ).
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Finally, the bilinear form Bϕ is symmetric nondegenerate and invariant. Then (g ⊗
g∪, [., .]ϕ,ϕ, Bϕ) is a multiplicative quadratic Hom-Leibniz algebra.

The inner product on g sets up an isomorphism � : g ⊕ g∪ of g-modules, defined
by x∪ = �(x) = B(x, ·).

The map ψ defined by equation (51) induces a map T : g⊗g ⊕ g, by T (x ⊗ y) =
ψ(x ⊗ y∪). In other words, for all x, y, z ∈ g, we have

B(T (x ⊗ y), z) = B([z, x], y),

whence
T (x ⊗ y) = −T (y ⊗ x).

This means that T factors through a map also denoted T : →2g ⊕ g.
Using T we can define a ternary bracket on g by

[x, y, z] := [T (x ⊗ y), z] (58)

and (g, [., ., .], B) is a quadratic ternary Nambu algebra.

Proposition 6.6 Let (g, [·, ·], B) be a real finite-dimensional quadratic Lie algebra
and λ ∈ AutS(B, g) be an involution. Then (g, λ ⊗ [·, ·, ·], (λ, λ), Bλ), where the
bracket is defined in 58 and Bλ(x, y) = B(λ(x), y), is a quadratic multiplicative
ternary Hom-Nambu algebra.

7 Centroids, Derivations and Quadratic n-ary Hom-Nambu
Algebras

In this section, we first generalize to n-ary Hom-Nambu algebras the notion of
centroid and its properties given in [12]. We also generalize to Hom setting the con-
nections between centroid elements and derivations. Finally we construct quadratic
n-ary Hom-Nambu algebras involving elements of the centroid of n-ary Nambu
algebras.

7.1 Centroids of n-ary Hom-Nambu Algebras

Definition 7.1 Let (N , [·, . . . , ·], λ) be amultiplicative n-ary Hom-Nambu algebra
and End(N ) be the endomorphism algebra of N . Then the following subalgebra
of End(N )

Cent (N ) = {Θ ∈ End(N ) : Θ [x1, . . . , xn] = [Θx1, . . . , xn], ∀xi ∈ N } (59)
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is said to be the centroid of the n-ary Hom-Nambu algebra.
The definition is the same for classical case of n-ary Nambu algebra. Wemay also

consider the same definition for any n-ary Hom-Nambu algebra.

Now, let (N , [·, . . . , ·], λ) be a multiplicative n-ary Hom-Nambu algebra. We
denote byλk , whereλ ∈ End(N ), the k-times composition ofλ.We set in particular
λ−1 = 0 and λ0 = I d.

Definition 7.2 An λk-centroid of a multiplicative n-ary Hom-Nambu algebra
(N , [·, . . . , ·], λ) is a subalgebra of End(N ) denoted Centλk (N ), given by

Centλk (N ) = {Θ ∈ End(N ) : Θ [x1, . . . , xn] = [Θx1, λ
k(x2) . . . , λk(xn)], ∀xi ∈ N .

(60)

We recover the definition of the centroid when k = 0.
If N is a multiplicative n-ary Hom-Nambu-Lie algebra, then it is a simple fact

that
Θ [x1, . . . , xn] = [λk(x1), . . . , Θx p, . . . , λ

k(xn)], ∀ p ∈ {1, . . . , n}.

Lemma 7.1 Let (N , [·, . . . , ·]) be an n-ary Nambu-Lie algebra. If Θ ∈ Cent (N ),
then for x1, . . . , xn ∈ N

1. [Θ p1x1, . . . , Θ pn xn] = Θ p1+···+pn [x1, . . . , xn], ∀p1, . . . , pn ∈ N,
2. [Θ p1x1, . . . , Θ pn xn] = Sgn(ε )[Θ p1xε(1), . . . , Θ

pn xε(n)], ∀p1, . . . , pn ∈ N and
∀ε ∈ Sn.

Proof Let Θ ∈ Cent (N ), x1, . . . , xn ∈ N and 1 ≥ p ≥ n, we have

[Θ px1, . . . , xn] = Θ [Θ p−1x1, . . . , xn] = · · · = Θ p[x1, . . . , xn].

Also, observe that for any k ∈ {1, . . . , n}

[x1, . . . , Θ pxk, . . . , xn] = −[Θ pxk, x2, . . . , x1, . . . , xn]
= −Θ p[xk, x2, . . . , x1, . . . , xn] = Θ p[x1, . . . , xk, . . . , xn].

Then, similarly we have

[Θ p1 x1, . . . , Θ
pn xn] = Θ pn [Θ p1 x1, . . . , Θ

pn−1 xn−1, xn] = · · · = Θ p1+···+pn [x1, . . . , xn].

The second assertion is a consequence of previous calculations and the skew-symmetry of
[·, . . . , ·].

Proposition 7.1 Let (N , [·, . . . , ·]) be an n-ary Nambu-Lie algebra and Θ ∈
Cent (N ).

Let us fix p and set for any x1, . . . , xn ∈ N

{x1, . . . , xn}p = [Θx1, . . . , Θx p−1, Θx p, x p+1, . . . , xn]. (61)
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Then (N , {·, . . . , ·}p, Θ̃ = (Θ, . . . , Θ)) is an n-ary Hom-Nambu-Lie algebra.

Proof For Θ ∈ Cent (N ) and p ∈ {1, . . . , n}, we have
{Θx1, . . . , Θxn−1, {y1, . . . , yn}p}p = [Θ2x1, . . . , Θ

2x p, . . . , Θxn−1, [Θy1, . . . , Θyp, . . . , yn]]
= [Θ2x1, . . . , Θ

2x p, . . . , Θxn−1, Θ
p[y1, . . . , yn]]

= Θ2p+n−1([x1, . . . , xn−1, [y1, . . . , yn]]).

In the other hand we have

n⎧
k=0

{Θy1, . . . , {x1, . . . , xn−1, yk}p, . . . , Θyn}p

=
p⎧

k=0

{Θy1, . . . , {x1, . . . , xn−1, yk}p, . . . , Θyn}p

+
n⎧

k=p

{Θy1, . . . , {x1, . . . , xn−1, yk}p, . . . , Θyn}p

=
p⎧

k=0

[Θ2y1, . . . , Θ [Θx1, . . . , Θx p, . . . , xn−1, yk ], . . . , Θ2yp, . . . , Θyn]

+
p⎧

k=0

[Θ2y1, . . . , Θ
2yp, . . . , [Θx1, . . . , Θx p, . . . , xn−1, yk ], . . . , Θyn]

=
p⎧

k=0

Θ2p+n−1[y1, . . . , [x1, . . . , xn−1, yk ], . . . , yn]

+
p⎧

k=0

Θ2p+n−1[2y1, . . . , [x1, . . . , xn−1, yk ], . . . , yn]

= Θ2p+n−1(

n⎧
k=0

[y1, . . . , [x1, . . . , xn−1, yk ], . . . , yn]).

Therefore the Hom-Nambu identity with respect to the bracket [·, . . . , ·] leads to the Hom-
Nambu identity for {·, . . . , ·}l . The skew-symmetry is proved by second assertion of Lemma
7.1.

7.2 Centroids and Derivations of n-ary Hom-Nambu Algebras

Let (N , [·, . . . , ·], λ) be a multiplicative n-ary Hom-Nambu-Lie algebra.

Definition 7.3 For any k ∗ 1, we call D ∈ End(N ) an λk-derivation of the
multiplicative n-ary Hom-Nambu-Lie (N , [·, . . . , ·], λ) if D and λ commute and
we have
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D[x1, . . . , xn] =
n⎧

i=1

[λk(x1), . . . , λ
k(xi−1), D(xi ), λ

k(xi+1), . . . , λ
k(xn)]. (62)

We denote by Derλk (N ) the set of λk-derivations.

For x = (x1, . . . , xn−1) ∈ N n−1 satisfying λ(x) = x and k ∗ 1, we define the
map adk(x) ∈ End(N ) by

adk(x)(y) = [x1, . . . , xn−1, λ
k(y)] ∀y ∈ N . (63)

The map adk(x) is an λk+1-derivation, that we call inner λk+1-derivation. We
denote by I nnλk (N ) the space generated by all inner λk+1-derivations.

Set Der(N ) =
⎥

k∗−1

Derλk (N ) and I nn(N ) =
⎥

k∗−1

I nnλk (N ).

Lemma 7.2 For D ∈ Derλk (N ) and D⊂ ∈ Der
λk⊂ (N ), where k + k⊂ ∗ −1, we

have [D, D⊂] ∈ Der
λk+k⊂ (N ), where the commutator [D, D⊂] is defined as usual.

Now, we define a linear map β : Derλk (N ) ⊕ Derλk+1(N ) by β(D) = λ ⊗ D.

Since the elements of Derλk (N ) and λ commute then β is in the centroid of the Lie
algebra (Der(N ), [·, ·]).

Hence, using Proposition 7.1 we have

Proposition 7.2 Let (N , [·, . . . , ·], λ) be a multiplicative n-ary Hom-Nambu-Lie
algebra. The triple (Der(N ), [·, ·]β , β), where the bracket is defined by [·, ·]β =
β ⊗ [·, ·], is a Hom-Lie algebra.

Proposition 7.3 Let (N , [·, . . . , ·], λ) be a multiplicative n-ary Hom-Nambu-Lie
algebra. If D ∈ Derλk (N ) and Θ ∈ Cent

λk⊂ (N ), then Θ D ∈ Der
λk+k⊂ (N ).

Proof Let x1, . . . , xn ∈ N then

Θ D([x1, . . . , xn]) =
n⎧

i=1

Θ [λk(x1), . . . , D(xi ), . . . , λ
k(xn)]

=
n⎧

i=1

[λk+k⊂
(x1), . . . , Θ D(xi ), . . . , λ

k+k⊂
(xn)].

Thus Θ D is an λk-derivation.

Now we define the notion of central derivation. Let (N , [·, . . . , ·], λ) be a
multiplicative n-ary Hom-Nambu-Lie algebra. We set Z(N ) = {x ∈ N :
[x, y1, . . . , yn−1] = 0, ∀ y1, . . . , yn−1 ∈ N }, the center of the n-ary Hom-Nambu-
Lie algebra.
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Definition 7.4 Letτ ∈ End(N ), thenτ is said to be a central derivation ifτ(N ) ∀
Z(N ) and τ([N , . . . ,N ]) = 0.

The set of all central derivations ofN is denoted by C(N ).

Notice that an λk-derivation τ is a central derivation if τ(N ) ∀ Z(N ).

Theorem 7.1 Let (N , [·, . . . , ·], λ) be a multiplicative n-ary Hom-Nambu-Lie
algebra. Let D in Derλk (N ) and Θ in Cent (N ) such that [Θ, λ] = 0, then we
have

1. [D, Θ ] is in the λk-centroid of N ,
2. if [D, Θ ] is a central derivation then DΘ is an λk-derivation of N .

Proof (1) Let D ∈ Derλk (N ), Θ ∈ Cent (N ) and x1, . . . , xn ∈ N we have

DΘ([x1, . . . , xn]) = D([Θx1, . . . , xn])

= [DΘx1, . . . , λ
k(xn)] +

n⎧
i=2

[λk(Θx1), . . . , D(xi ), . . . , λ
k(xn)]

= [DΘx1, . . . , λ
k(xn)] +

n⎧
i=2

[Θλk(x1), . . . , D(xi ), . . . , λ
k(xn)]

= [DΘx1, . . . , λ
k(xn)] +

n⎧
i=2

[λk(x1), . . . , Θ D(xi ), . . . , λ
k(xn)]

= [DΘx1, . . . , λ
k(xn)] + Θ D([x1, . . . , xn]) − [Θ Dx1, . . . , λ

k(xn)].

Then
(DΘ − Θ D)([x1, . . . , xn]) = [(DΘ − Θ D)x1, λ

k(x2), . . . , λ
k(xn)].

That is, [D, Θ ] = DΘ − Θ D ∈ Centk(N ).
(2) Using Proposition 6.3, Θ D is an λk -derivation and since [D, Θ ] is a λk -derivation, then

DΘ = [D, Θ ] + Θ D is also an λk -derivation.

Let A be aK-vector space,μ be an n-linear map on A and θ be a linear map on A.
Let (A, μ, θ) be a multiplicative symmetric n-ary totally Hom-associative algebra.
The θk-centroid Centθk (A) of A is defined by

Centθk (A) = { f ∈ End(A) : f (μ(a1, . . . , an)) = μ( f (a1), θ
k(a2), . . . , θ

k(an))},

for all ai ∈ A and i ∈ {1, . . . , n}. The set of θk-derivation, Derθk (A), is a subset of
End(A) defined by τ ∈ End(A) such that

τ(μ(a1, . . . , an)) =
n⎧

i=1

μ(θk(a1) . . . , θk(ai−1), τ(ai ), θ
k(ai+1), . . . , θ

k(an))},

for all ai ∈ A.
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Theorem 7.2 Let (A, μ, θ) be a multiplicative symmetric n-ary Hom-associative
algebra and (N , [·, . . . , ·], λ) be a multiplicative n-ary Hom-Nambu-Lie algebra,
then we have the following assertion

• If f ∈ Centθk (A) and Θ ∈ Centλk (N ), then f ⊗ Θ is in the π k-centroid, where
π k = θk ⊗ λk , of the Hom-Nambu-Lie algebra A ⊗ N defined in 2.3.

• If f ∈ Centθk (A) and D ∈ Derλk (N ), then f ⊗ D is a π k-derivation of the
Hom-Nambu-Lie algebra A ⊗ N .

Proof Let ai ∈ A, xi ∈ N where i ∈ {1, . . . , n} and f be a θk-centroid on A.
• If Θ ∈ Centλk (N ), then

( f ⊗ Θ)([a1 ⊗ x1, . . . , an ⊗ xn]) = ( f ⊗ Θ)(μ(a1, . . . , an) ⊗ [x1, . . . , xn]N )

= μ( f (a1), θ
k(a2), . . . , θ

k(an)) ⊗ [Θ(x1), λ
k(x2), . . . , λ

k(xn)]N
= [( f ⊗ Θ)(a1 ⊗ x1), π

k(a2 ⊗ x2), . . . , π
k(an ⊗ xn)].

Thus f ⊗ Θ is in the π k-centroid of A ⊗ N .
• If D ∈ Derλk (N ), then

( f ⊗ D)([a1 ⊗ x1, . . . , an ⊗ xn]) = f ⊗ D((a1 · . . . · an) ⊗ [x1, . . . , xn])

= μ( f (a1), θ
k(a2), . . . , θ

k(an)) ⊗
n⎧

i=1

[λk(x1), . . . , D(xi ), . . . , λ
k(xn)]

=
n⎧

i=1

μ(θk(a1), . . . , f (ai ), . . . , θ
k(an)) ⊗ [λk(x1), . . . , D(xi ), . . . , λ

k(xn)]N

=
n⎧

i=1

[π k(a1 ⊗ x1), . . . , ( f ⊗ D)(ai ⊗ xi ), . . . , π
k(an ⊗ xn)].

Therefore f ⊗ D is a π k-derivation of A ⊗ N .

7.3 Centroids and Quadratic n-ary Hom-Nambu Algebras

Let Θ ∈ Cent (N ) such that Θ is invertible and symmetric with respect to B (i.e.
B(Θx, y) = B(x, Θy) ). We set

CentS(N ) = {Θ ∈ Cent (N ) : Θ symmetric with respect to B}.

Theorem 7.3 Let (N , [·, . . . , ·], B) be a quadratic n-ary Nambu-Lie algebra and
Θ ∈ CentS(N ) such that Θ is invertible. We consider a bilinear form BΘ defined by



230 F. Ammar et al.

BΘ : N × N −⊕ K

(x, y) ↔−⊕ B(Θx, y).

Then, (N , {·, . . . , ·}l , (Θ, . . . , Θ), BΘ ) is a quadratic n-ary Hom-Nambu-Lie algebra.

Proof It easy to proof that BΘ is symmetric and nondegenerate.
We have also Θ is symmetric with respect to BΘ , indeed

BΘ (Θx, y) = B(Θ2x, y) = B(Θx, Θy) = BΘ (x, Θy).

The invariance of BΘ is given by, set l ∈ {1, . . . , n − 1}

BΘ ({x1, . . . , xn−1, y}l , z) = BΘ ([Θx1, . . . , Θxl , . . . , xn−1, y], z)

= B(Θ [Θx1, . . . , Θxl , . . . , xn−1, y], z)

= B([Θ2x1, . . . , Θxl , . . . , xn−1, y], z)

= −B(y, [Θ2x1, . . . , Θxl , . . . , xn−1, z])
= −BΘ (y, [Θx1, . . . , Θxl , . . . , xn−1, z])
= −BΘ (y, {x1, . . . , xn−1, z}l).

In the other hand, when l = n we have [Θx1, . . . , Θxn] = [Θ2x1, . . . , Θxn−1, xn] then
it’s a consequence of the previous calculations.

Therefore (N , {·, . . . , ·}l , (Θ, . . . , Θ), BΘ ) is a quadratic n-ary Hom-Nambu-Lie
algebra.

Notice that BΘ is also an invariant scalar product of the n-ary Nambu-Lie
algebra N .
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A Comparison of Leibniz and Lie
Cohomology and Deformations

Alice Fialowski

Abstract In this talk we compare Leibniz and Lie algebra cohomology and
deformations of a given Lie algebra. We get some sufficient conditions for not getting
more Leibniz deformations just the Lie ones. These conditions are easy to verify. As
an example, we describe the universal infinitesimal versal Leibniz deformation of
the 4-dimensional diamond algebra.

1 Introduction

Leibniz algebras were introduced in [10] as a non antisymmetric version of Lie
algebras. Lie algebras are special Leibniz algebras, and Pirashvili introduced [16]
a spectral sequence, that, when applied to Lie algebras, measures the difference
between the Lie algebra cohomology and the Leibniz cohomology. Lie algebras
have deformations as Leibniz algebras and those are piloted by the adjoint Leibniz
2-cocycles. In the present talk, we focus on the second Leibniz cohomology groups
HL2(g, g), HL2(g,C) with adjoint and trivial representations of a complex Lie alge-
bra g. We adopt a very elementary approach, to compare HL2(g, g) and HL2(g,C) to
H2(g, g) and H2(g,C) respectively. In both cases, HL2 is the direct sum of 3 spaces:
H2 ⊕ ZL2

0 ⊕ C wher H2 is the Lie algebra cohomology group, ZL2
0 is the space of

symmetric Leibniz 2-cocycles and C is a space of coupled Leibniz 2-cocycles, the
nonzero elements of which have the property that their symmetric and antisymmetric
parts are not Leibniz cocycles. Our comparison gives some useful practical informa-
tion about the structure of Lie and Leibniz cocycles. As an example, we analyse the
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4-dimensional diamond algebra which is used to construct a Wess-Zumino-Witten
model. We completely describe its universal infinitesimal Leibniz and Lie deforma-
tion by computing Massey products.

The talk is based on joint work with Mandal and Magnin [5].

2 Leibniz Cohomology and Deformations

Leibniz algebras were introduced by J.-L. Loday [10, 12]. Let K denote a field.

Definition 2.1 A Leibniz algebra is aK-module L, equipped with a bracket operation
that satisfies the Leibniz identity:

[x, [y, z]] = [[x, y], z] − [[x, z], y], for x, y, z ≥ L.

Any Lie algebra is automatically a Leibniz algebra, as in the presence of anti-
symmetry, the Jacobi identity is equivalent to the Leibniz identity. More examples of
Leibniz algebras were given in [10–12], and recently Leibniz algebras are intesively
studied.

Let L be a Leibniz algebra and M a representation of L. By definition, M is a
K-module equipped with two actions (left and right) of L,

[−,−] : L × M −∈ M and [−,−] : M × L −∈ M such that

[x, [y, z]] = [[x, y], z] − [[x, z], y]

holds, whenever one of the variables is from M and the two others from L. Define
CLn(L; M) := HomK(L⊂n, M), n ⊗ 0. Let

λn : CLn(L; M) −∈ CLn+1(L; M)

be a K-homomorphism defined by

λnf (x1, . . . , xn+1)

:= [x1, f (x2, . . . , xn+1)] +
n+1∑

i=2
(−1)i[f (x1, . . . , x̂i, . . . , xn+1), xi]

+ ∑

1≤i<j≤n+1
(−1)j+1f (x1, . . . , xi−1, [xi, xj], xi+1, . . . , x̂j, . . . , xn+1).

Then (CL∗(L; M), λ) is a cochain complex, whose cohomology is called the coho-
mology of the Leibniz algebra L with coefficients in the representation M. The n-th
cohomology is denoted by HLn(L; M). In particular, L is a representation of itself
with the obvious action given by the bracket in L. The n-th cohomology of L with
coefficients in itself is denoted by HLn(L; L).
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Let Sn be the symmetric group. Recall that a permutation α ≥ Sp+q is called a
(p, q)-shuffle, if α(1) < α(2) < · · · < α(p), and α(p + 1) < α(p + 2) < · · · <

α(p + q). We denote the set of all (p, q)-shuffles in Sp+q by Sh(p, q).
For ε ≥ CLp+1(L; L) and Δ ≥ CLq+1(L; L), define ε → Δ ≥ CLp+q+1(L; L) by

ε → Δ(x1, . . . , xp+q+1)

=
p+1∑

k=1
(−1)q(k−1){ ∑

α≥Sh(q,p−k+1)

sgn(α )ε(x1, . . . , xk−1, Δ(xk, xα(k+1), . . . ,

xα(k+q)), xα(k+q+1), . . . , xα(p+q+1))}.

The graded cochain module CL∗(L; L) = ⊕
r CLr(L; L) equipped with the bracket

defined by

[ε, Δ] = ε → Δ + (−1)pq+1Δ → ε for ε ≥ CLp+1(L; L) and Δ ≥ CLq+1(L; L)

and the differential map d by dε = (−1)|ε|λε for ε ≥ CL∗(L; L) is a differential
graded Lie algebra. (Here |ε| denotes the degree of the cochain ε.)

Let now K a field of zero characteristic and the tensor product over K will be
denoted by ⊂. We recall the notion of deformation of a Lie (Leibniz) algebra g (L)
over a commutative algebra with identity base A with a fixed augmentation δ : A ∈ K

and maximal ideal M. Assume dim(Mk/Mk+1) < ∞ for every k (see [6]).

Definition 2.2 A deformation ω of a Lie algebra g (or a Leibniz algebra L) with
base (A,M), or simply with base A is an A-Lie algebra (or an A-Leibniz algebra)
structure on the tensor product A ⊂ g (or A ⊂ L) with the bracket [, ]ω such that

δ ⊂ id : A ⊂ g ∈ K ⊂ g (or δ ⊂ id : A ⊂ L ∈ K ⊂ L)

is an A-Lie algebra (A-Leibniz algebra) homomorphism.

A deformation of the Lie (Leibniz) algebra g (L) with base A is called infinitesimal,
or first order, if in addition to this, M2 = 0. We call a deformation of order k, if
Mk+1 = 0. A deformation with base is called local if A is a local algebra over K,
which means A has a unique maximal ideal.

Suppose A is a complete local algebra ( A = lim∪−
n∈∞

(A/Mn)), where M is the

maximal ideal in A. Then a deformation of g (L) with base A which is obtained
as the projective limit of deformations of g (L) with base A/Mn is called a formal
deformation of g (L).

Definition 2.3 Suppose ω is a given deformation of L with base (A,M) and aug-
mentation δ : A ∈ K. Let A↔ be another commutative algebra with identity and a
fixed augmentation δ↔ : A↔ ∈ K. Suppose θ : A ∈ A↔ is an algebra homomorphism
with θ(1) = 1 and δ↔ → θ = δ. Let ker(δ↔) = M↔. Then the push-out θ∗ω is the
deformation of L with base (A↔,M↔) and bracket
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[a1
↔ ⊂A (a1 ⊂ l1), a↔

2 ⊂A (a2 ⊂ l2)]θ∗ω = a↔
1a↔

2 ⊂A [a1 ⊂ l1, a2 ⊂ l2]ω
where a↔

1, a↔
2 ≥ A↔, a1, a2 ≥ A and l1, l2 ≥ L. Here A↔ is considered as an A-module

by the map a↔ · a = a↔θ(a) so that

A↔ ⊂ L = (A↔⊂AA) ⊂ L = A↔⊂A(A ⊂ L).

Definition 2.4 (see [2]) Let C be a complete local algebra. A formal deformation π

of a Lie algebra g (Leibniz algebra L) with base C is called versal, if

(i) for any formal deformation ω of g (L) with base A there exists a homomorphism
f : C ∈ A such that the deformation ω is equivalent to f∗π;

(ii) if A satisfies the condition M2 = 0, then f is unique.

Theorem 2.1 If H2(g; g) is finite dimensional, then there exists a of g (similarly
for L).

Proof Follows from the general theorem of Schlessinger [17], like it was shown for
Lie algebras in [2].

In [3] a construction for a versal deformation of a Lie algebra was given and it
was generalized to Leibniz algebras in [6]. The computation of a specific Leibniz
algebra example is given in [4].

3 Comparison of the Cohomology Spaces HL2 and H2 for a Lie
Algebra

In [16] the relation between Chevalley-Eilenberg and Leibniz homology with coef-
ficients in a right module is considered via a spectral sequence. The statements are
valid in the cohomological version as well. As a corollary, one deduces

Proposition 3.1 [16] Let g be a Lie algebra over a fieldK and M be a rightg-module.
If

H∗(g, M) = 0, then HL∗(g, M) = 0.

As the similar statement is true for cohomologies, it implies that rigid Lie algebras
are Leibniz rigid as well.

Now we describe the Leibniz 2-cohomology spaces with the help of Lie 2-
cohomology space of a Lie algebra g.

Recall that a symmetric bilinear form B ≥ S2g∗ is invariant, i.e. B ≥ (
S2g∗)g

if and only if B([Z, X], Y) = −B(X, [Z, Y ]) for every X, Y , Z ≥ g. The Koszul

map [9] I : (
S2g∗)g ∈

(∧3 g∗
)g ⊂ Z3(g,C) is defined by I (B) = IB, with

IB(X, Y , Z) = B([X, Y ], Z) for every X, Y , Z ≥ g. Since the projection ζ : g ∈
g/C 2g induces an isomorphism
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ν : ker I ∈ S2
(
g/C 2g

)∗
,

(where C 2g = [g, g]), dim
(
S2g∗)g = p(p+1)

2 + dim ImI , with p = dim H1(g,C).

For reductive g, dim
(
S2g∗)g = dim H3(g,C). Note also that the restriction of λC to

(
S2g∗)g is −I .

Definition 3.1 g is said to be I -null (resp. I -exact) if I = 0 (resp. ImI ⊂
B3(g,C)).

Example 3.1 The (2N + 1)-dimensional complex Heisenberg Lie algebra HN

(N � 1) with basis (xi)1�i�2N+1 and nonzero commutation relations (with anticom-

mutativity) [xi, xN+i] = x2N+1 (1 � i � N) is I -null, for any B ≥ (
S2HN

∗)HN
,

B(xi, x2N+1) = B(xi, [xi, xN+i]) = −B([xi, xi], xN+i) = 0 (similarly with xN+i

instead of xi) (1 � i � N), and B(x2N+1, x2N+1) = B(x2N+1, [x1, xN+1]) =
−B([x1, x2N+1], xN+1) = 0.

If c denotes the center of g, then c ⊂ (
S2g∗)g is the space of invariant c-valued

symmetric bilinear maps and we denote F = Id ⊂I : c ⊂ (
S2g∗)g ∈ C3(g, g) =

g ⊂ ∧3 g∗. Then Im F = c ⊂ ImI .

Theorem 3.1 Let g be any finite dimensional complex Lie algebra and ZL2
0(g, g)

(resp. ZL2
0(g,C)) the space of symmetric adjoint (resp. trivial) Leibniz 2-cocycles.

(i) ZL2
0(g, g) = c ⊂ ker I . In particular, dim ZL2

0(g, g) = c p(p+1)
2 where

c = dim c and p = dim g/C 2g = dim H1(g,C).

(ii) ZL2(g, g)
/ (

Z2(g, g) ⊕ ZL2
0(g, g)

) ∗= (c ⊂ ImI ) ≤ B3(g, g).

(iii) HL2(g, g) ∗= H2(g, g) ⊕ (c ⊂ ker I ) ⊕ (
(c ⊂ ImI ) ≤ B3(g, g)

)
.

(iv) ZL2
0(g,C) = ker I .

(v) ZL2(g,C)
/ (

Z2(g,C) ⊕ ZL2
0(g,C)

) ∗= ImI ≤ B3(g,C).

(vi) HL2(g,C) ∗= H2(g,C) ⊕ ker I ⊕ (
ImI ≤ B3(g,C)

)
.

Proof (i) The Leibniz 2-cochain space CL2(g, g) = g ⊂ (g∗)⊂2 decomposes as(
g ⊂ ∧2 g∗

)
⊕ (

g ⊂ S2 g∗) with g ⊂ S2 g∗ the space of symmetric elements in

CL2(g, g). By definition of the Leibniz coboundary λ, one has for σ ≥ CL2(g, g)
and X, Y , Z ≥ g

(λσ)(X, Y , Z) = u + v + w + r + s + t (1)

with u = [X, σ(Y , Z)], v = [σ(X, Z), Y ], w = −[σ(X, Y), Z], r = −σ([X, Y ], Z),

s = σ(X, [Y , Z]), t = σ([X, Z], Y). λ coincides with the usual coboundary operator
on g⊂∧2 g∗. Now, let σ = σ1+σ0 ≥ CL2(g, g) , σ1 ≥ g⊂∧2 g∗, σ0 ≥ g⊂S2 g∗.

Suppose σ ≥ ZL2(g, g) : λσ = 0 = λσ1 + λσ0 = dσ1 + λσ0. Then λσ0 =
−dσ1 ≥ g⊂∧3 g∗ is antisymmetric. Then permuting X and Y in formula (1) for σ0
yields (λσ0)(Y , X, Z) = −v − u + w − r + t + s. As λσ0 is antisymmetric, we get
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w + s + t = 0. (2)

Now, the circular permutation (X, Y , Z) in (1) for σ0 yields (λσ0)(Y , Z, X) = −v −
w + u − s − t + r. Again, by antisymmetry,

v + w + s + t = 0, (3)

i.e. (λσ0)(X, Y , Z) = u + r.
From (2) and (3), v = 0.Applying twice the circular permutation (X, Y , Z) to v, we

get first w = 0 and then u = 0. Hence (λσ0)(X, Y , Z) = r = −σ0([X, Y ], Z). Note
first that u = 0 reads [X, σ0(Y , Z)] = 0. As X, Y , Z are arbitrary, σ0 is c-valued. Now
the permutation of Y and Z changes r to −t = s (from (3)). Again, by antisymmetry
of λσ0, r = t = −s. As X, Y , Z are arbitrary, one gets σ0 ≥ c ⊂ (

S2g∗)g . Now
F(σ0) = −r = −λσ0 = dσ1 ≥ B3(g, g). Hence

σ0 ≥ ZL2
0(g, g) ⊥ F(σ0) = 0 ⊥ σ1 ≥ Z2(g, g) ⊥ σ0 ≥ c ⊂ ker I .

Consider now the linear map ϕ : ZL2(g, g) ∈ F−1(B3(g, g))
/

ker F defined
by σ ∀∈ [σ0] (mod ker F). ϕ is onto: for any [γ0] ≥ F−1(B3(g, g))

/
ker F,

γ0 ≥ c ⊂ (
S2g∗)g , one has F(γ0) ≥ B3(g, g), hence F(γ0) = dγ1, γ1 ≥ C2(g, g),

and then γ = γ0 + γ1 is a Leibniz cocycle such that ϕ(γ) = [γ0]. Now
ker ϕ = Z2(g, g) ⊕ ZL2

0(g, g), since condition [σ0] = [0] reads σ0 ≥ ker F
which is equivalent to σ ≥ Z2(g, g) ⊕ ZL2

0(g, g). Hence ϕ yields an isomor-
phism ZL2(g, g)

/ (
Z2(g, g) ⊕ ZL2

0(g, g)
) ∗= F−1(B3(g, g))

/
ker F. The latter is

isomorphic to Im F ≤ B3(g, g) ∗= (c ⊂ ImI ) ≤ B3(g, g).

(ii) results from the invariance of σ0 ≥ ZL2
0(g, g).

(iii) results immediately from (i) and (ii) since BL2(g, g) = B2(g, g) as the Leibniz
differential on CL1(g, g) = g∗ ⊂ g = C1(g, g) coincides with the usual one.

(iv)-(vi) are similar.

Remark 3.1 Since ker I ⊕ (
ImI ≤ B3(g,C)

) ∗= ker h where h denotes I com-
posed with the projection of Z3(g,C) onto H3(g,C), the result (vi) is the same as in
[13].

Remark 3.2 Any supplementary subspace to Z2(g,C) ⊕ ZL2
0(g,C) in ZL2(g,C)

consists of coupled Leibniz 2-cocycles, i.e. the nonzero elements have the property
that their symmetric and antisymmetric parts are not cocycles. To get such a sup-
plementary subspace, pick any supplementary subspace W to ker I in

(
S2g∗)g and

take C = {
B + Φ ; B ≥ W ≤ I −1(B3(g,C)), IB = dΦ

}
.

Definition 3.2 g is said to be an adjoint (resp. trivial) ZL2-uncoupling if

(c ⊂ ImI ) ≤ B3(g, g) = {0}
(

resp. ImI ≤ B3(g,C) = {0}
)

.
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The class of adjoint ZL2-uncoupling Lie algebras is rather extensive since
it contains all zero-center Lie algebras and all I -null Lie algebras. For non
zero-center, adjoint ZL2-uncoupling implies trivial ZL2-uncoupling, since c ⊂(
ImI ≤ B3(g,C)

) ⊂ (c ⊂ ImI ) ≤ B3(g, g). The reciprocal holds obviously true
for I -exact Lie algebras. However we do not know if it holds true in general (e.g.
we do not know of a nilpotent Lie algebra which is not I -exact).

Corollary 3.1 (i) HL2(g, g) ∗= H2(g, g) ⊕ (c ⊂ ker I ) if and only if g is adjoint
ZL2-uncoupling.

(ii) HL2(g,C) ∗= H2(g,C) ⊕ ker I if and only if g is trivial ZL2-uncoupling.

Corollary 3.2 For any Lie algebra g with trivial center c = {0}, HL2(g, g) =
H2(g, g).

Remark 3.3 This fact also follows from the cohomological version of Theorem A
in [16].

Proof Let g be a Lie algebra and M be a right g-module. Consider the product map
m : g ⊂ ψng −∈ ψn+1 in the exterior algebra. This map yields an epimorphism of
chain complexes

C∗(g, g) −∈ C∗(g,K)[−1],

where C∗(g,K) is the reduced chain complex:

C0(g,K) = 0, Ci(g,K) = Ci(g,K) for i > 0.

Define the reduced chain complex CR∗(g) such that CR∗(g[1]) is the kernel of the
epimorphism C∗(g, g) −∈ C∗(g,K)[−1]. Denote the cohomology of CR∗(g) by
HR∗(g).

Let us recall Theorem A in [16]. It states that there exists a spectral sequence

E2
pq = HRp(g ⊂ HLq(g, M)) =∩ Hrel

p+q(g, M).

As the center of our Lie algebra is 0, it follows that E2
00 = 0, and so we get

Hrel
0 (g, g) = 0.
But then from the exact sequence in [16]

0 ∪ H2(g, M) ∪ HL2(g, M) ∪ Hrel
0 (g, M) ∪ H3(g, M) ∪ ...

we get
HL2(g, M) = H2(g, M).

Corollary 3.3 For any reductive Lie algebra g with center c, HL2(g, g) = H2(g, g)

⊕ (
c ⊂ S2c∗

)
, and dim H2(g, g) = c2(c−1)

2 with c = dim c.
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Proof g = s ⊕ c with s = C 2g semisimple. We first prove that g is adjoint ZL2-

uncoupling. We have c ⊂ (
S2g∗)g =

(
c ⊂ (

S2s∗)s
)

⊕ (
c ⊂ S2c∗

) = c
(
S2s∗)s ⊕

c
(
S2c∗

)
. Suppose first s simple. Then any bilinear symmetric invariant form on s

is some multiple of the Killing form K . Hence c ⊂ (
S2g∗)g = c (CK) ⊕ c

(
S2c∗

)
.

For any σ0 ≥ c ⊂ (
S2g∗)g , F(σ0) is then some linear combination of copies of

IK . It is well-known, IK is not a coboundary. Hence if we suppose that F(σ0) is a
coboundary, necessarily F(σ0) = 0. The Lie algebra g is adjoint ZL2-uncoupling
when s is simple. Now, if s is not simple, s can be decomposed as a direct sum
s1⊕· · ·⊕sm of simple ideals of s. Then

(
S2s∗)s = ⊕m

i=1

(
S2si

∗)si = ⊕m
i=1 CKi (Ki

Killing form of si.) The same reasoning then applies and shows that g is adjoint ZL2-
uncoupling. From (ii) in Theorem 3.1, we have ZL2

0(g, g) = c ⊂S2c∗. Now, g = s⊕c
with s = C 2g semisimple. The subalgebra s can be decomposed as a direct sum
s1⊕· · ·⊕sm of ideals of s, hence of g. Then H2(g, g) = ⊕m

i=1 H2(g, si) ⊕ H2(g, c).
As si is a nontrivial g-module, H2(g, si) = {0} ([8], Prop. 11.4, page 154). So we
get H2(g, g) = H2(g, c) = c H2(g,C). By the Künneth formula and Whitehead’s
lemmas,

H2(g,C) =
(

H2(s,C) ⊂ H0(c,C)
)

⊕
(

H1(s,C)

⊂H1(c,C)
)

⊕
(

H0(s,C) ⊂ H2(c,C)
)

= H0(s,C) ⊂ H2(c,C)

= C ⊂ H2(c,C).

Hence

dim H2(g, g) = c2(c − 1)

2
.

4 The Diamond Algebra

The 4-dimensional complex solvable “diamond” Lie algebra d has basis (x1, x2,

x3, x4) and nonzero commutation relations (with anticommutativity)

[x1, x2] = x3, [x1, x3] = −x2, [x2, x3] = x4. (4)

The relations show that d is an extension of the one-dimensional abelian Lie algebra
Cx1 by the Heisenberg algebra n3 with basis x2, x3, x4. It is also known as the Nappi-
Witten Lie algebra [14] or the central extension of the Poincaré Lie algebra in two
dimensions. It is a solvable quadratic Lie algebra, as it admits a nondegenerate
bilinear symmetric invariant form. Because of these properties, it plays an important
role in conformal field theory.
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We can use d to construct a Wess-Zumino-Witten model, which describes a
homogeneous four-dimensional Lorentz-signature space time [14].

It is easy to check that d is I -exact. In fact, one verifies that all other solvable
4-dimensional Lie algebras are I -null (for a list, see e.g. [15]).

Consider d as Leibniz algebra with basis {e1, e2, e3, e4} overC. Define a bilinear
map [ , ] : d × d −∈ d by [e2, e3] = e1, [e3, e2] = −e1, [e2, e4] = e2, [e4, e2] =
−e2, [e3, e4] = e2 − e3 and [e4, e3] = e3 − e2, all other products of basis elements
being 0.

We get a basis satisfying the usual commutation relations (4) by letting

x1 = ie4, x2 = e3, x3 = i(−e2 + e3), x4 = ie1. (5)

One should mention that even though these two forms are equivalent over C, they
represent the two nonisomorphic real forms of the complex diamond algebra.

We found that by considering Leibniz algebra deformations of d one gets more
structures. Indeed it gives not only extra structures but also keeps the Lie structures
obtained by considering Lie algebra deformations. To get the precise deformations
we need to consider the cohomology groups.

We compute cohomologies necessary for our purpose. Let us use the simpler
notation L for the diamond algebra. First consider the Leibniz cohomology space
HL2(L; L). Our computation consists of the following steps:

(i) determine a basis of the space of cocycles ZL2(L; L),
(ii) determine a basis of the coboundary space BL2(L; L),

(iii) determine a basis of the quotient space HL2(L; L).

(i) Let σ ≥ ZL2(L; L). Then σ : L ⊂ L −∈ L is a linear map and λσ = 0, where

λσ(ei, ej, ek) = [ei, σ(ej, ek)] + [σ(ei, ek), ej] − [σ(ei, ej), ek] − σ([ei, ej], ek)

+σ(ei, [ej, ek]) + σ([ei, ek], ej) for 0 ≤ i, j, k ≤ 4.

Suppose σ(ei, ej) =
4∑

k=1
ak

i,jek where ak
i,j ≥ C ; for 1 ≤ i, j, k ≤ 4. Since λσ = 0,

equating the coefficients of e1, e2, e3 and e4 in λσ(ei, ej, ek) we get the following
relations:

(i) a1
1,1 = a2

1,1 = a3
1,1 = a4

1,1 = a1
1,2 = a3

1,2 = a4
1,2 = 0;

(ii) a4
1,3 = a3

1,4 = a4
1,4 = a1

2,1 = a3
2,1 = a4

2,1 = a1
2,2 = a2

2,2 = a3
2,2 = a4

2,2 = 0;
(iii) a4

3,1 = a2
3,3 = a3

3,3 = a4
3,3 = a3

4,1 = a4
4,1 = a2

4,4 = a3
4,4 = a4

4,4 = 0;
(iv) a2

1,2 = −a2
2,1 = a2

1,3 = −a3
1,3 = −a2

3,1 = a3
3,1;

(v) a1
1,3 = −a1

3,1 = a2
1,4 = −a2

4,1;
(vi) a3

2,3 = −a3
3,2 = −a4

2,4 = a4
4,2; a4

2,3 = −a4
3,2; a2

2,3 = −a2
3,2;

(vi) a1
2,4 = −a1

4,2; a2
2,4 = −a2

4,2; a3
2,4 = −a3

4,2;
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(vii) a1
3,4 = −a1

4,3; a2
3,4 = −a2

4,3; a3
3,4 = −a3

4,3; a4
3,4 = −a4

4,3

(ix) a3
3,4 = (a1

14 − a2
24); a4

3,4 = (a2
14 + a2

23)

(x) a1
33 = 1

2 (a1
23 + a1

32); a1
41 = −(a1

14 + a1
23 + a1

32).

Therefore, in terms of the ordered basis {ei ⊂ ej}1≤i,j≤4 of L ⊂ L and {ei}1≤i≤4 of L,
the transpose of the matrix corresponding to σ is of the form

Mt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 x1 0 0
x2 x1 −x1 0
x3 x2 0 0
0 −x1 0 0
0 0 0 0
x4 x5 x6 x7
x8 x9 x10 −x6

−x2 −x1 x1 0
x11 −x5 −x6 −x7

1
2 (x4 + x11) 0 0 0

x12 x13 (x3 − x9) (x2 + x5)

−(x4 + x3 + x11) −x2 0 0
−x8 −x9 −x10 x6
−x12 −x13 −(x3 − x9) −(x2 + x5)

x14 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where x1 = a2
1,2; x2 = a1

1,3; x3 = a1
1,4; x4 = a1

2,3; x5 = a2
2,3; x6 = a3

2,3;
x7 = a4

2,3; x8 = a1
2,4; x9 = a2

2,4; x10 = a3
2,4; x11 = a1

3,2; x12 = a1
3,4;

x13 = a2
3,4 and x14 = a1

4,4

are in C . Let θi ≥ ZL2(L; L) for 1 ≤ i ≤ 14, be the cocyle with xi = 1 and xj = 0
for i �= j in the above matrix of σ . It is easy to check that {θ1, . . . , θ14} forms a basis
of ZL2(L; L).

(ii) Let σ0 ≥ BL2(L; L). We have σ0 = λg for some 1-cochain g ≥ CL1(L; L) =
Hom (L; L). Suppose the matrix associated to σ0 is the same as the above matrix M.

Let g(ei) = a1
i e1 + a2

i e2 + a3
i e3 + a4

i e4 for i = 1, 2, 3, 4. The matrix associated
to g is given by

(aj
i)i,j=1,...,4

From the definition of the coboundary we get

λg(ei, ej) = [ei, g(ej)] + [g(ei), ej] − σ([ei, ej])
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for 0 ≤ i, j ≤ 4. If we write out the transpose matrix of

λg,

and compare it with M (since σ0 = λg is also a cocycle in CL2(L; L)), we conclude
that the transpose matrix of σ0 is of the form

Mt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 x1 0 0
x2 x1 −x1 0
0 x2 0 0
0 −x1 0 0
0 0 0 0
x4 x5 x6 x1
x8 x9 x10 −x6

−x2 −x1 x1 0
−x4 −x5 −x6 −x1

0 0 0 0
x12 x13 −x9 (x2 + x5)

0 −x2 0 0
−x8 −x9 −x10 x6
−x12 −x13 x9 −(x2 + x5)

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let θi
↔ ≥ BL2(L; L) for i = 1, 2, 4, 5, 6, 8, 9, 10, 12, 13 be the coboundary

with xi = 1 and xj = 0 for i �= j in the above matrix of σ0. It follows that
{θ↔

1, θ
↔
2, θ

↔
4, θ

↔
5, θ

↔
6, θ

↔
8, θ

↔
9, θ

↔
10, θ

↔
12, θ

↔
13} forms a basis of the coboundary space

BL2(L; L).
(iii) It is straightforward to check that

{[θ3], [θ7], [θ11], [θ14]}

span HL2(L; L) where [θi] denotes the cohomology class represented by the cocycle
θi.

Thus dim(HL2(L; L)) = 4.
The representative cocycles of the cohomology classes forming a basis of

HL2(L; L) are given explicitely as the following.

(1) θ3 : θ3(e1, e4) = e1, θ3(e4, e1) = −e1; θ3(e3, e4) = e3; θ3(e4, e3) = −e3;
(2) θ7 : θ7(e2, e3) = e4, θ7(e3, e2) = −e4;
(3) θ11 : θ11(e3, e2) = e1, θ11(e3, e3) = 1

2 e1, θ11(e4, e1) = −e1;
(4) θ14 : θ14(e4, e4) = e1.
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Here θ3 and θ7 are skew-symmetric, so θi ≥ Hom(ψ2L; L) ⊂ Hom(L⊂2; L) for
i = 3 and 7.

Consider μi = μ0+tθi for i = 3, 7, 11, 14, where μ0 denotes the original bracket
in L.

This gives 4 non-equivalent infinitesimal deformations of the Leibniz bracket μ0
with μ3 and μ7 giving the Lie algebra structure on the factor space L[[t]]/ < t2 >.

Now we have to compute the nontrivial Massey brackets which give relations on
the base of the miniversal deformation.

Let us start to compute the nonzero brackets [θi, θi] which are the obstructions
to extending infinitesimal deformations. We find

[θ3, θ3] = 0, [θ7, θ7] = 0.

That means that these two infinitesimal Lie deformations can be extended. In fact,
they can be extended to real Lie deformations as follows.

We give the new nonzero Lie brackets (and their anticommutative analogue).
The first deformation

[e2, e3]t = e1 + te4

[e2, e4]t = e2

[e3, e4]t = e2 − e3

is isomorphic to sl(2,C) ⊕ C for every nonzero value of t, see [7].
The second deformation represents a 2-parameter projective family d(ω, μ), for

which each projective parameter (ω, μ) defines a nonisomorphic Lie algebra (in fact,
the diamond algebra is a member of this family with (ω, μ) = (1,−1)):

[e2, e3]ω,μ = e1

[e2, e4]ω,μ = ωe2

[e3, e4]ω,μ = e2 + μe3

[e1, e4]ω,μ = (ω + μ)e1.

Furthermore, we also have [θ14, θ14] = 0 which means that θ14 defines a real
Leibniz deformation:

[e2, e3]t = e1

[e2, e4]t = e2

[e3, e4]t = e2 − e3

[e4, e4]t = te1.

We note that this Leibniz algebra is not nilpotent.
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For the bracket [θ11, θ11] we get a nonzero 3-cocycle, so the infinitesimal Leibniz
deformation with infinitesimal part being θ11 can not be extended even to the next
order. That means it gives a relation on the base of the versal deformation.

The nontrivial mixed brackets [θi, θj] also determine relations on the base of the
versal deformation.

Among the six possible cases [θ3, θ11], [θ3, θ14] and [θ11, θ14] are nontrivial
3-cocycles, the others are represented by 3-coboundaries.

Thus we need to check the Massey 3-brackets which are defined, namely
< θ3, θ3, θ7 >, < θ3, θ7, θ7 >, < θ7, θ7, θ11 >,
< θ7, θ7, θ14 >, < θ7, θ14, θ14 >.
In these five possible Massey 3-brackets, only < θ3, θ3, θ7 > is represented by

nontrivial cocycle.
So we now proceed to compute the possible Massey 4-brackets. We get that four

of them are nontrivial:
< θ3, θ7, θ7, θ11 >, < θ3, θ7, θ7, θ14 >,
< θ7, θ7, θ14, θ11 >, < θ7, θ7, θ14, θ14 >.
At the next step, we get that all the Massey 5-brackets which are defined are trivial.
So we can write the universal infinitesimal Leibniz deformation of our Lie algebra:

[e1, e2]v = [e2, e1]v = [e1, e3]v = [e3, e1]v = 0,

[e1, e4]v = te1, [e4, e1]v = −(t + u)e1,

[e2, e3]v = e1 + se4, [e3, e2]v = (u − 1)e1 − se4,

[e2, e4]v = e2, [e4, e2] = −e2,

[e3, e4]v = e2 + (t − 1)e3, [e4, e3]v = −e2 + (1 − t)e3,

[e1, e1]v = [e2, e2]v = 0, [e3, e3]v = 1/2ue1,

[e4, e4]v = we1.

With the nontrivial Massey brackets and the identification t = θ3, s = θ7, u =
θ11, w = θ14, we get that the base of the infinitesimal deformation is

C[[t, s, u, w]]/{u2, tu, tw, uw; t2s; ts2u, ts2w, s2uw, s2w2}.
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Rigid Current Lie Algebras

Elisabeth Remm and Michel Goze

Abstract A current Lie algebra is constructed from a tensor product of a Lie algebra
and a commutative associative algebra of dimension greater than 2. In this work
we are interested in deformations of finite dimensional current Lie algebras and in
the problem of rigidity. In particular we prove that a complex finite dimensional
current Lie algebra with trivial center is rigid if it is isomorphic to a direct product
g × g × · · · × g where g is a rigid Lie algebra.

1 Current Lie Algebras

If g is a Lie algebra over a algebraically closed field K and A a K-associative
commutative algebra, then g ⊕ A , provided with the bracket

[X ⊕ a, Y ⊕ b] = [X, Y ] ⊕ ab

for every X, Y ≥ g and a, b ≥ A is a Lie algebra. If dim(A ) = 1 such an algebra is
isomorphic to g. If dim(A ) > 1 we will say that g⊕A with the previous bracket is
a current Lie algebra.

In [16] we have shown that if P is a quadratic operad, there is an associated
quadratic operad, noted P̃ such that the tensor product of a P-algebra by a P̃-
algebra is aP-algebra for the natural product. In particular, if the operadP isL ie,
then L̃ ie = L ie! = C om and a C om-algebra is a commutative associative algebra.
In this context we find again the notion of current Lie algebra.
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Remark In [3], the notion of duplication of algebras constructed by tensor product
is presented. If g is a Lie algebra, we define on g ⊕ g the product

μ(X ⊕ Y , X ∈ ⊕ Y ∈) = [X, Y ] ⊕ [X ∈, Y ∈].

But, in this case, g ⊕ g is not a Lie algebra, but is related with the notion of n-Lie
algebras.

In this work we study the deformations of finite dimensional current Lie algebras
and we study the rigidity. The notion of rigidity is related to the second group of
the Chevalley-Eilenberg cohomology. For the current Lie algebras, this group is not
well known. Recently some relations between H2(g ⊕ A , g ⊕ A ), H2(g, g) and
H2

H(A ,A ) have been given in [18] but often when g is abelian. Let us note also that
the scalar cohomology has been studied in [15].

2 Determination of Rigid Current Lie Algebras

In all this work, Lie algebras or associative algebras are of finite dimension over the
algebraically closed field K.

2.1 On the Rigidity of Lie Algebras

Let us remind briefly some properties of the variety of Lie algebras (for more details,
see [1]). Let g be a n-dimensional K-Lie algebra. Since the underlying vector space
is isomorphic to K

n, there exists a one-to-one correspondance between the set of
Lie brackets of n-dimensional Lie algebras and the skew-symmetric bilinear maps
μ : Kn ×K

n ⊂ K
n satisfying the Jacobi identity. We denote byμg this bilinear map

corresponding to g. In this framework, we can identify g with the pair (Kn, μg). Let
us fix definitively a basis {X1, . . . , Xn} ofKn. The structure constants (Ck

ij) of μg are
given by

μg(Xi, Xj) =
n∑

k=1

Ck
ij Xk

and we can identify μgwith the N-tuple (Ck
ij) with N = n2(n−1)

2 . The Jacobi identity
satisfied by μg is equivalent to the polynomial system :

∑
l=1,...,n

Cl
ijC

s
lk + Cl

jkCs
li + Cl

kiC
s
lj = 0. (1)
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In this context, a Lie algebra is a point ofKN whose coordinates (Ck
ij) satisfy (1). The

set of n-dimensional Lie algebras over K is identified with the algebraic variety Ln

embedded intoKN and defined by the system of polynomial Eq. (1). We will always
denote by μ a point of Ln. The algebraic group GL(n,K) acts on Ln by:

(f , μ) ≥ GL(n,K) × Ln −⊂ μf ≥ Ln (2)

where μf is given by μf (X, Y) = f −1(μ(f (X), f (Y)) for every X, Y ≥ K
n. The

orbit O(μ) of μ related to this action corresponds to the Lie algebras isomorphic to
g = (Kn, μ). We provide the algebraic variety Ln with the Zariski topology.

Definition 2.1 The Lie algebra g = (Kn, μ) is rigid if the orbit O(μ) is open in Ln.

Away of constructing rigidLie algebras rests on theNijenhuis-RichardsonTheorem :
Let H⊗(g, g) be the Chevalley-Eilenberg cohomology of g. If H2(g, g) = 0 then g
is rigid. Let us note that the converse is false, numerous examples are described in
[1, 9] (in fact, a rigid Lie algebra whose cohomology H2(g, g) is not trivial is such
that the affine schema Ln given by the Jacobi ideal is not reduced to the point μ

defining g.)
An intuitive way of defining the notion of rigidity is to consider a rigid algebra as

not deformable, that is, any close algebra is isomorphic to it. A general definition of
deformations was proposed in [12]. Let A be a commutative K-algebra of valuation
such that the residual field A/m is isomorphic to K where m is the maximal ideal
of A. If g is a K-Lie algebra then the tensor product g ⊕ A is an A-algebra denoted
by gA.

Definition 2.2 A deformation of g is an A-Lie algebra g∈
A such that the underlying

A-module is gA and the brackets [u, v]g∈
A
and [u, v]gA of g∈

A and gA satisfy

[u, v]g∈
A

− [u, v]gA ≥ g ⊕ m.

When A = C[[t]]we find the classical notion of deformation given by Gerstenhaber.
When A is the ring of limited elements in a Robinson non archimedean extension of
C, we find the notion of perturbations [8]. If g∈

A is a deformation of g then we have

[u, v]g∈
A

− [u, v]gA =
k∑

i=1

λ1λ2 · · · λiαi

where λi ≥ m and {α1, . . . , αk} a family of independent skew symmetric bilinear
maps on K

n × K
n with values in K

n. In particular α1 ≥ Z2(g, g) and if g∈
A is

isomorphic to gA this map belongs to B2(g, g). We deduce that the deformations of
g are parameterized by H2(g, g). In the following, we are going to determine the
current Lie algebras which are rigid.

Remark In [4, 6], we find a similar definition of deformations, but without the
hypothesis concerning the valuation. We assume that A is a commutative algebra
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over the field K which admits an augmentation λ : A ⊂ K. This says that λ is a
K-algebra homomorphism, e.g. λ(1A) = 1. The ideal mλ := Ker(λ) is a maximal
ideal of A (Let us note that any maximal ideal of A gives an augmentation). Let us
consider a Lie algebra g over K, λ a fixed augmentation of A, and m = Ker(λ) the
associated maximal ideal. A global deformation ε of g with base (A,m), is a Lie
A-algebra structure on g ⊕ A with Lie bracket [., .]ε such that for all a, b ≥ A and
X, Y ≥ g,

1. [a ⊕ X, b ⊕ Y ]ε = (ab ⊕ id)[1 ⊕ X, 1 ⊕ Y ]ε,
2. λ ⊕ id([1 ⊕ X, 1 ⊕ Y ]ε) = 1 ⊕ [X, Y ].

2.2 The Manifold L(p,q)

Let g = g = gp ⊕ Aq be a pq-dimensional current K-Lie algebra where gp is a
p-dimensional K-Lie algebra and Aq a q-dimensional associative commutative K-
algebra. Let {X1, . . . , Xp} be a basis of gp and {e1, . . . , eq} a basis ofAq. If we denote
by {Ck

ij} and {Dc
ab} the structure constants of gp and Aq with regards to these basis,

then the Lie bracket μg = μgp ⊕ μAq of g where μgp is the multiplication of gp and
μAq the multiplication of Aq, satisfy:

μg(Xi ⊕ ea, Xj ⊕ eb) =
∑
k,c

Ck
ijD

c
abXk ⊕ ec,

and the structure constants of gwith respect to the basis {Xi ⊕ ea}i=1,...,p; a=1,...,q are
{Ck

ijD
c
ab}. Thus, the Jacobi relations are written as

∑
l,r

Cl
ijC

s
lkDr

abDt
rc + Cl

jkCs
liD

r
bcDt

ra + Cl
kiC

s
ljD

r
caDt

rb = 0

for any (s, t) in {{1, . . . , p} × {1, . . . , q}} . These polynomial relations define a struc-
ture of algebraic variety denoted by L(p,q) and embedded in the vector space whose
coordinates are the structure constants {Ck

ijD
c
ab}. It is a closed subvariety of Lpq. Let

G(p, q) be the algebraic group G(p, q) = GL(p)× GL(q). This group acts naturally
on L(p,q) by

(f , g).(μgp ⊕ μAq
)(X ⊕ a, Y ⊕ b) = f −1(μgp(f (X), f (Y))) ⊕ g−1(μAq

(g(a), g(b))).

We denote by Op,q(gp ⊕ Aq) the orbit in L(p,q) of μg corresponding to this action.
Thus, there are two types of deformations:

• The deformations of g in the manifold Lpq. These deformations are parameterized
by the second Chevalley-Eilenberg cohomology space H2

C(g, g).
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• The deformations of g in the manifold L(p,q). They are parameterized by the space
H2

C(gp, gp) ⊕ H2
H(Aq,Aq) where H2

H(Aq,Aq) is the Hochschild cohomology of
the associative commutative algebra Aq [13, 14, 17].

Definition 2.3 The Lie algebra gp ⊕Aq is rigid in L(p,q) if the orbitOp,q(μg) is open
(in the Zariski sense). It is rigid if the orbit O(μg) related to the action of GL(pq) in
Lpq is open.

It is clear that the rigidity implies the rigidity in L(p,q).

Proposition 2.1 A current Lie algebra g = gp ⊕ Aq is rigid in L(p,q) if and only if
gp is rigid in Lp and Aq is rigid in C om(q), the variety of q-dimensional associative
commutative K-algebras.

In fact, if gp (respectively Aq) is not rigid in Lp (respectively in C om(q)), then we
can find a non isomorphic deformation of gp (respectively Aq), this gives a non
isomorphic deformation of g. For the general notion of associative rigid algebras see
[11].

The main part of this work is to describe rigid current algebras which are rigid (in
Lpq, that is, rigid in the variety of pq-dimensional Lie algebras).

Example p = 2, q = 2 (K = C). There is, up to isomorphism, only one 2-
dimensional rigid Lie algebra. It is defined by [X1, X2] = X2. There is only one 2-
dimensional associative commutative algebra. It is given by e21 = e1, e22 = e2, e1e2 =
0 and corresponds to the semi-simple algebra A2

1 = M1(K) × M1(K) where Mn(K)

is the algebra of n-matrices on K. The Lie algebra g2 ⊕ A2
1 is rigid in L(2,2). This

algebra is isomorphic to g2 × g2. It is also rigid in L4.

2.3 Structure of Rigid Current Lie Algebras

Recall that a finite dimensional rigidK-Lie algebra g is algebraic (that is, isomorphic
to a Lie algebra of an algebraic Lie group) and then admits the decomposition g =
s⊕t⊕nwhere t⊕n is the radical of g, t is amaximal abelian subalgebrawhose adjoint
operators ad X, X ≥ t, are semi-simple and n is the nilradical [5, 7]. If g = gp ⊕Aq

is rigid, then gp is rigid in Lp. If gp is solvable, then so is g and we have

gp = tp ⊕ np and g = t ⊕ n.

Since np ⊕ Aq is a nilpotent ideal of g, np ⊕ Ap ⊂ n.

Lemma 2.1 If g = gp ⊕ Aq is rigid, then Aq has a non zero idempotent.

Remark If Aq is a nilalgebra, then g is nilpotent. In fact if X ≥ gp and a ≥ Aq, we
have [ad(X⊕a)]m = (ad X)m⊕(La)

m where La : Aq ⊂ Aq is the left multiplication
by a. SinceAq is a nilalgebra, every element is nilpotent and there exits m0 such that
(La)

m0 = 0. Thus ad(X ⊕a) is a nilpotent operator for any X and a. This implies that
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g is nilpotent (this doesn’t imply that gp is nilpotent). Let f be a derivation of gp.Then
f ⊕ Id is a derivation of g. Since gp is rigid, we can find a inner non trivial derivation
ad X which is diagonal. In this case ad X ⊕ Id is a non trivial diagonal derivation of
g. By hypothesis g is rigid. But any rigid nilpotent Lie algebra is characteristically
nilpotent [9], that is, every derivation is nilpotent. We have a contradiction and Ap

can not be a nilalgebra. Since it is finite dimensional, it admits a non zero idempotent.

Proposition 2.2 If g = gp ⊕Aq is rigid then Aq is an associative commutative rigid
unitary algebra in C om(q).

Remark Let e →= 0 be in Aq and satisfying e2 = e. The associated Pierce
decomposition

Aq = A 00
q ⊕ A 10

q ⊕ A 01
q ⊕ A 11

q

where
A ij

q = {x ≥ Aq such that e · x = ix, x · e = jx}

reduces toAq = A 11
q ⊕A 00

q becauseAq is commutative and we haveA 11
q ·A 00

q =
{0}. Thus Aq is a direct sum of two commutative algebras. Since Aq is rigid, the
algebrasA 11

q andA 00
q are also rigid. The subalgebraA 11

q is unitary (e is the unit ele-
ment). From the previous lemmaA 00

q has an idempotent and admits a decomposition

A 00
q = A 0011

q ⊕ A 0000
q

with A 0011
q →= {0}. By induction we deduce that

Aq = A 1
q ⊕ . . . ⊕ A p

q

withA i
q with unit ei and {e1, . . . , ep} is a system of pairwise orthogonal idempotents.

Then e1 + · · · + ep is a unit of Aq.

Theorem 2.1 Let gp be a rigid Lie algebra with solvable non nilpotent radical such
that Z(gp) = {0}. Then g = gp ⊕Aq is rigid if and only if Aq = Mq

1 (K) is given by

e2i = ei , i = 1, . . . , q and ei · ej = 0 if i →= j.

Proof Since Aq is unitary, the radical of g solvable and non nilpotent. Moreover
Z(gp) = {0} implies that Z(g) = {0}. In fact if U = ∑

j,a ΔjaXj ⊕ xa is in the center
of g, then [U, X ⊕ 1] = 0 for each X ≥ gp. Thus

∑
Δj,a[Xj, X] ⊕ xa = 0.

We have [∑j ΔjaXj, X] = 0 for each a and X. So
∑

j ΔjaXj ≥ Z(gp) for any a.

Therefore Δja = 0 for any a and U = 0.
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Consequently, g is a rigid Lie algebra with trivial center whose radical is non
nilpotent. This implies that all derivations are inner. Let f be a non trivial derivation
ofAq. SinceAq is commutative, it is necessarily an outer derivation. Then Id ⊕ f is
a derivation of g and satisfies (Id ⊕ f )(X ⊕ 1) = X ⊕ f (1) = 0 because f (1 · 1) =
2f (1) = f (1) = 0. Suppose that Id ⊕ f ≥ Int(g), that is Id ⊕ f = ad(

∑
ΔijXi ⊕ xj).

Thus (Id ⊕ f )(X ⊕ 1) = ∑
Δij[Xi, X] ⊕ xj = 0 which implies

∑
Δij[Xi, X] = 0

for any j and X. So
∑

ΔijXi ≥ Z(gp) for any j. Since the center is trivial, then∑
ΔijXj = 0 for any j and Id ⊕ f /≥ Int(g). There is a contradicion. Therefore Aq is

such that any external derivation is trivial. We deduce that Aq = Mq
1 (K).

Remark 1. The current Lie algebra gp ⊕Mq
1 (K) is isomorphic to gp ×· · ·×gp with

q factors. If g is a rigid current algebra with Z(gp) trivial, then it is isomorphic
to gp × · · · × gp.

2. In the theorem,we have a hypothesis concerning the center of gp. This hypothesis
is probably superfluous. In fact, since the orbit in Ln of a rigid n-dimensional Lie
algebra is Zariski open, the Zariski closure of this orbit is an algebraic component
of Ln. This assures that, for a fixed dimension, there exist only a finite number
of non isomorphic rigid Lie algebras. But, for all the known examples of rigid
Lie algebras, the center is trivial. We can naturally conjecture that any finite
dimensional complex rigid Lie algebra has a trivial center.

3 Cohomology and Deformations

The Chevalley-Eilenberg cohomology of current Lie algebras was computed in [18]
for the degrees 1 and 2. It is shown that the algebra of derivations of g = gp ⊕Aq is
equal to

Der(g) = Der(gp) ⊕ Aq ⊕ Homgp(gp, gp) ⊕ Der(Aq)

⊕Hom(gp/[gp,gp], Z(gp))] ⊕ End(Aq)

Aq+DerAq

and the first space of cohomology H1(g, g) is

H1(g, g) = H1(gp, gp) ⊕ Aq ⊕ Homgp(gp, gp) ⊕ Der(Aq)

⊕Hom(gp/[gp,gp], Z(gp))] ⊕ Hom(Aq,Aq)

Aq+DerAq
.

Assume that g = gp ⊕ Aq is a rigid current Lie algebra. Then gp is rigid. Assume
also that Z(gp) = 0. Then

H1(g, g) = H1(gp, gp) ⊕ Aq ⊕ Homgp(gp, gp) ⊕ Der(Aq).
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If gp is a rigid Lie algebra with non nilpotent radical (we do not know examples of
rigid Lie algebras with a nilpotent radical), any derivation of gp is inner. This implies
that H1(gp, gp) = 0 and H1(g, g) = Homgp(gp, gp) ⊕ Der(Aq).

Proposition 3.1 Let g = gp ⊕ Aq be a current Lie algebra such that gp is rigid
with trivial center and a non nilpotent radical. Then H1(g, g) = 0 if and only if
Der(Aq) = {0}.

Example ConsiderAq = Mq
1 (K). Let {ei} be a basis ofAq satisfying e2i = ei, eiej =

0. Let f be in Der(Aq). We have

f (e2i ) = f (ei) = 2eif (ei).

This induces f (ei) = 0 and finally f = 0.
A Chevalley-Eilenberg 2-cochain of g = gp ⊕ Aq decomposes as a finite sum of

bilinear forms of type:
δ = ω1 ⊕ δ2 + δ3 ⊕ ω4

with ω1 ≥ C 2(gp, gp) , δ2 ≥ S 2(gp, gp) and δ3 ≥ S 2(gp, gp), ω4 ≥ C 2(Aq,Aq),

where C 2(gp, gp) denotes the space of Chevalley-Eilenberg 2-cochains of gp,
S 2(gp, gp) the space of symmetric bilinear maps with values in gp and C 2(Aq,Aq)

the space of 2-cochains of the Harrison cohomology of Aq. We deduce using this
decomposition that H2(g, g) = (H2)∈ ⊕ (H2)∈∈. The first space is computed in ([18],
proposition 3.1). We find

(H2)∈ = H2(gp, gp)⊕Aq ⊕B(gp, gp)⊕ H2
H(Aq,Aq)

P+(Aq,Aq)
⊕θ(gp, gp)⊕ A (Aq,Aq)

P+(Aq,Aq)

(see [18] for notations). But the second space was just computed when gp is abelian.
For example assume thatwe have a primitive infinitesimal deformation ofμ1⊕μ2,

that is, μ1 ⊕μ2 + π(ω1 ⊕δ2 +δ3 ⊕ω4). The linear part of the Jacobi identity gives
the expression of a 2-cocycle of Chevalley-Eilenberg cohomology of μ1 ⊕ μ2. We
find:

ζμ1⊕μ2(ω1 ⊕ δ2 + δ3 ⊕ ω4)(X1, X2, X3, a1, a2, a3)

= νμ1(ω1(X1, X2), X3) ⊕ μ2(δ2(a1, a2), a3)

+ νμ1(δ3(X1, X2), X3) ⊕ μ2(ω4(a1, a2), a3)

+ νω1(μ1(X1, X2), X3) ⊕ δ2(μ2(a1, a2), a3)

+ νδ3(μ1(X1, X2), X3) ⊕ ω4(μ2(a1, a2), a3) = 0

for any X1, X2, X3 ≥ gp and a1, a2, a3 ≥ Aq, and the sum is taken on the cyclic
permutations of (1, 2, 3). We deduce
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Proposition 3.2 If Aq is unitary then ω1 ≥ Z2(gp, gp) as soon as δ2(1, 1) →= 0.

If X1 = X2 = X3, the above identity reduce to:

μ1(δ3(X1, X1), X1) ⊕ νμ2(ω4(a1, a2), a3) = 0.

Proposition 3.3 If there exits X ≥ gp such that μ1(δ3(X1, X1), X1) →= 0 then

μ2 • ω4 = 0

with
μ2 • ω4(a1, a2, a3) = νμ2(ω4(a1, a2), a3).

Note that ω4 is a 2-cocyle for the Harrison cohomology of μ2 so μ2 •ω4 = ω4 •μ2.

Suppose that g is rigid solvable with trivial center. Then Aq is unitary and ω1 ≥
Z2(gp, gp) as soon as δ2(1, 1) →= 0.

4 Application: Associative Commutative Real Rigid Algebras

4.1 Real Rigid Lie Algebras

The study of the rigid real Lie algebras was recently initiated in [2]. Let us point out
the principal results. An external torus of derivations of n is an abelian subalgebra
t of Der(n), the Lie algebra of derivations of n, such as the elements are semi-
simple. This means that complex derivations f ⊕ Id ≥ t ⊕ C are simultaneously
diagonalizable. If t is a maximal (with respect to inclusion) external torus of n then
t ⊕ C is a maximal external torus of n ⊕ C. From a result of Malcev (see e.g. [10]),
all the maximal tori of n⊕C are conjugated with respect to Aut(n⊕C) so they have
the same dimension (thus a maximal exterior torus is sometimes called a Malcev
torus). It is the same for the maximal tori t of n. This dimension is called the rank
of n. But contrary to the complex case, all the tori are not conjugated with respect to
the group of automorphisms.

Definition 4.1 Let n be a finite dimensional real nilpotent Lie algebra. We call a
toroidal index of n the number of conjugation classes of a maximal external torus
with respect to the group of automorphisms AutR(n) of n.

Example The toroidal index of the real abelian Lie algebra an of dimension n is
equal to [n/2] + 1 where [p] is the integer part of the rational number p. In fact,
let {X1, . . . , Xn} be a basis of an. Let us denote by fi the derivation defined by
fi(Xj) = ζ

j
i Xj and by f1,2p the derivation given by
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{
f1,2p(X2p−1) = X2p,

f1,2p(X2p) = X2p−1.

Up to conjugation, themaximal exterior tori are the subalgebras of gl(n,R) generated
by

t1 = R{f1, . . . , fn}
t2 = R{f1,2, f1 + f2, f3 . . . , fn}
t3 = R{f1,2, f1 + f2, f1,4, f3 + f4, f5, . . . , fn}
. . .

tn = R{f1,2, f1 + f2, f1,4, f3 + f4, . . . , f1,n, fn−1 + fn}

if n is even, if not the last relation is replaced by

tn = R{f1,2, f1 + f2, f1,4, f3 + f4, . . . , f1,n−1, fn−2 + fn−1, fn}.

4.2 Real Rigid Associative Commutative Algebras

Let r2 be the real nonabelian 2-dimensional Lie algebra. There exists a basis {X1, X2}
with regard towhich the bracket is given by [X1, X2] = X2.LetAn be a n-dimensional
real rigid commutative associative algebra. Its complexification is isomorphic to
Mn

1 (C). Thus the real current Lie algebra g = r2 ⊕ An is rigid. We deduce that
its complexification is rigid and isomorphic to rn

2. These remarks allow to write the
following decomposition:

g = r2 ⊕ An = tn ⊕ an

where an is the n-dimensional abelian Lie algebra. We can deduce from this the
structure ofAn. In fact, if {Y1, . . . , Yn} is a basis of tn corresponding to the derivations
f1,2, f1+ f2, . . . , f1,2s, f2s−1+ f2s, f2s+1, . . . , fn} described in the previous section, the
Lie bracket of g satisfies

⎧⎨⎨⎨⎨⎨⎨⎩
⎨⎨⎨⎨⎨⎨⎪

[Y1, X1] = −X2, [Y1, X2] = X1,

[Y2, X1] = X1, [Y2, X2] = X2,

. . .

[Y2s−1, X2s−1] = −X2s, [Y2s−1, X2s] = X2s−1,

[Y2s, X2s−1] = X2s−1, [Y2s, X2s] = X2s,

[Yi, Xi] = Xi, i = 2s + 1, . . . , n.

Let {e1, . . . , en} be a basis of An such that the isomorphism between r2 ⊕ An and
tn ⊕ an is given by U1 ⊕ ei = Yi and X2i = U2 ⊕ e2i−1, X2i−1 = U2 ⊕ e2i for
i = 1, . . . , s and Xj = U2 ⊕ ej for j = 2s + 1, .., n. The rigid associative algebraAn

is thus defined by
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⎧⎨⎨⎩
⎨⎨⎪

e22i−1 = e2i−1, i = 1, . . . , s;
e2i−1e2i = e2ie2i−1 = e2i, i = 1, . . . , s;
e22i = −e2i−1, i = 1, . . . , s;
e2j = ej, j = 2s + 1, . . . , n.

Proposition 4.1 LetAn be a n-dimensional real rigid associative algebra. There ex-
ists an integer s, 1 ∞ s ∞ n and a basis {e1, . . . , en} ofAn such that the multiplication
of An is given by

⎧⎨⎨⎩
⎨⎨⎪

e22i−1 = e2i−1, i = 1, . . . , s;
e2i−1e2i = e2ie2i−1 = e2i, i = 1, . . . , s;
e22i = −e2i−1, i = 1, . . . , s;
e2j = ej, j = 2s + 1, . . . , n.
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Deformations of Diagrams

Arvid Siqveland

Abstract In this this paper we introduce entanglement among the points in a
noncommutative scheme, in addition to the tangent directions. A diagram of A-
modules is a pair c = (| c |, λ ) where | c | = {V1, . . . , Vr} is a set of A-modules,
and λ = {αij(l)} is a set of A-module homomorphisms αij(l): Vi ⊕ Vj, seen as
the 0’th order tangent directions. We define the deformation theory for diagrams,
making these the fundamental points in noncommutative algebraic geometry. Two
simple examples of the theory are given: The space of a line through the origin and
a point, which is a noncommutative but untangled example, and the space of a line
through the origin and a point on the line, in which the condition of the point gives
an entanglement between the point and the line.

1 Introduction

Throughout, k is an algebraically closed field of characteristic 0. Let A be a (not
necessarily commutative) k-algebra, and let V = {V1, . . . , Vr} be a set of A-modules.
In the article [3], Laudal defines the noncommutative deformation functor DefV :
ar ⊕ Sets, see also Eriksen [1]. Here ar is the category of r-pointed, Artinian
k-algebras S, fitting into the diagram

kr ��

Id ���
��

��
��

� S

ε

��
kr,
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with (ker ε)n = rad(S)n = 0. In [4], we define a noncommutative scheme theory,
generalizing the commutative one in the geometric situation: Let M be a simple
(right) A-module, and let mM be the corresponding (right) maximal ideal. A is called
geometric if 0 = rad(A)≥ = ⋂

M∈Simp(A)
n⊂1

mn
M . In [3], Laudal proves that a pro-

representing hull for the noncommutative deformation functor of V = {V1, . . . , Vr}
exists when V is a family of finite dimensional (right or left) A-modules. This is a
k-algebra Ĥ = (Ĥij)1⊗i,j⊗r in the pro-category âr together with a pro-versal (also
called mini-versal) family

A
Δ⊕ (Ĥij ⊗k Homk(Vi, Vj)) = ÔV

satisfying the pro-versality conditions, see e.g. Schlessinger [4]. First of all, the
property of A being geometric assures that the pro-versal morphism Δ is injective.
Secondly, ÔV � ⊕r

i=1 Endk(Vi, Vi), and it is known that this surjection implies that,

as sets, Simp(ÔV ) = V , see e.g. [4]. Thus the sub k-algebra OV → ÔV generated by
the image of the generators of A and the inverses of the generated elements not in any
corresponding maximal ideal is the localization of A in V : It is a fractional k-algebra
of a finitely generated k-algebra, and the only simple modules are the modules in V
(or equivalently, the only maximal ideals are the maximal ideals corresponding to
the modules in V ).

On the set Simp(A) we now pose the following saturated Zariski (or Jacobson)
topology: First of all, the Zariski topology is the topology generated by the open
base, over f ∈ A, D(f ) = {V ∈ Simp(A)|ε(f ) ∈ Endk(V) is injective}, where ε

is the structure morphism. We let the saturation relation be the equivalence relation
generated by the condition that Vi and Vj are related if Ext1

A(Vi, Vj) ∞= 0. This means
that an open subset is saturated with all related points, and it is straight forward to
prove that this gives a topology.

Just as in the commutative situation, we define a sheaf of rings, the structure sheaf,
on Simp(A) by

O(U) = lim∪−
c→U

Oc,

where the limit is taken over subsets of equivalence classes c with respect to the
equivalence relation above. Writing out this definition, we see that it is a true gener-
alization of the definition given in Hartshorne [2] for commutative schemes.

We need to study entangled systems. This means that the equivalence relation
above should include a zero’th derivative, that is elements in HomA(Vi, Vj). So,
we define a diagram as a pair c = (| c |, λ ) where | c | = {V1, . . . , Vr} is a set of
A-modules, and λ = {αij(l)} is a set of A-module homomorphisms αij : Vi ⊕ Vj.

Extending the equivalence relation demands a generalization of the category ar

and its deformation functor. This is the main result of the text.
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2 Algebras Over kr and Their Geometry

Let r ∈ N and let (dij) be an r×r-matrix with entries dij ∈ N. We recall the definition
of the free r × r matrix polynomial algebra generated by the matrix variables tij(l),
1 ⊗ l ⊗ dij, in entry 1 ⊗ i, j ⊗ r.

By the notation
(
Sij

)
where Sii is a k-algebra for each i, 1 ⊗ i ⊗ r, and Sij is a

k-vector space, we mean the kr-algebra generated by the matrices M = (mij) with
mij ∈ Sij, 1 ⊗ i, j ⊗ r.

Definition 2.1 For a positive integer r, for each pair (i, j), 1 ⊗ i, j ⊗ r, let dij ∈ N.
Then the free r ×r matrix polynomial algebra in the matrix variables tij(l), 1 ⊗ i, j ⊗
dij, is the kr-algebra S generated by the matrix elements in

⎧
⎨⎩

k↔t11(1), . . . , t11(d11)〉 · · · ⎪d1r
v=1 kt1r(v)

...
. . .

...⎪dr1
v=1 ktr1(v) · · · k↔trr(1), . . . , trr(drr)〉

⎝
⎞⎫ .

Alternatively, we consider the kr-module V generated by tij(l), and let S be the
tensor algebra

S = Tkr (V).

Definition 2.2 For a positive integer r, a finitely generated r × r matrix polynomial
algebra is a quotient of a free r × r matrix polynomial algebra.

Recall the following, proved in e.g. [4]:

Lemma 2.1 Let R be a k-algebra, k algebraically closed, and let V be a finite
dimensional R-module. Then V is simple if and only if the structure morphism

ε : R ⊕ Endk(V),

sending r ∈ R to ε(r)(δ) = rδ, is surjective.

Let Sii = k↔tii(1), . . . , tii(dii)〉. Then there is a surjection εii: S ⊕ Sii sending ei

to 1, tii(l) to tii(l) and all other generators to 0.

Lemma 2.2 Simple S-modules are exactly the modules on the form Vi = S/ε−1
ii (mii)

where mii ∗ Sii is a maximal ideal for some i, 1 ⊗ i ⊗ r.

Proof For a maximal ideal mii ∗ Sii, we have an isomorphism

S/ε−1
ii (mii)

≤⊕ Sii/mii.

This proves that Vi is a simple S-module. For the converse, assume m ∗ S is max-
imal. If εii(m) = Sii for all i, it follows that 1 = ⎪

ei is in m which is impos-
sible. Thus there exists an i where εii(m) → mii for a maximal ideal mii ∗ Sii.
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Then m → ε−1
ii (εii(m)) → ε−1

ii (mii) ∅ S. Then m = ε−1
ii (mii), by maximality, and

the lemma is proved.

Let Simp(S) be the set of simple modules. We generalize the Zariski topology to
the noncommutative case by as follows: For an element s ∈ S we define the subset
D(s) = {V ∈ Simp(S)|ε(s): V ⊕ V is invertible}. The noncommutative Zariski
topology is the topology generated by the sets D(s), s ∈ S.

We also generalize the tangent space. In the case of the free kr-algebra S, every
simple module is one-dimensional, and k is an S bimodule in the following way:
k ⊥= Homk(k, k), and for any two S-modules V1, V2, the left and right actions of
s ∈ S on the bimodule Homk(V1, V2) is given respectively by the left and right skew
morphism in the diagram

V1

���
��

��
��

�
ω �� V2

·s
��

V1

·s
�� ����������

V2,

i.e. (sω)(v) = ω(vs) and (ωs)(v) = ω(v)s, (for right modules).

Definition 2.3 For a general k-algebra A, the tangent space between the two A-
modules V1 and V2 is

TV1,V2 = Ext1
A(V1, V2) ⊥= HH1(A, Homk(V1, V2))

⊥= Derk(A, Homk(V1, V2))/ Inner .

The following is a straightforward computation:

Lemma 2.3 Let S be the general, free, r × r matrix polynomial algebra, and let
Vi = Vii(pii) be the point pii in entry i, i. Then the tangent space from Vi to Vj is

TVi,Vj = Ext1
S(Vi, Vj) = ⊕dij

l=1kdtij(l).

3 Higher Order Derivatives: Generalized Matric Massey
Products

In [1] Eriksen has given the description of the noncommutative deformation functor,
in [5] we have defined the generalized matric Massey products. We recall the parts
necessary to make the generalization:
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Let A be a k-algebra. A deformation MS of an A-module M to an Artinian local
k-algebra S with residue field k, i.e. S ∈ ob(θ), is an S ⊗k A-module, flat over S, such
that k ⊗S MS ⊥= M. Two deformations MS and M ∀

S are equivalent if there exists an
isomorphism ω: MS ⊕ M ∀

S commuting in the diagram

MS
ω ��

���
��

��
��

� M ∀
S

����
��

��
�

M .

This gives the deformation functor DefM : θ ⊕ Sets satisfying Schlessinger’s well-
known criteria for the existence of a pro-representing hull, see [4].

The flatness of MS ∈ DefM(S) over S is equivalent with the fact that as S-module,

MS ⊥= S ⊗k M. For a small surjective morphism 0 ⊕ I ⊕ S
π
� R ⊕ 0, we use

induction and linear algebra on the exact sequence 0 ⊕ I ⊕ S ⊕ k ⊕ 0 to see this.
So to give an A-module structure on MS that is a lifting of the R-module structure,
is equivalent to give a k-algebra homomorphism ζS: A ⊕ Endk(MS) commuting in
the diagram

A
ζS ��

ζ
������������ Endk(MS)

��
Endk(MR).

Using the fact that ζS should commute with the action of S, that is, it should
be S-linear, it is sufficient to define ζS(a): M ⊕ S ⊗k M. For each a ∈ A, ζS

should be a lifting of ζR, and so we choose the obvious lifting of ζR. Then all
properties but the associativity are fulfilled, and the associativity of ζS says ζS(ab)−
ζS(a)ζS(b) = 0. So our obstructions for lifting MR are the elements ζS(ab) −
ζS(a)ζS(b) ∈ Homk(M, M ⊗k I) ⊥= Endk(M, M) ⊗k I . As these are Hochschild
two-cocycles, we have our obstructions

o(MR, π) ∈ HH2(A, Endk(M, M)) ⊗k I,

with the property that MR can be lifted to a MS if and only if o(MR, π) = 0.
Then we have the an alternative way of viewing this: Choose a free resolution of

the A-module M,

0 ∪ M
ν∪ L0

d0∪ L1
d1∪ L2

d2∪ · · · .

We have proved that to give a lifting of M to S is equivalent to give a lifting of
complexes
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0

��

0

��

0

��

0

��
0 I ⊗k M		

��

I ⊗k L0		

��

I ⊗k L1		

��

I ⊗k L2		

��

· · ·		

0 MS		

��

S ⊗k L0		

��

S ⊗k L1		

��

S ⊗k L2		

��

· · ·		

0 M		

��

L0		

��

L1		

��

L2		

��

· · ·		

0 0 0 0.

For k[ν] = k[x]/(x2) as usual, i.e. ν2 = 0, the tangent space of the deformation
functor is

DefM(k[ν]) ⊥= Ext1
A(M, M) ⊥= HH1(A, Endk(M)),

and likewise for the obstruction space. Using this, we find the correspondence

Ext1
A(M, M)

ω⊕ HH1(A, Endk(M)) given as follows: Given a representative σ ∈
HomA(L1, M) for σ ∈ Ext1

A(M, M). Choose a k-linear section ζ : V ⊕ L0 and let
x ∈ L1 map to ζ(am) − aζ(m) ∈ L0. Then ω(σ)(a)(m) = σ(x).

So we can equally well work in the Yoneda complex, with homomorphisms di :
Li ⊕ Li−1 being matrices, as each Li is assumed to be free. In the above diagram,
choose the obvious liftings dS

i to S. Then the obstruction for lifting MR to MS via π

is represented by

o(MR, π) = {dS
i−1dS

i } ∈ Hom2(L., L.) ⊗k I

which is a 2-cocycle in the Yoneda complex. This theory can be generalized to the
r-pointed situation:

Consider the category of r-pointed, Artinian k-algebras which we treated above.
Let {V1, . . . , Vr} be a set of r A-modules and put V = ⊕r

i=1Vi. Then a deformation
VS of V to S is a S⊗k A-module VS , flat over S, such that kr ⊗S VS ⊥= V as Ar-module.
As before, two deformations VS and V ∀

S are equivalent, if there exists an isomorphism
ω of S ⊗k A-modules commuting in the diagram

VS

���
��

��
��

�
ω �� V ∀

S

����
��

��
��

V .
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As in the commutative situation, we let flatness (and we can prove that it in fact
is) be equivalent to, as left S-module,

VS ⊥= S ⊗kr V ⊥= (Sij ⊗k Vj)1⊗i,j⊗r .

Assume we have a small, surjective homomorphism 0 ⊕ I ⊕ S
π⊕ R ⊕ 0 in

ar . To give a lifting of VR to S is to give an Ar-module structure on (Sij ⊗k Vj)1⊗i,j⊗r ,
lifting the action on VR, which is a k-algebra homomorphism ζS commuting in the
diagram

Ar
ζS ��

ζR 

												 Endk((Sij ⊗k Vj))

��
Endk((Rij ⊗k Vj)).

As the A-action is assumed to commute with the S and R-actions, by associativity,
this is to give, for each a ∈ Ar , a k-linear homomorphism ζa: V ⊕ (Sij ⊗k Vj).
Also, as for each idempotent ei ∈ S, ζa(eiv) = eiζa(v), this is equivalent to giving a
k-linear homomorphism ζa: Vi ⊕ Sij ⊗k Vj for each a ∈ A. Using this exactly as in
the commutative situation, we get the natural k-linear lifting of ζR to S. Everything
is fulfilled but the associativity, and we get an obstruction

o(VR, π) = (oij) ∈ (HH2(A, Homk(Vi, Vj) ⊗k Iij)),

where I = (Iij) is the kernel of π , such that VR can be lifted to VS if and only if
o(VR, π) = 0.

We have to replace k[ν] in the r-pointed situation. The new basic element in ar is
denoted the test algebra, and is not surprisingly given as

k[νij] =
⎧
⎨⎩

k↔t11〉 · · · kt1r
...
. . .

...

ktr1 · · · k↔trr〉

⎝
⎞⎫ /(tij)

2.

The tangent space of the deformation functor is then DefV (k[νij]), and again it
can be seen that this is isomorphic to the matrix (HH1(A, Homk(Vi, Vj))).

To find the correspondence as above, we use free resolutions: For each Vi we
choose free resolutions 0 ∪ Vi ∪ L.i with differential d.i, we put L. = ⊕r

i=1L.i,
and think of this as a free resolution of V with differential d. = ⊕r

i=1di· .
Any morphism ω: : Li ⊕ Li−1 can be represented by a matrix ω = (ωij)

T where
ωij : Vi ⊕ Vj. Note that multiplying from the left, we have to transpose the matrices.
So in our case, we use “matrices of matrices”. Then all computations, all choices of
bases etc. can be done exactly as in the case with one-pointed algebras. The notation
is somewhat more cumbersome because of the matrix expressions, but that is not a
problem as one will see from the examples.
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4 Incidence-Free Example: The Pair (Line Through Origin,
Point)

We consider the plane A = k[x, y], the x-axis V1 = k[x, y]/(y), and the origin
V2 = k[x, y]/(x, y).

We put V = V1 ⊕ V2 and construct the following resolution

0 V		 A ⊕ A

⎡
1 0
0 1

⎣
		 A ⊕ A2

⎡(
y
)

0
0

(
x y

)⎣
		 A

⎤(
0
)

0

0

⎦
y

−x

⎢
⎥

		 0.		

Lemma 4.1 The tangent space of the deformation functor of V is the following:

Ext1
A(V1, V1) = V1, Ext1

A(V1, V2) = V2 ⊥= k,

Ext1
A(V2, V1) ⊥= k, Ext1

A(V2, V2) = k2.

Proof Taking the Hom(−, V) of the sequence, computing componentwise, we get:

Ext1
A(V1, V1): V1

0 �� V1 �� 0 ∩ Ext1
A(V1, V1) = V1,

Ext1
A(V1, V2): V2

0 �� V2 �� 0 ∩ Ext1
A(V1, V1) = V2 ⊥= k,

Ext1
A(V2, V1): V1

⎦
x
0

⎢
�� V2

1

(
0 −x

)
�� V1 �� 0 . We give the straightforward

computation:

(
0 −x

) ⎦
v1
v2

⎢
= 0 ⇔ −xv2 = 0 ⇔ −xv2 = hy ⇔ v2 ∈ (y) ⇔ v2 = 0.

Thus the kernel is the set of elements of the form (v1, 0), the image is the elements
of the form (xv, 0) so that Ext1

A(V2, V1) = ↔(ϕ, 0)〉 ⊥= k.

Ext1
A(V2, V2): V2

0 �� V2
2

0 �� V2 ∩ Ext1
A(V2, V2) ⊥= V2

2
⊥= k2.

A line can be deformed flatly into any other curve passing through the origin.
This is the result of Ext1

A(V1, V1) = V1. In this example, we are interested in defor-
mations of lines, thus we will only consider deformations of the line that are also
lines. This equals to deformations of linear homogeneous curves, and we choose
x ∈ V1 = Ext1

A(V1, V1)(1) as our tangent direction. So for this example, our free
noncommutative algebra with H/ rad(H)2 = S/ rad(S)2 is

S =
⎦

k↔t11〉 t12
t21 k↔t22(1), t22(2)〉

⎢
.
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Now we will give the Yoneda representation of the tangent space. Recall that the
Yoneda complex for a resolution L. of M is given as

Homp
A(L., L.) = {σi : Li+p ⊕ Li}i,

with differential dp : Homp(L., L.) ⊕ Homp+1(L., L.) given by

dp({σ}) = {σi ◦ d − (−1)pd ◦ σi+1}.

The tangent space is given by the following obvious diagrams:

0 V1		 A		 A
·y		

��
 
 
 
 
 
 

·x

����
��

��
�

0		

0 V1		 A		 A		 0		

0 V1		 A		 A
·y		

��
 
 
 
 
 
 

·1

��
��

��
��

0		

0 V2		 A		 A2		 A		 0		

0 V2		 A		 A2

��
 
 
 
 
 
 

(1 0)

��
��

��
��

⎡
x y

⎣
		 A

−1��
��

��
��

⎤
y

−x

⎥

		 0		

0 V1		 A		 A
y		 0		

0 V2		 A		 A2

��
 
 
 
 
 
 

(1 0)

��
��

��
��

(0 1)��
��

��
��

⎡
x y

⎣
		 A

⎤
y

−x

⎥

		⎡
0

−1

⎣

��
��

��
��⎡

1
0

⎣
��

��
��

��
0		

0 V2		 A		 A2⎡
x y

⎣		 A⎤
y

−x

⎥		 0 .		

Given the Yoneda representation of the tangent space, we can compute the 2. Order
Massey Products (the cup products). To make clear how morphisms are composed,
notice the following illustrative way of thinking:

L2 ⊕ S ⊗k L1 ⊕ S ⊗k S ⊗k L0

sends l to the sequence:

l ⇔⊕ t1 ⊗ϕt1(l) ⇔⊕ t1(t2 ⊗ϕt2(ϕt1(l))) = t1 t2 ⊗ϕt2(ϕt1(l)).
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We get the following results:

↔t2
11〉 = 0, ↔t11t12〉 = 0, ↔t22(1)t21〉 = 0,

↔t22(1)2〉 = 0, ↔t22(2)t22(1)〉 = 1, ↔t12t21〉 = 0,

↔t12t22(1)〉 = 0, ↔t22(2)t21〉 = 1, ↔t22(2)2〉 = 0,

↔t21t12〉 = −1, ↔t2
11〉 = 0, ↔t12t22(2)〉 = 0,

↔t21t11〉 = −x, ↔t22(1)t22(2)〉 = −1, ↔t21t11(2)〉 = 0.

Then this is nearly as simple as it can be, every cup product is zero or a base
element, as far as ↔t21t11〉 = −x = 0 ∈ Ext2

A(V2, V1), forcing us to choose the
following 2. order defining system:

0 V2		 A		 A2

⎡
x y

⎣
		(

0 −1
)

��
��

��
��

A

⎤
y

−x

⎥

		

0��
��

��
��−x

��
 
 
 
 
 
 
 
 0		

0 V1		 A		 Ay
		 0		 0.		

This means that ϕt21t11=

{⎡
0 −1

⎣
0

, and all the rest of the 2. order defining systems

can be chosen to be 0. The only 3. order Massey products to be computed are then:

↔t21t11t11〉 = 0, ↔t22(1)t21t11〉 = 1, ↔t22(2)t21t11〉 = 0.

As the remaining differences are trivial cohomology classes, identically 0, we
have the following result

Proposition 4.1 The versal base space of a line through the origin and a point is

H ≤

⎦
k[t11] t12

t21 k↔t22(1), t22(2)〉
⎢

(t22(2)t22(1) − t22(1)t22(2) − t21t12, t22(2)t21 + t22(1)t21t11)
.

We can interpret this result geometrically: Putting t12 = t21 = 0 we get families:
(1,1): k[x, y]/(t11x + y), t11 ∈ k: Lines with slope t11.
(2,2): k[x, y]/(x + t22(1), y + t22(2)): Points (−t22(1),−t22(2)).

The variables t12, t21 tell how the objects are related at tangent level,

t22(2)t22(1) − t22(1)t22(2) − t21t12

gives no forced tangent relations, it is just a description of the geometry. Then
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t22(2)t21 + t22(1)t21t11 ∩ t21(t11t22(1) + t22(2)) = t21(t11x + y)

means that the constant ext-locus consists of points on the line (the line). So this
is the moduli of all pairs of a point and a line through the origin. In particular, the
Ext-dimension is correct for points on the line.

For the above, we give the computation:

γ(t22(2)t21 + t22(1)t21t11) = 0 ⇔ t22(2)γ(t21) + t22(1)γ(t21t11) = 0

⇔ t22(2)γ(t21) + t22(1)γ(t21)t11 = 0 ⇔ γ(t21)(t22(2) + t22(1)t11) = 0.

5 Deformations and Interactions

Definition 5.1 A diagram c of right A-modules consists of a family | c | of right
A-modules, together with a set λ (V , W) → HomA(V , W) of A-module homomor-
phisms for each pair of modules V , W ∈ | c |.

If A = k, this is called a representation of the corresponding quiver, i.e. the quiver
with | c | as set of nodes and λ = ⋃

V ,W∈| c |
λ (V , W) as arrows. Throughout, we will

just use the notation λ for the corresponding quiver.
Let k[λ ] denote the the quiver algebra. By definition, the quiver algebra is the

k-algebra generated by all finite paths α1α2 · · · αiαi+1 · · · αn such that the head of αi

is the tail of αi+1. Note that ei, the identity at the node i, is considered as a finite path.
Thus k[λ ] is isomorphic to kr[λ ].
Definition 5.2 The category aλ of pointed Artinian λ -algebras is the category of
k[λ ]-algebras fitting into the diagram

k[λ ] ��

Id ��





 S

ε

��
k[λ ],

such that rad(S)n = (ker ε)n = 0. The morphisms of aλ are the commuting k[λ ]-
homomorphisms.

Notice that when λ = ∧, that is we have a diagram with a trivial quiver (no
morphisms but the identities at each node), then k[λ ] = kr so that this definition
is a generalization of the r-pointed algebras. Also notice that by Lemma 2.1, S has
exactly r simple modules.

For the deformation theory, we recall that in the discrete situation, i.e. λ = ∧,

we considered V = r⊕
i=1

Vi as an Ar-module, and a lifting VS of V to S ∈ ob(ar) is an
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S ⊗k A-module satisfying kr ⊗S VS ⊥= V . So we consider V as a kr ⊗k A-module.
This makes perfectly sense also in the situation with nontrivial quivers:

Consider c as a k[λ ] ⊗k A-module, for short, as an A[λ ]-module, by letting the
elements in λ act by right multiplication. That is, an element v = (v1, . . . , vr) ∈ V
is given the action

vαij(l) = (
v1 · · · vr

)
⎧
⎨⎨⎩

...

. . . αij(l) . . .
...

⎝
⎞⎞⎫ = (· · · viαij(l) · · ·)

where we let viαij(l) = αij(l)(vi). So V is a right A, right k[λ ]-module, and because λ

consists of A-linear morphisms, these actions commute. Thus V is an A[λ ]-module.
We want to generalize the deformation functor DefV : ar ⊕ Sets to the category

aλ . A deformation of the diagram c to an object S in aλ should be a deformation VS

which is a deformation of V = | c | to S as an object in ar , but it should also lift the
morphisms in the diagram, i.e. the quiver λ of c. Here, VS a lifting of V = | c | to S
as object in ar , means the natural restriction to Sr = S/λ .

Definition 5.3 Let c be a diagram of A-modules. We define Defc : aλ ⊕ Sets by
letting a deformation, or lifting, of c to S be an S ⊗k A-module VS , flat over S, such
that k[λ ] ⊗S VS ⊥= c, as an A[λ ]-module.

Two deformations are equivalent, VS ⊥ V ∀
S , if they are isomorphic over S, i.e.

there exists an isomorphism Δ : VS ⊕ V ∀
S commuting with the induced isomorphism

k[λ ] ⊗S VS ⊥= k[λ ] ⊗S V ∀
S .

Lemma 5.1 VS ∈ Defλ
V (S) is S-flat if and only if VS ⊥= S ⊗k[λ ] V as S-module.

Proof This follows exactly as in the discrete situation; for R ∈ ar , VR ∈ DefV (R) is
R-flat if and only if VR ⊥= R ⊗kr V as R-module.

Thus, a deformation, or lifting, of V to S is an A-module structure on S ⊗k[λ ] V ,
commuting with the action of S (and then the induced action of k[λ ]). Following step
by step the discrete situation, that is, for every a ∈ A we give an action morphism
ζa: V ⊕ S ⊗k[λ ] V , commuting with the k[λ ]-action. There is a kr-morphism
Φ: S ⊗k[λ ] V � S ⊗kr V given by Φ(αij ⊗ v) = 1 ⊗ αijv, e.g., the λ -action on
S ⊗kr V is right λ action on V . So this is equivalent to, for each a ∈ A, giving
an action morphism ζa: V ⊕ S ⊗kr V commuting with all α ∈ λ . The obstruction
theory is then exactly as before, except that the cohomology controlling deformations
is ExtλA (Vi, Vj), the left derived functor of Homλ

A (V ,−), where the superscript λ

denotes the subspace of morphisms commuting with all α ∈ λ . Notice in particular
that the test-algebra in the incidence situation is

kλ [ν] = k[λ ] ⊗kr (tij)/(tij)
2.

As in the discrete situation, the obstruction calculus can be performed in the
Hochschild cohomology; the ζ ’s give a homomorphism
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ζ : A ⊕ Homλ
A (A, Homk(Vi, Vj)) ⊗k I → HomA(A, Homk(Vi, Vj)) ⊗k I,

where I is the kernel of a small morphism π : S � R. All computations are identical,
we should only be sure they respects the action of λ .

Experience proves that, in some situations, it is easier to work with free resolutions
of modules. The computations in the Hochschild cohomology then translates as
follows:

Choose resolutions 0 ∪ Vi ⊕ Li
. . We can lift λ to the components in the

respective projective resolutions, so that Li = r⊕
j=1

Lj
i becomes an A[λ ]-module as

well as V = r⊕
j=1

Vj:

0 Vi		

αij

��

Li
0

		

αij

��

Li
1

di
0		

αij

��

Li
2

di
1		

αij

��

· · ·di
2		

0 Vj		 Lj
0

		 Lj
1

dj
0		 Lj

2

dj
1		 · · · .

dj
2		

In the discrete situation, we worked in the Yoneda complex Hom.
A(L., L.), using

the quasi isomorphism

Δ : Hom.
A(L., L.) ⊕ HomA(L., V).

Lifting the action of λ as above, we get the natural action of λ on Hom.
A(L., L.)

and HomA(L., V), giving us the possibility to consider Homλ
A (L., V) and Hom.,λ

A
(L., L.), the morphisms that are invariant under λ . There is no reason why these
two are quasi-isomorphic in general, so we have to take invariant cycles, construct
obstructions in H2(Hom.

A(L., L.)) ⊥= H2(Hom(L., V)) ⊥= HH2(A, Endk(V)), know-
ing that the resulting class is an invariant, that is an element in

λ HH2(A, Endk(V)) → Ext2
A(L., V).

We start by choosing bases {(t∇ij(l))} ∗ λ Ext1
A(V , V), and let the test algebra be

S = k[λ ] ⊗kr (t∇ij(l)),

and we do the computations exactly as before.
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6 Example with Incidence: The Pair (Line Through the Origin,
Point on the Line)

We will parameterize pairs (L, p) where L is a line through the origin in the plane
and p is a point on the line L.

We consider the plane k[x, y], the x-axis V1 = k[x, y]/(y), and the origin V2 =
k[x, y]/(x, y).

Inside the moduli of the pairs (L, p), a line and a point, lies the moduli space
of pairs (L, p) with p being a point on the line L. To say algebraically, there is a
homomorphism α : A(L) ⊕ k(p), where A(L) denotes the affine ring of L. For this
subspace of moduli, we use the corresponding notations:

A = k[x, y], V1 = A/(y)
α12⊕ A/(x, y) = V2.

Lift the quotient morphism, which is our incidence in this example, to the reso-
lution 0 ∪ V = V1 ⊕ V2 ∪ L. = L1. ⊕ L2. of V according to the following

0 V1

α12

��

		 A

Id
��

		 A⎤
0
1

⎥

��

y		 0		

0 V2		 A		 A2⎡
x y

⎣		 A		 0.		

Then we start computing, taking the incidence into consideration. Let ω =⎦
ω11 ω21
ω12 ω22

⎢
∈ Ker(HomA(L1, V) ⊕ HomA(L2, V)). From the computations in the

previous subsection, we then know

ω11 = v ∈ V1

ω21 = (v, 0) ∈ V2
1

ω12 = ϕ ∈ V2 ⊥= k

ω22 = (ϕ, ψ) ∈ V2
2

⊥= k2.

For ω to be invariant under the action of λ , i.e. ω ∈ Homλ
A (L1, V), the diagram

L1

ω

��

L1

ω

��

α12		

V Vα12
		

must be commutative. We get ω ◦ α12 = α12 ◦ ω ⇔



Deformations of Diagrams 273

⎦
ω11 ω21
ω12 ω22

⎢ ⎦
0 0

α12 0

⎢
=

⎦
0 0

α12 0

⎢ ⎦
ω11 ω21
ω12 ω22

⎢
⇔

⎦
ω21 ◦ α12 0
ω22 ◦ α12 0

⎢
=

⎦
0 0

α12 ◦ ω11 α12 ◦ ω12

⎢

which gives the equations

ω21 ◦ α12 = 0 ⇔ (
v 0

) ⎦
0
1

⎢
= 0,

α12 ◦ ω21 = 0 ⇔ ω21 = (v, 0), v ∈ (x) ∗ V1,

ω22 ◦ α12 = α12 ◦ ω11 ⇔ (
ϕψ

) ⎦
0
1

⎢
= 0 ⇔ ω22 = (ϕ, 0), ϕ ∈ k.

We want to divide out by Im(Homλ
A (L0, V) ⊕ Homλ

A (L1, V)). For this, there is
only one point of interest;

for ψ =
⎦

ψ11 ψ21
ψ12 ψ22

⎢
, we have that dψ =

⎦
ψ11 ψ21
ψ12 ψ22

⎢ ⎦
d1 0
0 d2

⎢
=

⎦
0 (x, 0)ψ21
0 0

⎢
.

An element ψ =
⎦

ψ12 ψ21
ψ12 ψ22

⎢
is invariant if and only if ψ ◦ α12 = α12 ◦ ψ ⇔

⎦
ψ11 ψ21
ψ12 ψ22

⎢⎦
0 0

α12 0

⎢
=

⎦
0 0

α12 0

⎢ ⎦
ψ11 ψ21
ψ12 ψ22

⎢

⇔
⎦

ψ21 0
ψ22 0

⎢
=

⎦
0 0

α12 ◦ ψ11 α12 ◦ ψ21

⎢
⇔ ψ21 = 0,

implying that the invariant image is the zero space.
This means that there are additional deformations in the case with incidences,

and Ext1
A(V1, V1)

λ is infinite dimensional. Now, we choose a basis for the tangent
space, contained in the case with incidences (notice that ω21 is killed by HomA(L0, V)

forgetting the incidences), i.e., we choose the following, invariant tangent space:

Tλ
A = {ω|ω =

⎦
ϕ1x 0
ϕ2

(
ϕ3 0

)⎢ , ϕi ∈ k, 1 ⊗ i ⊗ 3}.

The Yoneda representations are given by the following diagrams:

0 V1		 A		 A		

x

��














x

����
��

��
�

0		

0 V1		 A		 A		 0		
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0 V1		 A		 A		

1

��














1

��
��

��
��

0		

0 V2		 A		 A2		 A		 0		

0 V2		 A		 A2

(1 0)

��
��

��
��

		 A

⎤
y

−x

⎥

		

⎡
0

−1

⎣
��

��
��

��
0		

0 V2		 A		 A2⎡
x y

⎣		 A		 0.		

So the 2. order Massey products, the cup products, are

↔t2
11〉 = 0, ↔t12t22〉 =

⎦
0

−1

⎢
: L1

2 ⊕ L2
1 = A ∈ HomA(L1

2, V1),

↔t2
22〉 = 0.

Because the only nonzero element is also necessarily nonzero in cohomology, this
means that we end up with the following:

Proposition 6.1 The moduli space of the pair (L, p) with p a point on the line L,
inside the discrete moduli, is

⎦
k[t11] t12

0 k[t22]
⎢

/(t12t22).

The geometric interpretation of this is the set of lines with slope t11, and the point
(t22, t11t22). The relation just tells that the point has to move along the line.
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Noncommutative Algebraic Varieties

Arvid Siqveland

Abstract For a natural number r , we define the free r × r matrix polynomial
algebras and their quotients. We define algebraic sets and tangent spaces between
different points. We then study their naive geometry by deformation theory, and
prove that this defines noncommutative varieties in a natural way.

1 Introduction

Algebraic geometry has a long tradition, and in fact comes from a natural place.
Then after making algebraic geometry to a categorical theme, it is possible to define
noncommutative algebraic geometry. In this text we try to take noncommutative alge-
braic geometry back to the natives. We will use deformation theory to define higher
order derivatives between points, and then use this to construct a noncommutative
variety. Our main commutative reference is Hartshorne’s classical book [2].

Through this notes, k is an algebraically closed field of characteristic 0.

2 Polynomial Matrix Algebras

Let r ⊕ N and let (di j ) be an r × r -matrix with entries di j ⊕ N. We start by defining
the free r × r matrix polynomial algebra generated by the matrix variables ti j (l),
1 ≥ l ≥ di j , in entry 1 ≥ i, j ≥ r . To get into the language, consider the following
(in which r = 2 and di j = 1, 1 ≥ i, j ≥ 2):
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Example 2.1 Let the matrices

X =
(

x 0
0 0

)
, Y =

(
0 y
0 0

)
, Z =

(
0 0
z 0

)
, and W =

(
0 0
0 w

)

be given. Together with the idempotents e1 =
(
1 0
0 0

)
and e2 =

(
0 0
0 1

)
these matrix

variables generates a k2-algebra which is denoted

S =
(

k∈x⊂ ky
kz k∈w⊂

)
.

By the notation
(
Si j

⎧
where Sii is a k-algebra for each i , 1 ≥ i ≥ r , and Si j is a

k-vector space, we mean the kr -algebra generated by the matrices M = (mi j ) with
mi j ⊕ Si j , 1 ≥ i, j ≥ r .

Definition 2.1 For a positive integer r , for each pair (i, j), 1 ≥ i, j ≥ r , let di j ⊕ N.
Then the free polynomial algebra in the matrix variables ti j (l), 1 ≥ i, j ≥ di j , is the
kr -algebra generated by the matrix elements in

⎨
⎩⎪

k∈t11(1), . . . , t11(d11)⊂ · · · ⎝d1r
v=1 kt1r (v)

...
. . .

...⎝dr1
v=1 ktr1(v) · · · k∈trr (1), . . . , trr (drr )⊂

⎞
⎫⎡ .

Alternatively, we consider the kr -module V generated by ti j (l), and let S be the
tensor algebra

S = Tkr (V ) .

Definition 2.2 For a positive integer r , a finitely generated r × r matrix polynomial
algebra is a quotient of a free r × r matrix polynomial algebra.

Lemma 2.1 Let λ : R � S be a surjective k-algebra homomorphism sending
non-units to non-units, and let m ⊗ R be a maximal ideal. Then λ(m) is maximal
in S.

Proof First of all, as sλ(m) = λ(r)λ(m) = λ(rm) ⊕ λ(m) for some r ⊕ R, λ(m)

is an ideal. Assume λ(m) ∅ a and let a = λ(r) ⊕ a \ λ(m). Then r ⊕ λ−1(a) \ m
so that m ∅ λ−1(a) so that λ−1(a) = R. But then 1 = λ(1) ⊕ a implying a = S
and we conclude that λ(m) is maximal.

Remark 2.1 We could have simplified by working only with commutative polyno-
mial algebras on the diagonal. However, for obvious reasons, we choose to be as
general as reasonable.

Lemma 2.2 The maximal (right or left or both) ideals, corresponding to one-
dimensional simple modules, of the free noncommutative k-algebra k∈t1, . . . , td⊂
are the ideals generated by (t1 − a1, . . . , td − ad) with a1, . . . , ad ⊕ k.
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Proof Let m be a maximal ideal in S = k∈t1, . . . , td⊂. We have a surjection λ0 :
S � k[t1, . . . , td ]. We let m0 = λ0(m) which is a maximal ideal, and because k
is algebraically closed, k[t1, . . . , td ]/m0 � k. Letting λ : S → k be the canonical
homomorphism and letting λ(ti ) = ai , we findm = ker λ = (t1 − a1, . . . , td − ad).

Lemma 2.3 For each i ≥ r , let Sii = k∈tii (1), . . . , tii (dii )⊂, and let λi i : S � Sii

be the natural morphism. Then the maximal ideals of the free matrix algebra S are
the ideals mi i = λ−1

i i (m) where m ⊗ Sii is a maximal ideal. This means that the
maximal ideals of S are the maximal ideals on the diagonal.

Proof For a maximal ideal mi i ⊗ Sii , we have an isomorphism

S/λ−1
i i (mi i )

�→ Sii/mi i .

This proves that λ−1
i i (mi i ) is a maximal ideal. For the converse, assume m ⊗ S

is maximal. If λi i (m) = Sii for all i , it follows that 1 = ⎝
ei is in m which is

impossible. Thus there exists an i whereλi i (m) → mi i for amaximal idealmi i ⊗ Sii .
Thenm → λ−1

i i (λi i (m)) → λ−1
i i (mi i ) � S. Thenm = λ−1

i i (mi i ) by maximality, and
the lemma is proved.

3 Algebraic Spaces and Matrix Coordinate Algebras

For ordinary polynomial algebras, the evaluation in points of affine space is clear.
We give the definition for the r × r polynomial matrix algebras. Let S = (Si j ) be
an r × r matrix polynomial algebra. Let as before Sii = k∈tii (1), . . . , tii (dii )⊂ and
let λi i : S → Sii be the morphism defined by sending tii (l) ⊕ S to tii (l) ⊕ Sii ,
and all other generators to 0. We have seen that the maximal ideals in S are in one
to one correspondence with the collection of maximal ideals in the k-algebras Sii ,
1 ≥ i ≥ r .

Definition 3.1 The affine r × r -space A
r×r
S is the set of points (maximal ideals) in

the free r × r matrix polynomial algebra S. (Together with the additional structure
given by S to be defined in the next section).

We define the evaluation of f ⊕ S in the point p = mii ⊕ Sii as f (p) = λi i ( f ),
the class of λi i ( f ) ⊕ Sii/mi i . So, in the situation with polynomial matrix algebras,
we have the following naive definition.

Definition 3.2 Let S = (Si j ) be a free r × r matrix polynomial algebra, and let
I = (Ii j ) → S be an ideal. Then an algebraic set is a set on the form Z(I ) = {p ⊕
A

r×r
S : f (p) = 0,∞ f ⊕ I }. Conversely, let V → A

r×r
S . Then the ideal of V is

I (V ) = { f ⊕ S : f (p) = 0,∞p ⊕ V }, and the affine matrix ring coordinate ring is
defined as S(V ) = S/I (V ).
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4 Tangent Spaces for Finitely Generated Matrix Algebras

Speaking differential geometric, for an affine variety V = Z(I ) → A
n , I →

k[x1, . . . , xd ] an ideal, the tangent directions are the directions along which we
can differentiate, so that the total differential is a sum of the differentials along the
directions. Even better, the k-vector space of derivations has a basis indexed over the
tangent directions. Translated to algebraic geometry, for a pointm ⊕ V , we consider
the A(V )-module A(V )/m � k and find a basis for the vector space of k-derivations
Derk(A(V ), k) indexed over what we could call tangent directions, spanning the
tangent space. So we just call Derk(A(V ), k) the tangent space. To recognize this in
other textbooks, e.g. Hartshorne [2], we notice the following:

Lemma 4.1 For a general vector space W , letting W ∪ denote the dual vector space,
we have that

Derk(A(V ), k) � (m/m2)∪ .

Proof As A(V ) is generated in degree one by m, a derivation is determined by its
value on the generators on m. In addition, as the target module is k = A(V )/m, any
derivation α satisfies α(m2) = 0 giving a linear transformation α : m/m2 → k. Also,
given such a linear transformation α with α(m2) = 0, α defines a derivation.

Now, we generalize this to the noncommutative situation, that is to the finitely
generated matrix polynomial algebras. For any two points in a variety V , that is
for any two maximal ideals m1 and m2, put V1 = S(V )/m1 and V2 = S(V )/m2.
Then we have proved above that S(V )/mi � S j j/m

↔
i for i = 1, 2 and some j’s,

so we can consider Homk(V1, V2) as an S-bimodule by defining (sε)(v) = ε(sv)
and (εs)(v) = sε(v), with the given multiplication by s. We then define the tangent
space between two closed points as

TV1,V2 = Ext1S(V )(V1, V2) = HH1(S(V ),Homk(V1, V2))

= Derk(S(V ),Homk(V1, V2))/ Inner .

In the commutative situation, for a commutative k-algebra A, and two different
simple A-modules V1 = A/m1, V2 = A/m2, it is well known that Ext1A(V1, V2) ∼=
Derk(A,Homk(V1, V2))/ Inner = 0. In the noncommutative case however, this is
is different. The noncommutative information is contained in the different tangent
spaces and higher order derivations between the different points. For simplicity,
we give the following definition in all generality, even if it makes sense only for
noncommutative k-algebras.

Definition 4.1 Let S be any k-algebra. The tangent space between two S-modules
M1 and M2 is

Ext1S(M1, M2) ∼= HH1(S,Homk(M1, M2))

where HH· is the Hochschild cohomology.
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Example 4.1 Let S =
(

k[t11] kt12
kt21 k[t22]

)
and consider two general points

V1 = k[t11]/(t11 − a) , V2 = k[t22]/(t22 − b) .

First, we compute

Ext1S(Vi , Vj ) ∼= Derk(S,Homk(Vi , Vj ))/ Inner

by derivations:
Ext1S(V1, V1): Let α ⊕ Derk(S,Endk(V1)). Then

α(ei ) = α(e2i ) = 2α(ei ) ∗ α(ei ) = 0, i = 1, 2 .

α(t12) = α(t12e2) = α(t12)e2 = 0 ,

α(t21) = α(e2t21) = e2α(t21) = 0 ,

α(t22) = α(t22)e2 = 0 ,

and finally
α(t11) = Δ .

Asall inner derivations are zero (easily seen from the computation above),wefind that
Ext1S(V1, V1) is generated by the derivation sending t11 to Δ, and all other generators
to 0.
Ext1S(V1, V2):
For α ⊕ Derk(S,Endk(V1, V2)) things are slightly different. α(e1) = α(e21) =

e1α(e1) + α(e1)e1 = α(e1), that is, the above trick doesn’t work quite the same way.
However, as α(1) = α(e1 + e2) = 0, for every derivation α : S → Endk(V1, V2), we
find α(e1) = Δ, α(e2) = −Δ,

α(e1) = Δ, α(e2) = −Δ,

α(t11) = α(t11e1) = α(t11)e1 + t11α(e1) = aΔ,

α(t21) = α(t21e1) = α(t21)e1 = 0,

α(t22) = α(e2t22) = α(e2)t22 = −bΔ,

α(t12) = δ .

So a general derivation can be written, the ∪ denoting the dual,

α = Δe∪
1 − Δe∪

2 + aΔt∪11 − bΔt∪22 + δt∪12 .



280 A. Siqveland

For the inner derivations, we compute

adω(e1) = ωe1 − e1ω = −ω ,

adω(e2) = ωe2 − e2ω = ω ,

adω(t11) = −ωa ,

adω(t22) = ωb ,

saying that

adω = θ e∪
1 − θ e∪

2 + aθ t∪11 − bθ t∪22, where we have put θ = −ω .

So as adω(t12) = 0, and there are no conditions on α(t12), we get

Ext1S(V1, V2) = kt∪12 = kdt12 .

The cases Ext1S(V2, V1) and Ext1S(V2, V2) are exactly similar.
Generalizing the computation in the above example,wehaveproved the following:

Lemma 4.2 Let S be a general free r × r matrix polynomial algebra, and let
Vi = Vii (pii ) be the point pii in entry i, i . Then the tangent space from Vi to

Vj is Ext1S(Vi , Vj ) = ≤di j
l=1kdti j (l).

Now, we will explain what happens in the case with relations, that is, quotients
of a matrix polynomial algebra.

Example 4.2 We let R =
(

k[t11] kt12
kt21 k[t22]

)
/(t11t12 − t12t22). The polynomial in

the ideal is really in the entry (1, 2), but there is no ambiguity writing it like
this. The points are still the simple modules along the diagonal, but a derivation
α ⊕ Derk(R,Homk(Vii (pii ), Vj j (p j j ))), must this time respect the quotient;

α(t11t12 − t12t22) = 0 .

This says

α(t11t12 − t12t22) = t11α(t12) + α(t11)t12 − t12α(t22) − α(t12)t22 = 0 ,

and is fulfilled for any α ⊕ Ext1R(Vi , Vj ), (i, j) ⊥= (1, 2). When α ⊕ Ext1R(V1, V2),
we get that the above equation is equivalent to

t11α(t12) − α(t12)t22 = α(t12)(t11 − t22) = 0 .

Thus in the case that p11 ⊥= p22 the tangent direction is annihilated: This quotient
has no tangent direction from V1(p1) to V2(p2) unless p1 = p2.
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This example illustrates the geometry of matrix polynomial algebras, and is of
course nothing else than the obvious generalization of the the ordinary tangent space:

Lemma 4.3 Let S be a finitely generated r × r matrix polynomial algebra with
residue δ : S → kr and radical m = ker δ. Let p1, p2 be two points on the
diagonal of S with respective quotients V1 ∼= V2 ∼= k. Then Tp1,p2 = Ext1S(V1, V2) =
Homk(m/m2, k) where the action on k ∼= Homk(V1, V2) is the left-right action
defined by (sε)(v) = ε(vs), (εs)(v) = ε(v)s (for right modules).

The tangent space is not enough to reconstruct the algebra, not even in the com-
mutative situation. As always, to get the full geometric picture we also need the
higher order derivatives. Even if we cannot reconstruct the algebra in all cases, we
get an algebra that is geometrically equivalent (Morita equivalent), and that suffices
in construction of moduli.

5 Noncommutative Deformation Theory

For ordinary, commutative, varieties V , for each closed pointm, we have the ring of
local regular functions. For noncommutative k-algebras, there are serious challenges
with localizing. These challenges are already present when it comes to finitely gen-
erated matrix polynomial algebras, and as the noncommutative deformation theory
is the solution, we need to go through the basics of this. However, the constructive
proof of existence of a local formal moduli is found in the classical works of Laudal
[3], also formulated by Eriksen in [1].

Definition 5.1 The objects in the category ar are the k-algebras S with morphisms
commuting in the diagram

kr π ��

Id ���
��

��
��

S

δ

��
kr

,

such that ker(δ)n = 0. We call ker(δ) = rad(S) the radical, the morphisms are
the morphisms commuting with π and δ. The category ar is called the category of
r -pointed Artinian k-algebras. The notation âr denotes the procategory of ar , the
category of objects that are projective limits of objects in ar .

Definition 5.2 Let A be a k-algebra, let V = {V1, . . . , Vr } be A-modules. The
noncommutative deformation functor DefV : ar → Sets is given by:

DefV (S) = {S ∀k A-Mod VS , flat overS : kr ∀S VS � V }/ ∼=

where the equivalence of MS and M ↔
S is given as an isomorphism
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MS

���
��

��
��

�
� �� M ↔

S

����
��

��
��

M

.

Lemma 5.1 (Yoneda). Consider a covariant functor F : C → Sets. Then there is
an isomorphism

ζ : F(R) → Hom(Hom(R,−), F)

given by ζ(ν)(σ) = F(σ)(ν), for ν ⊕ F(R) and σ : R → R↔ any morphism.

Definition 5.3 In the above situation, (Ĥ , ν̂ ) is said to prorepresent DefV : âr →
Sets if ζ(ν̂) is an isomorphism. If ζ(ν̂) is smooth and an isomorphism for the r × r
matrix polynomial algebra R in the variables ϕi j , 1 ≥ i, j ≥ r , (ϕi j )

2 = 0, we call
(Ĥ , ν̂ ) a prorepresenting hull, or a local formal moduli.

Theorem 5.1 There exists a local formal moduli (ĤV , ν̂V ) for the noncommutative
deformation functor DefV . There is a homomorphism

π : A → (Hi j ) ∀kr Homk(Vi , Vj ) .

Its kernel is given by ker π = ∩
i,n
an

i where ai = ker δi : A → Endk(Vi ).

Proof The proof is given by Laudal in [3].

In our situation, what we need is the following:

Corollary 5.1 For V = {V1, . . . , Vr } a collection of simple S-modules where S is
a finitely generated matrix polynomial algebra, there exists an injection

π : S γ→ ĤV

such that π( f ) is a unit if f ⊕ S \∪r
i=1mi , where mi , 1 ≥ i ≥ r , is the maximal ideal

corresponding to Vi .

We notice that this holds also in the ordinary commutative situation, allowing us
to replace a localization with the image of S.

Definition 5.4 For a finite family of simple modules V = {V1, . . . , Vr }, the local-
ization of S in V is the k-algebra SV generated by the image of π in ĤV , together with
the inverses of the images of elements not contained in any of the maximal ideals.
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6 Definition of Noncommutative Varieties

In this final section, we make the direct translation of the general theory in [4] to
the affine varieties. As in the commutative situation, we let A(S) denote the set of
maximal ideals in S. We define a topology on A(S) by letting the closed sets be the
algebraic sets Z(I ) where I → S is an ideal. Alternatively, the sets D( f ), f ⊕ S,
given by D( f ) = {m : f /⊕ m}, is a generating set for the topology.

For any set U , let Pf(U ) denote the set of finite subsets of U . We define a sheaf
of rings on the topological space: For an open U we let

OS(U ) = { f : Pf(U) →
∐

c⊕Pf(U)

Sc}

such that f is locally regular: For each c ⊕ Pf(U) there exists an open sub-
set V → U containing c and elements f, g ⊕ S with g not in the unions of the
corresponding maximal ideals of any of the subsets c↔ ⊕ Pf(V ).

Then all theorems from the commutative situations are prolonged, and we have
the category of noncommutative varieties

(A(S),OS) .
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Computing Noncommutative Deformations

Eivind Eriksen

Abstract Let M be a right module over an associative k-algebra A, where k is a
field. We show how to compute noncommutative deformations of M in concrete
terms, using an obstruction calculus based on free resolutions.

1 Introduction

Let A be an associative k-algebra, where k is a field. For any right A-module M ,
there is a noncommutative deformation functor DefM : a1 ⊕ Sets, introduced
in Laudal [2], defined on the category a1 of local Artinian k-algebras with residue
field k. The noncommutative deformation functor extends the classical deformation
functor Defcl

M : l ⊕ Sets, defined on the category l of local commutative Artinian
k-algebras with residue field k.

In this paper, we show how to compute noncommutative deformations of M in
concrete terms, using an obstruction calculus based on free resolutions. We show the
computations explicitly in the example with A = k[x, y] and M = A/(x2, y), which
is obstructed. We also compare the result with the classical deformations of M .

2 Noncommutative Deformations of Modules

Let M be a right module over an associative k-algebra A, where k is a field. Then
there is a classical deformation functor Defcl

M : l ⊕ Sets, where l is the category of
commutative Artinian local k-algebras with residue field k. We fix a free resolution
(L•, d•) of M . For any algebra R in l, a lifting of complexes from (L•, d•) to R is a
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complex (L R• , d R• ) of R-A bimodules, with L R
m = R ≥k Lm , such that the following

diagram commutes:

L R
0

��

L R
1

��

d R
0�� L R

2

��

d R
1�� . . .

d R
2��

L0 L1d0
�� L2d1

�� . . .
d2

��

It is well-known that Defcl
M (R) can be identified with the set of equivalence

classes of liftings of (L•, d•) to R, and that Defcl
M has tangent space t(Defcl

M ) ∈=
Ext1A(M, M) and an obstruction theory with cohomology {Ext p

A(M, M)}. When
d = dimk Ext1A(M, M) and r = dimk Ext2A(M, M) are finite, there is an obstruction
morphism

ocl : k[[s1, s2, . . . , sr ]] ⊕ k[[t1, t2, . . . , td ]]

such that Hcl = k[[t1, . . . , td ]]/( f cl
1 , . . . , f cl

r ) is a pro-representing hull of Defcl
M ,

with f cl
i = ocl(si ) for 1 ⊂ i ⊂ r . Its versal family is given by a lifting of complexes

of (L•, d•) to Hcl.
There is an extension of the classical deformation functor Defcl

M of M to a non-
commutative deformation functor DefM : a1 ⊕ Sets, where a1 is the category of
local Artinian k-algebras with residue field k. This extension is due to Laudal [2];
see also Eriksen [1] for details. We remark that DefM (R) can be identified with the
set of equivalence classes of liftings of (L•, d•) to R. When d = dimk Ext1A(M, M)

and r = dimk Ext2A(M, M) are finite, there is an obstruction morphism

o : k⊗⊗s1, s2, . . . , sr 〉〉 ⊕ k⊗⊗t1, t2, . . . , td〉〉

such that H = k⊗⊗t1, t2, . . . , td〉〉/( f1, . . . , fr ) is a pro-representing hull of DefM ,
with fi = o(si ) for 1 ⊂ i ⊂ r . Its versal family is given by a lifting of complexes of
(L•, d•) to H .

The relationship between classical and noncommutative deformations are given
by the following commutative diagram

k⊗⊗s1, s2, . . . , sr 〉〉

��

o �� k⊗⊗t1, t2, . . . , td〉〉

��
k[[s1, s2, . . . , sr ]] ocl

�� k[[t1, t2, . . . , td ]]

where the vertical maps are the natural commutativization homomorphisms given
by A ⊕ Acl = A/(xy − yx : x, y ∈ A). In particular, f cl

i is the image of fi in
k[[t1, . . . , td ]] for 1 ⊂ i ⊂ r .
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3 A Concrete Description of Lifting of Complexes

Let R be an algebra in a1, and choose a k-linear base {ri : 0 ⊂ i ⊂ l} of R with
r0 = 1. Then a lifting of complexes of (L•, d•) to R is given by R-A linear maps
d R

m : L R
m+1 ⊕ L R

m for m → 0, and d R
m is determined by its value on elements of the

form 1≥ f in L R
m+1 = R ≥k Lm+1. Therefore the differential d R

m can be considered
as an element in HomA(Lm+1, R ≥k Lm) ∈= R ≥k HomA(Lm+1, Lm), described in
concrete terms as

d R
m = 1 ≥ dm +

l∑
i=1

ri ≥ α(ri )m

where α = {α(ri )m : m → 0, 0 ⊂ i ⊂ l} is a family of A-linear homomorphisms
α(ri )m : Lm+1 ⊕ Lm with α(1)m = dm . Conversely, such a family α of A-linear
homomorphisms represents a lifting of complexes of (L•, d•) to R if and only if
d R

m ∞ d R
m+1 = 0 for all m → 0. This condition can be expressed in terms of α as

∑
1⊂i⊂l

ri ≥ (α(ri )m dm+1 + dm α(ri )m+1) +
∑

1⊂i, j⊂l

r j ri ≥ α(ri )m α(r j )m+1 = 0

Notice that on the tangent level, where r jri = 0 for 1 ⊂ i, j ⊂ l, α determines a
lifting of complexes to R if and only if α(ri ) is a 1-cocycle in the Yoneda complex
YC•(L•, L•). We recall that the Yoneda complex YC•(L•, L•) is defined by

YCn(L•, L•) =
∏
m→0

HomA(Lm+n, Lm)

for all n → 0, and with differential dn : YCn(L•, L•) ⊕ YCn+1(L•, L•) given by

dn(φ)m = φm dn+m + (−1)n+1dm φm+1 for m → 0

for all φ = (φm)m→0 ∈ YCn(L•, L•). It is well-known that the cohomology of the
Yoneda complex is YHp(M, M) = Hp(YC•(L•, L•)) ∈= Ext p

A(M, M).

4 Computing Noncommutative Deformations in an Example

Let A = k[x, y], and let M be the right A-module M = A/(x2, y) with free resolu-
tion (L•, d•) given by

0 ∪ M ∪ A

(
x2 y

)
·

∪−−−−− A2

(
y

−x2

)
·

∪−−−−− A ∪ 0
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To compute Ext p
A(M, M) for p = 1 (the tangent space) and p = 2 (the obstruction

space), we consider the complex HomA(L•, M):

M
·
(
x2 y

)
−−−−−⊕ M2

·
(

y
−x2

)

−−−−−⊕ M ⊕ 0

Note that the differentials in this complex are zero. Since M = k[x, y]/(x2, y) ↔
k + kx has dimension two, we see that

Ext p
A(M, M) =

{
(k + kx)2 ∈= k4, p = 1

k + kx ∈= k2, p = 2

Hence there are noncommutative power series f1, f2 ∈ k⊗⊗t1, t2, t3, t4〉〉 determined
by the obstruction morphism such that H = k⊗⊗t1, t2, t3, t4〉〉/( f1, f2) is a pro-
representing hull of the noncommutative deformation functor DefM . We shall com-
pute f1 and f2 in concrete terms.

At the tangent level, H2 = k⊗⊗t1, t2, t3, t4〉〉/(t1, t2, t3, t4)2, and the versal family
ξ2 ∈ DefM (H2) is given by a lifting of complexes of (L•, d•) to H2. In concrete
terms, the differential in H2 ≥k HomA(Lm+1, Lm) is given by

d H2
m = 1 ≥ dm +

∑
1⊂i⊂4

ti ≥ α(ti )m

for all m → 0. We let t∗1 = (1, 0), t∗2 = (x, 0), t∗3 = (0, 1), t∗4 = (0, x) such that
{t∗1 , t∗2 , t∗3 , t∗4 } is a k-linear base for t(DefM ), and letα(ti ) be a 1-cocycle in theYoneda
complex YC•(L•, L•) that represents t∗i ∈ YH1(M, M) ∈= Ext1A(M, M). Note that
a 1-cocyle φ ∈ YC1(L•, L•) is a pair (φ0, φ1) of A-linear maps φi : Li+1 ⊕ Li

such that d0φ1 + φ0d1 = 0 since Li = 0 for i > 2. We may therefore choose

α(t1) =
{(

1 0
) · ,

(
0

−1

)
·
}

α(t3) =
{(

0 1
) · ,

(
1
0

)
·
}

α(t2) =
{(

x 0
) · ,

(
0

−x

)
·
}

α(t4) =
{(

0 x
) · ,

(
x
0

)
·
}

Then the differential d H2 = (d H2
0 , d H2

1 ) is explicitly given by

d H2
0 = d0 +

∑
1⊂i⊂4

ti α(ti )0 = (
x2 + t1 + t2x y + t3 + t4x

) ·

d H2
1 = d1 +

∑
1⊂i⊂4

ti α(ti )1 =
(

y + t3 + t4x
−x2 − t1 − t2x

)
·
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By construction, d H2
0 ∞ d H2

1 = 0 in H2 ≥k HomA(L2, L0) and we may check that
this is the case:

d H2
0 ∞ d H2

1 = (
x2 + t1 + t2x y + t3 + t4x

) ·
(

y + t3 + t4x
−x2 − t1 − t2x

)

= (x2 + t1 + t2x)(y + t3 + t4x) + (y + t3 + t4x)(−x2 − t1 − t2x)

= [t3, t1] + [t4, t1]x + [t3, t2]x + [t4, t2]x2

Since (t1, . . . , t4)2 = 0 in H2, this obstruction vansishes. The obstruction space
Ext2A(M, M) ∈= YH2(M, M) = k + kx has a k-linear base {s∗

1 = 1, s∗
2 = x}, and

we can write the obstruction as

[t3, t1]s∗
1 + ([t4, t1] + [t3, t2])s∗

2 + [t4, t2]x2s∗
1

Since s∗
1 , s∗

2 ∗= 0 while x2s∗
1 = 0 in YH2(M, M), it follows that H3 = k⊗⊗t1, t2〉〉/a3,

where a3 = ( f 21 , f 22 ) + (t1, t2)3 and f 21 = [t3, t1], f 22 = [t4, t1] + [t3, t2] are the
second order approximations of f1 and f2. To lift ξ2 to H3, we choose α(t4t2) and
α(t2t4) such that d1α(t4t2) = −x2s∗

1 and d1α(t2t4) = x2s∗
1 , and find that

d1
({(

0 1
) · ,

(
0
0

)
·
})

= −x2s∗
1 ≤ α(t4t2) =

{(
0 1

) · ,

(
0
0

)
·
}

≤ α(t2t4) =
{(

0 −1
) · ,

(
0
0

)
·
}

Explicitly, the lifting ξ3 is represented by the differential d H3 , given by

d H3
0 = (

x2 + t1 + t2x y + t3 + t4x + [t4, t2]
) ·

d H3
1 =

(
y + t3 + t4x

−x2 − t1 − t2x

)
·

Again, we compute the obstruction given by d H3
0 d H3

1 , and find that

d H3
0 ∞ d H3

1 = (
x2 + t1 + t2x y + t3 + t4x + [t4, t2]

) ·
(

y + t3 + t4x
−x2 − t1 − t2x

)

= [t3, t1] + ([t4, t1] + [t3, t2])x − t1[t4, t2] − t2[t4, t2]x
= ([t3, t1] − t1[t4, t2])s∗

1 + ([t4, t1] + [t3, t2] − t2[t4, t2])s∗
2 .

This implies that H4 = k⊗⊗t1, t2, t3, t4〉〉/a4, where a4 = ( f 31 , f 32 ) + (t1, t2, t3, t4)4

and f 31 = [t3, t1] − t1[t4, t2], f 32 = [t4, t1] + [t3, t2] − t2[t4, t2] are the third order
approximations of f1 and f2. We see that ξ3 can be lifted to

H = k⊗⊗t1, t2, t3, t4〉〉/([t3, t1] − t1[t4, t2], [t4, t1] + [t3, t2] − t2[t4, t2])
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and this implies that H is the pro-representing hull of the noncommutative deforma-
tion functorDefM (with f1 = [t3, t1]−t1[t4, t2] and f2 = [t4, t1]+[t3, t2]−t2[t4, t2]),
and that DefM is obstructed. The versal family ξ ∈ DefM (H) is given by a lifting of
complexes of (L•, d•) to H . In concrete terms, the differential d H = (d H

m ) is given
by

d H
0 = (

x2 + t1 + t2x y + t3 + t4x + [t4, t2]
) · and d H

1 =
(

y + t3 + t4x
−x2 − t1 − t2x

)
·

and the versal family ξ ∈ DefM (H) is the H -A bimodule MH = coker(d H
0 ).

5 Comparison with Classical Deformations

From the computations above, it follows that the classical deformation functor Defcl
M

has a pro-representing hull Hcl = k[[t1, . . . , t4]] since f cl
1 = f cl

2 = 0, and thatDefcl
M

is unobstructed. Its versal family is given by the differential

d H
0 = (

x2 + t1 + t2x y + t3 + t4x
) · and d H

1 =
(

y + t3 + t4x
−x2 − t1 − t2x

)
·

since [t4, t2] = 0 in Hcl. Hence the versal family is the Hcl-A bimodule MHcl given
by

MHcl = k[[t1, . . . , t4]][x, y]/(x2 + t1 + t2x, y + t3 + t4x)

We see that there is an algebraization of Hcl and its versal family, given by the algebra
Hcl = k[t1, t2, t3, t4] and the versal family

MHcl = k[t1, . . . , t4][x, y]/(x2 + t1 + t2x, y + t3 + t4x)

The corresponding family of classical deformations of M , parameterized by the
closed points of specHcl = A

4, is {MHcl(τ ) : τ = (τ1, . . . , τ4) ∈ A
4} with

MHcl(τ ) ∈= k[x, y]/(x2 + τ1 + τ2x, y + τ3 + τ4x)

This is a family of right A-modules of length 2.
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Geometric Classification of 4-Dimensional
Superalgebras

Aaron Armour and Yinhuo Zhang

Abstract In this paper, we give a geometric classification of 4-dimensional super-
algebras over an algebraic closed field. It turns out that the number of irreducible
components of the variety of 4-dimensional superalgebras Salg4 under the Zariski
topology is between 20 and 22. One of the significant differences between the variety
Algn and the variety Salgn is that Salgn is disconnected while Algn is connected.
Under certain conditions on n, one can show that the variety Salgn is the disjoint
union of n connected subvrieties. We shall present the degeneration diagrams of the
4 disjoint connected subvarieties Salgi

4 of Salg4.

1 Introduction

The algebraic and geometric classification of finite dimensional algebras over an
algebraic closed field k was initiated by Gabriel in [5], and has been being one of
the interesting topics in the study of geometric methods in representation theory of
algebras for the last three decades. In [5], Gabriel gave a complete list of noniso-
morphic 4-dimensional algebras over an algebraic closed field k with characteristic
not equal to 2. The number of irreducible components of the variety Alg4 is 5.
The classification of 5-dimensional k-algebras was done by Mazzola in [10]. The
number of irreducible components of the variety Alg5 was showed to be 10. Fur-
ther studies on the classification of low dimensional (rigid) algebras can be found
in [4, 6, 8, 9, 13]. With the dimension n increasing, both algebraic and geometric
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classifications of n-dimensional k-algebras become more and more difficult. How-
ever, A lower and a upper bound for the number of irreducible components of Algn

can be given (see [11]). Now let Vn be an n-dimensional vector space over k with a
basis {e1, e2, . . . , en}. An algebra structure on Vn is determined by a set of structure
constants ch

i j , where ei ·e j = ∑
h ch

i j eh . Requiring the algebra structure to be associa-

tive and unitary gives rise to a subvariety Algn of kn3 . Base changes in Vn result in the
natural transport of structure action on Algn , namely the action of GLn(k) on Algn .
Thus isomorphism classes of n-dimensional algebras are in one-to-one correspon-
dence with the orbits of the action of GLn(k) on Algn . The decomposition of Algn

into its irreducible components under the Zariski topology is called the geometric
classification of n-dimensional algebras.

Our main interest is to give a geometric classification of 4-dimensional superal-
gebras, i.e. Z2-graded algebras. We notice that a Z2-graded algebra is the same as
a pair (A, λ ) consisting of an algebra A and an algebra involution λ . This enables
us to define the variety Salgn—the variety of n-dimensional superalgebras—as a

subvariety of kn3+n2 . One of the significant differences between the variety Algn

and the variety Salgn is that Salgn is disconnected while Algn is connected. Under
certain assumptions on n and ch(k) it can be shown that Salgn is the disjoint union
of n connected subvarieties, for example, when n ⊕ 6 or ch(k) = 0.

The paper is organized as follows. In Sect. 2, we define the variety Salgn of n-
dimensional superalgebras, a closed subvariety of SAn of n-dimensional algebras.
Salgn is a disjoint union of the subsets Salgi

n , i = 1, 2, . . . , n. When n ⊕ 6 or
ch(k) = 0, they are closed in Salgn and form connected components of Salgn .

In Sect. 3, we compute the dimensions of the orbits in Salg4, which will help us to
determine the degenerations of the superalgebras. So we need to recall the algebraic
group Gn and the transport of its structure action on Salgn . Since Gn is connected,
every irreducible component of Salgn is the closure of either a single orbit or an
infinite family of orbits. In Sect. 4, we will use the ring properties of superalgebras
to determine some closed sets of Salgn . For instance, the set of superalgebras A
with A2

1 = 0 is a closed subset. Similarly the set of superalgebras with A0 being
commutative is also a closed subset. The closed subsets can help us to determine
some superalgebras that can not degenerate to other superalgebras.

In the last section, we give the degeneration diagrams of Salgi
4, where i = 2, 3.

The degeneration diagram of Salg44 = Alg4 has been given by Gabriel, and Salg
1
4 has

only one orbit. In total, we have found 20 irreducible components of Salg4. However,
Salg4 may posses up to 22 irreducible components.

To end the introduction, let us recall from [1] the algebraic classification of
4-dimensional superalgebras over an algebraic closed field k as the geometric clas-
sification must be made on the basis of the algebraic classification. Throughout, k
is an algebraic closed field with ch(k) ≥= 2. All the algebras without other specified
are over k.

Theorem 1.1 [5] The following algebras are pairwise non-isomorphic except pairs
within the family (18; α|0) where (18; α1|0) ∈= (18; α2|0) if and only if α1 = α2 or
α1α2 = 1.
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(1|0) k × k × k × k, (2|0) k × k × k[X ]/(X2),

(3|0) k[X ]/(X2) × k[Y ]/(Y 2), (4|0) k × k[X ]/(X3),

(5|0) k[X ]/(X4), (6|0) k × k[X, Y ]/(X, Y )2,

(7|0) k[X, Y ]/(X2, Y 2), (8|0) k[X, Y ]/(X3, XY, Y 2),

(9|0) k[X, Y, Z ]/(X, Y, Z)2, (10|0) M2,

(11|0)

⎧

⎨
⎩

a 0 0 0
0 a 0 d
c 0 b 0
0 0 0 b

⎪
⎝

⎞⎞⎞⎞⎞⎞ a, b, c, d ⊂ k

⎫⎡
⎣, (12|0) ⊗k2,

(13|0) k ×
⎤

k k
0 k

⎦
=

⎢
(a,

⎤
b c
0 d

⎦
)

⎞⎞⎞ a, b, c, d ⊂ k
⎥
, (14|0)

{(
a 0 0
c a 0
d 0 b

)⎞⎞⎞⎞⎞ a, b, c, d ⊂ k

}
,

(15|0)
{(

a c d
0 a 0
0 0 b

)⎞⎞⎞⎞⎞ a, b, c, d ⊂ k

}
, (16|0) k〈X, Y 〉/(X2, Y 2, Y X),

(17|0)
{(

a 0 0
0 a 0
c d b

)⎞⎞⎞⎞⎞ a, b, c, d ⊂ k

}
,

(18; α|0) k〈X, Y 〉/(X2, Y 2, Y X − αXY ), α ≥= −1, 0, 1,
(19|0) k〈X, Y 〉/(Y 2, X2 + Y X, XY + Y X).

Theorem 1.2 [1, Thm 3.1] Suppose A is a superalgebra with dim A0 = 3 and
dim A1 = 1. Then A is isomorphic to one of the superalgebras in the following
pairwise non-isomorphic families:

(1|1) k × k × k × k :
(1|1)0 = k(1, 1, 1, 1) → k(1, 0, 0, 0) → k(0, 0, 1, 1), (1|1)1 = k(0, 0, 1, −1),

(2|1) k × k × k[X ]/(X2) :
(2|1)0 = k(1, 1, 1) → k(1, 0, 0) → k(0, 1, 0), (2|1)1 = k(0, 0, X),

(2|2) (2|2)0 = k(1, 1, 1) → k(1, 1, 0) → k(0, 0, X), (2|2)1 = k(1, −1, 0),
(3|1) k[X ]/(X2) × k[Y ]/(Y 2) :

(3|1)0 = k(1, 1) → k(1, 0) → k(X, 0), (3|1)1 = k(0, Y ),

(4|1) k × k[X ]/(X3) :
(4|1)0 = k(1, 1) → k(1, 0) → k(0, X2), (4|1)1 = k(0, X),

(6|1) k × k[X, Y ]/(X, Y )2 :
(6|1)0 = k(1, 1) → k(1, 0) → k(0, X), (6|1)1 = k(0, Y ),

(7|1) k[X, Y ]/(X2, Y 2) :
(7|1)0 = k1 → k(X + Y ) → k XY, (7|1)1 = k(X − Y ),

(8|1) k[X, Y ]/(X3, XY, Y 2) :
(8|1)0 = k1 → k X → k X2, (8|1)1 = kY,

(8|2) (8|2)0 = k1 → k X2 → kY, (8|2)1 = k X,

(9|1) k[X, Y, Z ]/(X, Y, Z)2 :
(9|1)0 = k1 → k X → kY, (9|1)1 = k Z ,

(11|1)

⎧

⎨
⎩

a 0 0 0
0 a 0 d
c 0 b 0
0 0 0 b

⎪
⎝

⎞⎞⎞⎞⎞⎞ a, b, c, d ⊂ k

⎫⎡
⎣ :

(11|1)0 = k

⎨
⎩

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎪
⎝ → k

⎨
⎩

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎪
⎝ → k

⎨
⎩

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎪
⎝

(11|1)1 = k

⎨
⎩

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎪
⎝,
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(13|1) k ×
⎤

k k
0 k

⎦
=

⎢⎤
a,

⎤
b c
0 d

⎦
)

⎞⎞⎞ a, b, c, d ⊂ k
⎥

:
(13|1)0 = k

⎤
1,

⎤
1 0
0 1

⎦⎦
→ k

⎤
0,

⎤
1 0
0 0

⎦⎦
→ k

⎤
0,

⎤
0 0
0 1

⎦⎦
(13|1)1 = k

⎤
0,

⎤
0 1
0 0

⎦⎦
,

(14|1)
{(

a 0 0
c a 0
d 0 b

)⎞⎞⎞⎞ a, b, c, d ⊂ k

}
:

(14|1)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
→ k

(
0 0 0
0 0 0
1 0 0

)

(14|1)1 = k

(
0 0 0
1 0 0
0 0 0

)
,

(14|2) (14|2)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
→ k

(
0 0 0
1 0 0
0 0 0

)

(14|2)1 = k

(
0 0 0
0 0 0
1 0 0

)
,

(15|1)
{(

a c d
0 a 0
0 0 b

)⎞⎞⎞⎞ a, b, c, d ⊂ k

}
:

(15|1)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
→ k

(
0 0 1
0 0 0
0 0 0

)

(15|1)1 = k

(
0 1 0
0 0 0
0 0 0

)
,

(15|2) (15|2)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
→ k

(
0 1 0
0 0 0
0 0 0

)

(15|2)1 = k

(
0 0 1
0 0 0
0 0 0

)
,

(17|1)
{(

a 0 0
0 a 0
c d b

)⎞⎞⎞⎞ a, b, c, d ⊂ k

}
:

(17|1)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
→ k

(
0 0 0
0 0 0
1 0 0

)

(17|1)1 = k

(
0 0 0
0 0 0
0 1 0

)
.

Theorem 1.3 [1, Thm 4.1] Suppose A is a superalgebra withdim A0 = dim A1 = 2.
Then A is isomorphic to one of the superalgebras in the following pairwise non-
isomorphic families:

(1|2) k × k × k × k :
(1|2)0 = k(1, 1, 1, 1) → k(1, 1, 0, 0) and (1|2)1 = k(1,−1, 0, 0)
→k(0, 0, 1,−1),

(2|3) k × k × k[X ]/(X2) :
(2|3)0 = k(1, 1, 1) → k(1, 1, 0) and (2|3)1 = k(1,−1, 0) → k(0, 0, X),

(3|2) k[X ]/(X2) × k[Y ]/(Y 2) :
(3|2)0 = k(1, 1) → k(1, 0) and (3|2)1 = k(X, 0) → k(0, Y ),

(3|3) (3|3)0 = k(1, 1) → k(X, Y ) and (3|3)1 = k(1,−1) → k(X,−Y ),

(5|1) k[X ]/(X4) :
(5|1)0 = k1 → k X2 and (5|1)1 = k X → k X3,

(6|2) k × k[X, Y ]/(X, Y )2 :
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(6|2)0 = k(1, 1) → k(1, 0) and (6|2)1 = k(0, X) → k(0, Y ),

(7|2) k[X, Y ]/(X2, Y 2) :
(7|2)0 = k1 → k X and (7|2)1 = kY → k XY,

(7|3) (7|3)0 = k1 + k XY and (7|3)1 = k X + kY.

(8|3) k[X, Y ]/(X3, XY, Y 2) :
(8|3)0 = k1 + k X2 and (8|3)1 = k X + kY.

(9|2) k[X, Y, Z ]/(X, Y, Z)2,

(9|2)0 = k1 → k X and (9|2)1 = kY → k Z ,

(10|1) M2 :
(10|1)0 = k

⎤
1 0
0 1

⎦
→ k

⎤
1 0
0 0

⎦
and (10|1)1 = k

⎤
0 1
0 0

⎦
→ k

⎤
0 0
1 0

⎦
,

(11|2)
{(

a 0 0 0
0 a 0 d
c 0 b 0
0 0 0 b

)⎞⎞⎞⎞⎞ a, b, c, d ⊂ k

}
:

(11|2)0 = k

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
→ k

(
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)
and

(11|2)1 = k

(
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
→ k

(
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

)
,

(11|3) (11|3)0 = k

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
→ k

(
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

)
and

(11|3)1 = k

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
→ k

(
0 0 0 0
0 0 0 −1
1 0 0 0
0 0 0 0

)
,

(12|1) ⊗k2 ∈= k〈X, Y 〉/(X2, Y 2, XY + Y X) :
(12|1)0 = k1 → k X and (12|1)1 = kY → k XY,

(12|2) (12|2)0 = k1 + k XY and (12|2)1 = k X + kY.

(14|3)
{(

a 0 0
c a 0
d 0 b

)⎞⎞⎞⎞ a, b, c, d ⊂ k

}
:

(14|3)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
and

(14|3)1 = k

(
0 0 0
1 0 0
0 0 0

)
→ k

(
0 0 0
0 0 0
1 0 0

)
,

(15|3)
{(

a c d
0 a 0
0 0 b

)⎞⎞⎞⎞ a, b, c, d ⊂ k

}
:

(15|3)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
and

(15|3)1 = k

(
0 1 0
0 0 0
0 0 0

)
→ k

(
0 0 1
0 0 0
0 0 0

)
,

(16|1) k〈X, Y 〉/(X2, Y 2, Y X) :
(16|1)0 = k1 → k X and (16|1)1 = kY → k XY,

(16|2) (16|2)0 = k1 → kY and (16|2)1 = k X → k XY,

(16|3) (16|3)0 = k1 + k XY and (16|3)1 = k X + kY.
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(17|2)
{(

a 0 0
0 a 0
c d b

)⎞⎞⎞⎞ a, b, c, d ⊂ k

}
:

(17|2)0 = k

(
1 0 0
0 1 0
0 0 1

)
→ k

(
1 0 0
0 1 0
0 0 0

)
and

(17|2)1 = k

(
0 0 0
0 0 0
1 0 0

)
→ k

(
0 0 0
0 0 0
0 1 0

)
,

(18; α|1) k〈X, Y 〉/(X2, Y 2, Y X − αXY ), where α ⊂ k with α ≥= −1, 0, 1 :
(18; α|1)0 = k1 → k X and (18; α|1)1 = kY → k XY.

(18; α|2) (18; α|2)0 = k1 + k XY and (18; α|2)1 = k X + kY.

(19|1) k〈X, Y 〉/(Y 2, X2 + Y X, Y X + XY ) :
(19|1)0 = k1 + k XY and (19|1)1 = k X + kY.

Moreover, (18; α|2) ∈= (18; α∞|2) if and only if α∞ = α or αα∞ = 1.

There exists only one 4-dimensional superalgebra A = k → I with A0 = k and
A1 = I 2 = 0. We denote it by (9|3) as its underlying algebra is isomorphic to (9).

Theorem 1.4 (Algebraic classification of 4-dimensional graded algebras) Assume
that k is an algebraically closed field and that ch(k) ≥= 2. Let A be a 4-dimensional
superalgebra. Then A is isomorphic to one of the following superalgebras. Moreover
each pair of listed superalgebras is non-isomorphic except the superalgebras within
the same family (18; α|i), where (18; α|i) ∈= (18; α∞|i) if and only if α∞ = α or
αα∞ = 1, i = 0, 1, 2.

(1) : (1|0), (1|1), (1|2),
(2) : (2|0), (2|1), (2|2), (2|3),
(3) : (3|0), (3|1), (3|2), (3|3),
(4) : (4|0), (4|1),
(5) : (5|0), (5|1),
(6) : (6|0), (6|1), (6|2),
(7) : (7|0), (7|1), (7|2), (7|3),
(8) : (8|0), (8|1), (8|2), (8|3),
(9) : (9|0), (9|1), (9|2), (9|3),
(10) : (10|0), (10|1),
(11) : (11|0), (11|1), (11|2), (11|3),
(12) : (12|0), (12|1), (12|2),
(13) : (13|0), (13|1),
(14) : (14|0), (14|1), (14|2), (14|3),
(15) : (15|0), (15|1), (15|2), (15|3),
(16) : (16|0), (16|1), (16|2), (16|3),
(17) : (17|0), (17|1), (17|2),
(18; α) : (18; α|0), (18; α|1), (18; α|2), where α ⊂ k with α ≥= 1, 0,−1,
(19) : (19|0), (19|1).
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2 The Variety Salgn and Its Properties

In this section we introduce the variety Salgn of n-dimensional superalgebras. Let
A = A0 → A1 be a superalgebra A = A0 → A1. The Z2-grading of A induces
an involution given by λ(a0 + a1) = a0 − a1 where ai ⊂ Ai . Conversely, any
algebra involution λ of A induces a Z2-grading on A, that is, A = A0 → A1 with
A0 = {a ⊂ A | λ(a) = a} and A1 = {a ⊂ A | λ(a) = −a}. Thus we can identify a
superalgebra A with an algebra A with an involution λ , denoted (A, λ ).

Let (A, λ ) be an n-dimensional superalgebra and {e1, e2, . . . , en} be a basis of
A. The (unitary associative) algebra structure on vector space A gives rise to a set of
structure constants (εk

i j ) ⊂ A
n3 determined by the multiplication of basis vectors so

that

ei e j =
n∑

k=1

εk
i j ek .

The involution λ on A may be also described by a set of constants (Δ
j

i ) ⊂ A
n2

satisfying λ(ei ) = ∑n
j=1 Δ

j
i e j . It follows that to each superalgebra, (A, λ ), we

can associate a set of augmented structure constants (εk
i j , Δ

j
i ) ⊂ A

n3+n2 , where

(εk
i j ) are the structure constants determined by the algebra structure of A and (Δ

j
i )

the constants determined by the Z2-grading in the above manner. However it is
not true that an arbitrary set of augmented structure constants can give rise to a
superalgebra. The structure constants must obey certain relations to reflect how we
define a superalgebra.

As a superalgebra (A, λ ) must in particular be a unitary associative algebra, we
have a multiplicative identity which we always take to be the first element of our
basis, e1. Then to be a unitary associative algebra we have the following conditions:

e1ei = ei

ei e1 = ei

(ei e j )ek = ei (e j ek)

which translate into the following relations amongst the structure constants:

ε
j
1i − δ

j
i = 0 (1)

ε
j
i1 − δ

j
i = 0 (2)∑n

l=1(ε
l
i jε

m
lk − εm

il ε
l
jk) = 0 (3)
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For λ to be an algebra involution means that:

λ(e1) = e1
λ(ei e j ) = λ(ei )λ (e j )

λ 2(ei ) = ei

These become the following relations in terms of the structure constants:

Δ
j
1 − δ

j
1 = 0 (4)∑n

k=1 εk
i jΔ

m
k − ∑n

k,l=1 Δ k
i Δ l

jε
m
kl = 0 (5)∑n

j=1 Δ
j

i Δ k
j − δk

i = 0 (6)

It is precisely those structure constants obeying the relations (1)–(6) given above
which give rise to superalgebras.

Definition 2.1 The Eqs. (1)–(6) given above cut out a variety in A
n3+n2 which we

shall call Salgn—the variety of n-dimensional superalgebras.

In the rest of this paper we will study the geometry of Salgn . The geometry of
Salgn is influenced by that of Algn , but Salgn has a richer geometrical structure.

Definition 2.2 We define SAn—the variety of n-dimensional superalgebras not
requiring existence of a unit—to be the subvariety of A

n3+n2 cut out by Eqs. (3),
(5) and (6).

One checks that if A is a unitary algebra and λ : A ∪ A satisfies λ(xy) =
λ(x)λ (y) and λ 2 = idA then λ(1A) = 1A (This follows from the more general fact
that any invertible homomorphism λ : A ∪ B between rings with unit must map
the identity to the identity, i.e. λ(1A) = 1B), which after a little thought shows that
Salgn = SAn ↔V ({ε j

1i − δ
j
i , ε

j
i1 − δ

j
i }). So we obtain the following result:

Lemma 2.1 Salgn is a closed subvariety of SAn.

It is important to notice theway that we have defined Salgn—requiring the identity
to be fixed—is analogous to the way Algn is defined in [2], but is not analogous to
the way Algn was defined in [5]. We may define Salg∞

n as an analogue to Algn in [5],
which is the subset of SAn consisting of superalgebras with unit, but not necessarily
requiring the unit to be the first element of the basis or even in the basis. A similar
proof to the one given in [3] shows that Salg∞

n is an open affine subvariety of SAn .
Similarly to the situation remarked in [2], since for our definition of Salgn we

require that the identity be the first element in the basis of any superalgebra, a
subgroup Gn of GLn acts on Salgn (not the full group GLn as one may expect).
This action is induced by considering what happens to the structure constants when
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one makes a basis change. As the identity must be the first element in the basis,
this means that the first column of the matrix describing the basis change must
be

(
1 0 . . . 0

)T (identifying the given basis {e1 = 1, e2, . . . , en} with the standard
basis vectors for kn). Hence we can describe Gn for n ≥ 2 as follows: Gn ={(

1 bT

0 ω

)
: ω ⊂ GLn−1, b ⊂ kn−1

}
. Thus the algebraic group Gn is of dimension

n2 − n.

Remark 2.1 If one so desired, our methods could be modified to study Salg∞
n with

the action of GLn . However, one would hope that the geometry of both spaces are
very similar—in particular we would like the degeneration partial orders induced in
each space to coincide (the degeneration partial order will be introduced in Sect. 3).
We would hope that such properties are intrinsic to the superalgebras and thus not
depend on the way in which they are represented by a particular variety. We have
not investigated this thoroughly, although in [2], it is remarked that this is the case
for the degeneration partial orders in Algn and Alg∞

n .

Let θ = (α
j
i ) ⊂ Gn and (π

j
i ) = θ−1. Then we can describe the action of Gn on

Salgn as follows:

θ · (εk
i j , Δ

j
i ) =

⎨
⎩ n∑

l,p,q=1

πk
l εl

pqα
p
i α

q
j ,

n∑
k,l=1

π
j
k Δ k

l αl
i

⎪
⎝ = (ε∞k

i j , Δ
∞ j
i )

Firstly, recall that the formula for the inverse of a matrix means that we can express
the entries π

j
i of the matrixθ−1 as a polynomial in the entries α

j
i of the matrixθ and

1/ det(θ). Then the above formula expresses the new structure constants ε∞k
i j , Δ

∞ j
i in

Salgn as a polynomial in the old structure constants εk
i j , Δ

j
i , the entries of the matrix

θ ⊂ Gn and 1/ det(θ) which has non-vanishing denominator. Hence the action
gives us a morphism Gn × Salgn ∪ Salgn . The same reasoning also shows that the
transport of structure action on Algn gives a morphism Gn × Algn ∪ Algn .

We may refer to the above action of Gn on Salgn as the transport of structure
action. However as it is the only action ofGn on Salgn considered here, we shall often
simply refer to it as the action of Gn on Salgn . It is clear that the orbits of Salgn under
the action of Gn can be identified with the isomorphism classes of n-dimensional
superalgebras.

For an n-dimensional superalgebra A, we will sometimes use Gn · A to represent
the orbit in Salgn which the isomorphism class of A can be identified with. If in

some basis the superalgebra A has structure constants (εk
i j , Δ

j
i ), then Gn · A =

Gn · (εk
i j , Δ

j
i ).

There are two interestingmorphisms between Salgn andAlgn . They arise from the
following observations: any n-dimensional superalgebra may be regarded as an n-
dimensional algebra and any n-dimensional algebra can be endowed with the trivial
Z2-grading making it into an n-dimensional superalgebra.
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The first morphism: U : Salgn ∪ Algn is defined by (εk
i j , Δ

j
i ) ∗∪ (εk

i j ) is the
forgetful map, which forgets the superalgebra structure on A and only remembers
the algebra structure on A.

The second morphism: I : Algn ∪ Salgn is defined by (εk
i j ) ∗∪ (εk

i j , δ
j
i ) where

δ
j
i is the Kronecker delta function. This takes an algebra structure on A and endows
it with the trivial Z2-grading making it a superalgebra on A.

Notice that the subset of Salgn consisting of superalgebras with the trivial Z2-

grading is a closed subset of Salgn and is given by V ({Δ j
i − δ

j
i }) ↔ Salgn . The

morphism I above identifiesAlgn with this subset. This result is a part of the following
proposition.

Proposition 2.1 The morphisms U and I described above are continuous closed
maps. Moreover I provides an isomorphism of Algn with the closed subset of Salgn
consisting of the superalgebras with the trivial Z2-grading.

Wepoint out that bothmorphismsU and I areGn-equivariant. That is, forθ ⊂ Gn

and (εk
i j , Δ

j
i ) ⊂Salgn , we haveU (θ·(εk

i j , Δ
j

i )) = θ·U ((εk
i j , Δ

j
i )) and I (θ·(ak

i j )) =
θ · I ((εk

i j )). As a consequence of the Gn-equivariance ofU , we obtain the following:

Corollary 2.1 U

(
Gn · (εk

i j , Δ
j

i )

)
= Gn · (εk

i j ).

Suppose that one has a superalgebra A with dim A0 = i and Z2-grading given
by the algebra involution λ . Now change to a homogeneous basis (say by a linear
map represented by the matrix θ), which clearly has Z2-grading λ ∞ given by the
linear map represented by the diagonal matrix with 1 for the first i entries and −1
for the last n − i entries. From the above we have λ ∞ = θλθ−1, so λ = θ−1λ ∞θ.
Thus tr(λ ) = tr(θ−1λ ∞θ) = tr(λ ∞θθ−1) = tr(λ ∞) = i − (n − i) = 2i − n and
det(λ ) = det(θ−1λ ∞θ) = det(θ−1) det(λ ∞) det(θ) = det(λ ∞) = (−1)n−i .

We now define Salgi
n to be the subset of Salgn consisting of the superalgebras A

with dim A0 = i . Obviously we have Salgn = ⋃n
i=1 Salg

i
n . Hence, from above, the

trace and determinant are constant on Salgi
n . It is clear that these subsets must

be disjoint. We are interested in when these subsets are also closed. The following
lemma gives some sufficient conditions for this to be the case.

Before stating the next couple of results we mention how vital the assumption
that ch(k) ≥= 2 is to Lemma 2.2 and Proposition 2.2. These are very basic results
about the geometry of Salgn—the study of Salgn over an algebraically closed field
k with ch(k) = 2 would require new techniques as the proofs of these two results do
not work in the case ch(k) = 2.

Lemma 2.2 The sets Salgi
n are closed subsets of Salgn in the following situations:

(a) ch(k) = p and n ⊕ 2p
(b) ch(k) = 0 (with no restriction on n in this case)
(c) n ⊕ 6 (for any algebraically closed field k with ch(k) ≥= 2)
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Proof DefineSi
n = V ({∑n

j=1 Δ
j
j −(2i−n),

∑
ζ sgn(ζ)Δ

ζ(1)
1 . . . Δ

ζ(n)
n −(−1)n−i })↔

Salgn for i ⊂ {1, . . . , n}, (where sgn(ζ) denotes the signature of the permutation ζ ,
and the sum is taken over all permutations of {1, . . . , n}). Thus the Si

n are closed
subsets of Salgn . From the statements above, it is clear that Salgi

n ≤ Si
n . The

first polynomial
∑n

j=1 Δ
j
j represents the trace of the Z2-grading and the second∑

ζ sgn(ζ)Δ
ζ(1)
1 . . . Δ

ζ(n)
n represesnts its determinant.

For the proof of part (a), consider the following. Let i, j ⊂ {1, . . . , n}, i ≥= j . If
i and j differ by 2p then both the traces and the determinants for Salgi

n and S j
n will

agree, so Salgi
n ≤ S j

n . If i and j differ by less than 2p, then the traces of Salgi
n and

S j
n will differ unless i and j differ by p, in which case, since p is odd (remember we

are excluding the case ch(k) = 2 throughout this paper) the determinants will differ.
Thus Salgi

n and S j
n are disjoint. From these comments one can see that we have the

equality Salgi
n = Si

n for all i ⊂ {1, . . . , n} if and only if there are no two distinct
integers i, j ⊂ {1, . . . , n} which differ by 2p. One can always be sure that this is
condition is met when n ⊕ 2p. This completes the proof of (a).

For part (b), we have ch(k) = 0. Here one simply needs to consider the traces on
Salgi

n and S j
n , which must differ unless i = j , showing that the subsets Salgi

n and Sjn
are disjoint unless i = j , that is Salgi

n = Si
n .

Finally, for part (c) we combine the results of (a) and (b). In the case of positive
characteristic p, then as p ≥ 3, from part (a) we know that these subsets are disjoint
and closed for n ⊕ 6, while in the case of zero characteristic from part (b) we know
that these subsets are disjoint and closed for any n. Combine these statements to see
that regardless of the characteristic of the field k, the subsets Salgi

n are all closed
subsets when n ⊕ 6.

Remark 2.2 Lemma 2.2 is likely to be general enough for us to use in all cases where
determining irreducible components of Salgn is currently practical. The irreducible
components of Algn have so far only been described for n ⊕ 5 (with some special—
“rigid”—components described in the case n = 6), and finding these irreducible
components is a more basic question than finding the irreducible components of
Salgn . However, it is of theoretical interest to determine whether the subsets Salgi

n
are in fact closed subsets of Salgn for all n and any field k with ch(k) ≥= 2, or if there
is some field k of prime characteristic, p, and some integer, n, such that the variety
Salgn over the field k has one of its subsets Salgi

n which is not closed. As we shall
see, when the Salgi

n are closed they form the connected components of Salgn . Thus
it would be interesting to know if the geometry of Salgn can change in this manner
for some integer, n, and field, k, of prime characteristic, p.

Using the notation from the proof of Lemma 2.2 we have the following situation
for the variety Salg7 over an algebraically closed field of characteristic 3. S

1
7 = S77 =

V ({∑n
j=1 Δ

j
j − 1,

∑
ζ sgn(ζ)Δ

ζ(1)
1 . . . Δ

ζ(n)
n − 1}) ↔ Salg7. This is the smallest

example of where the above lemma may not be applied. While it is clear that Salg17
and Salg77 are disjoint, it may be possible that Salg17 and Salg77 have some point in
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common. (Recall that we remarked earlier that Salgn
n is closed—so Salgn

n = Salgn
n

and thus we do know that Salg77 = Salg77 and Salg17 are disjoint).

Proposition 2.2 Salgn is disconnected for n ≥ 2.

Proof By the comments above Lemma 2.2, for each superalgebra, the determinant
of the Z2-grading is either −1 or 1. Since ch(k) ≥= 2, −1 and 1 are distinct elements
of k, hence X−1 = V ({∑ζ sgn(ζ)Δ

ζ(1)
1 . . . Δ

ζ(n)
n − (−1)}) ↔ Salgn and X1 =

V ({∑ζ sgn(ζ)Δ
ζ(1)
1 . . . Δ

ζ(n)
n −1})↔Salgn are disjoint closed subsets whose union

is Salgn . But X−1 = Salgn \X1 and X1 = Salgn \X−1, hence both are open sets too.
Thus Salgn is a union of two disjoint open subsets. Both subsets are non-empty for
n ≥ 2. Thus for n ≥ 2, Salgn is disconnected.

From here onwards, we make the assumption that Salgi
n are closed subsets of

Salgn . The main examples which we are interested in are Salgn for n = 2, 3, 4, and
in these cases this assumption is satisfied by Lemma 2.2.

Since some algebras and superalgebras will arise frequently, we shall name them
for convenience. Define Cn to be the algebra k[X1, . . . , Xn−1]/(X1, . . . , Xn−1)

2

and for i = 1, . . . , n, let Cn(i) be the superalgebra which has Cn as its under-
lying algebra and the Z2-grading is given by Cn(i)0 = span{1, X1, . . . , Xi−1},
Cn(i)1 = span{Xi , . . . , Xn−1}. It is clear that algebra Cn and the superalgebras
Cn(i) for i = 1, . . . , n all have dimension n.

The following lemma shows that each superalgebra structure on Cn is isomorphic
to one of the Cn(i).

Lemma 2.3 Consider the algebra Cn. There are n distinct isomorphism classes of
superalgebras on this algebra, which are Cn(1), . . . , Cn(n).

Proof Let B = B0 → B1 be a superalgebra structure on Cn where dim B0 = i + 1
with 0 ⊕ i ⊕ n−1 (so dim B1 = n−i −1). Suppose B0 has basis {1, u1, . . . , ui } and
B1 has basis {ui+1, . . . , un−1}. There must be scalars such that for 1 ⊕ j ⊕ n − 1,
u j = ε j11 + ε j2X1 + . . . + ε jn Xn−1.

Now let u∞
j = u j −ε j11 = ε j2X1 + . . .+ε jn Xn−1. Then {1, u∞

1, . . . , u∞
i } is also

a basis for B0.
If ε j1 ≥= 0 for any i + 1 ⊕ j ⊕ n − 1 then u j = ε j11 + ∑n−1

i=1 ε j i+1Xi , so
u2

j = ε2
j11 + 2

∑n−1
i=1 ε j i+1Xi . Since u2

j ⊂ B0 we must have
∑n−1

i=1 ε j i+1Xi ⊂ B0,

say
∑n−1

i=1 ε j i+1Xi = ν11 + ∑i
k=1 νk+1uk then (ν1 + ε j1)1 + ∑i

k=1 νk+1uk −
u j = 0, which contradicts the linear independence of the basis. So ε j1 = 0 for all
i + 1 ⊕ j ⊕ n − 1.

It is easy to check that any two of u∞
1, . . . , u∞

i , ui+1, . . . , un−1 have product zero
(including a product involving two of the same terms). So we can define a map σ :
B ∪ Cn(i + 1) by 1 ∗∪ 1, u∞

1 ∗∪ X1, . . . , u∞
i ∗∪ Xi , ui+1 ∗∪ Xi+1, . . . , un−1 ∗∪

Xn−1. It is easy to see that this is a bijection, which preserves the algebra structure
and Z2-grading, hence is an isomorphism of superalgebras. Thus a superalgebra
structure on Cn must be isomorphic to one of those described in the lemma.

To conclude the proof, we note that the n superalgebra structures given in the
lemma are clearly mutually non-isomorphic.
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So for each i there is a unique (up to isomorphism) superalgebra structure A on
k[X1, . . . , Xn−1]/(X1, . . . , Xn−1)

2 which has dim A0 = i .
In the case ofn-dimensional algebras,Gabriel showed that the closed orbit consists

of algebras isomorphic to Cn . The closed orbits in Salgn consist of superalgebras
isomorphic to one of the superalgebras Cn(i), as the following Proposition shows.

Proposition 2.3 There are n closed orbits inSalgn. They are all disjoint, Cn(i) being
the closed orbit in Salgi

n .

Proof Suppose Gn · A is a closed orbit, i.e. Gn · A = Gn · A. As U (A) is an
n-dimensional algebra, Gn · U (A) is an orbit in Algn . Now by Corollary 2.1
Gn · U (A) = U (Gn · A) = U (Gn · A) = Gn · U (A). Thus the orbit Gn · U (A) is
closed in Algn but then, by the results of [5], U (A) must be isomorphic to Cn . That
is, A must be isomorphic to a superalgebra structure on Cn .

It remains to show that the orbits, Gn · Cn(i), corresponding to the isomorphism
classes of the superalgebras Cn(i) are, in fact, closed. Notice that Cn = U (Cn(i))
is the algebra structure whose isomorphism class corresponds to the closed orbit in
Algn . That is, the orbit Gn · Cn is closed in Algn and thus U−1(Gn · Cn) is closed
in Salgn . Now, by assumption, Salgi

n are closed disjoint subsets, thus U−1(Gn ·
Cn) ↔ Salgi

n is closed. However this set is the orbit Gn · Cn(i) (since Lemma 2.3
above showed that all superalgebra structures on algebra Cn with the degree zero
component having dimension i are all isomorphic). The result follows.

Lemma 2.4 Suppose that Salgi
n are closed subsets. Let A be a superalgebra with

dim A0 = i . Assume that there is only one isomorphism class of superalgebras on
U (A) which has dim0 = i . If the orbit Gn · U (A) is open in Algn then the orbit
Gn · A is open in Salgn.

Proof Since Salgi
n are all disjoint closed subsets by assumption, they are also each

open. Now U−1(Gn · U (A))) is the collection of superalgebra structures on U (A).
Since Gn · U (A) is open, so too must be U−1(Gn · U (A)), by the continuity of U .
Now by the assumptions made Gn · A = U−1(Gn · U (A)) ↔ Salgi

n . Thus Gn · A is
the intersection of two open sets, so it is open itself.

Example 2.1 This is indeed the case for several orbits in Salg4. Using this result
and the fact that the orbits of (1) and (10) are open in Alg4 we discover that the
orbits (1|0), (1|1), (1|2), (10|0) and (10|1) are open in Salg4.

3 Algebraic Groups and Their Actions

Recall that an algebraic group G is an algebraic variety which additionally has
the structure of a group. That is, the multiplication μ : G × G ∪ G given by
μ(x, y) = xy and inversion ß : G ∪ G given by ß(x) = x−1 are morphisms of
varieties.An algebraic group is said to be connected if it is irreducible as a variety. The
algebra groupGn andGLn are connectedwith dimensions n2−n and n2 respectively.
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The following result is well-known, for example see [3].

Lemma 3.1 Let G be a connected algebraic group acting on a variety X, then:

(a) Each orbit G · x is locally closed (i.e. G · x is open in G · x) and irreducible
(b) dim G · x = dim G − dim StabG(x)

(c) G · x\G · x is a union of orbits of dimension < dim G · x

Note that in the case of the Gn-action on Salgn , the stabiliser subgroup of a point

(εk
i j , Δ

j
i ) of Salgn is the automorphism group of the superalgebra given by the point

(εk
i j , Δ

j
i ).

Whenever we have a connected algebraic group G acting on a variety X , we
have the idea of degeneration. The action of G on X partitions the variety into
equivalence classes under the equivalence relation x ⊥ y ∀ ∩ g ⊂ G such that
y = g · x . The equivalence classes are the G-orbits. Because of this, we shall use the
notation [x] = G · x for brevity, while stating and proving results about this more
general notion of degeneration.

Definition 3.1 We say that [x] degenerates to [y] if y ⊂ G · x and will write
[x] ∪ [y].

It is not difficult to see that [x] ∪ [y] if and only if G · y ≤ G · x . The latter pro-
vides a useful way to visualize the notion of degeneration—that an orbit is contained
in the closure of some other orbit.

By appealing to Lemma 3.1 we can show that this idea of degeneration is not
only well-defined on the G-orbits of X , but it also gives rise to a partial order on the
G-orbits in X . We define [y] ⊕degr [x] if and only if [x] degenerates to [y]. (Note
that in some places the degeneration partial order is defined to be the opposite to this.
This happens for example in [14]).

Our main interest is in the degeneration of superalgebras and the degeneration
partial order on the isomorphism classes of n-dimensional superalgebras.

For n-dimensional superalgebras A and B, if (εk
i j , Δ

j
i ) ⊂ Gn · B and (ak

i j , Δ
j

i ) ⊂
Gn · A, then A degenerates to B and denote this by A ∪ B. In some places the
terminology A dominates B is used instead of A degenerates to B. Clearly, whenever
(εk

i j , Δ
j

i ) ⊂ Gn · A, then we also have (εk
i j , Δ

j
i ) ⊂ Gn · A since Gn · A ≤ Gn · A. A

degeneration of this form is referred to as a trivial degeneration, any degeneration
which is not of this form is called a non-trivial degeneration.

Intuitively, if the superalgebra A degenerates to the superalgebra B (where B ∅ A
that is, this is a proper degeneration) then we think of the orbit Gn · B as consisting
of some of those points outside the orbit Gn · A, but which are “close to” some of
the points in the orbit Gn · A. This is supported by observing that the orbit Gn · B
belongs to the boundary of Gn · A (i.e. the set Gn · A\Gn · A) as we shall see in the
next section. Another observation supporting this intuition is that some degenerations
may be obtained by taking a sequence of points in the orbit Gn · A whose “limit”
lies in the orbit Gn · B (see Corollary 4.1).
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It is well-known that when G is a connected algebraic group acting on a variety
X , the irreducible components of X are stable under the action of G. Thus we have
the following.

Corollary 3.1 When G is a connected algebraic group acting on a variety, the
irreducible components are closures of a single orbit or closures of an infinite family
of orbits.

Proof We know that irreducible components are G-stable. We also know that com-
ponents are closed, hence each component can be taken to be the closure of a union of
orbits. If there are only finitelymany orbits in the union, then by using A ∪ B = A∪B
we see that the component is not irreducible unless it is the closure of a single orbit.
This gives the required statement.

In the case of the Gn transport of structure action on Algn Flanigan goes further,
and in [4] proves a result describing algebraic properties of algebras belonging to
some infinite family, whose orbits give rise to an irreducible component as described
above.

In the following we shall abuse the terminology, and refer to the situation when
some structure is contained in the closure of the union of the orbits of an infinite
family of orbits, as a degeneration. We see an example of this in Alg4 in the results
of Gabriel, where the structure (19) is contained in the closure of the union of orbits
of the family of structures (18; α). It is important to notice, however, that this is
not a degeneration as defined earlier. Similarly, when an infinite family of orbits is
contained in another infinite family of structures, we may also wish to refer to this as
a degeneration too. We have an example of this given by Mazzola’s work on Alg5 in
[10], where the orbits of the infinite family of structures (35; α) is contained in the
closure of the union of the orbits in the infinite family of structures (13; α). Finally,
one may wish to refer to the case where an infinite family of structures is contained
in the closure of a single orbit as a degeneration. This idea is less of an abuse of
terminology than the others mentioned above, however, since we could consider it
to be an infinite family of degenerations (in the original sense), one to each of the
orbits in the infinite family. Although an abuse of terminology, it is useful to extend
the notion of degeneration in this way, as it helps with determining the irreducible
components.

Corollary 3.2 When G is a connected algebraic group acting on a variety X, we
have the following statements regarding the notions of degeneration and irreducible
components:

(a) If [x] ∪ [y] then [y] belongs to all the irreducible components to which [x]
belongs (and possibly more too).

(b) If there is no degeneration to [x], then its closure is an irreducible component.
(c) If ∪α[x(α)] is irreducible and there is no degeneration to ∪α[x(α)] then its

closure is an irreducible component.
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Proof For part (a) G · y ≤ G · x , so that any irreducible component containing G · x
must also contain G · y.

For parts (b) and (c), consider what happens if G · x (respectively
∪αG · x(α)) is not an irreducible component. Then, as an irreducible set, it must be
contained in some irreducible component implying that [x] (respectively ∪α[x(α)])
is contained in the closure of an orbit, or in the closure of the union of an infinite fam-
ily of orbits. This means that there is a degeneration to [x] (respectively ∪α[x(α)]),
contrary to our assumption.

Remark 3.1 The above towonder when a union of a family of orbits is irreducible, so
that wemay apply part (c) of the above. This might not be true for arbitrary actions of
algebraic groups on a variety. However the infinite families which arise in Alg4 and
Alg5 can be shown to be irreducible. We illustrate this idea using the superalgebras
(18; α|i). Firstly fix i as either 0, 1 or 2. Use the basis e1 = 1, e2 = X, e3 = Y, e4 =
XY of (18; α|i). Then for the member of the family with parameter value α ≥= −1
we have that the structure constant, ε4

23 = α. Hence, using this basis, we obtain a
set of points in Salg4. Call this set S—one point from each orbit corresponding to
a member of the family (18; α|i). This set of points can be identified with k\{−1}
which is irreducible in A

1 (being the distinguished open D(x + 1) of A
1), thus the

set of points, S, is also irreducible. Now denote by σ : Gn × Salgn ∪ Salgn the
morphism arising from the transport of structure action of Gn on Salgn . The union of
the orbits of (18; α|i) is given by σ(Gn × S), which, exactly as remarked proceeding
to Corollary 3.2, is seen to be irreducible. So we have shown that the union of orbits
of superalgebras (18; α|i) for i = 0, 1, 2 are irreducible. The infinite families in Alg5
can be shown to be irreducible in a similar manner.

Corollary 3.2 tells us that the irreducible components are the orbits or infinite
families of orbits, which no other orbit or infinite family of orbits degenerates to.
So if one knows all degenerations between orbits and infinite families of orbits,
then it is a trivial matter to determine the irreducible components. Unfortunately, the
problem of determining all these degenerations is usually difficult. The problem of
determining the irreducible components is somewhat easier, but can still be difficult
too.

Definition 3.2 An n-dimensional superalgebra A (respectively, a family of superal-
gebras A(α)) is called generic, if the closure of its orbit in Salgn—Gn · A (respec-
tively, the closure of the union of the family of orbits—

⋃
α Gn · A(α)), is an irre-

ducible component of Salgn .

Remark 3.2 A superalgebra A, whose orbit is open, is always generic. Since it must
lie in some irreducible component (being an irreducible set by part (a) of Lemma
3.1) and, as an open subset of any irreducible set is dense, we must have that Gn · A
is the entire component.

However the observations in Corollary 3.2 applies more generally and can also aid
us in finding the irreducible components. For example, after finding that no algebras
degenerate to (17) in Alg4, by applying the closed continuous map U , we discover
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that no superalgebras can degenerate to any of (17|i) for i = 0, 1, 2 in Salg4. Then,
by using the observations given in Corollary 3.2, we see that (17|i) for i = 0, 1, 2
give rise to irreducible components of Salg4, hence these algebras are also generic.

The next two lemmas of this section are concerned with calculating the dimen-
sions of the orbits in Salgn . We explain how to read these tables now. Each row
corresponds to a different algebra structure and the columns of the table are for dif-
ferent Z2-gradings on that given underlying algebra structure. Thus the underlying
algebra structure of the superalgebra determines which row you look in, and which
particular Z2-grading is used to obtain the given superalgebra structure determines
which column you look under. We illustrate this by using an example. To find the
dimension of the stabilizer of a point in the orbit of (3|2) we look in the row labelled
(3|·) and then look under the column labelled 2 to see that the dimension of the
required stabilizer is 2.

Lemma 3.2 The following gives the dimensions of the stabilizers of points in the
orbits in Salg4:

Stabilizer dimensions
· 0 1 2 3

(1|·) 0 0 0
(2|·) 1 1 1 1
(3|·) 2 2 2 1
(4|·) 2 1
(5|·) 3 2
(6|·) 4 2 4
(7|·) 4 2 3 2
(8|·) 5 3 3 3
(9|·) 9 5 5 9
(10|·) 3 1
(11|·) 4 3 2 2
(12|·) 6 3 4
(13|·) 2 1
(14|·) 3 3 2 2
(15|·) 3 3 2 2
(16|·) 4 3 3 2
(17|·) 6 3 4

(18; α|·) 4 3 2
(19|·) 4 2

Proof If the point (εk
i j , Δ

j
i ) is in the orbit, G4 · A, which is identified with the iso-

morphism class of superalgebra A, then StabG4((ε
k
i j , Δ

j
i )) ∈= Aut(A) where Aut(A)

is the group of automorphisms of the superalgebra A as mentioned in the paragraph
below Lemma 3.1.

We remark that dim PGLn(k) = n2 − 1, so that dim PGL2(k) = 22 − 1 = 3 (see
for example [7])
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Orbit dimensions
· 0 1 2 3

(1|·) 12 12 12
(2|·) 11 11 11 11
(3|·) 10 10 10 11
(4|·) 10 11
(5|·) 9 10
(6|·) 8 10 8
(7|·) 8 10 9 10
(8|·) 7 9 9 9
(9|·) 3 7 7 3
(10|·) 9 11
(11|·) 8 9 10 10
(12|·) 6 9 8
(13|·) 10 11
(14|·) 9 9 10 10
(15|·) 9 9 10 10
(16|·) 8 9 9 10
(17|·) 6 9 8

(18; α|·) 8 9 10
(19|·) 8 10

Proposition 3.1 The following gives the dimensions of the orbits in Salg4:

Proof We have calculated the dimensions of the automorphism groups, or equiva-
lently, the dimensions of stabilizers of any point in each orbit in Lemma 3.2 above.
We know that the dimension of G4 is 12. By using part (b) of Lemma 3.1, we can
calculate the dimension of the orbit G4 · (εk

i j , Δ
j

i ) by subtracting the dimension of

the stabilizer, StabG4((ε
k
i j , Δ

j
i )), from the dimension of G4 which is 12.

Remark 3.3 We remark that to calculate the dimensions of the orbits in the case
where we don’t require the identity to be fixed (i.e. the orbits in Salg∞

4 and in which
case GL4 acts on this variety) we can subtract the dimensions of the stabilizers found
in Lemma 3.2 from 16. If we then compare the dimensions of the orbits of the trivially
Z2-graded superalgebras (i |0) for i = 1, . . . , 18; α, 19, thus calculated, with those
given by Gabriel in [5], we find that the two sets of numbers do not agree. In fact the
orbit dimensions that Gabriel gives are exactly one less than the orbit dimensions
we calculate in each case. This is strange. Since Gabriel did not give the proof of
these facts in [5] it is difficult to find an explanation for this difference. However in
Mazzola’s paper [10] on classifying algebras of dimension five, the orbit dimensions
are calculated by subtracting the dimension of the automorphism groups from 25 (25
being the dimension of GL5)—this would tend to suggest that our methodology for
calculating orbit dimensions is correct.
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4 Degenerations in Salgn

In this sectionweconcernourselveswith conditions determiningwhenadegeneration
of superalgebras in Salgn can or cannot exist. When looking for conditions for the
non-existence of degenerations between a given pair of superalgebras, it would be
helpful to have some invariants of the superalgebra which are “rigid” in the sense that
if there is a degeneration of superalgebras from A to B, then the superalgebras A and
B must have the same value for the invariant. Unfortunately, the only such invariant
that we know of is dim0, the dimension of the trivial degree part. The next best thing
is a property of a superalgebra which any degeneration of this superalgebra must
inherit, or some property which cannot increase or decrease upon degeneration. Such
properties are analogous to those described in [5, Proposition 2.7], which states, for
example, the fact that the dimension of the radical cannot decrease upondegeneration.
Later in the section we determine several properties from which any degeneration of
a given superalgebra must share.

Lemma 4.1 Let ϕ : k ∪ Salgn be a polynomial function and U ≤ Salgn. If there
are infinitely many points of ϕ(k) in U then ϕ(k) ≤ U.

Proof First, note that we think of ϕ as describing a curve in Salgn . U is defined to
be the intersection of all closed sets containing U . A closed set is the vanishing set
of polynomials (intersected with Salgn), so it is enough to show that any polynomial
vanishing on U must also vanish on all of ϕ(k). By applying the appropriate pro-
jections to ϕ , we may write εk

i j = ak
i j (t) and Δ

j
i = g j

i (t) (letting the indeterminate
be t), to describe the coordinates of this curve.

It is standard that ϕ−1(U ) = {t ⊂ k : ϕ(t) ⊂ U }, but notice that this set gives
the t values such that the curve ϕ lies inside the set U . We consider a polynomial
function in (εk

i j , Δ
j

i ), which vanishes on U , f (εk
i j , Δ

j
i ) = 0. Since f vanishes on

U it must vanish at the points of ϕ(k) lying inside U . So we have t ⊂ ϕ−1(U ) ◦
f (ak

i j (t), g j
i (t)) = 0. Note that f (ak

i j (t), g j
i (t)) is a polynomial in t . Suppose the

degree deg( f (ak
i j (t), g j

i (t))) = d.

If d ≥ 1, then f (ak
i j (t), g j

i (t)) = 0 has at most d zeros, which contradicts
the fact that we assumed to vanish on all of ϕ(k) ↔ U , which has infinitely many
points. Thus d = 0, hence f (ak

i j (t), g j
i (t)) must be a constant. The only way that

f (ak
i j (t), g j

i (t)) = 0 is satisfied for points in ϕ−1(U ) is if f (ak
i j (t), g j

i (t)) is the

zero polynomial, in which case f (ak
i j (t), g j

i (t)) = 0 is satisfied for all t ⊂ k. This
completes the proof.

Nowwe consider a practicalmethod for computing degeneration of superalgebras,
called a specialization of superalgebras. This method was first introduced by Gabriel
in [5]. We formulate it in the form of superalgebras.

Definition 4.1 If A and B are n-dimensional superalgebras, a specialization of A
to B is the following situation: one makes a change of basis in A to a “variable”
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basis, i.e. one involving some unknown t , such that the point of Salgn obtained by
structural transport is given by some polynomial functions in t and lies in the orbit
of A for t ≥= 0, yet at t = 0 lies in the orbit B. We think of B as being obtained by a
formal limit of the basis change in A.

A specialization of superalgebras A to B is a more restrictive notion than a spe-
cialization of algebras, since not only must there be a specialization of the underlying
algebras, but also must this occur in such a way that under the specialization. The
Z2-grading on A also tends to the Z2-grading on B. This is usually a non-trivial con-
straint. So some specializations between algebras may not give rise to specializations
of superalgebras on these algebras. Or perhaps one must use different specializations
for different superalgebra structures on the same underlying algebra.

With this idea of specialization we obtain a useful corollary of the above lemma.

Corollary 4.1 A specialization of A to B implies that A degenerates to B.

Proof Clearly the specialization gives us a curve ϕ : k ∪ Salgn . We let the set U
in Lemma 4.1 be the orbit Gn · A. Now, as k is algebraically closed, it has infinitely
many elements. Thus so does k⇔. Thenϕ(k⇔) ≤ Gn · A, so Gn · A contains infinitely
many elements of ϕ(k). Thus we may apply Lemma 4.1. Now note that ϕ(0) gives
structure constants for a point in the orbit Gn · B. Hence, by Lemma 4.1 the point in
the orbit Gn · B given by ϕ(0) lies in the closure of the orbit of A—this means that
A degenerates to B.

Remark 4.1 Let A be a superalgebra with dim A0 = i , in other words A ⊂ Salgi
n .

Suppose the bases of A0 and A1 are given by {1, e2, . . . , ei } and {ei+1, . . . ,

en} respectively.The specializationdescribedbyGabriel in [5] givenby1 ∗∪ 1, e2 ∗∪
te2, . . . , en ∗∪ ten and letting t ∪ 0 implies that any algebra degenerates to the
algebra Cn . This specialization does not alter the Z2-grading, which implies (by
Corollary 4.1) any superalgebra in Salgi

n degenerates to the superalgebra Cn(i) in
Salgi

n . Stated another way, the closure of any orbit in Salg
i
n contains the orbit of the

superalgebra Cn(i) in Salgi
n (which is the closed orbit in Salgi

n).

Earlier in Remark 2.2 we mentioned that Salgi
n are the connected components of

Salgn . Using Corollary 4.1 above, we can now prove this to be the case.
We know that A

m is a Noetherian space and we have assumed that Salgi
n is a

closed subset of A
m (for m = n3 + n2). Thus Salgi

n is a union of a finite number
of irreducible components. However, irreducible components are closed and they
must all contain the orbit of the superalgebra Cn(i) by the above remark. Hence the
irreducible components have a non-empty intersection. Thus Salgi

n is a finite union
of its irreducible components which are connected and have non-empty intersection.
Thus we have showed the following.

Proposition 4.1 The set {Salgi
n}n

i=1 are the connected components of Salgn.

Note that we needed to assume that {Salgi
n}n

i=1 are closed subsets of Salgn in order
to prove Proposition 4.1. In fact one can actually see that {Salgi

n}n
i=1 are the connected
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components of Salgn if and only if {Salgi
n}n

i=1 are closed subsets. Proposition 4.1
shows one of the directions, and for the converse we note that connected components
are closed (a fact from General Topology).

Given n-dimensional superalgebras A and B. To show that A can not degenerate
to B, it is sufficient to exhibit a closed set in Salgn containing the orbit Gn · A which
is disjoint from Gn · B. Note that if there are two disjoint closed sets in Salgn one
containing the orbit Gn · A and the other containing the orbit of Gn · B, then there
cannot be any degenerations between A and B. We now look for some necessary
conditions for a degeneration of superalgebras to exist.

Remark 4.2 Suppose that A and B are n-dimensional superalgebras. The following
conditions are necessary for a degeneration.

(a) If A doesn’t degenerate to B as algebras, then A cannot degenerate to B as
superalgebras. This condition becomes sufficient in case the Z2-gradings of the
superalgebras are trivial.

(b) There is no degeneration from A to B unless dim A0 = dim B0.
(c) When n ≥ 3, Salg1n consists only of the closed orbit of the superalgebra Cn(1).

In this case, there is no degenerations in Salg1n .

The above facts follow fromconsidering either the algebra structure or theZ2-grading
in isolation. For some more necessary conditions for the existence of a degeneration
we must exploit both the algebra structure and the Z2-grading simultaneously.

Now we look for closed Gn-stable subsets defined by some superalgebraic prop-
erties. We need the notion of a upper semicontinuous function. One may find it, for
example in [3]. Given two topological space X . A function f : X ∪ Z is said to be
upper semicontinuous if the set {x ⊂ X : f (x) ≥ n} is closed in X for all n ⊂ Z.

Lemma 4.2 ([12, Chapter 1 §8 Corollary 3]) If f : X ∪ Y is a morphism of
varieties, then the function x ∗∪ dimx f −1( f (x)) is upper semicontinuous.

If V is a vector space and W a subset of V , then W is called a cone in V if W
contains the zero vector and is closed under scalar multiplication. The following
lemma can be found in [3].

Lemma 4.3 Suppose X is a variety, V a vector space and we are given subsets
Vx ≤ V for all x ⊂ X. Suppose that

(a) each Vx is a cone in V ,
(b) {(x, v) : v ⊂ Vx } is closed in X × V .

Then the map x ∗∪ dim Vx is upper semicontinuous.

We have the following facts about dimension.

Lemma 4.4 (a) For an algebraic set X, the dimension of X is equal to the Krull
dimension of its coordinate ring A(X).

(b) The dimension of A
n is n.

(c) If U ≥= ∧ is open in an irreducible variety X, then dimU = dim X.
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(d) If X = ⋃n
i=1 Ui with the Ui irreducible, then dim X = maxi⊂{1,...,n}{dimUi }.

(e) If X ≤ Y then dim X ⊕ dim Y , moreover if X is closed and Y is irreducible,
then X ∇ Y implies dim X < dim Y .

Lemma 4.5 The following sets are closed in Salgn:

(a) {A ⊂ Salgn : A2
1 = {0}}.

(b) {A ⊂ Salgn : A0 is commutative }.
Proof Recall that we defined superalgebra structures on an n-dimensional vector
space V with a basis {e1, . . . , en}.

For the set in part (a) we assign to a superalgebra A the following subset WA =
{v ∨ w : v, w ⊂ A1, vw = 0} of V ∨ V . For the set in part (b) we assign to a
superalgebra A the following subset W ∞

A = {v ∨w : v, w ⊂ A0, vw = wv} of V ∨ V .
It is straightforward to check that these are both cones in V ∨ V .

Then we may write v = ∑n
i=1 ci ei and w = ∑n

i=1 di ei . Now from v ∨ w ≥= 0
it is possible to recover v and w up to scalar multiple. This fact shall cause us no
problems, however, since WA and W ∞

A are cones in V ∨ V .
We show now that {(A, v∨w) : v, w ⊂ A1, vw = 0} is closed in Salgn ×(V ∨V ).

If v ∨ w = 0 then either v = 0 or w = 0, in which case ci = 0 for i = 1, . . . , n
or di = 0 for i = 1, . . . , n. So for v ∨ w ≥= 0, v ⊂ A1 ∀ ∑n

i=1 ciΔ
j

i + c j = 0

for j = 1, . . . , n; w ⊂ A1 ∀ ∑n
i=1 diΔ

j
i + d j = 0 for j = 1, . . . , n; and vw =

0 ∀ ∑n
i, j=1 ci d jε

k
i j = 0 for 1 ⊕ i, j ⊕ n. We remark that if coordinates of v

and w with respect to the given basis, i.e. (ci ), (di ), satisfy these equations, then so
too must (αci ), (μdi ) for any α,μ ⊂ k. Thus it does not matter that we can only
obtain v and w up to scalar multiple. Thus {(A, v ∨ w) : v, w ⊂ A1, vw = 0} =
V ({ci })∪ V ({di })∪ V ({∑n

i=1 ciΔ
j

i + c j ,
∑n

i=1 diΔ
j

i + d j ,
∑n

i, j=1 ci d jε
k
i j }), which

is closed in Salgn ×(V ∨ V ).
We shownext that {(A, v∨w) : v, w ⊂ A0, vw = wv} is closed in Salgn ×(V ∨V ).

If v ∨ w = 0 then either v = 0 or w = 0, in which case ci = 0 for i = 1, . . . , n or
di = 0 for i = 1, . . . , n. So for v ∨ w ≥= 0, v ⊂ A0 ∀ ∑n

i=1 ciΔ
j

i − c j = 0 for

j = 1, . . . , n; w ⊂ A0 ∀ ∑n
i=1 diΔ

j
i − d j = 0 for j = 1, . . . , n; and vw = wv ∀∑n

i, j=1 ci d j (ε
k
i j − εk

ji ) = 0 for 1 ⊕ i, j ⊕ n. Thus {(A, v ∨ w) : v, w ⊂ A0, vw =
wv} = V ({ci })∪V ({di })∪V ({∑n

i=1 ciΔ
j

i −c j ,
∑n

i=1 diΔ
j

i −d j ,
∑n

i, j=1 ci d j (ε
k
i j −

εk
ji )}), which is closed in Salgn ×(V ∨ V ).
It follows from Lemma 4.3 that the maps A ∗∪ dim WA and A ∗∪ dim W ∞

A
are upper semicontinuous. Now since Salgi

n are closed subsets of Salgn it suffices
to show that the sets mentioned in the lemma intersected with Salgi

n are closed in
Salgi

n for each i = 1, . . . , n. That is, we may assume dim A0 = i . We note that
WA ≤ A1 ∨ A1. Now if A2

1 = 0, then WA = A1 ∨ A1 which has dimension
(n − i)2. If A2

1 ≥= {0}, then WA ∇ A1 ∨ A1. We can see from the above, that
for a given superalgebra A, WA is closed in V ∨ V , and we note that A1 ∨ A1 is
irreducible and has dimension (n − i)2 (as a variety) since it is isomorphic to the
(n − i)2-dimensional affine space A

(n−i)2 . Thus dim WA < (n − i)2 by Lemma 4.4.
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Therefore the set {A ⊂ Salgi
n : A2

1 = {0}} = {A ⊂ Salgi
n : dim WA ≥ (n − i)2} is a

closed set by the upper semicontinuity. This proves part (a).
SimilarlyW ∞

A ≤ A0∨A0, and if A0 is commutative thenW ∞
A = A0∨A0 which has

dimension i2. If A0 is not commutative then W ∞
A ∇ A0∨ A0 and so similarly as above

dim W ∞
A < i2 (we just need to note that W ∞

A is closed and A0 ∨ A0 is irreducible).
Thus the set {A ⊂ Salgi

n : A0 is commutative } = {A ⊂ Salgi
n : dim W ∞

A ≥ i2} is a
closed set by the upper semicontinuity. This proves part (b).

For Salg2n we have other closed subsets. Since dim A0 = 2, J (A0) = {x ⊂ A0 :
x2 = 0}, notice that this is a vector subspace of A0.

Lemma 4.6 The following are closed sets in Salg2n:

(a) {A ⊂ Salg2n : dim J (A0) = 1}.
(b) {A ⊂ Salg2n : dim J (A0) = 1, J (A0)A1 = {0}}.
(c) {A ⊂ Salg2n : dim J (A0) = 1, A1 J (A0) = {0}}.
Proof We give the proof for subset (b), since the proof for subset (c) is very similar
and the proof for subset (a) follows by just simplifying this proof.

For subset (b) we assign to a superalgebra A the subset WA = {v ∨ w : v ⊂
A0, w ⊂ A1, v2 = 0, vw = 0} of V ∨ V . This is clearly a cone. We also note WA ≤
J (A0) ∨ A1. Suppose v = ∑n

i=1 ci ei , w = ∑n
i=1 di ei . We discover {(A, v ∨ w) :

v∨w ⊂ WA} = V ({ci })∪V ({di })∪V ({∑n
i=1 ciΔ

j
i −c j ,

∑n
i=1 ci c jε

k
i j ,

∑n
i=1 diΔ

j
i +

d j ,
∑n

i, j=1 ci d jε
k
i j }). Which is closed in Salgn ×(V ∨ V ).

So by Lemma 4.3, A ∗∪ dim WA is an upper semicontinuous map. Now, if
A ⊂ {A ⊂ Salg2n : dim J (A0) = 1, J (A0)A1 = {0}} then dim WA = n − 2. If
A /⊂ {A ⊂ Salg2n : dim J (A0) = 1, J (A0)A1 = {0}} then either dim J (A0) = 0 in
which case WA = {0} and dim WA = 0 or dim J (A0) = 1 and J (A0)A1 ≥= {0} in
which case WA ∇ J (A0) ∨ A1. In this case dim WA < n − 2 since WA is closed,
and J (A0) ∨ A1 ∈= A1 ∈= A

n−2 as vector spaces, so J (A0) ∨ A1 is an irreducible
subset of dimension n − 2 as an (n − 2)-dimensional vector subspace W of A

n with
n > r is isomorphic as a variety to A

r . In particular this means that W is irreducible
and as a variety has dimension r .

Hence {A ⊂ Salg2n : dim J (A0) = 1, J (A0)A1 = {0}} = {A ⊂ Salg2n :
dim WA ≥ n − 2} which is closed by the upper semi-continuity.

One can quickly check that if a superalgebra belongs to one of the closed sets
described in Lemma 4.5, or Lemma 4.6, then any isomorphic superalgebra must also
belong to the same set. Thus these closed sets are stable under the action of Gn .

5 Degenerations in Salg4

In this section we are interested in determining when 4-dimensional superalgebra
structures do or do not degenerate to one another. Here we use the results derived in
the previous section to help us.
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The results of this section give usmost of the degenerations in Salg4. Before giving
the degeneration diagramswe shall first explain how to interpret them.We follow this
by giving a partial classification theorem for Salg4—we determine twenty irreducible
components. There are, however, two other structures which may or may not give
rise to irreducible components, and finally we give the details of the degenerations or
the non-existence of degenerations, which were shown in the degeneration diagram.

Aswe shall soon see, there can be no degenerations amongst 4-dimensional super-
algebras A and B with dim A0 ≥= dim B0. Thuswe can give the degeneration diagram
for Salg4 by giving the degeneration diagrams for each of the connected components
Salgi

4 for i = 1, 2, 3, 4 separately. However we shall omit the diagram for Salg14
since this consists of the solitary orbit of (9|3).

Before giving these diagrams we shall explain the notations that we use in these
diagrams.

We represent the orbits of isomorphism classes of superalgebras, by using the
(i | j) notation from [1]; (i | j) shall be used to denote the orbit G4 · (i | j) in Salg4.

The families of superalgebras (18; α|i), i = 0, 1, 2 consist of those superalge-
bras for all values of α except −1, which in particular includes the values α = 0
and α = 1. In these cases these orbits coincide with some of the other orbits.
This is because, as superalgebras, we have the following equalities or isomor-
phisms: (18; 0|0) = (16|0), (18; 0|1) = (16|1), (18; 0|2) = (16|3), (18; 1|0) ∈=
(7|0), (18; 1|1) ∈= (7|2), (18; 1|2) ∈= (7|3).

In the degeneration diagrams Figs. 1 and 3, we use a dashed line to indicate a
“degeneration” by a family of superalgebra structures; that is, when an orbit lies in
the closure of the union of a family of orbits. This explains the use of the dashed
lines through the families (18; α|i), i = 0, 1, 2. The fact that we use an arrow
from (18; α|0) to (8|0) and from (18; α|2) to (8|3) is because there is a genuine
degeneration from each of the orbits in these families to the orbits (8|0) or (8|3).

The dotted arrows (or dotted lines in the case of degenerations by a family of
structures), are used to indicate those degenerations which we are unsure of—there
may or may not be a degeneration between the indicated superalgebras.

From this we get the following (partial) result classifying 4-dimensional superal-
gebras:

Theorem 5.1 (Partial Geometric Classification of 4-dimensional Superalgebras)
InSalg4 there are at least twenty irreducible components. The following structures

(or families of structures) are known to be generic:
In Salg44: (1|0), (10|0), (13|0), (17|0), (18; α|0).
In Salg34: (1|1), (11|1), (13|1), (14|1), (15|1), (17|1).
In Salg24: (1|2), (10|1), (11|3), (14|3), (15|3), (17|2), (18; α|1), (18; α|2).
In Salg14: (9|3).

Proof This follows from the degeneration diagrams Figs. 1, 2 and 3 and Corol-
lary 3.2 which gives the relationship between the degeneration partial order and the
irreducible components.
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(14|0)

(9|0)

(17|0)

(12|0)

(16|0)

(19|0)

(15|0)

(13|0)

(6|0)

(8|0)

(18;λ|0)

(7|0) (5|0)

(4|0)

(3|0)

(2|0) (1|0)

(11|0) (10|0)

Fig. 1 Degenerations in the component Salg44

Remark 5.1 The result above guarantees the existence of twenty irreducible compo-
nents, however there could be up to twomore irreducible components as well. It is the
connected component Salg24 in which we are unsure if we have found all of the irre-
ducible components. It is not known whether the following two structures in Salg24
are generic or not: (6|2), (19|1)—so Salg24 could have as few as eight irreducible
components or as many as ten.

We are unsure if (18; α|2) degenerates to (19|1) or not. This is why the dashed
line through (18; α|2) changes to a dotted line after passing through (16|3). We point
this out to the reader to ensure that this important detail is not missed.

Remark 5.2 Porposition 3.1 gives the dimensions of these orbits, which for the
generic structures gives the dimensions of the components too. However, for the
generic families (18; α|i) for i = 0, 1, 2, the dimension of the component must be
at least one larger than the dimension of any single orbit in this family. Since the
family depends on one parameter α, we would suspect that the dimensions of these
components of the generic families are exactly one larger than the dimension of any
single orbit in this family. However, we have not proved this. To prove that this is
indeed the case, it would suffice to show that there can be no closed irreducible set Y
lying properly between Gn · (18; α|i) and⋃

α Gn · (18; α|i), i.e. that it is impossible
to have Gn · (18; α|i) ∇ Y ∇ ⋃

α Gn · (18; α|i) when Y is closed and irreducible.
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(13|1)

(1|1)

(4|1)

(3|1)

(7|1)

(11|1)

(9|1)

(17|1)

(15|1)

(14|1)
(14|2)

(15|2)

(8|1)

(8|2)

(2|1)

(2|2)

(6|1)

Fig. 2 Degenerations in the component Salg34

We now provide the details which were used to obtain the degeneration diagrams
Figs 1, 2 and 3 :

We apply the following useful facts mentioned in Remark 4.2 in the previous
section which shall help us here. Since n = 4 we may appeal Lemma 2.2 to see that
Salgi

4 for i = 1, 2, 3, 4 are all closed disjoint subsets (and in fact by Proposition 4.1
are the connected components of Salg4). Thus by part (c) of Remark 4.2 there cannot
be a degeneration from A to B unless dim0 A = dim0 B. Thus we need only to look
at the degenerations amongst superalgebras belonging to the same subset Salgi

4.
Another remark made in part (a) of Remark 4.2 is the following: If U (A) doesn’t

degenerate to U (B) as algebras, then A cannot degenerate to B as superalgebras.
So we simply focus on degenerations from A to B, when there is a degeneration
from U (A) to U (B) of underlying algebras. These two remarks represent large
simplifications for us, as they greatly reduce the number of degenerations we must
consider. Since two different superalgebras on the same underlying algebra have a
trivial degeneration of the underlying algebra, we must however check to see if there
are degenerations between different superalgebras on the same underlying algebra.

We also recall, any superalgebra in Salgi
4 degenerates to the superalgebra structure

on k[X, Y, Z ]/(X, Y, Z)2 in Salgi
4 for i = 1, 2, 3, 4. The orbit of this superalgebra

is the closed orbit in Salgi
4. We will not mention this degeneration further since it

always exists. We gave the specialization giving rise to this degeneration in Remark
4.1.
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(16|2)

(9|2)

(17|2)

(8|3)

(14|3)

(15|3)

(1|2)(2|3)

(3|2)
(3|3)

(5|1)
(7|3)

(16|3)

(19|1)

(11|2)

(11|3)

(10|1)

(12|2)

(12|1)

(18; |1)

(18; |2)

(7|2)
(6|2)

(16|1)

(16|2)

(9|2)

(17|2)

(8|3)

(14|3)

(15|3)

(1|2)(2|3)

(3|2)
(3|3)

(5|1)
(7|3)

(16|3)

(19|1)

(11|2)

(11|3)

(10|1)

(12|2)

(12|1)

(18;λ

(18;λ

(7|2)
(6|2)

(16|1)

Fig. 3 Degenerations in the component Salg24

By Corollary 4.1, to show the existence of a degeneration, it suffices to exhibit
a specialization. In this section to show the existence of degenerations we shall do
this, except in one instance where we shall appeal to Lemma 4.1 directly.

We mention that all the specializations given in this section are “homogeneous”,
that is, the basis changes replace degree zero terms by degree zero terms, and similarly
replace degree one terms by degree one terms. Corollary 4.1 applies equally well to
non-homogeneous specializations, however, such specializations are more difficult
to determine. In fact, there are some superalgebras which we haven’t determined
whether there is or is not a degeneration between (e.g. does (1|2) degenerate to
(6|2)?), but if the degeneration was to be obtained by a specialization it would
necessarily have to be non-homogeneous. For an example of a degeneration obtained
by a non-homogeneous specialization we have the following in the dimension 2 case,
where each superalgebra is given the non-trivial Z2-grading:

k × k ∪ k[X ]/(X2) by e1 = (1, 1), e2 = (1,−1), e∞
1 = e1, e∞

2 = te1 + te2 let
t ∪ 0

To show the non-existence of a degeneration we list the method which we use.
There are several different methods. We give the name and a brief explanation for
each below.

• By Lemma 3.1 part (c) the orbit dimension must strictly decrease upon proper
degeneration. So a superalgebra cannot degenerate to another superalgebra of the
same or greater dimension. We abbreviate this method by (OD). Note however
that it is possible for a family of structures of a given dimension to “degenerate”
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to a structure of the same dimension. As an example of this, each orbit in (18; α|0)
has dimension 8 as does the orbit (19|0), yet the family (18; α|0) “degenerates”
to (19|0).

• For the other methods we use the closed Gn-stable subsets found in the previous
section. If A belongs to one of these subsets, and B does not, then A cannot
degenerate to B. We shall refer to this set of methods by which of the closed Gn-
stable subsets we apply. The abbreviation we give to the method by applying one
of the closed sets is listed below.

– (A) {A ⊂ Salgn : A2
1 = {0}}.

– (B) {A ⊂ Salgn : A0 is commutative }.
– (C) {A ⊂ Salg24 : dim J (A0) = 1}.
– (D) {A ⊂ Salg24 : dim J (A0) = 1, J (A0)A1 = {0}}.
– (E) {A ⊂ Salg24 : dim J (A0) = 1, A1 J (A0) = {0}}.

In the following, when ε ≥= 0, wewill use the shorthand,
ˇ

ε to denote some element,
x , of k⇔, such that x2 = ε. (Such an element x always exists as k is algebraically
closed. Moreover, if x is such an element, then so too is −x).

Case dim0 = 4:
Applying part (b) in Remark 4.2 from the previous section, we notice that the

degeneration diagram of Salg44 corresponds exactly to the degeneration diagram of
Alg4. These degenerations have been completely described by Gabriel in [5], where
he gives the degeneration diagram.

Case dim0 = 3:
Existence of Degenerations:

(1|1) ∪ (2|1) : e1 = (1, 1, 1, 1), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 1), e4 =
(0, 0, 1,−1), e∞

1 = e1, e∞
2 = e2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(1|1) ∪ (2|2) : e1 = (1, 1, 1, 1), e2 = (0, 0, 1, 1), e3 = (1,−1, 0, 0), e4 =
(0, 0, 1,−1), e∞

1 = e1, e∞
2 = e2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(1|1) ∪ (4|1) : e1 = (1, 1, 1, 1), e2 = (1, 0, 0, 0), e3 = (0, 0, 1, 1), e4 =
(0, 0, 1,−1), e∞

1 = e1, e∞
2 = e2, e∞

3 = t2e3, e∞
4 = te4 let t ∪ 0.

(2|1) ∪ (3|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e4 =
(0, 0, X), e∞

1 = e1, e∞
2 = e2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(2|1) ∪ (6|1) : e1 = (1, 1, 1), e2 = (1, 0, 0), e3 = (0,−1, 1), e4 =
(0, 0, X), e∞

1 = e1, e∞
2 = e2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0

(2|2) ∪ (3|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (0, 0, X), e4 = (1,−1, 0),
e∞
1 = e1, e∞

2 = e2, e∞
3 = e3, e∞

4 = te4 let t ∪ 0.
(2|2) ∪ (7|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (0, 0, X), e4 = (1,−1, 0),

e∞
1 = e1, e∞

2 = ˇ
2te2 + e3, e∞

3 = t2e2, e∞
4 = ˇ−2te4 let t ∪ 0.

(3|1) ∪ (8|1) : e1 = (1, 1), e2 = (1, 0), e3 = (X, 0), e4 = (0, Y ), e∞
1 =

e1, e∞
2 = te2 + e3, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(4|1) ∪ (6|1) : e1 = (1, 1), e2 = (1, 0), e3 = (0, X2), e4 = (0, X), e∞
1 =

e1, e∞
2 = e2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.
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(4|1) ∪ (7|1) : e1 = (1, 1), e2 = (−1, 1), e3 = (0, X2), e4 = (0, X), e∞
1 =

e1, e∞
2 = t2e2 + e3, e∞

3 = t2e3, e∞
4 = ˇ−2te4 let t ∪ 0.

(6|1) ∪ (8|1) : e1 = (1, 1), e2 = (−1, 1), e3 = (0, X), e4 = (0, Y ), e∞
1 =

e1, e∞
2 = te2 + e3, e∞

3 = 2te3, e∞
4 = e4 let t ∪ 0.

(7|1) ∪ (8|1) : e1 = 1, e2 = X + Y, e3 = XY, e4 = X − Y, e∞
1 = e1, e∞

2 =
e2, e∞

3 = 2e3, e∞
4 = te4 let t ∪ 0.

(7|1) ∪ (8|2) : e1 = 1, e2 = X + Y, e3 = XY, e4 = X − Y, e∞
1 = e1, e∞

2 =
−2e3, e∞

3 = te2, e∞
4 = e4 let t ∪ 0.

(13|1) ∪ (14|2) : e1 =
⎤
1,

⎤
1 0
0 1

⎦⎦
, e2 =

⎤
1,

⎤
0 0
0 1

⎦⎦
, e3 =

⎤
1,

⎤
0 0
0 0

⎦⎦
, e4 =⎤

0,
⎤
0 1
0 0

⎦⎦
, e∞

1 = e1, e∞
2 = e2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(13|1) ∪ (15|2) : e1 =
⎤
1,

⎤
1 0
0 1

⎦⎦
, e2 =

⎤
1,

⎤
1 0
0 0

⎦⎦
, e3 =

⎤
1,

⎤
0 0
0 0

⎦⎦
, e4 =⎤

0,
⎤
0 1
0 0

⎦⎦
, e∞

1 = e1, e∞
2 = e2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(14|2) ∪ (8|1) : e1 =
(
1 0 0
0 1 0
0 0 1

)
, e2 =

(
1 0 0
0 1 0
0 0 −1

)
, e3 =

(
0 0 0
1 0 0
0 0 0

)
, e4 =

(
0 0 0
0 0 0
1 0 0

)
, e∞

1 =
e1, e∞

2 = te2 + e3, e∞
3 = 2te3, e∞

4 = e4 let t ∪ 0.

(15|2) ∪ (8|1) : e1 =
(
1 0 0
0 1 0
0 0 1

)
, e2 =

(
1 0 0
0 1 0
0 0 −1

)
, e3 =

(
0 1 0
0 0 0
0 0 0

)
, e4 =

(
0 0 1
0 0 0
0 0 0

)
, e∞

1 =
e1, e∞

2 = te2 + e3, e∞
3 = 2te3, e∞

4 = e4 let t ∪ 0.

Non-existence of Degenerations:

(2|1) � (2|2) (OD);
(2|1) � (4|1) (OD);
(2|1) � (7|1) (A);
(2|1) � (8|2) (A);
(2|2) � (2|1) (OD);
(2|2) � (4|1) (OD);
(3|1) � (7|1) (OD);
(3|1) � (8|2) (A);
(6|1) � (8|2) (A);
(8|1) � (8|2) (OD);
(8|2) � (8|1) (OD);
(13|1) � (8|2) (A);
(13|1) � (14|1) (B);
(13|1) � (15|1) (B);
(14|1) � (8|1) (OD);
(14|1) � (8|2) (OD);
(14|1) � (14|2) (OD);
(14|2) � (8|2) (A);
(14|2) � (14|1) (B);
(15|1) � (8|1) (OD);
(15|1) � (8|2) (OD);
(15|1) � (15|2) (OD);
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(15|2) � (8|2) (A);
(15|2) � (15|1) (B).
Undetermined Degeneration:

(2|2) ?∪ (6|1).
Case dim0 = 2:
Existence of Degenerations:

(1|2) ∪ (2|3) : e1 = (1, 1, 1, 1), e2 = (0, 0, 1, 1), e3 = (1,−1, 0, 0), e4 =
(0, 0, 1,−1), e∞

1 = e1, e∞
2 = e2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(1|2) ∪ (3|3) : e1 = (1, 1, 1, 1), e2 = (1, 1, 0, 0), e3 = (1,−1, 1,−1), e4 =
(1,−1, 0, 0), e∞

1 = e1, e∞
2 = te2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(2|3) ∪ (3|2) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e4 =
(0, 0, X), e∞

1 = e1, e∞
2 = e2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(2|3) ∪ (5|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e4 =
(0, 0, X), e∞

1 = e1, e∞
2 = t2e2, e∞

3 = te3 + e4, e∞
4 = t3e3 let t ∪ 0.

(3|2) ∪ (7|2) : e1 = (1, 1), e2 = (1,−1), e3 = (X, Y ), e4 = (X,−Y ), e∞
1 =

e1, e∞
2 = te2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(3|3) ∪ (5|1) : e1 = (1, 1), e2 = (X, Y ), e3 = (1,−1), e4 = (X,−Y ), e∞
1 =

e1, e∞
2 = 2te2, e∞

3 = te3 + e4, e∞
4 = 2t2e4 let t ∪ 0.

(3|3) ∪ (7|3) : e1 = (1, 1), e2 = (X, Y ), e3 = (1,−1), e4 = (X,−Y ), e∞
1 =

e1, e∞
2 = te2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(5|1) ∪ (7|2) : e1 = 1, e2 = X2, e3 = X, e4 = X3, e∞
1 = e1, e∞

2 = e2, e∞
3 =

te3, e∞
4 = te4 let t ∪ 0.

(5|1) ∪ (8|3) : e1 = 1, e2 = X2, e3 = X, e4 = X3, e∞
1 = e1, e∞

2 = t2e2, e∞
3 =

te3, e∞
4 = e4 let t ∪ 0

(7|3) ∪ (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e∞
1 = e1, e∞

2 =
2e2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(10|1) ∪ (11|2) : e1 =
⎤
1 0
0 1

⎦
, e2 =

⎤
1 0
0 −1

⎦
, e3 =

⎤
0 1
0 0

⎦
, e4 =

⎤
0 0
1 0

⎦
, e∞

1 =
e1, e∞

2 = e2, e∞
3 = te3, e∞

4 = te4 let t ∪ 0.

(10|1) ∪ (12|2) : e1 =
⎤
1 0
0 1

⎦
, e2 =

⎤
1 0
0 −1

⎦
, e3 =

⎤
0 1

−1 0

⎦
, e4 =

⎤
0 1
1 0

⎦
, e∞

1 =
e1, e∞

2 = t2e2, e∞
3 = te3, e∞

4 = te4 let t ∪ 0.

(11|2) ∪ (12|1) : e1 =
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, e2 =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
, e3 =

(
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

)
,

e4 =
(

0 0 0 0
0 0 0 1

−1 0 0 0
0 0 0 0

)
, e∞

1 = e1, e∞
2 = te2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(11|3) ∪ (12|1) : e1 =
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, e2 =

(
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

)
, e3 =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
,

e4 =
(

0 0 0 0
0 0 0 −1
1 0 0 0
0 0 0 0

)
, e∞

1 = e1, e∞
2 = e2, e∞

3 = te3, e∞
4 = te4 let t ∪ 0.
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(11|3) ∪ (12|2) : e1 =
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, e2 =

(
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

)
, e3 =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
,

e4 =
(

0 0 0 0
0 0 0 1

−1 0 0 0
0 0 0 0

)
, e∞

1 = e1, e∞
2 = te2, e∞

3 = te3, e∞
4 = e4 let t ∪ 0.

(14|3) ∪ (16|1) : e1 =
(
1 0 0
0 1 0
0 0 1

)
, e2 =

(
1 0 0
0 1 0
0 0 −1

)
, e3 =

(
0 0 0
1 0 0
1 0 0

)
, e4 =(

0 0 0
1 0 0

−1 0 0

)
, e∞

1 = e1, e∞
2 = te2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(15|3) ∪ (16|2) : e1 =
(
1 0 0
0 1 0
0 0 1

)
, e2 =

(
1 0 0
0 1 0
0 0 −1

)
, e3 =

(
0 1 1
0 0 0
0 0 0

)
, e4 =(

0 1 −1
0 0 0
0 0 0

)
, e∞

1 = e1, e∞
2 = te2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(16|3) ∪ (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e∞
1 = e1, e∞

2 =
e2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(18; α|1) ∪ (7|2), (16|1) : Since the orbits of (7|2) and (16|1) coincide with the
orbits of (18; 1|1) and (18; 0|1) respectively, (7|2) and (16|1) are included in the
closure of the union of the family of orbits (18; α|1).

(18; α|1) ∪ (16|2) : Also (16|2) is included in the closure of the union of the
family of orbits (18; α|1). To see this, we look at the structure constants of (18; t−1|1)
in the basis e1 = 1, e2 = X, e3 = Y, e4 = Y X . This gives us a curve in Salg4 which
lies in the family of orbits of (18; α|1) for t ≥= 0, yet lies in the orbit of (16|2) when
t = 0. By appealing to Lemma 4.1 directly the result follows.

(18; α|2) ∪ (7|3), (16|3) : Similarly the orbits of (7|3) and (16|3) are included
in the closure of the union of the family of orbits (18; α|2).

(18; α|2) ∪ (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e∞
1 = e1, e∞

2 =
(1 + α)e2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(19|1) ∪ (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e∞
1 = e1, e∞

2 =
e2, e∞

3 = e3, e∞
4 = te4 let t ∪ 0.

(19|1) ∪ (12|2) : e1 = 1, e2 = XY, e3 = X, e4 = Y, e∞
1 = e1, e∞

2 = te2, e∞
3 =

te3, e∞
4 = e4 let t ∪ 0.

Non-existence of Degenerations:

(2|3) � (3|3) (OD);
(3|2) � (3|3) (OD);
(3|2) � (5|1) (OD);
(3|2) � (7|3) (OD);
(3|2) � (8|3) (A);
(3|3) � (3|2) (C);
(5|1) � (7|3) (OD);
(6|2) � (8|3) (OD);
(7|2) � (7|3) (OD);
(7|2) � (8|3) (OD);
(7|3) � (7|2) (D);
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(10|1) � (11|3) (OD);
(11|2) � (11|3) (OD);
(11|2) � (12|2) (A);
(11|3) � (11|2) (C);
(12|1) � (12|2) (A);
(12|2) � (12|1) (OD);
(14|3) � (16|3) (OD);
(14|3) � (8|3) (A);
(15|3) � (16|3) (OD);
(15|3) � (8|3) (A);
(16|1) � (16|2) (OD);
(16|1) � (16|3) (OD);
(16|1) � (8|3) (OD);
(16|2) � (16|1) (OD);
(16|2) � (16|3) (OD);
(16|2) � (8|3) (OD);
(16|3) � (16|1) (D);
(16|3) � (16|2) (E);
(18; α|1) � (7|3), (16|3), (18; α|2), (19|1) (A);
(18; α|1) � (8|3) (A);
(18; α|2) � (7|2), (16|1), (16|2), (18; α|1) (D), (E);
(19|1) � (12|1) (D).
Undetermined Degenerations:

(1|2) ?∪ (6|2);
(2|3) ?∪ (6|2);
(18; α|2) ?∪ (19|1);
(2|3) ?∪ (7|3);
(14|3) ?∪ (16|2);
(15|3) ?∪ (16|1).
The first three of these undetermined degenerations are related to discovering

whether (6|2) or (19|1) give rise to irreducible components in Salg24.

Remark 5.3 We close with the remark that in Salg4 no two superalgebra structures A
and B on the same underlying algebra can degenerate to each other, even if dim0 A =
dim0 B. We have seen this from brute force checking of each case. Is it a general
result that there can be no degeneration from a superalgebra to any other superalgebra
having the same underlying algebra?
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Distributivity in Quandles and Quasigroups

Mohamed Elhamdadi

Abstract Distributivity in algebraic structures appeared in many contexts such as
in quasigroup theory, semigroup theory and algebraic knot theory. In this paper we
give a survey of distributivity in quasigroup theory and in quandle theory.

1 Introduction

Quandles are in general non-associative structures whose axioms correspond to the
algebraic distillation of the three Reidemeister moves in knot theory. Quandles ap-
peared in the literature with many different names. If one restricts himself to the
most important axiom of a quandle which is the self-distributivity axiom (see defin-
ition below), then one can trace this back to 1880 in the work of Pierce [52] where
one can read the following comments, “These are other cases of the distributive
principle ....These formulae, which have hitherto escaped notice, are not without
interest.” Another early work fully devoted to self-distributivity appeared in 1929
by Burstin and Mayer [7] where normal subquasigroups are studied and an attempt
is made to show that every minimal subquasigroup of a finite distributive quasigroup
is normal. This is considered as the starting point for the investigation of normality
problems in distributive quasigroups. In 1942 Mituhisa Takasaki [57] introduced the
notion of kei (involutive quandle in Joyce’s terminology [37]) as an abstraction of the
notion of symmetric transformation. The earliest known work on racks (see defin-
ition below) is contained in the 1959 correspondence between John Conway and
Gavin Wraith who studied racks in the context of the conjugation operation in a
group. Around 1982, Joyce [37] (used the term quandle) and Matveev [40] (who call
them distributive groupoids) introduced independently the notion of a quandle. Joyce
and Matveev associated to each oriented knot K a quandle Q(K ) called the knot
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quandle. The knot quandle is a complete invariant up to orientation. Since then quan-
dles and racks have been investigated by topologists in order to construct knot and link
invariants and their higher analogues (see for example [20] and references therein).
In 1986, Brieskorn [5] introduced the concept of automorphic sets to describe a set
λ with a binary operation ⊕ such that all left multiplications b ≥∈ a ⊕ b are auto-
morphisms of λ. He considered the action of the braid group Bn on the Cartesian
product λn and introduced invariants of the orbit; for example, monodromy groups.
In 1991, Kauffman introduced a similar notion called crystal ([38], p. 186) as a
generalization of the fundamental group of a knot in the sense that the crystal has
more information than the fundamental group alone. In 1992, Fenn and Rourke [29]
showed that any codimension-two link has a fundamental rack which contains more
information than the fundamental group. They gave some examples of computable
link invariants derived from the fundamental rack and explained the connection
of the theory of racks with that of braids. In 2003, Fenn, Rourke and Sanderson
[30] introduced rack homology. This (co)homology was modified in 1999 by Carter
et al. [18] to give a cohomology theory for quandles. This cohomology was used
to define state-sum invariant for knots in three space and knotted surfaces in four
space. A nice survey paper on quandle ideas is a paper by Scott Carter [8] showing
the applications of quandle cocycle invariants.

In this paper, we give a survey of distributivity in quasigroup theory and in quandle
theory.

In Sect. 2, we review the basics of quandles and give examples. Section 3 deals with
the problem of classification of quandles. In Sect. 4 we relate quandles to quasigroups
and Moufang loops. Section 5 deals with the quandle cohomology and cocycle knot
invariants.

2 Basics of Quandles

We start by reviewing the basics of quandles and give some examples.

Definition 2.1 [37] A quandle, X , is a set with a binary operation (a, b) ≥∈ a ⊕ b
such that

(1) For any a ⊂ X , a ⊕ a = a.
(2) For any a, b ⊂ X , there is a unique c ⊂ X such that a = c ⊕ b.
(3) For any a, b, c ⊂ X , we have (a ⊕ b) ⊕ c = (a ⊕ c) ⊕ (b ⊕ c).

Axiom (2) states that for each u ⊂ X , the map Ru : X ∈ X with Ru(x) := x ⊕ u
is a bijection. The axioms for a quandle correspond respectively to the Reidemeister
moves of type I, II, and III as can be seen from Fig. 1.

Quandles have been used to study colorings of knots and links and to define some
of their invariants, see for example [17].
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III

II

a*a a a

a

a

I

b*c (a*b)*(b*c)

b

c

b*c

abab

(a*b)*c

a*b

a*c

b*cc

cba b c a

Fig. 1 Reidemeister moves and quandle axioms

Here are some examples of quandles:

• Any set X with the operation x ⊕ y = x for all x, y ⊂ X, is a quandle called the
trivial quandle.

• Any group X = G with conjugation a ⊕ b = bab−1 is a quandle.
• Let n be a positive integer. For elements i, j ⊂ Zn (integers modulo n), define

i ⊕ j ⊗ 2 j − i (mod n). Then ⊕ defines a quandle structure called the dihedral
quandle, Rn . This set can be identified with the set of reflections of a regular n-gon
with conjugation as the quandle operation. If we denote the group of symmetry of
a regular n-gon by Dn =< u, v | un = 1, v2 = 1, vuv = u−1 >, then conjugation
on reflections is given by (ui v)⊕(u j v) = u j vui v(u j v)−1 = u j u−i vu− j = u2 j−i v.

• A group X = G with operation x ⊕ y = yx−1 y is called the core quandle of G,
denoted Core(G).

• For any abelian group M and automorphism t of M define a quandle structure on
M by x ⊕ y = t (x − y) + y. This is called an Alexander quandle.

• A generalization of the last example is, let G be a group and α be an automorphism
of G, then define a quandle structure on G by x ⊕ y = α(xy−1)y. Further, let H
be a subgroup of G such that α(h) = h, for all h ⊂ H . Then G/H is a a quandle
with operation H x ⊕ H y = Hα(xy−1)y. It is called the homogeneous quandle
(G, H, α).

• Let < , >: Rn × R
n ∈ R be a symmetric bilinear form on R

n . Let X be the
subset of Rn consisting of vectors x such that < x, x >�= 0. Then the operation
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x ⊕ y = 2 < x, y >

< x, x >
y − x

defines a quandle structure on X . Note that, x ⊕ y is the image of x under the
reflection in y. This quandle is called a Coxeter quandle.

A function α : (X, ⊕) ∈ (Y,�) is a quandle homomorphism if α(a ⊕ b) = α(a) �
α(b) for any a, b ⊂ X . Axiom (3) of definition 2.1 state that for each u ⊂ X , the
map Ru is a quandle homomorphism. Let Aut(X) denotes the automorphism group
of X . The subgroup of Aut(X) generated by the permutations Rx is called the inner
automorphism group of X and denoted by Inn(X). By axiom (3) of definition 2.1, the
map R : X ∈ Inn(X), sending u to Ru , satisfies the equation Rz Ry = Ry⊕z Rz,

which can be written as Rz Ry Rz
−1 = Ry⊕z, for all y, z ⊂ X . Thus, if the group

Inn(X) is considered as a quandle with conjugation then the map R becomes a quandle
homomorphism. The subgroup of Aut(X) generated by Rx R−1

y , for all x, y ⊂ X , is
called the transvection group of X denoted by T ransv(X). It is well known (see
for example [37]) that the transvection group is a normal subgroup of the inner
group and the later group is normal subgroup of the automorphism group of X . The
quotient group Inn(X)/Transv(X) is a cyclic group (see [37]). For each u ⊂ X , let
us denote the left multiplication by u by the map Lu : X ∈ X with Lu(x) := u ⊕ x .
We list some properties and some definitions of quandles below.

• A quandle X is involutory, or a kei, if the right translations are involutions: R2
a = id,

for all a ⊂ X .
• A quandle is faithful if the mapping a ≥∈ Ra is an injection from X to Inn(X).
• A quandle is connected if Inn(X) acts transitively on X .
• A Latin quandle is a quandle such that for each a ⊂ X , the left translation La is a

bijection. That is, the multiplication table of the quandle is a Latin square.
• A quandle X is medial if (a ⊕ b) ⊕ (c ⊕ d) = (a ⊕ c) ⊕ (b ⊕ d) for all a, b, c, d ⊂ X .

It is well known that a quandle is medial if and only if its transvection group is
abelian, that is why it is also called abelian. It is known and easily seen that every
Alexander quandle is medial.

• A quandle X is called simple if the only surjective quandle homomorphisms on
X have trivial image or are bijective.

3 The Problem of Classification of Quandles

The problem of classification of quandles and racks was attempted by many authors
mainly because computable invariants of knots such as, the quandle cocycle invariant
of Carter et al. [18, 20], and enhancement of counting homomorphisms from the knot
quandle to a fixed quandle of Nelson et al. [45, 46] can be defined from quandles.
Racks and quandles are used in the classification of pointed Hopf algebras [1] since
they help in the understanding of Yetter-Drinfeld modules over groups. Below, we
give a survey of the classification of finite quandles.
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In 2003, Nelson gave a classification of finite Alexander quandles proving the
following

Theorem 3.1 [47] Two finite Alexander quandles M and N of the same cardinality
are isomorphic as quandles if and only if (1 − t)M and (1 − t)N are isomorphic as
Z[t, t−1]-modules.

As a consequence of this theorem Ho and Nelson [34] computed isomorphism
classes of quandles up to order 5 and their automorphism groups. Quandles of order
6, 7 and 8 were given by Henderson, Macedo and Nelson in [33] but isomorphism
class representatives were not determined. In 2006, Nelson and Wong [48] obtained
the orbit decomposition of finite quandles: A subset A of a quandle X is said to be
X -complemented if the complement of A in X is a subquandle of X . They proved
the following

Theorem 3.2 [48] Up to isomorphism, every finite quandle has a unique decompo-
sition into subquandles A1, A2, . . . , An such that every A j is X-complemented and
no proper subquandle of any A j is X-complemented.

Independently around the same time Yetter et al. [26] obtained a similar decompo-
sition theorem for quandles in terms of an operation of “semidisjoint union”, showing
that all finite quandles canonically decompose via iterated semidisjoint unions into
connected subquandles. Murillo and Nelson [43, 44] proved in 2006 that there are
24 isomorphism classes of Alexander quandles of order 16. In [28] quandles up to
order 9 were classified, automorphism groups of quandles (with orders up to 7) were
determined and the automorphism group of the dihedral quandle Rn was proven to
be isomorphic to the affine group of Zn . The number of isomorphism classes of
quandles of order 3, 4, 5, 6, 7, 8 and 9 are respectively 3, 7, 22, 73, 298, 1581,
11079. The list of isomorphism classes can be found in https://sites.google.com/a/
exactas.udea.edu.co/restrepo/quandles. Independently the same classification result
was obtained in [41] by McCarron.

In [35] it was shown first that the isomorphism class of an Alexander quandle
(M, ⊕) is determined by the isomorphism type of the ε-module (1 − t)M and the
cardinality of the quotient A/K , where A is the annihilator of (1− t) in M , K = A∩
(1−t)M and ε = Z[t, t−1]. This recovers a result of Sam Nelson [47]. The structure
of the automorphism group of a general Alexander quandle (M, ⊕) is completely
determined (see [35] for more details). Enumeration of Alexander quandles has been
much improved. Edwin Clark computed the number of Alexander quandles of orders
up to 255 (see http://oeis.org/A193024, for more details) based on results from [36]
which contains other interesting enumeration results concerning Alexander quandles.
More sequences related to quandles can be found on http://oeis.org.

Example 3.1 One way of describing a finite quandle is by the Cayley table. Since
by the second axiom of a quandle right multiplication by a fixed i , Ri : j ≥∈ j ⊕ i
is a permutation. We then can describe each quandle by writing each column Ri of
the Cayley table as a product of disjoint cycles. Here we include the list of quandles
of order 4. The notation (1) in the table means that the permutation is the identity

https://sites.google.com/a/exactas.udea.edu.co/restrepo/quandles.
https://sites.google.com/a/exactas.udea.edu.co/restrepo/quandles.
http://oeis.org/A193024,
http://oeis.org
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Table 1 Quandles of order 4 in terms of disjoint cycles of columns

Quandle Disjoint cycle notation for the columns of the quandle

Q1 (1), (1), (1), (1)

Q2 (1), (1), (1), (23)

Q3 (1), (1), (1), (123)

Q4 (1), (1), (12), (12)

Q5 (1), (34), (24), (23)

Q6 (34), (34), (12), (12)

Q7 (234), (143), (124), (132)

permutation. For example the quandle Q5 is the set {1, 2, 3, 4} where R1 is the
identity permutation, R2 is the transposition sending 3 to 4, R3 is the transposition
sending 2 to 4 and R4 is the transposition sending 2 to 3 (Table 1).

Using computers the search space in general becomes too large to obtain the
computation of all quandles up to isomorphism for higher cardinality. Clearly, this
depends on the algorithm used to find quandles. However if one restricts himself to
the subclass of connected quandles then classification becomes more accessible to
calculation in a somehow comparable way to the classification of finite groups. In
[25], Clauwens studied connected quandles and proved the following

Proposition 3.1 [25] If f : Q ∈ P is a surjective quandle homomorphism and P
is connected then for all x, y ⊂ P, there is a bijection between f −1(x) and f −1(y).
In particular the cardinality of P divides the cardinality of Q.

This allowed him to obtain isomorphism classes of connected quandles up to
order 14, in particular he showed that there is no connected quandle of order 14. In
[59], Vendramin extended Clauwens results to the list of all connected quandles of
orders less than 36. He used the classification of transitive groups and the program
described in [26] based mainly on the following

Theorem 3.3 [59] Let X be a connected quandle of cardinality n. Let x0 ⊂ X and
z = Rx0 be the right multiplication by x0, G = Inn(X) and H = StabG(x0) = {g ⊂
G, gx0 = x0}. Then (1) G is a transitive group of order n, (2) z is central element of
H and (3) X is isomorphic to the homogeneous quandle (G, H, Iz), where Iz is the
conjugation by z.

A complete list of isomorphism classes of quandles with up to 6 elements appeared
in the appendix [20].

4 Quandles and Quasigroups

In this section we will discuss the relation between left and right distributive quasi-
groups and the following types of quandles: Alexander, Latin and medial quandles.
Two connections between quasigroups and quandles were established in [54].



Distributivity in Quandles and Quasigroups 331

Self-distributivity appeared in 1929 by Burstin and Mayer [7] where they studied
quasigroups which are left- and right-distributive. They stated that there are none of
orders 2 and 6, observed that the group of automorphisms is transitive, and showed
that such a quasigroup is idempotent.

Definition 4.1 [6] (1) A quasigroup is a set Q with a binary operation ⊕ such that for
all u ⊂ Q the right translation Ru and left translation Lu by u are both permutations.
(2) If the operation ⊕ has an identity element e in Q then the quasigroup is called a
loop and denoted (Q, ⊕, e).

Quasigroups differ from groups in the sense that they satisfy identities which
usually conflict with associativity. Distributive quasigroups have transitive groups
of automorphisms but the only group with this property is the trivial group. In [56]
it is shown that there are no right-distributive quasigroups whose order is twice an
odd number. Right-distributive quasigroups are intimately connected with the binary
operation of a conjugation in a group since in a right-distributive quasigroup it holds
that Ry⊕z = Rz Ry R−1

z and the mapping x ≥∈ Rx is injective. We will see below that
distributive quasigroups relate to Moufang loops.

Definition 4.2 [6] Let (M, ⊕) be a set with a binary operation. It is called a Moufang
loop if it is a loop such that the binary operation satisfies one of the following
equivalent identities:

x ⊕ (y ⊕ (x ⊕ z)) = ((x ⊕ y) ⊕ x) ⊕ z, (1)

z ⊕ (x ⊕ (y ⊕ x)) = ((z ⊕ x) ⊕ y) ⊕ x, (2)

(x ⊕ y) ⊕ (z ⊕ x) = (x ⊕ (y ⊕ z)) ⊕ x . (3)

As the name suggests, the Moufang identity is named for Ruth Moufang who dis-
covered it in some geometrical investigations in the first half of this century [42].
Moufang loops differ from groups in that they need not be associative. A Moufang
loop that is associative is a group. The Moufang identities may be viewed as weaker
forms of associativity. The typical examples include groups and the set of nonzero
octonions which gives a nonassociative Moufang loop.

Theorem 4.1 (Moufang’s Theorem) Let a, b, c be three elements in a commutative
Moufang loop (abbreviated CML) M for which the relation (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)
holds. Then the subloop generated by them is associative and hence is an Abelian
group.

A consequence of this theorem is that every two elements in CML generate an
Abelian subgroup. Let (X, ⊕) be a right-distributive quasigroup. Then (x ⊕ x) ⊕ x =
(x ⊕ x) ⊕ (x ⊕ x) which implies that each element is idempotent and (X, ⊕) is then
a Latin quandle. Fix a ⊂ X and define the following operation, denoted +, on X by
x + y := Ra

−1(x) ⊕ La
−1(y). Then a + y = y and y + a = y. Thus (X,+, a)

is a loop. Therefore any right-distributive quasigroup satisfying one of the Moufang
identities (1), (2) and (3) is a Moufang loop. Note that Ra(x) + La(y) = x ⊕ y. The
Moufang loop is commutative if and only if
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(u ⊕ v) ⊕ (w ⊕ z) = (u ⊕ w) ⊕ (v ⊕ z). (4)

Recall that a magma is a set with a binary operation. A magma (X, ⊕) that satisfies
Eq. (4) is said to be medial (Belousov [3]) or abelian (Joyce [37]). The Bruck-
Toyoda theorem gives the following characterization of medial quasigroup. Given
an Abelian group M , two commuting automorphisms f and g of M and a fixed
element a of M , define an operation ⊕ on M by x ⊕ y = f (x) + g(y) + a. This
quasigroup is called affine quasigroup. It’s clear that (M, ⊕) is a medial quasigroup.
The Bruck-Toyoda theorem states that every medial quasigroup is of this form, i.e. is
isomorphic to a quasigroup defined from an abelian group in this way. Belousov gave
the connection between distributive quasigroups and Moufang loops in the following

Theorem 4.2 [3] If (X, ⊕) be a distributive quasigroup then for all a ⊂ X, (X,+, a)

is a commutative Moufang loop.

Now let (X, ⊕) be a Latin quandle (that is right-distributive quasigroup), then
the automorphism α = Ra satisfies 2α(a) = a. If the order of a is odd then one
can write α(a) = 1

2 a. The map x ≥∈ 2x being a homomorphism is equivalent to
(x + y) + (x + y) = (x + x) + (y + y), (mediality property).

We have the following question: do the following three properties imply associa-
tivity for a finite magma (X,+)?

1. (X,+) is a commutative loop with identity element 0.
2. For all x, y in X we have the identity (x + y) + (z + z) = (x + z) + (y + z).
3. There is an automorphism f of (X,+) satisfying f (x) + f (x) = x for all x . (in

other words, the map x ≥∈ 2x is onto and (x + x)+ (y + y) = (x + y)+ (x + y).

In fact, if (X,+) is a loop satisfying condition 2, then (X,+) is a commutative
Moufang loop, necessarily satisfying the other conditions. There exist nonassociative
commutative Moufang loops. The smallest order at which such loops occur is 81,
and there are, in fact, two such loops of that order. The easier to describe of the two
commutative Moufang loops of order 81 is the one of exponent 3. Special thanks
to Michael Kinyon and David Stanovsky for telling us about the following example
and some other results about quasigroups. Let F = Z3 and on F4, define

(x0, x1, x2, x3)+ (y0, y1, y2, y3)

= (x0 + y0 + (x1 − y1)(x2 y3 − x3 y2), x1 + y1, x2 + y2, x3 + y3),

This is very first known example, published by Bol, who attributed it to Zassenhaus
[4].

The construction from loops to quandles requires the maps x ≥∈ 2x to be bi-
jections as well as a homomorphisms. Is this guaranteed for commutative Moufang
loops? Every abelian group is a commutative Moufang loop, so squaring is not al-
ways a bijection, of course. For the two examples we mentioned above (loops of
order 81), the answer is yes. Any commutative Moufang loop modulo its center will
have exponent 3. If you have a commutative Moufang loop which is indecomposable
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in the sense that it is not a direct product of smaller loops, then it will have order a
power of 3. Nonassociativity starts showing up at order 81. Classification of com-
mutative Moufang loops of higher order has not been worked out in detail because
of the computational difficulties. Much literature has been about free commutative
Moufang loops of exponent 3, because they turn out to be finite and of order 3n .
Quandles which are also quasigroups correspond to a class of loops known as Bruck
loops. Commutative Moufang loops have been investigated in detail by Bruck and
Salby.

Theorem 4.3 [6] If (X,+) is a commutative Moufang loop then X = A × B is a
direct product of an abelian group A with order coprime to 3 and a commutative
Moufang loop of order 3k .

Latin quandles are right distributive quasigroups and left-distributive Latin quan-
dles are distributive quasigroups. Belousov’s theorem tells us that if (X, ⊕) is left-
distributive Latin quandle then (X,+) is a commutative Moufang loop and then
Bruck-Slaby theorem tells us that (X, ⊕) is affine over a commutative Moufang loop,
and then medial. The smallest Latin quandle that is not left distributive is of order
15 and was found by David Stanovsky (see [55], p 29) using an automatic model
builder SEM for all quasigroups satisfying left distributivity, but not mediality. This
motivated Jan Vlachy [60] to look for a more theoretical argument that would ex-
plain the nonexistence of any smaller quasigroups of this kind and proved that there
are exactly two non-isomorphic types of these smallest non-right-distributive left-
distributive quasigroups with 15 elements. He constructed them explicitly using the
Galkin’s representation [32]. In the survey paper [31], page 950, Galkin states that
nonmedial quasigroups of order less than 27 appear only in orders 15 and 21 and are
given by the following construction: Define a binary operation on Z3 × Zp by

(x, a) ⊕ (y, b) = (2y − x,−a + μ(x − y)b + Δ(x − y)) x, y ⊂ Z3, a, b ⊂ Zp,

where μ(0) = 2, μ(1) = μ(2) = −1, and Δ : Z3 ∈ Zp is such that Δ(0) = 0.
This construction was generalized by replacing Zp by any abelian group A in [24].
Let A be an abelian group, also regarded naturally as a Z-module. Let μ : Z3 ∈ Z,

Δ : Z3 ∈ A be functions. These functions μ and Δ need not be homomorphisms.
Define a binary operation on Z3 × A by

(x, a) ⊕ (y, b) = (2y − x,−a + μ(x − y)b + Δ(x − y)) x, y ⊂ Z3, a, b ⊂ A.

Proposition 4.1 [24] For any abelian group A, the above operation ⊕ defines a
quandle structure on Z3 × A if μ(0) = 2, μ(1) = μ(2) = −1, and Δ(0) = 0.

This quandle (Z3 × A, ⊕) is called the Galkin quandle and denoted by G(A, Δ ).

Lemma 4.1 [24] For any abelian group A and c1, c2 ⊂ A, G(A, c1, c2) and
G(A, 0, c2 − c1) are isomorphic.
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Various properties of Galkin quandles were studied in [24] and their classification
in terms of pointed abelian groups was given. We mention a few properties. Each
G(A, c) is connected but not Latin unless A has odd order, G(A, c) is non-medial
unless 3A = 0.

We conclude with the following properties relating distributivity and mediality
to quandles [24]: Alexander quandles are left-distributive and medial. It is easy to
check that for a finite Alexander quandle (M, T ) with T ⊂ Aut(M), the following
are equivalent: (1) (M, T ) is connected, (2) (1−T ) is an automorphism of M , and (3)
(M, T ) is Latin. It was also proved by Toyoda [58] that a Latin quandle is Alexander
if and only if it is medial. As noted by Galkin, G(Z5, 0) and G(Z5, 1) are the smallest
non-medial Latin quandles and hence the smallest non-Alexander Latin quandles.
We note that medial quandles are left-distributive (by idempotency). It is proved in
[24] that any left-distributive connected quandle is Latin. This implies, by Toyoda’s
theorem, that every medial connected quandle is Alexander and Latin. The smallest
Latin quandles that are not left-distributive are the Galkin quandles of order 15. It
is known that the smallest left-distributive Latin quandle that is not Alexander is of
order 81. This is due to V. D. Belousov.

5 Quandle Cohomology and Cocycle Invariant of Knots

In the classical theory of knots and links in 3-space, one utilizes projections of knots
and links and applies to them the Reidemeister moves, a sequence of which will
take one from any one projection of a given knot or link to any other projection
of that knot or link. The Reidemeister moves have played an essential role in the
development of a wide variety of invariants for knots and links, since any quantity
that remains unchanged by the three moves is an invariant for knots and links. In
1999, Carter et al. [18] used quandle cohomology to define combinatorial “state-sum”
invariants for classical knots and knotted surfaces called quandle cocycle invariant
(see definition below). Here we mention some interesting results on surfaces in
4-space they obtained: (1) constructing an example of a sphere that is knotted in
4-dimensional space [18], (2) giving obstructions to ribbon concordance for knotted
surfaces [22], and (3) detecting non-invertibility of knotted surfaces [18]. This was
extended to some other examples [14, 17].

In order to define quandle homology and the cocycle knot invariant we need to
define coloring of knots by a quandle. A coloring of an oriented classical knot K is
a function C : R ∈ X , where X is a fixed quandle and R is the set of over-arcs
in a fixed diagram of K , satisfying the condition depicted in the top of Fig. 2. This
definition of colorings on knot diagrams has been known, see [29] for example. In
the bottom of Fig. 2, the relation between Reidemeister type III move and a quandle
axiom (self-distributivity) is indicated. In particular, the colors of the bottom right
segments before and after the move correspond to the self-distributivity. By assigning
a weight α(x, y) at each crossing of a knot diagram (as in the top Fig. 2) we obtain a
2-cocycle condition which can be generalized to a homology of cohomology theory
which we describe now.
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Fig. 2 2-cocycle condition and Reidemeister move III

Let Cn(X) be the free abelian group generated by n-tuples (x1, . . . , xn) of ele-
ments of a quandle X . Define a homomorphism δn : Cn(X) ∈ Cn−1(X) by

δn(x1, x2, . . . , xn)

=
n∑

i=2

(−1)i [
(x1, x2, . . . , xi−1, xi+1, . . . , xn)

− (x1 ⊕ xi , x2 ⊕ xi , . . . , xi−1 ⊕ xi , xi+1, . . . , xn)
]

(5)

for n → 2 and δn = 0 for n ∞ 1. Then C⊕(X) = {Cn(X), δn} is a chain complex.
The nth quandle homology group and the nth quandle cohomology group [18] of a
quandle X with coefficient in a group A can be defined. One can consider cohomol-
ogy also and for example:

A 2-cocycle is a function α : X × X ∈ A such that α(x, y) + α(x ⊕ y, z) =
α(x, z) + α(x ⊕ z, y ⊕ z), and for all x , α(x, x) = 0.

A 3-cocycle is a function ω : X × X × X ∈ A such that

ω(x, y, z)+ω(x, z, w)+ω(x ⊕ z, y ⊕ z, w) = ω(x ⊕ y, z, w)+ω(x ⊕w, y ⊕w, z ⊕w)+ω(x, y, w),
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and and for all x, y, ω(x, x, y) = ω(x, y, y) = 0.
Let C denote a coloring of a knot K by a quandle X and choose a quandle 2-

cocycle α, Then define a (Boltzmann) weight, B(Δ,C ), at a crossing Δ , by B(Δ,C ) =
α(x, y)θ(Δ), where θ(Δ ) = 1 or −1, if the sign of Δ is positive or negative, respectively.
The partition function (called also state-sum) is the expression

πα(K ) :=
∑
C

∏
Δ

B(Δ,C ).

The product is taken over all crossings of the given diagram, and the sum is taken
over all possible colorings. The values of the partition function are taken to be in the
group ring Z[A] where A is the coefficient group written multiplicatively.

Theorem 5.1 [18] The state sum πα(K ) does not depend on the choice of a diagram
of a knot K , so that it is a knot invariant.

This knot invariant is also called quandle cocycle invariant associated with the
quandle 2-cocycle α.

Example 5.1 see [19] p 52, Let X = Z2[T, T −1]/(T 2 + T + 1), A = Z2, and
cocycle π = ∏

ζ(a,b) where a, b ⊂ {0, 1, T + 1} and a �= b.
For knots K (up to nine crossings, see [23] for diagrams and other information)

the Invariants π(K ) are:

• 4(1 + 3T ) for 31, 41, 72, 73, 81, 84, 811, 813, 91, 96, 912, 913, 914, 921, 923, 935,

937,

• 16(1 + 3T ) for 818, and 940

• 16 for 85, 810, 815, 819 − 821, 916, 922, 924, 925, 928 − 930, 936, 938, 939, 941 −
945, 949

• 4 otherwise.

Generalizations, variations, and applications of the cocycle knot invariants have
been discovered; for example, see [2, 9–15, 17]. Quandle homology has also been
investigated in [49–51, 53].

5.1 Extensions of Quandles

Quandle extension theory was developed in [16] by analogy with group extensions
defined for low dimensional group cocycles. Let X be a quandle, A be an abelian
group and given a 2-cocycle α ⊂ Z2

Q(X; A), the quandle operation in extension is
defined on E = A × X by (a1, x1) ⊕ (a2, x2) = (a1 + α(x1, x2), x1 ⊕ x2). The
following lemma is the converse of the fact proved in [21] that E(X, A, α) is a
quandle.

Lemma 5.1 [16] Let X, E be finite quandles, and A be a finite abelian group written
multiplicatively. Suppose there exists a bijection f : E ∈ A × X with the following
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property. There exists a function α : X × X ∈ A such that for any ei ⊂ E (i = 1, 2),
if f (ei ) = (ai , xi ), then f (e1 ⊕ e2) = (a1α(x1, x2), x1 ⊕ x2). Then α ⊂ Z2

Q(X; A).

The following two theorems produce examples of extensions of quandles.

Theorem 5.2 [16] For any positive integers q and m, E = Zqm+1[T, T −1]/(T −
1 + q) is an abelian extension E = E(Zqm [T, T −1]/(T − 1 + q),Zq , α) of X =
Zqm [T, T −1]/(T − 1 + q) for some cocycle α ⊂ Z2

Q(X;Zq).

Theorem 5.3 [16] For any positive integer q and m, the quandle E = Zq [T, T −1]/
(1 − T )m+1 is an abelian extension of X = Zq [T, T −1]/(1 − T )m over Zq: E =
E(X,Zq , α), for some α ⊂ Z2

Q(X;Zq).

Below are some explicit examples of extensions.

Example 5.2 [16] For any positive integer q and m, the quandle E = Zq [T, T −1]/
(1 − T )m+1 is an abelian extension of X = Zq [T, T −1]/(1 − T )m over Zq : E =
E(X,Zq , α), for some α ⊂ Z2

Q(X;Zq).

Example 5.3 [16] Consider the case q = 2, m = 2 in Example 5.2. In this case

Z4[T, T −1]/(T + 1) = R4, and

Z8[T, T −1]/(T + 1) = R8 = E(R4,Z2, α)

for some α ⊂ Z2
Q(R4;Z2). We obtain an explicit formula for this cocycle α by

computation:

α = ζ0,2 + ζ0,3 + ζ1,0 + ζ1,3 + ζ2,0 + ζ2,3 + ζ3,0 + ζ3,1,

where

ζa,b(x, y) =
{

1 if (x, y) = (a, b),

0 if (x, y) �= (a, b)

denotes the characteristic function.

Other extensions of quandles have been considered by some authors; see, for ex-
ample, in [1] where a more general homology theory is developed and in [27] where
algebraic covering theory of quandle is established.

Dynamical cocycles [1] Let X be a quandle and S be a non-empty set. Let ν :
X × X ∈ Fun(S × S, S) = SS×S be a function, so that for x, y ⊂ X and a, b ⊂ S
we have νx,y(a, b) ⊂ S.

Then it is checked by computations that S × X is a quandle by the operation
(a, x) ⊕ (b, y) = (νx,y(a, b), x ⊕ y), where x ⊕ y denotes the quandle product in X ,
if and only if ν satisfies the following conditions:
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1. νx,x (a, a) = a for all x ⊂ X and a ⊂ S;
2. νx,y(−, b) : S ∈ S is a bijection for all x, y ⊂ X and for all b ⊂ S;
3. νx⊕y,z(νx,y(a, b), c) = νx⊕z,y⊕z(νx,z(a, c), νy,z(b, c)), ∪x, y, z ⊂ X and

∪a, b, c ⊂ S.

Such a function ν is called a dynamical quandle cocycle [1]. The quandle constructed
above is denoted by S ×ν X , and is called the extension of X by a dynamical cocycle
ν. The construction is general, as Andruskiewitsch and Graña show:

Lemma 5.2 [1] Let p : Y ∈ X be a surjective quandle homomorphism between
finite quandles such that the cardinality of p−1(x) is a constant for all x ⊂ X. Then
Y is isomorphic to an extension S ×ν X of X by some dynamical cocycle on the set
S such that |S| = |p−1(x)|.
Acknowledgments I would like to thank Scott Carter, Edwin Clark and Masahico Saito for com-
menting on an early version and for fruitful suggestions. Thanks also to the referee for all comments.
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Geometry



Torsors and Ternary Moufang Loops Arising
in Projective Geometry

Wolfgang Bertram and Michael Kinyon

Abstract A projective space gives rise to an affine space Va by taking out a hyper-
plane a. We define a natural ternary product on the set Uab = Va ⊕ Vb, for any pair
(a, b) of hyperplanes. If the space is Desarguesian, we show that this ternary product
is para-associative and that it coincides with the torsor structures considered in pre-
ceding work by the authors. Compared with that work, it is remarkable that—in the
case of a projective space—the torsor structure can be expressed solely in terms of
the lattice structure of the geometry. For general projective planes, our construction
is closely related to the classical construction of ternary rings associated to such
planes. In particular, for Moufang planes we show that Uab is a ternary Moufang
loop.

1 The Geometric Construction

In this first section, we describe the general construction of torsors and of ternary
loops associated to projective spaces; proofs and computational descriptions are
given in the two following sections. We assume that X is a projective space of
dimension at least two. For projective subspaces a, b ofX , let as usual a ≥ b be the
meet (intersection) and a ∈ b be the join (smallest subspace containing a and b). In
the following, the letters a and b will denote two hyperplanes ofX (the case a = b
is not excluded), and the set-theoretic complement of a ⊂ b is denoted by
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Uab := X \ (a ⊂ b) = Va ⊕ Vb. (1)

It is well-known that Va := Uaa is an affine space. Something similar is true for any
Uab: consider a triple of points (x, y, z) from Uab. We will define a fourth point w
in Uab, depending on these data, so we write w = (xyz)ab.

1.1 The Generic Case

By “generic” we mean that x, y, z are not collinear.

Definition 1.1 Notation being as above, we define w to be the intersection point of

• the parallel of the line x ∈ y through z in the affine space Va := X \ a, with
• the parallel of the line z ∈ y through x in the affine space Vb = X \ b; that is:

w = (xyz)ab =
((

(x ∈ y) ≥ a
) ∈ z

)
≥

((
(z ∈ y) ≥ b

) ∈ x
)
.

Note that this point of intersection exists since all lines belong to the projective
plane spanned by x, y, z. For a = b, this is the usual “parallelogram definition” of
vector addition in the affine space Va with origin y, that is, (xyz)aa = x + z in this
case. Hence, for a ⊗= b, (xyz)ab may be seen as a kind of “deformation of vector
addition”: we have a sort of “fake parallelogram” with vertices y, x, z, w, as shown
in the following illustration:

a

b

x
w

z

y

As for “usual” parallelograms, it is easily seen that, with (xyz) := (xyz)ab for fixed
(a, b), the conditions

w = (xyz), y = (zwx), z = (yxw), x = (wzy) (2)

are all equivalent. Note also that the following symmetry relation is obvious from
the definition:

(xyz)ba = (zyx)ab. (3)

If we choose a as “line at infinity” of our drawing plane, and draw b horizontally,
we get the following image:



Torsors and Ternary Moufang Loops Arising in Projective Geometry 345

b

x

w
z

y

These images admit a spacial interpretation: we may imagine the observer placed in
affine space R3 inside a plane B which is vizualized only by its “horizon”, the line
b; then we think of the line y ∈ z as lying in a plane B ′ parallel to B, and of the line
x ∈ w as lying in another such plane B ′′; the other two lines w ∈ z and x ∈ y lie in
planes that are parallel to the drawing plane P . This interpretation is not symmetric
in x and z: the point z lies “behind” (or “in front of”) y, whereas x is considered to
be “on the same level” as y.

The product xz := (xyz)ab is in general not commutative, but it is associative:
we show that, if X is Desarguesian, then, for any fixed origin y, the binary map
(x, z) �→ xz gives rise to a group law onUab. More generally andmore conceptually,
we show that the ternary law (x, y, z) �→ (xyz)ab defines a torsor structure on
Uab (Theorem 2.1). Here, we use the term “torsor” in the sense of “group without
distinguished origin”:

Definition 1.2 A set G with a map G3 → G, (x, y, z) �→ (xyz) is called a torsor if

(xxy) = y = (yxx) (T0)

(xy(zuv)) = (x(uzy)v) = ((xyz)uv) (T1)

(There are other terms in use for this concept, such as groud, heap, flock, princi-
pal homogeneous space—see [2] for some remarks on the terminology we use.)
Naturally, the question arises what we can say for general, non-Desarguesian pro-
jective planes, or for still more general lattices. The most prominent class of non-
Desarguesian projective planes are the Moufang planes: we show that in this case
we get a kind of “alternative version of a torsor” which we call a ternary Moufang
loop (Theorem 3.1). For a = b, these ternary Moufang loops contract to the abelian
vector group of an affine plane. For very general projective planes (which need not
be “translation planes”) it remains an interesting open problem to relate this new
algebraic structure to those traditionally considered in the literature: indeed, our def-
inition is closely related to the more traditional ways of coordinatizing projective
planes by ternary rings. This is related to the following item.
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1.2 The Collinear Case

We have not yet defined what (xyz)ab should mean if x, y, z are collinear. IfX is a
topological projective plane, then one would like to complete our definition simply
“by continuity”, e.g., by taking the limit of (xyz)ab as y, not lying on the line x ∈ z,
converges to a point on x ∈ z. This is indeed what happens in the classical planes
over the division algebrasR,C,H,O. (We encourage the reader to vizualise this, for
the real plane, by using some dynamical geometry software, such as geogebra!)
Since we do not know whether in very general cases such a “limit” exists, we restrict
ourselves here to the Moufang case, and leave the general case for later work.

Definition 1.3 Assume thatX is a Moufang plane or a projective space of dimen-
sion bigger than 2.Consider a pair (a, b)of hyperplanes and a collinear triple (x, y, z)
of points, none of them in a or b.

(1) If x = y = z, let (xyz)ab := x .
(2) If x ⊗= y, then let L := x ∈ y and choose a point u not belonging to L or to a,

and we let w := (xyz)ab :=

(x ∈ y) ≥
[(

(z ∈ u) ≥ b
)

∈
([(

(x ∈ y) ≥ a
) ∈ u

]
≥

[(
(u ∈ y) ≥ b

) ∈ x
])]

.

(It will be shown below that w does not depend on the choice of u.)
(3) If z ⊗= y, then we let L := z ∈ y and define

w := (xyz)ab := (zyx)ba,

where the right hand side is defined by the preceding case.

This definition can be interpreted from two different viewpoints:

(A) Algebraic In the Desarguesian case, the expression in (2) is derived from our
definition in the generic case by using (T0) and (T1)

((xyu)uz) = (xy(uuz)) = (xyz),

where now the left hand side can be expressed by using twice Definition 1.1, giving
(2) (see Theorem 2.2). This is indeed in keeping with idea explained above of “taking
a limit” (imagine u tending towards a point on the line L). The argument still goes
through in theMoufang case since one does not need for it full (T1), but just a special
case which remains valid precisely in the Moufang case (but it breaks down as soon
as one wants to go further).

(B) Geometric The formula in (2) corresponds to classical “constructions of the
field associated to a plane”. It is known that in the Moufang case the field does not
depend on the “off-line” point u. More specifically, we distinguish two cases in (2):

• the generic case corresponds to the product of the field: if the points L ≥ a and
L ≥ b are different, then (xyz)ab is the product zy−1x on the vector line L with
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“point at infinity” L ≥ a and “zero point” L ≥ b (in the illustration below, a is the
line at infinity and b the horizontal line; in usual textbook drawings, the inverse
choice is made. We have marked the points p = (xyu) and q = (puz) = w.)

y

x

z

u

p

q

• a special case corresponds to the addition of the field: if the line L := x ∈ y
intersects a ≥ b, then (xyz)ab is the “ternary sum” x − y + z in the affine line L
(with L ≥ (a ≥ b) as “point at infinity”, see the following illustration, which is the
limit case of the preceding one, as L becomes parallell to b).

u

y x z

p

q

The main result of the present work can now be stated as follows:

Definition 1.4 A set G with a map G3 → G, (x, y, z) �→ (xyz) is called a ternary
Moufang loop if it satisfies (T0) and

(uv(xyx)) = ((uvx)yx) (MT1)

(xy(xyz)) = ((xyx)yz) (MT2)

Theorem 1.1 If X is a projective space of dimension bigger than one over a skew-
field (i.e., a Desarguesian space), then the preceding constructions define a torsor
law on Uab. If X is a Moufang projective plane, then the constructions define a
ternary Moufang loop.
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1.3 Generalized Cross-Ratios, and Associative Geometries

In the Desarguesian case, a very general theory describing torsors of the kind of
Uab has been developed in [2]. Comparing with the approach presented here, one
may ask for what kinds of lattices there are similar theories—we will, in subsequent
work, investigate in more depth the case of Moufang spaces, related to alternative
algebras, triple systems and pairs. Returning to the Desarguesian case and to classical
projective geometry, the link between the lattice and the structure defined in [2] is
surprisingly close; however, one should not forget that for projective lines the lattice
structure is completely useless,whereas the structures from [2] are at least as strong as
the classical cross-ratio, and hence aremuch stronger than the lattice structure. Let us
briefly explain this. Given a unital ring K andX := X (Ω), the full Grassmannian
geometry of some K-module Ω (set of all submodules of Ω), we have associated in
[2] to any 5-tuple (x, a, y, b, z) ∞ X 5 another element of X by

Γ (x, a, y, b, z) :=
{
ω ∞ Ω

∣∣∣ ∪ξ ∞ x, ∪α ∞ a, ∪η ∞ y, ∪β ∞ b, ∪ζ ∞ z :
ω = ζ + α = α + η + β = ξ + β

}
. (4)

In [2], Theorem 2.4, it is shown that the lattice structure is recovered via

x ≥ a = Γ (x, a, y, x, a), b ∈ a = Γ (a, a, y, b, b) (5)

for any y ∞ X . On the other hand, in the present work we prove (Theorem 2.2) that,
if K is a field, if a, b are hyperplanes and x, y, z one-dimensional subspaces, then
Γ (x, a, y, b, z) can be recovered from the lattice structure via

Γ (x, a, y, b, z) = (xyz)ab. (6)

Thus, roughly speaking, for Desarguesian projective spaces of dimension bigger than
one,Γ and the lattice structure are essentially equivalent data. Summing up, there are
two major approaches to our object: the algebraic approach [2], based on associative
algebras and -pairs and on an underlying group structure of the “background” Ω

(cf. [1]), and the lattice theoretic approach from the present work, keeping close to
classical geometric language, and paving the way to incorporate exceptional geome-
tries into the picture.

2 The Desarguesian Case

Theorem 2.1 Assume X is a Desarguesian projective space of dimension bigger
than one, and fix a pair (a, b) of hyperplanes. Then Uab, together with the ternary
product (xyz) := (xyz)ab defined above, is a torsor. In particular, if we fix an
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“origin” y ∞ Uab, then Uab with product xz = (xyz)ab and origin y becomes a
group. If a ⊗= b, then this is group is not commutative.

Proof Wegive three different proofs: “axiomatic”, “computational”, and “algebraic”.

(a) The first proof is in terms of axiomatic geometry. The idempotency law
(xzz) = x , for x ⊗= z, is a fairly direct consequence of item (2) in definition
1.3, and the other law (zzx) = x then follows immediately from (3). Next, let
us show, by using Desargues’ Theorem, that ((xyz)uv) = (xy(zuv)) in the non-
collinear case. We construct first the point ((xyz)uv). This is best visualized by
choosing a as line at infinity of our drawing plane, and we may draw the lines
y ∈ x and z ∈ (xyz) as vertical lines. Then ((xyz)uv) is the point q in the illustra-
tion given below. Next, construct the point (xy(zuv)) and observe that the triangles
u, z, (xyz) and v, (zuv), q are in a Desargues configuration, and conclude that the
line q ∈ (zuv) is parallel to z ∈ (xyz), i.e., it is vertical. But then the triangles
y, z, (zuv) and x, (xyz), q are also in Desargues configuration, i.e., the intersection
points of corresponding sides lie on a common line, which must be b. It follows
that (x ∈ q) ≥ b = (y ∈ (zuv)) ≥ b, from which the desired equality follows.

B

x

y

z

(xyz)

u

v

q

(zuv)

The identity (x(yzu)v) = (xu(zyv)), in the non-collinear case, is proved in a similar
way. Using this, as explained in the introduction, the definition in the collinear case
reads (xyz) = ((xyu)uz), proving that the result does not depend on the choice of u.
By purely algebraic computations it follows now that para-associativity also holds
in the collinear case.

(b) A computational proof. LetK be the (skew)field ofX , and work in the affine
space V := Va . If a = b, then (as mentioned above), (xyz)aa = x − y + z is the
torsor law of the affine space Va , and the claim is obviously true. If a ⊗= b, fix some
arbitrary origin o in the affine hyperplane Va ⊕ b. There is a linear form β : V → K

such that b ⊕ V = ker(β), so that Uab = {x ∞ Va | β(x) ∞ K
×}.
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Lemma 2.1 For all x, y, z ∞ Uab, in the vector space (Va, o), we have

(xyz)ab = β(z)β(y)−1(x − y) + z.

Proof Assume first that x, y, z are not collinear. The parallel of x ∈ y through z in
Va is (

(x ∈ y) ≥ a
) ∈ z = {z + s(x − y) | s ∞ K}.

We determine the point (y ∈ z) ≥ b. If y ∈ z is parallel to b, then we get easily from
the definition that (xyz)ab = x − y + z is the usual sum, which is in keeping with
our claim. Assume that y ∈ z is not parallel to b. Then the intersection point (y ∈ z)≥
is obtaining by solving β

(
(1 − t)y + t z

) = 0, whence t = β(y)(β(y) − β(z))−1,
whence 1 − t = −β(z)(β(y) − β(z))−1 and

(y ∈ z) ≥ b = −β(z)(β(y) − β(z))−1y + β(y)(β(y) − β(z))−1.

The intersection of
(
(z ∈ y) ≥ b

) ∈ x and
(
(x ∈ y) ≥ a

) ∈ z = z + K(x − y) is
determined by r, s ∞ K such that

(1 − r)x + r
(−β(z)(β(y) − β(z))−1y + β(y)(β(y) − β(z))−1z

) = sx − sy + z.

Since both sides are barycentric combinations of x, y, z, we may consider y as new
origin. Then, if x and z are linearly independent with respect to this origin, this
condition is equivalent to

1 − r = s, r(β(y)
(
β(y) − β(z)

)−1
) = 1

whence r = (
β(y) − β(z)

)
β(y)−1 and s = 1 − r = β(z)β(y)−1, and finally

(xyz)ab = s(x − y) + z = β(z)β(y)−1(x − y
) + z,

proving our claim in the non-collinear case.
Now consider the collinear case. As pointed out after Definition 1.3, in this case

the definition of (xyz)ab amounts to the geometric definition of the field operations.
If the line L spanned by x, y, z is parallel to b, then β(z) = β(y), and the formula
from the lemma gives the additive torsor law x − y + x , as required. Else, choose
o := L ≥ b as origin, let u ∞ L with β(u) = 1 and write x = ξu, y = ηu,
z = ζu with ξ, η, ζ ∞ K

×, and then the formula from the lemma gives (xyz)ab =
ζη−1(ξu − ηu) + ζu = ζη−1ξu, which again corresponds to the definition given in
this case. Thus the claim holds in all cases.

Using the lemma, we now prove the torsor laws: first of all, we have

β
(
(xyz)

) = β
(
β(z)β(y)−1(x − y

) + z
)

= β(z)β(y)−1β(x), (7)
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showing thatUab = Va \ker(β) is stable under the ternary law. The idempotent laws
follow by an easy computation from the lemma. For para-associativity, using (7), a
straightforward computation shows that both ((xyz)uv) and (x(uzy)v) are given by

β(v)β(u)−1β(z)β(y)−1(x − y) + β(v)β(u)−1(z − u) + v. (8)

(b’) Remark there is a slightly different version of (b), having the advantage that the
cases a = b and a ⊗= b can be treated simultaneously, and the drawback that the
dependence on y is not visible: choose o := y as origin in V = Va , and a linear
form β : V → K such that b ⊕ V = {x ∞ V | β(x) = 1}. The case a = b then
corresponds to β = 0. A computation similar as above yields

xz = (xyz)ab = (1 − β(z))x + z = x − β(z)x + z (9)

from which associativity of the product xz follows easily. Note that Formula (9) is a
special case of the formulae given in Sect. 1.4 of [2].

(c) A third and algebraic proof goes by first establishing that our lattice theoretic
definition of (xyz)ab coincides with the algebraic definition of Γ (x, a, y, b, z) by
Eq. (4) (see items (1) and (3) of the following theorem), and then using Theorem 2.3
in [2], saying that the map Γ defines a torsor structure on Uab:

Theorem 2.2 Let K be a unital ring and X = X (Ω) be the full Grassmannian
geometry of some K-module Ω (set of all submodules of Ω), and define, for a 5-tuple
(x, a, y, b, z) ∞ X 5, the submodule Γ (x, a, y, b, z) by Eq. (4).

(1) Assume that the triple (x, y, z) is in general position, that is,

x ≥ (y ∈ z) = 0, or y ≥ (x ∈ z) = 0, or z ≥ (x ∈ y) = 0.

Then we have the following equality of submodules of Ω:

Γ (x, a, y, b, z) =
((

(x ∈ y) ≥ a
) ∈ z

)
≥

((
(z ∈ y) ≥ b

) ∈ x
)
.

(2) Assume that z is contained in x ∈ y, i.e., z ≥ (x ∈ y) = z. Then, for any choice
of u ∞ Uab satisfying u ≥ (x ∈ y) = 0, we have

Γ (x, a, y, b, z) = ([([
((

(x ∈ y) ≥ a
) ∈ u

)
≥

((
(u ∈ y) ≥ b

) ∈ x
)
] ∈ u) ≥ a] ∈ z)

≥ [((z ∈ u) ≥ b) ∈
((

(x ∈ y) ≥ a
) ∈ u

)
≥

((
(u ∈ y) ≥ b

) ∈ x
)
]

(3) Let a, b be hyperplanes in a vector space and x, y, z lines. Retain assumptions
from the preceding item and assume that x ⊗= y. Then the expression given there
simplifies to

Γ (x, a, y, b, z) = (x∈y)≥[((z∈u)≥b)∈
((

(x∈y)≥a
)∈u

)
≥

((
(u∈y)≥b

)∈x
)
].
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Proof (1) We prove first the inclusion “↔” (which holds in fact for all triples

(x, y, z)): on the one hand, the set
((

(x ∈ y) ≥ a
) ∈ z

)
≥

((
(z ∈ y) ≥ b

) ∈ x
)

is the set of all ω ∞ Ω such that we can write

ω = α + ζ, ω = β + ξ

with α ∞ a, β ∞ b, which in turn can be written

α = ξ ′ + η, β = ζ ′ + η′

with ξ ′ ∞ x , etc. This gives us a system (S) of 4 equations.
On the other hand, by definition, Γ (x, a, y, b, z) is the set of all ω ∞ Ω such that

∪ξ ∞ x, ∪α ∞ a, ∪η ∞ y, ∪β ∞ b, ∪ζ ∞ z : ω = ζ + α = α + η + β = ξ + β

There are several equivalent versions of this system (R) of three equations—see [1],
Lemma 2.3., from which it is read off that the four conditions from (S) are satisfied
for ω ∞ Γ (x, a, y, b, z) if we choose ξ ′ = ξ , η′ = η, ζ ′ = ζ . Thus the inclusion
“↔” holds always.

The other inclusion does not always hold, but the theorem gives a sufficient con-
dition: indeed, if ω belongs to the set on the right hand side, then (S) implies

ω = ξ ′ + η + ζ = ζ ′ + η′ + ξ,

whence ξ − ξ ′ ∞ y ∈ z. If x ≥ (y ∈ z) = 0, this implies that ξ = ξ ′, and three of the
four equations from (S) are equivalent to (R). If y ≥ (x ∈ z) = 0 or z ≥ (x ∈ y) = 0,
then the same argument applies (with respect to another choice of three from the four
equations of (S)). In all cases, it follows that ω ∞ Γ (x, a, y, b, z).

(2) From [2], Theorem 2.3, we know that Γ is para-associative and satisfies the
idempotent law:

Γ
(
Γ (x, a, y, b, u), a, u, b, z

) = Γ (x, a, y, b, Γ (u, a, u, b, z)) = Γ (x, a, y, b, z).

By assumption, the triple (x, y, u) is in general position, and from this it follows that
the triple ((xyu), u, z) is also in general position; therefore the left-hand side may
be expressed in terms of the lattice structure by applying twice part (1), which leads
to the expression from the claim: in a first step, we get

(xyu) =
((

(x ∈ y) ≥ a
) ∈ u

)
≥

((
(u ∈ y) ≥ b

) ∈ x
)
,

and in a second step

((xyu)uz) = (([(
((

(x ∈ y) ≥ a
) ∈ u

)
≥

((
(u ∈ y) ≥ b

) ∈ x
)
] ∈ u) ≥ a] ∈ z)
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≥ [((z ∈ u) ≥ b) ∈
((

(x ∈ y) ≥ a
) ∈ u

)
≥

((
(u ∈ y) ≥ b

) ∈ x
)
].

(3) Under the given assumptions, the first term on the right hand side in (2) reduces
to the line x ∈ y, and hence the claim follows directly from (2).

Remarks (a) Not all possible relative positions of (x, y, z) are covered by Theorem
2.2, that is, the lattice theoretic formula for Γ (x, a, y, b, z) does not hold for all
triples of submodules of Ω . For instance, if Ω = K

2n and x, y, z are of dimension
n, then they cannot be in general position, and in general no u as in (2) exists. This
case illustrates the special rôle of “generalized projective lines” (cf. [2]) with respect
to lattice approaches.

(b) Both for the definitions given here and in [2], it is not strictly necessary that
x, y, z belong to Uab: they may belong to Va , or to Vb, or (in [2]) be completely
arbitrary. We will not enter here into a discussion of the relation of both definitions
if x, y or z does not belong to Uab.

(c) Both approaches lead to their own notions of morphisms. In the situation of
Part (3) of Theorem 2.2, both of these notions must lead to the same result: this is
precisely the famous “second fundamental theorem of projective geometry”. Indeed,
the “construction of the field” is contained in our approach, and hence morphisms in
the lattice theoretic sense must induce morphisms of the field and the corresponding
semi-linear mapping.

3 The Moufang Case

Theorem 3.1 Assume X is a Moufang projective plane and (a, b) a pair of lines.
Then Uab, together with the ternary product (xyz)ab defined in the first section, is
a ternary Moufang loop. In particular, if we fix an element y ∞ Uab as origin, then
Uab with product xz = (xyz)ab and origin y becomes a (binary) Moufang loop.

Before proving the theorem, we recall the relevant definitions (cf., e.g., [10]):

Definition 3.1 A projective plane X is a Moufang plane if it satisfies one of the
following equivalent conditions

1. The group of automorphisms fixing all points of any given line acts transitively
on the points not on the line.

2. The group of automorphisms acts transitively on quadrangles.
3. Any two ternary rings of the plane are isomorphic.
4. Some ternary ring of the plane is an alternative division algebra, i.e., it is a division

algebra satisfying the following identities:

x(xy) = (xx)y, (yx)x = y(xx), (xy)x = x(yx).

5. X is isomorphic to the projective plane over an alternative division ring.
6. The “small Desargues theorem” holds in all affine parts of X .
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The set of invertible elements in alternative algebra forms a Moufang loop. A basic
reference for loops in general and Moufang loops in particular is [4].

Definition 3.2 A loop (Q, ·) is a set Q with a binary operation Q2 → Q; (x, y) �→
xy such that for each x , the maps y �→ xy and y �→ yx are bijections of Q, and
having an element e such that ex = xe = x for all x ∞ Q. A Moufang loop is a loop
Q that satisfies any, and hence all of the following equivalent identities (the Moufang
identities):

z(x(zy)) = ((zx)z)y (M1)

x(z(yz)) = ((xz)y)z (M2)

(zx)(yz) = (z(xy))z (N1)

(zx)(yz) = z((xy)z) (N2)

The left and right multiplication maps (sometimes called translations) in a loop
are defined, respectively by Lx y := xy =: Ry x . The Moufang identities can be
written in terms of the left and right multiplication maps. For instance, the first two
identities state that

Lz Lx Lz = Lzxz and Rz Ry Rz = Rzyz .

Moufang’s Theorem implies that Moufang loops are diassociative, that is, for any
a, b, the subloop 〈a, b∗ generated by a, b is a group. This can be seen as a loop
theoretic analog of Artin’s Theorem for alternative algebras. Two particular instances
of diassociativity are the left and right inverse properties

x−1(xy) = y (LIP)

(xy)y−1 = x, (RIP)

where x−1 is the unique element satisfying xx−1 = x−1x = e. The following lemma
gives the Moufang analog of the well-known relation between torsors and groups:

Lemma 3.1 Let Q be a Moufang loop, and define a ternary operation (· · · ) :
Q3 → Q by (xyz) := (xy−1)z. Then the following three identities hold:

(xxy) = y = (yxx) (MT0)

(uv(xyx)) = ((uvx)yx) (MT1)

(xy(xyz)) = ((xyx)yz) (MT2)

Conversely, if M is a set with a ternary operation (· · · ) : M3 → M satisfying
(MT0), (MT1) and (MT2), then, for every choice of “origin” e ∞ M, the binary
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operation x · y := (xey) and the unary operation x−1 := (exe) define the structure
of a Moufang loop on M with neutral element e.

Proof First assume Q is a Moufang loop. The leftmost identity in (MT0) is trivial
while the rightmost follows immediately from (RIP). For (MT1), we compute

(uv(xyx)) = (uv−1)((xy−1)x)

= (uv−1)(x(y−1x)) (〈x, y∗ is a group)
= (((uv−1)x)y−1)x (M2)

= ((uvx)yx).

For (MT2),

(xy(xyz)) = (xy−1)((xy−1)z)

= ((xy−1)(xy−1))z (〈xy−1, z∗ is a group)

= (((xy−1)x)y−1)z (〈x, y∗ is a group)

= (((xyx)y)z).

Conversely, suppose M is a set with a ternary operation (· · · ) : M3 → M
satisfying (MT0), (MT1) and (MT2). Fix e ∞ M and define x · y := (xey) and
x−1 := (exe) for all x, y ∞ M . By (MT0), we see that e is neutral element for the
binary operation.

First we establish the following identities:

x · y−1 = (xye), (10)

(x · y−1) · z−1 = (xyz−1), (11)

(x−1)−1 · x = e, (12)

((x−1)−1xy−1) = y. (13)

For (10) we compute x · y−1 = (xe(eye)) = ((xee)ye) = (xye) using (MT1)
in the second equality and (MT0) in the third. For (11), we have (x · y−1) · z−1 =
((xye)ze) = (xy(eze)) = (xyz−1), using (10) (twice) and (MT1). For (12), (x−1)−1·
x = ((x−1)−1xe) = ((ex−1e)xe) = (ex−1(exe)) = (ex−1x−1) = e, using (10)
in the first equality, (MT1) in the third and (MT0) in the fourth. Finally, for (13),
((x−1)−1xy−1) = ((x−1)−1 · x−1) · y−1 = e · y−1 = y−1, using (11) followed
by (12).

Next we prove
(xy(y−1)−1) = x . (14)



356 W. Bertram and M. Kinyon

Indeed,

(xy(y−1)−1) = ((x(y−1)−1(y−1)−1)y(y−1)−1) = (x(y−1)−1((y−1)−1y(y−1)−1))

= (x(y−1)−1(y−1)y−1) = x,

where we have used (MT0), (MT1), (13) and (MT0).
Taking y = x in (14) and applying (MT0), we obtain

(x−1)−1 = x . (15)

From this it follows that e−1 = e, since e−1 = e · e−1 = (e−1)−1 · e−1 = e.
Now in (11), replace z with z−1 and use (15) to obtain

(x · y−1) · z = (xyz). (16)

Replacing y with y−1 and then setting z = y−1 in (16), we obtain (x · y) · y−1 =
(xy−1y−1) = x using (MT0). Thus the right inverse property (RIP) holds.

Next we almost obtain the Moufang identity (M2) as follows:

((x · y) · z) · y = (((x · e) · y) · z) · y

= ((xey)z−1y)

= (xe(yz−1y))

= (x · e) · ((y · z) · y),

using (16), (MT1) and (16) again. In loop theory, this is known as the right Bol
identity.

We also have the left alternative law:

(x · x) · y = (((x · e) · x) · e) · y

= ((xex)ez)

= (xe(xez))

= (x · e) · ((x · e) · y)

= x · (x · y),

using (16), (MT2) and (16) again.
The rest of the argument is standard. A magma satisfying the right Bol identity

and (RIP) is a loop, called a right Bol loop (see, e.g., [5], Theorem 3.11, suitably
dualized). A right Bol loop satisfying the left alternative law is a Moufang loop [9].

Definition 3.3 A set M with a map (· · · ) : M3 → M satisfying the three identities
from Lemma 3.1 will be called a ternary Moufang loop.

Remarks (1) The axioms (MT1) and (MT2) for ternary Moufang loops are precisely
the identities (AP2) and (AP3) in Loos’ axiomatization of an alternative pair [8].
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(2) For an associative torsor (· · · ) : M3 → M , the groups determined by different
choices of “origin,” that is, fixed middle slot, are all isomorphic. The analog of this
does not hold for ternary Moufang loops. Instead the different Moufang loops are
isotopic [4]. In fact, it is straightforward to show that for a Moufang loop Q, each
isotope of Q is isomorphic to an isotopewithmultiplication given by x ≤z = (xy−1)z
for some y ∞ Q. Thus just as alternative triple systems encode all homotopes of an
alternative algebra into a single structure, so do ternary Moufang loops encode all
isotopes of Moufang loops.

(3) Though we did not bother to state this in the lemma, it is clear from the
proof that if we start with a Moufang loop Q with neutral element e, construct
the corresponding ternary operation (· · · ) and then construct the binary and unary
operations induced by (· · · ) with origin e, we recover the original loop operations.
Similarly, if we start with a ternary Moufang loop M , construct the binary and
unary operationswith origin e and then construct the corresponding ternary operation
induced by the loop structure, we recover the original ternary Moufang loop.

Proof (Proof of Theorem 3.1.) In principle, the first two strategies of proof of
Theorem 2.1 carry over:

(a) A proof in the framework of axiomatic geometry. Instead of the full Desargues
theorem we now can only use the Little Desargues theorem. The drawings will
become more complicated than above since one has to introduce auxiliary points.
We will not pursue this proof here.

(b) A computational proof. Let K be the alternative division ring belonging to
the plane. Then the affine space V := Va is isomorphic to K

2, and affine lines can
be described as in the Desarguesian case, eg. x ∈ y = {(1 − t)x + t y | t ∞ K},
where multiplication by “scalars” inK2 is componentwise. If a = b, then (xyz)aa =
x − y + z is the torsor law of the abelian group Va ⊥= (K2,+), and the claim is true.
If a ⊗= b, fix some arbitrary origin o in the affine hyperplane Va ⊕ b. There is a linear
form β : V → K such that b ⊕ V = ker(β), so that Uab = {x ∞ Va | β(x) ∞ K

×}.
(To fix things, one may choose coordinates such that β = pr1 is the projection onto
the first coordinate of K2, so b is the vertical axis.)

Lemma 3.2 Let notation be as above. Then, for all x, y, z ∞ Uab, we have

(xyz)ab = (β(z)β(y)−1) · (x − y) + z.

Proof The proof of Lemma 2.1 carries over without any changes—associativity of
the ring has not been used there, only some elementary properties of inverses which
are direct consequences of the left and right inverse properties (LIP) and (RIP).

From the lemma we get, as before, the formula

β
(
(xyz)

) = [β(z)β(y)−1]β(x) = (
β(z)β(y)β(x)

)
(17)

which means that β induces a homomorphism fromUab to the ternaryMoufang loop
K

×.
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This formula is crucial in the proof of the alternative laws of Uab: essentially, it
implies that identities holding in K

× will carry over to Uab; but the unit loop of K
is a ternary Moufang loop, and hence so will be Uab. For instance, for the proof of
(MT1), (uv(xyx)) = ((uvx)yx), write both sides, using the lemma: one sees that
equality holds iff, for the vector w := u − v ∞ K

2 and for all x, y, v ∞ K
2 \ ker(β),

we have

(((β(x)β(y)−1)β(x))β(v)−1)w = (β(x)β(y)−1)((β(x)β(v)−1)w)

But this amounts to an identity in K (or, if one prefers, two identities, one for each
component of w), of the same form as the one we want to prove; this identity holds
since K is an alternative algebra.

4 Prospects

In subsequent work, we will investigate more thoroughly the geometry correspond-
ing to alternative algebras and alternative pairs (cf. [8]): “alternative geometries”
correspond to such algebras in a similar way as the associative geometries from [2]
correspond to associative algebras and associative pairs. They play a key rôle in the
construction of exceptional spaces corresponding to Jordan algebas and Jordan pairs.
In the following, we briefly mention some topics to be discussed in this context.

4.1 Structure of the Torsors and Ternary Moufang Loops

First of all, it is easy to understand the structure of the groupsUab in the Desarguesian
case: for a = b, Uab = Va is a vector group (this is true even in the Moufang case),
and for a ⊗= b, Uab is isomorphic to the dilation or ax+b-group

Dil(E) := { f : E → E | f (x) = ax + b, b ∞ E, a ∞ K
×} (18)

of the affine space E = ab = a\b (where a⊕b is considered as hyperplane at infinity
of a). This dilation group, in turn, is a semidirect product ofK× with the translation
group of E . The resulting homomorphism Uab → K

× can be described in a purely
geometric way (cf. [1], Theorem 7.4 for the case of very general Grassmannians).
For Moufang planes, partial analogs of this hold: there is a split exact sequence of
ternary Moufang loops

ab → Uab → K
× ,

where any line L inX which intersects a ⊂b in exactly two different points provides
a splitting. But, if the plane is not Desarguesian, the set Dil(E) defined by (18) is
then no longer a group, nor is it contained in the automorphism group of the plane.
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However, it remains true in the Moufang case that one obtains a symmetric plane
(defined in [7]; in the rough classification of symmetric planes by H. Löwe [6], our
spaces appear among the split symmetric planes.)

4.2 Duality

Carrying out our geometric construction from Chap. “Poincaré Duality for Koszul
Algebras” in the dual projective space, by general duality principles of projective
geometry, we get again torsors, respectively ternaryMoufang loops. Remarkably, the
description of the torsors in the Desarguesian case by Eq. (4) does not change, except
for a switch in a and b. In other words, up to this switch, the map Γ is “self-dual”,
which is in keeping with results on anti-automorphisms from [3]. For the moment,
it is an open problem whether a similar “self-dual description” exists also in the
Moufang case.

4.3 General Projective Planes

Our definition of (xyz)ab in the generic case (Definition 1.1) makes sense for any
projective plane (and even for any lattice if we admit 0 as possible result).What, then,
are its properties? In particular, what is its relation with the “ternary field” associated
to a quadruple of points in the plane? Put differently, how do we have to modify
the definition in the collinear case (Definition 1.3)? Does the “split exact sequence”
ab → Uab → K

× survive in some suitable algebraic category? Can one re-interprete
the classical Lenz-Barlotti types of projective planes (cf., e.g., [10], p. 142) in terms
of (xyz)ab?

4.4 Perspective Drawing

Our construction also has aspects that should be interesting for applied sciences: as
already pointed out, our two-dimensional drawings have a “spacial interpretation”.
This can be explained by observing that the torsorsUAB living in a three-dimensional
space KP

3 can be mapped homomorphically onto torsors Uab living in a projective
plane P (by choosing P ↔ KP

3 intersecting A ≥ B in a single point and projecting
fromapointq ∞ A≥B,q /∞ P , onto P; then leta := P≥A andb := P≥B).A careful
look shows that the torsor structure thus represented on P is quite often implicitly
used in two-dimensional “perspective representations” of three-dimensional space;
however, to our knowledge, the underlying algebraic structure has so far not yet been
clearly recognized.
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Graded q-Differential Polynomial
Algebra of Connection Form

Viktor Abramov and Olga Liivapuu

Abstract Given a graded associative unital algebra we construct a graded
q-differential algebra, where q is a primitive N th root of unity and prove that the
generalized cohomologies of the corresponding N-complex are trivial. We construct
a graded q-differential algebra of polynomials and introduce a notion of connec-
tion form. We find explicit formula for the curvature of connection form and prove
Bianchi identity.

1 Introduction

An idea to generalize the concept of a differential module and to elaborate the cor-
responding algebraic structures by giving the basic property of differential d2 = 0
a more general form dN = 0, N ⊕ 2 seems to be very natural. Taking the equa-
tion dN = 0 as a starting point one should choose a space where a calculus with
dN = 0 will be constructed. As a calculus with dN = 0 may be considered as a
generalization of d2 = 0 and taking into account that there is an exterior calculus
of differential forms with exterior differential d2 = 0 on a smooth manifold one
way to construct dN = 0 is to take a smooth manifold and to consider objects on
this manifold more general than the differentials forms. Our approach is based on
q-deformed structures such as graded q-Leibniz rule, graded q-commutator, graded
inner q-derivation, where q is a primitive N th root of unity [1–6].

A notion of graded q-differential algebra was introduced in [7] (see also in [8–10])
and it may be viewed as a generalization of a graded differential algebra. Let us
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mention that a concept of graded q-differential algebra is closely related to the
monoidal structure introduced in [11] for the category of N-complexes and it is
proved in [12] that the monoids of the category of N-complexes can be identified as
the graded q-differential algebras. It is well known that a connection and its curvature
are basic elements of the theory of fiber bundles and they play an important role not
only in a modern differential geometry but also in theoretical physics namely in a
gauge field theory. A basic algebraic structure used in the theory of connections on
modules is a graded differential algebra. A graded differential algebra is an algebraic
model for the de Rham algebra of differential forms on a smooth manifold. Conse-
quently considering a concept of graded q-differential algebra which is more general
structure than a graded differential algebra we can develop a generalization of the
theory of connections on modules. One of the aims of this paper is to present and
study algebraic structures based on the relation dN = 0 and to generalize a concept
of connection and its curvature applying a concept of graded q-differential algebra
to the theory of connections on modules.

In Sect. 2 we prove Theorem 2.1 which is very useful in the sense that we can
construct various cochain N-complexes by means of this theorem. Theorem 2.1
asserts if their exist an element v of grading one of a graded associative unital algebra
A which satisfies vN ≥ Z (A ), where Z (A ) is the graded center of A , then the
inner graded q-derivation adq

v is N-differential. Next we prove that the generalized
cohomologies of cochainN-complex of Theorem 2.1 are trivial. In Sect. 3we give the
definition of a graded q-differential algebra.We introduce the algebra of polynomials
and endow it with the structure of graded q-differential algebra. We introduce two
operators D, ∈ and the polynomials fk, which are defined with the help of recurrent
relation. We prove the Theorem 3.2 which give explicit power expansion formulae
for the operator D and the polynomials fk .

2 N-Complexes and Cohomologies

A concept of cohomology of a differential module or of a cochain complex with
coboundary operator d is based on the quadratic nilpotency condition d2 = 0. It
is obvious that one can construct a generalization of a concept of cohomology of a
cochain complex if the quadratic nilpotency d2 = 0 is replaced by a more general
nilpotency condition dN = 0, where N is an integer satisfying N ⊕ 2.

Let A = ⊂k≥ZNA
k = A 0 ⊂ A 1 ⊂ . . . ⊂ A N−1 be a ZN -graded associative

unital C-algebra whose identity element is denoted by 1. The subspaceA 0 ⊗ A of
elements of grading zero is the subalgebra of an algebra A . Since this subalgebra
plays an important role in several structures related to a graded algebra A we will
denote it by A, i.e. A ≡ A 0. It is easy to see that each subspace A i ⊗ A of
homogeneous elements of grading i is theA-bimodule. Hence in the case of a graded
algebra A we have the set of A-bimodules A 0,A 1,A 2, . . . ,A N−1. The graded
subspaceZ (A ) ⊗ A generated by homogeneous elements u ≥ A k , which for any
v ≥ A l satisfy uv = (−1)klvu, is called a graded center of a graded algebra A .
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The derivation of degree m induced by an element v ≥ A m will be denoted by

adv(u) = [v, u] = v u − (−1)mluv, (1)

where u ≥ A l. The graded derivation adv is called an inner graded derivation of an
algebra A .

The notions of graded commutator and graded derivation of a graded algebra can
be generalized within the framework of noncommutative geometry and the theory
of quantum groups with the help of q-deformations. Let q be a primitive N th root of
unity. The graded q-commutator [, ]q : A k ⊗ A l → A k+l is defined by

[u, v]q = uv − qklvu. (2)

A graded q-derivation of degree m of a graded algebra A is a linear mapping
δ : A → A of degreem with respect to graded structure ofA , i.e. δ : A i → A i+m,
which satisfies the graded q-Leibniz rule

δ(uv) = δ(u) v + qmlu δ(v), (3)

where u is a homogeneous element of grading l, i.e. u ≥ A l. In analogy with an
inner graded derivation one defines an inner graded q-derivation of degree m of a
graded algebra A associated to an element v ≥ A m by the formula

adq
v(u) = [v, u]q = vu − qmluv, (4)

where u ≥ A l.
A left K-module E is said to be an N-differential module if it is equipped with an

endomorphism d : E → E which satisfies dN = 0. An N-differential module E with
N-differential d is said to be a cochain N-complex of modules or simply N-complex if
E is a graded module E = ⊂k≥ZEk and its N-differential d has degree 1 with respect
to a graded structure of E, i.e. d : Ek → Ek+1.

We prove the following theorem which can be used to construct a cochain
N-complex for a certain class of graded associative unital algebras (see also [8],
p. 394).

Theorem 2.1 Let A = ⊂k≥ZNA
k be a graded associative unital algebra and q be

a primitive Nth root of unity. If there exists an element v ≥ A 1 of grading one which
satisfies the condition vN ≥ Z (A ) then the inner graded q-derivation d = adq

v of
degree 1 is an N-differential and the sequence

A 0 d→ A 1 d→ A 2 d→ · · · d→ A N−1 (5)

is the cochain N-complex.
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Proof We begin the proof with a power expansion of dk , where 1 ∞ k ∞ N . Let u
be a homogeneous element of an algebra A whose grading will be denoted by |u|.
For the first values of k = 1, 2, 3 a straightforward computation gives

du = [v, u]q = vu − q|u|uv,

d2u = [v, [v, u]q]q = v2u − q|u|[2]qvuv + q2|u|+1uv2,

d3u = v3u − q|u|[3]qv2uv + q2|u|+1[3]qvuv2 − q3|u|+3uv3.

We state that for any k ≥ {1, 2, . . . , N} and any homogeneous u ≥ A a power
expansion of dk has the form

dku =
k∑

i=0

(−1)ipi

[
k
i

]
q

vk−i uvi, (6)

where pi = qi|u|+σ(i) and σ(i) = i(i−1)
2 . We proof this statement by means of math-

ematical induction assuming that the above power expansion (6) for dk is true and
then showing that it has the same form for k + 1. Indeed we have

dk+1u = d(dku) = d
( k∑

i=0

(−1)ipi

[
k
i

]
q

vk−iuvi
)

=
k∑

i=0

(−1)ipi

[
k
i

]
q
(vk+1−iuvi − q|u|+kvk−iuvi+1)

=
k∑

i=0

(−1)ipi

[
k
i

]
q

vk+1−iuvi −
k∑

i=0

(−1)iq|u|+kpi

[
k
i

]
q

vk−iuvi+1

= vk+1u +
k∑

i=1

(−1)ipi

[
k
i

]
q

vk+1−iuvi

−
k−1∑
i=0

(−1)iq|u|+kpi

[
k
i

]
q

vk−iuvi+1 − (−1)kq|u|+kpk uvk+1

= vk+1u +
k∑

i=1

(−1)ipi

[
k
i

]
q

vk+1−iuvi

+
k∑

i=1

(−1)iq|u|+kpi−1

[
k

i − 1

]
q

vk−iuvi+1 + (−1)k+1q|u|+kpk uvk+1

= vk+1u +
k∑

i=1

(−1)i
(

pi

[
k
i

]
q
+ q|u|+kpi−1

[
k

i − 1

]
q

)
vk+1−iuvi

+(−1)k+1q|u|+kpk uvk+1.
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Now the coefficients in the last expansion we can write as follows

pi

[
k
i

]
q
+ q|u|+kpi−1

[
k

i − 1

]
q

= pi

([
k
i

]
q
+ qk+σ(i−1)−σ(i)

[
k

i − 1

]
q

)
,

and making use of

σ(i − 1) − σ(i) = (i − 1)(i − 2)

2
− i(i − 1)

2
= 1 − i

and making use of well known recurrent relation for q-binomial coefficients we get

[
k
i

]
q
+ qk+1−i

[
k

i − 1

]
q

=
[

k + 1
i

]
q
.

As pk+1 = q|u|+kpk we finally obtain

dk+1u =
k+1∑
i=0

(−1)ipi

[
k + 1

i

]
q

vk−iuvi,

and this ends the proof of the formula for power expansion of dk .
Now our aim is to show that the power expansion (6) implies dN u = 0 for any

u ≥ A . Indeed making use of (6) we can express the N th power of d as follows

dN u =
N∑

i=0

(−1)ipi

[
N
i

]
q

vk−iuvi. (7)

Taking into account that q is a primitive N th root of unity we get

[
N
i

]
q

= 0, i ≥ {1, 2, . . . , N − 1}.

Hence the terms in (7), which are numbered with i = 1, 2, . . . , N − 1, vanish, and
we are left with two terms

dN u = vN u + (−1)N qσ(N)uvN .

As vN is the element of grading zero (modulo N) of the graded centerZ (A ) we can
rewrite the above formula as follows

dN u = (1 + (−1)N qσ(N)) uvN , σ(N) = N(N − 1)

2
.
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In order to show that the multiplier in the above formula vanish for any N ⊕ 2 we
consider separately two cases for N to be an odd or even positive integer. If N is an
odd positive integer then the multiplier 1 + (−1)N qσ(N) vanish because in this case

1 + (−1)N qσ(N) = 1 − (qN )
N−1
2 = 0.

If N is an even positive integer then

1 + (−1)N qσ(N) = 1 + (q
N
2 )N−1 = 1 + (−1)N−1 = 0.

Hence for any N ⊕ 2 we have dN = 0, and this ends the proof of the theorem. �
Let us fix a positive integer m ≥ {1, 2, . . . , N − 1} and split up the N th power

of N-differential d as follows dN = dm ∪ dN−m. Then the nilpotency condition for
N-differential can be written in the form dN = dm ∪ dN−m = 0 and this leads to
possible generalization of a concept of cohomology. For each integer 1 ∞ m ∞ N −1
one can define the submodules

Zm(E) = {x ≥ E : dmx = 0} ⊗ E, (8)

Bm(E) = {x ≥ E : ↔y ≥ E, x = dN−my} ⊗ E. (9)

From dN = 0 it follows that Bm(E) ⊗ Zm(E). For each m ≥ {1, 2, . . . , N − 1} the
quotient module Hm(E) := Zm(E)/Bm(E) is said to be a generalized homology of
order m of N-differential module E. The following lemma which is proved in [8]
gives a very useful criteria for the triviality of the generalized cohomologies of an
N-differential module.

Lemma 2.1 Let E be an N-differential module over a ring k, N ⊕ 2 be an integer
and q be an element of k satisfying the conditions [N]q = 0 and [n]q is invertible for
any integer 1 ∞ n ∞ N −1. If there is a module-endomorphism h : E → E satisfying
h ∪ d − q d ∪ h = IdE then the generalized cohomologies of an N-differential module
E are trivial, i.e. for any integer 1 ∞ n ∞ N − 1 it holds Hn(E) = 0.

Based on this lemma we can prove that the generalized cohomologies of the cochain
N-complex described in Theorem 2.1 are trivial. It is worth mentioning that the
same argument is used in [10] to show that the generalized cohomologies of the
N-differential module constructed bymeans of the algebra ofN ×N-matricesMN (k)

are trivial.

Theorem 2.2 Let q be a primitive Nth root of unity, A = ⊂i≥ZNA
i be a graded

associative unital algebra with an element v ≥ A 1 satisfying vN = λ1, where
λ = 0. Then the generalized cohomologies Hn(A ) of the cochain N-complex of
Theorem 2.1

A 0 d→ A 1 d→ A 2 d→ · · · d→ A N−1 (10)

with N-differential d = adq
v , induced by an element v, are trivial, i.e. for any n ≥

{1, 2, . . . , N − 1} we have Hn(A ) = 0.
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Proof Let us define the endomorphism h of the vector space of A as follows

h(u) = 1

(1 − q)λ
vN−1 u,

where u is an element of an algebra A . If u is a homogeneous element of a graded
algebra A then |h(u)| = |u| + N − 1, where |u| is the grading of an element u. For
any homogeneous u ≥ A we have

(h ∪ d − q d ∪ h)(u) = h(du) − q d(h(u))

= h(adq
v(u)) − q

(1 − q)λ
adq

v(v
N−1u)

= h([v, u]q) − q

(1 − q)λ
[v, vN−1]q

= h (v u − q|u|uv) − q

(1 − q)λ
(vN u − q|u|+N−1vN−1u v)

= 1

(1 − q)λ
vN u − q|u|

(1 − q)λ
vN−1u v

− q

(1 − q)λ
vN u + q|u|

(1 − q)λ
vN−1u v

= (1 − q)λ

(1 − q)λ
u = IdA (u).

The endomorphism h : A → A of the vector space of an algebra A satisfies
h∪d−q d∪h = IdA and it follows fromLemma 2.1 that the generalized cohomology
of the cochain N-complex

A 0 d→ A 1 d→ A 2 d→ · · · d→ A N−1

are trivial. �

3 Graded q-Differential Algebras

In this section we use the cochain N-complex described in the Theorem 2.1 to con-
struct a graded q-differential algebra which can be viewed as a natural generalization
of the notion of graded differential. Then we will describe a graded q-differential
polynomial algebra which arises in relation with a connection form which can be
viewed as analog of connection form in a graded differential algebra introduced by
Quillen in [13].

Definition 3.1 A graded q-differential algebra is a graded associative unital algebra
A = ⊂k≥ZA k endowedwith a linearmappingd of degree one such that the sequence



368 V. Abramov and O. Liivapuu

· · · d→ A k−1 d→ A k d→ A k+1 d→ · · ·

is an N-complex with N-differential d satisfying the graded q-Leibniz rule

d(u v) = d(u)v + qkud(v), (11)

where u ≥ A k, v ≥ A .

It follows from Theorem 2.1

Theorem 3.1 Let A be a graded associative unital algebra A = ⊂kA
k, and q

be a primitive Nth root of unity. If there exists an element of grading one v ≥ A 1

which satisfies the condition vN ≥ Z (A ), where Z (A ) is the graded center of A ,
then the graded algebra A endowed with the inner graded q-derivation d = adq

v is
a graded q-differential algebra (d is its N-differential).

Indeed we can prove this theorem by taking into account that an inner graded
q-derivation satisfies the graded q-Leibniz rule (3) and the inner graded q-derivation
d = adq

v , induced by an element of grading one v ≥ A 1 such that vN ≥ Z (A ), is
the N-differential of the cochain complex (Theorem 2.1)

· · · d→ A k−1 d→ A k d→ A k+1 d→ · · · .

Now we introduce a graded q-differential algebra of polynomials which arises in
relation with an algebraic model of a connection form and this algebraic model is
based on exterior calculus with differential satisfying dN = 0. This algebra will be
used in the next section in order to calculate the curvature of a connection form.

Let N1 = {i ≥ Z : i ⊕ 1} be the set of integers greater than or equal to one and
{d, ai}i≥N1 be a set of variables. We consider the algebra of noncommutative poly-
nomials Pq[d, a] over C generated by the variables {d, ai}i≥N1 which are subjected
to the commutation relations

dai = qi aid + ai+1, ∗i ≥ N1 (12)

where q is any complex number different from zero. We denote the identity element
of this algebra by ∅. Obviously we can split up the set of variables of the algebra
Pq[d, a] into two subsets {d}, {ai}i≥N1 which generate respectively the subalgebras
Pq[d] ⊗ Pq[d, a] and Pq[a] ⊗ Pq[d, a]. Hence the subalgebra Pq[d] is generated
by a single variable d, and the subalgebraPq[a] is freely generated by the variables
{ai}i≥N1 because we do not assume any relation between variables ai.

Now our aim is to equip the algebra of polynomialsPq[d, a] with a graded struc-
ture so thatPq[d, a] will become a graded algebra. This can be done as follows: we
assign grading zero to the identity element 1 of the algebraPq[d, a], grading one to
the generator d and grading i to a generator ai, where i ≥ N1. Thus making use of
previously defined notations we can describe the graded structure of generators of
Pq[d, a] by the formulae
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|1| = 0, |d| = |a1| = 1, |ai| = i, i ⊕ 2. (13)

As usualwe extend this graded structure to thewhole algebraPq[d, a] by defining the
grading of any product of variables {d, ai}i≥N1 as the sum of gradings of its factors. It
is easy to see that the algebra of polynomialsPq[d, a] becomes the positively graded
algebra. Hence we can write

Pq[d, a] = ⊂k≥NPk
q[d, a],

wherePk
q[d, a] is the subspace of homogeneous polynomials of grading k. It should

be mentioned that the graded structure of P[d, a] induces the graded structures of
the subalgebras Pq[d],Pq[a] which are positively graded algebras as well. Clearly
the positively graded algebraPq[d, a] becomes theZN -graded algebra, where N any
integer greater than 1, if we slightly modify the above described gradation by taking
all gradings modulo N . Let us denote by LinPq[a] the algebra of C-endomorphisms
of vector space of Pq[a]. Obviously LinPq[a] is a graded algebra with gradation
induced by the gradation ofPq[a]. Having defined the positively graded structure of
the algebraPq[d, a]we can apply the notions of graded commutator and inner graded
q-derivation described in the previous chapter to study the structure ofPq[d, a]. First
of all we observe that the commutation relations (12) can be written by means of
graded commutator and inner graded q-derivation in the form

[d, ai]q = ai+1, or adq
d(ai) = ai+1, (14)

where i ≥ N1. This form of commutation relations suggests us to consider the inner
graded q-derivation adq

d of the algebra Pq[d, a] associated with a variable d. If we
restrict adq

d to the subalgebra Pq[a] we get the graded q-derivation of subalgebra
Pq[a] which we will denote by d, i.e.

d := adq
d |Pq[a], d : Pq[a] → Pq[a]. (15)

Obviously d is a graded q-derivation of grading one of theZN -graded algebraPq[a].
From the commutation relations (14) it follows that

d(1) = 0, d(ai) = ai+1,

for any i ⊕ 1. Let us define D,∈ ≥ LinPq[a] of grading one and the polynomials
fk ≥ Pq[a], where k is an integer greater than or equal to zero, by the formulae

D(P) = d(P) + a1 P, (16)

∈(P) = d(P) + [a1, P]q, (17)

f0 = 1,

f1 = a1,
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fk = D(fk−1), (18)

where P ≥ Pq[a] is a homogeneous polynomial. We can write the linear mapping
∈ in the form ∈ = adq

d+a1
which clearly shows that ∈ is a inner graded q-derivation

of the algebra Pq[a]. Hence for any polynomials P, Q ≥ Pq[a], where P is homo-
geneous, it holds

D(PQ) = D(P) Q + q|P|P d(Q), (19)

∈(PQ) = ∈(P) + q|P|P ∈(Q). (20)

For the first values of k we calculate by means of the recurrent relation (18)

f2 = a2 + a21,

f3 = a3 + a2 a1 + [2]q a1 a2 + a31,

f4 = a4 + a3 a1 + [3]q a1a3 + [3]q a22
+a2a21 + [3]q a21a2 + [2]q a1a2a1 + a41, (21)

f5 = a5 + a4a1 + [4]q a1a4 + [4]q a3a2

+
[
4
2

]
q

a2a3 + a3a21 + [3]q a22a1 + [4]q a2a1a2

+[2]q [4]q a1a22 +
[
4
2

]
q

a21a3 + [3]q a1a3a1

+[2]q a1a2a21 + [3]q a21a2a1 + a2a31 + [4]q a31a2 + a51.

Getting a bit ahead we would like to point out that the polynomials fk may be inter-
preted as the curvature of a connection if we view the generator a1 as an algebraic
model for a connection one form. Let us remind that if k is a positive integer then a
composition of k is a representation of k as the sum of a sequence of strictly posi-
tive integers, and two sequences that differ in the order of their terms give different
compositions of their sum while they define the same partition of k. For example if
k = 3 then there are 4 compositions

3 = 3, 3 = 2 + 1, 3 = 1 + 2, 3 = 1 + 1 + 1.

Let Ψk be the set of all compositions of an integer k. We will write a composition of
an integer k in the form of a sequence of strictly positive integers σ = (i1, i2, . . . , ir),
where i1 + i2 + · · · + ir = k. Let us denote

k1 = i1,

k2 = i1 + i2,

k3 = i1 + i2 + i3,

. . .
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kr−1 = i1 + i2 + · · · + ir−1.

It can be proved [14] that the number of all possible compositions of a positive
integer k is 2k−1, i.e. the setΨk contains 2k−1 elements. The following theorem gives
an explicit formula for the polynomials fk :

Theorem 3.2 For any integer k ⊕ 2 we have the following expansion of power of
the operator D and the expansion of a polynomial fk in terms of generators ai:

Dk =
k∑

i=0

[
k
i

]
q

fi dk−i,

fk =
∑
σ≥Ψk

[
k2 − 1

k1

]
q

[
k3 − 1

k2

]
q
. . .

[
k − 1
kr−1

]
q

ai1ai2 . . . air ,

where σ = (i1, i2, . . . , ir) is a composition of an integer k.

Proof Wewill prove the expansion formulae of this theorem by the method of math-
ematical induction. In order to prove the expansion of power of the operator D by
means of mathematical induction we begin with the base case and show that this
formula holds when k is equal to 1. This is true because

D =
[
1
0

]
q

f0 d +
[
1
1

]
q

f1 = d + a1.

Next step in the proof is an inductive step, i.e. we assume that the expansion formula
holds for some integer k > 1 and show that it also holds when k + 1 is substituted
for k. Indeed we have

Dk+1 = D(Dk) = D
( k∑

i=0

[
k
i

]
q

fi dk−i
)

=
k∑

i=0

[
k
i

]
q

(
D(fi) dk−i + qi fid

k+1−i
)

=
k∑

i=0

[
k
i

]
q

(
fi+1 dk−i + qi fid

k+1−i
)

= fk+1 +
k−1∑
i=0

[
k
i

]
q

fi+1 dk−i + qi
k∑

i=1

[
k
i

]
q

fi dk+1−i + dk+1

= fk+1 +
k∑

i=1

[
k

i − 1

]
q

fi dk+1−i + qi
k∑

i=1

[
k
i

]
q

fi dk+1−i + dk+1
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= fk+1 +
k∑

i=1

([
k

i − 1

]
q
+ qi

[
k
i

]
q

)
fi dk+1−i + dk+1

= fk+1 +
k∑

i=1

[
k + 1

i

]
q

fi dk+1−i + dk+1

=
k+1∑
i=0

[
k + 1

i

]
q

fi dk+1−i.

Thus the expansion of power of the operator D is proved. Now if we apply the both
sides of the proved formula to a1 we obtain

fk+1 =
k∑

i=0

[
k
i

]
q

fi ak+1−i, (22)

and this is the recurrent formula for the polynomials fk which we will use in the
second part of the present proof in order to prove the expansion formula for fk .

We start the proof of the expansion formula for a polynomial fk with the base case
when k = 2. In this case there are two compositions 2 = 2, 2 = 1 + 1. Hence we
have

f2 =
[
1
0

]
q

a2 +
[
1
0

]
q

[
1
1

]
q

a21 = a2 + a21.

Comparing this result with the first formula in (21) we see that in the case when
k = 2 the expansion formula for fk is correct. The next step is an inductive step, i.e.
we assume that the expansion formula holds for some positive integer k > 2 and
show that it also holds when k + 1 is substituted for k. Let us consider the sum

∑
σ≥Ψk+1

[
k2 − 1

k1

]
q

[
k3 − 1

k2

]
q
. . .

[
k
kr

]
q

ai1ai2 . . . air+1 , (23)

where σ = (i1, i2, . . . , ir, ir+1) is a composition of an integer k +1. Hence i1+· · ·+
ir +ir+1 = k+1. Our aim is to show that this sum is equal to the polynomial fk+1. Let
us fix an integer i ≥ {0, 1, . . . , k} and a generator ak+1−i. It is clear that ifwe select the
compositions of an integer k+1which have the form (i1, i2, . . . , ir, k+1− i), i.e. the
last integer of each composition is previously fixed integer k + 1− i, and we remove
in each composition the last integer then the set of compositions (i1, i2, . . . , ir) is the
set of all compositions of an integer i, i.e. {(i1, i2, . . . , ir)} = Ψi. Indeed we have

i1 + i2 + · · · + ir + k + 1 − i = k + 1,

which implies i1 + i2 + · · · + ir = i. Consequently if we select in the sum (23) all
terms with ir+1 = k +1− i (i.e. containing a generator ak+1−i at the end of a product
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of generators) then we get the sum

∑
σ≥Ψk+1

[
k2 − 1

k1

]
q

[
k3 − 1

k2

]
q
. . .

[
k
i

]
q

ai1ai2 . . . air ak+1−i, (24)

where the sum is taken over the compositions of integer k + 1 which have the form
σ = (i1, i2, . . . , ir, k + 1 − i) ≥ Ψk+1. We would like to point out that the product
of binomial coefficients of each term in this sum contains the factor

[
k
i

]
q
.

Hence we can write the sum (24) as follows

[
k
i

]
q

(∑
τ≥Ψi

[
k2 − 1

k1

]
q

[
k3 − 1

k2

]
q
. . .

[
i − 1
kr−1

]
q

ai1ai2 . . . air

)
ak+1−i,

where τ = (i1, i2, . . . , ir) ≥ Ψi and the sum is taken over all compositions of integer
i. Nowwemake use of the assumption of an inductive step that the expansion formula
for a polynomial fm holds for each integer m ≥ {1, 2, . . . , k}. Hence the sum in the
previous formula is equal to fi, i.e

∑
τ≥Ψi

[
k2 − 1

k1

]
q

[
k3 − 1

k2

]
q
. . .

[
i − 1
kr−1

]
q

ai1ai2 . . . air = fi.

Thus the sum (24) is equal to [
k
i

]
q

fi ak+1−i,

and summing up all these terms with respect to i we get the sum (23). Consequently
the sum (23) we started with is equal to the sum

k∑
i=0

[
k
i

]
q

fi ak+1−i,

which in turn is equal to fk+1 (see the recurrent relation (22)). This ends the
proof. �

We remind a reader that the parameter q which plays an important role in the
structure of the algebra Pq[d, a] is any complex number different from zero. Now
we will study the structure of the algebra of polynomialsPq[d, a] at a primitive N th
root of unity, i.e. we assume q to be a primitive N th root of unity. We may expect
that in this case the infinite set of variables {d, a1, a2, . . .} is “cut off” and we get an
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algebra whose vector space is finite dimensional. Indeed we can prove the following
proposition:

Proposition 3.1 Let Pq[d, a] be the algebra of polynomials generated by the set of
variables {d, ai}i≥N1 which obey the commutation relations (12). If we assume that
q is a primitive Nth root of unity and the variable d is subjected to the additional
relation dN = λ · 1, where λ is a complex number, then for any integer k > N
a variable ak vanishes, i.e. the algebra Pq[d, a] is generated by the finite set of
variables {d, ak}N

k=1 which obey the relations

da1 = q a1d + a2,

da2 = q2 a2d + a3,

· · · (25)

daN−1 = qN−1 aN−1d + aN ,

daN = aNd,

dN = λ · 1.

The graded q-derivation d = adq
d : Pq[a] → Pq[a] associated to variable d is an

N-differential, i.e. dN = 0, and the sequence

· · · d→ Pi−1
q [a] d→ Pi

q[a] d→ Pi+1
q [a] d→ · · ·

is a cochain N-complex. The graded algebra Pq[a] equipped with the N-differential
d is a graded q-differential algebra.

Proof We suppose that the algebra of polynomials is equippedwith theZN -gradation
as it was explained earlier (13). It easily follows from the commutation relations of
the algebra Pq[d, a] that for any integer k ⊕ 2 we have

ak+1 = dk(a1),

where d = adq
d is the graded q-derivation associated with a variable d. Making use

of the expansion of power of graded q-derivation used in the proof of Theorem 2.1
we obtain

ak+1 = dk(a1) = (adq
d)

k(a1) =
k∑

i=0

(−1)i pi

[
k
i

]
q
dk−i u di.

Consequently if q is a primitive N th root of unity, d satisfies dN = λ · 1 and k = N
then making use of the same arguments as in the proof of Theorem 2.1) we conclude
that all terms of the sum at the right-hand side of the above expansion formula vanish.
Consequently we have aN+1 = aN+2 = . . . = 0 and this ends the proof. �
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It is well known that locally a connection of a vector bundle can be described with
the help of matrix-valued 1-form. From an algebraic point of view this matrix-valued
1-form is an element of degree one of differential algebra ofmatrix-valued differential
forms, where differential is identified with exterior differential and graduation is
induced by degree of differential form. Hence an algebraic model for a connection
can be constructed if we take a differential algebra A (over C) and consider an
element of degree one of this algebra A calling it connection form. Then a covariant
differential induced by this connection form is the operator ∈ = d + A, and the
curvature is the element of degree 2 given by F = dA + A2 = dA + 1

2 [A, A], where
[, ] is the graded commutator of A . This approach was proposed by Quillen in
[13]. Following this approach we introduce a notion of N-connection form which
particularly gives a connection form if N = 2. Let us denote by Pq[d, a] the finite
dimensional graded algebra generated by {d, ak}N

k=1 which obey relations (26) and by
Pq[a] the graded q-differential algebra generated by {ak}N

k=1 with N-differential d.
Now we give the following definition:

Definition 3.2 The generator a1 of ZN -graded q-differential algebra Pq[a] will be
referred to as an N-connection form and the algebra Pq[a] will be referred to as
an algebra of N-connection form. The operator D = d + a1 : Pq[a] → Pq[a]
will be called a covariant N-differential, and the polynomial fN , whose explicit
power expansion formula given in (3.2), will be called the curvature of N-connection
form a1.

Proposition 3.2 If Pq[a] is the algebra of N-connection form and d is its
N-differential then the Nth power of the covariant N-differential D is the opera-
tor of multiplication by the curvature of N-connection form fN .

Proof The proof of this proposition is based on the first expansion formula proved in
the Theorem 3.2. Indeed we can expand an N th power of the covariant N-differential
D into the sum of products of polynomials fi and the powers of the N-differential d
as follows

DN =
N∑

i=0

[
N
i

]
q

fi dN−i.

As q is a primitive N th root of unity this expansion can be essentially simplified
in the case k = N if we take into account that all q-binomial coefficients with
i ≥ {1, 2, . . . , N − 1} vanish. The first term of this expansion also vanishes because
d is the N-differential. Hence for any polynomial P ≥ Pq[a] we have

DN (P) = fN · P,

and this ends the proof. �

Proposition 3.3 If Pq[a] is the algebra of connection form and fN is the curvature
of connection form then the curvature satisfies the identity
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∈(fN ) = 0. (26)

Proof Let us remind a reader that∈ = d +adq
a1 . We prove this proposition by means

of the recurrent relation for polynomials fk

fk+1 =
k∑

i=0

[
k
i

]
q

fi ak+1−i.

Substituting N for k in the above relation we obtain

fN+1 =
N∑

i=0

[
N
i

]
q

fi aN+1−i. (27)

As q is a primitive N th root of unity we have

[
N
i

]
q

= 0,

for any integer i ≥ {1, 2, . . . , N − 1}. Consequently there are only two terms with
non-zero q-binomial coefficients (labeled by i = 0, N) at the right-hand side of the
relation (27) and

fN+1 = f0 aN+1 + fN a1.

The first term at the right-hand side of the above formula is also zero because of
aN+1 = 0 (Proposition 3.1). Hence

0 = fN+1 − fN a1 = D(fN ) − fN a1
= d(fN ) + a1 fN − fN a1 = d(fN ) + [a1, fN ]q = (d + adq

a1)(fN ) = ∈(fN ).

�

The identity (26) is an analogue of Bianchi identity for the curvature of
N-connection form. It is worth mentioning that we can write the Bianchi identity for
the curvature ofN-connection form (26) in a differentway ifwe consider the covariant
N-differential D and the curvature fN as the linear operators D, fN : Pq[a] → Pq[a],
i.e. D, fN ≥ LinPq[a], where fN is the operator of multiplication by fN (we denote
it by the same symbol as the curvature fN in order not to make the notations very
complicated). Then the Bianchi identity may be written in the form

[D, fN ]q = 0.
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Indeed

[D, fN ]q = D ∪ fN − fN ∪ D

= d(fN ) + fN ∪ d + a1 fN − fN ∪ d − fN a1
= d(fN ) + [a1, fN ]q = ∈(fN ) = 0.
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Double Category Related to Path Space
Parallel Transport and Representations
of Lie 2 Groups

Saikat Chatterjee, Amitabha Lahiri and Ambar N. Sengupta

Abstract From a differential geometric approach parallel transport on path spaces
has been addressed. Integral version establishes the category theoretic frame work.
We have glossed over the topic of representations of categorical groups and its relation
with categorical framework of path space parallel transport.

1 Introduction

A growing body of literature [1–5] has been dovoted to the study of parallel transport
of surfaces. Perhaps most interesting aspect of the surface parallel transport is the
observation that a single group is not adequate for an ‘well defined’ Non-Abelian
description. [1, 2] etc. address the problem from a purely category theoretic argumets.
On the other hand there is also gerbe theoretic approach to the problem [6–8]. In [4]
starting from a differential geometry, a category theoretic frame work for the parallel
transport of surfaces has been established. Our approach in [4] mainly focussed on
differential geometry on the path space. In Sect. 2 we first review few important
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results of [4]. We choose a principal G bundle (Π, P, M). Let Ā be a connection
on this G-bundle. We construct another G-bundle Π,PĀP,PM, where PM is the
path space over manifold M and PĀP is the space of Ā horizontal paths over P.
Keeping in mind that a single group is insufficient to describe the surface parallel
transport, we introduce another group H related to G. We construct a connection
A on the G-bundle Π,PĀP,PM. Differential geometry with this connection A
leads to a natural construction of integrated picture or category structure of the surface
parallel transport. Section 3 provides a glimpse of [9]. We first define representations
of categorical groups. Then we show that it defines a double category over a category
of some vector spaces. Then we touch upon the relation between category theoretic
frame work of path space parallel transport (discussed in Sect. 2) and representations
of categorical groups [9].

2 Connections on Path Spaces

We define the path space PM of a given manifold M as the space of all parametrized
smooth paths in M,

γ : I ⊕ M I = [0, 1]

.i.e. if γ ≥ PM, then γ (t) ≥ M, where t ≥ [0, 1]. The tangent space of the path
space is defined as follows. For γ ≥ PM, a vector X ≥ Tγ (PM) is given by a
vector field X(t) ≥ Tγ (t)(M) [3].

Let ev be the general evaluation map. i.e.

ev : PM × I −⊕ M, evt
def= ev(·, t) (1)

Then

evt : PM ⊕ M

γ ∈⊕ γ (t).

We denote corresponding pull back operator as ev⊂
t .

Let us consider a principal G-bundle (Π, P, M)

Π : P ⊕ M

with the usual right action of the Lie group G on P

P × G ⊕ P : (p, g) ⊕ pg

If Ā is a connection on this bundle, we can construct the space of Ā horizontal paths
in P. Then we have a natural projection map Π : PĀP ⊕ PM given by
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Π(γ̃ )(t) = γ (t),

where γ̃ is a lift of γ by connection Ā, and a natural G action G × PĀP ⊕ PĀP
given by

(γ̃ .g)(t) = γ̃ (t).g

Note if γ̃ is a Ā-horizontal path, then γ̃ .g is also a Ā-horizontal path. Given any
u ≥ LG we can a construct a vertical vector field on PĀP by

Xu(γ̃ )(t) := d

ds
|s=0γ̃ (t)exp(su) (2)

Naturally, but informally we treat PĀP ⊕ PM as a principal G-bundle. For details
see [3, 4]. It can be shown ( Proposition 2.1 in [4]) that if Γ̃ : [0, 1] × [0, 1] ⊕ P :
(t, s) ⊕ Γ̃ (t, s) = Γ̃s(t) is a smooth map and X̃s(t) = ∂sΓ̃ (t, s), then each transverse
path Γ̃s : [0, 1] ⊕ P is Ā-horizontal if and only if the initial path Γ̃0 is Ā-horizontal,
and the tangency condition

∂Ā(X̃s(t))

∂t
= FĀ

(
∂tΓ̃ (t, s), X̃s(t)

)
(3)

holds. It is often conveniently written in integral form as

ev⊂
T Ā − ev⊂

0Ā =
∫ T

0
FĀ (4)

The right hand side is a Chen integral [10, 11] in the interval [0, T ]. We define
the tangent space Tγ̃PĀP at a point γ̃ of PĀP to be space of all vector fields
t ⊕ X̃(t) ≥ Tγ̃ (t)P along γ̃ for which (3) holds, i.e.

∂Ā(X̃(t))

∂t
= FĀ

(
γ̃ ⊗(t), X̃(t)

)
(5)

for all t ≥ [0, 1]. The vertical subspace of Tγ̃PĀP is the collection of all vectors X̃
for which X̃(t) is vertical, a more detailed discussion can be found in [4].

2.1 Parallel Transport on Path Space

A description of parallel transport on path space with a single gauge leads to a serious
inconsistency, which is quite obvious from the following category theoretic argument
and forces us to introduce two different gauge groups for the parallel transport on
the path space. In order to have a consistent parallel transport along a surface, the
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Fig. 1 No go theorem!

H H

H H

following equation must be satisfied

(H ⊗ • H) × (H ⊗⊗⊗ • H ⊗⊗) = (H ⊗ × H ⊗⊗⊗) • (H × H ⊗⊗) (6)

here H, H ⊗, H ⊗⊗, H ⊗⊗⊗ are ‘surface parallel transport’ operators in the Fig. 1 and × and
• denote vertical and horizontal composition of surfaces respectively.

So it is obvious that if we take surface parallel transport operator to be a group
element and assign the same composition law (the group product) for both horizontal
and vertical compositions, the group must be Abelian. It is a ‘No Go theorem’ [1]!
To avoid that we introduce two Lie groups G and H to describe surface parallel
transport and define different composition laws for the ‘horizontal’ and ‘vertical’
compositions. Basic goal here is to arrive at a double category structure starting
from a gauge theoretic argument and the Mac Lanes consistency condition [12].
The necessary framework for the purpose, which we discuss below, is known as Lie
2-group [4, 13].

A Lie 2-group is given by two Lie groups G and H, along with a smooth homo-
morphism τ : H ⊕ G and a smooth map for α : G ⊕ H, such that for any g ≥ G
and h, h⊗ ≥ H following identities hold:

τ(α(g)h) = gτ(h)g−1 (7)

α(τ(h))h⊗ = hh⊗h−1 (8)

For simplicity we will denote the mapping α⊗(e) : LG ⊕ LH and τ ⊗(e) : LH ⊕ LG
as α and τ respectively, here LG and LH are Lie algebras of G and H respectively.

2.1.1 A Connection Form on the Path Space Bundle

Suppose we have a connection A on the bundle P and an LH valued α- equivariant
(under the right action of G) 2—form B on P, which vanishes on vertical vectors, i.e.
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B(X, Y) = 0, if X or Y is vertical (9)

and

R⊂
gB = α(g−1)B, for all g ≥ G. (10)

Here Rg : P ⊕ P : p ∈⊕ pg and according to our conventionα(g−1)B = dα(g−1)|eB.
Proposition 2.2 of [4] states that

A = ev⊂
1A + τ

∫ 1

0
B (11)

is a connection on the principal G-bundle Π : PĀP ⊕ PM, where the integration
on the right hand side is a first order Chen integral. A sketchy description of the proof
might be pertinent here. In order to prove that A is a connection we check that A
satisfies following two conditions:

1. A (Rg⊂ṽ) = Ad(g−1)A (ṽ)
2. A (Xu) = u,

for every g ≥ G and ṽ ≥ TPĀP and Xu is as defined in (2). The first condition is
met due the fact that A is a connection on principal G-bundle Π : P ⊕ M and B
is α equivariant (10). As B is zero on vertical vectors (9) second condition is also
satisfied. Thus A is indeed a connection on Π : PĀP ⊕ PM.

The first step to describe the parallel transport of a path by the connection A
would be to give a prescription for lifting a given vector field X : I ⊕ TM, along
γ ≥ PM, to a vector field X̃ along a γ̃ , such that it is (i)A horizontal and (ii) is
actually a vector in Tγ̃PĀP. That is X̃ must satisfies following equations:

A(X̃(1)) + τ

∫ 1

0
B(γ̃ ⊗(t), X̃(t))dt = 0 (12)

∂Ā(X̃(t))

∂t
= FĀ

(
γ̃ ⊗(t), X̃(t)

)
(13)

(12) is for the A -horizontality and (13) is to ensure (5). Proposition 2.3 [4] shows
that given a X ≥ Tγ M conditions (12), (13) uniquely determine the lifted vector
X̃ ≥ Tγ̃PĀP. In order to precisely determine the lifted vector field X̃. We employ
following technique. First let us decompose the lifted vector field along γ̃ into hor-
izontal and vertical parts with respect to the connection Ā, X̃(t) = X̃h

Ā
(t) + X̃V (t).

Note as B is zero on the vertical vectors, (13) gives

A(X̃(1)) + τ

∫ 1

0
B(γ̃ ⊗(t), X̃h

Ā
(t))dt = 0 (14)
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Fig. 2 A plaquette

d

a

c

bh

and X̃h
Ā
(t) is completely determined by the connection Ā. Thus (14) determines

A(X̃(1)). Also (13) leads to

∂Ā(X̃V (t))

∂t
= FĀ

(
γ̃ ⊗(t), X̃h

Ā
(t)

)
. (15)

Next we split X̃(1) into A horizontal and corresponding vertical part. (15) is a first
order differential equation. With a tediuos but straightforward calculation we obtain
following result (see (2.22)–(2.24) in [4]):

X̃(t) = X̃h
Ā
(t) + Xu(γ̃ )(t), (16)

where

u = Ā(ṽ(1)) −
∫ 1

t
FĀ(γ̃ ⊗(s), ṽh

Ā
(s))ds,

ṽ(1) = ṽh
Ā
(1) + Xw(1), w = −

∫ 1

0
τ(B(γ̃ ⊗(s), ṽh

Ā
(s))ds

and Xu(γ̃ ) is as defined in (2). The integrated version of the above construction leads
to the description of the parallel transport of paths. The pivotal part of the description
is that (12) and (13) specify ‘parallel transport’ of the ‘right endpoint’ γ̃ (1) and then
(13) specifies the parallel transport of the entire path γ̃ . Theorem 2.4 in [4] provides
the explicit expression for the parallely transported path by connection A . Our main
focus will be (2.46) in [4]. A categorical description for the parallel transport of paths
directly follows from that equation follows.

2.2 Categorical Picture

Let Γ : [0, 1] ⊕ PM and denote (Γ (s)) (t) := Γ (s, t) = Γs(t) = Γ t(s).i.e.
we denote ‘longitudinal’ paths as Γ t and ‘transverse’ paths as Γs. Let a ≥ G and
c ≥ G are Ā-parallel transports along Γ0 and Γ1 respectively. d ≥ G and b ≥ G are
A-parallel transports along Γ 0 and Γ 1 respectively. The h ≥ H is a term dependent
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on the ‘surface’ Γ , given by the solution of

dh(s)

ds
h(s)−1 = −

∫ 1

0
B⊗(∂tΓ (s, t), ∂sΓ (s, t))dt

at s = 1 with the initial condition h(0) = e. Here, B⊗ is a LH valued 2-form on M
determined by A, Ā, B. The explicit expression for B is given in (2.47) of [4]. However
for our current purpose we do not need to bother about the exact expression of B⊗.
Now consider a plaquette as in the Fig. 2, whose edges are labeled with the elements
of the group G, a ≥ G, b ≥ G, c ≥ G and d ≥ G and the ‘surface’ is labeled by
h ≥ H. As a consequence of Eq. (2.46) in [4] we have following relation

τ(h) = a−1 · b−1 · c · d (17)

As a consequence of the above equation we have a 2-categorical picture for parallel
transport of paths, where the set of objects for both of the categories is the group
G and the set of morphisms is G4 × H. We call these two categories involved as
Vert (vertical category) and Horz (horizontal category) respectively. We denote a
morphism associated with a plaquette as in Fig. 2 by (a, b, c, d; h). The source and
target maps for Vert and Horz are respectively given as follows

sVert(a, b, c, d; h) = a

tVert(a, b, c, d; h) = c

sHorz(a, b, c, d; h) = d

tHorz(a, b, c, d; h) = b

Using the (17) we define composition law for Vert as

(a, b, c, d; h) × (c, b⊗, d, d⊗; h⊗) = (a, b⊗ · b, d, d⊗ · d; h(α(d)h⊗)) (18)

and that of Horz is given by

(a, b, c, d; h) • (a⊗, f , c⊗, b; h⊗) = (a⊗ · a, f , c⊗ · c, d; (α(d−1)h⊗)h) (19)

It is easy to check that the identity morphism a ⊕ a for Vert is (a, e, a, e; e),
on the other hand for the Horz the identity morphism d ⊕ d is (e, d, e, d; e) ,
where e denotes the the identity element for both G and H. Associative property of
those two categories is obvious. It should be noted here that all morphisms (in both
Vert and Horz) are isomorphisms. For instance, inverse of (a, b, c, d; h) in Vert is
(c, b−1, a, d−1;α(d)h−1) and that in Horz is (a−1, d, c−1, b;α(a)h−1). Now it can
be checked that whenever it is well defined following identity holds,

(F1 × F2) • (F ⊗
1 × F ⊗

2) = (F1 • F ⊗
1) × (F2 • F ⊗

2), (20)
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where F1, F2 etc. are elements of G4 × H. Thus we have a consistent ‘window
diagram’ as in Fig. 1 and as demanded in (6).

In ordinary gauge theory a parallel transport operator H (γ, 0, 1) between γ (0)

and γ (1) along the path γ transforms homogeneously as U(γ (1))H (γ, 0, 1)

U(γ (0))−1, here U(γ (0)) and U(γ (1)) are two elements of the gauge group associ-
ated with the end points of the path and H (γ, 0, 1) is also an element of the same
group. Now consider a plaquette like Fig. 2, here instead of a group valued parallel
transport operator we have a morphism like (a, b, c, d; h) and have two end paths
rather than two end points. So in the same spirit we define gauge transformation of
a surface parallel transport operator as

(ā, b̄, c̄, d̄; h̄)
def= (c, Ũ(1), c, Ũ(0); W̃) × (a, b, c, d; h) × (a, U(1), a, U(0); W)−1

(21)
Here U(0), U(1) ≥ G are group elements associated with the left and right end points
of the initial path in Fig. 2 respectively, Ũ(0), Ũ(1) ≥ G are those of the final path,
and W , W̃ ≥ H are path ordered exponentials of some LH-valued one form λ over
the initial and the final path respectively. As we have already defined the vertical
composition in (18), from (21) we have following transformations

ā = U(1) · a · τ(W) · U(0)−1

b̄ = Ũ(0) · b · U(0)−1

c̄ = Ũ(1) · c · τ(W̃) · Ũ(0)−1

d̄ = Ũ(1) · b · U(1)−1

h̄ = (α(U(0))(W−1.h.((α(d−1)W̃))

3 Representations of Categorical Groups

This section is based on an ongoing work [9]. Here we extend the notion of represen-
tations for the categorical groups and discuss some consequences. We will farther
explore few aspects which will be interesting from the categorical frame work we
described at the end of preceding section.

A categorical group is a monoidal category, where both object and arrow sets
form groups under the monoidal product. For a detail exposition on the subject of
categorical groups [14] or [15] may be consulted. We will denote monoidal or group
product between a and b as ab both at the level of objects and morphisms. Our primary
interest would be a specific type of categorical groups, whose object and morphism
sets are both Lie groups. We will call such categorical groups Lie 2-groups. Let
G be a categorical group and group G and group K be object and morphism sets
respectively. We denote an arrow (morphism) k ≥ K from g1 ≥ G to g2 ≥ G as

g1
k−⊕ g2.
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Suppose g1
k1−⊕ g2 and g⊗

1
k2−⊕ g⊗

2, then monoidality implies

g1g⊗
1

k1k2−−⊕ g2g⊗
2.

Also if k1, k2, k3, k4 ≥ K then we have the following ‘exchange law’:

(k1k2) ⊂ (k3k4) = (k1 ⊂ k3)(k2 ⊂ k4), (22)

whenever left hand side is well defined, where ⊂ is the composition law in G .
Given r number of n-dimensional vector spaces Vi, i = [1, r], we define a category

V[n], whose object set is {Vi} and a morphism from V1 ≥ Obj
(
V[n]) to V2 ≥

Obj
(
V[n]) is given by a linear map f : V1 ⊕ V2. Obviously, identity morphism

associated with V ≥ Obj
(
V[n]) is given by the idenity element IV of Aut(V) and the

composition law in category V[n] is the composition of set maps.
Motivated by the definition of representation of ordinary groups into a vector

space, we define representation of a categorical group G on to the category V[n]
as follows. Let G be a categorical group, G and K are object and morphism set
respectively. A represenation of G is given by a functor

ρ : G × V[n] ⊕ V[n], (23)

such that for any k1, k2 ≥ Mor
(
G

) = K and f ≥ Mor
(
V[n]) following identity

holds;
ρ(k2, ρ(k1, f )) = ρ(k2k1, f ). (24)

From the condition in (24) we observe that

ρ(1e, f ) = f , (25)

where e ≥ G is the identity element in G, and 1e ≥ K is the corresponding identity
morphism.

Let C be a category. Recall that a double category, over the base category C, is a
category which has another set of ‘morphisms between morphisms in the category C’.
The second level of morphisms are equipped with two types of composition laws,
namely horizontal composition and vertical composition. Also horizontal and vertical
composition together satisfy certian ‘exchange law’. Here we keep the definition
vague and to a bare essentials to avoid lengthening the paper. More rigorous definition
of a double category is provided in numerous literature, such as [1, 2, 13]. A double
category over V[n] is a category whose base category is V[n].
Proposition 3.1 Representation of a Lie 2-group on V[n] defines a double category
over V[n].
Proof Let the object set of G be a Lie group G and the morphism set be the Lie
group K and ρ is a representation of G
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V1
f

V2

ρ(g1,V1)

g1

ρ(k, f )
ρ(g2,V2)

g2

Fig. 3 Representation functor

ρ : G × V[n] ⊕ V[n]

Thus we have following maps

ρ : G × Obj
(
V[n]) ⊕ Obj

(
V[n])

(g, V) ∈⊕ ρ(g, V) ≥ Obj
(
V[n]) (26)

and
ρ : K × Mor

(
V[n]) ⊕ Mor

(
V[n])

(k, f ) ∈⊕ ρ(k, f ) : ρ(g1, V1) ⊕ ρ(g2, V2),
(27)

where g1
k−⊕ g2 and V1

f−⊕ V2. Hence we have the following diagram
For brevity let us write ρ(g1, V1) as g1V1 etc. and ρ(k1, f1) etc. as k1f1 etc. Let

Hom(V1, V2) be the set of morphisms from V1 to V2. Thus given a representation ρ

and k1 ≥ K we have

(k1, ρ) : Hom(V1, V2) ⊕ Hom(g1V1, g2V2)

given by
(k1, ρ)(f1) = ρ(k1, f1) = k1f1.

Now suppose k2 is another element of K , then

(k2, ρ) : Hom(g1V1, g2V2) ⊕ Hom(g⊗
1g1V1, g⊗

2g2V2).

So if (k2, ρ) : k1f1 ∈⊕ k2k1f1, using (24) we have a composition law

(k2, ρ) ◦ (k1, ρ) := (k2k1, ρ). (28)

Also as k2k1 : g⊗
1g1 ⊕ g⊗

2g2, we have diagram in Fig. 3 for the above composition
Under this composition law associativity follows naturally, and we define 1f :=
(1e, ρ) : f ⊕ f . So we have a category here. Let us call this composition law
vertical composition.
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V1
f1

V2

g1V1

g1

k1 f1
g2V2

g2

g1g1V1

g1

k2k1 f1
g2g2V2

g2

=

V1
f1

V2

g1g1V1

g1g1

V1
f1

V2

g1V1

g1

k1 f1
g2V2

g2

g1g1V1

g1

k2k1 f1
g2g2V2

g2

=

V1
f1

V2

g1g1 1

g1g1

k2k1 f1
g2g2V2

g2g2

k2k1 f1
g2g2V2

g2g2

Fig. 4 Vertical composition for the representation

Now suppose k1, k⊗
1 ≥ K are composable as morphism and so are f1, f ⊗

1 ≥
Mor

(
V[n]). Let

s(k1) = g1

s(k⊗
1) = g2 = t(k1)

t(k⊗
1) = g3

and

s(f1) = V1

s(f ⊗
1) = V2 = t(f1)

t(f ⊗
1) = V3,

where s, t denote the source and target maps respectively. Functoriality of ρ implies

ρ((k1, f1) ⊂ (k⊗
1, f ⊗

1))= ρ(k1 ⊂ k⊗
1, f1 ⊂ f ⊗

1)= ρ(k1, f1) ⊂ ρ(k⊗
1, f ⊗

1).

(29)

Hence

(k1, ρ)(f1) ⊂ (k⊗
1, ρ)(f ⊗

1) = (k1 ⊂ k⊗
1, ρ)(f ⊗

1 ⊂ f1) (30)

where * denotes various compositions of morphisms. (30) defines a horizontal com-
position. Following digram explains the composition

So horizontal composition naturally follows from the morphism composition ofG .
Our next task is to check the consistency ‘window diagram’. With the aid of (22)

and definitions of horizontal and vertical composition in (30), (28) respectively it
can be easily shown that
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V1
f1

V2

g1V1

g1

k1 f1
g2V2

g2 H

V2
f1 V3

g2V2

g2

k1 f1
g3V3

g3 =

V1
f1 f1 V3

g1V1

g1

(k1 ∗ k1)( f1 f1)
g3V3

g3

Fig. 5 Horizontal composition for the representation

(
(k1, ρ) ◦H (k⊗

1, ρ)
) ◦ (

(k2, ρ) ◦H (k⊗
2, ρ)

)
= ((k1, ρ) ◦ (k2, ρ)) ◦H

(
(k⊗

1, ρ) ◦ (k⊗
2, ρ)

)
,

(31)

whenever left and right sides are well defined. Thus a representation of a categorical
group defines a double category.

Here we will give a cursory description of relation between the representation of
a categorical group and the categorical frame work described in Sect. 2.2. A more in
depth and serious study shall be pursued in [9].

Recall the principal G bundle Π, P, M. Let us consider a category Σ , whose
Object set Obj

(
Σ

) := {TpP|p ≥ P} be the set of all tangent vector spaces on P
and a morphism from TpP to TqP is given by the parallel transport along a path
connecting p to q. Suppose (G, H, τ, α) be a Lie crossed module, as described in
(7)–(8). It can be shown that a Lie crossed module defines a categorical group (see
[1] or Theorem 4.1 [15]). Let us consider the Lie 2-group G para given by the Lie-
crossed module (G, H, τ, α). G para has the object group G and a morphism is given
by the ordered pair (g, h) ≥ G × H, with source being s(g, h) = g ≥ G and the
target being t(g, h) = τ(h)g ≥ G. Suppose R be a representation of the Lie 2-group
G para into Σ as defined in (23). Then according to Proposition 3.1 R defines a
double category. If we compare the Plaquette in Fig. 2 with the diagram in Fig. 3,
we realize that the Plaquette obtained by the parallel transport on the principal G
bundle Π,PĀP,PM can be viewed as a ‘second level’ of morphism given by a
representation of G para on the category Σ. Let us now compare (18) and (19) with
diagrams in (4) and (5) respectively. We readily see that categories Vert and Horz of
Sect. 2.2 can be respectively viewed as (28) and (30) defined by the representation R
of the Lie 2-group G para. It is now obvious that (31) ensures the consistent window
diagram of (20).
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Differential Geometry of Microlinear
Frölicher Spaces IV-1

Hirokazu Nishimura

Abstract The fourth paper of our series of papers entitled “Differential Geometry
of Microlinear Frölicher Spaces” is concerned with jet bundles. We present three
distinct approaches together with transmogrifications of the first into the second and
of the second to the third. The affine bundle theorem and the equivalence of the three
approaches with coordinates are relegated to a subsequent paper.

1 Introduction

As the fourth of our series of papers entitled “Differential Geometry of Microlinear
Frölicher Spaces” [14–16], this paper will discuss jet bundles. Since the paper has
become somewhat too long as a single paper, we have decided to divide it into two
parts. In this first part we will present three distinct approaches to jet bundles in
the general context of Weil exponentiable and microlinear Frölicher spaces. In the
subsequent part [17], we will establish the affine bundle theorem in the second and
the third approaches, and we will show that the three approaches are equivalent, as
far as coordinates are available (i.e., in the classical context).

This part consisits of 7 sections. The first section is this introduction, while
the second section is devoted to some preliminaries. We will present three distinct
approaches to jet bundles in Sects. 3, 4 and 5. In Sect. 6 we will show how to translate
the first approach into the second, while Sect. 7 is devoted to the transmogrification
of the second approach into the third.

We have already discussed these three approaches to jet bundles in the context of
synthetic differential geometry, for which the reader is referred to our previous work
[8–13]. Now we have emancipated them to the real world of Frölicher spaces.
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2 Preliminaries

2.1 Frölicher Spaces

Frölicher and his followers have vigorously and consistently developed a general
theory of smooth spaces, often called Frölicher spaces for his celebrity, which were
intended to be the maximal class of spaces where smooth structures can live. A
Frölicher space is an underlying set endowed with a class of real-valued functions
on it (simply called structure functions) and a class of mappings from the set R
of real numbers to the underlying set (simply called structure curves) subject to
the condition that structure curves and structure functions should compose so as to
yield smooth mappings from R to itself. It is required that the class of structure
functions and that of structure curves should determine each other so that each of
the two classes is maximal with respect to the other as far as they abide by the above
condition. What is most important among many nice properties about the category FS
of Frölicher spaces and smooth mappings is that it is cartesian closed, while neither
the category of finite-dimensional smooth manifolds nor that of infinite-dimensional
smooth manifolds modelled after any infinite-dimensional vector spaces such as
Hilbert spaces, Banach spaces, Fréchet spaces or the like is so at all. For a standard
reference on Frölicher spaces, the reader is referred to [2].

2.2 Weil Algebras and Infinitesimal Objects

2.2.1 The Category of Weil Algebras and the Category of Infinitesimal Objects

The notion of a Weil algebra was introduced by Weil himself in [18]. We denote
by W the category of Weil algebras, which is well known to be left exact. Roughly
speaking, each Weil algebra corresponds to an infinitesimal object in the shade. By
way of example, the Weil algebra R[X ]/(X2) (=the quotient ring of the polynomial
ring R[X ] of an indeterminate X over R modulo the ideal (X2) generated by X2)
corresponds to the infinitesimal object of first-order nilpotent infinitesimals, while
the Weil algebra R[X ]/(X3) corresponds to the infinitesimal object of second-order
nilpotent infinitesimals. Although an infinitesimal object is undoubtedly imaginary
in the real world, as has harassed both mathematicians and philosophers of the 17th
and the 18th centuries such as philosopher Berkley (because mathematicians at that
time preferred to talk infinitesimal objects as if they were real entities), each Weil
algebra yields its corresponding Weil functor or Weil prolongation on the category
of smooth manifolds of some kind to itself, which is no doubt a real entity. By way
of example, the Weil algebra R[X ]/(X2) yields the tangent bundle functor as its
corresponding Weil functor. Intuitively speaking, the Weil functor corresponding to
a Weil algebra stands for the exponentiation by the infinitesimal object corresponding
to the Weil algebra at issue. For Weil functors on the category of finite-dimensional
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smooth manifolds, the reader is referred to §35 of [5], while the reader can find a
readable treatment of Weil functors on the category of smooth manifolds modeled
on convenient vector spaces in §31 of [6]. In [14] we have discussed how to assign,
to each pair (X, W ) of a Frölicher space X and a Weil algebra W , another Frölicher
space X ⊕W called the Weil prolongation Weil prolongation of X with respect to W ,
which is naturally extended to a bifunctor FS × W ≥ FS. And we have shown that,
given a Weil algebra W , the functor assigning X ⊕ W to each object X in FS and
f ⊕ idW to each morphism f in FS, namely, the Weil functor on FS corresponding
to W is product-preserving. The proof can easily be strengthened to

Theorem 2.1 The Weil functor on the category FS corresponding to any Weil alge-
bra is left exact.

There is a canonical projection π : X⊕W ≥ X . Given x ∈ X , we write (X ⊕ W )x
for the inverse image of x under the mapping π . We denote by Sn the symmetric
group of the set {1, ..., n}, which is well known to be generated by n−1 transpositions
⊂i, i + 1⊗ exchanging i and i + 1(1 ≤ i ≤ n − 1) while keeping the other elements
fixed. Given σ ∈ Sn and γ ∈ X ⊕ WDn , we define γ σ ∈ X ⊕ WDn to be

γ σ = (
idX ⊕ W(d1,...,dn)∈Dn �≥(dσ(1),...,dσ(n))∈Dn

)
(γ )

Given α ∈ R and γ ∈ X ⊕WDn , we define α ·
i
γ ∈ γ ∈ X ⊕WDn (1 ≤ i ≤ n) to be

α ·
i
γ = (

idX ⊕ W(d1,...,dn)∈Dn �≥(d1,...,di−1,αdi ,di+1,...,dn)∈Dn
)
(γ )

Given α ∈ R and γ ∈ X ⊕ WDn , we define αγ ∈ X ⊕ WDn (1 ≤ i ≤ n) to be

αγ = (
idX ⊕ Wd∈Dn �≥αd∈Dn

)
(γ )

for any d ∈ Dn . The restriction mapping γ ∈ TDn+1
x (M) �≥ γ |Dn ∈ TDn

x (M) is
often denoted by πn+1,n .

Between X ⊕ WDn and X ⊕ WDn+1 there are 2n+ 2 canonical mappings:

X ⊕ WDn+1
di−−−≥→−−−si

X ⊕ WDn (1 ≤ i ≤ n + 1)

For any γ ∈ X ⊕ WDn , we define si (γ ) ∈ X ⊕ WDn+1 to be

si (γ ) =
(

idX ⊕ W(d1,...,dn+1)∈Dn+1 �≥(d1,...,di−1,di+1,...,dn+1)∈Dn

)
(γ )

For any γ ∈ X ⊕ WDn+1 , we define di (γ ) ∈ X ⊕ WDn to be

di (γ ) =
(

idX ⊕ W(d1,...,dn)∈Dn �≥(d1,...,di−1,0,di ,...,dn)∈Dn+1

)
(γ )
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These operations satisfy the so-called simplicial identities (cf. Goerss and Jardine
[3]), so that the family of X ⊕ WDn ’s together with mappings si ’s and di ’s form a
so-called simplicial set.

Synthetic differential geometry (usually abbreviated to SDG), which is a kind
of differential geometry with a cornucopia of nilpotent infinitesimals, was forced
to invent its models, in which nilpotent infinitesimals were visible. For a standard
textbook on SDG, the reader is referred to [7], while he or she is referred to [4] for
the model theory of SDG constructed vigorously by Dubuc [1] and others. Although
we do not get involved in SDG herein, we will exploit locutions in terms of infini-
tesimal objects so as to make the paper highly readable. Thus we prefer to write WD

and WD2 in place of R[X ]/(X2) and R[X ]/(X3) respectively, where D stands for
the infinitesimal object of first-order nilpotent infinitesimals, and D2 stands for the
infinitesimal object of second-order nilpotent infinitesimals. To Newton and Leibniz,
D stood for

{d ∈ R | d2 = 0}

while D2 stood for
{d ∈ R | d3 = 0}

More generally, given a natural number n, we denote by Dn the set

{d ∈ R|dn+1 = 0},

which stands for the infinitesimal object corresponding to the Weil algebra R[X ]/
(Xn+1). Even more generally, given natural numbers m, n, we denote by D(m)n the
infinitesimal object

{(d1, ..., dm) ∈ R
m |di1 ...din+1 = 0},

where i1, ..., in+1 shall range over natural numbers between 1 and m including both
ends. It corresponds to the Weil algebra R[X1, ..., Xm]/I , where I is the ideal gen-
erated by Xi1 ...Xin+1 ’s. Therefore we have

D(1)n = Dn

D (m)1 = D (m)

Trivially we have

D(m)n ∞ D(m)n+1

It is easy to see that

D(m1)n × D(m2)1 ∞ D(m1 + m2)n+1

D(m1 + m2)n ∞ D(m1)n × D(m2)n
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By convention, we have
D0 = D0 = {0} = 1

A polynomial ρ of d ∈ Dn is called a simple polynomial of d ∈ Dn if every
coefficient of ρ is either 1 or 0, and if the constant term is 0. A simple polynomial ρ

of d ∈ Dn is said to be of dimension m, in notation dim(ρ) = m, provided that m is
the least integer with ρm+1 = 0. By way of example, letting d ∈ D3, we have

dim (d) = dim (d + d2) = dim (d + d3) = 3

dim (d2) = dim (d3) = dim (d2 + d3) = 1

We will write Wd∈D2 �≥d2∈D for the homomorphism of Weil algebras R[X ]/(X2)

≥ R[X ]/(X3) induced by the homomorphism X ≥ X2 of the polynomial ring
R[X ] to itself. Such locutions are justifiable, because the category W of Weil algebras
in the real world and the category D of infinitesimal objects in the shade are dual to
each other in a sense. Thus we have a contravariant functor W from the category of
infinitesimal objects in the shade to the category of Weil algebras in the real world.
Its inverse contravariant functor from the category of Weil algebras in the real world
to the category of infinitesimal objects in the shade is denoted by D . By way of
example, DR[X ]/(X2) and DR[X ]/(X3) stand for D and D2, respectively. Since the
category W is left exact, the category D is right exact, in which we write D ∪ D

↔ for
the coproduct of infinitesimal objects D and D

↔. For any two infinitesimal objects
D,D↔ with D ∞ D

↔, we write i or iD≥D↔ for its natural injection of D into D
↔. We

write m or mDn×Dm≥Dn for the mapping
(
d, d ↔) ∈ Dn × Dm �≥ dd ↔ ∈ Dn . Given

α ∈ R, we write

(
α·

i

)
Dn

for the mapping

(d1, ..., dn) ∈ Dn �≥ (d1, ...di−1, αdi , di+1, ..., dn) ∈ Dn

To familiarize himself or herself with such locutions, the reader is strongly encour-
aged to read the first two chapters of [7], even if he or she is not interested in SDG
at all.

2.2.2 Simplicial Infinitesimal Objects

Definition 2.1 1. Simplicial infinitesimal spaces are objects of the form

D {m;S } = {(d1, ..., dm) ∈ Dm |di1 ...dik = 0 for any (i1, ..., ik) ∈ S },

where S is a finite set of sequences (i1, ..., ik) of natural numbers with 1 ≤
i1 < · · · < ik ≤ m.

2. A simplicial infinitesimal object D {m;S } is said to be symmetric if (d1, ..., dm)

∈ D {m;S } and σ ∈ Sm always imply (dσ(1), ..., dσ(m)) ∈ D {m;S }.
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To give examples of simplicial infinitesimal spaces, we have

D(2) = D {2; (1, 2)}
D(3) = D {3; (1, 2), (1, 3), (2, 3)} ,

which are all symmetric.

Definition 2.2 1. The number m is called the degree of D {m;S }, in notation:
m = deg D {m;S }.

2. The maximum number n such that there exists a sequence (i1, ..., in) of natural
numbers of length n with 1 ≤ i1 < · · · < in ≤ m containing no subsequence in
S is called the dimension of D {m;S }, in notation: n = dim D {m;S }.

By way of example, we have

deg D(3) = deg D {3; (1, 2)} = deg D {3; (1, 2), (1, 3)} = deg D3 = 3

dim D(3) = 1

dim D {3; (1, 2)} = dim D {3; (1, 2), (1, 3)} = 2

dim D3 = 3

It is easy to see that

Proposition 2.1 if n = dim D {m;S }, then

d1 + · · · + dm ∈ Dn

for any (d1, ..., dm) ∈ D {m;S }, so that we have the mapping

+D{m;S }≥Dn
: D {m;S } ≥ Dn

Definition 2.3 Infinitesimal objects of the form Dm are called basic infinitesimal
objects.

Definition 2.4 Given two simplicial infinitesimal objects D {m;S } and
D

{
m↔;S ↔}, a mapping

ϕ = (ϕ1, ..., ϕm↔) : D {m;S } ≥ D
{
m↔;S ↔}

is called a monomial mapping if every ϕ j is a monomial in d1, ..., dm with
coefficient 1.

Notation 2.2 We denote by D {m}n the infinitesimal object

{(d1, ..., dm) ∈ Dm |di1 ...din+1 = 0},

where i1, ..., in+1 shall range over natural numbers between 1 and m including both
ends.
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2.2.3 Quasi-Colimit Diagrams

Definition 2.5 A diagram in the category D is called a quasi-colimit diagram if its
dually corresponding diagram in the category W is a limit diagram.

Theorem 2.3 (The Fundamental Theorem on Simplicial Infinitesimal Objects) Any
simplicial infinitesimal objectD of dimension n is the quasi-colimit of a finite diagram
whose objects are of the form Dk’s (0 ≤ k ≤ n) and whose arrows are natural
injections.

Proof Let D = D(m;S ). For any maximal sequence 1 ≤ i1 < · · · < ik ≤ m of
natural numbers containing no subsequence in S (maximal in the sense that it is
not a proper subsequence of such a sequence), we have a natural injection of Dk

into D. By collecting all such Dk’s together with their natural injections into D, we
have an overlapping representation of D in terms of basic infinitesimal spaces. This
representation is completed into a quasi-colimit representation of D by taking Dl

together with its natural injections into Dk1 and Dk2 for any two basic infinitesimal
spaces Dk1 and Dk2 in the overlapping representation of D, where if Dk1 and Dk2

come from the sequences 1 ≤ i1 < · · · < ik1 ≤ m and 1 ≤ i1 < · · · < i k2 ≤ m
in the above manner, then Dl together with its natural injections into Dk1 and Dk2

comes from the maximal common subsequence 1 ≤ ĩ1 < · · · < ĩl ≤ m of both the
preceding sequences of natural numbers in the above manner. By way of example,
the above method leads to the following quasi-colimit representation of D=D {3}2:

D2

i1 ↗ ∗ i2
D ≤ i12 D

i1 ≤ D(3)2 ≤ i1

D2 i13 ↗ ∗ i23 D2

i2 ∗ ↗ i2
D

In the above representation i jk’s and i j ’s are as follows:

1. the j-th and k-th components of i jk(d1, d2) ∈ D(3)2 are d1 and d2, respectively,
while the remaining component is 0;

2. the j-th component of i j (d) ∈ D2 is d, while the other component is 0.

Definition 2.6 The quasi-colimit representation of D depicted in the proof of the
above theorem is called standard.

Remark 2.1 Generally speaking, there are multiple ways of quasi-colimit represen-
tation of a given simplicial infinitesimal space. By way of example, two quasi-colimit
representations of D {3; (1, 3), (2, 3)} (= (D×D)∪D) were given in Lavendhomme
[7, pp. 92–93] (§3.4, pp. 92–93), only the second one being standard.
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2.3 Weil-Exponentiability and Microlinearity

2.3.1 Weil-Exponentiability

We have no reason to hold that all Frölicher spaces credit Weil prolongations as
exponentiations by infinitesimal objects in the shade. Therefore we need a notion
which distinguishes Frölicher spaces that do so from those that do not.

Definition 2.7 A Frölicher space X is called Weil exponentiable if

(X ⊕ (W1 ⊕⊥ W2))
Y = (X ⊕ W1)

Y ⊕ W2 (1)

holds naturally for any Frölicher space Y and any Weil algebras W1 and W2.

If Y = 1, then (1) degenerates into

X ⊕ (W1 ⊕⊥ W2) = (X ⊕ W1) ⊕ W2

If W1 = R, then (1) degenerates into

(X ⊕ W2)
Y = XY ⊕ W2

The following three propositions have been established in our previous paper [14].

Proposition 2.2 Convenient vector spaces are Weil exponentiable.

Corollary 2.1 C⊥-manifolds in the sense of [6] (cf. Section 27) are Weil exponen-
tiable.

Proposition 2.3 If X is a Weil exponentiable Frölicher space, then so is X ⊕ W for
any Weil algebra W .

Proposition 2.4 If X and Y are Weil exponentiable Frölicher spaces, then so is
X × Y .

The last proposition can be strengthened to

Proposition 2.5 The limit of a diagram in FS whose objects are all Weil-
exponentiable is also Weil-exponentiable.

Proof Let Γ be a diagram in FS. Given a Weil algebra W , we write Γ ⊕ W for the
diagram obtained from Γ by putting ⊕W to the right of every object in Γ and ⊕idW

to the right of every morphism in Γ .We have
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((Lim Γ ) ⊕ (W1 ⊕⊥ W2))
Y

= (Lim (Γ ⊕ (W1 ⊕⊥ W2)))
Y

= Lim (Γ ⊕ (W1 ⊕⊥ W2))
Y

= Lim
(
(Γ ⊕ W1)

Y ⊕ W2

)

=
(

Lim (Γ ⊕ W1)
Y
)

⊕ W2

= (Lim (Γ ⊕ W1))
Y ⊕ W2

= ((Lim Γ ) ⊕ W1)
Y ⊕ W2

so that we have the coveted result.

We have already established the following proposition and theorem in in our
previous paper [14].

Proposition 2.6 If X is a Weil exponentiable Frölicher space, then so is XY for any
Frölicher space Y .

Theorem 2.4 Weil exponentiable Frölicher spaces, together with smooth mappings
among them, form a Cartesian closed subcategory FSWE of the category FS.

2.3.2 Microlinearity

The central object of study in SDG is microlinear spaces. Although the notion of a
manifold (=a pasting of copies of a certain linear space) is defined on the local level,
the notion of microlinearity is defined on the genuinely infinitesimal level. For the
historical account of microlinearity, the reader is referred to §§2.4 of [7] or Appendix
D of [4]. To get an adequately restricted cartesian closed subcategory of Frölicher
spaces, we have emancipated microlinearity from within a well-adapted model of
SDG to Frölicher spaces in the real world in [15]. Recall that

Definition 2.8 A Frölicher space X is called microlinear providing that any finite
limit diagram Γ in W yields a limit diagram X ⊕Γ in FS, where X ⊕Γ is obtained
from Γ by putting X⊕ to the left of every object in Γ and idX⊕ to the left of every
morphism in Γ .

Generally speaking, limits in the category FS are bamboozling. The notion of
limit in FS should be elaborated geometrically.

Definition 2.9 A finite cone Γ in FS is called a transversal limit diagram providing
that Γ ⊕ W is a limit diagram in FS for any Weil algebra W , where the diagram
Γ ⊕ W is obtained from Γ by putting ⊕W to the right of every object in Γ and
⊕idW to the right of every morphism in Γ . The limit of a finite diagram of Frölicher
spaces is said to be transversal providing that its limit diagram is a transversal limit
diagram.
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Remark 2.2 By taking W = R, we see that a transversal limit diagram in FS is
always a limit diagram in FS.

We have already established the following two propositions in [15].

Proposition 2.7 If Γ is a transversal limit diagram in FS whose objects are all Weil
exponentiable, then Γ X is also a transversal limit diagram for any Frölicher space
X, where Γ X is obtained from Γ by putting X as the exponential over every object
in Γ and over every morphism in Γ .

Proposition 2.8 If Γ is a transversal limit diagram in FS whose objects are all Weil
exponentiable, then Γ ⊕ W is also a transversal limit diagram for any Weil algebra
W .

The following results have been established in [15].

Proposition 2.9 Convenient vector spaces are microlinear.

Corollary 2.2 C⊥-manifolds in the sense of [6] (cf. Section 27) are microlinear.

Proposition 2.10 If X is a Weil exponentiable and microlinear Frölicher space, then
so is X ⊕ W for any Weil algebra W .

Proposition 2.11 The class of microlinear Frölicher spaces is closed under transver-
sal limits.

Corollary 2.3 Direct products are transversal limits, so that if X and Y are micro-
linear Frölicher spaces, then so is X × Y .

Proposition 2.12 If X is a Weil exponentiable and microlinear Frölicher space, then
so is XY for any Frölicher space Y .

Proposition 2.13 If a Weil exponentiable Frölicher space X is microlinear, then any
finite limit diagram Γ in W yields a transversal limit diagram X ⊕ Γ in FS.

Theorem 2.5 Weil exponentiable and microlinear Frölicher spaces, together with
smooth mappings among them, form a cartesian closed subcategory FSWE,ML of the
category FS.

2.4 Convention

Unless stated to the contrary, every Frölicher space occurring in the sequel is assumed
to be microlinear and Weil exponentiable. We will fix a smooth mapping π : E ≥ M
arbitrarily. In this paper we will naively speak of bundles simply as smooth mappings
of microlinear and Weil exponentiable Frölicher spaces, for which we will develop
three theories of jet bundles. We say that t ∈ M ⊕ WD is degenerate providing that
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t = (
i{x}≥M ⊕ idWD

) (
t ↔
)

for some x ∈ M and some t ↔ ∈ {x} ⊕ WD . We say that t ∈ E ⊕ WD is vertical
provided that

(
π ⊕ idWD

)
(t) is degenerate. We write (E ⊕ WD)∀ for the totality of

vertical t ∈ E ⊕ WD .

3 The First Approach to Jets

Definition 3.1 A 1-tangential over the bundle π : E ≥ M at x ∈ E is a mapping
∩x : (M ⊕ WD)π(x) ≥ (E ⊕ WD)x subject to the following three conditions:

1. We have (
π ⊕ idWD

)
(∩x (t)) = t

for any t ∈ (M ⊕ WD)π(x).
2. We have

∩x (αt) = α∩x (t)

for any t ∈ (M ⊕ WD)π(x) and any α ∈ R.
3. The diagram

(M ⊕ WD)π(x) idM ⊕ W(d,e)∈D×Dm �≥ed∈D−−−−−−−−−−−−−−−−−−≥ (M ⊕ WD)π(x) ⊕ WDm

∩x ≤ ≤ ∩x ⊕ idWDm

(E ⊕ WD)x
−−−−−−−−−−−−−−−−−−≥
idE ⊕ W(d,e)∈D×Dm �≥ed∈D (E ⊕ WD)x ⊕ WDm

is commutative, where m is an arbitrary natural number.

We note in passing that condition (1.2) implies that ∩x is linear by dint of Propo-
sition 10 in §1.2 of [7].

Notation 3.1 We denote by J1
x (π) the totality of 1-tangentials ∩x over the bundle

π : E ≥ M at x ∈ E. We denote by J1(π) the set-theoretic union of J1
x (π)’s for all

x ∈ E. The canonical projection J1(π) ≥ E is denoted by π1,0 with

π1 = (
π ⊕ idWD

) ◦ π1,0.

Definition 3.2 Let F be a morphism of bundles over M from π to π ↔ over the same
base space M . We say that a 1 -tangential ∩x over π at a point x of E is F-related
to a 1-tangential ∩F(x) over π ↔ at F(x) of E ↔ provided that

(
F ⊕ idWD

)
(∩x (t)) = ∩F(x)(t)

for any t ∈ (M ⊕ WD)π(x).
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Notation 3.2 By convention, we let

J̃0(π) = Ĵ0(π) = J0(π) = E

with
π̃0,0 = π̂0,0 = π0,0 = idE

and
π̃0 = π̂0 = π0 = π

We let
J̃1(π) = Ĵ1(π) = J1(π)

with
π̃1,0 = π̂1,0 = π1,0

and
π̃1 = π̂1 = π1

Notation 3.3 Now we are going to define J̃k+1(π), Ĵk+1(π) and Jk+1(π) together
with mappings π̃k+1,k: J̃k+1(π) ≥ J̃k(π), π̂k+1,k: Ĵk+1(π) ≥ Ĵk(π) and πk+1,k:
Jk+1(π) ≥ Jk(π) by induction on k ◦ 1. Intuitively speaking, these are intended for
non-holonomic, semi-holonomic and holonomic jet bundles in order. We let π̃k+1 =
π̃k ◦ π̃k+1,k , π̂k+1 = π̂k ◦ π̂k+1,k and πk+1 = πk ◦ πk+1,k .

1. First we deal with J̃k+1(π), which is defined to be J1(π̃k) with π̃k+1,k = (π̃k)1,0.
2. Next we deal with Ĵk+1(π), which is defined to be the subspace of J1(π̂k) con-

sisting of ∩x ’s with x = ∩y ∈ Ĵk(π) abiding by the condition that ∩x is π̂k,k−1-
related to ∩y .

3. Finally we deal with Jk+1(π), which is defined to be the subspace of J1(πk)

consisting of ∩x ’s with x = ∩y ∈ Jk(π) abiding by the conditions that ∩x is
πk,k−1-related to ∩y and that the composition of mappings

(
M ⊕ WD2

)
πk (x)〈

idM ⊕ Wd∈D �≥(d,0)∈D2 , idM ⊕ W(d1.d2)∈D2 �≥(d2.d1)∈D2
〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(
(M ⊕ WD) ×M⊕WD

(
M ⊕ WD2

))
πk (x)

∩x × idM⊕WD2−−−−−−−−−−≥((
Jk(π) ⊕ WD

)
×M⊕WD

(
M ⊕ WD2

))
πk (x)

=
((

Jk(π) ⊕ WD

)
×M⊕WD ((M ⊕ WD) ⊕ WD)

)
πk (x)

=
((

Jk(π) ×M (M ⊕ WD)
)

⊕ WD

)
πk (x)
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(
(∩, t) ∈ Jk(π) ×M (M ⊕ WD) �≥ ∩ (t) ∈

(
Jk−1(π) ⊕ WD

))
⊕ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(

Jk−1(π) ⊕ WD

)
⊕ WD

= Jk−1(π) ⊕ WD2

is equal to the composition of mappings

(
M ⊕ WD2

)
πk (x)〈

idM ⊕ Wd∈D �≥(0,d)∈D2 , idM⊕WD2

〉
−−−−−−−−−−−−−−−−−−−−−−−−≥(
(M ⊕ WD) ×M⊕WD

(
M ⊕ WD2

))
πk (x)

∩x × idM⊕WD2−−−−−−−−−−≥((
Jk(π) ⊕ WD

)
×M⊕WD

(
M ⊕ WD2

))
πk (x)

=
((

Jk(π) ⊕ WD

)
×M⊕WD ((M ⊕ WD) ⊕ WD)

)
πk (x)

=
((

Jk(π) ×M (M ⊕ WD)
)

⊕ WD

)
πk (x)(

(∩, t) ∈ Jk(π) ×M (M ⊕ WD) �≥ ∩ (t) ∈
(

Jk−1(π) ⊕ WD

))
⊕ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(

Jk−1(π) ⊕ WD

)
⊕ WD

= Jk−1(π) ⊕ WD2

idJk−1(π) ⊕ W(d1,d2)∈D2 �≥(d2,d1)∈D2−−−−−−−−−−−−−−−−−−−−−−−≥
Jk−1(π) ⊕ WD2

Definition 3.3 Elements of J̃n(π) are called n-subtangentials, while elements of
Ĵn(π) are called n-quasitangentials. Elements of Jn(π) are called n-tangentials.

4 The Second Approach to Jets

Definition 4.1 Let n be a natural number. A Dn-pseudotangential over the bundle
π : E ≥ M at x ∈ E is a mapping ∩x : (M ⊕ WDn )π(x) ≥ (E ⊕ WDn )x abiding by
the following conditions:

1. We have (
π ⊕ idWDn

)
(∩x (γ )) = γ

for any γ ∈ (M ⊕ WDn )π(x).
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2. We have
∩x (α ·

i
γ ) = α ·

i
∩x (γ ) (1 ≤ i ≤ n)

for any γ ∈ (M ⊕ WDn )π(x) and any α ∈ R.
3. The diagram

(M ⊕ WDn )π(x) ≥ (M ⊕ WDn )π(x) ⊕ WDm

∩x ≤ ≤ ∩x ⊕ idWDm

(E ⊕ WDn )x ≥ (E ⊕ WDn )x ⊕ WDm

is commutative, where m is an arbitrary natural number, the upper horizontal
arrow is

idM ⊕ W(d1,...,dn ,e)∈Dn×Dm �≥(d1,...,di−1,edi ,di+1,...dn)∈Dn ,

and the lower horizontal arrow is

idE ⊕ W(d1,...,dn ,e)∈Dn×Dm �≥(d1,...,di−1,edi ,di+1,...dn)∈Dn .

4. We have
∩x (γ

σ ) = (∩x (γ ))σ

for any γ ∈ (M ⊕ WDn )π(x) and for any σ ∈ Sn .

Remark 4.1 The third condition in the above definition claims what is called infini-
tesimal multilinearity, while the second claims what is authentic multilinearity.

Notation 4.1 We denote by Ĵ
Dn

x (π) the totality of Dn-pseudotangentials ∩x over
the bundle π : E ≥ M at x ∈ E. We denote by Ĵ

Dn
(π) the set-theoretic union of

Ĵ
Dn

x (π)’s for all x ∈ E. In particular, ĴD0
(π) = E by convention.

Lemma 4.1 The diagram

E ⊕ WDn

idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥ E ⊕ WDn+1

idE⊕WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−≥−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dn ,0)∈Dn+1

E ⊕ WDn+1

is an equalizer.

Proof It is well known that the diagram

WDn

W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥WDn+1

idWDn+1−−−−−−−−−−−−−−−−−−−−−−≥−−−−−−−−−−−−−−−−−−−−−−−−−−≥
W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dn ,0)∈Dn+1

WDn+1

is an equalizer in the category of Weil algebras, so that the desired result follows
from the microlinearity of E .
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Corollary 4.1 γ ∈ E ⊕ WDn+1 is in the equalizer of

E ⊕ WDn+1

idE⊕WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−≥−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dn ,0)∈Dn+1

E ⊕ WDn+1

iff
γ = (sn+1 ◦ dn+1) (γ )

Proof This follows simply from

sn+1 ◦ dn+1 = idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dn ,0)∈Dn+1

Proposition 4.1 Let ∩x be a Dn+1-pseudotangential over the bundle π : E ≥ M
at x ∈ E. Let γ ∈ (M ⊕ WDn )π(x). Then we have

∩x (sn+1(γ )) =
(

idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dn ,0)∈Dn+1

)
(∩x (sn+1(γ )))

so that

∩x (sn+1(γ )) = (sn+1 ◦ dn+1) (∩x (sn+1(γ )))

Proof For any α ∈ R, we have

α ·
n+1

(∩x (sn+1(γ )))

= ∩x (α ·
n+1

(sn+1(γ )))

= ∩x (sn+1(γ ))

Therefore we have the desired result by letting α = 0 in the above calculation.

Corollary 4.2 The assignment

γ ∈ (M ⊕ WDn )π(x) �−≥ dn+1 (∩x (sn+1(γ ))) ∈ (E ⊕ WDn )x

is an n-pseudotangential over the bundle π : E ≥ M at x.

Notation 4.2 By this Corollary, we have canonical projections π̂n+1,n: ĴDn+1
(π) ≥

Ĵ
Dn

(π). By assigning π(x) ∈ M to each n-pseudotangential ∩x over the bundle π :
E ≥ M at x ∈ E, we have the canonical projections π̂n : ĴDn

(π) ≥ M. Note that
π̂n ◦ π̂n+1,n = π̂n+1 For any natural numbers n, m with m ≤ n, we define π̂n,m:
Ĵ

Dn
(π) ≥ Ĵ

Dm
(π) to be π̂m+1,m ◦ ... ◦ π̂n,n−1.

Now we are going to show that
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Proposition 4.2 Let ∩x ∈ Ĵ
Dn+1

(π). Then the following diagrams are commutative:

(
M ⊕ WDn+1

)
π(x)

∩x−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x

si ⇔ ⇔ si

(M ⊕ WDn )π(x)

−−−−−−−−−−−−−≥
π̂n+1,n(∩x ) (E ⊕ WDn )x(

M ⊕ WDn+1
)
π(x)

∩x−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x

di ≤ ≤ di

(M ⊕ WDn )π(x)

−−−−−−−−−−−−−≥
π̂n+1,n(∩x ) (E ⊕ WDn )x

Proof By the very definition of π̂n+1,n , we have

sn+1(π̂n+1(∩x )(γ )) = ∩x (sn+1(γ ))

for any γ ∈ (M ⊕ WDn )π(x). For i ∧= n + 1, we have

si (π̂n+1,n(∩x )(γ ))

=
((

sn+1(π̂n+1,n(∩x )(γ ))
)⊂i,n+1⊗)⊂i+1,i+2,...,n,n+1⊗

=
(
(∩x (sn+1(γ )))⊂i,n+1⊗)⊂i+1,i+2,...,n,n+1⊗

=
(
∩x

(
(sn+1(γ ))⊂i,n+1⊗))⊂i+1,i+2,...,n,n+1⊗

= ∩x

((
(sn+1(γ ))⊂i,n+1⊗)⊂i+1,i+2,...,n,n+1⊗)

= ∩x (si (γ ))

Now we are going to show that

di (∩x (γ )) = (π̂n+1,n(∩x ))(di (γ ))

for any γ ∈ (
M ⊕ WDn+1

)
π(x)

. First we deal with the case of i = n + 1. We have

dn+1(∩x (γ ))

= dn+1(0 ·
n+1

∩x (γ ))

= dn+1(∩x (0 ·
n+1

γ ))

= dn+1(∩x (sn+1(dn+1(γ ))))

= (π̂n+1,n(∩x ))(dn+1(γ ))

For i ∧= n + 1, we have
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di (∩x (γ ))

=
(

dn+1

(
(∩x (γ ))⊂i,n+1⊗))⊂n,n−1,...,i+1,i⊗

=
(

dn+1(∩x (γ
⊂i,n+1⊗))

)⊂n,n−1,...,i+1,i⊗

= (((π̂n+1,n(∩x ))
(

dn+1(γ
⊂i,n+1⊗))

)⊂n,n−1,...,i+1,i⊗

= (π̂n+1,n(∩x ))

((
dn+1(γ

⊂i,n+1⊗)
)⊂n,n−1,...,i+1,i⊗)

= (π̂n+1,n(∩x )) (di (γ ))

Thus we are done through.

Corollary 4.3 Let ∩+
x , ∩−

x ∈ Ĵ
Dn+1

(π) with

π̂n+1,n(∩+
x ) = π̂n+1,n(∩−

x )

Then
(

idE ⊕ WiD{n+1}n≥Dn+1

) (∩+
x (γ )

) =
(

idE ⊕ WiD{n+1}n≥Dn+1

) (∩−
x (γ )

)

for any γ ∈ (
M ⊕ WDn+1

)
π(x)

.

Definition 4.2 The notion of a Dn-tangential over the bundle π : E ≥ M at x is
defined by induction on n. The notion of a D-tangential over the bundle π : E ≥ M
at x shall be identical with that of a D-pseudotangential over the bundle π : E ≥ M
at x . Now we proceed inductively. A Dn+1-pseudotangential

∩x : (
M ⊕ WDn+1

)
π(x)

≥ (
E ⊕ WDn+1

)
x

over the bundle π : E ≥ M at x ∈ E is called a Dn+1-tangential over the bundle π :
E ≥ M at x if it acquiesces in the following two conditions:

1. π̂n+1,n(∩x ) is a Dn-tangential over the bundle π : E ≥ M at x .
2. For any γ ∈ (M ⊕ WDn )π(x), we have

∩x

((
idM ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn

)
(γ )

)

=
(

idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn+1

) ((
π̂n+1,n(∩x )

)
(γ )

)

Notation 4.3 We denote by JDn

x (π) the totality of Dn-tangentials ∩x over the bundle
π : E ≥ M at x ∈ E. We denote by J

Dn
(π) the set-theoretic union of JDn

x (π)’s for

all x ∈ E. In particular, JD0
(π) = Ĵ

D0
(π) = E by convention and J

D(π) =
Ĵ

D(π) by definition. By the very definition of Dn-tangential, the projections π̂n+1,n:



410 H. Nishimura

Ĵ
Dn+1

(π) ≥ Ĵ
Dn

(π) are naturally restricted to mappings πn+1,n: J
Dn+1

(π) ≥
J

Dn
(π). Similarly for πn: JDn

(π) ≥ M and πn,m: JDn
(π) ≥ J

Dm
(π) with m ≤ n.

It is easy to see that

Proposition 4.3 Let m, n be natural numbers with m ≤ n. Let k1, ..., km be positive
integers with k1 + · · · + km = n. For any ∩x ∈ J

Dn
(π), any γ ∈ (M ⊕ WDm )π(x)

and any σ ∈ Sn, we have

∩x

((
idM ⊕ W

(d1,...,dn)∈Dn �≥
(

dσ(1)...dσ(k1),dσ(k1+1)...dσ(k1+k2),...,dσ(k1+...+km−1+1)...dσ(n)

)
)

(γ )

)

=
(

idE ⊕ W
(d1,...,dn)∈Dn �≥

(
dσ(1)...dσ(k1),dσ(k1+1)...dσ(k1+k2),...,dσ(k1+...+km−1+1)...dσ(n)

)
)

((
πn,m(∩x )

)
(γ )

)

Interestingly enough, any Dn-pseudotangential naturally gives rise to what might
be called aD-pseudotangential for any simplicial infinitesimal space D of dimension
less than or equal to n.

Theorem 4.4 Let n be a natural number. Let D be a simplicial infinitesimal space of
dimension less than or equal to n. Any Dn-pseudotangential ∩x over the bundle π :
E ≥ M at x ∈ E naturally induces a mapping ∩D

x : (M ⊕ WD)π(x) ≥ (E ⊕ WD)x
abiding by the following three conditions:

1. We have (
π ⊕ idWD

) (
∩D

x (γ )
)

= γ

for any γ ∈ (M ⊕ WD)π(x).
2. We have

∩D
x (α ·

i
γ ) = α ·

i

(
∩D

x (γ )
)

for any α ∈ R and any γ ∈ (M ⊕ WD)π(x), where i is a natural number with
1 ≤ i ≤ degD.

3. The diagram
(M ⊕ WD)π(x) ≥ (M ⊕ WD)π(x) ⊕ WDm

∩x ≤ ≤ ∩x ⊕ idWDm

(E ⊕ WD)x ≥ (E ⊕ WD)x ⊕ WDm

is commutative, where m is an arbitrary natural number, the upper horizontal
arrow is

idM ⊕ W(d1,...,dk ,e)∈D×Dm �≥(d1,...,di−1,edi ,di+1,...dk )∈D,

and the lower horizontal arrow is

idE ⊕ W(d1,...,dk ,e)∈D×Dm �≥(d1,...,di−1,edi ,di+1,...dk )∈D
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with k = degD and 1 ≤ i ≤ k.

If the simplicial infinitesimal space D is symmetric, the induced mapping ∩D
x :

(M ⊕ WD)π(x) ≥ (E ⊕ WD)x acquiesces in the following condition of symmetry
besides the above ones:

• We have
∩D

x (γ σ ) = (∩D
x (γ ))σ

for any σ ∈ Sk and any γ ∈ (M ⊕ WD)π(x).

Proof For the sake of simplicity in description, we deal, by way of example, with the
case that n = 3 and D = D {3}2, for which the standard quasi-colimit representation
was given in the proof of Theorem 2.3. Therefore, giving γ ∈ (

M ⊕ WD{3}2

)
π(x)

is equivalent to giving γ12, γ13, γ23 ∈ (
M ⊕ WD2

)
π(x)

with d2(γ12) = d2(γ13),
d1(γ12) = d2(γ23) and d1(γ13) = d1(γ23). By Proposition 4.2, we have

d2(π̂3,2 (∩x ) (γ12)) = π̂3,2 (∩x ) (d2(γ12)) = π̂3,2 (∩x ) (d2(γ13)) = d2(π̂3,2 (∩x ) (γ13))

d1(π̂3,2 (∩x ) (γ12)) = π̂3,2 (∩x ) (d1(γ12)) = π̂3,2 (∩x ) (d2(γ23)) = d2(π̂3,2 (∩x ) (γ23))

d1(π̂3,2 (∩x ) (γ13)) = π̂3,2 (∩x ) (d1(γ13)) = π̂3,2 (∩x ) (d1(γ23)) = d1(π̂3,2 (∩x ) (γ23)),

which determines a unique ∩D{3}2
x (γ ) ∈ (

E ⊕ WD{3}2

)
x with

d1(∩D{3}2
x (γ )) = π̂3,2 (∩x ) (γ23)

d2(∩D{3}2
x (γ )) = π̂3,2 (∩x ) (γ13)

d3(∩D{3}2
x (γ )) = π̂3,2 (∩x ) (γ12).

The proof that ∩D{3}2
x :

(
M ⊕ WD{3}2

)
π(x)

≥ (
E ⊕ WD{3}2

)
x acquiesces in the

desired four properties is safely left to the reader.

Remark 4.2 The reader should note that the induced mapping ∩D
x is defined in terms

of the standard quasi-colimit representation of D. The concluding corollary of this
subsection will show that the induced mapping ∩D

x is independent of our choice of
a quasi-colimit representation of D to a large extent, whether it is standard or not, as
long as ∩ is not only a Dn-pseudotangential but also a Dn-tangential. We note in
passing that π̂n,m(∩) with m ≤ n is no other than ∩Dm

x .

Proposition 4.4 Let π ↔: P ≥ E be another bundle with x ∈ P. If ∩π ↔(x) is a n-
tangential2 over the bundle π : E ≥ M at π ↔(x) ∈ E and ∩x is a n-tangential2
over the bundle π ↔: P ≥ E at x ∈ E, then the composition ∩x ◦ ∩π ↔(x) is a n-
tangential2 over the bundle π ◦ π ↔: P ≥ M at x ∈ E, and πn,n−1(∩x ◦ ∩π ↔(x)) =
πn,n−1(∩x ) ◦ πn,n−1(∩π ↔(x)) provided that n ◦ 1.

Proof In case of n = 0, there is nothing to prove. It is easy to see that if ∩π ↔(x) is
a n-tangential2 over the bundle π : E ≥ M at π ↔(x) ∈ E and ∩x is a n-tangential2
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over the bundle π ↔: P ≥ E at x ∈ E , then the composition ∩x ◦ ∩π ↔(x) is an
n-pseudoconnection over the bundle π : E ≥ M at x ∈ P . If ∩π ↔(x) is a (n + 1)-
tangential2 over the bundle π : E ≥ M at π ↔(x) ∈ E and ∩x is a (n + 1)-tangential2
over the bundle π ↔: P ≥ E at x ∈ P , then we have

πn+1,n(∩x ◦ ∩π ↔(x)) = dn+1 ◦ ∩x ◦ ∩π ↔(x) ◦ sn+1

= dn+1 ◦ ∩x ◦ sn+1 ◦ dn+1 ◦ ∩π ↔(x) ◦ sn+1

[By Proposition 4.1]

= πn+1,n(∩x ) ◦ πn+1,n(∩π ↔(x))

Therefore we have

∩x ◦ ∩π ↔(x)(
(
idM ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn

)
(γ ))

= ∩x
(∩π ↔(x)

((
idM ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn

)
(γ )

))
= ∩x

((
idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn

) (
πn+1,n(∩π ↔(x))(γ )

))
= (

idP ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn

) (
πn+1,n (∩x )

(
πn+1,n(∩π ↔(x))(γ )

))
= (

idP ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn

) (
πn+1,n(∩x ◦ ∩π ↔(x))

)

Thus we can prove by induction on n that if ∩π ↔(x) is a n-tangential2 over the bundle
π : E ≥ M at π ↔(x) ∈ E and ∩x is a n-tangential2 over the bundle π ↔: P ≥ E at
x ∈ E , then the composition ∩x ◦ ∩π ↔(x) is a n-tangential2 over the bundle π ◦ π ↔:
P ≥ M at x ∈ E .

Theorem 4.5 Let ∩ be a Dn-tangential over the bundle π : E ≥ M at x ∈ E. Let
D and D

↔ be simplicial infinitesimal spaces of dimension less than or equal to n. Let
χ be a monomial mapping from D to D

↔. Let γ ∈ TD↔
x (M). Then we have

∩D(
(
idM ⊕ Wχ

)
(γ )) = (

idE ⊕ Wχ

)
(∩D↔(γ ))

Remark 4.3 The reader should note that the above far-flung generalization of Propo-
sition 4.3 subsumes Proposition 4.2.

Proof In place of giving a general proof with formidable notation, we satisfy our-
selves with an illustration. Here we deal only with the case that D = D3, D↔ = D(3)

and χ is
χ(d1, d2, d3) = (d1d2, d1d3, d2d3)

for any (d1, d2, d3) ∈ D3. We assume that n ◦ 3. We note first that the monomial
mapping χ : D3 ≥ D(3) is the composition of two monomial mappings

χ1 : D3 ≥ D {6; (1, 2), (3, 4), (5, 6)}
χ2 : D {6; (1, 2), (3, 4), (5, 6)} ≥ D(3)
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with
χ1(d1, d2, d3) = (d1, d1, d2, d2, d3, d3)

for any (d1, d2, d3) ∈ D3 and

χ2(d1, d2, d3, d4, d5, d6) = (d1d3, d2d5, d4d6)

for any (d1, d2, d3, d4, d5, d6) ∈ D {6; (1, 2), (3, 4), (5, 6)}, while the former mono-
mial mapping χ1: D3 ≥ D {6; (1, 2), (3, 4), (5, 6)} is in turn the composition of
three monomial mappings

χ1
1 : D3 ≥ D {4; (1, 2)}

χ2
1 : D {4; (1, 2)} ≥ D {5; (1, 2), (3, 4)}

χ3
1 : D {5; (1, 2), (3, 4)} ≥ D {6; (1, 2), (3, 4), (5, 6)}

with
χ1

1 (d1, d2, d3) = (d1, d1, d2, d3)

for any (d1, d2, d3) ∈ D3,

χ2
1 (d1, d2, d3, d4) = (d1, d2, d3, d3, d4)

for any (d1, d2, d3, d4) ∈ D {4; (1, 2)} and

χ3
1 (d1, d2, d3, d4, d5) = (d1, d2, d3, d4, d5, d5)

for any (d1, d2, d3, d4, d5) ∈ D {5; (1, 2), (3, 4)}. Therefore it suffices to prove that

∩
((

idM ⊕ Wχ1
1

) (
γ ↔)) =

(
idE ⊕ Wχ1

1

) (∩D{4;(1,2)}(γ ↔)
)

(2)

for any γ ↔ ∈ (
M ⊕ WD{4;(1,2)}

)
π(x)

, that

∩D{4;(1,2)}
((

idM ⊕ Wχ2
1

) (
γ ↔↔)) =

(
idE ⊕ Wχ2

1

) (∩D{5;(1,2),(3,4)}(γ ↔↔)
)

(3)

for any γ ↔↔ ∈ (
M ⊕ WD{5;(1,2),(3,4)}

)
π(x)

, that

∩D{5;(1,2),(3,4)}
((

idM ⊕ Wχ3
1

) (
γ ↔↔↔)) =

(
idE ⊕ Wχ3

1

) (∩D{6;(1,2),(3,4),(5,6)}(γ ↔↔↔)
)

(4)
for any γ ↔↔↔ ∈ (

M ⊕ WD{6;(1,2),(3,4),(5,6)}
)
π(x)

, and that

∩D{6;(1,2),(3,4),(5,6)}(
(
idM ⊕ Wχ2

) (
γ ↔↔↔↔)) = (

idE ⊕ Wχ2

) (∩D(3)(γ
↔↔↔↔)

)
(5)
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for any γ ↔↔↔↔ ∈ (
M ⊕ WD(3)

)
π(x)

TD(3)
x (M). Since D {4; (1, 2)} = D(2) × D2, it is

easy to see that

∩
((

idM ⊕ Wχ1
1

) (
γ ↔)) = ∩(γ ↔

1 +
1

γ ↔
2) = ∩(γ ↔

1) + ∩(γ ↔
2)

where γ ↔
1 = γ ↔ ◦ (i1 × idD2) and γ ↔

2 = γ ↔ ◦ (i2 × idD2) with i1(d) = (d, 0) ∈ D(2)

and i2(d) = (0, d) ∈ D(2) for any d ∈ D. On the other hand, we have

(
idE ⊕ Wχ1

1

) (∩D(4;(1,2))(γ
↔)
) =

(
idE ⊕ Wχ1

1

) (
l(∩(γ ↔

1),∩(γ ↔
2))

)
= ∩(γ ↔

1) + ∩(γ ↔
2)

where l(∩(γ ↔
1),∩(γ ↔

2))
is the unique element of E ⊕ WD(2)×D2 with

(
idE ⊕ Wi1×idD2

) (
l(∩(γ ↔

1),∩(γ ↔
2))

)
= ∩(γ ↔

1)

and (
idE ⊕ Wi2×idD2

) (
l(∩(γ ↔

1),∩(γ ↔
2))

)
= ∩(γ ↔

2)

Thus we have established (2). By the same token, we can establish (3) and (4). In
order to prove (5), it suffices to note that

(
idE ⊕ Wi135

) (∩D{6;(1,2),(3,4),(5,6)}(
(
idM ⊕ Wχ2

) (
γ ↔↔↔↔)))

= (
idE ⊕ Wχ2◦i135

) (∩D(3)(γ
↔↔↔↔)

)

together with the seven similar identities obtained from the above by replacing i135
by seven other i jkl : D3 ≥ D {6; (1, 2), (3, 4), (5, 6)} in the standard quasi-colimit
representation of D {6; (1, 2), (3, 4), (5, 6)}, where i jkl : D3 ≥ D {6; (1, 2), (3, 4),

(5, 6)} (1 ≤ j < k < l ≤ 6) is a mapping with i jkl(d1, d2, d3) = (..., d1
j
, ..., d2

k
, ...,

d3
l
, ...) (d1, d2 and d3 are inserted at the j-th, k-th and l-th positions respectively,

while the other components are fixed at 0). Its proof goes as follows. Since

(
idE ⊕ Wi135

) (∩D{6;(1,2),(3,4),(5,6)}(
(
idM ⊕ Wχ2

) (
γ ↔↔↔↔)))

= ∩(
(
idM ⊕ Wχ2◦i135

) (
γ ↔↔↔↔)),

it suffices to show that

∩(
(
idM ⊕ Wχ2◦i135

) (
γ ↔↔↔↔)) = (

idE ⊕ Wχ2◦i135

) ∩D(3)(γ
↔↔↔↔)

However the last identity follows at once by simply observing that the mapping
χ2 ◦ i135: D3 ≥ D(3) is the mapping

(d1, d2, d3) ∈ D3 �−≥ (d1d2, 0, 0) ∈ D(3),
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which is the successive composition of the following three mappings:

(d1, d2, d3) ∈ D3 �−≥ (d1, d2) ∈ D2

(d1, d2) ∈ D2 �−≥ d1d2 ∈ D

d ∈ D �−≥ (d, 0, 0) ∈ D(3).

Corollary 4.4 Let ∩ be a Dn-tangential over the bundle π : E ≥ M at x ∈ E. Let
D be a simplicially infinitesimal spaces of dimension less than or equal to n. Any
nonstandard quasi-colimit representation of D, if any mapping into D in the repre-
sentation is monomial, induces the same mapping as ∩D (induced by the standard
quasi-colimit representation of D) by the method in the proof of Theorem 4.4.

Proof It suffices to note that

∩Dm (
(
idM ⊕ Wχ

)
(γ )) = (

idE ⊕ Wχ

)
(∩D(γ ))

for any mapping χ : Dm ≥ D in the given nonstandard quasi-colimit representation
of D, which follows directly from the above theorem.

5 The Third Approach to Jets

Definition 5.1 Let n be a natural number. A Dn-pseudotangential over the bundle
π : E ≥ M at x ∈ E is a mapping

∩x : (
M ⊕ WDn

)
π(x)

≥ (
E ⊕ WDn

)
x

abiding by the following two conditions:

1. We have (
π ⊕ idWDn

)
(∩x (γ )) = γ

for any γ ∈ (
M ⊕ WDn

)
π(x)

.

2. For any γ ∈ (
E ⊕ WDn

)
x and any α ∈ R, we have

∩x (αγ ) = α∩x (γ )

3. The diagram

(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn×Dm �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDm

∩x ≤ ≤ ∩x ⊕ idWDm(
E ⊕ WDn

)
x idE ⊕ W(d1,d2)∈Dn×Dm �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−≥

(
E ⊕ WDn

)
x ⊕ WDm
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commutes, where m is an arbitrary natural number.

Remark 5.1 The third condition in the above definition claims what is called infini-
tesimal linearity.

Notation 5.1 We denote by Ĵ
Dn
x (π) the totality of Dn-pseudotangentials over the

bundle π : E ≥ M at x ∈ E. We denote by Ĵ
Dn (π) the set-theoretic union of

Ĵ
Dn
x (π)’s for all x ∈ E.

It is easy to see that

Lemma 5.1 The following diagram is an equalizer in the category of Weil algebras:

WDn W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−≥WDn+1×Dn

W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1,d2d3)∈Dn+1×Dn

WDn+1×Dn+1×Dn

Proposition 5.1 Let ∩x be a Dn+1-pseudotangential overthe bundle π : E ≥ M at
x ∈ E and γ ∈ (

M ⊕ WDn

)
π(x)

. Then th ere exists a unique γ ↔ ∈ (
E ⊕ WDn

)
x such

that the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn (6)

applied to γ results in

(
idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

) (
γ ↔) (7)

Proof By dint of Lemma 5.1, it suffices to show that the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn

idE ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1,d2d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(
E ⊕ WDn+1

)
x ⊕ WDn+1×Dn (8)

is equal to the composition of mappings
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(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn

idE ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(
E ⊕ WDn+1

)
x ⊕ WDn+1×Dn (9)

Since ⊕ is a bifunctor, the diagram

(
M ⊕ WDn+1

)
π(x)

⊕ WDn ≥ (
M ⊕ WDn+1

)
π(x)

⊕ WDn+1×Dn

∩x ⊕ idWDn
≤ ≤ ∩x ⊕ idWDn+1×Dn(

E ⊕ WDn+1

)
x ⊕ WDn ≥ (

E ⊕ WDn+1

)
x ⊕ WDn+1×Dn

commutes, where the upper horizontal arrow is

idM ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1,d2d3)∈Dn+1×Dn ,

while the lower horizontal arrow is

idE ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1,d2d3)∈Dn+1×Dn .

Therefore the composition of mappings in (8) is equal to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

idM ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1,d2d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn+1×Dn

∩x ⊕ idWDn+1×Dn−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn+1×Dn (10)

Since the composition of mappings

M ⊕ WDn idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥ M ⊕ WDn+1×Dn

idM ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1,d2d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥M ⊕ WDn+1×Dn+1×Dn

is trivially equal to the composition of mappings

M ⊕ WDn idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥M ⊕ WDn+1×Dn

idM ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥ M ⊕ WDn+1×Dn+1×Dn ,

the composition of mappings in (10) is equal to the composition of mappings
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(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

idM ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1d2,d3)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn+1×Dn

∩x ⊕ idWDn+1×Dn−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn+1×Dn (11)

By dint of the third condition in Definition 5.1.1, the diagram

(
M ⊕ WDn+1

)
π(x)

⊕ WDn ≥ (
M ⊕ WDn+1

)
π(x)

⊕ WDn+1×Dn

∩x ⊕ idWDn
≤ ≤ ∩x ⊕ idWDn+1×Dn(

E ⊕ WDn+1

)
x ⊕ WDn ≥ (

E ⊕ WDn+1

)
x ⊕ WDn+1×Dn

commutes, where the upper horizontal arrow is

idM ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1d2,d3)∈Dn+1×Dn ,

and the lower horizontal arrow is

idE ⊕ W(d1,d2,d3)∈Dn+1×Dn+1×Dn �≥(d1d2,d3)∈Dn+1×Dn .

Therefore the composition of mappings in (11) is equal to the composition of map-
pings in (9), which completes the proof.

It is not difficult to see that

Proposition 5.2 Given a Dn+1-pseudotangential ∩x overthe bundle π : E ≥ M
at x ∈ E, the assignment γ ∈ (

M ⊕ WDn

)
π(x)

�≥ γ ↔ ∈ (
E ⊕ WDn

)
x in the above

proposition, denoted by π̂n+1,n(∩x ), is a Dn-pseudotangential over the bundle π :
E ≥ M at x ∈ E.

Proof We have to verify the three conditions in Definition 5.1 concerning the map-
ping π̂n+1,n(∩x ):

(
M ⊕ WDn

)
π(x)

≥ (
E ⊕ WDn

)
x .

1. To see the first condition, it suffices to show that

(
idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

) ◦ (
π ⊕ idWDn

) ((
π̂n+1,n(∩x )

)
(γ )

) = γ ,

which is equivalent to

(
π ⊕ idWDn+1×Dn

)
◦(

idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

) ((
π̂n+1,n(∩x )

)
(γ )

) = γ ,

since ⊕ is a bifunctor. Therefore it suffices to show that the composition of
mappings
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(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn π ⊕ idWDn+1×Dn−−−−−−−−−−≥

(
M ⊕ WDn+1

)
x ⊕ WDn

applied to γ results in

(
idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

)
(γ ) ,

which follows directly from the first condition in Definition 5.1.
2. To see the second, let us note first that the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ Wd∈Dn �≥αd∈Dn−−−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

is equal to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥(αd1,d2)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

Since ∩x is a Dn+1-pseudotangential over the bundle π : E ≥ M at x ∈ E , the
diagram (

M ⊕ WDn+1

)
π(x)

⊕ WDn ≥ (
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn
≤ ≤ ∩x ⊕ idWDn(

E ⊕ WDn+1

)
x ⊕ WDn ≥ (

E ⊕ WDn+1

)
x ⊕ WDn

commutes, where the upper horizontal arrow is

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥(αd1,d2)∈Dn+1×Dn ,

while the lower horizontal arrow is

idE ⊕ W(d1,d2)∈Dn+1×Dn �≥(αd1,d2)∈Dn+1×Dn .

Therefore the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ Wd∈Dn �≥αd∈Dn−−−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn

is equal to the composition of mappings
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(
M ⊕ WDn

)
π(x)

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn idE ⊕ W(d1,d2)∈Dn+1×Dn �≥(αd1,d2)∈Dn+1×Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(

E ⊕ WDn+1

)
x ⊕ WDn

The former composition of mappings applied to γ ∈ (
M ⊕ WDn

)
π(x)

results in

(
idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

) (
π̂n+1,n(∩x )(αγ )

)
,

while the latter composition of mappings applied to γ results in

(
idE ⊕ W(d1,d2)∈Dn+1×Dn �≥(αd1,d2)∈Dn+1×Dn

) ◦(
idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

) (
π̂n+1,n(∩x )(γ )

)
= (

idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

) (
α

(
π̂n+1,n(∩x )(γ )

))
.

Therefore we have

π̂n+1,n(∩x )(αγ ) = α
(
π̂n+1,n(∩x )(γ )

)

3. To see the third, we have to show that the diagram

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dm≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDm

π̂n+1,n(∩x ) ≤ ≤ π̂n+1,n(∩x ) ⊕ idWDm(
E ⊕ WDn

)
x idE ⊕ WmDn×Dm≥Dn−−−−−−−−−−−−−≥

(
E ⊕ WDn

)
x ⊕ WDm

(12)

commutes, where m is an arbitrary natural number. Since the lower square of the
diagram

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dm ≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDm

π̂n+1,n(∩x ) ≤ ≤ π̂n+1,n(∩x ) ⊕ idWDn(
E ⊕ WDn

)
x idE ⊕ WmDn×Dm ≥Dn−−−−−−−−−−−−−≥

(
E ⊕ WDn

)
x ⊕ WDm

idE ⊕ WmDn+1×Dn≥Dn
≤ ≤ idE ⊕ WmDn+1×Dn≥Dn ×idDm(

E ⊕ WDn+1

)
x ⊕ WDn idE ⊕ WidDn+1 ×mDn×Dm ≥Dn−−−−−−−−−−−−−−−−−−≥

(
E ⊕ WDn+1

)
x ⊕ WDn×Dm

(13)
commutes, so that the commutativity of the diagram in (12) is equivalent to the

commutativity of the outer square of the diagram in (13). .The composition of
mappings

(
M ⊕ WDn

)
π(x)

π̂n+1,n(∩x )−−−−−−−≥
(
E ⊕ WDn

)
x idE ⊕ WmDn+1×Dn≥Dn−−−−−−−−−−−−−−−≥

(
E ⊕ WDn+1

)
x ⊕ WDn

is equal to the composition of mappings
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(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn+1×Dn≥Dn−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn ,

while the composition of mappings

(
M ⊕ WDn

)
π(x)

⊕ WDm π̂n+1,n(∩x ) ⊕ idWDm−−−−−−−−−−−−−−≥
(
E ⊕ WDn

)
x ⊕ WDm

idE ⊕ WmDn+1×Dn≥Dn ×idDm−−−−−−−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn×Dm

is equal to the composition of mappings

(
M ⊕ WDn

)
π(x)

⊕ WDm idM ⊕ WmDn+1×Dn≥Dn ×idDm−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn×Dm ∩x ⊕ idWDn×Dm−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn×Dm

It is easy to see that the diagram

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dm ≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDm

idM ⊕ WmDn+1×Dn≥Dn
≤ ≤ idM ⊕ WmDn+1×Dn≥Dn ×idDm(

M ⊕ WDn+1

)
π(x)

⊕ WDn idM ⊕ WidDn+1 ×mDn×Dm ≥Dn−−−−−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn×Dm

∩x ⊕ idWDn
≤ ≤ ∩x ⊕ idWDn×Dm(

E ⊕ WDn+1

)
x ⊕ WDn idE ⊕ WidDn+1 ×mDn×Dm ≥Dn−−−−−−−−−−−−−−−−−−≥

(
E ⊕ WDn+1

)
x ⊕ WDn×Dm

commutes, which implies that the outer square of the diagram in (13) commutes.
This completes the proof.

Notation 5.2 By the above proposition, we have the canonical projection π̂n+1,n:

Ĵ
Dn+1(π) ≥ Ĵ

Dn (π) so that, given ∩x ∈ Ĵ
Dn+1
x (π) and γ ∈ (

M ⊕ WDn

)
π(x)

, the
composition of mappings in (6) applied to γ results in

(
idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn

) (
π̂n+1,n(∩x )(γ )

)

For any natural numbers n, m with m ≤ n, we define π̂n,m: ĴDn (π) ≥ Ĵ
Dm (π) to

be π̂m+1,m ◦ ... ◦ π̂n,n−1.

Proposition 5.3 Let ∩x be a Dn+1-pseudotangential over the bundle π : E ≥ M
at x ∈ E. Then the diagram



422 H. Nishimura

(
M ⊕ WDn+1

)
π(x)

∩x−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x

π̂n+1,n ≤ ≤ π̂n+1,n(
M ⊕ WDn

)
π(x)

−−−−−−−−−−−−−≥
π̂n+1,n(∩x )

(
E ⊕ WDn

)
x

is commutative.

Proof It is easy to see that the following four diagrams are commutative:

M ⊕ WDn+1 idM ⊕ W(d1,d2)∈Dn+1×Dn+1 �≥d1d2∈Dn+1−−−−−−−−−−−−−−−−−−−−−−−−−−≥ M ⊕ WDn+1×Dn+1

idM ⊕ WiDn∞Dn+1
≤ ≤ idM ⊕ WiDn+1×Dn∞Dn+1×Dn+1

M ⊕ WDn

−−−−−−−−−−−−−−−−−−−−−−−≥
idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn M ⊕ WDn+1×Dn

M ⊕ WDn+1×Dn+1 ∩x ⊕ idWDn+1−−−−−−−−−≥
E ⊕ WDn+1×Dn+1

idM ⊕ WiDn+1×Dn∞Dn+1×Dn+1
≤ ≤ idE ⊕ WiDn+1×Dn∞Dn+1×Dn+1

M ⊕ WDn+1×Dn

−−−−−−−≥∩x ⊕ idWDn
E ⊕ WDn+1×Dn

M ⊕ WDn+1 idM ⊕ W(d1,d2)∈Dn+1×Dn+1 �≥d1d2∈Dn+1−−−−−−−−−−−−−−−−−−−−−−−−−−≥ M ⊕ WDn+1×Dn+1

∩x ≤ ≤ ∩x ⊕ idWDn+1

E ⊕ WDn+1

−−−−−−−−−−−−−−−−−−−−−−−−−≥
idE ⊕ W(d1,d2)∈Dn+1×Dn+1 �≥d1d2∈Dn+1 E ⊕ WDn+1×Dn+1

[By the second condition in Definition 5.1]

E ⊕ WDn+1 idE ⊕ W(d1,d2)∈Dn+1×Dn+1 �≥d1d2∈Dn+1−−−−−−−−−−−−−−−−−−−−−−−−−≥ E ⊕ WDn+1×Dn+1

idE ⊕ WiDn∞Dn+1
≤ ≤ idE ⊕ WiDn+1×Dn∞Dn+1×Dn+1

E ⊕ WDn

−−−−−−−−−−−−−−−−−−−−−−−≥
idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn E ⊕ WDn+1×Dn

Therefore the composition of mappings

M ⊕ WDn+1 idM ⊕ WiDn∞Dn+1−−−−−−−−−−−≥
M ⊕ WDn

idM ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥ M ⊕ WDn+1×Dn

= (
M ⊕ WDn+1

) ⊕ WDn ∩x ⊕ idWDn−−−−−−−≥
(
E ⊕ WDn+1

) ⊕ WDn

= E ⊕ WDn+1×Dn

is equal to the composition of mappings

M ⊕ WDn+1 ∩x−≥ E ⊕ WDn+1 idE ⊕ WiDn≥Dn+1−−−−−−−−−−−≥
E ⊕ WDn

idE ⊕ W(d1,d2)∈Dn+1×Dn �≥d1d2∈Dn−−−−−−−−−−−−−−−−−−−−−−−≥ E ⊕ WDn+1×Dn
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which yields the coveted result.

Corollary 5.1 Let ∩x be a Dn+1-pseudotangential over the bundle π : E ≥ M at
x ∈ E. For any γ, γ ↔ ∈ (

M ⊕ WDn+1

)
π(x)

, if

πn+1,n (γ ) = πn+1,n
(
γ ↔)

then
πn+1,n (∩x (γ )) = πn+1,n

(∩x (γ
↔)
)

Proof By the above proposition, we have

πn+1,n(∩x (γ )) = π̂n+1,n(∩x )(πn+1,n(γ ))

= π̂n+1,n(∩x )(πn+1,n(γ
↔)) = πn+1,n(∩x (γ

↔)),

which establishes the coveted proposition.

Definition 5.2 The notion of a Dn-tangential over the bundle π : E ≥ M at x ∈ E
is defined inductively on n. The notion of a D0-tangential over the bundle π : E ≥ M
at x ∈ E and that of a D1-tangential over the bundle π : E ≥ M at x ∈ E shall
be identical with that of a D0-pseudotangential over the bundle π : E ≥ M at
x ∈ E and that of a D1-pseudotangential over the bundle π : E ≥ M at x ∈ E
respectively. Now we proceed by induction on n. A Dn+1-pseudotangential ∩x :(
M ⊕ WDn+1

)
π(x)

≥ (
E ⊕ WDn+1

)
x over the bundle π : E ≥ M at x ∈ E is called

a Dn+1-tangential over the bundle π : E ≥ M at x ∈ E if it acquiesces in the
following two conditions:

1. π̂n+1,n(∩x ) is a Dn-tangential over the bundle π : E ≥ M at x ∈ E .
2. For any simple polynomial ρ of d ∈ Dn+1 with l = dim ρ and any γ ∈(

M ⊕ WDl

)
π(x)

, we have

∩x (γ ◦ ρ) = (πn+1,l(∩x )(γ )) ◦ ρ

Notation 5.3 We denote by JDn
x (π) the totality of Dn-tangentials over the bundle π :

E ≥ M at x ∈ E, while we denote by JDn (π) the totality of Dn-tangentials over the
bundle π : E ≥ M. By the very definition of a Dn-tangential, the projection π̂n+1,n:
Ĵ

Dn+1(π) ≥ Ĵ
Dn (π) is naturally restricted to a mapping πn+1,n: J

Dn+1(π) ≥
J

Dn (π). Similarly for πn,m: JDn (π) ≥ J
Dm (π) with m ≤ n.

6 From the First Approach to the Second

Definition 6.1 Mappings ϕn : Jn(π) ≥ J
Dn

(π) (n = 0, 1) shall be the identity
mappings. We are going to define ϕn : Jn(π) ≥ J

Dn
(π) for any natural number n by
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induction on n. Let xn = ∩xn−1 ∈ Jn(π) and ∩xn ∈ Jn+1(π). We define ϕn+1(∩xn )

as the composition of mappings

(
M ⊕ WDn+1

)
π(xn)

= ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
ϕn(xn)×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) ×
M

(M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

Surely we have to show that

Lemma 6.1 We have
ϕn+1(∩xn ) ∈ Ĵ

n+1(π)

Proof We have to show that for any γ ∈ Tn+1
πn(xn)(M), any α ∈ R and any σ ∈ Sn+1,

we have

γ =
(
π ⊕ idWDn+1

)
◦ (

ϕn+1(∩xn )
)
(γ ) (14)

ϕn+1(∩xn )(α ·
i
γ ) = α ·

i
ϕn+1(∩xn )(γ ) (1 ≤ i ≤ n + 1) (15)

ϕn+1(∩xn )(γ
σ ) = (ϕn+1(∩xn )(γ ))σ (16)

We proceed by induction on n.

1. First we deal with (14). The mapping

(
π⊕idWDn+1

) (
ϕn+1(∩xn )

)
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is the composition of mappings

(
M⊕WDn+1

)
π(xn)

= ((M⊕WDn )⊕WD)(M⊕WDn )π(xn )〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
ϕn(xn)×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) ×
M

(M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

π ⊕ idWDn+1−−−−−−−−≥
(
M ⊕ WDn+1

)
π(xn)

It is easy to see that the composition of mappings

(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
{ϕn(xn)}×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) ×
M

(M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

π ⊕ idWDn+1−−−−−−−−≥
(
M ⊕ WDn+1

)
π(xn)
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is no other than the canonical projection of

(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

to the second factor ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )
. It is also easy to see that

the composition of mappings

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

is

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )〈(
ϕn ⊕ idWD

) ◦ ∩xn ◦
(
π

M⊕WDn

M ⊕ idWD

)
, id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )
.

Therefore (14) follows at once.
2. Now we deal with (15), the treatment of which is divided into two cases, namely,

i ≤ n and i = n + 1. Since both of them are almost trivial, they can safely be left
to the reader.

3. Finally we must deal with (16), for which it suffices to consider only transposi-
tions σ = ⊂i, i + 1⊗ (1 ≤ i ≤ n). Here we deal only with the most difficult case
of σ = ⊂n, n + 1⊗. We consider the composition of mappings

(
M ⊕ WDn+1

)
π(xn)

γ ∈ (
M ⊕ WDn+1

)
π(xn)

�≥ γ ⊂n,n+1⊗ ∈ (
M ⊕ WDn+1

)
π(xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(

M ⊕ WDn+1
)
π(xn)

= ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )
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〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
ϕn(xn)×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) ×
M

(M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

(17)

By the very definition of ϕn , the composition of mappings

(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
ϕn(xn)×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) ×
M

(M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

is equivalent to the composition of mappings

(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )
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= (
Jn(π) ⊕ WD

)
xn

×
M⊕WD(((

M ⊕ WDn−1
) ⊕ WD

) ⊕ WD
)((

M⊕WDn−1
)⊕WD

)(
M⊕W

Dn−1

)
π(xn )

=
((

Jn(π) ×
M

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ = xn × ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]
(

idJn(π) ×
〈
π

M⊕WDn−1

M ⊕ idWD , id(
M⊕WDn−1

)⊕WD

〉)
⊕ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥((

Jn(π) ×
M

(M ⊕ WD) ×
M

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ = xn × π (xn) × ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]
((

(∩, t) ∈ Jn(π) × (M ⊕ WD) �≥
∩ (t) ∈ Jn−1(π) ⊕ WD

)
× id((

M⊕WDn−1
)⊕WD

)
)

⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(((
Jn−1(π) ⊕ WD

)
×
M

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ =
(

Jn−1(π) ⊕ WD

)
πn−1(xn)

× ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]

=
((

Jn−1(π) ×
M

(
M ⊕ WDn−1

)) ⊕ WD2

)
πn−1(xn)×(

M⊕WDn−1
)
π(xn )

ϕn−1 × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−≥((
J

Dn−1
(π) ×

M

(
M ⊕ WDn−1

)) ⊕ WD2

)
π0(xn)×(

M⊕WDn−1
)
π(xn )(

(∩, γ ) ∈ J
Dn−1

(π) × (
M ⊕ WDn−1

) �≥ ∩ (γ ) ∈ E ⊕ WDn−1

)
⊕ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥((

E ⊕ WDn−1
) ⊕ WD2

)(
E⊕WDn−1

)
π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

Therefore (17) is no other than the composition of mappings

(
M ⊕ WDn+1

)
π(xn)

γ ∈ (
M ⊕ WDn+1

)
π(xn)

�≥ γ ⊂n,n+1⊗ ∈ (
M ⊕ WDn+1

)
π(xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(

M ⊕ WDn+1
)
π(xn)

= ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )
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〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

= (
Jn(π) ⊕ WD

)
xn

×
M⊕WD(((

M ⊕ WDn−1
) ⊕ WD

) ⊕ WD
)((

M⊕WDn−1
)⊕WD

)(
M⊕W

Dn−1

)
π(xn )

=
((

Jn(π) ×
M

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ = xn × ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]
(

idJn(π) ×
〈
π

M⊕WDn−1

M ⊕ idWD , id(
M⊕WDn−1

)⊕WD

〉)
⊕ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥((

Jn(π) ×
M

(M ⊕ WD) ×
M

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ = xn × π (xn) × ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]

((
(∩, t) ∈ Jn(π) × (M ⊕ WD) �≥

∩ (t) ∈ Jn−1(π) ⊕ WD

)
× id((

M⊕WDn−1
)⊕WD

)
)

⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(((
Jn−1(π) ⊕ WD

)
×
M

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ =
(

Jn−1(π) ⊕ WD

)
πn−1(xn)

× ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]

=
((

Jn−1(π) × (
M ⊕ WDn−1

)) ⊕ WD2

)
πn−1(xn)×(

M⊕WDn−1
)
π(xn )

ϕn−1 × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−≥((
J

Dn−1
(π) ×

M

(
M ⊕ WDn−1

)) ⊕ WD2

)
π0(xn)×(

M⊕WDn−1
)
π(xn )(

(∩, γ ) ∈ J
Dn−1

(π) × (
M ⊕ WDn−1

) �≥ ∩ (γ ) ∈ E ⊕ WDn−1

)
⊕ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥((

E ⊕ WDn−1
) ⊕ WD2

)(
E⊕WDn−1

)
π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)
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On the other hand, the composition of mappings

(
M ⊕ WDn+1

)
π(xn)

= ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
ϕn(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
ϕn(xn)×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) ×
M

(M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

γ ∈ E ⊕ WDn+1 �≥ γ ⊂n,n+1⊗ ∈ E ⊕ WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
π0(xn)

is the composition of mappings

(
M ⊕ WDn+1

)
π(xn)

= ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥(
Jn(π) ⊕ WD

)
xn

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

= (
Jn(π) ⊕ WD

)
xn

×
M⊕WD
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(((
M ⊕ WDn−1

) ⊕ WD
) ⊕ WD

)((
M⊕WDn−1

)⊕WD
)(

M⊕W
Dn−1

)
π(xn )

= ((
Jn(π) × ((

M ⊕ WDn−1
) ⊕ WD

)) ⊕ WD
)
∇

[∇ = xn × ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]
(

idJn(π) ×
〈
π

M⊕WDn−1

M ⊕ idWD , id(
M⊕WDn−1

)⊕WD

〉)
⊕ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥((

Jn(π) ×
M

(M ⊕ WD) ×
M

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ = xn × π (xn) × ((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]
((

(∩, t) ∈ Jn(π) × (M ⊕ WD) �≥
∩ (t) ∈ Jn−1(π) ⊕ WD

)
× id((

M⊕WDn−1
)⊕WD

)
)

⊕idWD−−−−≥(((
Jn−1(π) ⊕ WD

)
×

M⊕WD

((
M ⊕ WDn−1

) ⊕ WD
)) ⊕ WD

)
∇

[∇ =
(

Jn−1(π) ⊕ WD

)
πn−1(xn)

×
M⊕WD

((
M ⊕ WDn−1

) ⊕ WD
)(

M⊕WDn−1
)
π(xn )

]

=
((

Jn−1(π) × (
M ⊕ WDn−1

)) ⊕ WD2

)
πn−1(xn)×(

M⊕WDn−1
)
π(xn )

followed by the composition of mappings

((
Jn−1(π) × (

M ⊕ WDn−1
)) ⊕ WD2

)
πn−1(xn)×(

M⊕WDn−1
)
π(xn )

ϕn−1 × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−≥((
J

Dn−1
(π) ×

M

(
M ⊕ WDn−1

)) ⊕ WD2

)
π0(xn)×(

M⊕WDn−1
)
π(xn )(

(∩, γ ) ∈ J
n−1(π) × (

M ⊕ WDn−1
) �≥ ∩ (γ ) ∈ E ⊕ WDn−1

)
⊕ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(

E ⊕ WDn−1
) ⊕ WD2 = (

E ⊕ WDn+1
)
π0(xn)

γ ∈ E ⊕ WDn+1 �≥ γ ⊂n,n+1⊗ ∈ E ⊕ WDn+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
π0(xn)

,

which is easily seen to be equivalent to the composition of mappings

((
Jn−1(π) × (

M ⊕ WDn−1
)) ⊕ WD2

)
πn−1(xn)×(

M⊕WDn−1
)
π(xn )
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idJn−1(π)×(
M⊕WDn−1

) ⊕ W(d1.d2)∈D2 �≥(d2.d1)∈D2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥((
Jn−1(π) × (

M ⊕ WDn−1
)) ⊕ WD2

)
πn−1(xn)×(

M⊕WDn−1
)
π(xn )

ϕn−1 × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−≥((
J

Dn−1
(π) ×

M

(
M ⊕ WDn−1

)) ⊕ WD2

)
π0(xn)×(

M⊕WDn−1
)
π(xn )(

(∩, γ ) ∈ J
Dn−1

(π) × (
M ⊕ WDn−1

) �≥ ∩ (γ ) ∈ E ⊕ WDn−1

)
⊕ idWD2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥((

E ⊕ WDn−1
) ⊕ WD2

)(
E⊕WDn−1

)
π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

Therefore the desired result follows from the second condition in the item 3 of
Notation 3.3.

Lemma 6.2 The diagram

Jn+1(π) ϕn+1−−−−−−−−−−−−−−≥ Ĵ
Dn+1

(π)

πn+1,n ≤ ≤ π̂n+1,n

Jn(π) −−−−−−−−−−−−≥ϕn Ĵ
Dn

(π)

is commutative.

Proof Given ∩xn ∈ Jn+1(π),
(
π̂n+1,n ◦ ϕn+1

) (∩xn

)
is, by the very definition of

π̂n+1,n , the composition of mappings

(M ⊕ WDn )π(xn) sn+1−−≥
(
M ⊕ WDn+1

)
π(xn)

ϕn+1(∩xn )−−−−−−≥(
E ⊕ WDn+1

)
π0(xn)

dn+1−−≥ (E ⊕ WDn )π0(xn)

which is equivalent, by the very definition of ϕn+1(∩xn ), to the composition of
mappings

(M ⊕ WDn )π(xn) sn+1−−≥
(
M ⊕ WDn+1

)
π(xn)

= ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥(

(M ⊕ WD) ×
M⊕WD

((M ⊕ WDn ) ⊕ WD)

)
{π(xn)}×(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥
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((
Jn(π) ⊕ WD

) ×
M⊕WD

((M ⊕ WDn ) ⊕ WD)

)
{π(xn)}×(M⊕WDn )π(xn )(

ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥((
J

Dn
(π) ⊕ WD

)
×

M⊕WD

((M ⊕ WDn ) ⊕ WD)

)
{π(xn)}×(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
{π(xn)}×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) × (M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥

((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

dn+1−−≥ (E ⊕ WDn )π0(xn)

This is easily seen to be equivalent to ϕn(πn+1,n
(∩xn

)
), which completes the proof.

Lemma 6.1 can be strengthened as follows:

Lemma 6.3 We have
ϕn+1(∩xn ) ∈ J

n+1(π)

Proof With due regard to Lemmas 6.1 and 6.2, we have only to show that

(
ϕn+1(∩xn )

) ◦
(

idM ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn

)

=
(

idE ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn+1

)
◦(

π̂n+1,n(ϕn+1(∩xn ))
)

(18)

For n = 0, there is nothing to prove. We proceed by induction on n. By the very
definition of ϕn+1, the left-hand side of (18) is the composition of mappings

(M ⊕ WDn )π(xn)

idM ⊕ W(d1,...,dn ,dn+1)∈Dn+1 �≥(d1,...,dndn+1)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥(
M ⊕ WDn+1

)
π(xn)

= ((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )〈
π

M⊕WDn

M ⊕ idWD , id(M⊕WDn )⊕WD

〉
−−−−−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WD)π(xn) ×

M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

∩xn × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−≥
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(
Jn(π) ⊕ WD

)
π(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )(
ϕn ⊕ idWD

) × id(M⊕WDn )⊕WD−−−−−−−−−−−−−−−−−−−−−≥(
J

Dn
(π) ⊕ WD

)
π(xn)

×
M⊕WD

((M ⊕ WDn ) ⊕ WD)(M⊕WDn )π(xn )

=
((

J
Dn

(π) ×
M

(M ⊕ WDn )

)
⊕ WD

)
{π(xn)}×(M⊕WDn )π(xn )(

(∩, γ ) ∈ J
Dn

(π) × (M ⊕ WDn ) �≥ ∩ (γ ) ∈ E ⊕ WDn

)
⊕ idWD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−≥

((E ⊕ WDn ) ⊕ WD)(E⊕WDn )π0(xn )

= (
E ⊕ WDn+1

)
π0(xn)

which is easily seen, by dint of Lemma 6.1, to be equivalent to the right-hand side
of (18).

Thus we have established the mappings ϕn : Jn(π) ≥ J
Dn

(π).

7 From the Second Approach to the Third

The principal objective in this section is to define a mapping ψn : JDn
(π) ≥ J

Dn (π).
Let us begin with

Proposition 7.1 Let ∩x be a Dn-pseudotangential over the bundle π : E ≥ M at
x ∈ E and γ ∈ (

M ⊕ WDn

)
π(x)

. Then there exists a unique γ ↔ ∈ (
E ⊕ WDn

)
x such

that

∩x (
(
idM ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

)
(γ ))

= (
idE ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

) (
γ ↔)

Proof This stems easily from the following simple lemma.

Lemma 7.1 The diagram

WDn W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−≥WDn

Wτ1−≥
...

Wτi−≥
...

Wτn−1−−−≥

WDn
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is a limit diagram in the category of Weil algebras, where τi : Dn ≥ Dn is the
mapping permuting the i-th and (i + 1)-th components of Dn while fixing the other
components.

Notation 7.1 We will denote by ψ̂n(∩x )(γ ) the unique γ ↔ in the above proposition,
thereby getting a function ψ̂n(∩x ):

(
M ⊕ WDn

)
π(x)

≥ (
E ⊕ WDn

)
x .

Proposition 7.2 For any ∩x ∈ Ĵ
Dn

x (π), we have ψ̂n(∩x ) ∈ Ĵ
Dn
x (π).

Proof We have to verify the three conditions in Definition 5.1 concerning the map-
ping ψ̂n(∩x ):

(
M ⊕ WDn

)
π(x)

≥ (
E ⊕ WDn

)
x .

1. To see the first condition, it suffices to show that

(
idM ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

)
(γ )

= (
idE ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

) ((
π ⊕ idWDn

) (
ψ̂n(∩x ) (γ )

))
,

which follows from

(
idM ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

) ((
π ⊕ idWDn

) (
ψ̂n(∩x ) (γ )

))
= (

π ⊕ idWDn

) ((
idE ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

) (
ψ̂n(∩x ) (γ )

))
[By the bifunctionality of ⊕ ]

= (
π ⊕ idWDn

) (∩x (
(
idM ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

)
(γ ))

)
[By the very definition of ψ̂n(∩x )]

= (
idM ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn

)
(γ )

2. Now we are going to deal with the second condition. It is easy to see that the
composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W(α·)Dn−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−≥
(M ⊕ WDn )π(x)

is equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−≥ (M ⊕ WDn )π(x)

idM ⊕ W(
α ·

1

)
Dn−−−−−−−−−−≥

(M ⊕ WDn )π(x) ...idM ⊕ W(
α ·

n

)
Dn−−−−−−−−−−≥

(M ⊕ WDn )π(x) ,

while the composition of mappings
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(M ⊕ WDn )π(x) idM ⊕ W(
α ·

1

)
Dn−−−−−−−−−−≥

(M ⊕ WDn )π(x) ... idM ⊕ W(
α ·

n

)
Dn−−−−−−−−−−≥

(M ⊕ WDn )π(x) ∩x−≥ (E ⊕ WDn )x

is equivalent to the composition of mappings

(M ⊕ WDn )π(x) ∩x−≥ (E ⊕ WDn )x idE ⊕ W(
α ·

1

)
Dn−−−−−−−−−−≥

(E ⊕ WDn )x ...

idE ⊕ W(
α ·

n

)
Dn−−−−−−−−−≥

(E ⊕ WDn )x

Therefore the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W(α·)Dn−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−≥ (M ⊕ WDn )π(x) ∩x−≥ (E ⊕ WDn )x

is equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−≥ (M ⊕ WDn )π(x) ∩x−≥
(E ⊕ WDn )x idE ⊕ W(

α ·
1

)
Dn−−−−−−−−−−≥

(E ⊕ WDn )x ... idE ⊕ W(
α ·

n

)
Dn−−−−−−−−−−≥

(E ⊕ WDn )x ,

which should be equivalent in turn to

(
M ⊕ WDn

)
π(x)

ψ̂n(∩x )−−−−−≥
(
E ⊕ WDn

)
x idE ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−≥

(E ⊕ WDn )x idE ⊕ W(
α ·

1

)
Dn−−−−−−−−−−≥

(E ⊕ WDn )x ... idE ⊕ W(
α ·

n

)
Dn−−−−−−−−−−≥

(E ⊕ WDn )x

Since the composition of mappings

(
E ⊕ WDn

)
x W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−≥ (E ⊕ WDn )x idE ⊕ W(

α ·
1

)
Dn−−−−−−−−−−≥

(E ⊕ WDn )x ...idE ⊕ W(
α ·

n

)
Dn−−−−−−−−−≥

(E ⊕ WDn )x

is equivalent to the composition of mappings
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(
E ⊕ WDn

)
x idE ⊕ W(α·)Dn−−−−−−−−−≥

(
E ⊕ WDn

)
x idE ⊕ W(d1,...,dn)∈Dn �−≥(d1+...+dn)∈Dn−−−−−−−−−−−−−−−−−−−−−−−−−≥

(E ⊕ WDn )x ,

the coveted result follows.
3. We are going to deal with the third condition. We have to show that the diagram

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dm≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDm

ψ̂n(∩x ) ≤ ≤ ψ̂n(∩x ) ⊕ idWDm(
E ⊕ WDn

)
x idE ⊕ WmDn×Dm≥Dn−−−−−−−−−−−−−≥

(
E ⊕ WDn

)
x ⊕ WDm

(19)

commutes. It is easy to see that the diagram

(
E ⊕ WDn

)
x idE ⊕ W+Dn≥Dn

(E ⊕ WDn )x
idE ⊕ WmDn×Dm≥Dn

≤ ≤ idE ⊕ Wη(
E ⊕ WDn

)
x ⊕ WDm idE ⊕ W+Dn≥Dn ×idDm

(E ⊕ WDn )x ⊕ WDm

commutes, where η stands for

(d1, ..., dn, e) ∈ Dn × Dm �−≥ (d1e, ..., dne) ∈ Dn

so that the commutativity of the diagram in (19) is equivalent to the commutativity
of the outer square of the diagram

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dm≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDm

ψ̂n(∩x ) ≤ ≤ ψ̂n(∩x ) ⊕ idWDm(
E ⊕ WDn

)
x idE ⊕ WmDn×Dm≥Dn−−−−−−−−−−−−−≥

(
E ⊕ WDn

)
x ⊕ WDm

idE ⊕ W+Dn≥Dn
≤ ≤ idE ⊕ W+Dn≥Dn ×idDm

(E ⊕ WDn )x idE ⊕ Wη−−−−−−≥ (E ⊕ WDn )x ⊕ WDm

(20)

where +Dn≥Dn stands for

(d1, ..., dn) ∈ Dn �−≥ (d1 + ... + dn) ∈ Dn

The composition of mappings

(
M ⊕ WDn

)
π(x)

ψ̂n(∩x )−−−−−≥
(
E ⊕ WDn

)
x idE ⊕ W+Dn≥Dn−−−−−−−−−−−≥

(E ⊕ WDn )x

is equal to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W+Dn≥Dn−−−−−−−−−−−≥
(M ⊕ WDn )π(x) ∩x−≥ (E ⊕ WDn )x
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while the composition of mappings

(
M ⊕ WDn

)
π(x)

⊕ WDm ψ̂n(∩x ) ⊕ idWDm−−−−−−−−−−−≥
(
E ⊕ WDn

)
x ⊕ WDm

idE ⊕ W+Dn≥Dn ×idDm−−−−−−−−−−−−−−−≥
(E ⊕ WDn )x ⊕ WDm

is equal to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W+Dn≥Dn ×idDm−−−−−−−−−−−−−−−≥
(M ⊕ WDn )π(x) ∩x ⊕ idWDm−−−−−−−−≥

(E ⊕ WDn )x ⊕ WDm

Since the diagram

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dm≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDm

idM ⊕ W+Dn≥Dn
≤ ≤ idM ⊕ W+Dn≥Dn ×idDm

(M ⊕ WDn )π(x) idM ⊕ Wη−−−−−−≥ (M ⊕ WDn )π(x) ⊕ WDm

∩x ≤ ≤ ∩x ⊕ idWDm

(E ⊕ WDn )x idE ⊕ Wη−−−−−−≥ (E ⊕ WDn )x ⊕ WDm

commutes, the outer square of the diagram in (20) commutes. This completes the
proof.

Proposition 7.3 The diagram

Ĵ
Dn+1

x (π) ψ̂n+1−−≥ Ĵ
Dn+1
x (π)

π̂n+1,n ≤ ≤ π̂n+1,n

Ĵ
Dn

x (π)
−≥̂
ψn Ĵ

Dn
x (π)

commutes.

Proof Given ∩x ∈ Ĵ
Dn+1

x (π), the composition of mappings

(
M ⊕ WDn

)
π(x)

π̂n+1,n
(
ψ̂n+1 (∩x )

)
−−−−−−−−−−−−−≥

(
E ⊕ WDn

)
x idE ⊕ WmDn×Dn≥Dn−−−−−−−−−−−−−≥(

E ⊕ WDn

)
x ⊕ WDn idE ⊕ W+Dn≥Dn ×idDn−−−−−−−−−−−−−−≥

(E ⊕ WDn )x ⊕ WDn (21)

is equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

π̂n+1,n
(
ψ̂n+1 (∩x )

)
−−−−−−−−−−−−−≥

(
E ⊕ WDn

)
x idE ⊕ WmDn+1×Dn≥Dn−−−−−−−−−−−−−−≥(

E ⊕ WDn+1

)
x ⊕ WDn idE ⊕ W+Dn+1≥Dn+1

×idDn−−−−−−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x
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⊕ WDn dn+1 ⊕ idWDn−−−−−−−−−≥
(E ⊕ WDn )x ⊕ WDn

which is in turn equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn+1×Dn≥Dn−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn ψ̂n+1 (∩x ) ⊕ WidWDn−−−−−−−−−−−−−−≥
(
E ⊕ WDn+1

)
x ⊕ WDn idE ⊕ W+Dn+1≥Dn+1

×idDn−−−−−−−−−−−−−−−−−≥(
E ⊕ WDn+1

)
x ⊕ WDn dn+1 ⊕ idWDn−−−−−−−−−≥

(E ⊕ WDn )x ⊕ WDn

This is to be supplanted by the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn+1×Dn≥Dn−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn

idM ⊕ W+Dn+1≥Dn+1
×idDn−−−−−−−−−−−−−−−−−≥

(
M ⊕ WDn+1

)
π(x)

⊕ WDn ∩x ⊕ idWDn−−−−−−−≥(
E ⊕ WDn+1

)
x ⊕ WDn dn+1 ⊕ idWDn−−−−−−−−−≥

(E ⊕ WDn )x ⊕ WDn ,

which is in turn equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn+1×Dn≥Dn−−−−−−−−−−−−−−−≥
(
M ⊕ WDn+1

)
π(x)

⊕ WDn idM ⊕ W+Dn+1≥Dn+1
×idDn−−−−−−−−−−−−−−−−−≥

(
M ⊕ WDn+1

)
π(x)

⊕ WDn dn+1 ⊕ idWDn−−−−−−−−−≥
(M ⊕ WDn )π(x) ⊕ WDn π̂n+1,n (∩x ) ⊕ idWDn−−−−−−−−−−−−−−≥

(E ⊕ WDn )x ⊕ WDn

by Proposition 4.2. This is to be supplanted by the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dn≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDn idM ⊕ W+Dn≥Dn ×idDn−−−−−−−−−−−−−−−≥
(M ⊕ WDn )π(x) ⊕ WDn π̂n+1,n (∩x ) ⊕ idWDn−−−−−−−−−−−−−−≥

(E ⊕ WDn )x ⊕ WDn ,

which is equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ WmDn×Dn≥Dn−−−−−−−−−−−−−≥
(
M ⊕ WDn

)
π(x)

⊕ WDn ψ̂n
(
π̂n+1,n (∩x )

) ⊕ idWDn−−−−−−−−−−−−−−−−−−≥
(
E ⊕ WDn

)
x ⊕ WDn idE ⊕ W+Dn≥Dn ×idDn−−−−−−−−−−−−−−≥

(E ⊕ WDn )x ⊕ WDn
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This is really equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

ψ̂n
(
π̂n+1,n (∩x )

)
−−−−−−−−−−−≥

(
E ⊕ WDn

)
x idE ⊕ WmDn×Dn≥Dn−−−−−−−−−−−−−≥(

E ⊕ WDn

)
x ⊕ WDn idE ⊕ W+Dn≥Dn ×idDn−−−−−−−−−−−−−−≥

E ⊕ WDn×Dn (22)

This just established fact that the composition of mappings in (21) and that in (22)
are equivalent implies the coveted result at once. This completes the proof.

Proposition 7.4 Let D be a simplicial infinitesimal space of dimension n and degree
m. Let ∩x be a Dn-pseudotangential over the bundle π : E ≥ M at x ∈ E and
γ ∈ (

M ⊕ WDn

)
π(x)

. Then the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W+D≥Dn−−−−−−−−−−≥ (M ⊕ WD)π(x) ∩D
x−≥ (E ⊕ WD)x

is equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

ψ̂n(∩x−−−≥)
(
E ⊕ WDn

)
x idE ⊕ W+D≥Dn−−−−−−−−−−≥ (E ⊕ WD)x

Proof Let i : Dk ≥ D be any mapping in the standard quasi-colimit representation
of D. The composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ W+D≥Dn−−−−−−−−−−≥ (M ⊕ WD)π(x) ∩D
x−≥ (E ⊕ WD)x

idE ⊕ Wi−−−−−≥
(
E ⊕ WDk

)
x (23)

is equivalent, by dint of Theorem 4.5, to the composition of mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ WiDk ≥Dn−−−−−−−−−−≥
(

M ⊕ WDk

)
π(x)

idM ⊕ W+Dk ≥Dk−−−−−−−−−−−≥(
M ⊕ WDk

)
π(x)

∩Dk

x−−≥
(
E ⊕ WDk

)
x ,

which is in turn equivalent, by the very definition of ψ̂k , to the composition of
mappings

(
M ⊕ WDn

)
π(x)

idM ⊕ WiDk ≥Dn−−−−−−−−−−≥
(

M ⊕ WDk

)
π(x)

ψ̂k

(
∩Dk

x

)
−−−−−−−≥

(
E ⊕ WDk

)
x

idE ⊕ W+Dk≥Dk−−−−−−−−−−−≥
(
E ⊕ WDk

)
x .

This is indeed equivalent, by dint of Proposition 7.3, to the composition of mappings



Differential Geometry of Microlinear Frölicher Spaces IV-1 441

(
M ⊕ WDn

)
π(x)

ψ̂n (∩x )−−−−≥
(
E ⊕ WDn

)
x idE ⊕ WiDk ≥Dn−−−−−−−−−−≥

(
E ⊕ WDk

)
x

idE ⊕ W+Dk ≥Dk−−−−−−−−−−−≥
(
E ⊕ WDk

)
x ,

which is in turn equivalent to the composition of mappings

(
M ⊕ WDn

)
π(x)

ψ̂n (∩x )−−−−−≥
(
E ⊕ WDn

)
x idE ⊕ W+D≥Dn−−−−−−−−−−≥ (E ⊕ WD)x

idE ⊕ Wi−−−−−−≥
(
E ⊕ WDk

)
x (24)

The just established fact that the composition of mappings in (23) and that in (24)
are equivalent implies the coveted result at once. This completes the proof.

Theorem 7.1 For any ∩x ∈ J
Dn

x (π), we have ψ̂n (∩x ) ∈ J
Dn
x (π).

Proof In view of Proposition 7.2, it suffices to show that ψ̂n (∩x ) satisfies second
the condition in Definition 5.2. Here we deal only with the case that n = 3 and the
simple polynomial ρ at issue is d ∈ D3 �−≥ d2 ∈ D, leaving the general case safely
to the reader. Since

(d1 + d2 + d3)
2 = 2(d1d2 + d1d3 + d2d3)

for any (d1, d2, d3) ∈ D3, we have the commutative diagram

D3 χ≥ D(6)

+D3≥D3
≤ ≤ +D(6)≥D

D3 ≥
ρ

D
(25)

where χ stands for the mapping

(d1, d2, d3) ∈ D3 �≥ (d1d2, d1d3, d2d3, d1d2, d1d3, d2d3) ∈ D(6)

Then the composition of mappings

(M ⊕ WD)π(x) idM ⊕ Wρ−−−−−−≥
(
M ⊕ WD3

)
π(x)

ψ̂3 (∩x )−−−−≥
(
E ⊕ WD3

)
x

idE ⊕ W+D3≥D3−−−−−−−−−−−≥
(
E ⊕ WD3

)
x

is equivalent, by the very definition of ψ̂3, to the composition of mappings

(M ⊕ WD)π(x) idM ⊕ Wρ−−−−−−≥
(
M ⊕ WD3

)
π(x)

idM ⊕ W+D3≥D3−−−−−−−−−−−≥
(
M ⊕ WD3

)
π(x)

∩x−≥
(
E ⊕ WD3

)
x
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which is in turn equivalent to the composition of mappings

(M ⊕ WD)π(x) idM ⊕ W+D(6)≥D−−−−−−−−−−−≥
(
M ⊕ WD(6)

)
π(x)

idM ⊕ Wχ−−−−−−≥
(
M ⊕ WD3

)
π(x)

∩x−≥
(
E ⊕ WD3

)
x

with due regard to the commutative diagram in (25). By Theorem 4.5, this is equiv-
alent to the composition of mappings

(M ⊕ WD)π(x) idM ⊕ W+D(6)≥D−−−−−−−−−−−≥
(
M ⊕ WD(6)

)
π(x)

∩D(6)
x−−−≥

(
E ⊕ WD(6)

)
x

idE ⊕ Wχ−−−−−−≥
(
E ⊕ WD3

)
x

which is in turn equivalent by Proposition 7.4 to the composition of mappings

(M ⊕ WD)π(x) ψ̂1(π3,1(∩x ))−−−−−−−−−≥ (E ⊕ WD)x idE ⊕ W+D(6)≥D−−−−−−−−−−−≥
(
E ⊕ WD(6)

)
x

idE ⊕ Wχ−−−−−−≥
(
E ⊕ WD3

)
x

Since
ψ̂1(π̂3,1(∩x )) = π̂3,1(ψ̂3(∩x ))

by Proposition 7.3 and the commutativity of the diagram (25), this is equivalent to
the composition of mappings

(M ⊕ WD)π(x) π3,1(ψ̂3(∩x ))−−−−−−−−−≥ (E ⊕ WD)x idE ⊕ Wρ−−−−−−≥
(
E ⊕ WD3

)
x

idE ⊕ W+D3≥D3−−−−−−−−−−−≥
(
E ⊕ WD3

)
x ,

which completes the proof.

Notation 7.3 Thus the mapping ψ̂n: ĴDn
(π) ≥ Ĵ

Dn (π) is naturally restricted to a
mapping ψn: JDn

(π) ≥ J
Dn (π).
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A Note on Jet and Geometric Approach
to Higher Order Connections

Maïdo Rahula and Petr Vašík

Abstract We compare two ways of interpreting higher order connections. The
geometric approach lies in the decomposition of higher order tangent space into the
horizontal and vertical structures while the jet-like approach considers a higher order
connection as the section of a jet prolongation of a fibered manifold. Particularly, we
use the Ehresmann prolongation of a general connection and study the result from
the point of view of geometric theory. We pay attention to linear connections, too.

1 Introduction

Several models of real objects are given as a smooth manifold and one or more linear
connections, e.g. material elasticity, see [1]. To obtain a manifold with just one
characterization, one has to consider a concept of a higher order connection. In this
paper, we recall the basic concepts of higher order connections from both geometric
and jet–like point of view, Sects. 2 and 4. Let us note that the original ideas are those
of Ehresmann, i.e. the definition of a connection bymeans of a horizontal distribution
in a tangent space, the double fibered manifolds and holonomic and nonholonomic
jets of fibered mappings. The first idea can be found in [2], the second one in [3].
The second idea was used for the case of vector bundles by Pradines, [4]. Finally, the
concept of holonomic and nonholonomic jets is widely studied in [5–9]. The first idea
was extended in [10], where the main formulae of higher order objects in multiple
tangent spaces are derived, see also [11]. In this paper we compare the jet–like and
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geometric approach. We also recall a product of general connections which leads
to the so called Ehresmann prolongation and show the reason why this operation is
outstanding, especially concerning semiholonomic connections, Sect. 6.1. We study
Ehresmann prolongation of a connection from both points of view and show the
analogues in both approaches.

2 Jet Prolongation of a Fibered Manifold

Classical theory reads that r -th holonomic prolongation Jr Y of Y ⊕ M is the space
of r–jets of local sections M ⊕ Y . The nonholonomic prolongation J̃ r Y of Y ⊕ M
is defined by the following iteration:

1. J̃ 1Y = J 1Y, i.e. J̃ 1Y is a space of 1-jets of sections M ⊕ Y over the target
space Y .

2. J̃ r Y = J 1( J̃ r−1Y ⊕ M).

Clearly, we have an inclusion Jr Y ≥ J̃ r Y given by jr
x γ ∈⊕ j1x ( jr−1γ). Further, r -th

semiholonomic prolongation J
r
Y ≥ J̃ r Y is defined by the following induction. First,

by β1 = βY we denote the projection J 1Y ⊕ Y and by βr = β J̃ r−1Y the projection

J̃ r Y = J 1 J̃ r−1Y ⊕ J̃ r−1Y, r = 2, 3, . . . . If we set J
1
Y = J 1Y and assume we

have J
r−1

Y ≥ J̃ r−1Y such that the restriction of the projection βr−1 : J̃ r−1Y ⊕
J̃ r−2Y maps J

r−1
Y into J

r−2
Y, we can construct J 1βr−1 : J 1 J

r−1
Y ⊕ J 1 J

r−2
Y

and define

J
r
Y = {A ⊂ J 1 J

r−1
Y ; βr (A) = J 1βr−1(A) ⊂ J

r−1
Y }.

If we denote by FMm,n the category with objects composed of fibered man-
ifolds with m-dimensional bases and n-dimensional fibres and morphisms formed
by locally invertible fiber-preserving mappings, then, obviously, Jr , J

r
and J̃ r are

bundle functors onFMm,n .
Alternatively, one can define the r -th order semiholonomic prolongation J

r
Y by

means of natural target projections of nonholonomic jets, see [9]. For r ⊗ q ⊗ 0
let us denote by πr

q the target surjection πr
q : J̃ r Y ⊕ J̃ qY with πr

r being the
identity on J̃ r Y. We note that the restriction of these projections to the subspace of
semiholonomic jet prolongations will be denoted by the same symbol. By applying
the functor J k wehave also the surjections J kπr−k

q−k : J̃ r Y ⊕ J̃ qY and, consequently,

the element X ⊂ J̃ r Y is semiholonomic if and only if

(J kπr−k
q−k)(X) = πr

q(X) for any integers 1 ≤ k ≤ q ≤ r. (1)

In [9], the proof of this property can be found and the author finds it useful when
handling semiholonomic connections and their prolongations.

http://dx.doi.org/10.1007/978-3-642-55361-5_6
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Now let us recall local coordinates on higher order jet prolongations of a fibered
manifold Y ⊕ M . Let us denote by xi , i = 1, . . . , m the local coordinates on
M and y p, p = 1, . . . , n the fiber coordinates of Y ⊕ M . We recall that the
induced coordinates on the holonomic prolongation Jr Y are given by (xi , y p

α ),where
α is a multiindex of range m satisfying |α| ≤ r. Clearly, the coordinates y p

α on
Jr Y are characterized by the complete symmetry in the indices of α. Having the
nonholonomic prolongation J̃ r Y constructed by the iteration, we define the local
coordinates inductively as follows:

(1) Suppose that the induced coordinates on J̃ r−1Y are of the form

(xi , y p
k1...kr−1

), k1, . . . , kr−1 = 0, 1, . . . , m.

(2) We define the induced coordinates on J̃ r Y by

(xi , y p
k1...kr−10

= y p
k1...kr−1

, y p
k1...kr−1i = ∂

∂xi
y p

k1...kr−1
),

i.e. induced coordinates are partial derivatives are obtained as partial derivatives
of fiber coordinates with respect to the base coordinates.

It remains to describe coordinates on the semiholonomic prolongation J
r
Y . Let

(k1, . . . , kr ), k1, . . . , kr = 0, 1, . . . , m be a sequence of indices and denote by
〈k1, . . . , ks→, s ≤ r the sequence of non-zero indices in (k1, . . . , kr ) respecting the
order. Then the definition of J

r
Y reads that the point (xi , y p

k1...kr
) ⊂ J̃ r Y belongs to

J
r
Y if and only if y p

k1...kr
= y p

l1...lr
whenever 〈k1, . . . , kr → = 〈l1, . . . , lr →

3 Iterated Tangents

Another concept, in this paper called geometric, of a connection rises from the theory
of iterated tangent spaces. Let us recall that the bundle T k M ⊕ T k−1M is equipped
with the structure of a k-fold vector bundle. Particularly, T k M admits k different
projections to T k−1M ,

ρs := T k−sπs : T k M ⊕ T k−1M,

where πs is the natural projection T s M ⊕ T s−1M , s = 1, 2, . . . , k. Each pro-
jection defines a vector bundle with basis T k−1M and the total space is com-
posed of 2k−1n-dimensional vector spaces as fibers. The local coordinates on the
neighborhoods

T sU ≥ T s M, where T s−1U = πs(T
sU ), s = 1, 2, . . . , k,
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are derived from coordinates, or coordinate mappings, (ui ), which are given on the
neighborhood U ≥ M :

U : (ui ), i = 1, 2, . . . , n,

T U : (ui , ui
1), where ui := ui ∞ π1, ui

1 := dui ,

T 2U : (ui , ui
1, ui

2, ui
12),

where ui := ui ∞ π1π2, ui
1 := dui ∞ π2, ui

2 := d(ui ∞ π1), ui
12 := d2ui ,

etc.

Proposition 3.1 Coordinate mappings given on the neighborhood T s−1U induce
coordinate mappings on the neighborhood T sU with respect to the projection πs by
adding the differentials of these mappings.

Local coordinates are obtained by the following principle:
to the coordinates of a point of a manifold we attach the coordinates of the vector
tangent to the manifold at that point. We use the following notation : the coordinates
of a neighborhood T kU consist of two copies of local coordinates on T k−1U where
the second copy is equipped with an additional subscript k . This principle is suitable
in the sense that the coordinates with index s are recognized as the fiber coordinates
for projections ρs, s = 1, 2, . . . , k, i.e. the coordinates with index s disappear after
the application of projection ρs .

The coordinate form of the three projections ρs : T 3U ⊕ T 2U, s = 1, 2, 3, is
given by the following diagram:

(ui , ui
1, ui

2, ui
12, ui

3, ui
13, ui

23, ui
123)

ρ1 ∪ ρ2 ↔ ↘ ρ3

(ui , ui
2, ui

3, ui
23) (ui , ui

1, ui
3, ui

13) (ui , ui
1, ui

2, ui
12).

Remark 3.1 Let us note that the semiholonomity condition is connected to the notion
of the osculating bundle, see [11], and can be defined as the equalizer of all possible
projections, which corresponds to (1).

4 Connections

We start with the jet–like approach to connections. This rather structural description
is quite suitable for determining natural operators on connections, for details see [5].

Definition 4.1 A general connection on the fibered manifold Y ⊕ M is a section
λ : Y ⊕ J 1Y of the first jet prolongation J 1Y ⊕ Y.

Further generalization of this idea leads us to the definition of r -th order connection,
which is a sectionof r -th order jet prolongationof afiberedmanifold.According to the
character of the target space we distinguish holonomic, semiholonomic and nonholo-
nomic general connections. The coordinate form of a second order nonholonomic



A Note on Jet and Geometric Approach to Higher Order Connections 449

connection α : Y ⊕ J̃ 2Y is given by

y p
i = F p

i (x, y), y p
0i = G p

i (x, y), y p
i j = H p

i j (x, y),

where F, G, H are arbitrary smooth functions. In case of linear connections all
functions are linear in fiber coordinates.

Let us now recall the geometric concept of a connection and its extension to higher
order connections. The following section is based on the paper [11].

Definition 4.2 A connection on bundle π : M1 ⊕ M is defined by the structure
∗h ≤ ∗v on a manifold M1 where ∗v = ker T π is vertical distribution tangent to
the fibers and ∗h is horizontal distribution complementary to the distribution ∗v .
The transport of the fibers along the path γ ≥ M is realized by the horizontal lifts
given by the distribution ∗h on the surface π−1(γ). If the bundle is a vector one and
the transport of fibers along an arbitrary path is linear, then the connection is called
linear.

We will assume that the base manifold M is of dimension n and the fibers are of
dimension r . Then

dim∗h = n , dim∗v = r .

On the neighborhood U ≥ M1, let us consider local base and fiber coordinates:

(ui , uα) , i = 1, 2, . . . , n ; α = n + 1, . . . , n + r.

Base coordinates (ui ) are determined by the projection π and the coordinates
(ūi ) on a neighborhood Ū = π(U ), ui = ūi ∞ π .

Definition 4.3 On a neighborhood U ≥ M1 we define a local (adapted) basis of the
structure ∗h ≤ ∗v ,

(Xi Xα) =
(

∂

∂u j

∂

∂uβ

)
·
⎧

δ
j
i 0

λ
β

i δ
β
α

⎨
,

(
ωi

ωα

)
=

⎧
δi

j 0
−λ α

j δα
β

⎨
·
(

du j

duβ

)
.

The horizontal distribution ∗h is the linear span of the vector fields (Xi ) and the
annihilator of the forms (ωα),

Xi = ∂i + λ
β

i ∂β, ωα = duα − λ α
i dui .

Definition 4.4 A classical affine connection on manifold M is seen as a linear con-
nection on the bundle π1 : TM ⊕ M . On the tangent bundle TM ⊕ M one can
define the structure∗h ≤∗v. The indices in the formulas are denoted by Latin letters
all of them ranging from 1 to n. The functions λ α

i , Xi ,ωα are of the form (in λ α
i

the sign is changed to comply with the classical theory) :
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λ α
i � −λ i

jkuk
1 ,

Xi = ∂i + λ α
i ∂α � Xi = ∂i − λ k

i j u
i
1∂

1
k ,

ωα = duα − λ α
i dui � Ui

12 = ui
12 + λ i

jkuk
1u j

2 .

Definition 4.5 Higher order connections are defined as follows: on tangent bundle
TM the structure ∗ ≤ ∗1 is defined where ker T ρ1 = ∗1, on T (TM) the structure
α ≤ α1 ≤ α2 ≤ α12 is defined where ker T ρs = αs ≤ α12 , s = 1, 2, etc.

5 Connections on Two-Fold Fibered Manifolds

More generally, one can define a second order connection by means of a two-fold
fibered manifold. Note that the Definition 4.5 is a special case of the following. A
two-fold fibered manifold is a commutative diagram

M
ρ2

����
��

��
�� ρ1

����
��

��
��

M1

π1 ����
��

��
��

M2

π2����
��

��
��

M

where ρ1, ρ2 and π1,π2—four fibered manifolds
dim M = n, dimM1 = n + r1, dimM2 = n + r2, dimM = n + r1 + r2 + r12.
The double projection

π = π1 ∞ ρ2 = π2 ∞ ρ1 : M ⊕ M

divides a manifoldM to n-parameter family of fibers of dimensions (r1 + r2 + r12).
Each fiber carries structure of another two fibers of dimensions r1 + r12 and r2 + r12
and these two fibers have the common intersection of dimension r12.

A two-fold fibered manifold is called a vector bundle if both fibrations π1, π2, ρ1
and ρ2—form vector bundles.

An example of a two-fold fibered manifold is the second order tangent bundle
T 2M of a manifold M . In this case n = r1 = r2 = r12.

Definition 5.1 A connection on a two-fold fibered manifold is defined by a structure
on a manifold M :

α ⊥ α1 ⊥ α2 ⊥ α12 , (2)

dimα = n, dimα1 = r1 , dimα2 = r2 , dimα12 = r12 ,
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KerT ρ2 = α2 ≤ α12 , KerT ρ1 = α1 ≤ α12

T ρ2(α ≤ α1) = TM1, T ρ1(α ≤ α2) = TM2 ,

T πα = TM.

Remark 5.1 A connection on a two-fold vector fibered manifold is called linear if
the structure (2) induces on the manifolds π1,π2, ρ1 and ρ2 linear connections.

Remark 5.2 Similarly, one can define a connection on a k–fold fibered manifold. In
such case the commutative diagram would be represented by a k–dimensional cube.
Thesemanifolds would correspond to the k–th tangent bundle T k M of amanifold M .

On the neighborhoods

U ≥ M , U1 = ρ2(U ) ≥ M1, U2 = ρ1(U ) ≥ M2, U = π(U ) ≥ M

we have the coordinate systems
(ui , uα1 , uα2 , uα12), (ui , uα1), (ui , uα1), (ui ).

The transformation of coordinates on the neighborhoods U ,

(ui , uα1 , uα2 , uα12) � (ũi , ũα1 , ũα2 , ũα12) = (ai , aα1 , aα2 , aα12),

gives a Jacobi matrix: ⎩
⎪⎪⎪⎝

ai
j 0 0 0

aα1
j aα1

β1
0 0

aα2
j 0 aα2

β2
0

aα12
j aα12

β1
aα12
β2

aα12
β12

⎞
⎫⎫⎫⎡ .

See [10, 12]. Let us mention that the local (adapted) basis of such decomposition
is represented by a matrix of the form

⎩
⎪⎪⎪⎝

δi
j 0 0 0

λ
α1
j δα1

β1
0 0

λ
α2
j 0 δα2

β2
0

λ
α12
j λ

α12
β1

λ
α12
β2

δα12
β12

⎞
⎫⎫⎫⎡ . (3)

The dual frame is given by the system of 1–forms:

ωi = dui ,

ωα1 = duα1 − λ
α1

i dui ,

ωα2 = duα2 − λ
α2

i dui ,

ωα12 = duα12 − λ α12
α1

duα1 − λ α12
α2

duα2 − λ̄
α12

i dui ,
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where λ
α12

i − λ̄
α12

i = λ
α12
β1

λ
β1

i + λ
α12
β2

λ
β2

i .

In case of linear connection the elements of the matrix (3) are of the form

λ
α1
j = λ

α1
jβ1

uβ1, λ
α2
j = λ

α2
jβ2

uβ2 ,

λ
α12
β1

= λ
α12
β1β2

uβ2 , λ
α12
β2

= λ
α12
β2β1

uβ1 ,

λ
α12
j = λ

α12
jβ1β2

uβ1uβ2 + λ
α12
jβ12

uβ12 , λ̄
α12
j = λ̄

α12
jβ1β2

uβ1uβ2 + λ̄
α12
jβ12

uβ12 ,

λ
α12
jβ1β2

− λ̄
α12
jβ1β2

= λ
α12
γ2β1

λ
γ2
jβ2

,

where the coefficients depend on the base coordinates ui only.

6 Ehresmann Prolongation

First, let us now recall a concept of a product of two connections.
Given two higher order connections λ : Y ⊕ J̃ r Y and λ : Y ⊕ J̃ sY, the

product of λ and λ is the (r + s)-th order connection λ ∀ λ : Y ⊕ J̃ r+sY defined
by

λ ∀ λ = J̃ sλ ∞ λ .

Particularly, if both λ and λ are of the first order, then λ ∀ λ : Y ⊕ J̃ 2Y is
semiholonomic if and only if λ = λ and λ ∀ λ is holonomic if and only if λ is
curvature-free, [9, 13].

As an example we show the coordinate expression of an arbitrary nonholonomic
second order connection and of the product of two first order connections. The
coordinate form of α : Y ⊕ J̃ 2Y is

y p
i = F p

i (x, y), y p
0i = G p

i (x, y), y p
i j = H p

i j (x, y),

where F, G, H are arbitrary smooth functions. Further, if the coordinate expressions
of two first order connections λ, λ : Y ⊕ J 1Y are

λ : y p
i = F p

i (x, y), λ : y p
i = G p

i (x, y), (4)

then the second order connection λ ∀ λ : Y ⊕ J̃ 2Y has equations

y p
i = F p

i , y p
0i = G p

i , y p
i j = ∂F p

i

∂x j
+ ∂F p

i

∂yq
Gq

j .

For linear connections, the coordinate form would be obtained by substitution
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F p
i = F p

iq yq ,

G p
i = G p

iq yq

in the Eq. (4), where F p
iq and G p

iq are functions of the base manifold coordinates xi .

For order three see [8].
In the above process, if λ = λ , the connection λ ∀ λ is called the Ehresmann

prolongation of λ , iteratively we obtain the r–th Ehresmann prolongation of λ . We
show that Ehresmann prolongation plays an important role in determining all natural
operators transforming first order connections into higher order connections. Let us
note that also natural transformations of semiholonomic jet prolongation functor J

r

are involved. To find the details about this topic we refer to [5–7]. For our purposes,
it is enough to consider r = 2. We use the notation of [5], where the map e :
J
2
Y ⊕ J

2
Y is obtained from the natural exchange map eε : J 1 J 1Y ⊕ J 1 J 1Y as

a restriction to the subbundle J
2
Y ≥ J 1 J 1Y . Note thatwhile eε depends on the linear

connection ε on M , its restriction e is independent of any auxiliary connections. We
remark, that originally the map eε was introduced by M. Modugno. We also recall

that J. Pradines introduced a natural map J
2
Y ⊕ J

2
Y with the same coordinate

expression.
Now we are ready to recall the following assertion, see [7] for the proof.

Proposition 6.1 All natural operators transforming first order connection λ : Y ⊕
J 1Y into second order semiholonomic connection Y ⊕ J

2
Y form a one parameter

family
λ ∈⊕ k · (λ ∀ λ ) + (1 − k) · e(λ ∀ λ ), k ⊂ R.

This shows the importance of Ehresmann prolongation in the theory of prolonga-
tions of connections.

7 Tangent Functor and Ehresmann Prolongation

If we apply the tangent functor T two times on a projection π : E ⊕ M and a section
σ : M ⊕ E we obtain

T π : TE ⊕ TM , T 2π : T 2E ⊕ T 2M,

T σ : TM ⊕ TE, T 2σ : T 2M ⊕ T 2E,

respectively. The mappings σ, T σ and T 2σ define the sections of fibered manifolds
π, T π and T 2π.

Let us consider local coordinates on the following manifolds in the form

on M, TM, T 2M : (xi ), (xi , xi
1), (xi , xi

1, xi
2, xi

12),

and on E, TE, T 2E : (y p), (y p, y p
1 ), (y p, y p

1 , y p
2 , y p

12).
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Let us also consider for a function f defined on a manifold M , its following differ-
entials on T 2M in local coordinate form:

f1
.= fi xi

1, f2
.= fi xi

2, f12
.= fi j x i

1x j
2+ fi xi

12, where fi = ∂ f

∂xi
, fi j = ∂2 f

∂xi∂x j
.

Furthermore, f1 = d f ∞ ρ1 , f2 = d f ∞ ρ2 , f12 = d 2 f . We use these notations in
the formulae bellow.

If the section σ is defined by local functions λ p, then the sections T σ and T 2σ
are defined by its differentials λ

p
1 , λ p

2 and λ
p
12,

σ : xi � y p = λ p,

T σ : (xi , xi
1) � (y p, y p

1 ) = (λ p, λ
p
1 ),

T 2σ : (xi , xi
1, xi

2, xi
12) � (y p, y p

1 , y p
2 , y p

12) = (λ p, λ
p
1 , λ

p
2 , λ

p
12),

where λ
p
1 = λ

p
i xi

1, λ
p
2 = λ

p
i xi

2, λ
p
12 = λ

p
i j xi

1x j
2 + λ

p
i xi

12. (5)

The casewhen the coefficientsλ
p

i , λ
p

i j in (5) are arbitrary functions, corresponds
to a nonholonomic connection on the fibered manifold π.

The case when λ
p

i j = ∂λ
p

i

∂x j
, where λ

p
i are arbitrary functions corresponds to a

semiholonomic connection on the fibered manifold π.
The case when λ

p
1 = dλ p ∞ ρ1 , λ

p
2 = dλ p ∞ ρ2 , λ

p
12 = d 2λ p , corresponds

to a holonomic connection on the fibered manifold π.
The functionsλ p

i , λ
p

i j definenonholonomic, semiholonomicor holonomicEhres-
mann prolongation of a connection, respectively.

Remark 7.1 Nonholonomic prolongation induces a connection on a double fibered
manifold

J ⊕ E ⊕ M : y p
i � y p � xi .

On the fibered manifold E ⊕ M the fiber transformations are given by the Pfaff
system

ω p ∩ dy p − λ
p

i dxi = 0,

more precisely, along a curve xi (t) – by the system of first order ODEs

ẏ p = λ
p

i ẋ i . (6)

In case (λ
p
12, xi

1, x j
2 , xi

12) � (ÿ p , ẋ i , ẋ j , ẍ i ) we obtain the system of second
order ODEs:

λ
p
12 = λ

p
i j xi

1x j
2 + λ

p
i xi

12 � ÿ p = λ
p

i j ẋ i ẋ j + λ
p

i ẍ i .
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Considering the system (6), we obtain for fiber coordinates yα, yα
i system of first

order ODEs

⎣
ẏ p = λ

p
i ẋ i ,

ẏ p
i = λ

p
i j ẋ j .

The sections of fibers along a curve xi (t) are given.
The horizontal distribution ∗h is n-dimensional and described by the vector field

Xi = ∂i + λ
p

i ∂p + λ
p

i j ∂
j
p , where ∂i = ∂

∂xi
, ∂p = ∂

∂y p
, ∂

j
p = ∂

∂y p
j

.
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Classification of Principal Connections
on ˜W2PE

Jan Vondra

Abstract We assume a vector bundle E → M and the principal bundle PE of frames
of E. Let K be a general linear connection on E and Λ be a linear connection on M.
We classify all connections on W̃2PE naturally given by K and Λ.

1 Introduction

We study principal connections on principal prolongation W̃rP of a principal bundle
P. Some authors, i.e. Kolář, Janyška, Doupovec, Mikulski, deal with holonomic case
of this problem, see [1–4]. Classification of all principal connections on W̃rP natu-
rally given by principal connection Γ on P depends on auxiliary linear connection
on the base. Moreover solution of this problem is depends essentially on the structure
group of principal bundles. In this paper we give the full classification of principal
connections on W̃2PE, i.e. for the linear gauge group GL(n) and order two.

We use the terminology of natural bundles theory in sense of [5–7] and of gauge
natural bundles theory in sense of [8, 9]. Let as recall that some other view is in [10].

Results of this paper are based on reduction theorems by Janyška [11, 12].
We denote by PBm(G) the category of principal G-bundles with m-dimensional

bases and principal bundle morphisms over diffeomorphisms of bases.
All manifolds and maps are assumed to be smooth.

J. Vondra (B)

Department of Mathematics and Statistics, Masaryk University,
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2 Principal Bundles and Principal Connections

2.1 Principal Bundles and Principal Connections

We consider a principal bandle P = (P, M, π; G) with a structure group G. We
denote by (xλ, za) fibered coordinates on P, λ = 1, . . . , dim M, a = 1, . . . , dim G.

By ad(P) we denote the vector bundle associated to P with respect to the adjoint
action of G on its Lie algebra g. We denote by (Ba) a base of left invariant vector
fields on g and we denote by (xλ, ua) the induced fiber linear local coordinates on
ad(P). Let us denote by ca

bd the related structure constants, i.e. [Bb, Bd] = ca
bdBa.

For the right action rg : P → P given by an element g ∈ G we consider the
tangent mapping Trg : TP → TP. Let Ξ be a vector field on P. We say that Ξ is
right invariant if Ξ(pg) = TrgΞ(p) for all p ∈ P and g ∈ G. In coordinates we have

Ξ = ξλ(x)∂λ + Ξa(x)̃Ba, (1)

where (̃Ba) is the base of vertical right invariant vector fields on P which are induced
by (Ba). So Ξ are sections of the bundle TP/G → M.

Definition 2.1 For each principal bundle P = (P, M, π; G) and for each integer r
we can define the principal bundle W̃rP = P̃rM ×M J̃rP ≡ (W̃rP, M, p; W̃r

mG). The
structure group is the semidirect product W̃r

mG = G̃r
m ∅ T̃ r

mG.

The group W̃r
mG is the group of nonholonomic r-jets at (0, e) of all automorphisms

ϕ : R
m × G → R

m × G with ϕ(0) = 0, where the multiplication μ is defined by the
composition of jets,

μ(̃jrϕ(0, e),̃ jrψ(0, e)) = j̃r(ψ ◦ ϕ)(0, e). (2)

Remark 2.1 Let us recall that elements of T̃ r
mG = J̃r

0(R
m, G) are said to be the

m-dimensional nonholonomic velocities of order r on G.
In the semiholonomic case we hawe W

r
mG = G

r
m ∅ T

r
mG.

In order one coincide holonomic, semiholonomic and nonholonomic jets, i.e.

W̃1
mG = W

1
mG = W1

mG.

In order two, we have canonical group homomorphisms

π2
10 : W̃2

mG → W̃1
mG, π2

01 : W̃2
mG → W̃1

mG, p1 : W̃2
mG → G̃2

m, (3)

which induce homomorphisms of Lie algebras

π2
10 : w̃2

mg → w̃1
mg , π2

01 : w̃2
mg → w̃1

mg , p1 : w̃2
mg → g̃2m , (4)

principle bundle morphisms, over the identity of M,
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π2
10 : W̃2P → W̃1P, π2

01 : W̃2P → W̃1P, p1 : W̃2P → P̃2M, (5)

and homomorphisms of associated vector bundles

π2
10 : ad(W̃2P) → ad(W̃1P), π2

01 : ad(W̃2P) → ad(W̃1P), (6)

p1 : ad(W̃2P) → ad(P̃2M).

2.2 Principal Connection on P and on ˜W2P

A principal connection on P is defined as lifting linear mapping

Γ : TM → TP/G.

In coordinates
Γ = dλ ⊗ (

∂λ + Γ a
λ(x)̃Ba

)
, (7)

where Γ a
λ(x) are functions on M. If we identify Γ with the functions Γ a

λ(x) then
Γ can be considered as a section of the bundle QP → M of principal connections
on P.

Moreover, we have [9].

Proposition 2.1 Let P → M be a principal bundle and QP → M is the bundle of
principal connections on P. Then QP is a 1-order G-gauge-natural affine bundle
associated with the vector bundle ad(P) ⊗ T∗M → M, which implies that the
standard fiber of the functor Q is g ⊗ R

m∗.

Example 2.1 Let us recall that P̃2M is the 2nd order nonholonomic frame bundle of
M. A principal connection Λ2 on P̃2M has form

Λ2 = dλ ⊗
(
∂λ + Λν

μ0λB̃μ0
ν + Λν

0μλB̃0μ
ν + Λν

μ1μ2λ
B̃μ1μ2

ν

)
. (8)

We remark that principal connections on P̃1M = P1M are in the bijection with
classical connections on M (linear connections on TM).

Let Γ2 be a principal connection on W̃2P given in coordinates by

Γ2 = dλ ⊗
(
∂λ + Λν

μ0λB̃μ0
ν + Λν

0μλB̃0μ
ν + Λν

μ1μ2λ
B̃μ1μ2

ν (9)

+ Γ a
λB̃a + Γ a

μ0λB̃μ0
a + Γ a

0μλB̃0μ
a + Γ a

μ1μ2λB̃μ1μ2
a

)
.

The projections (5) of W̃2P and the functor Q induce projections
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π2
10 : QW̃2P →QW̃1P , π2

01 : QW̃2P → QW̃1P , (10)

p1 : QW̃2P → QP̃2M,

so any principal connection Γ2 on W̃2P projects on the principal connection Λ2 on
P̃2M, see (8), and on the principal connections Γ10 and Γ01 on W̃1P.

By Proposition 2.1 QW̃2P → M is the affine bundle modeled over the vector
bundle ad(W̃2P) ⊗ T∗M → M.

Now, if we consider two principal connections Γ2 and Γ̄2 on W̃2P such that they
are over the same Λ2 on P̃2M and over the same Γ10 and Γ01 on W̃1P, then the
difference Γ2 − Γ̄2 is in the intersection of the kernels of projections

π2
10 ⊗ idT∗M : ad(W̃2P) ⊗ T∗M → ad(W̃1P) ⊗ T∗M,

π2
01 ⊗ idT∗M : ad(W̃2P) ⊗ T∗M → ad(W̃1P) ⊗ T∗M

and
p1 ⊗ idT∗M : ad(W̃2P) ⊗ T∗M → ad(P̃2M) ⊗ T∗M.

Let ξ be a vector field on M, Γ be a principal connection on P and Λ be a principal
connection on P1M. Let hΓ (ξ) denote the horizontal lift of ξ with respect to Γ . Let
us denote by Flt(hΓ (ξ)) the flow of hΓ (ξ). Then the expresion

W̃2(Flt(h
Γ (ξ))) = (P̃2(Flt(ξ)), J̃2(Flt(h

Γ (ξ)))) = Flt(h
W̃ 2Γ (ξ))

gives principal connection W̃ 2Γ on W̃2P which depends on Γ in order 2 and on Λ

in order 1. So W̃ 2Γ is a natural operator

W̃ 2Γ : J1QP1M ×M J2QP → QW̃2P

called the flow prolongation of Γ with respect to Λ.
The general problem is the classification of all principal connections on W̃rP

which are naturally given by a principal connection Γ on P and by a classical con-
nection Λ on the base M. In general this problem is still open. There are only some
particular results, but in holonomic case only. Namely, the classification of principal
connections on W1P for a torsion free Λ and any Γ is given in [4] and the full
classification for the linear gauge group GL(n) and order one is given in [3]. Finally,
the full classification for the linear gauge group GL(n) and order two in holonomic
case is given in [13].

Clearly, the solution of this problem depends essentially on the structure group of
principal bundles. In this paper we give the full classification of principal connections
for the linear gauge group GL(n) and order two.



Classification of Principal Connections on W̃2PE 461

2.3 Connections on Frame Bundle PE

Let E → M be a vector bundle with m-dimensional base and n-dimensional fibers.
Let us denote by (xλ, yi) local linear fiber coordinate charts on E. Let PE → M be
the frame bundle of E, i.e. PE is the principal bundle with the structure group GL(n)
and the induced fiber coordinates (xλ, xi

j).
Principal connections on PE are in bijection with general linear connections on

E. The coordinate expression of a linear connection K on E is of the type

K = dλ ⊗ (∂λ + Ki
j λ(x)y

j∂i)

and, if we consider K as a principal connection on PE,

K = dλ ⊗ (∂λ + Ki
pλ(x)x

p
j ∂

j
i ) = dλ ⊗ (∂λ + Ki

j λ(x)̃B
j
i).

Applying the functor W̃r on PE we obtain the principle prolongation W̃rPE with
the structure group W̃r

mGL(n) = G̃r
m ∅ T̃ r

mGL(n). For example, in order 2 we have
the structure group W̃2

mGL(n) with coordinates (aλ
μ0, aλ

0μ, aλ
μν, ai

j, ai
jμ0, ai

j0ν, ai
jμν).

If we denote by (Xλ
μ0, Xλ

0μ, Xλ
μν, Xi

j , Xi
jμ0, Xi

j0ν, Xi
jμν) the induced coordinates on the

Lie algebra w̃2
mgl(n) we can compute easily the adjoint action of the group W̃2

mGL(n)

on w2
mgl(n). In coordinates if X̄ = ad(g)(X) we have

X̄λ
μ0 = aλ

ρXρ
τ0ãτ

μ , X̄λ
0μ = aλ

ρXρ
0τ ãτ

μ ,

X̄λ
μν = aλ

ρXρ
αβ ãα

μãβ
ν + pol(a, X) X̄i

j = ai
pXp

q ãq
j ,

X̄i
jρ0 = ai

pXp
qα0ãα

ρ ãq
j + pol(a, X) , X̄i

j0ρ = ai
pXp

q0α ãα
ρ ãq

j + pol(a, X),

X̄i
jρσ = ai

qτ Xτ
αβ ãα

ρ ãβ
σ ãq

j + ai
pXp

qαβ ãα
ρ ãβ

σ ãq
j + pol(a, X),

where pol(X, a) is a polynome on W̃2
mGL(n) × w̃1

mgl(n) such that any monome
contains exactly one coordinate of π2

10(X) or π2
01(X) of orders less then the leading

terms.

Proposition 2.2 1. The restriction of the adjoint action of the group W̃2
mGl(n) on

the intersection of the kernels of the projections π2
10 : w̃2

mgl(n) → w̃1
mgl(n) and

π2
01 : w̃2

mgl(n) → w̃1
mgl(n) have the form

X̄λ
μν = aλ

ρXρ
αβ ãα

μãβ
ν ,

X̄i
jρσ = ai

qτ Xτ
αβ ãα

ρ ãβ
σ ãq

j + ai
pXp

qαβ ãα
ρ ãβ

σ ãq
j .

2. The restriction of the adjoint action of the group W̃2
mGl(n) on the kernel of the

projection p1 : w̃2
mgl(n) → g̃2m have the form
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X̄i
j = ai

pXp
q ãq

j ,

X̄i
jρ0 = ai

pXp
qα0ãα

ρ ãq
j + pol(a, X) , X̄i

j0ρ = ai
pXp

q0α ãα
ρ ãq

j + pol(a, X),

X̄i
jρσ = ai

pXp
qαβ ãα

ρ ãβ
σ ãq

j + pol(a, X),

where pol(X, a) is a polynom on W̃2
mGL(n) × t̃1mgl(n) such that any monom

contains exactly one coordinate of orders less then the leading terms.

Proof 1. The intersection of the kernels of the projections π2
10 : w̃2

mgl(n) →
w̃1
mgl(n) and π2

01 : w̃2
mgl(n) → w̃1

mgl(n) is given by Xλ
μ0 = 0, Xλ

0μ = 0, Xi
j = 0,

Xi
jμ0 = 0 and Xi

j0ν = 0, i.e. all pol(a, X) = 0.

2. The kernel of the projection p1 : w̃2
mgl(n) → g̃2m is given by Xλ

μ0 = 0, Xλ
0μ = 0,

and Xλ
μν = 0. �

Now, as a direct consequence of Proposition 2.2, we have.

Theorem 2.1 The restriction of the adjoint action of the group W̃2
mGl(n) on the

intersection of the kernels of the projections π2
10 : w̃2

mgl(n) → g̃2m, π2
01 : w̃2

mgl(n) →
g̃2m and p1 : w̃2

mgl(n) → g̃2m is given by

X̄i
jρσ = ai

pXp
qαβ ãα

ρ ãβ
σ ãq

j ,

i.e. Ker π2
10 ∩ Ker π2

01 ∩ Ker p1 is gl(n) ⊗ ⊗2
R

m∗ with the action of the group G1
m ×

GL(n) given as the tensor product of the adjoint action of GL(n) on its Lie algebra
gl(n) and the tensor action of the group G1

m on ⊗2
R

m∗.

Corollary 2.1 The intersection of the kernels of the projections π2
10 : ad(W̃2

mPE)→
ad(W̃1

mPE), π2
01 : ad(W̃2

mPE) → ad(W̃1
mPE) and p1 : ad(W̃2

mPE) → ad(P̃2M) is the
vector bundle

ad(PE) ⊗ ⊗2T∗M → M.

Next we will describe the flow lift (see Sect. 2.1) of a principal connection K
on PE and a classical connection Λ on M on the principle bundle W̃2PE. We have
the induced fibered coordinates on W̃2PE denoted by (xλ

μ0, xλ
0μ, xλ

μν, xi
j, xi

jμ0, xi
j0ν,

xi
jμν).

The flow lift on W̃2PE of a right invariant vector field Ξ on PE is then

W̃ 2Ξ = P̃2ξ +ξ J̃
2Ξ,

where P̃2ξ is the flow lift of the vector field ξ on P̃2M and J̃ 2(Ξ) is the 2nd order
nonholonomic jet lift of Ξ on J̃2PE, see [5, 9].
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3 Classification of Connections on ˜W2PE

Let as recall that any principal connection on W̃2PE projects by (10) on principal
connection Λ2 on P̃2M and principal connections Γ10 and Γ01 on W̃1PE. So first we
will classify principal connections on P̃2M naturally given by a classical connection
Λ and a general linear connection K (considered as principal connections on the
corresponding frame bundle).

3.1 Natural Connections on the 2nd Order Frame Bundle

Any natural principal connection Λ2 on P̃2M given by Λ projects on principal con-
nections Λ10 and Λ01 on P1M given by Λ. So, we have to classify first all natural
connections Λ1 on P1M given by Λ. This result is known and we have.

Proposition 3.1 [9, p. 220] All natural operators transforming a principal con-
nection Λ on P1M into principal connections Λ1 on P1M form the 3-parameter
family

Λ1(Λ) = Λ + Φ1 ,

where Φ1 is a (1, 2)-tensor field of the form

Φ1 = a1 T + a2 IdTM ⊗ T̂ + a3 T̂ ⊗ IdTM , ai ∈ R ,

where T denote the torsion tensor of Λ and T̂ denote the contraction.

Theorem 3.1 Let Λ2(Λ) on P̃2M be a natural connection given by Λ projectable
on Λ1(Λ) then the difference

Λ2(Λ) − P̃2Λ1(Λ) : M → TM ⊗ ⊗3T∗M.

Proof As a corollary of Theorem 2.1 we obtain that the intersection of the kernels of
the projections π2

10 : g̃2
m → g1

m and π2
01 : g̃2

m → g1
m is g1

m⊗R
m∗ which implies that the

intersection of kernels of projections π2
10ad(P̃2M) → ad(P1M) and π2

01ad(P̃2M) →
ad(P1M) is the vector bundle ad(P1M) ⊗ T∗M. The difference of two principle
connections on P̃2M over the same Λ10 and Λ01 on P1M is then in the ad(P1M) ⊗
T∗M ⊗ T∗M. Moreover, ad(P1M) = TM ⊗ T∗M. �
Lemma 3.1 Any natural tensor field Φ2(Λ) : M → TM ⊗ ⊗3T∗M naturally given
by Λ on M and by general linear connection K on E is of maximal order one, is of
the form

Ψ (j1Λ, j1K) = Ψ̄ (R[Λ̃], R[K], T , ∇̃T)

and all Φ2(Λ, K) form 32-parameter family.
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Proof A non-symmetric connection Λ can be decomposed as the sum of the classical
symmetric connection Λ̃ (obtained by the symmetrization of Λ) and the torsion
tensor T . From reduction theorems for classical non-symmetric connections [12]
we obtain that Φ2(Λ) is given as a zero order operator on the curvature tensor of
Λ̃ and its covariant differentials (with respect to Λ̃) and the torsion tensor and its
covariant differentials (with respect to Λ̃). From the homogeneous function theorem
[9, p. 213] it follows, that a natural (1, 3)-tensor field can be constructed only from
the curvature tensors of Λ̃ and K , torsion T and the first covariant differential of T .
�

Theorem 3.2 All natural principal connections Λ2(Λ) on P̃2M naturally given by
a classical connection Λ on M and by general linear connection K on E form a
38-parameter family.

Proof This theorem is the corollary of Proposition 3.1 (2 times 3 parameters) and
Lemma 3.1 (32 parameters). �

3.2 Classification of Natural Connections on ˜W2PE

Proposition 3.2 Any principal connection Γ2 on W̃2PE naturally given by Λ and
K is in the correspondence

Γ2 ≈ (Λ2, Γ10, Γ01, Ψ2),

where Λ2 is principal connection on P̃2M, Γ10 and Γ01 are principal connections
on W̃1PE and Ψ2 is natural tensor field M → E ⊗ E∗ ⊗ ⊗3T∗M all naturally given
by Λ and K.

Proof From coordinate expression of Γ2 and projections (10) we have the corre-
spondence with Γ10, Γ01 and Λ2. The difference of two connection over the same
connections Γ10, Γ01 and Λ2 is by the Corollary 2.1 exactly natural tensor field of
Ψ2. �

From the previous follows that for the classification of all Γ2 we need to classify
all Λ2, all Γ1 and all natural tensor fields Ψ2.

Now, we have to classify all natural connections Γ1 on W̃1PE given by Λ and K .
Let as recall that we have correspondance Γ1 ≈ (Λ1, Γ0, Ψ1). Λ1 is described by
the Proposition 3.1.

Lemma 3.2 All natural operators transforming a principal connection K on PE
into principal connections Γ0 on PE naturally given by Λ and K form a 1-parameter
family

Γ0 = K + Ψ0 = K + mIdE ⊗ c1
1T , m ∈ R.
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Proposition 3.3 [3, p. 107] All natural operators transforming a classical connec-
tion Λ on M and a linear connection K on PE into principal connections Γ1 on
W1PE form the 14-parameter family.

Proof We have 3 parameters from Λ1, 1 parameter from Γ0 and 10 parameters come
from Ψ1. Ψ1 is given by the curvature tensor of K , by the tensor product of identity of
E and by the contracted curvature tensor of Λ and of K , by contracted tensor product
of T (two times) and by the contracted covariant differentials of T For more details
see [3]. �

Lemma 3.3 All natural tensor fields ω : M → ⊗3T∗M of type (0, 3) naturally given
by Λ and K are of maximal order two and form 72-parameter family.

Proof From reduction theorems for classical non-symmetric connections [12] we
obtain that ω is given by the curvature tensor of Λ̃ and its covariant differentials
(with respect to Λ̃) and the torsion tensor and its covariant differentials (with respect
to Λ̃). From the homogeneous function theorem [9, p. 213] it follows, that a natural
(0, 3)-tensor field is of maximal order two. First part of ω has order two and is given
by contracted covariant differential of the curvature tensor of K , contracted covariant
differential of the curvature tensor of Λ̃ and contracted second order covariant differ-
ential of the torsion of Λ. From Bianchi and Ricci identities we obtain a 12-parameter
family. The second part has order one and is given by the contracted curvature tensor
of K and the torsion tensor T , by the contracted curvature tensor of Λ̃ and the torsion
tensor T and by the contracted covariant differential of the torsion tensor and torsion
tensor. In this way we obtain a 33-parameter family. The last part has order zero and
is given by the tensor product of torsion (three times) only and form a 27-parameter
family. �

Lemma 3.4 All natural tensor fields Ψ2(Λ, K) : M → E ⊗ E∗ ⊗⊗3T∗M naturally
given by Λ and K form 86-parameter family.

Proof A non-symmetric connection Λ can be decomposed as the sum of the classical
symmetric connection Λ̃ (obtained by the symmetrization of Λ) and the torsion
tensor T . From reduction theorems for general linear connections [11] we obtain
that Ψ2(Λ, K) is given by the curvature tensor of Λ̃ and its covariant differentials
(with respect to Λ̃) and the torsion tensor and its covariant differentials and by the
curvature tensor of K and its covariant differentials.

From the homogeneous function theorem it follows, that Ψ2(Λ, K) has the decom-
posable part, which is given by the covariant differential of curvature tensor of K
and by curvature tensor of K and torsion of Λ. The second part is of form IdE ⊗ ω,
where ω is tensor of type (0, 3) described in Lemma 3.3. In all we have 86-parameter
family. �

Theorem 3.3 Natural principal connections on W̃2PE given by a classical con-
nection Λ on M and by a general linear connection K on E form 145-parameter
family.
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Proof By Proposition 3.2 we have Γ2 ≈ (Λ2, Γ10, Γ01, Ψ2) ≈ (Λ2, Γ0, Ψ10,

Ψ01, Ψ2). Λ2 form by Theorem 3.2 38-parameter family. Γ0 form by Lemma 3.2
1-parameter family. Ψ10 and Ψ01 form two 10-parameter families (see proof of Propo-
sition 3.3). And finally Ψ2 form by Lemma 3.4 86-parameter family. In sum we obtain
145-parameter family. �

Corollary 3.1 Natural principal connections on W
2
PE given by a classical con-

nection Λ on M and by a general linear connection K on E form 132-parameter
family.

Proof In the semiholonomic case we have Ψ10 = Ψ01 and Φ10 = Φ01. �
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The Generic Rank of A-Planar Structures

Jaroslav Hrdina

Abstract The paper mostly collects material on generic rank of A-modules with
respect to differential geometric applications. Our research was motivated by geom-
etry ofA-structures. In particular,we discuss the case ofA being an unitary associative
algebra not necessarily with inversion. Some of the examples are studied in detail.

1 Motivation

Let us say a fewwords about our geometricmotivation.Various concepts generalizing
geodesics have been studied for almost quaternionic and similar geometries. Also
various structures on manifolds are defined as smooth distribution in the vector
bundle T ⊕M ≥ T M of all endomorphisms of the tangent bundle. Very well known
are two examples: almost complex and almost quaternionic structures. Let us extract
some formal properties from these examples. Unless otherwise stated, all manifolds
are smooth and they have the dimension m. Let ∈ be a linear connection and let
c : R ⊂ M be a curve on M . Then there is a vector field ċ := dc(t)

dt : R ⊂ T M
along the curve c. Classically, a curve c is a geodesic if and only if its tangent vectors
ċ(t) are parallely transported along c(t). Let M be a smooth manifold equipped with
a linear connection ∈ and let F be an affinor on M . A curve c is called F-planar
curve if there is its parametrization c : R ⊂ M satisfying the condition

∈ċ ċ ⊗ 〈ċ, F(ċ)〉.

It is easy to see that geodesics are F-planar curves for all affinors F , because of
∈ċ ċ ⊗ 〈ċ〉 → 〈ċ, F(ċ)〉. The best known example is an almost complex structure.
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We have to be careful about the dimension of M . Let M be a manifold of dimension
two and let I be a complex structure. A curve c is F-planar for F = I if and
only if c is satisfying the identity ∈ċ ċ ⊗ 〈ċ, I ċ〉 ∞= R

2, and any curve c satisfy
the identity ∈ċ ċ ⊗ R

2. In other words any curve c is F-planar on the manifold of
dimension two. The concept of F-planar curves makes sense for dimension at least
four. Consider almost hypercomplex structure (I, J, K ). The curve c : R ⊂ M such
that ∈ċ ċ ⊗ 〈ċ, I (ċ), J (ċ), K (ċ)〉 is called 4-planar. It is easy to see that all geodesics
are 4-planar curves, because of ∈ċ ċ ⊗ 〈ċ〉 → 〈ċ, I (ċ), J (ċ), K (ċ)〉 and also all
F-planar curves are 4-planar, for F ⊗ 〈I, J, K , E〉. This simple consequence of
standard behavior of the generators of a vector subspace suggests the generalization
of the planarity concept below.

Definition 1.1 Let M be a smooth manifold of dimension m. Let A be a smooth
λ-rank (λ < m) vector subbundle in T ⊕M ≥ T M , such that the identity affinor
E = idT M restricted to Tx M belongs to Ax → T ⊕

x M ≥ Tx M at each point x ⊗ M .
We say that M is equipped by λ-rank A-structure.

In Definition 1.1, the dimension of M is higher than the rank of A. This is not a
restriction, because there are no A-structures of rank λ higher than m. The possibility
λ = m is not interesting, because in this case every curve is A-planar.

Definition 1.2 For any tangent vector X ⊗ Tx M we shall write A(X) for the vector
subspace

A(X) = {F(X)|F ⊗ Ax M} → Tx M

and we call A(X) the A-hull of the vector X . Similarly, the A-hull of vector field will
be a subbundle in T M obtained pointwise. To find more details about A-structures
we refer to [1–3].

2 The Generic Rank

For every smooth parameterized curve c : R ⊂ M we write ċ and A(ċ) for the
tangent vector field and its A-hull along the curve c.

Definition 2.1 Let M be a smooth manifold equipped with an A-structure and a
linear connection ∈. A smooth curve c : R ⊂ M is told to be A-planar if

∈ċ ċ ⊗ A(ċ).

Clearly, A-planarity means that the parallel transport of any vector tangent to c
has to stay within the A-hull A(ċ) of the tangent vector field ċ along the curve.

Definition 2.2 Let (M, A) be a smooth manifold M equipped with an λ-rank A-
structure. We say that the A-structure has
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1. generic rank λ if for each x ⊗ M the subset of vectors (X, Y ) ⊗ Tx M ∪ Tx M ,
such that the A-hulls A(X) and A(Y ) generate a vector subspace A(X) ∪ A(Y )

of dimension 2λ is open and dense in Tx M ∪ Tx M .
2. weak generic rank λ if for each x ⊗ M the subset of vectors

V := {X ⊗ Tx M | dim A(X) = λ}

is open and dense in Tx M .

One immediately checks that any A-structure which has generic rank λ has weak
generic rank λ. Indeed, if U → Tx M is an open subset of vectors X with A(X) of
dimension lower than λ, then U × U is an open subset with the dimension, too.

Lemma 2.1 Let M be a smooth manifold of dimension at least two and F be an
affinor such that F ↔= q · E, q ⊗ R. Then the A-structure, where A = 〈E, F〉, has
weak generic rank 2.

Proof Consider A-structure A = 〈E, F〉. The complement of V consists of vectors
X ⊗ Tx M such that:

X + aF(X) = 0, a ⊗ R,

i.e. eigenspace of F . Dimension of A is two and F is not multiple of the identity.
Thus, the union of eigenspaces of F is closed or trivial vector subspace of Tx M .
Thus, the complement V is open and nontrivial, i.e. open and dense.

There is only one possibility for the A-structures in the lowest dimension one
A = 〈E〉. The algebra 〈E〉 is an algebra with inversion, such that E · E = E . For
every X ⊗ Tx M , A(X) is the straight line containing A.

Finally, let us recall two important examples. The pair (M, F), where M is a
smooth manifold and F is an affinor on M , is called a complex structure if and only
if F2 = −E = −idT M . An almost complex structure has generic rank two on all
manifolds of dimension at least four, because of Lemma 2.1. The pair (M, F) is
called a product structure on M if and only if F2 = E and F ↔= E . An almost
product structure has generic rank two on all manifolds of dimension at least four,
because of Lemma 2.1.

3 The Case of A Being an Algebra

Lemma 3.1 Every A-structure (M, A) on a manifold M, dim M ≥ dim A, where
A is an algebra with inversion, has weak generic rank dim A.

Proof Consider X such that X /⊗ V , therefore ∗F ⊗ A = 〈E, G〉, F X = 0, and
F−1F X = 0 implies X = 0.
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Theorem 3.1 Let M be an A-structure and let X1, . . . , Xm be a basis of V := Tx M,
i.e. V is an A-module. Let A be an n-dimensional R-algebra, where n < m. If there
exists X ⊗ V such that dim(A(X)) = n then the A-structure has weak generic rank n.

Proof We prove equivalent statement, A-module V does not have a generic rank λ if
and only if there is a vector X ⊗ V , such that for any vector Y ⊗ V there is an affinor
GY , such that GY (X − αY ) = 0, for small α. Therefore, for any vector Y ⊗ V there
is an affinor GY such that

GY (X) = αGY (Y )

for small α. Hence, the affinor 1≤
α

GY maps 1≤
α

X to a vector GY (Y ) and therefore, for

any vector Y ⊗ V there is an affinor HY such that HY ( 1≤
α

X) = HY (Y ). In particular,

there is an affinor S such that S( 1≤
α

X) = S(Y + 1≤
α

X) and therefore, for any Y ⊗ V

there is an affinor SY such that SY (Y ) = 0.

Theorem 3.2 Let (M, A) be a smooth manifold of dimension m equipped with an
A-structure of rank λ, such that 2λ ⊥ m. If Ax is an algebra (i.e. for all f, g ⊗
Ax , f g := f ∀ g ⊗ Ax ) for all x ⊗ M, and A has weak generic rank λ then the
structure has generic rank λ.

Proof Since the A-structure has a weak generic rank λ, there is an open and dense
subset V → Tx M such that dim A(X) = λ for all X ⊗ V .

Because A is an algebra, for any X, Z ⊗ Tx M , Z ⊗ A(X) implies also A(Z) →
A(X), and moreover A(Z) = A(X) for all X, Z ⊗ V because of the dimension.
Thus, whenever there is a non-trivial vector 0 ↔= Z ⊗ A(X) ∩ A(Y ), the entire
subspaces coincide, i.e. A(X) = A(Y ).

In particular, whenever X, Y ⊗ V and the dimension of A(X)∪ A(Y ) is less then
2λ, we know A(X) = A(Y ).

Let us consider a couple of vectors (Y, Z) ⊗ A(X) ∪ A(X) for some X ⊗ V .
Consider a vector W /⊗ A(X). An open neighbourhood U of Y has to include
(Y + aW, Y ) for all sufficiently small a ⊗ R. But if Y + aW ⊗ A(X) for some
a ↔= 0 then W ⊗ A(X) and this is not true. Thus, for every couple of vectors in
A(X) ∪ A(X) and for its every open neighbourhood, we have found another couple
(Y ′ = Y + aW, Z) for which the dimension of A(Y ′) + A(Z) is 2λ. This proves the
density of the set of couples of vectors generating the maximal dimension 2λ.

Of course, the requirement on the maximal dimension is an open condition and
the theorem is proved.

Corollary 3.1 Let (M, A) be a smooth manifold with A-structure of rank λ, such
that 2λ ⊥ dim M. If Ax → T ⊕

x M ≥ Tx M is an algebra with inversion then A has
weak generic rank. Moreover, if dim M ≥ 2λ than A has generic rank λ.

Corollary 3.2 Let (M, A) be a smooth manifold with A-structure of rank λ, such
that 2λ ⊥ dim M and let A be an algebra. If there exists X ⊗ Tx M such that
dim(A(X)) = n then the A-structure has generic rank n.
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4 Remark on Frobenious Algebras

Let A be an algebra over R with basis {Fi }, where i = 1, . . . , n, F1 := E , with
structure constants

Ck
i j ⊗ R (i.e. Fi Fj = Cs

i j Fs).

In particular, one can easily see that

Fi = F1Fi = Cs
1i Fs = εs

i Fs, i.e. Cs
1i = εs

i .

We introduce matrices
Ĉi = (Ck

ji ), Ĉ⊕
i = (C j

ik),

where j is a number of rows. Then the associativity condition can be written as

Ĉ j Ĉk = Cs
jkĈs or Ĉ⊕

j Ĉ⊕
k = Cs

jkĈ⊕
s

and the unity can be written as Ĉ1 = E . A linear functional α : A ⊂ R is determined
by the choice of a n-dimensional vector Δ = (Δ1, . . . , Δn).

Now, for α(Fi ) = Δi and for F = ∑n
i=1 ai Fi ⊗ A we can see immediately

that α(F) = ∑n
i=1 aiΔi and finally Fi Fj = Cs

i j Fs . If Δ ⊗ R
n is a vector such that

the matrix G = (gi j ) is regular, where gi j := Cs
i jΔs , we prove that the functional

α : A ⊂ R, such that

α :
n∑

i=1

ai Fi ◦⊂
n∑

i=1

aiΔi ,

is a Frobenius form.
The formula for generic rank n from the Theorem 3.1 reads that if there exists

X ⊗ V such that {Fi X} is linearly independent then V has a generic rank. On the
other hand, if there exists Δ ⊗ R

n such that {ĈiΔ} are linearly independent then A is
a Frobenius algebra. This indicates that these properties lead to similar conditions.

In other words, if A is an algebra overR and thematrices Ĉi are structural matrices
of A, then there is a B-module Rn , where B = 〈Ĉ1, . . . , Ĉn〉. Therefore, the algebra
A is a Frobenius algebra if and only if the B-module Rn has generic rank n.

5 Examples

One can apply these results to two big groups of geometric structures, Clifford
algebras and distributions.
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5.1 Almost Cliffordian Manifolds

Almost Clifford and almost Cliffordian manifolds are G-structures based on the
definitionition of Clifford algebras. An almost Clifford manifold based on C l(s, t)
is given by a reduction of the structure group GL(km,R) to GL(m,O), where
k = 2s+t , m ⊗ N and O is an arbitrary Clifford algebra. An almost Cliffordian
manifold is given by a reduction of the structure group to GL(m,O)GL(1,O). It is
easy to see that an almost Cliffordian structure is an A-structure, where A is a Clifford
algebra O because the affinors in the form of F0, . . . , Fλ ⊗ A can be defined only
locally. In [4] authors prove the following theorem.

Theorem 5.1 Let F0, . . . Fk denote the k + 1 elements of the matrix representation
of Clifford algebraC l(s, t). Then there exists a real vector X such that the dimension
of a linear span 〈Fi X |i = 1, . . . , k〉 equals to k + 1.

Finally, let M be a Cliffordianmanifold, i.e. let (M, A) be a smoothmanifold with
A = C l(s, t), such that 2s+t+1 ⊥ dim M , then Cliffordianmanifold has generic rank
2s+t . For more information about almost Cliffordian structures see papers [4, 6].

5.2 Distributions

If D, D form a complete system of distributions (i.e. they are disjoint and D + D =
T M) then there are two affinors P, P associated with them such that

P2 = P, P
2 = P, P P = P P = 0 and P + P = E,

where rank P = r and rank P = r .
The representation of distributions by affinors can by extended to any complete

system Di such that the affinors Pi satisfy the properties

P2
i = Pi , Pi Pj = 0 for i ↔= j, and

∑
i

Pi = E .

Considering the element P = a1P1 + · · · + an Pn ⊗ A, the matrix


⎧⎧⎧⎨

E P
P1P

...

Pn P

⎩
⎪⎪⎪⎝

is the following
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⎧⎧⎧⎨

a1 0 · · · 0
0 a2 · · · 0
...

... · · · ...

0 0 · · · 0 an

⎩
⎪⎪⎪⎝

and therefore 〈P1, . . . , Pn〉 has weak generic rank n by Lemma 3.1. Finally, let M
be a manifold with complete system of distributions D1, . . . , Dn , i.e. let (M, A)

be a smooth manifold with A = 〈P1, . . . , Pn〉, such that 2n ⊥ dim M , then the
A-structure has generic rank n. See [5].
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Geometric Approach to Ghost Fields

Viktor Abramov and Jaan Vajakas

Abstract An infinite dimensional Grassmann algebra on a compact Riemannian
manifold is constructed by means of rigged Hilbert spaces of differential forms. We
give a notion of p-form of order λ on a product manifold and define a wedge product
of these forms. The set of involutive generators of infinite dimensional Grassmann
algebra which can be used for geometric approach to ghost fields appearing in quan-
tized gauge theory is introduced. We extend our approach to vector bundles and
construct an infinite dimensional Grassmann algebra with generators by means of
the rigged Hilbert spaces of sections of a vector bundle.

1 Introduction

The quantization of Yang-Mills field theory based on a functional integral approach
is the most suitable scheme for quantization of gauge field theories because the
principle of gauge invariance could be expressed in terms of this approach very
easily: one should integrate not over the space of all field configurations, but only
over the space of gauge-equivalent classes of field configurations. However this
method leads to the well known problem of non-local functional which appears in
the functional integral for S-matrix. This problem is solved if one introduces the
auxiliary fields ca(x), c̄b(x), where x is a point of a manifold and the superscripts
a, b run from one to the dimension of a gauge group, and then uses them to write the
determinant of a differential operator in a form of theBerezin integral over the infinite
dimensional Grassmann algebra. From an algebraic point of view the auxiliary fields
ca(x), c̄b(x), which are called Faddeev-Popov ghost fields, are the generators of an
infinite dimensional Grassmann algebra. Hence they are subjected to the relations
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ca(x) cb(y) = −cb(y) ca(x), (1)

where x and y are points of a base manifold M. It is very important that from these
relations it follows that the ghost fields anticommute not only with respect to super-
scripts a and b, but also with respect to a point x of a base manifold M. Therefore
one can multiply the ghost fields even in the case of different points x1, x2, . . . , xN of
a base manifold and the product ca1(x1)ca2(x2) . . . caN (xN ) can be considered as an
element of an infinite dimensional Grassmann algebra. The geometric interpretation
of ghost fields in terms of differential forms proposed in [1, 2] does not cover this
property of ghost fields because it is well known that one can multiply differential
forms pointwise and the product of two differential forms has no sense if they are
taken at different points of a manifold. In this paper we develop a geometric approach
to ghost fields proposed in [3] which is based on a notion of an infinite dimensional
Grassmann algebra. In this approach ghost fields are the generators of an infinite
dimensional Grassmann algebra which is constructed with the help of rigged Hilbert
spaces of differential forms of a manifold and the rigged Hilbert spaces of sections
of a vector bundle.

2 Infinite Dimensional Grassmann Algebra

Let us remind that a finite dimensional Grassmann algebra is an associative unital
algebra generated by a finite set of variables x1, x2, . . . , xk which are subjected to
the relations

xixj + xjxi = 0. (2)

Grassmann algebra is graded algebra if one assigns grading zero to the unit element,
grading one to each variable x1, x2, . . . , xk and defines the grading of a product as
the sum of gradings of its factors. An infinite dimensional Grassmann algebra with
generators was introduced by Berezin in order to describe generating functionals of
quantum field theory in Fermi case [4]. The Gauss integral on infinite dimensional
Grassmann algebra with generators was used by Faddeev and Popov in quantization
of gauge field theory and this has led to appearance of ghost fields in quantized gauge
field theory [5].

Let N be the set of non-negative integers. A graded linear space is a family
of topological linear spaces α = {α λ}λ⊕N indexed by non-negative integers with
natural linear operations, i.e. for any elements of graded linear space

ε = (ε0, ε1, . . .) = (ελ) ⊕ α, Δ = (Δ0, Δ1, . . .) = (Δλ) ⊕ α,

where ελ, Δλ ⊕ α λ , and any complex number a ⊕ C we have

ε + Δ = (ελ + Δλ) ⊕ α, a ε = (a ελ) ⊕ α.
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As usual the elements of α λ will be called homogeneous elements of graded linear
space α , and the degree of homogeneous element ε will be denoted by |ε |. Hence if
ε ⊕ α λ then |ε | = λ. We will also assume that if ε(μ) is a sequence of elements of
graded linear space α , where μ ≥ 1 is an integer and

ε(μ) = (ε0(μ), ε
1
(μ), . . . , ε

λ
(μ), . . .), ελ

(μ) ⊕ α λ,

such that limμ ελ
(μ) = ελ ⊕ α λ in the topology of linear topological space α λ then

limμ ε(μ) = ε , where ε = (ελ) ⊕ α .
A graded topological algebra is a graded linear space α = {α λ}λ⊕N endowed

with a multiplication α λ ∈α δ ⊂ α λ+δ that is continuous and associative with the
unit element inα 0. A graded topological algebraα is said to be graded commutative
if for any homogeneous elements ε, Δ ⊕ α we have εΔ = (−1)|ε ||Δ|Δε . A graded
commutative topological algebra α = ⊗λ⊕Nα λ is said to be a Grassmann algebra
if it satisfies

1. α 0 is the one-dimensional space generated by the unit element of α ,
2. the subspace of all finite linear combinations of products of homogeneous ele-

ments εΔ, where ε ⊕ α λ, Δ ⊕ α δ , is dense in α λ+δ ,
3. all products εi1εi2 . . . εiλ , where 1 ≤ i1 < i2 < . . . < in and ε1, ε2, . . . , εN , . . .

are linearly independent elements of α 1, are linearly independent elements of
α λ .

The one-dimensional space of elements of degree zero α 0 will be identified with
complex numbers, i.e. α 0 ≡ C. Obviously α is a finite-dimensional Grassmann
algebra (2) generated by a basis for a linear space α 1 if this linear space is finite-
dimensional. A Grassmann algebra is called infinite dimensional Grassmann algebra
if α 1 is an infinite-dimensional topological linear space. As our aim in this paper
is to construct and study infinite dimensional Grassmann algebras we will assume
that α 1 is an infinite-dimensional linear space and Grassmann algebra will mean an
infinite-dimensional Grassmann algebra.

A Grassmann →-algebra is a Grassmann algebra α = {α λ}λ⊕N with involution
→ : α ⊂ α which satisfies

1. → : ε ⊕ α λ ⊂ ε→ ⊕ α λ is a continuous antilinear isomorphism, i.e. (aε +Δ)→ =
āε→ + Δ→,

2. (εΔ)→ = Δ→ε→,
3. (ε→)→ = ε ,
4. α 1 is a direct sum of linear subspaces ω+, ω−, i.e. α 1 = ω+ ⊗ ω−.

A Grassmann →-algebra α = {α λ}λ⊕N is said to be a Grassmann →-algebra with an
inner product if each subspace of homogeneous elements of degree λ has a structure
of rigged Hilbert space, i.e. the subspace of homogeneous elements of degree λ is a
triple (α̃ λ, Hλ, α λ), where

1. α̃ λ is a nuclear space equipped with an inner product, i.e. for any homoge-
neous degree λ elements ε, Δ ⊕ α̃ λ the inner product <ε, Δ> is a continuous
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(with respect to each argument) positively definite Hermitian functional such that
limμ <ε(μ), Δ> = <ε, Δ> for any sequence (ε(μ)) of elements of α̃ λ satisfying
limμ ε(μ) = ε ⊕ α̃ λ ,

2. Hλ is a Hilbert space that is a completion of α̃ λ by the inner product <, >, α̃ λ

is dense in Hλ and this determines a continuous natural inclusion map α̃ λ ∞ Hλ ,
3. α λ is a dual space of α̃ λ ,
4. if ε1, ε2, . . . , ελ, . . . is an orthonormal basis for H1 then εi1εi2 . . . εiλ , where 1 ≤

i1 < i2 < . . . iλ , is the orthonormal basis for Hλ ,
5. ω+ ∪ H1 is orthogonal to ω− ∪ H1 and for any elements ε, Δ such that < ε, Δ >

is defined it holds <ε→, Δ→> = <Δ, ε>.

3 Spaces of Differential Forms of a Manifold

Let M be a Riemannian n-dimensional manifold with a metric g. Rather than consid-
ering the spaces of smooth differential forms with compact support we will assume
that M is a compact manifold. We will also assume that M is an orientable manifold.
Letθ(M) = ⊗pθ

p(M) be the algebra of smooth complex valued p-forms of a man-
ifold M, where θp(M) is a space of p-forms. It is convenient to use multi-indices to
write a differential form locally that is if x1, x2, . . . , xn are local coordinates of M
then locally any p-form π ⊕ θp(M) can be written as

π = πI dxI ,

where I = {i1, i2, . . . , ip} is a subset of the set Nn = {1, 2, . . . , n}, πI = πi1i2,...ip

and dxI = dxi1 ↔ dxi2 ↔ . . . ↔ dxip . We will denote by |I| the number of elements of
I . It is well known that given two smooth p-forms π, ζ one can define the Hermitian
inner product of these p-forms

(π, ζ) =
∫

M
π · ζ dμ, (3)

where locally π = πI dxI , ζ = ζJ dxJ , dμ = |det(gij)|1/2dx1dx2 . . . dxn is the
density relative to g,

π · ζ = πI ζ̄I , πI = πi1i2...ip = gi1k1 . . . gipkpπk1k2...kp .

Supposing that orientation of a manifold M is determined by dx1 ↔ dx2 ↔ . . . ↔ dxn

and making use of the Hodge operator ν : θp(M) ⊂ θn−p(M) one can write the
inner product (3) in the form

(π, ζ) =
∫

M
π ↔ νζ, (4)
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where locally
(νζ)ip+1...in = |det(gij)|1/2 ζ i1...ipσi1...ipip+1...in

.

The completion of the space of smooth complex valued p-formsθp(M) by the inner
product (4) is the Hilbert space which will be denoted by Hp(M). Let us denote
by θ→ p(M) the space of all continuous linear functionals on the space of p-forms
θp(M). We will follow the terminology proposed by De Rham in [6] and call a
continuous linear functional on θp(M) an p-dimensional current.

At each point x ⊕ M of a manifold M we have the finite dimensional Grassmann
algebra

∧
T→

x M which is the vector space spanned by {dxI }, where I runs over
all subsets of the set Nn. Let us mention that the Grassmann algebra

∧
T→

x M can be
viewed as thefiber of the vector bundle

∧
T→M at a point x ⊕ M. Then any differential

form on M can be considered as a smooth section of
∧

T→M. Consider the product
manifold M(2) = M × M equipped with the Riemannian metric g(2) = g ⊗ g. Just
as in the case of a manifold M at each point (x, y) of the product manifold M(2)

we have the finite dimensional Grassmann algebra
∧

T→
(x,y)M

(2). If U × V is a local

chart in a neighborhood of (x, y) with local coordinates x1, x2, . . . , xn on U ∞ M
and local coordinates y1, y2, . . . , yn on V ∞ M then

∧
T→

(x,y)M
(2) is spanned by the

wedge products of differentials dxI ↔ dyJ , where I, J are subsets of Nn. Evidently if
|I| = p, |J| = q then dxI ↔ dyJ = (−1)pqdyJ ↔ dxI .

For infinite dimensional Grassmann algebra which will be described in the next
section we will need a wedge product of differentials dxI , dyJ which is slightly
different from dxI ↔ dyJ . We introduce a notion of a double p-form on the product
manifold M(2) giving it locally by an expression

π(x, y) =
∑

|I|=|J|=p

πI,J(x, y) dxI ↔̄dyJ , (5)

where the multiplication ↔̄ is subjected to the relations

dxI ↔̄dyJ = −dyJ ↔̄dxI . (6)

It should be noted that in our approach to a notion of double p-form wedge products
dxI = dxi1 ↔ . . . ↔ dxip anticommute with wedge products dyJ = dyj1 ↔ . . . ↔ dyjp

while in approach proposed by De Rham in [6] they commute. A double p-form π

is said to be symmetric if π(x, y) = π(y, x). Easy calculation shows

π(x, y) − π(y, x) = πI,J(x, y)dxI ↔̄dyJ − πJ,I (y, x)dyJ ↔̄dxI

= (πI,J(x, y) + πJ,I (y, x))dxI ↔̄dyJ = 0,

that a double p-form (5) is symmetric if and only if πI,J(x, y) = −πJ,I (y, x).
Given two p-forms π(x) = πI(x)dxI , ζ(y) = ζJ(y)dyJ we construct the sym-
metric double p-form as follows ϕ(x, y) = π(x)↔̄ζ(y) + ζ(y)↔̄π(x). If we write
ϕ(x, y) = ϕI,J(x, y)dxI ↔̄dyJ then
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ϕI,J(x, y) = πI(x)ζJ(y) − πJ(y)ζI(x).

Let us denote the space of smooth complex valued symmetric double p-forms by
θp(M(2)). In analogy with (3) we define an inner product of symmetric double
p-forms π, ζ by

(π, ζ) =
∫

M(2)
π(x, y) · ζ(x, y) dμ(2), (7)

where locally π(x, y) = πI,J(x, y)dxI ↔̄dyJ , ζ(x, y) = ζI,J(x, y)dxI ↔̄dyJ , dμ(2) is
the density relative to metric g(2) = g ⊗ g,

π(x, y) · ζ(x, y) = πI,J(x, y)ζ̄I,J(x, y),

and

πI,J(x, y) = πi1i2...ip,j1j2...jp(x, y)

= gi1k1(x)gi2k2(x) . . . gipkp(x)gj1l1(y)gj2l2(y) . . .

gjplp(y)πk1k2...kp,l1l2...lp(x, y)

The completion of the space θp(M(2)) with respect to the inner product (7) is the
Hilbert space which will be denoted by Hp(M(2)). The space of continuous linear
functionals on the space of symmetric double p-forms θp(M(2)) will be denoted by
θ→p(M(2)).

Now in analogy with the space of symmetric double p-forms θp(M(2)) for any
integerλ > 2we can construct a space of symmetric p-forms of orderλ. Consider the
product manifold M(λ) = M ×M × . . .×M (λ times) equipped with the Riemannian
metric g(λ) = g ⊗ g ⊗ . . . ⊗ g (λ times). In order to introduce a notion of p-form of
order λ we will assume that the multiplication (6) is associative, i.e.

(dxI ↔̄dyJ)↔̄dzK = dxI ↔̄(dyJ ↔̄dzK ).

We will call π an p-form of order λ on the manifold M(λ) if in each local chart of
M(λ) it is given by an expression

π(x1, x2, . . . , xλ) = πI1I2...Iλ (x1, x2, . . . , xλ) dxI1
1 ↔̄dxI2

2 ↔̄ . . . ↔̄dxIλ
λ ,

where (x1, x2, . . . , xλ) ⊕ M(λ), I1, I2, . . . , Iλ are subsets of Nn each consisting of p
elements, i.e. for any k = 1, 2, . . . , λ we have |Ik| = p. In the case of the product
manifold M(λ) the local expressions for p-forms of λth order and related formulae
have a cumbersome appearance and in order to write them in a more compact way it
is useful to combine a multi-index I = (i1i2 . . . ip) ∞ Nn and a point x of a manifold
M into a single symbol I = (I, x) setting
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πI1I2...Iλ
= πI1I2...Iλ (x1, x2, . . . , xλ),

whereIk = (Ik, xk). It is also useful to denote a point (x1, x2, . . . , xλ) of the product
manifoldM(λ) by x(λ).Making use of these notations one canwrite a local expression
of p-form of λth order as follows

π(x(λ)) = πI1I2...Iλ
dxI1

1 ↔̄dxI2
2 ↔̄ . . . ↔̄dxIλ

λ

An p-form of order λ is said to be symmetric if for any permutation r : Nλ ⊂ Nλ it
holds

π(xr(1), xr(2), . . . , xr(λ)) = π(x1, x2, . . . , xλ).

It is easy to show that an p-form of λth order π(x1, x2, . . . , xλ) is symmetric if
and only if for each local chart of M(λ) and for any permutation r : Nλ ⊂ Nλ its
coefficient functions of local expression obey the relations

πIr(1)Ir(2)...Ir(λ)
= (−1)p(r)πI1I2...Iλ

,

where p(r) is a parity of a permutation r. Let us denote by θp(M(λ)) the space of
smooth symmetric p-forms of λth order on the product manifold M(λ).

As M(λ) is a Riemannian manifold we can raise and lower the indexes, i.e. given a
coefficientπI1I2...Iλ (x1, x2, . . . , xλ)of anp-formofλth orderπwe raise the subscripts

in each multi-index Ik = (i(k)
1 , i(k)

2 , . . . , i(k)
p ) by means of the metric gj(k)

l i(k)
l (xk). Now

in analogy with the inner product for symmetric double p-forms we define an inner
product of symmetric p-forms of order λ by

(π, ζ) =
∫

M(λ)

π(x(λ)) · ζ(x(λ)) dμ(λ), (8)

where dμ(λ) is the density on the product manifold relative to the Riemannian metric
g(λ),

π(x(λ)) = πI1I2...Iλ
dxI1

1 ↔̄dxI2
2 ↔̄ . . . ↔̄dxIλ

λ ,

ζ(x(λ)) = ζJ1J2...Jλ
dxJ1

1 ↔̄dxJ2
2 ↔̄ . . . ↔̄dxJλ

λ ,

and
π(x(λ)) · ζ(x(λ)) = πI1...Iλ (x(λ))ζ̄I1...Iλ (x

(λ)).

The completion ofθp(M(λ))with respect to the inner product (8) is the Hilbert space
which we denote by Hp(M(λ)). The space of continuous linear functionals on the
space θp(M(λ)) will be denoted by θ→p(M(λ)).
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Given a symmetric p-form of λth order π and a symmetric p-form of δth order
ζ we can define their product π↔̄ζ which is the symmetric p-form of order λ + δ.
Indeed let locally

π(x(λ)) = πI1I2...Iλ
dxI1

1 ↔̄dxI2
2 ↔̄ . . . ↔̄dxIλ

λ ,

ζ(x(δ)) = ζJ1J2...Jδ
dxJ1

1 ↔̄dxJ2
2 ↔̄ . . . ↔̄dx

Jδ

δ .

Then we identify

(x(λ), x(δ)) ⊕ M(λ) × M(δ) ⊂ (x1, x2, . . . , xλ, xλ+1, . . . , xλ+δ) ⊕ M(λ+δ)

and define the product of forms π, ζ by

π↔̄ζ = ϕI1I2...Iλ+δ
dxI1

1 ↔̄dxI2
2 ↔̄ . . . ↔̄dxIλ+δ

λ+δ , (9)

where
ϕI1I2...Iλ+δ

=
∑

(−1)p(r)πIr(1)...Ir(λ)
ζIr(λ+1)...Ir(λ+δ)

, (10)

and p(r) is the parity of a permutation r. It can be shown that

π↔̄ζ = (−1)λδζ↔̄π. (11)

4 Generators of Grassmann Algebra on a Manifold

In this section our aim is to construct an infinite dimensional Grassmann algebra
with inner product described in Sect. 2 on an oriented compact Riemannian mani-
fold M with Riemannian metric g. We will introduce the generators of this infinite
dimensional Grassmann algebra.

First of all we identify α 0 ≡ C. If λ ≥ 1 then let us remind that according to
the description of the structure of Grassmann algebra given in Sect. 2 the space of
elements of degree λ of this algebra has the structure of rigged Hilbert space, i.e.
it is the triple α̃ λ ∞ Hλ ∞ α λ , where Hλ is the Hilbert space and α λ is dual
space to α̃ λ . We begin our construction of infinite dimensional Grassmann algebra
on a Riemannian manifold M by fixing a sequence of Hilbert spaces {Hλ}λ≥1. We
consider the realization of aHilbert spaceHλ of elements of degree λ by the elements
of theHilbert spaceHp(M(λ)) of p-forms of orderλ on the productmanifoldM(λ). By
other words we suppose that each Hilbert space Hλ of a sequence of Hilbert spaces
{Hλ}λ≥1 is isomorphic to the Hilbert space Hp(M(λ)) of p-forms of order λ of the
productmanifoldM(λ). Let us denote this isomorphism byγ(λ) : Hp(M(λ)) ⊂ Hλ .
If π, ζ ⊕ Hp(M(λ)) and γ(λ)(π) = ε, γ(λ)(ζ) = Δ, where ε, Δ ⊕ Hλ , then
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<ε, Δ> = (γ(λ)(π), γ(λ)(ζ)) = (π, ζ) =
∫

M(λ)

π(x(λ)) · ζ(x(λ)) dμ(λ). (12)

So a sequence of Hilbert spaces {Hλ}λ≥1 is constructed. Our next step is to construct
the sequence of spaces {α̃ λ}λ≥1 such that α̃ λ ∞ Hλ and Hλ is a completion of
α̃ λ . For this purpose we restrict an isomorphism γ(λ) : Hp(M(λ)) ⊂ Hλ to the
subspace θp(M(λ)) of smooth p-forms of λth order and set α̃ λ = γ(λ)(θ

p(M(λ))).
Evidently α̃ λ satisfies the conditions 1,2 of the definition of Grassmann algebra with
inner product, i.e. α̃ λ is a nuclear space equipped with an inner product (12), Hλ is
a completion of α̃ λ by the inner product <, > and α̃ λ is dense in Hλ . Hence we
get the realization of space α̃ λ by the space of smooth complex valued p-forms of
order λ which is induced by the realization γ(λ) : Hp(M(λ)) ⊂ Hλ . Each smooth
p-form of order λ defines the continuous linear functional on θp(M(λ)) by means of
the inner product (8). Hence we can endow the spaceθp(M(λ))with the topology of
space of continuous linear functionals and completion ofθp(M(λ)) by this topology
is the dual spaceθ→p(M(λ)). Nowwe can extendγ(λ) : θp(M(λ)) ⊂ α̃ λ to the dual
space θ→p(M(λ)) by continuity. Taking into account that α λ is dual space to α̃ λ we
obtainγ(λ) : θ→p(M(λ)) ⊂ α λ . Thus the sequence of spacesα = {α λ}λ≥1, where
each space α λ has a structure of rigged Hilbert space, is constructed. We will refer
to the space θp(M(λ)) as the space of basic forms of α and to the space θ→p(M(λ))

as the space of generalized forms or currents of α .
Given two elements ε ⊕ α λ, Δ ⊕ α δ of α we define their product ε Δ by

γ(λ+δ)(ε Δ) = γ(λ)(ε)↔̄γ(δ)(Δ). (13)

It is evident that ε Δ ⊕ α λ+δ , i.e. the multiplication (13) determines the mapping
α λ ∈ α δ ⊂ α λ+δ which is continuous, and it follows from (11) that ε Δ =
(−1)λδΔε . Consequentlyα = {α λ}λ⊕N equipped with the multiplication (13) is the
graded commutative algebra.

Now our aim is to define the generators of Grassmann algebra α by means of the
realization of Hilbert space H1 by the Hilbert space of p-forms of a manifold M. Let
ε ⊕ H1 be an element of degree one of Grassmann algebra α and γ(ε) = π, where
π ⊕ H1,p(M) is an p-form which locally can be written as

π = 1

p!πi1i2...ipdxi1 ↔ . . . ↔ dxip .

In every local chart of M we introduce the set of symbols {γ i1i2...ip,
→
γ i1i2...ip} by

writing an element of degree one ε ⊕ H1 and its conjugate ε→ ⊕ H1 in symbolic
form which is used in the theory of generalized functions

ε = 1

p!
∫

M
πi1i2...ip γ i1i2...ip dμ, ε→ = 1

p!
∫

M
π̄i1i2...ip

→
γ i1i2...ip dμ. (14)
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We also assume that the set of symbols {γ i1i2...ip ,
→
γ i1i2...ip} is defined at each point

x ⊕ M of a manifold M and under a change of local coordinates xi′ = xi′(xi) they
behave as a totally antisymmetric contravariant p-tensor, i.e.

γ i′1i′2...i′p = Φxi′1

Φxi1

Φxi′2

Φxi2
. . .

Φxi′p

Φxip
γ i1i2...ip ,

→
γ i′1i′2...i′p = Φxi′1

Φxi1

Φxi′2

Φxi2
. . .

Φxi′p

Φxip

→
γ i1i2...ip .

We will refer to the symbols {γ i1i2...ip ,
→
γ i1i2...ip} as the involutive generators of

Grassmann algebra α on a Riemannian manifold M.
It is useful to write the involutive generators of a Grassmann algebra α in a

covariant form

γi1i2...ip = gi1j1gi2j2 . . . gipjp γ j1j2...jp ,

→
γ i1i2...ip = gi1j1gi2j2 . . . gipjp

→
γ j1j2...jp ,

which can be used in order to combine the involutive generators ofGrassmann algebra
into the formal p-forms

γ = 1

p!γi1i2...ipdxi1 ↔ dxi2 ↔ . . . ↔ dxip ,

→
γ = 1

p!
→
γ i1i2...ip dxi1 ↔ dxi2 ↔ . . . ↔ dxip .

It is worth mentioning that γ,
→
γ are not ordinary differential p-forms on a manifold

M, but they are formal p-forms whose coefficients are the involutive generators of
infinite dimensional Grassmann algebra α on a manifold M. We will refer to these
formal p-forms as p-forms of involutive generators of Grassmann algebra.

We can extend the Hodge operator to the p-form of involutive generators γ by
means of the formula

νγ = 1

(n − p)! (νγ)i1...in−p dxi1 ↔ dxi2 ↔ . . . ↔ dxin−p ,

where

(νγ)ip+1...in = 1

(n − p)! |det(gij)|1/2 γ i1...ipσi1...ipip+1...in
,

and similarly in the case of the p-form
→
γ . Now the formulae (14) can be written in

the form

ε =
∫

M
π ↔ νγ, ε→ =

∫
M

π̄ ↔ ν
→
γ,

where π̄ = 1
p! π̄i1i2...ip dxi1 ↔ dxi2 ↔ . . . dxip .
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5 Infinite-Dimensional Grassmann Algebra of Sections
of a Vector Bundle

In this section we will construct an infinite dimensional Grassmann algebra whose
elements of first order are sections of a vector bundle. As we shall see, this will
generalize the construction in the previous sections.

Let ψ1 : E1 ⊂ M1 and ψ2 : E2 ⊂ M2 be two vector bundles over C, where M1
and M2 are two manifolds. Let rank Ei =: ni and (ei

1, . . . , ei
ni
) be a basis of Cni , for

i ⊕ {1, 2}. Then we define their tensor product E1∈̄E2 to be the vector bundle with
base manifold M1×M2 and fiberCn1 ∈C

n2 = C
n1n2 which is obtained by equipping

the set

E1∈̄E2 :=
⊔

x1⊕M1
x2⊕M2

ψ−1
1 (x1) ∈ ψ−1

2 (x2)

with projection

ψ : E1∈̄E2 ⊂ M1 × M2, u ∗⊂ (x1, x2) such that u ⊕ ψ−1
1 (x1) ∈ ψ−1

2 (x2)

and local trivializations (U1 × U2, φ1∈̄φ2) where (U1, φ1) and (U2, φ2) are local
trivializations of E1 and E2, correspondingly (i. e. for each i ⊕ {1, 2}, Ui ∞ Mi is an
open set and φi : Ui × C

ni ⊂ ψ−1
i (Ui) is a diffeomorphism whose restrictions to

fibers are isomorphisms), and

(φ1 ∈̄ φ2)
(
(x1, x2), ajke1j ∈ e2k

)
:= ajkφ1(x1, e1j ) ∈ φ2(x2, e2k).

It is easy to see that this is a correctly defined vector bundle. We use the symbol ∈̄ to
distinguish, in the case M1 = M2, this tensor product bundle from the usual tensor
product bundle E1 ∈ E2 with base manifold M1.

Analogously, if λ ⊕ N and E1, . . . , Eλ are vector bundles respectively over mani-
folds M1, . . . , Mλ , we define the tensor product E1∈̄ . . . ∈̄Eλ over the product man-
ifold M1 × . . . × Mλ .

Now, let ψ : E ⊂ M be a vector bundle over a manifold M. Let us denote
E∈̄(λ) := E∈̄ . . . ∈̄E︸ ︷︷ ︸

λ

. Let Sλ denote the symmetric group on Nλ , i. e. the set of all

permutations r : Nλ ⊂ Nλ . For each permutation r ⊕ Sλ , let us define a map

sr : M(λ) ⊂ M(λ), (x1, . . . , xλ) ∗⊂ (xr−1(1), . . . , xr−1(λ)).

Let us also define a map
ŝr : E∈̄(λ) ⊂ E∈̄(λ)

that satisfies
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ŝr(u1 ∈ . . . ∈ uλ) = (−1)p(r)ur−1(1) ∈ . . . ∈ ur−1(λ)

for all points x1, . . . , xλ ⊕ M and vectors u1 ⊕ ψ−1
1 (x1) . . . , uλ ⊕ ψ−1

λ (xλ), and is
linear on each fiber of E∈̄(λ). It is easy to see that for each r, there exists exactly
one such map ŝr , and in a sense, it is an automorphism of the vector bundle (it is a
diffeomorphism onE∈̄(λ) and for each point x = (x1, . . . , xλ) ⊕ M(λ), the restriction
of ŝr to the fiber of E∈̄(λ) at x is a vector space isomorphism from the fiber at x to
the fiber at sr(x)). As ŝr2≤r1 = ŝr2 ≤ ŝr1 and ŝidNλ

= idE∈̄(λ) where idX denotes the

identity transform on a set X, we have a faithful left action of Sλ on E∈̄(λ).
Let us define the set of smooth totally antisymmetric sections of E of order λ as

Θ (λ)(E) :=
{
ϕ ⊕ Θ (E∈̄(λ))

∣∣∣ ϕ ≤ sr = ŝr ≤ ϕ ⊥r ⊕ Sλ

}
.

From the definition we see that Θ (0)(E) = C (since M(0) consists of only one
point, E∈̄(0) = C and the only permutation on N0 = ∀ is the identity map) and
Θ (1)(E) = Θ (E).

For every two sections of E, say, ϕ ⊕ Θ (E∈̄(λ)) and β ⊕ Θ (E∈̄(δ)), we define
their wedge product ϕ ↔̄β ⊕ Θ (λ+δ)(E) the same way we did for differential forms
in formulae (9)–(10). First, notice that if E1 and E2 are two vector bundles and
ϕ1 ⊕ Θ (E1) and ϕ2 ⊕ Θ (E2) then we can form a tensor product ϕ1∈̄ϕ2 ⊕ Θ (E1∈̄E2)

by taking tensor products of the values of the two sections pointwise.Now,we identify
M(λ) × M(δ) = M(λ+δ) and E∈̄(λ)∈̄E∈̄(δ) = E∈̄(λ+δ) and define

(ϕ ↔̄β)|(x1,...xλ+δ) :=
∑
r⊕Sλ

ŝr
(
ϕ |(xr(1),...,xr(λ)) ∈ β |(xr(λ+1),...,xr(λ+δ))

)
. (15)

For example, let λ = 1 and δ = 2 and let x1, x2, x3 ⊕ M be three points. At each
point xi choose a basis ei

1, . . . , ei
n of the fiber ψ−1(xi). Then, if we express

ϕ |xk =: ϕ i
kek

i , β |(xk ,xl) =: β
ij
kle

k
i ∈ el

j,

(where summation is only over i and j, not k and l), the formula (15) yields

(ϕ ↔̄β)|(x1,x2,x3) = (ϕ i
1β

jk
23 − ϕ i

1β
kj
32 + ϕ

j
2β

ki
31 − ϕ

j
2β

ik
13 + ϕ k

3 β
ij
12 − ϕ k

3 β
ji
21)e

1
i ∈ e2j ∈ e3k .

As a special case, we can apply this approach to p-forms on a manifold M by
taking E = ∧p T→M. Then the set of smooth complex-valued double p-forms can be
identified with Θ (E∈̄(2)): if x0, y0 ⊕ M are two points and we have local charts near
each of these points with local coordinates x1, . . . , xn in the neighborhood of x0 and
local coordinates y1, . . . , yn near y0, then, for multi-indices I and J such that |I| =
|J| = p, we may identify dxI ↔̄dyJ in formula (5) with the vector dxI ∈dyJ belonging
to the fiber of E∈̄(2) at (x0, y0). Under this identification, if π, ζ ⊕ θp(M) are two
forms of order one, then the notions of product π↔̄ζ , given for p-forms by (9) and
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for sections by (15), coincide. Let us identify every element u ⊕ E∈̄(2) with ŝ21(u),
where 21 denotes the non-identity element of S2, i. e. let us consider the quotient
space of E∈̄(2) under this identification. Then the vector dxI ∈ dyJ , belonging to the
fiber of E∈̄(2) at point (x0, y0), is identified with −dyJ ∈ dxI , belonging to the fiber
of E∈̄(2) at (y0, x0); in this sense ∈ : E ×E ⊂ E∈̄(2) is anticommutative and we can
see that smooth complex-valued symmetric p-forms of order 2 correspond to exactly
those sections ϕ ⊕ Θ (E∈̄(λ)) that satisfy ϕ ≤s21 = ŝ21 ≤ϕ , i.e.θp(M(2)) = Θ (2)(E).

More generally, we can identify the set of smooth complex-valued p-forms of
order λ with Θ (E∈̄(λ)) and by identifying u ≡ ŝr(u) for all u ⊕ E∈̄(λ) and r ⊕ Sλ

(i.e. instead of E∈̄(λ) considering the orbit space of E∈̄(λ) under the action ŝr of Sλ

on E∈̄(λ)) we see that Θ (λ)(E) = θp(M(λ)) and the notion ↔̄, as defined by (15),
coincides with the product of two p-forms of order λ and δ defined by formula (9).

Next, suppose furthermore, that M is a compact Riemannian manifold and ψ :
E ⊂ M is a Hermitian vector bundle. Let M(λ) be equipped with the product metric,
as before, and let each fiber of E∈̄(λ) be equipped with the tensor product Hermitian
metric, i.e. the Hermitian metric on the fiber of E∈̄(λ) at each point (x1, . . . , xλ)

satisfies the formula

∩u1 ∈ . . . ∈ uλ, v1 ∈ . . . ∈ vλ〉 = ∩u1, v1〉 · . . . · ∩uλ, vλ〉

for all choices of vectors ui, vi ⊕ ψ−1(xi). Then we define an inner product of two
sections ϕ, β ⊕ Θ (λ)(E) using the formula

∩ϕ, β 〉 =
∫

M(λ)

∩ϕ(x(λ)), β (x(λ))〉 dμ(λ). (16)

Analogously to what was done in the preceding section, an infinite-dimensional
Grassmann algebra can now be constructed by realizing each α̃ λ as Θ (λ)(E), each
Hilbert space Hλ as the completion of Θ (λ)(E) with respect to the inner product
above and each α λ as the space of continuous linear functionals Θ (λ)(E), equipped
with →-weak topology. The completion of Θ (λ)(E) with respect to the inner product
is actually the space of totally antisymmetric square-integrable sections of E∈̄(λ):
indeed, using the similar proposition for functions on Euclidean spaces, and a par-
tition of unity on M(λ), one can show that Θ (E∈̄(λ)) is dense in the space of all
square-integrable sections of E∈̄(λ), and hence also Θ (λ)(E) is dense in the space of
totally antisymmetric square-integrable sections of E∈̄(λ), since if (ϕn) ⊕ Θ (E∈̄(λ))

is a sequence inΘ (E∈̄(λ)) that converges to a totally antisymmetric square-integrable
section ϕ then ( 1

λ!
∑

r⊕Sλ
ŝr−1 ≤ ϕn ≤ sr) is a sequence in Θ (λ)(E) which converges

to ϕ , too. Again we see that the Grassmann algebra of p-forms appears as a special
case of the Grassmann algebra of sections of a vector bundle.
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On Sinyukov’s Equations in Their Relation
to a Curvature Operator of Second Kind

Irena Hinterleitner, Josef Mikeš and Elena Stepanova

Abstract Many authors have studied Riemannian manifolds admitting a geodesic
mapping. Fundamental results of the theory of geodesic mapping were settled by
Sinyukov. In the present paper we analyze the Sinykov equations of the geodesic
mappings of Riemannian manifolds by using the curvature operator of the second
kind. This approach to the study of geodesic mapping is essentially new.

1 Introduction

In a Riemannian manifold, the Riemannian curvature tensor R defines two kinds of
curvature operators: the operator

⊕
R offirst kind, acting on2-forms, and the operator

⊕
R

of second kind, acting on symmetric 2-tensors. In our paper we analyze the Sinyukov
equations of geodesic mappings of Riemannian manifolds by using the curvature
operator of the second kind.
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2 Equation Systems of Geodesic Mappings and Einstein
Manifolds

The condition, for which an n-dimensional (n ≥ 2) Riemannian manifold (M, g)
admits a geodesic mapping onto another n-dimensional Riemannian manifold
(M̄, ḡ), has the following form of differential equations of Cauchy type in covariant
derivatives

∈kai j = λig jk + λ jgik, (1)

n∈ jλi = μgi j − aik Rk
j + akl Rik jl , (2)

(n − 1)∈iμ = −2(n + 1)λk Rk
i + akl

(
∈i Rkl − 2gk j∈ j Rl

i

)
. (3)

These equations were obtained by Sinyukov more than fifty years ago (see [1–4]).
A geodesic mapping is non trivial (or non affine) if λ ⊂⊗ const.
Here a = (ai j ) is a regular symmetric 2-tensor, Ric = (Ri j ) is the Ricci ten-

sor whose components are given by R jl = gik Ri jkl for local components of the
Riemannian curvature tensor R = (Ri jkl); λi and μ are defined in the following way

λi = 1

2
∈i (g

klakl); (4)

μ = gkl∈kλl . (5)

With respect to the above Eqs. (4) and (5) Eq. (2) can be rewritten as

n ∈i∈ jλ = αλ · gi j − aik Rk
j + akl Rik jl , (6)

where
αλ = gi j∈i∈ jλ

is the Laplace operator acting on the scalar function λ = 1
2 gklakl .

From (6) follows (see [4, p. 138]):

aik Rk
j = Rk

i ak j . (7)

If we suppose that the manifold (M, g) is an Einstein manifold, then from Eq. (3)
we conclude the following

(n − 1)∈iαλ = −2
n + 1

n
S ∈iλ (8)

for the scalar curvature S (= const). After multiplying the left and right sides of (8)
by ∈ iλ and after integration over the compact manifold we have
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(n − 1)
∫

M
(αλ)2dε = 2

n + 1

n
S

∫
M

(
∈iλ · ∈ iλ

)
dε, (9)

because ∈i
(
αλ · ∈ iλ

) = ∈iαλ · ∈ iλ + (αλ)2. From (9) we conclude that S > 0.
This is in accordance with the paper Couty [5].

3 An Algebraic Operator Associated with the Curvature Tensor

Wewill consider the space of symmetric 2-forms S2M over theRiemannianmanifold
(M, g). In particular, the tensor a = (ai j ) is a smooth cross-section of S2M . The
space S2M (see [6]) has the pointwise orthogonal decomposition

S2M = C∞M · g ⊕ S2
0 M,

where C∞M is a space C∞-functions on M and S2
0 M is a subspace of the space

S2M , which contains symmetric 2-forms with zero traces.
We introduce (see [7, 8]) a curvature operator of second kind

⊕
R: S2M → S2M

with components

Ri j
kl = 1

2

(
gim R j

kml + g jm Ri
kml

)

for the curvature tensor R = (Ri
jkl), whose actions are defined by the formulas

⊕
R(bi j ) = Rik jlbkl for any smooth cross-section b = (bi j ) of S2M . On the basis
of the curvature operator of second kind (see [9]) we can define a linear symmetric
operator B2: S2M → S2

0 M with components

Bi j
kl = 1

2

(
gim R j

kml + g jm Ri
kml

)
+ 1

4

(
Δi

k R j
l + Δ

j
k Ri

l + Δi
l R j

k + Δ
j
l Ri

k

)
(10)

for the Ricci operator Ric∞ = (gim Rmj ). From (10) we have

B2(bi j ) = Rik jlb
kl − 1

2

(
Rm

i bmj + Rm
j bmi

)
(11)

for any smooth section b = (bi j ) on S2M . The operator B2: S2M → S2
0 M is a linear

and symmetric operator. Then there exists a pointwise orthogonal decomposition
S2M = I m B2 ⊕ K er B2 of the space S2M of symmetric 2-tensors on M . It is
obvious that C∞M · g ∪ K er B2 and I m B2 ∪ S2

0 M . The following theorem holds.

Theorem 3.1 If a complete Riemannian manifold (M, g) of dimension n ≥ 2 admits
geodesic mapping is a non affine and the tensor a = (ai j ) belongs to the kernel of the
symmetric linear operator B2: S2M → S2

0 M then (M, g) is conformal to a sphere
Sn in (n + 1) dimensional Euclidean space.
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Proof According to (11) we can rewrite Eq. (6) in the following form

∈i∈ jλ − 1

n
αλgi j = −B2(ai j ). (12)

If we assume that B2(ai j ) = 0 in (12), then we have the following

∈i∈ jλ = 1

n
αλgi j . (13)

We note that (see [10]) the complete Riemannian manifold (M, g) of dimension
n ≥ 2 is conformal to a sphere Sn in (n + 1)-dimensional Euclidean space if on
(M, g) exists a non-constant function λ ↔ C∞M satisfying Eq. (13). Therefore a
complete Riemannian manifold (M, g) of dimension n ≥ 2 admitting geodesic
mappings onto another n-dimensional Riemannian manifold (M̄, ḡ) is conformal to
a sphere Sn in (n + 1)-dimensional Euclidean space if the tensor a = (ai j ) from
the equations of geodesic mappings (1–3) belongs to the kernel K er B2 of the linear
operator B2: S2M → S2

0 M .

As a corollary to the Theorem 3.1, we can deduce the following theorem.

Theorem 3.2 If a compact Riemannian manifold (M, g) of dimension n ≥ 2 admits
geodesic mapping is a non affine and the tensor a = (ai j ) belongs to the kernel of the
symmetric linear operator B2: S2M → S2

o M then (M, g) is isometric to a sphere
Sn in (n + 1)-dimensional Euclidean space.

Proof It is know (see [11]) that if a compact Riemannian manifold (M, g) of
n-dimension of n ≥ 2 admits an infinitesimal conformal transformation which is
not an isometry:

L Xgi j = 2δgi j (14)

for δ ⊂= 0, and if the vector field X is a gradient of a scalar function then (M, g)
is isometric to a Euclidean n-sphere (see [11]). Here L X is the operator of the Lie
derivation with respect to X . If we assume that X = grad λ then (14) we can rewritten
as ∈i∈ jλ = 1

n αλ gi j . Then our Theorem 3.2 follows from Theorem 3.1 and the
above result by Lichnerowicz.

Remark The Lichnerowicz Laplacian (see [6], p. 54) acting on symmetric covariant
2-tensor is αL = ᾱ−2B2 where we denote by ᾱ the rough Bochner Laplacian (see
[6], p. 52). Then B2(b) = 0 if and only if αLb = ᾱb for a symmetric covariant
2-tensor b.
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4 Principle Directions of the Ricci Tensor in the Case
of Degenerate Geodesic Mappings

From Eq. (7) we conclude that the Ricci tensor Ric = (Ri j ) can be diagonalised
in any point x ↔ M in the same orthonormal basis {e1, . . . , en} as the symmetric
non-degenerate tensor a = (ai j ). Therefore in any point x ↔ M vectors of the
orthonormal basis {e1, . . . , en} of the tangent space Tx M define principle directions
not only of the tensor a = (ai j ), but also principle directions of the Ricci tensor
(see [12, § 34]). In this case the basis {e1, . . . , en} gets an invariant meaning for the
manifold (M, g), independent of the tensor a = (ai j ).

The following theorem holds.

Theorem 4.1 Let the Riemannian manifold (M, g) of dimension n ≥ 2 admit a
geodesic mapping and the tensor a = (ai j ) belong to the kernel of the symmetric
linear operator B2 : S2M → S2

0 M. If in each point x ↔ M the sectional curvature
K (ei , e j ) > 0 (or K (ei , e j ) < 0) to the direction ei ∧ e j for the ortonormal basis
{e1, . . . , en} of the vectors of principle directions of the Ricci tensor then the geodesic
mapping is an affine mapping.

Proof The quadratic form ω2(bi j ) = g(B2(bi j ), bi j ) can be written in the following
from (see [6, § 16.9]).

ω2(bi j ) = −
∑
i< j

K (ei , e j )(bi − b j )
2,

where K (ei , e j ) is the sectional curvature to the direction ei ∧ e j for any vectors
of the orthonormal basis {e1, . . . , en} of eigenvectors of the tensor b = (bi j ) of the
space Tx M in any point x ↔ M i.e. b(ei , e j ) = biΔi j , where Δi j is the Kroneker
symbol. Then from the condition B2(ai j ) = 0 follows ω2(ai j ) = 0 and under the
condition K (ei , e j ) > 0 (or K (ei , e j ) < 0) from the equality ω2(gi j ) = 0 follows
that a(ei , e j ) = aΔi j for the corresponding ortonormal basis {e1, . . . , en} of Tx M in
any point x ↔ M . This means that the geodesic mappings is an affine mapping (see
[3, p. 93]).
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On Dimensions of Vector Spaces of Conformal
Killing Forms

Sergey E. Stepanov, Marek Jukl and Josef Mikeš

Abstract In this article there are found precise upper bounds of dimension of vector
spaces of conformal Killing forms, closed and coclosed conformal Killing r -forms
(1 ⊕ r ⊕ n−1) on an n-dimensional manifold. It is proved that, in the case of n-
dimensional closed Riemannian manifold, the vector space of conformal Killing
r -forms is an orthogonal sum of the subspace of Killing forms and of the subspace
of exact conformal Killing r -forms. This is a generalization of related local result of
Tachibana and Kashiwada on pointwise decomposition of conformal Killing r -forms
on a Riemannian manifold with constant curvature. It is shown that the following
well known proposition may be derived as a consequence of our result: any closed
Riemannian manifold having zero Betti number and admitting group of conformal
mappings, which is non equal to the group of motions, is conformal equivalent to a
hypersphere of Euclidean space.

1 Introduction

1.1 The history of conformal Killing forms has started almost a half of century ago
by works of Tachibana and Kashiwada [7, 26]. During this long time, this topic has
given rise to an active interest (see for example [8, 16, 17, 22]) because of great
number of its applications (see e.g. [4, 10, 20]). This paper is devoted to the study
of dimensions of vector spaces of Killing forms (see [17]).
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1.2 In the second section, we investigate conformal Killing differential r-forms
(1 ⊕ r ⊕ n−1)on local coordinates of an arbitrary neighbourhoodU of n-dimensional
Riemannian manifold (M, g). We consider a vector space T r of these forms and
deal with two subspaces—the subspace Pr of planar r-forms (i.e. closed confor-
mal Killing forms) and subspace K r of Killing r-forms (coclosed conformal Killing
r-form). For r = 1 we obtain the following three vector spaces of 1-forms: dual
to conformal Killing vector field, concircular vector field and Killing vector field.
In this section there are found dimensions tr , kr and pr of these free “local” vector
spaces on the manifold (M, g) with constant curvature.

1.3 In the third section there are studied “complete” conformal Killing r -forms
(1 ⊕ r ⊕ n−1) on n-dimensional closed Riemannian manifold (M, g), vector space
T r (M,R) of these forms and two subspaces of it K r (M,R) of Killing forms and
Pr (M,R) of planar r -forms; dimensions of these spaces are denoted by tr (M),
kr (M) and pr (M), respectively. In the case of closed manifold (M, g) with zero
Betti numbers br (M) = 0, we show the orthogonal decomposition of T r in the
form T r (M,R) = K r (M,R) + Pr (M,R), which implies the relation tr (M) =
kr (M) + pr (M). In the case b1(M) = 0 and t1(M) ≥= k1(M), we will prove that
(M, g) is globally conformal to the n-dimensional sphere Sn of the Euclidean space
Rn+1.

2 Definitions and Notations

2.1 Let us consider n-dimensional Riemannian manifold (M, g) with Levi-Civita
connection. Denote by C∈(M) a vector space of C∈-function on M and by λr (M)

a vector space of differentiable r -forms on M . Taking local orientation of M we
introduce the Hodge operator ⊂ defining an isomorphism ⊂ : λr ⊗ λn−r such
that g(α, ⊂ε) = (−1)r(n−r)g(⊂α,ε), for any α ∈ λr (M),ε ∈ λn−r (M), and
⊂2 = (−1)r(n−r) I dλr (M) (see [2, definition 1.51], [13, p. 203]).

For the exterior differential operator d : C∈Δr (M) ⊗ C∈Δr+1(M) there exists
a formal adjoint operator δ : λr+1(M) ⊗ λr (M) which is called codifferential
operator (see [2, definition 1.56], [13, p. 203, 204], [15, § 25]) and it is defined by

δ = (−1)(n−r)(r+1) ⊂ d⊂ (1)

2.2 Let us remind well known definitions of three types of Killing vector fields in
Riemannian geometry.

A vector field Z on a Riemannian manifold (M, g) is called infinitesimal confor-
mal transformations or conformal Killing vector field (see [5, § 69], [11, p. 120])
if L Z g = 2ωg for Lie derivative L Z with respect to the vector field Z and some
ω ∈ C∈M .

Defining for a vector field Z a dual 1-form α by the relation α = g(Z , ·) we
introduce a denotation α# = Z (see [2, denotation 1.38]). Now, the identity L Z g =
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2ω ·g, by which an infinitesimal conformal transformation is defined, may be written
by

(L Z g)(X, Y )
def=(∇X )Y + (∇Y α)X = −2

n
(δα)g(X, Y ) (2)

or, equivalently, by

∇α = −1

2
dα − 1

n
g · δα = 0. (3)

Any vector field Z with L Z g = 0 on a Riemannian manifold (M, g) is called
infinitesimal isometry or Killing vector field.

Clearly, if ω = 0 then every infinitesimal conformal transformation Z is an
infinitesimal isometry. Because ω = n−1(−δα), for 1-form α dual to the vector
field Z = α#, we see that any infinitesimal isometry may be considered as coclosed
infinitesimal conformal transformation.

Let us remind that a vector field Z is called concircular (see [30]) if ∇Z =
θ I dM for θ ∈ C∈M . In this case, for every 1-form α with α# = Z we have
∇α = n−1(−δα)g. Therefore, a concircular vector field may be defined as closed
infinitesimal conformal transformation.

2.3 Let us deal with a generalization of three types of Killing vector field defined
above.

Let an n-dimensional Riemannian manifold (M, g) be given. A form α ∈ λr (M)
is called conformal Killing r-form (see [7]) if there exists a form ε ∈ λr−1(M)
with

(∇Y α)(X, X2, . . . , Xr ) + (∇X α)(Y, X2, . . . , Xr ) = 2g(X, Y )ε(X2, . . . , Xr )

−
r∑

a=2
(−1)a

(
g(Y, Xa)ε(X, X2, . . . ,X̂a, . . . ,Xr + g(X, Xa)ε(Y, Y2, . . . ,X̂a, . . . ,Xr )

)

(4)
for any vector fields Y, X, X2, . . . , Xr ∈ C∈(TM), where X̂a means that Xa is
omitted. The form ε ∈ λr−1(M) is called an associated form of the conformal
Killing form α ∈ λr (M). Moreover, the identity (see [7])

δα = −(n − r + 1)ε (5)

holds as the corollary of (3).
Equation (4) are a natural generalization of Eq. (2). Equation (4) may be written

in the form (see [20, 22])

∇α = (r + 1)−1dα + (n − r + 1)−1g → δα. (6)

These relations constitute necessary and sufficient conditions that an r -form α is a
conformal Killing form (1 ⊕ r ⊕ n − 1).

The set of conformal Killing forms on a Riemannian manifold (T, g) forms a
vector space T r (with real coefficients) (see [19]).
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A form α ∈ λr (M) on an n-dimensional Riemannian manifold (M, g) is called
a Killing r-form if it is a coclosed conformal Killing r-form. Such form α ∈ λr (M)

fulfils its definition equations (see [14] and [10], Definition 31.3.1)

(∇Y α)(X, X2, . . . , Xr ) + (∇Xα)(Y, X2, . . . , Xr ) = 0 (7)

or equivalent equations
∇α = (r + 1)−1dα. (8)

This form α is a generalization of an 1-form α ∈ λ−1(M), which is dual to the
Killing vector field Z = α#. The set of all Killing r -forms constitutes a vector space
K r ∞ T r (see [19]).

A form α ∈ C∈Δr (M) on an n-dimensional Riemannian manifold (M, g) is
called a planar r-form if it is a closed conformal Killing r-form (see [19]). Such form
α ∈ C∈Δr (M) fulfils its definition equations

∇α = (n − r + 1)−1g → δα, (9)

for 1 ⊕ r ⊕ n − 1.
This form α is a generalization of an 1-form α ∈ λ1(M), which is dual to the

concircular vector field Z = α#. The set of all such r -forms constitutes a vector
space Pr ∞ T r (see [19]).

3 Dimensions of Vector Spaces of Killing Forms and Vector
Fields on Non-compact Riemannian Manifold

3.1 Let (M, g) be an n-dimensional connected Riemannian manifold. Let us remind
some well known facts on dimensions of three types spaces of Killing vector fields
on (M, g). It is known that the dimension of a Lie algebra of a group C(M, g)

of infinitesimal conformal transformations of connected Riemannian n-dimensional
manifold (M, g) is not greater than 1

2 (n +1)(n +2) and this algebra is a vector space
of conformal Killing vector fields (see [11, p. 120]). The equality is obtained in the
case of conformally flat Riemannian manifold (M, g).

The dimension of a Lie algebra of a subgroup I (M, g) of infinitesimal transfor-
mations is not greater than 1

2 (n + 1)n and this algebra is a vector space of Killing
vector fields (see [11, p. 101]). The equality is obtained in the case of Riemannian
manifold (M, g) with constant curvature.

The dimension of a vector space of concircular vector fields on connected
n-dimensional manifold (M, g) is not greater than n + 1 and the equality is obtained
for manifold with constant curvature (see [6]).

3.2 To generalize facts presented above we will find precise upper bounds of
dimensions of vector spaces of three types of Killing r -forms (1 ⊕ r ⊕ n−1). Let
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us investigate a connected n-dimensional Riemannian manifold (M, g). To form
α ∈ C∈Δr (M) the condition of integrability of arbitrary equation of a systems of
Eqs. (5), (7) or (8) is the Ricci identity ([5, § 11]). This identity has in any local
coordinate system x1, . . . , xn of a manifold (M, g) the following expression:

∇ j∇kαi1i2...ir − ∇k∇ jαi1i2...ir = −
r∑

π=1

αi1i2...iπ−1liπ+1...ir Rl
iπ jk , (10)

where αi1,i2...i p = α(Xi1 , Xi2 , . . . , Xi p ) and Ri
jkl Xi = R(Xk, Xl)X j are local

components of a conformal Killing r -form and curvature tensor R for Xk = ζ
ζxk and

∇k = ∇Xk .
Ricci identity (10) establishes restrictions not only the choice of components of

r -form α but also on the curvature tensor R of the manifold (M, g). We have the
following theorem.

Theorem 3.1 On an n-dimensional connected Riemannian manifold (M, g), the
dimensions tr , kr and pr of vector spaces of conformal Killing r-form T r , co-
closed confomal Killing (Killing) r-form K r and closed conformal Killing r-form
Pr , (1 ⊕ r ⊕ n−1), respectively have the following upper bounds

tr ⊕ (n + 2)!
(r + 1)!(n − r + 1)! , kr ⊕ (n + 1)!

(r + 1)!(n − r)! , pr ⊕ (n + 1)!
r !(n − r + 1)! .

The equalities are obtained in the case of Riemannian manifold (M, g) with constant
nonzero curvature.

Proof The case when (M, g) is locally flat manifold is trivial; in [19, 20] on the
basis of (10) there are defined components αi1...ir = Aki1...ir xk + Bi1...ir of Killing
r -form α, for an arbitrary local Cartesian coordinate system x1, . . . , xn . Here,
Aki1...ir , Bi1...ir are local components of constant skew-symmetric (r + 1)-forms
and r -forms, respectively.

With respect to this result, in [18] there for some special coordinate system
x1, . . . , xn of manifold (M, g) with constant sectional curvature C ≥= 0 were found
components αi1...ir = e(r+1)ν(Aki1...ir xk + Bi1...ir ), ν = 1

2(n+1)
ln(det g), of Killing

r -form α. Therefore the dimension kr of a space K r of coclosed conformal Killing
r -forms on Riemannian manifold with constant curvature is equal to

kr =
(

n

r + 1

)
+

(
n

r

)
=

(
n + 1

r + 1

)
= (n + 1)!

(r + 1)!(n − r)! .

In the case of an arbitrary connected manifold (M, g), it is evident that the dimen-
sion kr of a space K r is not greater then this number, i. e. kr ⊕ (n+1)!

(r+1)!(n−r)! .
It is known (see [8, 19, 20]) that there exists an isomorphism ⊂ : K n−r ⊗ Pr .

It gives the possibility to count the dimension pr of a space Pr of closed conformal
Killing r -forms on a manifold (M, g) with nonzero constant sectional curvature
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C ≥= 0; this dimension is equal to pr = (n+1)!
r !(n−r+1)! . For arbitrary connected manifold

(M, g), it is evident that the dimension pr of a space Pr is not greater then this
number, i. e. pr ⊕ (n+1)!

r !(n−r+1)! .
For manifold (M, g) with constant sectional curvature C ≥= 0, in [7, 26] there by

direct calculation was obtained decomposition of any conformal Killing r -form α

into direct sum α = α1 + α2 of a coclosed conformal Killing (Killing) r -form α1 and
of closed conformal Killing (planar) r -form α2 = ∇ε for Killing (r − 1)-form ε .

Clearly, the arbitrariness of choice of an r -form α2 = ∇ε is given by the number
of parameters on which a Killing (r − 1)-form depends. This number is equal to(n

r

) + ( n
n−1

) = (n+1
r

)
. In the case of an arbitrary connected manifold (M, g), it is

obvious that the arbitrariness of determination of an exact conformal Killing r -form
α2 = ∇ε does not be greater then this number.

Based on a pointwise decomposition α = α1 + α2 the expression of an arbitrary
conformal Killing r -form α in some special local coordinate system x1, . . . , xn on
a manifold (M, g) with nonzero constant curvature C ≥= 0

αi1...ir = e(r+1)ν

(
Aki1...ir xk + Bi1...ir − 1

C

(
ν[i1Cki2...ir ]xk

+ν[i1 Di2...ir ] + 1

r
Ci1...ir

))
,

where Ak,i1...ir , Bi1...ir , Ci1i2...ir and Di1...ir−1 are local components of constant skew-
symmetric forms. Now, we may compute the dimension tr of a space T r of conformal
Killing r -forms on a manifold with constant curvature C ≥= 0 which is equal to the
following summ

tr =
(

n + 1

r + 1

)
+

(
n + 1

r

)
=

(
n + 2

r + 1

)
= (n + 2)!

(r + 1)!(n − r + 1)! .

In the case of an arbitrary connected manifold (M, g), it is obvious that the
dimension of a space T r is not greater then this number, i. e.

tr ⊕ (n + 2)!
(r + 1)!(n − r + 1)! .

We have proved the theorem.

Considering the upper bounds of dimension of vector space of conformal Killing
forms T r and of space of Killing r -forms K r as found in Theorem 3.1 we for r = 1
obtain the following well known proposition.

Corollary 3.1 The dimensions of vector spaces of conformal Killing vector field T 1,
Killing vector fields K 1 and concircular vector fields P1 on connected Riemannian
manifold (M, g) do not be greater then 1

2 (n + 1)(n + 2), 1
2 (n + 1)n and n + 1,

respectively. The equalities are obtained in the case of manifold with constant nonzero
section curvature.
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3.3 Formulated in the theorem and its corollary results on dimensions of vector spaces
of Killing and conformal Killing forms and of vector fields are substantially local.

As an example, let us consider an n-dimensional (n ∪ 2) hyperbolic space which
is a Riemannian manifold with constant negative curvature. As we have proved
above, in this space the dimension kr of the space of coclosed conformal Killing
(Killing) r -forms (1 ⊕ r ⊕ n−1) and, especially, the dimension k1 of Killing vector
spaces is equal to (n+1)!

(r+1)!(n−r)! and 1
2 (n + 1)n, respectively. Factorizing hyperbolic

space according to a suitable discrete group of motions (see [29, § 2.4]) we obtain a
compact manifold with constant curvature. On this manifold there exists “generally”
no nonzero Killing r -form (see [32, § 1 of Chap. VI]). Therefore, our result on the
dimension of a space of Killing r -forms as well as well known result on the dimension
of a space of Killing vector field deals with “local dimensions” kr and k1, especially.

An analogous conclusion may be obtained for dimensions of spaces of conformal
Killing forms and vector fields and also for closed conformal Killing forms and
concircular vector field.

4 Dimensions of Spaces of Conformal Killing Forms
on a Closed Riemannian Manifold

4.1 Let (M, g) be a closed (i.e. compact without the border ζ M) oriented Riemannian
manifold. Let us denote by ↔·, ·〉 the global inner product

↔α,α∗〉 =
∫

M

1

r !g(α, α∗)dv (11)

for arbitrary compact carriers α,α∗∈λr (M) of r -form and volume element dv. Then
the exterior differential operator d: λr (M) ⊗ λr+1(M) and the adjoin codifferen-
tial operator δ: λr+1(M) ⊗ λr (M) are connected by the following equality (see
[13, p. 204])

↔dα,σ〉 = ↔α, δσ〉 (12)

for any α ∈ λr (M) and ε ∈ λr+1(M).

On a closed manifold (M, g), it holds the following Hodge-de Ram orthogonal
decomposition with respect to the global inner product (11) (see [12]):

λr (M) = Im d ≤ Im δ ≤ Ker ϕ, (13)

where ϕ = dδ + δd is Laplace operator with Ker ϕ = Im d ⊥ Ker δ. In addition,
there are following orthogonal decompositions (see [12])

Ker δ = Im δ ≤ Ker ϕ, (14)
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Ker d = Im d ≤ Ker ϕ. (15)

The kernel of Laplace operator ϕ on (M, g) is a finite dimension vector space
Hr (M,R) = {α ∈ λr (M)|ϕα = 0} of harmonic r -forms, for r = 1, . . . , n − 1
(see [15, § 25], [12]). The dimension of Hr (M,R) is equal to the Betti number
br (M) of a manifold (M, g), i.e. br (M) = dimR Ker ϕ. It is known (see [12]), that
Betti numbers of a manifold (M, g) are dual in the sense of br (M) = bn−r (M) and
for n = 2r Betti numbers are invariant with respect to the conformal transformation
of metric g = e2 F g, because in this case δ = δ (see [2, Corollary 1.162]).

4.2 Let an n-dimensional closed manifold (M, g) be given and let us consider a
natural with respect to isometric dipheomorphisms differential operator of the first
order D: γr (M) ⊗ γ1(M)∀γ1(M) being define by the following (see [3, pp. 312–
313], [16, 20])

D = ∇ − (r + 1)−1d − (n − r + 1)−1g → δ, (16)

where → denotes multiplication of an (r − 1)-form δα by a metric tensor which is
defined by the following rule

(g → δα)(X0, X1, . . . , Xr ) =
r∑

a=1

(−1)ag(X0, Xa)(δα)(X1, . . . , X̂a, . . . , xr )

for arbitrary (X0, . . . , Xr ) ∈ C∈(T M).
Then the condition α ∈ Ker D, which is equal to the identity ∇α = (r+1)−1dα +

(n − r + 1)−1g → δα, is a necessary and sufficient condition that an r -form α is a
conformal Killing form, r = 1, . . . , n − 1 (see [16, 19, 20]).

Especially, it follows from this that for a conformal Killing vector field Z = α#

any 1-form α belongs to the kernel of differential operator of the first order

D := ∇α − 1

2
dα + 1

n
g · δα,

which is called Ahlfors operator (see [14]).
In the [23] there is for operator D, defined by (16), found an adjoint operator D⊂.

Moreover, there is also the rough Laplacian constructed by (see [2, Definition 1.135],
[3, pp. 316–317])

D⊂D = 1

r(r + 1)

(
∇⊂∇ − 1

r + 1
δd − 1

n−r + 1
dδ

)
, (17)

where ∇⊂∇ is the rough Bochner Laplacian ([21]).
It follows from general theory that rough Laplacian on a closed Riemannian

manifold (M, g) is positive and elliptic (see [3, pp. 316–317]). Because it is an elliptic
operator, its kernel is a finite dimensional vector subspace. Therefore, the kernel of
a rough Laplacian Ker D⊂D is a finite dimensional vector space T r (M,R) = {α ∈
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λr (M) | D⊂Dα = 0}. Using the identity ↔D⊂Dα,α〉 = ↔Dα, Dα〉, we have that this
kernel consists of conformal Killing r -forms, for all r = 1, . . . , n−1 (see [16]).

In [17] and [24], the dimension tr (M) = dimR Ker D⊂D, for all r=1, . . . , n−1
is called Tachibana number of closed Riemannian manifold (M, g) as an analogy to
the Betti number br (M) = dimR Ker Φ. Tachibana numbers as well as Betti numbers
are dual in the sense of tr (M) = tn−r (M) (see [17, 22, 24].) Evidently,

tr (M) ⊕ (n + 2)!
(r + 1)!(n − r + 1)! .

One of the most important properties of conformal Killing forms is their conformal
invariance (see [4]), i.e. for an arbitrary conformal Killing r -form α the form ᾱ =
e(r+1) f α is a conformal Killing form with respect to the conformally equivalent
metric ḡ = e2 f g. This implies that Tachibana numbers tr (M) for r = 1, . . . , n−1
are conformal scalar invariants of a closed Riemannian manifold (see [17, 24]).

Coclosed conformal Killing (Killing) r -forms (1 ⊕ r ⊕ n − 1) form the vec-
tor space K r (M,R) = {α ∈ λr (M) | D⊂Dα = δα = 0}. The dimension
kr (M) = dimR(Ker D⊂D ⊥ Ker δ) was in [17] and [24] called Killing number of
closed Riemannian manifold (M, g). Evidently,

kr (M) ⊕ (n + 1)!
(r + 1)!(n − r)! .

Closed conformal Killing (planar) r -forms (1 ⊕ r ⊕ n − 1) form the vector space
Pr (M,R) = {α ∈ λr (M) | D⊂Dα = dα = 0}. Its dimension pr (M) =
dimR(Ker D⊂D ⊥ Ker d) was in [17] and [24] called planar number of closed Rie-
mannian manifold (M, g). Evidently,

pr (M) ⊕ (n + 1)!
r !(n − r + 1)! .

One of the most important properties of Killing and planar r -forms is their con-
formal invariance (see [4]), i.e. for an arbitrary conformal Killing (or planar) r -form
α the form

ᾱ = e−(r+1) f α for f = (n + 1)−1 ln

√
det g

det ḡ

is a Killing (respectively, planar) r -form with respect to the projectively equivalent
metric ḡ (see [24]).This implies that the Killing numbers kr (M) and planar numbers
pr (M) for r = 1, . . . , n − 1 are projective scalar invariants of the Riemannian
manifold (M, g).

To summarize, we may formulate

Proposition 4.1 On an n-dimensional closed Riemannian manifold (M, g) the fol-
lowing hold for all r, r=1 ,…,n − 1
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1. Tachibana numbers tr (M) are conformal scalar invariants, they are dual in the
sense tr (M) = tn−r (M) and they fulfill the relation

tr (M) ⊕ (n + 2)!
(r + 1)!(n − r + 1)! ;

2. Killing numbers tr (M) and planar numbers pr (M) are projective scalar invari-
ants, they are dual in the sense kr (M) = pn−r (M) and they fulfill the relations

kr (M) ⊕ (n + 1)!
(r + 1)!(n − r)! and pr (M) ⊕ (n + 1)!

r !(n − r + 1)! .

4.3 We establish a connection between Betti numbers and Tachibana numbers. Two
following theorems hold.

Theorem 4.1 If Ricci tensor Ric of an n-dimensional compact and oriented confor-
mal planar Riemannian manifold (M, g), n ∪ 2, is definite, then Tachibana tk(M)

and Betti bl(M) numbers cannot be different from zero for arbitrary pair of indices
k, l = 1, . . . , n − 1 .

Proof Let Ricci tensor Ric be definite on a compact manifold (M, g), i.e. quadratic
form Ric(X, X) is definite for arbitrary nonzero vector field X ∈ C∈T M . Let us
suppose that quadratic form Ric(X, X) is positive definite and manifold (M, g) be
compact and oriented conformal flat manifold. Then b1(M) = · · · = bn−1(M) = 0,
in accordance with [31].

Further, to get a new expression of the rough Laplacian (17), let us use the classical
Bochner-Weitzenböck formula [2], which gives Φ = ∇⊂∇ + Fr , where Fr may be a
algebraically (even linearly) expressed in terms of the curvature tensor R of manifold
(M, g). Now, the rough Laplacian may be written in the form

D⊂D = 1

r(r + 1)

(
d⊂d − n − r

n − r + 1
dd⊂ − Fr

)
.

Then any conformal Killing r -form α must fulfill the following equation

∫
M

g(Fr (α), α)dv = r

r + 1
↔dα, dα〉 + n − r

n − r + 1
↔d⊂α, d⊂α〉.

If we suppose that quadratic form Ric(X, X) is negative definite, then on a compact
conformal flat manifold we have the following inequality [31]

g(Fr (ε),ε) ⊕ −n − r

n − 1
ψ · g(ε,ε),

for the greatest (negative) eigenvalue −ψ of the matrix ∩Ric∩, for all 1 ⊕ r ⊕ n − 1
and any nonzero form ε ∈ λr (M). Consequently, any conformal Killing r -form α

must fulfill the inequality
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r

(n − r)(r + 1)
↔dα, dα〉 + 1

n − r + 1
↔d⊂α, d⊂α〉 ⊕ −n − r

n − 1
ψ↔α,α〉.

This is possible only if a conformal Killing r -form vanishes at any point of manifold
(M, g) and then t1(M) = · · · = tn−1(M) = 0. The theorem is proved.

Theorem 4.2 If on an n-dimensional closed Riemannian manifold (M, g)Betti num-
ber br (M) = 0, for 1 ⊕ r ⊕ n − 1, and Tachibana number tr (M) > kr (M) ≥= 0,
then for Killing numbers kr (M) and planar numbers pr (M) it holds tr (M) =
kr (M) + pr (M).

Proof Let on an n-dimensional closed Riemannian manifold (M, g) Betti number
br (M) = 0, for 1 ⊕ r ⊕ n − 1. Then in decompositions (13–15) there is Ker ϕ = 0
and therefore we have the following orthogonal decomposition

λr (M) = Im d ≤ Im δ (18)

and besides Ker d = Im d and Ker δ = Im δ. Since tr (M) > kr (M) ≥= 0 we obtain for
Killing number kr (M) = dimR(Ker D⊂D ⊥ Im d⊂) and for planar number pr (M) =
dimR(Ker D⊂D ⊥ Im d) ≥= 0. Consequently, it is clear that decomposition (18)
implies the following orthogonal decomposition

Ker D⊂D = (Ker D⊂D ⊥ Im δ) ≤ (Ker D⊂D ⊥ Im d). (19)

It may be rewritten in the form T r (M,R)= K r (R, M)≤Pr (M,R), 1 ⊕ r ⊕ n−1,
where in accordance with (14) a space K r (M,R) consists of co-exact conformal
Killing r -forms and in accordance with (15) a space Pr (M,R) consists of exact
ones. It follows from this the equality tr (M) = kr (M) + pr (M). The summands on
the right side represent dimensions of namely these vector spaces. Let us remark that
in the case tr (M) = 0 the equality which may be proved turns into an identity.

The proof is finished.

Remark 4.1 In the article [25], an analogical orthogonal decomposition T r (M,R) =
K r (M,R)+ Pr (M,R) was established on an 2r -dimensional closed conformal flat
Riemannian manifold (M, g) with constant positive scalar curvature. Let us remark,
that br (M) = 0 is fulfilled in such manifold in accordance with [31].

In [17] this decomposition is established for a closed manifold with positive
curvature operator, where b1(M) = · · · = bn−1(M) = 0 in accordance with [13]. It
is important to say that in the both decompositions the space Pr (M,R) consists of
exact conformal Killing r -forms, 1⊕r⊕n − 1, and the space K r (M,R) consists of
coexact ones. These facts does not contained in the cited article.

Especially, for r = 1 we have the following corollary.

Corollary 4.1 If for an n-dimensional closed Riemannian the first Betti number
b1(M) = 0 and at the same time t1(M) ≥= 0, t1(M) ≥= k1(M), then (M, g) is globally
conformal to an n-dimensional sphere Sn of Euclidean space R

n+1. If s = const,
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s > 0, additionally, then a manifold (M, g) is globally isometric to the sphere
Sn. If for an n-dimensional closed Riemannian manifold s = const and s = 0 or
s = const and s < 0, then t1(M) = k1(M).

Proof For an n-dimensional closed Riemannian manifold (M, g) with b1(M) = 0,
t1(M) ≥= 0, t1(M) ≥= k1(M) we have the following orthogonal decomposition with
respect to the global inner product

T 1(M,R) = K 1(M,R) + P1(M,R), (20)

where P1(M,R) contains at least one exact conformal Killing 1-form, i.e. a form
which may be expressed as α = gradf with ∇∇ f = θg, where θ = − 1

n Φ f. In
this case, manifold (M, g) is globally conformal to an Euclidean sphere Sn with the
standard metric ḡcan (see [27]). It is known (see [32]), that the presence of orthogonal
decomposition (20) on closed Riemannian manifold (M, g) with an additional con-
dition s = const implies that (M, g) is globally isometric to the Euclidean sphere Sn .
Let us remark, that for a compact Riemannian manifold (M, g) with constant nega-
tive or zero curvature it holds t1(M) = k1(M), because in this case any conformal
Killing vector field is a Killing field (see [9]).

Remark 4.2 Conformal Killing and closed conformal Killing vector field is dual to
conformal Killing and planar 1-form, respectively. At the end of the past and begin-
ning of this century, these vector fields have been objects of an intensive interest in
connection with the study of groups of infinitesimal conformal transformations of
search criteria for conformity and isometry Riemannian manifold to the Euclidean
sphere (see [1, 6, 23, 28] and others.) Therefore, there exists a great number of
propositions, which are analogical to our proved corollary. Let us mention one of
them (see [23]). It says that any compact Riemannian manifold having finite funda-
mental group π1(M) and admitting a closed conformal Killing vector field, which is
not an infinitesimal isometry, is diffeomorphic to the Euclidean sphere. Adding the
condition of constancy of the scalar curvature we obtain that such manifold must be
isometric to the Euclidean sphere (see [28]). Le us add, the finiteness of a fundamen-
tal group π1(M) implies automatically that first Betti number b1(M) is equal to zero
and closed conformal Killing vector field is the gradient at the same time.

Acknowledgments The paper was supported by grant P201/11/0356 of The Czech Science
Foundation.
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Part III
Dynamical Symmetries
and Conservation Laws



Causality from Dynamical Symmetry:
An Example from Local Scale-Invariance

Malte Henkel

Abstract Physical ageing phenomena far from equilibrium naturally lead to
dynamical scaling. It has been proposed to consider the consequences of an extension
to a larger Lie algebra of local scale-transformation. The best-tested applications of
this are explicitly computed co-variant two-point functions which have been com-
pared to non-equilibrium response functions in a large variety of statistical mechanics
models. It is shown that the extension of the Schrödinger Lie algebra sch(d) to a max-
imal parabolic sub-algebra, when combined with a dualisation approach, is sufficient
to derive the causality condition required for the interpretation of two-point func-
tions as physical response functions. The proof is presented for the recent logarithmic
extension of the differential operator representation of the Schrödinger algebra.

1 Motivation and Background

Physicists have valued since a long time the important rôle of symmetries, be it
for their usefulness in simplifying practical calculations, be it for making progress
in issues of conceptual understanding. Arguably the most famous instance of this
is relativistic covariance in mechanics and electrodynamics,1 formally described
by the Lie group of Lorentz transformations which has been introduced almost
exactly a century ago [10, 40]. Almost three quarters of a century later, it has
been realised that by the inclusion of scale-invariance and the subsequent extension

1 Physicists carefully distinguish between co-variance and invariance: for example, a scalar is
invariant under rotations, while a vector or a tensor transforms covariantly. Since the equations
of mechanics or electrodynamics are in general vector or tensor equations, it is appropriate to
speak of relativistic co-variance.
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of the Lorentz group to the conformal group considerable advances can be made,
simultaneously in cooperative phenomena in statistical mechanics as well as in string
theory. A special rôle is herein played by the case of two dimensions, where the
infinite-dimensional Lie algebra of conformal transformations is centrally extended
to the Virasoro algebra, in order to be able to take the physical effects of either
thermal or quantum fluctuations into account [3].

Here, we shall consider a different example of covariance under a certain class
of space-time transformations. Historically, these were found by considering the
dynamical symmetries of what in physics is called by an abuse of language the ‘non-
relativistic limit’ of mechanics where the speed of light c ⊕ ≥. Specifically, we
shall be interested in the transformations of the Schrödinger group Sch(d) which is
defined by the following transformation on space-time coordinates (t, r) ∈ R × R

d :

t ⊂⊕ t ⊗ := λt + α

ε t + Δ
, r ⊂⊕ r ⊗ := Rr + vt + a

ε t + Δ
; λΔ − αε = 1 (1)

with R ∈ SO(d), a, v ∈ R
d and λ, α, ε, Δ ∈ R. Indeed, it has been known to

mathematicians since a long time that free-particle motion (be it classical, quantum
mechanical or probabilistic) is invariant under the Schrödinger group in the sense
that a solution of the equation of motion is mapped onto a different solution of the
same equation of motion in the transformed coordinates [36, 39]. During the past
century, this has been re-discovered a couple of times, both in mathematics and
physics, see e.g. [29] and references therein. It is often convenient to study instead

the Lie algebra sch(d) = Lie(Sch(d)) =
〈
X0,±1, Y ( j)

±1/2, M0, R( jk)
0

〉
j,k=1,...d

with

the explicit generators (where δ j := δ/δr j and ∇r = (δ1, . . . , δd)T)

Xn = −tn+1δt − n + 1

2
tnr · ∇r − M

2
(n + 1)ntn−1r2 − n + 1

2
xtn

Y ( j)
m = −tm+1/2δ j −

(
m + 1

2

)
tm−1/2M r j

Mn = −tnM (2)

R( jk)
n = −tn(r jδk − rkδ j

) = −R(k j)
n

Herein, the non-derivative terms (characterised by a dimensionful constant M
(‘mass’) and a scaling dimension x) describe how the solution of a Schrödinger/dif-
fusion equation will transform under the action of sch(d). One has the non-vanishing
commutation relations

[
Xn, Xn⊗

] = (n − n⊗)Xn+n⊗ ,
[
Xn, Y ( j)

m
] =

(n

2
− m

)
Y ( j)

n+m[
Xn, Mn⊗

] = −n⊗Mn+n⊗ ,
[
Xn, R( jk)

n⊗
] = −n⊗ R( jk)

n+n⊗ (3)
[
Y ( j)

m , Y (k)
m⊗

] = Δ j,k (
m − m⊗) Mm+m⊗ ,

[
R( jk)

n , Y (ω)
m

] = Δ j,ω Y (k)
n+m − Δk,ω Y ( j)

n+m
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up to the commutators of so(d), involving the R( jk)
0 , which are not spelled out.

The Schrödinger algebra is also the Lie symmetry algebra of non-linear (systems
of) equations. Probably one of the best-known examples of this kind are the Euler
equations of a compressible fluid of velocity u = u(t, r) and density θ = θ(t, r)

δtθ + ∇ · (
θu

) = 0 , θ
(
δt + (u · ∇)

)
u + ∇ P = 0 (4)

together with the polytropic equation of state P = θ1+2/d . This has been
known to russian and ukrainian mathematicians at least since the 1960s [15,
49] and was re-discovered by european physicists around the turn of the cen-
tury [20, 48]. Many more Schrödinger-invariant non-linear equations and systems
exist, see [14–16, 55]. Analogously to conformal invariance in 2D, an infinite-
dimensional extension of sch(d) is the Schrödinger-Virasoro algebra sv(d) =〈
Xn, Y ( j)

m , Mn, R( jk)
n

〉
n∈Z,m∈Z+ 1

2 , j,k∈{1,...,d}, with an explicit representation in (2)

and an immediate extension of the commutators (3) [22]. The mathematical proper-
ties of sv are studied in detail in [57, 61], the geometry in [9] and physical applications
are reviewed in [29].

Contrary to a widespread belief, when taking the non-relativistic limit of the
conformal algebra, one does not obtain the Schrödinger algebra, but a different Lie
algebra, which by now is usually called the conformal Galilean algebra cga(d) =
〈X±1,0, Y ( j)

±1,0, R( jk)
0 → j,k=1,...,d [1, 21, 23, 26, 42, 47, 64]. Its most general known

differential operator representation is [7]

Xn = −tn+1δt − (n + 1)tnr · ∇r − n(n + 1)tn−1ε · r − x(n + 1)tn

Y ( j)
n = −tn+1δ j − (n + 1)tnε j (5)

R( jk)
n = −tn(r jδk − rkδ j

) − tn(ε jδεk − εkδε j

) = −R(k j)
n

where ε = (ε1, . . . , εd) is a vector of dimensionful constants and x is again a scaling
dimension. Its non-vanishing commutators read, again up to those of so(d)

[Xn, Xn⊗ ] = (n − n⊗)Xn+n⊗ , [Xn, Y ( j)
m ] = (n − m) Y ( j)

n+m

[Xn, R( jk)

n⊗ ] = −n⊗ R( jk)

n+n⊗ , [R( jk)
n , Y (ω)

m ] = Δ j,ωY (k)
n+m − Δk,ωY ( j)

n+m (6)

The non-linear systems for which cga(d) arises as a (conditional) dynamical sym-
metry are distinct from (4) [7, 62]. As before, the systematic organisation of
the generators allows for an immediate infinite-dimensional extension av(d) :=〈
Xn, Y ( j)

n , R( jk)
n

〉
n∈Z, j,k=1,...,d

[23, 50] (‘altern-Virasoro algebra’).

In d = 2 spatial dimensions, it was recently shown [41] that the conformal
Galilean algebra admits a so-called ‘exotic’ central extension. This is achieved by
adding to the commutator relations (6) the following commutator

[
Y (1)

n , Y (2)
m

] = Δn+m,0
(
3Δn,0 − 2

)
π, n, m ∈ {±1, 0}, (7)
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where the new central generator π is needed for this central extension. Physicists
usually call this central extension of cga(2) the exotic Galilean conformal algebra,
and we shall denote it by ecga = cga(2) + Cπ .2 A differential operator represen-
tation of ecga reads [7, 42] (ζ jk is the totally antisymmetric tensor)

Xn = −tn+1δt − (n + 1)tnr · ∇r − ν(n + 1)tn − (n + 1)ntn−1ε · r − (n + 1)nh · r

Y ( j)
n = −tn+1δ j − (n + 1)tnε j − (n + 1)tnh j − (n + 1)n (ζ jk rk) σ (8)

R(12)
0 = −(

r1δ2 − r2δ1
) − (

ε1δε2 − ε2δε1

) − 1

2σ
h · h

where n ∈ {±1, 0} and j, k ∈ {1, 2}.3 Because of Schur’s lemma, the central genera-
tor π can be replaced by its eigenvalue σ ∞= 0. The components of the vector-operator
h = (h1, h2) are connected by the commutator [h1, h2] = π . For illustration, we
quote the following non-linear system which has ecga as a Lie symmetry [7]

∇ ∪ u = 0 , δt u + (u · ∇) u + 1

2
(u ∪ ∇) ∪ u = q∇ ∪ ϕ (9)

where q is a constant, u = u(t, r) = (u1, u2, 0)T is a planar vector embedded into
R

3 (and similarly for ∇) and ϕ = (0, 0, w)T is constructed from the coordinate dual
to the central charge according to π = δw. Clearly, (9) is very different from (4).

Remark In analogy to the Virasoro algebra of 2D conformal invariance, it is natural
to ask if the full definition of algebras such as sv(d) or av(d) may include central
extensions. For the Schrödinger-Virasoro algebra sv(1), one merely has the central
Virasoro-like extension of [Xn, Xm] [22, 57, 61]. On the other hand, if in sv(1) one
considers the generators Yn with integer indices n ∈ Z, then three distinct central
extensions are possible [57], [61, Theorem 7.4]. For the ‘altern-Virasoro algebra’ or
the infinite-dimensional extension of cga(1) one has the central extensions [28, 50]

[Xn, Xn⊗ ] = (n − n⊗)Xn+n⊗ + cX

12
Δn+n⊗,0

(
n3 − n

)

[Xn, Yn⊗ ] = (n − n⊗)Xn+n⊗ + cY

12
Δn+n⊗,0

(
n3 − n

)
(10)

with two independent central charges. The independence of the two central charges
cX,Y can be illustrated by the following example: let Ln and L ⊗

n with n ∈ Z stand
for the generators of two commuting Virasoro algebras with central charges c and
c⊗. Then the generators

Xn :=
(

Ln + L ⊗
n 0

0 Ln + L ⊗
n

)
, Yn :=

(
0 Ln

0 0

)
, K X :=

(
1 0
0 1

)
, KY :=

(
0 1
0 0

)

(11)

2 All Lie algebras are complex, unless explicitly stated otherwise.
3 An infinite-dimensional extension of ecga does not appear to be possible.
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obey the commutators (10), with cX = (c + c⊗)K X and cY = cKY [28] [29, Exercise
5.5].

In statistical physics, many situations are known and well-understood where
the usual space-time symmetries of temporal and spatial translation-invariance and
rotation-invariance are supplemented by dilatation (or scale-) invariance.4 The par-
adigmatic examples are provided by various phase transitions—often-mentioned
examples include the liquid-gas transition, the ferromagnetic-paramagnetic transi-
tion, the transition between normal conductivity and superconductivity, the elec-
troweak phase transition in the early universe and so on. Here, we shall be interested
in instances of dynamical scaling, which involves the space-time rescaling t ⊂⊕ bzt ,
r ⊂⊕ br and is characterised by a constant, the dynamical exponent z. It arises nat-
urally in various many-body systems far from equilibrium, often without having to
fine-tune external parameters. Paradigmatic examples are ageing phenomena, which
may arise in systems quenched, from some initial state, either (i) into a coexistence
phase with more than one stable equilibrium state or else (ii) onto a critical point of
the stationary state, see [4, 8, 29] for reviews. Phenomenologically, ageing can be
characterised through three (symmetry) properties: namely [29]

1. slow, non-exponential relaxation,
2. breaking of time-translation-invariance
3. dynamical scaling.

For equilibrium critical phenomena, it was believed for a long time that under rela-
tively weak conditions scale-invariance could be extended to conformal invariance.
Recent work has considerably clarified that this conclusion cannot always be drawn
so readily [56], although there exist many theoretical models which are indeed both
scale- and conformally invariant, with many important consequences [3, 53]. Draw-
ing on this analogy, we look for situations when dynamical scaling can be extended
to a larger group, such as the Schrödinger group when z = 2. Quite analogously with
respect to conformal invariance, one is looking for co-variant two-point functions,
such that the co-variance under Schrödinger transformations leads to a set of differ-
ential equations for the said two-point function. However, in contrast to conformal
invariance, it has turned out that this kind of co-variance condition is not satisfied
by correlation functions but rather by the so-called response functions. As an exam-
ple, we quote the basic prediction of Schrödinger-invariance for the linear two-time
auto-response function [24–27]

R(t, s) = Δ〈γ(t, r)→
Δh(s, r)

∣∣∣∣
h=0

= 〈
γ(t, r)γ̃(s, r)

〉 = s−1−a fR

(
t

s

)
,

fR(y) = f0 y1+a⊗−νR/z(y − 1)−1−a⊗
π(y − 1) (12)

which measures the linear response of the order-parameter γ(t, r) with respect to
its canonically conjugated external field h(s, r). In stochastic field-theory using the

4 In the physicists terminology: at an equilibrium critical point, the partition function is invariant
under dilatations, whereas correlators of physical observables transform co-variantly.
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Fig. 1 Root diagrammes of some sub-algebras of the complex Lie algebra B2. The roots of B2 are
indicated by the full and broken dots, those of the sub-algebras by the full dots only. a Schrödinger
algebra sch(1) = 〈

X±1,0, Y±1/2, M0
〉
and the maximal parabolic sub-algebra s̃ch(1) = sch(1)+CN .

b Conformal Galilean algebra cga(1) = 〈
X±1,0, Y±1,0

〉

Janssen-de Dominicis formalism, see e.g. [8, 29], it can be shown that response func-
tions can be written as a correlator between the order-parameter γ and an associated
‘response field’ γ̃.5 The auto-response exponent νR and the ageing exponents a, a⊗
are universal non-equilibrium exponents.6 This prediction has been tested exten-
sively, and the computation of correlators can be understood along different lines, as
reviewed in [29].

The main distinction of response functions with respect to correlation functions
is the causality condition t > s, which is spelt out in (12) through the Heaviside
π-function. Here, we shall show how the origin of this causality condition can be
understood from an algebraic symmetry hypothesis. The central observation is that
there exists a natural way to imbed the Schrödinger algebra sch(d) into a (semi-
simple) conformal Lie algebra in d + 2 dimensions [5, 26]. This opens the route to
introduce a powerful mathematical concept, namely the parabolic sub-algebras of
that conformal Lie algebra. By definition, a (standard) parabolic sub-algebra is made
up by the Cartan sub-algebra and a selected set of positive roots [37]. It turns out that
a sufficient condition for deriving a causality condition for the co-variant two-point
functions as in (12) is the co-variance under a maximal parabolic sub-algebra dualised
in such a way that translation-invariance in the dual variable becomes part of the
algebra. For example, rather than requiring Schrödinger-covariance under the algebra
sch(d), one considers an extended co-variance under the maximal parabolic sub-
algebra s̃ch(d) = sch(d)+CN , with a single extra generator N , to be specified below
[26]. In Fig. 1a, we illustrate the inclusion, for the d = 1 case, s̃ch(1) = sch(1) +
CN ↔ B2 to the simple complex Lie algebra B2, isomorphic to the conformal algebra

5 The example of the free field equations of motion already shows that while the order-parameter γ

has a positive ‘mass’ M > 0, the ‘mass’ associated to the response field is negative M̃ = −M < 0.
6 In magnets, the temperature is rapidly lowered (‘quenched’) from a very high initial value to a
finite value T . Mean-field theory suggests that usually a = a⊗ for low final temperatures T < Tc
and a ∞= a⊗ for critical quenches at T = Tc, where Tc is the equilibrium critical temperature [29].
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B2 ∼= (conf(3))C in three dimensions. Similarly, Fig. 1b illustrates the inclusion
cga(1) ↔ B2 and an extension by the second independent generator in the Cartan
sub-algebra would give an inclusion∅cga(1) ↔ B2. Maximal parabolic sub-algebras
of B2 are distinguished in that the addition of any further generator produces the entire
conformal algebra. Furthermore, in view of may important physical applications
(some of them to be mentioned briefly below), we shall see that the same kind
of causality condition is also obtained for the novel logarithmic extensions of the
Schrödinger and/or conformal Galilean algebras [30, 32–34, 58].

This paper is organised as follows. The first sections recall basic facts on the ingre-
dients required. In Sect. 2, we recall briefly those elements of logarithmic conformal
invariance as required here and quote the corresponding logarithmic extensions of
sch(d)- and cga(d)-invariance. In Sect. 3, specialising to d = 1 for brevity, we
describe the inclusion of the Schrödinger algebra into B2 by a canonical dualisa-
tion procedure and its extension to the logarithmic case. In Sect. 4, the shapes of
the dual logarithmic Schrödinger-covariant two-point functions will be derived and
we shall see that Schrödinger-covariance alone is not enough to derive a causality
condition. In Sect. 5 we finally derive our main result, namely that s̃ch(1)-covariant
two-point functions automatically must obey causality. In this way, a combination
of dualisation with an extended dynamical co-variance requirement allows to derive
the causality condition algebraically.

2 Logarithmic Conformal Invariance

In various physical situations presenting an equilibrium phase transition, for example
disordered systems [6], percolation [12, 43] or sand-pile models [52], it has been
useful to consider degenerate vacuum states. Formally, this can be implemented

[19, 54] by replacing the order parameter γ by a vector

(
Φ

γ

)
and the scaling

dimension x by a Jordan matrix

(
x 1
0 x

)
. For reviews, see [11, 17].

Here, we consider an analogous extension of the representations of the Schrödinger
and conformal Galilean algebras. Consider the two-point functions7

F := 〈γ1(t1, r1)γ2(t2, r2)→ , G : = 〈γ1(t1, r1)Φ2(t2, r2)→ ,

H : = 〈Φ1(t1, r1)Φ2(t2, r2)→ (13)

Temporal and spatial translation-invariance imply that the are functions F = F(t, r),
G = G(t, r) and H = H(t, r) with t = t1 − t2 and r = r1 − r2. Since we
shall explain the method in more detail below, we now simply quote the results and
generalise them immediately to an arbitrary space dimension d. Co-variance under
the logarithmic extension of either sch(d) or cga(d) implies x1 = x2 =: x and

7 Here and later, 〈·→ refers to an average over the thermal noise.
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F = 0. For logarithmic Schrödinger invariance [32]

G = G0|t |−x exp

[
−M

2

r2

t

]
, H = (

H0 − G0 ln |t |) |t |−x exp

[
−M

2

r2

t

]
(14)

subject to the constraint [2] M := M1 = −M2.8 For the case of logarithmic
conformal Galilean invariance [30]

G = G0|t |−2x exp
[
−2

ε · r

t

]
, H = (

H0 − 2G0 ln |t |) |t |−2x exp
[
−2

ε · r

t

]
(15)

together with the constraint ε := ε1 = ε2. Here, G0, H0 are normalisation con-
stants. The presence of the logarithmic terms explain the name of ‘logarithmic
extension’.

3 Extension to Maximal Parabolic Sub-Algebras

Clearly, the results (14, 15) do not contain any information on causality. In order to
write down the required extension of the symmetry algebras, we first consider the
‘mass’ parameter M as a further variable (for the moment for the scalar case) and
write [18]

γ̂(ψ, t, r) := 1∗
2π

∫
R

dM eiM ψ γM (t, r) (16)

which defines the coordinate ψ dual to M which we shall consider as a ‘(−1)st’
coordinate.9 From now on, we concentrate on the case d = 1 for simplicity. The
generators of sch(1) become

8 In order to keep the physical convention of non-negative masses M ≤ 0, one may introduce a
‘complex conjugate’ γ⊥ to the scaling field γ, with M ⊥ = −M . In dynamics, co-variant two-point
functions are interpreted as response functions, written as R(t, s) = 〈

γ(t)γ̃(s)
〉

in the context of
Janssen-de Dominicis theory, where the response field γ̃ has a mass M̃ = −M , see e.g. [8, 29] for
details.
Furthermore, the physical relevant equations are stochastic Langevin equations, whose noise terms
do break any interesting extended dynamical scale-invariance. However, one may identify a ‘deter-
ministic part’ which may be Schrödinger-invariant, such that the predictions (14) remain valid
even in the presence of noise [51]. This was rediscovered recently under name of ‘time-dependent
deformation of Schrödinger geometry’ [46].
9 In string theory and non-relativistic versions of the celebrated AdS/CFT correspondence [44], an
analogous construction is used [38, 45, 59], with interesting applications to cold atoms [13].
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Xn = i

2
(n + 1)ntn−1r2δψ − tn+1δt − n + 1

2
tnrδr − n + 1

2
xtn

Ym = i

(
m + 1

2

)
tm−1/2rδψ − tm+1/2δ j (17)

Mn = itnδψ

The extension to the maximal parabolic sub-algebra s̃ch(1) = sch(1) + CN is
achieved by including the generator

N := ψδψ − tδt + Θ . (18)

In order to understand the origin of the constant term Θ , which in what follows will
turn out to play the rôle of a second scaling dimension, consider another represen-
tation of the conformal Galilean algebra cga(1) = 〈

X1, Y±1/2, M0, V+, 2X0 − N
〉
,

see Fig. 1a. Herein, the generator X1 takes a slightly generalised form10

X1 = ir2δψ − t2δt − trδr − (x + Θ) t (19)

along with the new generator

V+ = −ψrδψ − trδt −
(

iψ t + r2

2

)
δr − (x + Θ) r (20)

All other generators are as in (17). One readily verifies that [V+, Y−1/2] = 2X0 − N ,
with the explicitly given forms and this explains the presence of the constant Θ in (18).

The chosen normalisation of the generators is clarified by the commutator
[V+, Y1/2] = X1 and the remaining commutators of cga(1) are promptly verified.
These generators act as a dynamical symmetry of the Schrödinger equation

S γ̂ = 0 , S = −2iδψ δt − δ2
r − 2i

(
x + Θ − 1

2

)
t−1δψ (21)

in the sense that the generators of cga(1) map solutions of S γ̂ = 0 onto another
solution.

Proof To check this, it suffices to verify the commutators

[S , V+] = −2rS , [S , X1] = −2tS , [S , X0] = −S

[S , N ] = [S , Y−1/2] = [S , M0] = 0

10 The same form of X1 also arises in the ageing sub-algebra age(1) = 〈
X1,0, Y±1/2, M0

〉 ↔ sch(1).
Physically, the presence of Θ , together with the absence of the time-translations X−1 = −δt , leads
to distinct exponents a and a⊗ in (12).
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and to recall that X γ̂ with X ∈ cga(1) generates an infinitesimal transformation on
the solution γ̂. �

In general, a standard parabolic sub-algebra of a simple complex Lie algebra
is spanned by the Cartan sub-algebra h and a set of ‘positive’ generators [37]. We
illustrate this for the example B2, using Fig. 1a. The separation between positive
and non-positive generators can be introduced by drawing a straight line through the
Cartan sub-algebra h, indicated by the double point in the centre and then defining
all generators who are represented by a dot to the right of this line as ‘positive’. It is
well-known that the Weyl group (which acts on the root diagramme) maps isomorphic
sub-algebras onto each other. Hence, it is enough to consider the cases when the
straight line mentioned above has a slope between unity and infinity. Then one finds
the following classification of the non-isomorphic maximal standard parabolic sub-
algebras of B2 [26]: (i) if the slope is unity, one has s̃ch(1), (ii) for a finite slope larger
than unity, one has ãge(1) = 〈

X0,1, Y±1/2, M0, N
〉

and (iii) if the slope is infinite,
one has ∅cga(1).

4 Dual Logarithmic Schrödinger-Invariance

We now describe the consequences of logarithmic Schrödinger-invariance for the
‘dual’ formulation introduced in the previous section. This representation is con-

structed from (17) by the formal substitution x ⊕
(

x x ⊗
0 x

)
, where we explicitly

keep the two possibilities x ⊗ = 0 and x ⊗ = 1. Only the generators X0,1 are modified
and now read

X0 = −tδt − 1

2
rδr − 1

2

(
x x ⊗
0 x

)

X1 = i

2
r2δψ − t2δt − trδr − t

(
x x ⊗
0 x

)
(22)

The co-variant two-point functions, built from quasi-primary scaling operators(
γi

Φi

)
which are characterised by the values of xi and x ⊗

i , to be studied are

F̂(ψ, t, r) := 〈
γ̂1(ψ1, t1, r1)γ̂2(ψ2, t2, r2)

〉
Ĝ12(ψ, t, r) := 〈

γ̂1(ψ1, t1, r1)Φ̂2(ψ2, t2, r2)
〉

Ĝ21(ψ, t, r) := 〈
Φ̂1(ψ1, t1, r1)γ̂2(ψ2, t2, r2)

〉
(23)

Ĥ(ψ, t, r) := 〈
Φ̂1(ψ1, t1, r1)Φ̂2(ψ2, t2, r2)

〉

where ψ = ψ1 − ψ2, t = t1 − t2 and r = r1 − r2. This form already takes translation-
invariance in the three variables ψ, t, r into account which in turn follow from the co-
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variance under M0, Y−1/2, X−1, respectively.11 Next, we consider the consequences
of co-variance under the Galilei-transformations generated by Y1/2. For the first of
the two-point functions (23) this implies the differential equation (called ‘projective
Ward identity’ in physics12)

(
i(r1 − r2)δψ − (t1 − t2)δr

)
F̂ = 0 (24)

whose general solution (and similarly for the other two-point functions) is

F̂ = F̂(t, u) , Ĝ12 = Ĝ12(t, u) , Ĝ21 = Ĝ21(t, u) , Ĥ = Ĥ(t, u) ;
u : = 2ψ t + ir2 (25)

The new specific information of the logarithmic representations becomes first evident
from dilatation-covariance, generated by X0. When taking the previous results (25)
into account, the projective Ward identities become, for the four distinct functions
in (23)

(
−tδt − uδu − 1

2
(x1 + x2)

)
F̂(t, u) = 0

(
−tδt − uδu − 1

2
(x1 + x2)

)
Ĝ12(t, u) = x ⊗

2

2
F̂(t, u)

(
−tδt − uδu − 1

2
(x1 + x2)

)
Ĝ21(t, u) = x ⊗

1

2
F̂(t, u) (26)

(
−tδt − uδu − 1

2
(x1 + x2)

)
Ĥ(t, u) = x ⊗

1

2
Ĝ12(t, u) + x ⊗

2

2
Ĝ21(t, u)

Rather than solving this directly, it is more efficient to use first the information
coming from the special Schrödinger transformations generated by X1. Applied to
the first two-point function F̂ , the use of (24, 26) gives

(
i

2
r2δψ − t2δt − trδr − t x1

)
F̂(t, u) = 0 (27)

Applying again (26), we have the system

(−tδt − uδu − x1) F̂ = 0
(−tδt − uδu − (x1 + x2)/2) F̂ = 0

}
=∀ (x1 − x2) F̂ = 0 (28)

11 Since the kinetic term of the invariant Schrödinger Eq. (21) reduces to a Laplace operator in a
convenient basis, the calculations are analogous to those of logarithmic conformal invariance.
12 We prefer to include the terms describing the transformation of the physical scaling operators
right into the generators, while many authors only include them into the projective Ward identities.
The end result is the same, the difference corresponds to the distinction between active and passive
transformations.
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and we have proven the following

Proposition 1 If

(
γ

Φ

)
is a quasi-primary scaling operator of logarithmic Schrö-

dinger-invariance with generators (17, 22), it the two-point function F̂ = 〈
γ̂1γ̂2

〉
satisfies one of the following conditions: (i) x1 = x2, (ii) F̂ = 0.

Now, we consider the mixed two-point functions Ĝ12 and Ĝ21. In complete anal-
ogy with the above calculations, we find

(−tδt − uδu − x1) Ĝ12 = 0
(−tδt − uδu − (x1 + x2)/2) Ĝ12 − 1

2 x ⊗
2 F̂ = 0

}
=∀ (x1 − x2) Ĝ12 = x ⊗

2 F̂

(29)
(−tδt − uδu − x1) Ĝ21 = 0

(−tδt − uδu − (x1 + x2)/2) Ĝ21 − 1
2 x ⊗

1 F̂ = 0

}
=∀ (x1 − x2) Ĝ21 = x ⊗

1 F̂

(30)

Proposition 2 If either x ⊗
2 ∞= 0 and Ĝ12 ∞= 0 or else x ⊗

1 ∞= 0 and Ĝ21 ∞= 0, then both
(i) x := x1 = x2 and (ii) F̂ = 0 hold true.

Obviously, at least one of Ĝ12 or Ĝ21 must be non-zero in order to a have non-
trivial answer. More information is obtained from the last two-point function Ĥ , for
which covariance under the generators X0,1 implies, using also that x1 = x2

(−tδt − uδu − x1) Ĥ − x ⊗
1Ĝ12 = 0

(−tδt − uδu − (x1 + x2)/2) Ĥ − 1
2 x ⊗

1Ĝ12 − 1
2 x ⊗

2Ĝ21 = 0

}
=∀ x ⊗

1Ĝ12 = x ⊗
2Ĝ21

(31)
Consequently, one must distinguish two essentially distinct cases:

x ⊗
1 = x ⊗

2 = 1 . We shall refer to this situation as the symmetric case. The scaling

operators

(
γ̂1

Φ̂1

)
and

(
γ̂2

Φ̂2

)
are identical. Since under the exchange of the two

operators, one has t ⊂⊕ −t and u ⊂⊕ u, it follows that Ĝ12 = Ĝ(t, u) and Ĝ21 =
Ĝ(−t, u). Because of (31), the function Ĝ(t, u) = Ĝ(−t, u) is symmetric. Solving
the differential Eq. (29), we have

Ĝ(t, u) = |t |−x ĝ
(

u|t |−1
)

(32)

where ĝ is a differentiable scaling function. Inserting into (31) and integrating

Ĥ(t, u) = |t |−x
(

ĥ
(

u|t |−1
)

− ln |t | ĝ
(

u|t |−1
))

(33)

Finally, we return to the formulation with fixed masses M1,2, which gives

Proposition 3 The co-variant two-point functions of the logarithmic representation
(17, 22) of sch(1) are, with x := x1 = x2
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F(t, r) = 0

G(t, r) = Δ(M1 + M2) |t |−x exp

[
−M1

2

r2

t

]
g0 (sign (t),M1) (34)

H(t, r) = Δ(M1 + M2) |t |−x exp

[
−M1

2

r2

t

]

× (h0 (sign (t),M1) − ln |t | g0 (sign (t),M1))

where g0 and h0 are unspecified functions and Δ(M ) is the Dirac distribution.

Comparing with the prediction (14), we can identify G0 = g0 and H0 = h0.
Notice: logarithmic Schrödinger-invariance did not produce the causality constraint
t > 0 !

Proof We illustrate the proof of (34) for G(t, r). Using ψ = ψ1 − ψ2, β = ψ1 + ψ2,
we have

G(t, r) = 1

2π

∫
R2

dψ1dψ2 e−iM1ψ1−iM2ψ2 |t |−x ĝ

(
2(ψ1 − ψ2)t + ir2

|t |
)

= 1

4π
|t |−x

∫
R

dβ e−i(M1+M2)β/2
∫
R

dψ e−i(M1−M2)ψ/2 ĝ

(
2sign (t)

(
ψ + i

2

r2

sign (t) |t |
))

= Δ(M1 + M2)|t |−x
∫
R

dψ e−iM1ψ ĝ

(
2 sign (t)

(
ψ + i

2

r2

t

))

= Δ(M1 + M2)|t |−x exp

[
−M1

2

r2

t

] ∫
R

dψ e−iM1ψ ĝ (2 sign (t)ψ )

︸ ︷︷ ︸
= g0(sign (t),M1)

with a change of variables in the last line and we have also assumed that ĝ has no
singularity ‘near to’ the real axis which could prevent shifting the contour. H is
derived similarly. �

x ⊗
1 = 0

x ⊗
2 = 1

. This is called the asymmetric case. The mirror situation x ⊗
1 = 1, x ⊗

2 = 0

is analogous. Now, from (31) we have G21 = 0. Inserting into and solving (29, 31),
we have

Ĝ12(t, u) = t−x ĝ
(

ut−1
)

, Ĥ(t, u) = t−x ĥ
(

ut−1
)

(35)

without any logarithmic term ! Again, no causality condition is produced.

5 Causality in Maximal Parabolic Sub-Algebras

In the previous section we had seen that sch(1)-covariance alone is not strong
enough to derive the causality condition t > 0 for the two-point function. We now
show that indeed causality is implied if covariance under the maximal parabolic
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sub-algebra s̃ch(1) is required. In what follows, it will be essential that M0 = iδψ

generates translations in the dual coordinate. In consequence, the M0-covariant two-
point functions merely depend on ψ = ψ1 − ψ2.

We begin by extending N to a logarithmic representation by replacing the second

scaling dimension Θ by a matrix τ =
(

Θ Θ ⊗
Θ ⊗⊗ Θ

)
and write

N = ψδψ − tδt +
(

Θ Θ ⊗
Θ ⊗⊗ Θ

)
. (36)

Proposition 4 One can always arrange in (36) for Θ ⊗⊗ = 0.

Proof Since both X0 and N are in the Cartan sub-algebra of B2, see Fig. 1a, we

must have [X0, N ] = 1
2 x ⊗Θ ⊗⊗

(
1 0
0 −1

)
= 0, hence x ⊗Θ ⊗⊗ = 0. If x ⊗ = 0, one asks

whether τ can be diagonalised. If that is so, one has the non-interesting case of a
pair of non-logarithmic quasi-primary operators. If τ cannot be diagonalised, it can
be brought to a Jordan form and one can always arrange for Θ ⊗⊗ = 0. Therefore,
we can set Θ ⊗⊗ = 0 in (36) without restriction of the generality. One can check the
commutators of s̃ch(1), notably [X1, N ] = X1. �

Using the results of Sect. 4, co-variance under N yields

N Ĝ12(t, u) = (−tδt + Θ1 + Θ2) Ĝ12(t, u) = 0 (37)

Solving this first for t > 0, this implies Ĝ12(t, u) = tΘ1+Θ2 ε̂ (u). Comparison with
the scaling form (32) leads to Ĝ12 = ĝ0tΘ1+Θ2 u−x−Θ1−Θ2 . Together with the results
of Sect. 4, and setting v = u/t , we have the scaling function

ĝ(v) = ĝ0 v−x−Θ1−Θ2 (38)

where ĝ0 is a normalisation constant. The last two-point function Ĥ can be found
from

N Ĥ(t, u) = (−tδt + Θ1 + Θ2) Ĥ(t, u) + Θ ⊗
1Ĝ12(t, u) + Θ ⊗

2Ĝ21(t, u) = 0 . (39)

We now look at the two cases defined in Sect. 4.

5.1 Symmetric Case

A straightforward calculation gives, using (32, 33, 38, 39)

Ĝ(ψ, t, r) = ĝ0 |t |−x
(

2ψ t + ir2

|t |
)−x−Θ1−Θ2
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Ĥ(ψ, t, r) = |t |−x
(

2ψ t + ir2

|t |
)−x−Θ1−Θ2

(40)

×
(

ĥ0 + ĝ0(1 + Θ ⊗
1 + Θ ⊗

2) ln

(
2ψ t + ir2

|t |
)

− ĝ0 ln |t |
)

where ĝ0 and ĥ0 are normalisation constants. We can now state the main result.

Theorem Quasi-primary scaling operators

(
γi

Φi

)
, which are scalars under spatial

rotations and transform co-variantly under a logarithmic representation of the par-
abolic sub-algebra s̃ch(d), are characterised by the simultaneous Jordan matrices(

xi x ⊗
i

0 xi

)
and

(
Θi Θ ⊗

i
0 Θi

)
and the masses Mi . Assume that M1 > 0 and furthermore

that 1
2 (x1 + x2) + Θ1 + Θ2 > 0. If x ⊗

1 = x ⊗
2 = 1 , the co-variant two-point functions

(13) have the following causal forms

F(t, r) = 0

G(t, r) = Δ(M1 + M2) Δx1,x2 π(t) t−x1 exp

[
−M1

2

r2

t

]
G0 (41)

H(t, r) = Δ(M1 + M2) Δx1,x2 π(t) t−x1 exp

[
−M1

2

r2

t

]
(H0 − G0 ln t)

where G0 and H0 are normalisation constants, π(t) is the Heaviside function and
Δa,b = 1 if a = b and zero otherwise.

Here, we are mainly interested in the causality statement which is essentially con-
tained in the following

Proposition 5 Let x > 0, n be a non-negative integer and consider the integrals, in
the limit ζ ⊕ 0+

I (n)
± (x) :=

∫
R±iζ

dψ e−iψ ψ−x lnn ψ (42)

Then I (n)
− (x) = 0. There is no simple known expression for I (n)

+ (x).

Proof To prove the proposition, consider the contour integrals

J± :=
∮

C±
dψ e−iψ ψ−x lnn ψ

where the contours C± correspond to t > 0 and t < 0, respectively, as we shall see
below and are indicated in Fig. 2. For x > 0, the only singularity is the cut along
the negative real axis, hence J± = 0. We now estimate the contribution of the lower
half-circle, J−,inf . Setting ψ = Reiσ such that ln R > 1, one has
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C+

C−

(a) (b)

Fig. 2 Integration contours a C+ for t > 0 and b C− for t < 0. The cut is indicated by the thick
line

J−,inf = 1

i

∫ π

0
dσ R1−x eiσ(x−1)−iR cos σ e−R sin σ

(
ln Re−iσ

)n

Computing the complex logarithm via the binomial theorem, one has the estimate

∣∣J−,inf
∣∣ ∩

∫ π

0
dσ R1−x e−R sin σ

n∑
k=0

(
n
k

)
lnn−k R σk

∩
n∑

k=0

(
n
k

)
R1−x (ln R)n−k πk

∫ π

0
dσ e−R sin σ

︸ ︷︷ ︸
∩π R−1

∩ π R−x (π + ln R)n ⊕ 0

as R ⊕ ≥. Hence, since J− = I (n)
− (x) + J−,inf = 0, the assertion follows. �

Proof (of the Theorem) In order to prove the theorem, recall first that for quasi-
primary operators which are scalars under rotations, one can always reduce to the
case d = 1. Hence the spatial dependence in (41) is a direct consequence of (34).
Writing Θ := Θ1 + Θ2, we use the physical convention of positive masses M1 > 0
and have along the lines of the proof of proposition 3

G = Δ(M1 + M2)|t |−x ĝ0

∫
R

dψ e−iM1ψ (2sign (t))−x−Θ

(
ψ + ir2

2sign (t)|t |

)−x−Θ

= Δ(M1 + M2) (2sign (t))−x−Θ M
x+Θ−1
1 |t |−x ĝ0

∫
R+ iM1

2
r2
t

dψ e−iψ ψ−x−Θ

︸ ︷︷ ︸
I (0)
± (x+Θ)

e−M1
2

r2
t

= Δ(M1 + M2)|t |−x 2−x−ΘM
x+Θ−1
1 ĝ0 I (0)

+ (x + Θ)︸ ︷︷ ︸
=: G0

e−M1
2

r2
t π(t)
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where in the second line we see that for t > 0 (t < 0) the contour is slightly above
(below) the real axis and we need I (0)

+ (I (0)
− ). In the last line, we used the statement

I (0)
− (x + Θ) = 0 of proposition 5 and expressed this by the Heaviside function.

Similarly, for H we use (41) and obtain along the same lines

H = Δ(M1 + M2)|t |−x e− M1
2

r2
t 2−x−ΘM x+Θ−1

1

[
−ĝ0 ln |t |I (0)

± (x + Θ)

+ (̂
h0 + ĝ0(1 + Θ ⊗

1 + Θ ⊗
2) ln(2sign (t)/M1)

)
I (0)
± (x + Θ) + ĝ0(1 + Θ ⊗

1 + Θ ⊗
2)I (1)

± (x + Θ)
]

and by proposition 5 and defining H0 from the constants in the second line, the
announced causal form follows. �
Remarks and Generalisations:
(a) Equation (41) reproduces the known form (14) [32] of logarithmic Schrödinger-
covariance, but adds the causality condition t > 0 described by the extra factor π(t).
Our derivation generalises earlier causality proofs for the non-logarithmic case and
under the more strong condition x > 0 [26].

The extension to d > 1 dimensions is immediate.
(b) For physical applications, recall the form (12) of the response function R = 〈

γγ̃
〉

with a positive mass Mγ > 0 and a negative mass Mγ̃ = −Mγ < 0 such that
the ‘mass conservation’ following from galilean invariance is accounted for. The
response field γ̃ is associated with the complex conjugate γ⊥ in (16).
(c) Since the generator of time-translations X−1 ∈ s̃ch(1), the proven scaling forms
(41) correspond to a = a⊗ in (12). However, the specific form (18, 36) of the gener-
ator N is already compatible with the more general representations (or equivalently
the Ward identities) required for the maximal parabolic extension of the ageing alge-
bra, ãge(1) [27, 30]. Hence the causality arguments presented here explicitly for
Schrödinger-invariance can be directly generalised to ageing-invariance, including
the logarithmic extension. Hence our present results also provide a mathematical
justification for the successful empirical comparison of numerical data of response
functions from critical directed percolation [30] and the 1D KPZ Eq. [31] with the
co-variant two-point function of logarithmic ageing-invariance.
(d) Galilei-covariance is an essential assumption. While it seems to be well con-
firmed in many numerical tests of specific models, see [29] and references therein,
it is very difficult to prove formally. Finding such an argument remains an important
open problem.13

(e) The second essential ingredient is the dualisation with respect to the mass M ,
and that co-variance under the corresponding generator M0 = iδψ takes the form
of translation-invariance in the dual coordinate ψ . For illustration of this ingredient,
consider the (non-logarithmic) representation∅cga(1) = 〈

X1, Y±1/2, D, M0, V+, N
〉

from Sect. 3, with the dilatations D = 2X0 − N = −ψδψ − tδt − rδr − (x + Θ).

13 At present, the nearest one might come to a formal proof is to consider the models in the
dualised form as introduced in Sect. 4. Then, one trades the phase changes of the usual solution of
the ‘Schrödinger equation’ S γ = 0 for a transformation in the dual coordinate ψ . This seriously
modifies the equation under study, but galilean co-variance can be checked [60].
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Hence, the only effective scaling dimension appearing is x + Θ , hence the dual
cga(1)-covariant two-point function can be read from the literature [26, 28]

〈
γ̂1(ψ1, t1, r1)γ̂2(ψ2, t2, r2)

〉 = (t1 − t2)
− 1

2 (x1+Θ1+x2+Θ2)

(
t1
t2

) 1
2 (x2+Θ2−x1−Θ1)

× f

(
ψ1 − ψ2 + i

2

(r1 − r2)
2

t1 − t2

)
(43)

Requiring the co-variance N
〈
γ̂1γ̂2

〉 = 0, with N given by (18), leads as before
to f (u) = f̂0u−(x1+3Θ1+x2+3Θ2)/2 and transforming back, we recover the causality
condition t1 − t2 > 0, provided only that x1 + 3Θ1 + x2 + 3Θ2 > 0.
(f) M0 plays the rôle of a central extension in the Schrödinger algebra. Such a
central extension does not exist for cga(d) with d ∞= 2, but we expect that an
argument similar to the one used here should apply to the exotic central generator
π in the ecga, after dualisation. This should allow, after the identification of the
corresponding parabolic sub-algebra, to derive causality conditions in this case as
well. We hope to return to this question in the future.

5.2 Asymmetric Case

Applying the conditions (37, 39) to the previously derived scaling forms (35), we
promptly have

ĝ(v) = ĝ0v−x−Θ1−Θ2 , ĥ(v) = v−x−Θ1−Θ2
(̂
h0 − Θ ⊗

1ĝ0 ln v
)

(44)

Transforming back as before to the situation with fixed masses, we obtain under the
same conditions as for the main theorem, but now with x ⊗

1 = 0 and x ⊗
2 = 1, that

F(t, r) = G21(t, r) = 0 and the causal, but non-logarithmic forms

G12(t, r) = G0Δ(M1 + M2) Δx1,x2 π(t) t−x1 exp

[
−M1

2

r2

t

]

H(t, r) = H0Δ(M1 + M2) Δx1,x2 π(t) t−x1 exp

[
−M1

2

r2

t

]
(45)

Note added in proof: For the representation (5) of the non-exotic CGA, an anal-
ogous dualisation and parabolic extension rather shows that < γ1(t)γ2(s) >=
< γ1(s)γ2(t) > is fully symmetric [63].

Acknowledgments It is a pleasure to thank the organisers of the 7th AGMP conference in Mul-
house and especially R. Cherniha for their kind invitation. This work was partly supported by the
Collège doctoral franco-allemand Nancy-Leipzig-Coventry (Systèmes complexes à l’équilibre et
hors équilibre) of UFA-DFH.



Causality from Dynamical Symmetry 529

References

1. Bagchi, A., Mandal, I.: On representations and correlation functions of Galilean conformal
algebra. Phys. Lett. B 675, 393 (2009). arXiv:0903.0580

2. Bargman, V.: Unitary ray representations of continuous groups. Ann. Math. 56, 1 (1954)
3. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-

dimensional quantum field-theory. Nucl. Phys. B241, 333 (1984)
4. Bray, A.J.: Theory of phase-ordering. Adv. Phys. 43, 357 (1994)
5. Burdet, G., Perrin, M., Sorba, P.: About the non-relativistic structure of the conformal algebra.

Comm. Math. Phys. 34, 85 (1973)
6. Caux, J.-S., Kogan, I.I., Tsvelik, A.M.: Logarithmic operators and hidden continuous symmetry

in critical disordered models. Nucl. Phys. B466, 444 (1996). [hep-th/9511134]
7. Cherniha, R., Henkel, M.: The exotic conformal Galilei algebra and non-linear partial differ-

ential equations. J. Math. Anal. Appl. 369, 120 (2010). arXiv:0910.4822
8. Cugliandolo, L.F.: Dynamics of glassy systems. In: Barrat, J.-L., Dalibard, J., Kurchan, J.,

Feigel’man, M.V., (eds.) Slow Relaxation and Non Equilibrium Dynamics in Condensed Mat-
ter, Les Houches Session 77 July 2002. Springer, Heidelberg (2003) [cond-mat/0210312]

9. Duval, C., Horváthy, P.A.: Non-relativistic conformal symmetries and Newton-Cartan struc-
tures. J. Phys. A: Math. Theor. 42, 465206 (2009). arXiv:0904.0531

10. Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann der Physik 17, 891 (1905)
11. Flohr, M.: Bits and pieces in logarithmic conformal field-theory. Int. J. Mod. Phys. A18, 4497

(2003). [hep-th/0111228]
12. Flohr, M., Müller-Lohmann, A.: Proposal for a CFT interpretation of Watts’ differential equa-

tion for percolation. J. Stat. Mech. P12004 (2005). [hep-th/0507211]
13. Fuertes, C.A., Moroz, S.: Correlation functions in the non-relativistic AdS/CFT correspon-

dence, Phys. Rev. D79, 106004 (2009). arXiv:0903.1844
14. Fushchych, W.I., Cherniha, R.: Galilei-invariant nonlinear equations of Schrödinger-type and

their exact solutions I. Ukrainian Math. J. 41, 1161 (1989)
15. Fushchych, W.I., Shtelen, W.M., Serov, M.I.: Symmetry Analysis and Exact Solutions of Equa-

tions of Nonlinear Mathematical Physics. Kluwer, Dordrecht (1993)
16. Fushchych, W.I., Cherniha, R.: Galilei-invariant systems of nonlinear systems of evolution

equations. J. Phys. A28, 5569 (1995)
17. Gaberdiel, M.R.: An algebraic approach to logarithmic conformal field theory. Int. J. Mod.

Phys. A18, 4593 (2003). [hep-th/0111260]
18. Giulini, D.: On Galilei-invariance in quantum mechanics and the Bargmann superselection

rule. Ann. Phys. 249, 222 (1996). [quant-ph/9508002]
19. Gurarie, V.: Logarithmic operators in conformal field-theory. Nucl. Phys. B410, 535 (1993).

[hep-th/9303160]
20. Hassaïne, M., Horváthy, P.A.: Field-dependent symmetries of a non-relativistic fluid model.

Ann. Phys. 282, 218 (2000) [math-ph/9904022]; Field-dependent symmetries of a non-
relativistic fluid model. Phys. Lett. A279, 215 (2001). [hep-th/0009092]

21. Havas, P., Plebanski, J.: Conformal extensions of the Galilei group and their relation to the
schrödinger group. J. Math. Phys. 19, 482 (1978)

22. Henkel, M.: Schrödinger-invariance and strongly anisotropic critical systems. J. Stat. Phys. 75,
1023 (1994). [hep-th/9310081]

23. Henkel, M.: Extended scale-invariance in strongly anisotropic equilibrium critical systems.
Phys. Rev. Lett. 78, 1940 (1997). [cond-mat/9610174]

24. Henkel, M., Pleimling, M., Godrèche, C., Luck, J.-M.: Ageing, phase ordering and conformal
invariance. Phys. Rev. Lett. 87, 265701 (2001). [hep-th/0107122]

25. Henkel, M.: Phenomenology of local scale invariance: from conformal invariance to dynamical
scaling. Nucl. Phys. B641, 405 (2002). [hep-th/0205256]

26. Henkel, M., Unterberger, J.: Schrödinger invariance and space-time symmetries. Nucl. Phys.
B660, 407 (2003). [hep-th/0302187]

http://arxiv.org/abs/0903.0580
http://arxiv.org/abs/0910.4822
http://arxiv.org/abs/0904.0531
http://arxiv.org/abs/0903.1844


530 M. Henkel

27. Henkel, M., Enss, T., Pleimling, M.: On the identification of quasiprimary operators in local
scale-invariance. J. Phys. A Math. Gen. 39, L589 (2006). [cond-mat/0605211]

28. Henkel, M., Schott, R., Stoimenov, S., Unterberger, J.: The Poincaré algebra in the context of
ageing systems: Lie structure, representations, Appell systems and coherent states. Confluentes
Mathematici 4, 125006 (2012). [math-ph/0601028]

29. Henkel, M., Pleimling, M.: Non-equilibrium Phase Transitions, vol. 2: Ageing and Dynamical
Scaling Far from Equilibrium, Springer, Heidelberg (2010)

30. Henkel, M.: On logarithmic extensions of local scale-invariance. Nucl. Phys. B 864 [FS], 282
(2013). arXiv:1009.4139

31. Henkel, M., Noh, J.D., Pleimling, M.: Phenomenology of ageing in the Kardar-Parisi-Zhang
equation. Phys. Rev. E 85, 030102(R) (2012). 1109.5022

32. Hosseiny, A., Rouhani, S.: Logarithmic correlators in non-relativistic conformal field-theory.
J. Math. Phys. 51 102303 (2010). arXiv:1001.1036

33. Hosseiny, A., Naseh, A.: On holographic realization of logarithmic Galilean conformal algebra.
J. Math. Phys. 52 092501 (2011). arXiv:1101.2126

34. Hyun, S., Jeong, J., Kim, B.S.: Aging logarithmic conformal field theory : A holographic view.
J. High Energy Phys. 1301 141 (2013). arXiv:1209.2417

35. Hyun, S., Jeong, J., Kim, B.S.: Aging logarithmic galilean field-theories. Nucl. Phys. B 874,
358 (2013). arXiv:1304.0007

36. Jacobi, C.G.: Vorlesungen über Dynamik (1842/1843), 4. Vorlesung. In: Clebsch, A., Lottner,
E., (eds.) Gesammelte Werke, Akademie der Wissenschaften, Berlin 1866/1884

37. Knapp, A.W.: Representation theory of semisimple groups: An overview based on examples.
Princeton University Press, Princeton (1986).

38. Leigh, R.G., Hoang, N.N.: Real-time correlators and non-relativistic holography. J. High-
energy Phys. 0911, 010 (2009) arXiv:0904.4270; Fermions and the Sch/nrCFT Correspon-
dence. J. High-energy Phys. 1003, 027 (2010) arXiv:0909.1883

39. Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller
Differentialgleichungen. Arch. for Mathematik og Naturvidenskab 6, 328 (1881)

40. Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity smaller than
that of light. Proc. Acad. Science Amsterdam 6, 809 (1904)

41. Lukierski, J., Stichel, P.C., Zakrewski, W.J.: Exotic galilean conformal symmetry and its
dynamical realisations, Phys. Lett. A357, 1 (2006) [hep-th/0511259]; Accelaration-extended
galilean symmetries with central charges and their dynamical realisations. Phys. Lett. B650,
203 (2007). [hep-th/0702179]

42. Martelli, D., Tachikawa, Y.: Comments on Galiean conformal field-theories and their geometric
realisation. J. High-energy Phys. 1005, 091 (2010). arXiv:0903.5184

43. Mathieu, P., Ridout, D.: From percolation to logarithmic conformal field theory. Phys. Lett. B
657, 120 (2007) arXiv:0708.0802; Logarithmic M(2, p) Minimal Models, their Logarithmic
Couplings, and Duality. Nucl. Phys. B 801, 268 (2008). arXiv:0711.3541

44. Maldacena, J.M.: The large-n limit of superconformal field-theories and super-gravity. Adv.
Theor. Math. Phys. 2, 231 (1998). [hep-th/9711200]

45. Minic, D., Pleimling, M.: Correspondence between nonrelativistic anti-de Sitter space
and conformal field theory, and ageing-gravity duality. Phys. Rev. E 78, 061108 (2008)
arXiv:0807.3665; The Jarzynski Identity and the AdS/CFT Duality. Phys. Lett. B 700, 277
(2011). arXiv:1007.3970

46. Nakayama, Y.: Universal time-dependent deformations of Schrödinger geometry. J. High-
energy Phys. 04, 102 (2010). arXiv:1002.0615

47. Negro, J., del Olmo, M.A., Rodríguez-Marco, A.: Nonrelativistic conformal groups. J. Math.
Phys. 38 3786–3809 (1997)

48. O’Raifeartaigh, L., Sreedhar, V.V.: The maximal kinematical invariance group of fluid dynamics
and explosion-implosion duality. Ann. of Phys. 293, 215 (2001)

49. Ovsiannikov, L.V.: The Group Analysis of Differential Equations. Academic Press, London
(1980)

http://arxiv.org/abs/1009.4139
http://arxiv.org/abs/1109.5022
http://arxiv.org/abs/1001.1036
http://arxiv.org/abs/1101.2126
http://arxiv.org/abs/1209.2417
http://arxiv.org/abs/1304.0007
http://arxiv.org/abs/0904.4270
http://arxiv.org/abs/0909.1883
http://arxiv.org/abs/0903.5184
http://arxiv.org/abs/0708.0802
http://arxiv.org/abs/0711.3541
http://arxiv.org/abs/0807.3665
http://arxiv.org/abs/1007.3970
http://arxiv.org/abs/1002.0615


Causality from Dynamical Symmetry 531

50. Ovsienko, V., Roger, C.: Generalisations of Virasoro group and Virasoro algebras through
extensions by modules of tensor-densities on S1. Indag. Math. 9, 277 (1998)

51. Picone, A., Henkel, M.: Local scale-invariance and ageing in noisy systems. Nucl. Phys. B 688
217 (2004). [cond-mat/0402196]

52. Poghosyan, V.S., Grigorev, S.Y., Priezzhev, V.B., Ruelle, P.: Pair correlations in sandpile model:
A check of logarithmic conformal field theory. Phys. Lett. B 659, 768 (2008). arXiv:0710.3051;
Logarithmic two-point correlators in the Abelian sandpile model. J. Stat. Mech. P07025 (2010).
arXiv:1005.2088

53. Polyakov, A.M.: Conformal symmetry of critical fluctuations. Sov. Phys. JETP Lett. 12, 381
(1970)

54. Rahimi Tabar, M.R., Aghamohammadi, A., Khorrami, M.: The logarithmic conformal field
theories. Nucl. Phys. B 497, 555 (1997). [hep-th/9610168]

55. Rideau, G., Winternitz, P.: Evolution equations invariant under two-dimensional space-time
Schrödinger group. J. Math. Phys. 34, 558 (1993)

56. Riva, V., Cardy, J.L.: Scale and conformal invariance in field theory: a physical counterexample.
Phys. Lett. B622, 339 (2005). [hep-th/0504197]

57. Roger, C., Unterberger, J.: The Schrödinger-Virasoro Lie group and algebra: From geometry
to representation theory. Ann. Inst. H. Poincaré 7, 1477 (2006). [math-ph/0601050]

58. Setare, M.R., Kamali, V.: Galilean conformal algebra in semi-infinite space. Int. J. Mod. Phys.
A 27, 1250044 (2012). arXiv:1101.2339; Anti-de Sitter/ boundary conformal field theory cor-
respondence in the non-relativistic limit, Eur. Phys. J. C72, 2115 (2012). arXiv:1202.4917

59. Son, D.T.: Towards an AdS/cold atom correspondence: A geometric realisation of the
Schrödinger symmetry. Phys. Rev. D 78, 106005 (2008). arXiv:0804.3972

60. Stoimenov, S., Henkel, M.: Dynamical symmetries of semi-linear Schrödinger and diffusion
equations. Nucl. Phys. B 723, 205 (2005). [math-ph/0504028]

61. Unterberger, J., Roger, C.: The Schrödinger-Virasoro algebra. Springer, Heidelberg (2011)
62. Zhang, P.-M., Horváthy, P.A.: Non-relativistic conformal symmetries in fluid mechanics. Eur.

Phys. J. C 65, 607 (2010). arXiv:0906.3594
63. Henkel, M., Stoimenov, S.: Physical ageing and new representations of some Liealgebras of

local scale-invarience, Proc. LT-10 Varna, Bulgariea (2014) arXiv:1401.6086
64. Negro, J., del Olmo, M.A., Rodríguez-Marco, A.: Nonrelativistic conformal groups II. J. Math.

Phys. 38 3810–3831 (1997)

http://arxiv.org/abs/0710.3051
http://arxiv.org/abs/1005.2088
http://arxiv.org/abs/1101.2339
http://arxiv.org/abs/1202.4917
http://arxiv.org/abs/0804.3972
http://arxiv.org/abs/0906.3594
http://arxiv.org/abs/1401.6086


Reaction-Diffusion Systems with Constant
Diffusivities: Conditional Symmetries
and Form-Preserving Transformations

Roman Cherniha and Vasyl’ Davydovych

Abstract Q-conditional symmetries (nonclassical symmetries) for a general class
of two-component reaction-diffusion systems with constant diffusivities are stud-
ied. Using the recently introduced notion of Q-conditional symmetries of the first
type (R. Cherniha J. Phys. A: Math. Theor., 2010. vol. 43., 405207), an exhaustive
list of reaction-diffusion systems admitting such symmetry is derived. The form-
preserving transformations for this class of systems are constructed and it is shown
that this list contains only non-equivalent systems. The obtained symmetries permit
to reduce the reaction-diffusion systems under study to two-dimensional systems of
ordinary differential equations and to find exact solutions. As a non-trivial example,
multiparameter families of exact solutions are explicitly constructed for two nonlin-
ear reaction-diffusion systems. A possible interpretation to a biologically motivated
model is presented.

1 Introduction

The paper is devoted to the investigation of the two-component reaction-diffusion
(RD) systems of the form

ut = d1uxx + F(u, v),
vt = d2vxx + G(u, v).
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where u = u(t, x) and v = v(t, x) are two unknown functions representing the
densities of populations (cells), the concentrations of chemicals, the pressures in thin
films, etc. F and G are the given smooth functions describing interaction between
them and environment, d1 and d2 are diffusivities assumed to be positive constants.
The subscripts t and x denote differentiation with respect to these variables. The class
of RD systems (1) generalizes many well-known nonlinear second-order models and
is used to describe various processes in physics, biology, chemistry and ecology (see,
e.g., the well-known books [1–5]).

Nevertheless the search for Lie symmetries of the class of RD systems (1) was
initiated about 30 years ago [6], this problem was completely solved only during
the last decade because of its complexity. Now one can claim that all possible Lie
symmetries of (1) were completely described in [7–9].

The time is therefore ripe for a complete description of non-Lie symmetries for the
class of the RD systems (1). However, it seems to be extremely difficult task because,
firstly, several definitions of non-Lie symmetries have been introduced (nonclassical
symmetry [1, 10], conditional symmetry [11, 12], generalized conditional symmetry
[13, 14] etc.), secondly, the complete description of non-Lie symmetries needs to
solve the corresponding system of determining equations, which is non-linear and
can fully be solved only in exceptional cases.

Hereafter we use the most common notion among non-Lie symmetries, non-
classical symmetry, which we continuously call the Q-conditional symmetry follow-
ing the well-known book [11] and our previous papers [15, 16]. It is well-known that
the notion of Q-conditional symmetry plays an important role in investigation of the
nonlinear evolution equations because, having such symmetries in the explicit form,
one may construct new exact solutions, which are not obtainable by the classical Lie
machinery. However, for a complete description of such symmetries, one needs to
solve the corresponding non-linear system of determining equations that usually is
very difficult task. Thus, to solve the Q-conditional symmetry classification problem
for the class of RD systems (1), one should look for new constructive approaches
helping to solve the relevant nonlinear system of determining equations. A possible
approach was recently proposed in [17] and is used in this paper.

It can be noted that the diffusion coefficient d1 in system (1) can be omitted
without losing of generality because the simple substitution

t ⊕ t/d1, F ⊕ −d1C1, G ⊕ −d2C2

reduces the system to the form

uxx = ut + C1(u, v),
vxx = dvt + C2(u, v),

(2)

where d = d1
d2

. Thus, we consider system (2) in what follows.
The paper is organized as follows. In Sect. 2, two different definitions of Q-

conditional invariance for the class of RD systems (2) are presented and the system
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of determining equations is derived. The theorem giving the complete description of
Q-conditional symmetries of the first type is proved. In Sect. 3, the form-preserving
transformations for the class of RD systems (2) are constructed and applied to the
RD systems derived in Sect. 2. In Sect. 4, the Q-conditional symmetry obtained for
reducing of the RD systems to the ODE systems are applied. Examples of finding
exact solutions are presented together with a possible interpretation for population
dynamics. Finally, we summarize and discuss the results obtained in the Sect. 5.

2 Conditional Symmetries of the RD Systems

Here we use the definition of Q-conditional symmetry of the first type for the RD
systems (see [17] for details). It is well-known that to find Lie invariance operators,
one needs to consider system (2) as the manifold M = {S1 = 0, S2 = 0} where

S1 ≥ uxx − ut − C1(u, v),
S2 ≥ vxx − dvt − C2(u, v),

in the prolonged space of the variables: t, x, u, v, ut, vt ,ux, vx, uxx, vxx, uxt, vxt,

utt, vtt . According to the definition, system (2) is invariant under the transforma-
tions generated by the infinitesimal operator

Q = ξ0(t, x, u, v)∂t + ξ1(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v, (3)

if the following invariance conditions are satisfied:

Q
2

S1 ≥ Q
2
,
(
uxx − ut − C1(u, v)

)∣∣∣
M

= 0,

Q
2

S2 ≥ Q
2

(
vxx − dvt − C2(u, v)

)∣∣∣
M

= 0.

The operator Q
2
is the second prolongation of the operator Q, i.e.

Q
2

= Q + ρ1
t

∂

∂ut
+ ρ2

t
∂

∂vt
+ ρ1

x
∂

∂ux
+ ρ2

x
∂

∂vx
+ σ 1

xx
∂

∂uxx
+ σ 2

xx
∂

∂vxx
,

where the coefficientsρ andσ with relevant subscripts are expressed via the functions
ξ0, ξ1, η1 and η2 by well-known formulae (see, e.g., [11, 18, 19]).

Hereafter the listed above differential operators act on functions and differential
expressions in a natural way, particularly Q (u) = ξ0ut + ξ1ux − η1 and Q (v) =
ξ0vt + ξ1vx − η2.

Definition 1 ([17]) Operator (3) is called the Q-conditional symmetry of the first
type for the RD system (2) if the following invariance conditions are satisfied:
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Q
2

S1 ≥ Q
2

(
uxx − ut − C1(u, v)

)∣∣∣
M1

= 0,

Q
2

S2 ≥ Q
2

(
vxx − dvt − C2(u, v)

)∣∣∣
M1

= 0,

where the manifold M1 is either {S1 = 0, S2 = 0, Q (u) = 0} or {S1 = 0, S2 =
0, Q (v) = 0}.
Definition 2 Operator (3) is called the Q-conditional symmetry of the second type,
i.e., the standard non-classical symmetry for the RD system (2) if the following
invariance conditions are satisfied:

Q
2

S1 ≥ Q
2

(
uxx − ut − C1(u, v)

)∣∣∣
M2

= 0,

Q
2

S2 ≥ Q
2

(
vxx − dvt − C2(u, v)

)∣∣∣
M2

= 0,

where the manifold M2 = {S1 = 0, S2 = 0, Q (u) = 0, Q (v) = 0}.
Remark 1 It is easily seen that M2 ∈ M1 ∈ M , hence, each Lie symmetry is
automatically the Q-conditional symmetry of the first and second type, while each
Q-conditional symmetry of the first type is one of the second type (non-classical
symmetry).

Remark 2 To the best of our knowledge, there are not many paper devoted to search
of Q-conditional symmetries for the systems of PDEs [20–24]. One may easily check
that Definition 2 was only used in all these papers.

Statement. Let us assume that

X = (h1(t, x)v + h0(t, x))∂v (4)

(hereafter h1(t, x) and h0(t, x) are the given functions) is the Lie symmetry operator
of the RD system (2) whileQ1 is the known Q-conditional symmetry of the first type,
which was found using the manifold M1 = {S1 = 0, S2 = 0, Q (u) = 0}. Then any
linear combination C1Q1 + C2X (C1 and C2 ⊂= 0 are arbitrary constants) produces
new Q-conditional symmetry of the first type.

Application of Definition 2 for finding Q-conditional symmetry (non-classical
symmetry) operators of the RD system (2) leads to a complicated system of deter-
mining equations (DEs) (see system19 in [17]), which seems to be extremely difficult
for exact solving.

It turns out that application of definition 1 leads to essentially simpler system of
DEs, which can be fully integrated. Here we present the result under the restrictions
ξ0 ⊂= 0 and d ⊂= 1 (the cases ξ0 = 0 and d = 1 must be investigated separately).
Thus, the system of DEs corresponding to the manifold M1 = {S1 = 0, S2 =
0, Q (u) = 0} takes the form
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ξ0x = ξ0u = ξ0v = ξ1u = ξ1v = 0, (5)

η1v = η1uu = η2uu = η2vv = η2uv = 0, (6)

2ξ0η2xu + (d − 1)ξ1η2u = 0, (7)

2η1xu + ξ1t = 0, (8)

2η2xv + dξ1t = 0, (9)

2ξ1x − ξ0t = 0, (10)

η1C1
u + η2C1

v + (2ξ1x − η1u)C
1 = η1xx − η1t , (11)

η1C2
u + η2C2

v + (2ξ1x − η2v )C
2 = η2uC1 + (1 − d)

η1

ξ0
η2u + η2xx − dη2t . (12)

Note that there is no any need to solve the similar system of DEs corresponding to
the manifold M ⊗

1 = {S1 = 0, S2 = 0, Q (v) = 0} because the discrete transforma-
tions u ⊕ v, v ⊕ u transform each symmetry found usingM1 to one corresponding
to the manifold M ⊗

1 .
It should be also noted that we find purely conditional symmetry operators, i.e.,

exclude all such operators, which are equivalent to Lie symmetry operators described
in [7, 8]. Having this aim, we use the system DEs for search Lie symmetry operators
(see [16] for details):

ξ0x = ξ0u = ξ0v = ξ1u = ξ1v = 0, (13)

η1v = η2u = η1uu = η2vv = 0, (14)

2ξ1x − ξ0t = 0, (15)

2η1xu + ξ1t = 0, (16)

2η2xv + dξ1t = 0, (17)

η1C1
u + η2C1

v + (2ξ1x − η1u)C
1 = η1xx − η1t , (18)

η1C2
u + η2C2

v + (2ξ1x − η2v )C
2 = η2xx − dη2t . (19)

Comparing DEs (5)–(12) with (13)–(19) one concludes that η2u ⊂= 0 is the necessary
and sufficient condition, which guarantees this property.
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Now we need to solve the nonlinear system (5)–(12). Obviously Eqs. (5) and (6)
can be easily integrated:

ξ0 = ξ0(t), ξ1 = ξ1(t, x),
η1 = r1(t, x)u + p1(t, x), η2 = q(t, x)u + r2(t, x)v + p2(t, x),

(20)

where ξ0(t), ξ1(t, x), q(t, x), rk(t, x), pk(t, x) (k = 1, 2) are to-be-determined
functions. Thus, substituting (20) into (7)–(12), one obtains the nonlinear system
of PDEs:

2ξ0qx + ξ1(d − 1)q = 0, (21)

2r1x + ξ1t = 0, (22)

2r2x + dξ1t = 0, (23)

2ξ1x − ξ0t = 0, (24)

(r1u + p1)C1
u + (qu + r2v + p2)C1

v + (2ξ1x − r1)C1 = (r1xx − r1t )u + p1xx − p1t , (25)

(r1u + p1)C2
u + (qu + r2v + p2)C2

v + (2ξ1x − r2)C2 = qC1 + r1u + p1

ξ0
q(1 − d)

+ (r2xx − dr2t )v + (qxx − dqt)u + p2xx − dp2t , (26)

to find the functions ξ0(t), ξ1(t, x), q(t, x) ⊂= 0, rk(t, x), pk(t, x). In other words,
all possibleQ-conditional symmetries of the first type are easily constructed provided
the general solution of system (21)–(26) is known.

Theorem 2.1 The nonlinear RD system (2) with d ⊂= 1 is invariant under the
Q-conditional operator of the first type (3) if and only if one and the correspond-
ing operator have the forms listed in Table 1. Any other RD system admitting such
Q-conditional operator is reduced to one of those from Table 1 by the local trans-
formations

t ⊕ C1t + C2,

x ⊕ C3x + C4,

u ⊕ C5eC6tu + C7t + C8,

v ⊕ C9eC10tv + C11t2 + C12t + C13,

(27)

with correctly-specified constants Cl, l = 1, . . . , 13 and/or by adding a Lie symmetry
operator of the form (4).

Sketch of proof To prove the theorem one needs to solve the nonlinear PDE system
(21)–(26) with restriction q(t, x) ⊂= 0. We remind the reader that C1 and C2 should
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be treated as unknown functions. As follows from the preliminary analysis (see Eqs.
(25) and (26) involving the functions C1 and C2), we should examine six cases:

(1) r1 = r2 = p1 = 0,
(2) r1 = r2 = 0, p1 ⊂= 0,
(3) r1 = p1 = 0, r2 ⊂= 0,
(4) r1 = 0, p1 ⊂= 0, r2 ⊂= 0,
(5) r2 = 0, r1 ⊂= 0,
(6) r1 ⊂= 0, r2 ⊂= 0.

Solving system (21)–(26) in each case one obtains the list of Q-conditional sym-
metries of the first type together with the correctly-specified functions C1 and C2.
Note that the symmetry operators have the different structures depending on the case.

Let us consider case (1) in details. Equations (25) and (26) take the form

(qu + p2)C1
v + 2ξ1x C1 = 0,

(qu + p2)C2
v + 2ξ1x C2 = qC1 + (qxx − dqt)u + p2xx − dp2t .

(28)

Differentiating the first equation of (28) with respect to x, one arrives at the
equation (qxu+p2x)C

1
v = 0,which lead to the requirement C1

v = 0. In fact, if qx ⊂= 0
then immediately C1

v = 0. If qx = 0 then Eq. (21) produces ξ1 = 0, hence, C1
v = 0.

Thus, the first equation of system (28) takes the form ξ1x C1 = 0 and two subcases
ξ1x ⊂= 0 and ξ1x = 0 should be examined.

The general solution of (28) with ξ1x ⊂= 0 is

C1 = 0, C2 = exp

⎧
− 2ξ1x

qu + p2
v

⎨
g(u) + qxx − dqt

2ξ1x
u + p2xx − dp2t

2ξ1x
, (29)

where g(u) is an arbitrary (at the moment) function. Because the function C2 doesn’t
depend on t and x, Eq. (29) with g(u) ⊂= 0 immediately produces the restrictions
q = α1ξ

1
x , p2 = α2ξ

1
x , where α1 and α2 are arbitrary constants. Differentiating

Eq. (24) with respect to x, one obtains ξ1xx = 0. So qx ≥ α1ξ
1
xx = 0, however, this

contradicts to the assumption ξ1x ⊂= 0. The remaining possibility g(u) = 0 leads to
the linear RD system (2).

Now we examine the subcase ξ1x = 0, i.e., ξ1 = λ1 = const. The general solution
of (28) takes the form

C1 = f (u), C2 = qf (u) + (qxx − dqt)u + p2xx − dp2t
qu + p2

v + g(u), (30)

where f (u) and g(u) are arbitrary (at the moment) functions.
If f (u) is an arbitrary function then we obtain p2 = βq (β = const) Hence C2 =

f (u)
u+β

v + αv + g(u), where α = qxx−dqt
q . Having this, we use renaming f (u)

u+β
⊕ f (u)

and solve the overdetermined system
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qxx−dqt
q = α,

2qx + λ1(d − 1)q = 0.

Thus, the system of DEs (21)–(26) is completely solved (under above listed restric-
tions!) and we obtain the conditional symmetry operator

Q = ∂t + λ1∂x + λ2 exp
⎩λ1(1 − d)

2
x + λ21(1 − d)2 − 4α

4d
t
⎪
(u + β)∂v,

where λ1 and λ2 ⊂= 0 are arbitrary constants, of the RD system

uxx = ut + (u + β)f (u),

vxx = dvt + f (u)v + αv + g(u).
(31)

Finally, using the simple transformation

u ⊕ u − β, (32)

one sees that it is exactly case 6 of Table 1.
To complete the examination of case (1) we look for the correctly-specified

function f (u), which satisfies (30) without the restriction p2 = βq. Indeed, if one
finds the differential consequences of the second order (see equation for C2) then
C2

vx = 0, C2
vt = 0 and two algebraic equation to find the function f (u) are obtained:

(qtp2 − qp2t )f = ((qxx − dqt)u + p2xx − dp2t )(qtu + p2t )
−((qxx − dqt)tu + (p2xx − dp2t )t)(qu + p2),

(qxp2 − qp2x)f = ((qxx − dqt)u + p2xx − dp2t )(qxu + p2x)
−((qxx − dqt)xu + (p2xx − dp2t )x)(qu + p2),

Thus, f (u) = α1 + α2u + α3u2 provided p2 ⊂= βq. Substituting this expression into
(30) and making the standard routine, one arrives at case 8 of Table 1 if α3 ⊂= 0 and
case 9 if α3 = 0.

Cases (2)–(6) were treated in the similar way and the results are listed in Table 1.
It should be noted that several local transformations (32 is the simplest example)
were used to reduce the number of cases and simplify structures of the relevant RD
systems. These transformations can be presented in the general form (27).

The sketch of proof is now completed. ��
In Table 1, the function p2 is the general solution of the equations

p2xx = dp2t + α3p2 − α1q,

p2xx = dp2t + α3p2 + λ2,

p2xx = dp2t + α3p2 + λ1,

p2xx = dp2t + α3p2 + (d − 1)qp1 − α1q,
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p2xx = dp2t + α3p2 − λ2(1 − d)q,

p2xx = dp2t + α3p2 − (λ2(1 − d) + α1)q + α4λ1,

p2xx = 3p2t + 2t − x2

4t4
exp(−x2

2t
),

p2xx = 5p2t

of the cases 9, 17, 18, 21, 22, 23, 25 and 26, respectively.
The functions ψ(x), ϕ1(t), ϕ2(t), ϕ4(t), ϕ5(t), ϕ8(t), and ϕ9(t) are the general

solutions of the equations

ψ ∞∞ −
⎩
α1 + α1α2

1 − d

⎪
ψ = 0,

dϕ̈1 − λ21(1 − d)2 + 2α2

2
ϕ̇1 + λ41(1 − d)4 + 4α2λ

2
1(1 − d)2 + 16α1

16d
ϕ1 = 0,

dϕ̈2 − (α2 − α3 + (1 − d)ϕ2)ϕ̇2 − α3ϕ2 = 0,

dϕ̇4 + (α3 + λ2(d − 1)e−α1t)ϕ4 − α4
(
λ1 + λ2

1 − d

d
e−α1t) = 0,

dϕ̇5 + (α3 + λ2(d − 1)e−α1t)ϕ5 − α4λ2
1 − d

d
e−α1t = 0,

dϕ̈8 − α2ϕ̇8 + α1

d
ϕ8 + α3

d2 = 0,

and

dϕ̈9 − λ21(1 + d)(1 − d)2 + 4(α2(1 − d) − α3)

4
ϕ̇9

+ λ41(1 − d)4 − 4α3λ
2
1(1 − d)2 − 16α2(α2 − α3)

16
ϕ9 = 0,

respectively. The functions

ϕ3(t) =
⎝

λ2 exp
⎩

α2−α3+λ1(1−d)
d t

⎪
+ α4λ1(1−k)

α2−α3+λ1(1−d)
, if α2 ⊂= α3 − λ1(1 − d),

−α4λ1(1−k)
d t + λ2, if α2 = α3 − λ1(1 − d);

ϕ10(t) =
⎝

λ2 exp
(−α3

d t
) + α4λ1

α3
, if α3 ⊂= 0,

α4λ1
d t, if α3 = 0.



544 R. Cherniha and V. Davydovych

Finally, the function ϕ6(t) = ϕ3(t) at k = 0, while ϕ7(t) = ϕ3(t) at k = 0 and
α4 = 1. Hereafter the upper dot index denotes differentiation with respect to the
variable t.

3 Form-Preserving Transformations of the RD Systems

A natural question is: Can we claim that 26 systems listed in Table 1 are inequivalent
up to any local substitutions (not only of the form 27!)? It turns out that the answer
is positive. To present the rigorous proof of this, we used the notion of the set of
form-preserving point transformations introduced in [25] and now extensively used
for Lie symmetry classification problems (see, e.g. [26, 27]). Note that finding these
transformations for systems of PDEs is a difficult problem because of technical
problems occurring in computations and there is no many results for systems. To the
best of our knowledge, the recent paper [28] is the first one presenting an explicit
result for a class of PDE systems.

The form-preserving transformations present the most general and correctly-
specified form of local substitutions, which can map some equations from a given
class to other those belonging to the same class. They contain as particular cases the
well-known equivalence transformations and discrete transformations, which maps
each equation from the class to another one from this class, used in the well-known
Ovsiannikov method of Lie symmetry classification. Here we construct such trans-
formations with the aim to show that Table 1 cannot be shortened.

Theorem 3.1 An arbitrary RD system of the form (2) with d ⊂= 1 can be reduced to
another system of the same form

wyy = wτ + F1(w, z),
zyy = λzτ + F2(w, z),

(33)

by the local non-degenerate transformation

τ = a(t, x, u, v), y = b(t, x, u, v), (34)

w = ϕ(t, x, u, v), z = ψ(t, x, u, v), (35)

if and only if the smooth functions a, b, ϕ and ψ are:

a = α(t), b = β(t)x + γ (t),

ϕ = f (t) exp
⎩

− 1
4β (β̇x2 + 2γ̇ x)

⎪
u + P(t, x),

ψ = g(t) exp
⎩

− d
4β (β̇x2 + 2γ̇ x)

⎪
v + Q(t, x),

(36)
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where the functions α(t), β(t), f (t), g(t), γ (t), P(t, x), and Q(t, x) are such that the
equalities

α̇ = β2, λ = d, (37)

β2F1(ϕ, ψ) = ϕuC1(u, v) + ϕxx − ϕt − 2
ϕx

ϕu
ϕxu, (38)

β2F2(ϕ, ψ) = ψvC2(u, v) + ψxx − dψt − 2
ψx

ψv
ψxv (39)

take place provided βfg ⊂= 0.

Proof First of the all we note that each non-degenerate transformation (34)–(35)
should satisfy the conditions

Δ1 =
∣∣∣∣ax at

bx bt

∣∣∣∣ ⊂= 0, Δ2 =
∣∣∣∣ϕu ϕv

ψu ψv

∣∣∣∣ ⊂= 0, (40)

which are used to prove the theorem.
Let us choose an arbitrary RD system of the form (2). The main idea of the proof

is based on substituting the expressions for uxx, vxx, ut, vt using the formulae (34)
and (35) into this system and on analysis conditions when the system obtained is
equivalent to system (33). The expressions for the first-order derivatives have the
form

ux =

∣∣∣∣∣
ϕx − axwτ − bxwy avwτ + bvwy − ϕv

ψx − axzτ − bxzy avzτ + bvzy − ψv

∣∣∣∣∣∣∣∣∣∣
auwτ + buwy − ϕu avwτ + bvwy − ϕv

auzτ + buzy − ψu avzτ + bvzy − ψv

∣∣∣∣∣
,

ut =

∣∣∣∣∣
ϕt − atwτ − btwy avwτ + bvwy − ϕv

ψt − atzτ − btzy avzτ + bvzy − ψv

∣∣∣∣∣∣∣∣∣∣
auwτ + buwy − ϕu avwτ + bvwy − ϕv

auzτ + buzy − ψu avzτ + bvzy − ψv

∣∣∣∣∣
.

The expressions for the second-order derivatives are very cumbersome, however, it
can be noted that they contain the derivative wττ and wτy. Because τ is a new time-
variable we conclude that the coefficient next to wττ and wτy must vanish otherwise
system (33) are not obtainable. These coefficients vanish if and only if the equalities
take place:

ax = au = av = bu = bv = 0 ∪ a = α(t), b = b(t, x). (41)

Moreover, taking into account (40), the restriction α̇ bx ⊂= 0 is also obtained.
Having the set of equalities (41), the expressions for uxx and ut can be essentially

simplified, namely:
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uxx = ψvb2x
Δ2

wyy − ϕvb2x
Δ2

zyy + (ψvbx)xΔ2−(Δ2)xψvbx

Δ2
2

wy − (ϕvbx)xΔ2−(Δ2)xϕvbx

Δ2
2

zy

+ (ψxϕv−ψvϕx)xΔ2−(Δ2)x(ψxϕv−ψvϕx)

Δ2
2

,

ut = 1
Δ2

(
ψv(α̇wτ + btwy − ϕt) − ϕv(α̇zτ + btzy − ψt)

)
.

(42)

Substituting (42) into the first equation of (2). Omitting the full expression of the
equation obtained, we note that one contains the terms

(i) − ϕvb2x
Δ2

⎧
zyy − α̇

b2x
zτ

⎨
, (ii)

ψvb2x
Δ2

⎧
wyy − α̇

b2x
wτ

⎨
,

while other terms don’t depend on zyy, wyy, zτ , and wτ .

Now there is two possibilities. If the first equation of (2) is transformed into the
first one of (33) then we immediately obtain

α̇ = b2x , ϕv = 0. (43)

If the first equation of (2) is transformed into the second one then the conditions

α̇ = λb2x, ψv = 0 (44)

must be satisfied. It turns out that conditions (44) lead to the result,which is obtainable
from (36) by the discrete transformations u ⊕ v and v ⊕ u.

Let us consider conditions (43). Taking into account (40) and ϕv = 0, the restric-
tion ϕuψv ⊂= 0 springs up.

On the other hand, b(t, x) = β(t)x + γ (t), follows from (43) where β and γ are
arbitrary smooth functions. Thus, the first equation from (37) is derived.

Substituting (43) into expressions for uxx and ut (see formulae 42), one obtains

uxx = β2

ϕu
wyy − 2βϕxu

ϕ2
u

wy + 2ϕxϕxu−ϕuϕxx
ϕ2

u
− ϕuu

ϕ3
u
(βwy − ϕx)

2,

ut = 1
ϕu

(α̇wτ + (β̇x + γ̇ )wy − ϕt).
(45)

Since the first equation of system (33) does not contain the terms wy and w2
y , we

should vanish the relevant coefficient, namely:

2βϕxu
ϕ2

u
+ β̇x+γ̇

ϕu
= 0,

ϕuu = 0.

The general solution of this system can be easily constructed so that obtains

ϕ = f (t) exp
⎩

− 1

4β
(β̇x2 + 2γ̇ x)

⎪
u + P(t, x), (46)
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where f (t) ⊂= 0 and P(t, x) are arbitrary functions at the moment. Thus, the first,
second and third equations from (36) are derived. Moreover, substituting (45) and
(46) into the first equation of system (2), we arrive at the equation

wyy = wτ + ϕu

β2

(
C1(u, v) − ϕt

ϕu
− 2ϕxϕxu − ϕuϕxx

ϕ2
u

)
. (47)

Now one realizes that (47) coincides with the first equation of system (33) iff condi-
tion (38) takes place.

The analogous routine involving the second equation of system (2) leads to the
condition α̇ = λ

d β2 ∪ λ = d (see 43), the function ψ of the form (36) and Eq. (39).
The proof is now completed. ��

Consequence 1 The set of transformations (27) arising in theorem 1 is a subset of
form-preserving transformations (36).
Consequence 2 If the nonlinear RD system of the form (1) is transformed to another
one from this class, say, to the system

u⊗
t⊗ = d⊗

1u⊗
x⊗x⊗ + F⊗(u⊗, v⊗),

v⊗
t⊗ = d⊗

2v⊗
x⊗x⊗ + G⊗(u⊗, v⊗)

by a local substitution then they have the proportional diffusivities. Moreover, there
are two linear combinations for the reaction terms F and F⊗, and for G and G⊗
resulting α1u + α2 and α3v + α4, respectively (here αk, k = 1, . . . , 4 are correctly-
specified constants).

Roughly speaking, consequence 2 says that the locally-equivalent RD systems
have the same structure up to additive terms α1u+α2 and α3v+α4. At the first sight,
there are some systems in Table 1 satisfying this consequence, for example in cases
17 and 18. However, according to consequence 2, the term α4u arising in the second
equation of the RD system (see case 18) cannot be removed by any local substitution.
We have carefully checked all cases listed in Table 1 and concluded that there aren’t
any locally-equivalent systems therein.

Thus, we have shown that the list of RD systems presented in Table 1 cannot be
reduced (shortened) by any local substitution.

4 New Exact Solutions and Their Interpretation

It is well-known that using the known Q-conditional symmetry (non-classical sym-
metry), one reduces the given system of PDEs to a system of ODEs via the same
procedure as for classical Lie symmetries. Since each Q-conditional symmetry of
the first type is automatically one of the second type, i.e., non-classical symmetry,
we apply this procedure for finding exact solutions. Thus, to construct an ansatz
corresponding to the given operator Q, the system of the linear first-order PDEs
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Q (u) = 0, Q (v) = 0 (48)

should be solved. Substituting the ansatz obtained into the RD systemwith correctly-
specified coefficients, one obtains the reduced system of ODEs.

Let us construct exact solutions of the non-linear RD system listed in the case 1
of Table 1, when the system and the corresponding symmetry operator have the form

ut = uxx − uf (ω),

dvt = vxx − ukg(ω) − u(f (ω) + α(1 − d)), ω = u−k(v − u)
(49)

and
Q = ∂t + αu∂u + α

(
(1 − k)u + kv

)
∂v, (50)

In this case system (48) takes the form

ut = αu,

vt = α(1 − k)u + αkv
(51)

and its general solution produces the ansatz (the functions u and v depend on two
variables t and x):

u = ϕ(x)eαt,

v = ψ(x)ekαt + ϕ(x)eαt,
(52)

where ϕ(x) and ψ(x) are new unknown functions. Substituting ansatz (52) into (49),
one obtains so called reduced system of ODEs

ϕ∞∞ = ϕ
(
α + f (ω)

)
,

ψ ∞∞ = ϕkg(ω) + αkdψ, ω = ψϕ−k .
(53)

Because system (53) is non-linear (excepting, of course, some special cases) it
can be integrated only for the correctly-specified functions f and g. We specify f and
g in a such way, when the RD system in question will be still non-linear (otherwise

the result will be rather trivial). Thus, setting f (ω) = γω
1
k − α, g(ω) = βω, β and

γ are arbitrary non-zero constants, the RD system takes the form

ut = uxx − γ (v − u)
1
k + αu,

dvt = vxx − γ (v − u)
1
k − βv + (β + αd)u,

(54)

while the corresponding reduced system is

ϕ∞∞ = γψ
1
k ,

ψ ∞∞ = (β + αkd)ψ.
(55)
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The general solution of (55) can be easily constructed:

ϕ(x) = γ

⎞ ⎩ ⎞
ψ

1
k (x)dx

⎪
dx + c3x + c4, (56)

ψ(x) =

⎫⎡⎣
⎡⎤

c1 exp(μx) + c2 exp(−μx), if μ2 = β + αkd > 0,

c1 cos(νx) + c2 sin(νx), if ν2 = −(β + αkd) > 0,

c1x + c2, if β + αkd = 0.

(57)

Thus, substituting (56) and (57) into (52), the 4-parameter family of solutions for the
non-linear RD system (54) is constructed.

Hereafter we highlight the solutions satisfying the zeroNeumann boundary condi-
tions, whichwidely arise in biologicallymotivated boundary-value problems. Hence,
setting c3 = c4 = 0, k = 1

3 , ψ = c1 cos(νx), one obtains the solution

u = −γ
c31
9ν2

(cos2(νx) + 6) cos(νx)eαt,

v = c1 cos(νx)e
1
3αt + u.

It can be noted that this solution satisfies the zero Neumann boundary conditions

ux|x=0 = 0, vx|x=0 = 0, ux|x=j π
ν

= 0, vx|x=j π
ν

= 0

on the interval [0, j π
ν
], where j ↔ N.

Let us set f (ω) = −(a1 + bω), g(ω) = (α(1 − d) − a1)ω (hereafter α, a1 and b
are arbitrary non-zero constants) in (49), hence, it takes the form

ut = uxx + a1u − bu2−k + bvu1−k,

dvt = vxx − a2v − bu2−k + bvu1−k,
(58)

where a2 = α(1 − d) − a1. The corresponding reduced system of ODEs is

ϕ∞∞ + bψϕ1−k + (a1 − α)ϕ = 0,
ψ ∞∞ = (αkd + a2)ψ.

(59)

Nevertheless we have not constructed the general solution of system (59), its par-
ticular solution was found by setting ψ = −δ, δ ⊂= 0. In this case, the first-order
ODE

ϕ∞ = ±
⎦

(α − a1)ϕ2 + 2bδ

2 − k
ϕ2−k + c1, α = a1

d(k − 1) + 1
, k ⊂= 2 (60)

for the function ϕ is obtained (the value k = 2 is special and leads to ODE ϕ∞ =
±⎢

(α − a1)ϕ2 + 2bδ ln ϕ + c1).
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t

x

v

t

x

u

Fig. 1 Exact solution (63) with k = 0.5, δ = 6, d = 4, a1 = 5, b = 3

If c1 ⊂= 0 then the general solution of (60) can be expressed via hypergeometric
functions. Here we present the solution for (60) with c1 = 0, k ⊂= 0:

ϕ(x) =

⎫⎡⎣
⎡⎤

⎩
β

⎩
tan2

⎩
k
→

a1−α

2 (x ± c2)
⎪

+ 1
⎪⎪− 1

k
, a1 > α,⎩

−β
⎩
tanh2

⎩
k
→

α−a1
2 (x ± c2)

⎪
− 1

⎪⎪− 1
k
, a1 < α,

(61)

(β = (a1−α)(2−k)
2bδ

), which seems to be themost interesting.Note that another arbitrary
constant can be removed by the trivial substitution x ± c2 ⊕ x.

Now we rewrite system (58) setting v ⊕ −v with the aim to obtain a biologically
motivated model. So the system takes form

ut = uxx + u(a1 − bu1−k) − bvu1−k,

dvt = vxx + v(−a2 + bu1−k) + bu2−k,
(62)

where all coefficients (excepting k) should be positive. Equation (62) can be treated
as a prey-predator model for the population dynamics. In fact, the species u is prey
and described by the first equation. Its population decreases proportionally to the
predator density v. The natural birth-dead rule for the prey is u(a1 − bu1−k) and
can be treated as a generalization of the standard logistic rule u(a1 − bu) (see, e.g.,
[2]). The similar arguments are also valid for the second equation. The model should
involve also the zero Neumann boundary conditions (zero-flux on the boundaries),
which indicate that both species cannot widespread over the globe but occupy a
bounded domain.

Using (52) with v ⊕ −v, ψ = −δ and (61) with a1 > α we construct the exact
solution
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u =
⎩
β

⎩
tan2

⎩
k
→

a1−α

2 x
⎪

+ 1
⎪⎪− 1

k
eαt,

v = δeαkt −
⎩
β

⎩
tan2

⎩
k
→

a1−α

2 x
⎪

+ 1
⎪⎪− 1

k
eαt

(63)

of (62). It turns out that solution can describe interaction between prey and predator
on the space interval [0, l], (here l = 2π j

k
→

a1−α
, j ↔ N) provided

0 < k < 1 − 1

d
, 0 < δ ≤

⎩ (2 − k)(a1 − α)

2b

⎪ 1
1−k

, α = a1
d(k − 1) + 1

< 0. (64)

One easily checks that solution (63) is non-negative, bounded in the domain Ω =
{(t, x) ↔ (0,+∗)×(0, l)} and satisfy the given zero Neumann boundary conditions,
i.e.

ux|x=0 = 0, vx|x=0 = 0, ux|x=l = 0, vx|x=l = 0.

As example we present this solution (63) with the parameters satisfying the restric-
tions (64) in Fig. 1. This solution can describe such type of the interaction between
the species u and vwhen both of them eventually die, i.e. (u, v) ⊕ (0, 0) if t ⊕ +∗.

5 Conclusions

In this paper, Q-conditional symmetries for the class of RD systems (2) (that is
equivalent to the class of systems (1)) and their application for finding exact solutions
are studied. Following the recent paper [17], the notion of Q-conditional symmetry
of the first type was used for these purposes. The main result is presented in theorem
1 giving the exhaustive list of RD systems of the form (1) with d1 ⊂= d2 (the case
d1 = d2 should be analyzed separately), which admit such symmetry. It turns out that
there are exactly 26 locally-inequivalent RD systems admitting the Q-conditional
symmetry operators of the first type of the form (3) with ξ0 ⊂= 0 (the case ξ0 =
0 should be analyzed separately). To show local non-equivalence of the systems
listed in Table 1, we proved theorem 2 describing the set of form-preserving point
transformations for the class of RD systems (2). Note that all the operators found are
inequivalent to the Lie symmetry operators presented in [7, 8] because the necessary
and sufficient condition, which guarantees this property, was used.

The Q-conditional operator listed in case 1 of Table 1 was used to construct the
non-Lie ansatz and to reduce two nonlinear RD systems to the corresponding ODE
systems. Solving these ODE systems, the two-parameter families of exact solutions
were explicitly constructed for the RD systems in question. Moreover, application of
the exact solutions for solving the prey-predator system (62) was presented. It turns
out that the relevant boundary value problem with the zero Neumann conditions
can be exactly solved and the solution can describe the densities of two interacting
species.
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The work is in progress to construct conditional symmetries for multicomponent
RD systems. In particular case, a wide list of the Q-conditional symmetries of the
first type for the three-component diffusive Lotka-Volterra system is presented in
[29].

Finally, we point out that this paper is a natural continuation of the recent paper
[16], where RD systems with non-constant diffusivities were examined.

Acknowledgments R.Ch. thanks the Organizing Committee of the 7thWorkshop ‘Algebra, Geom-
etry, and Mathematical Physics’ (Mulhouse, 24-26 October 2011) for the financial support.
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Solution to the Inverse Problem
of Reconstructing Permittivity of an
n-Sectional Diaphragm in a Rectangular
Waveguide

Yuri G. Smirnov, Yuri V. Shestopalov and Ekaterina D. Derevyanchuk

Abstract We have developed a numerical-analytical method of solution to the
inverse problem of reconstructing permittivities of n-sectional diaphragms in a
waveguide of rectangular cross section. For a one-sectional diaphragm, a solution in
the closed form is obtained and the uniqueness is proved.

1 Introduction

Determination of electromagnetic parameters of dielectric bodies that have compli-
cated geometry or structure is an urgent problem arising e.g. when nanocomposite or
artificial materials and media are used as elements of various devices. However, as a
rule, these parameters cannot be directly measured (because of composite character
of the material and small size of samples), which leads to the necessity of applying
methods of mathematical modeling and numerical solution of the corresponding for-
ward and inverse electromagnetic problems [21]. It is especially important to develop
the solution techniques when the inverse problem for bodies of complicated shape
are considered in the resonance frequency range, which is the case when permittivity
of nanocomposite materials must be reconstructed [19, 20].

One of possible applications of composites is the creation of radio absorbingmate-
rials that can be used in systems that provide electromagnetic compatibility ofmodern
electronic devices and in ‘Stealth’-type systems aimed at damping and decreasing
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reflectivity of microwave electromagnetic radiation from objects to be detected
[7, 17].When calculating reflection and absorption characteristics of electromagnetic
microwave radiation of radio absorbingmaterials, researchers usemodels employing
the data on the material constants (permittivity, permeability, conductivity) of these
materials in the microwave range. Such composites often contain carbon particles,
short carbon fibers, carbon nanofibers, and multilayer carbon nanotubes as fillers for
polymer dielectric matrices [7, 13, 17]. The use of carbon nanotubes enables one to
achieve a significant (up to 10 dB) absorption of microwave electromagnetic radia-
tion at relatively thin composite layers and low volume fractions of nanotubes and
hence a small weight, in a broad frequency range (up to 5 GHz). Such characteristics
are caused by both the geometrical sizes of individual nanotubes and their electro-
physical properties; among the most important parameters here are permittivity and
electric conductivity (which can vary over very wide ranges).

It is important to determine permittivity and conductivity not only of a composite
as a solid body (as in [7, 17]), but also of its components, e.g., nanotubes, whose
physical characteristics can vary substantially in the process of composite formation.

The forward scattering problem for a diaphragm in a parallel-plane waveguide
was considered in [14]. In papers [1, 3, 8, 9, 16, 23–25] the inverse problem of
reconstructing complex permittivity was analyzed from the measurements of the
transmission coefficient; in [8, 9, 15] the artificial neural networks method was
applied.

Several techniques for the permittivity determination of homogeneous materials
loaded in a waveguide are reported [1, 3, 6]. The permittivity reconstruction of
inhomogeneous structures are not as widely investigated and only a few studies exist
for multilayered materials [2, 10]. Note a recently developed advanced approach [5]
that can be also applied to numerical solution of this inverse problem.

However, the solution in closed form to the inverse problem of permittivity deter-
mination of materials loaded in a waveguide is not available in the literature, to
the best of our knowledge, even for the simplest configuration of a parallel-plane
dielectric insert in a guide of rectangular cross section. This fact dictates the aim of
this work: to develop a method of solution to the inverse problem of reconstructing
effective permittivity of layered dielectrics in the form of diaphragms in a waveguide
of rectangular cross section that would enable both obtaining solution in a closed
form for benchmark problems and efficient numerical implementation. We note that
the corresponding forward problem for a one-sectional diaphragm is considered in
[11] and [22].

2 Statement of the Problem

Assume that a waveguide P = {x : 0 < x1 < a, 0 < x2 < b,−⊕ < x3 < ⊕} with
the perfectly conducting boundary surface ∂P is given inCartesian coordinate system.
A three-dimensional body Q (Q ≥ P)

Q = {x : 0 < x1 < a, 0 < x2 < b, 0 < x3 < l}
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is placed in the waveguide; the body has the form of a diaphragm (an insert), namely,
a parallelepiped separated into n sections adjacent to the waveguide walls. Domain
P\Q̄ is filled with an isotropic and homogeneous layered medium having constant
permeability (μ0 > 0) in whole waveguide P, the sections of the diaphragm

Q0 = {x : 0 < x1 < a, 0 < x2 < b,−⊕ < x3 < 0}
Qj = {

x : 0 < x1 < a, 0 < x2 < b, lj−1 < x3 < lj
}
, j = 1, . . . , n

Qn+1 = {x : 0 < x1 < a, 0 < x2 < b, l < x3 < +⊕}

are filled each with a medium having constant permittivity εj > 0; l0 := 0, ln := l.
The electromagnetic field inside and outside of the object in the waveguide is

governed by Maxwell’s equation:

rot H = −iωεE + j0E
rot E = iωμ0H,

(1)

where E and H are the vectors of the electric and magnetic field intensity, j is the
electric polarization current, and ω is the circular frequency.

Assume that π/a < k0 < π/b, where k0 is the wavenumber, k20 = ω2ε0μ0 [12].
In this case, only one wave H10 propagates in the waveguide without attenuation (we
have a single-mode waveguide [12]).

The incident electrical field is

E0 = e2A sin
(πx1

a

⎧
e−iγ0x3 (2)

with a known A and γ0 =
⎨

k20 − π2/a2.
Solving the forward problem for Maxwell’s equations with the aid of (1) and the

propagation scheme in Fig. 1, we obtain explicit expressions for the field inside every
section of diaphragm Q and outside the diaphragm:

E(0) = sin
(πx1

a

⎧
(Ae−iγ0x3 + Beiγ0x3), x ∈ Q0, (3)

E(j) = sin
(πx1

a

⎧
(Cje

−iγjx3 + Dje
iγjx3), (4)

j = 1, . . . , n + 1; Dn+1 = 0, x ∈ Qj,

where γj =
⎨

k2j − π2/a2 and k2j = ω2εjμ0.

From the transmission conditions on the boundary surfaces of the diaphragm
sections

[E(j)] = [E(j+1)] = 0; ∂[E(j)]
∂x3

= ∂[E(j+1)]
∂x3

= 0, j = 0, . . . , n + 1. (5)
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Fig. 1 Multilayered diaphragms in a waveguide

applied to (3) and (4) we obtain using conditions (5) a system of equations for the
unknown coefficients

⎩⎪⎪⎝
⎪⎪⎞

A + B = C1 + D1

γ0 (B − A) = γ1 (D1 − C1)

Cje−iγj lj + Djeiγj lj = Cj+1e−iγj+1lj + Dj+1eiγj+1lj

γj(Djeiγj lj − Cje−iγj lj ) = γj+1(Dj+1eiγj+1lj − Cj+1e−iγj+1lj ), j = 1, . . . , n.

(6)

where Cn+1 = F, Dn+1 = 0. In system (6) coefficients A, B, Cj, Dj, εj, (j =
1, . . . , n) are supposed to be complex.

We can express Cj, Dj from Cj+1, Dj+1 in order to obtain a recurrent formula that
couples amplitudes A and F.

We prove that this recurrent formula has the form

A = 1

2
n⎫

j=0
γj

(γnpn+1 + γ0qn+1)Fe−iγ0ln , (7)

where
pj+1 = γj−1pj cosαj + γjqji sin αj; p1 := 1, (8)

qj+1 = γj−1pji sin αj + γjqj cosαj; q1 := 1. (9)

Here αj = γj(lj − lj−1), j = 2, . . . , n. Note that similar formulas are obtained in
classical monographs dealing with wave propagation in layered media, e.g, in [4].

3 Inverse Problem for Multisectional Diaphragm

Formulate the inverse problem for a multisectional diaphragm that will be addressed
in this work.
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Inverse problem P: find (complex) permittivity εj of each section from the known
amplitude A of the incident wave and amplitude F of the transmitted wave at different
frequencies.

It is reasonable to consider the right-hand side of (7) as a complex-valued function
with respect to n variables εj. For n sections we must know amplitudes A and F for
each of n frequency values to have a consistent system of n equations with respect to
n unknown permittivity values εj. This system is then solved to obtain the sought-for
permittivity values.

Let us rewrite Eq. (7) in the form

G(h) = H, H := 2Aγ0eiγ0ln

F
, (10)

where

G(h) := 1
n⎫

j=1
γj

(γnpn+1 + γ0qn+1), (11)

and h := (ε1, . . . , εn).

We will consider (11) as a complex function of n complex variables. It follows
from (8) and (9) that

⎡
pj+1
qj+1

⎣
=

⎡
cosαj i sin αj

i sin αj cosαj

⎣ ⎡
γj−1 0
0 γj

⎣ ⎡
pj

qj

⎣
(12)

(j = 1, . . . , n). Thus we can represent pn+1, qn+1 via finite multiplication ofmatrices
by formula (12). From representation (12) we select, for every fixed j, only the
matrices depending on γj. Finally we obtain

⎡
γj 0
0 γj+1

⎣ ⎡
cosαj i sin αj

i sin αj cosαj

⎣⎡
γj−1 0
0 γj

⎣
=

⎡
γjγj−1 cosαj iγ 2

j sin αj

iγj+1γj−1 sin αj γjγj+1 cosαj

⎣
. (13)

Dividing matrix (13) by γj we have

⎡
γj−1 cosαj iγj sin αj

iγj+1γj−1 sin αj/γj γj+1 cosαj

⎣
. (14)

Taking into account Taylor series for functions sin αj and cosαj and that αj =
γj(lj − lj−1) (14) we see that each coefficient of this matrix depends on γ 2

j . Since

γ 2
j = εjμ0ω

2 − π2/a2 we have that each coefficient of matrix (14) is an analytical
function w.r.t. εj. Hence function G(h) depends on εj analytically for every j, (j =
1, . . . , n).
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Using Hartogs’ theorem [18] we obtain the following statement

Theorem 3.1 G(h) is holomorphic on Cn as a function of n complex variables.

Let us formulate inverse problem P for n-sectional diaphragm in the following
form. Consider n different frequencies Ω = (ω1, . . . , ωn) and functions Gj(h) :=
G(h, ωj), j = 1, . . . , n. It is necessary find a solution to the (nonlinear) system of n
equations w.r.t. n variables ε1, . . . , εn:

Gj(h) = Hj, Hj = H(ωj), j = 1, . . . , n. (15)

Theorem 3.1 implies [18].

Theorem 3.2 If Jacobian ∂(G1,...,Gn)
∂(h1,...,hn)

⊂= 0 at the point h⊗ then function G(h) is locally
invertible in a vicinity of h⊗ and inverse problem P has unique solution for every h
from that vicinity.

Below we present an example of numerical solutions to inverse problem P for a
three-sectional diaphragm. The table shows the test results of numerical solution to
the inverse problem of reconstructing permittivities of a three-section diaphragm at
three frequencies. The test values of the transmission coefficient are taken from the
solution to the forward problem.

F(ω1,2,3) Calculated ε1,2,3 True ε1,2,3

0.012 + i · 0.036
0.025 − i · 0.012
0.029 + i · 0.014

−1.713 + i · 0.078,
1.523 − 0.085
4.01 + i · 0.13

−1.7
1.5
4

0.073 − i · 0.177
−0.269 − i · 0.197
−0.052 − i · 0.22

1.702 − i · 0.0004,
−1.499 + i · 0.006
3.996 + i · 0.003

1.7
−1.5
4

0.106 + i · 0.061
0.096 − i · 0.023
0.102 + i · 0.046

1.716 − i · 0.0004,
1.48 − i · 0.013
−3.928 + i · 0.037

1.7
1.5
−4

−0.0004 − i · 0.00376
−0.0045 + i · 0.00368
−0.0057 − i · 0.00134

−1.708 − i · 0.008,
1.5 + i · 0.0007
−3.982 + i · 0.017

−1.7
1.5
−4

−0.00005 − i · 0.0005
−0.002 + i · 0.001
−0.002 − i · 0.0004

−1.708 + i · 0.03,
−1.499 − i · 0.03
−3.982 − i · 0.044

−1.7
−1.5
−4

Parameters of the three-section diaphragm are a = 2, b = 1, c = 2, A = 1,
l1 = 1, l2 = 1.5; the excitation frequencies ω1 = 2.5, ω2 = 1.7, and ω3 = 2.
The first, second, and third columns of the table shows, respectively, the values of
transmission coefficient F, calculated values of permittivity of a section, and true
values of (real) permittivity of a section.

We see that in all examples the error of computations does not exceed 3% which
proves high efficiency of the method.
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4 One-Sectional Diaphragm: Explicit Solution
to the Inverse Problem

From (7) for a one-sectional diaphragm we have

Aeiγ0l1

F
= g(z),

g(z) = cos z + i

⎡
z

2γ0l1
+ γ0l1

2z

⎣
sin z, (16)

z = γ1l1 = l1

⎤
k21 − π2

a2
,

where z is generally a complex variable. From (16) we obtain a relation for the
transmission coefficient

F = Aeiγ0l1

g(z)
, (17)

which, together with formulas (3) and (4), gives an explicit solution to the forward
problem under study.

When the inverse problem is solved, ε1 is considered as an unknown quantity that
should be determined from Eq. (16) in terms of F.

List the most important properties of g(z) which easily follows from its explicit
representation:

(i) g(z) is an entire function.
(ii) g(z) has neither real zeros nor poles. This fact is in line with physical require-

ments that the transmission coefficient does not vanish and is a bounded quantity
at real frequencies.

(iii) g(z), also considered as a function of real τ , is not invertible locally at the origin
because it is easy to check that g′(0) = 0. Next, the inverse of g(z) is a multi-
valued function. In fact, the inverse function does not exist globally according
to the statement in Remark concerning violation of uniqueness.

(iv) g(z) is not a fractional-linear function; therefore g(z) performs one-to-one con-
formal mappings only of certain regions of the complex plane onto regions of
the complex plane.

(v) It is easy to check up that g′(τ ) ⊂= 0 for (real) τ ⊂= 0. Hence, g(z) is invertible
locally at the real point τ ⊂= 0.

Assuming that ε1 is real it is reasonable to introduce a real variable

τ = γ1l1 = l1

⎤
k21 − π2

a2
> 0 (18)
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which may be used for parametrization. Extract the real and imaginary part of g(τ ),
denoting them by x and y,

⎦
x = cos τ,

y = h(τ ) sin τ,
where h(τ ) = τ

2C
+ C

2τ
, C = γ0l1. (19)

Equation (16) is equivalent to the system

⎩⎝
⎞
cos τ = p, p = Re

(
Ae−iγ0 l1

F

⎧
,

h(τ ) sin(τ ) = q, q = Im
(

Ae−iγ0 l1

F

⎧
,

(20)

where p and q are known values. Using the results of Appendix I we finally obtain
from (20) an explicit formula for the sought (real) permittivity

ε1 = 1

ω2μ0

⎢(π

a

⎧2 +
⎡

τ

l1

⎣2
⎥

, (21)

here

τ = τ1 = C

⎢
|q| + √

p2 + q2 − 1√
1 − p2

⎥
(22)

when ε1 > ε0 and

τ = τ2 = C

⎢ √
1 − p2

|q| + √
p2 + q2 − 1

⎥
(23)

when π2

a2ω2μ0
< ε1 < ε0.

Formulas (21)–(23) constitute explicit solution of inverse problem P under study.
Using the reasoning and results ofAppendix Iwe prove the following result stating

the existence and uniqueness of solution to the inverse problemof finding permittivity
of a one-sectional diaphragm in a waveguide of rectangular cross-section.

Theorem 4.1 Assume that |p| < 1 and p2+q2 ≥ 1. Then inverse problem P has only
one solution expressed by (22) if τ1

C > 1, cos τ1 = p, and sign(q) = sign(sin(τ1)).
If τ2

C < 1, cos τ2 = p, and sign(q) = sign(sin(τ2)), inverse problem P has only one
solution expressed by (23). Otherwise, inverse problem P has no solution.

Remark 4.1 If p = 1, then q must be equal zero and τ = 2πn, n ∈ Z . If p = −1,
then q must be equal to zero and τ = π +2πn, n ∈ Z . In these cases inverse problem
P has has infinitely many solutions; therefore they are excluded from Theorem.
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5 Conclusion

We have developed a numerical-analytical method of solution to the inverse problem
of reconstructing permittivities of n-sectional diaphragms in a waveguide of rectan-
gular cross-section. For a one-sectional diaphragm, a solution in the closed form
is obtained and the uniqueness is proved. These results make it possible to use the
case of a one-sectional diaphragm in a waveguide of rectangular cross-section as a
benchmark test problem and perform a complete analysis of the inverse scattering
problem for arbitrary n-sectional diaphragms.

Acknowledgments This work is partially supported by Russian Foundation of Basis Research
11-07-00330-a and Visby Program of the Swedish Institute.

Appendix 1

Reduce Eq. (16) to a quadratic equation. From (18) it follows that (on the domain of
all the functions involved):

p2 + q2

h2(τ )
= 1, h(τ ) > 0.

From (20) we obtain:

h2(τ ) = q2

1 − p2
, |p| < 1. (24)

Then

h(τ ) = Q, h(τ ) := τ

2C
+ C

2τ
, Q := |q|√

1 − p2
> 0, (25)

and we obtain a quadratic equation

τ 2 − 2CQτ + C2 = 0 (26)

which has the roots

τ1 = C(Q +
√

Q2 − 1), τ2 = C

Q + √
Q2 − 1

. (27)

τ1,2 are real if Q ≥ 1; therefore,

p2 + q2 ≥ 1. (28)
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Inequality (28) constitutes the existence condition for the solution of equation
(16). Since τ = γ1l1 and C = γ0l1, we have

τ

C
= γ1

γ0
=

⎨
ω2μ0ε1 − π2

a2⎨
ω2μ0ε0 − π2

a2

,

so that, in view of the assumption ε1 > ε0,

τ

C
> 1.

Similarly, for π2

a2ω2μ0
< ε1 < ε0,

τ

C
< 1.

Thus, for ε1 > ε0 we obtain

τ1

C
= Q +

√
Q2 − 1 (> 1).

For π2

a2ω2μ0
< ε1 < ε0

τ2

C
= 1

Q + √
Q2 − 1

(< 1).

Thus, when ε1 > ε0 Eq. (25) has only one root (24) τ1. Similarly, Eq. (27) has the
only one root (25) τ2 for π2

a2ω2μ0
< ε1 < ε0.

It should be noted that reduction of (16) to quadratic equation (26) is not an equiv-
alent transformation. It is necessary to complement (26) with one of the equations
of system (19), for example, with the first, and take into accounts the signs of p and
q. As a result, (16) will be equivalent to the system

{
cos τ = p, sign(q) = sign(sin(τ )),

p2 + q2

h2(τ )
= 1.
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Some Conservation Laws for a Class
of Hamilton-Jacobi-Bellman Equations

Maria Luz Gandarias, Maria V. Redondo and Maria S. Bruzón

Abstract The idea of a conservation law has its origin in mechanics and physics.
Since a large number of physical theories, including some of the ‘laws of nature’,
are usually expressed as systems of nonlinear differential equations, it follows that
conservation laws are useful in both general theory and the analysis of concrete
systems. In [3] one of the present authors has introduced the concept of weak self-
adjoint equations. This definition generalizes the concept of self-adjoint and quasi
self-adjoint equations that were introduced by Ibragimov in [8]. Recently [4] we
found a class of weak self-adjoint Hamilton-Jacobi-Bellman equations which are
neither self-adjoint nor quasi self-adjoint. In this paper, by using a general theorem
on conservation laws proved in [7] and the new concept of weak self-adjointness [3]
we find conservation laws for some of these partial differential equations.

1 Introduction

The class of Hamilton-Jacobi-Bellman (HJB) equations arises in the sphere of sto-
chastic control theory [12]. In [13] the properties of one of these HJB equations were
investigated from the viewpoint of the Lie symmetry analysis. It was pointed out in
[13] that the HJB equation

ut + aux + b2

2
uxx − 1

2
(ux )

2 +
( c

x

)2 = 0 (1)
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with the terminal condition u(T, x) = 0 is not an obvious relative of the
Black-Scholes or heat equations and is presented by Heath, Platin and Schweizer
[5] as an equation for mean-variance hedging. The authors observe that c in the
ultimate term of (1) needs not be a constant. In fact it is better to write the HJB
equation as

ut + aux + b2

2
uxx − 1

2
(ux )

2 + c(x) = 0 (2)

to allow for the possible dependence of c upon x .
The idea of a conservation law, or more particularly, of a conserved quantity, has its

origin in mechanics and physics. Since a large number of physical theories, including
some of the ‘laws of nature’, are usually expressed as systems of nonlinear differential
equations, it follows that conservation laws are useful in both general theory and the
analysis of concrete systems [14]. In [1] Anco and Bluman gave a general treatment
of a direct conservation law method for partial differential equations expressed in a
standard Cauchy-Kovaleskaya form

ut = G(x, u, ux , uxx , . . . , unx ).

In [11] Kara and Mahomed showed to construct conservation laws of Euler-
Lagrange type equations via Noether type symmetry operators associated with partial
Lagrangians.

In [7] (see also [6]) a general theorem on conservation laws for arbitrary differ-
ential equations which do not require the existence of Lagrangians has been proved.
This new theorem is based on the concept of adjoint equations for non-linear equa-
tions. There are many equations with physical significance which are not self-adjoint.
Therefore one cannot eliminate the nonlocal variables from the conservation laws
of these equations. In [8] Ibragimov generalized the concept of by introducing the
definition of quasi self-adjoint equations.

It happens that many equations having remarkable symmetry properties, such as
the HJB equation, are neither self-adjoint nor quasi self-adjoint.

In [3] one of the present authors has generalized the concept of quasi-self-adjoint
equations by introducing the concept of weak self-adjoint equations. In [9] has gen-
eralized this concept and has introduced the concept of nonlinear self-adjointness.
By using these two recent developments Freire and Sampaio [2] have deter mined
the nonlinear self-adjoint class of a generalized fifth order equation and by using
Ibragimov theorem [6] the authors have established some local conservation laws.
In [10] Johnpillai and Khalique have studied study the conservation laws of some
special forms of the nonlinear scalar evolution equation, the modified Korteweg-
De Vries (mKdV) equation with time dependent variable coefficients of damping
and dispersion

ut + u2ux + a(t)u + b(t)uxxx = 0.

The authors use the new conservation theorem (Ibragimov [6]) and the partial
Lagrangian approach (Kara and Mahomed [11]).
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In [3] one of the present authors has generalized the concept of quasi self-adjoint
equations by introducing the concept of.

In a previous work we have determined, for Eq. (2), the subclasses of equations
which are self-adjoint, quasi self-adjoint and weak self-adjoint. The aim of this
work is to determine, by using the notation and techniques of [7], some nontrivial
conservation laws for a class of Eq. (2).

1.1 The Class of Self-Adjoint and Quasi Self-Adjoint Equations

Definition 1 Consider an sth-order partial differential equation

F(x, u, u(1), . . . , u(s)) = 0 (3)

with independent variables x = (x1, . . . , xn) and a dependent variable u, where
u(1) = {ui }, u(2) = {ui j }, . . . denote the sets of the partial derivatives of the first,
second, etc. orders, ui = ∂u/∂xi , ui j = ∂2u/∂xi∂x j . The adjoint equation to (12) is

F⊕(x, u, v, u(1), v(1), . . . , u(s), v(s)) = 0, (4)

with

F⊕(x, u, v, u(1), v(1), . . . , u(s), v(s)) = δ(v F)

δu
, (5)

where
δ

δu
= ∂

∂u
+

≥∑
s=1

(−1)s Di1 . . . Dis

∂

∂ui1...is

(6)

denotes the variational derivative (the Euler-Lagrange operator), and v is a new
dependent variable. Here

Di = ∂

∂xi
+ ui

∂

∂u
+ ui j

∂

∂u j
+ · · ·

are the total differentiations.

Definition 2 Equation (12) is said to be if the equation obtained from the adjoint
Eq. (13) by the substitution v = u :

F⊕(x, u, u, u(1), u(1), . . . , u(s), u(s)) = 0,

is identical to the original Eq. (12). In other words, if

F⊕(x, u, u(1), u(1), . . . , u(s), u(s)) = λ(x, u, u(1), . . .) F(x, u, u(1), . . . , u(s)). (7)
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Definition 3 Equation (12) is said to be if the equation obtained from the adjoint
Eq. (13) by the substitution v = h(u) with a certain function h(u) such that h∈(u) ⊂= 0
is identical to the original Eq. (12).

The following statement was proved in [4].

Theorem 11 Equation (2) is quasi self-adjoint if and only if c(x) = 0.

1.2 The Class of Weak Self-Adjoint Equations

In [3] the following definition has been introduced.

Definition 4 Eq. (12) is said to be if the equation obtained from the adjoint Eq. (13)
by the substitution v = h(x, t, u) with hx (x, t, u) ⊂= 0 or ht (x, t, u) ⊂= 0 and
hu(x, t, u) ⊂= 0 is identical to the original Eq. (12).

In [4] was given the following statement.

Theorem 12 Equation (2) is weak self-adjoint for any arbitrary function c(x) upon

the substitution v = α(x)e
− u

b2 , where α(x) must satisfy the following condition

b4αxx − 2ab2αx − 2 c α = 0. (8)

1.3 General Theorem on Conservation Laws

We use the following theorem on proved in [7].

Theorem 13 Any, Lie-Bäcklund or non-local symmetry

X = ξ i (x, u, u(1), . . .)
∂

∂xi
+ η(x, u, u(1), . . .)

∂

∂u
(9)

of Eq. (12) provides a conservation law Di (Ci ) = 0 for the simultaneous system
(12), (13). The conserved vector is given by

Ci = ξ iL + W

[
∂L

∂ui
− D j

(
∂L

∂ui j

)
+ D j Dk

(
∂L

∂ui jk

)
− · · ·

]

+D j (W )

[
∂L

∂ui j
− Dk

(
∂L

∂ui jk

)
+ · · ·

]
+ D j Dk(W )

[
∂L

∂ui jk
− · · ·

]
+ · · · ,

(10)
where W and L are defined as follows:

W = η − ξ j u j , L = v F
(
x, u, u(1), . . . , u(s)

)
. (11)
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The proof is based on the following operator identity:

X + Di (ξ
i ) = W

δ

δu
+ DiN

i , (12)

where X is operator (19) taken in the prolonged form:

X = ξ i ∂

∂xi
+ η

∂

∂u
+ ζi

∂

∂ui
+ ζi1i2

∂

∂ui1i2

+ · · · ,

ζi = Di (η) − u j Di (ξ
j ), ζi1i2 = Di2(ζi1) − u ji1 Di2(ξ

j ), . . . .

For the expression of operatorN i and a discussion of the identity (22) in the general
case of several dependent variables, we refer the reader to [7], Sect. 8.4.4.

We will write the generators of a point transformation group admitted by Eq. (2)
in the form

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
(13)

by setting t = x1, x = x2. The conservation law will be written

Dt (C
1) + Dx (C

2) = 0. (14)

1.4 Conservation Laws for a Class of Quasi
Self-Adjoint Equations

Let us apply the general Theorem on conservation laws to the quasi self-adjoint
equation:

ut + aux + b2

2
uxx − 1

2
(ux )

2 = 0. (15)

In this case we have

L =
(

ut + aux + b2

2
uxx − 1

2
(ux )

2
)

v, v = e
− u

b2 (16)

Let us find the conservation law provided by the following symmetry of Eq. (2):

X = t
∂

∂x
− (x − at)

∂

∂u
. (17)

This symmetry was derived by Naicker, Andriopulos, and Leach in [13]. In this case
we have W = −(x − at) − tux and Eq. (20) yield conservation law (23) with
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C1 = e
− u

b2 (x − a t) + Dx

(
b2 t e

− u
b2

)
,

C2 = e
− u

b2
(
ux x − 2 a x − a t ux + 2 a2 t + b2

)
2

− Dt

(
b2 t e

− u
b2

)
.

We simplify the conserved vector by transferring the terms of the form Dx (. . .) from
C1 to C2 and obtain

C1 = −e
− u

b2 (x − a t) ,

C2 = e
− u

b2
(
ux x − 2 a x − a t ux + 2 a2 t + b2

)
2

.

1.5 Conservation Laws for a Subclass of Weak Self-Adjoint
Equations

In [13] it was pointed out that c(x) plays the role of a potential. The “potential”

c(x) = μ2

2x2 has a rich history dating back to the time of Newton. The symmetries

for Eq. (2) were derived by Naicker, Andriopulos and Leach in [13]. In [4] we have
applied the general Theorem on conservation laws to the weak self-adjoint equation:

ut + aux + b2

2
uxx − 1

2
(ux )

2 + μ2

2x2 = 0. (18)

We will now find conservation laws of Eq. (2) with c(x) = constant provided by
the symmetries of this equation derived by Naicker, Andriopulos and Leach in [13].

Let us apply the general Theorem on conservation laws to the weak self-adjoint
equation:

ut + aux + b2

2
uxx − 1

2
(ux )

2 + c = 0.

For c = − a2

2 the solution of Eq. (8) is

α(x) = (k2 x + k1) e
a x
b2 .

In this case we have

L =
(

ut + aux + b2

2
uxx − 1

2
(ux )

2 + c
)

v. (19)

We will write generators of point transformation group admitted by Eq. (15) in the
form (13) by setting t = x1, x = x2. The conservation law will be written (23).
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1. Let us find the conservation law provided by the following symmetry of Eq. (2)
where c(x) = − a2

2 :

X = t
∂

∂x
− (x − at)

∂

∂u
. (20)

In this case we have W = −(x − at) − tux and Eq. (20) yield the conservation law
(23) with

C1 = −x e
a x
b2 − u

b2 + Dx

(
b2 t e

a x
b2 − u

b2
)

,

C2 =
(
ux x − a x + 2 c t + a2 t + b2

)
e

a x
b2 − u

b2

2
− Dt

(
b2 t e

a x
b2 − u

b2
)

.

We simplify the conserved vector by transferring the terms of the form Dx (. . .) from
C1 to C2 and obtain

C1 = −x e
a x
b2 − u

b2 ,

C2 =
(
ux x − a x + 2 c t + a2 t + b2

)
e

a x
b2 − u

b2

2
.

2. Let us find the conservation law provided by the following o symmetry of Eq. (2)
where c(x) = − a2

2 :

X = t
∂

∂t
+ x + at

2

∂

∂x
+ a2t

2

∂

∂u
. (21)

In this case we have W = a2t

2
− tut − x + at

2
ux and Eq. (20) yield the conservation

law (23) with

C1 = −
(
a x + b2

)
e

a x
b2 − u

b2

2
+ Dx

(
b2 (x + t ux ) e

a x
b2 − u

b2

2

)
,

C2 =
(
a ux x − a2 x + b2 ux

)
e

a x
b2 − u

b2

4
− Dt

(
b2 (x + t ux ) e

a x
b2 − u

b2

2

)
.

We simplify the conserved vector by transferring the terms of the form Dx (. . .) from
C1 to C2 and obtain

C1 = −
(
a x + b2

)
e

a x
b2 − u

b2

2
,

C2 =
(
a ux x − a2 x + b2 ux

)
e

a x
b2 − u

b2

4
.
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3. Let us find the conservation law provided by the following symmetry of Eq. (2)
where c(x) = − a2

2 :

X = t x
∂

∂x
+ t2 ∂

∂x
+ 1

2
(b2t + a2t2 − (x − at)2)

∂

∂u
. (22)

In this case we have W = −1

2
(b2t + a2t2 − (x − at)2) − t xux − t2ut and Eq. (20)

yield the conservation law (23) with

C1 = −
(
x2 + b2 t

)
e

a x
b2 − u

b2

2
+ Dx (B)

C2 =
(
ux x2 − a x2 + 2 b2 x + b2 t ux − a b2 t

)
e

a x
b2 − u

b2

4
− Dt (B)

where

B =
(

b2 t (2 x + t ux − a t) e
a x
b2 − u

b2

2

)

We simplify the conserved vector by transferring the terms of the form Dx (. . .)

from C1 to C2 and obtain

C1 = −
(
x2 + b2 t

)
e

a x
b2 − u

b2

2

C2 =
(
ux x2 − a x2 + 2 b2 x + b2 t ux − a b2 t

)
e

a x
b2 − u

b2

4

4. Let us find the conservation law provided by the following symmetry of Eq. (2)
where c(x) = − a2

2 :

X = ∂

∂u
. (23)

In this case we have W = 1 and Eq. (20) yield conservation law (23) with

C1 = α e
− u

b2 ,

C2 = −e
− u

b2
(
α ux + αx b2 − 2 a α

)
2

.

5. Let us find the conservation law provided by the following symmetry of Eq. (2)
where c(x) = − a2

2 :

X = f (x, t) exp
( u

b2

) ∂

∂u
, (24)

where f (x, t) satisfies the linear equation
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b4 fx x + 2 a b2 fx + 2 b2 ft + a2 f = 0. (25)

In this case we have W = f (x, t) exp
( u

b2

)
and Eq. (20) yield conservation law (23)

with
C1 = α f,

C2 = α b2 fx

2
− αx b2 f

2
+ a α f.

Substituting the expression of ut from Eq. (2) into (23) we get the following expres-
sion

α b2 fx x + 2 a α fx + 2 α ft − αx x b2 f + 2 a αx f = 0.

This condition is satisfied whenever α(x) satisfies the condition of weak self-
adjointness (8) and f (x, t) satisfies the linear Eq. (25).

2 Conclusions

The concepts of self-adjoint and quasi self-adjoint equations were introduced by NH
Ibragimov in [8]. In [3] one of the present authors has generalized the concept of
self-adjoint and quasi self-adjoint equations by introducing the definition of weak
self-adjoint equations. In this paper we prove that the only class of quasi self-adjoint
equations is such that c(x) = 0. Nevertheless, for any c(x) arbitrary we find a
class of weak self-adjoint Hamilton-Jacobi-Bellman equations. This new property
of weak self-adjointness allow us, by using a general theorem on conservation laws,
to find some conservation laws for a nonlinear HJB equation which arises in the
modelling of mean-variance hedging. We point out that in physical systems, many
conservation laws that arise can usually be identified with a physical quantity, like
energy or linear momentum, being conserved. It would be of interest to identify what
conserved economic or financial phenomena can be associated with the conservation
laws identified in this paper. Finally, we remark that the search for conservation laws
is also useful to determine potential symmetries. These symmetries will allow us to
find new solutions for the HJB equations.

Acknowledgments The support of DGICYT project MTM2009-11875, Junta de Andalucía group
FQM-201 are gratefully acknowledged.
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Self-Adjointness and Conservation Laws
for a Generalized Dullin-Gottwald-Holm
Equation

Maria S. Bruzón and Maria Luz Gandarias

Abstract We consider the problem of group classification and conservation laws
of some Generalized Dullin-Gottwald-Holm equations. We obtain the subclasses
of these general equations which are self-adjoint. By using the recent Ibragimov’s
Theorem on conservation laws, we establish some conservation laws of the self-
adjoint equations.

1 Introduction

Dullin, Gottwald and Holm derived a new equation describing unidirectional
propagation of surfacewaves on a shallow layer ofwaterwhich is at rest at infinity [4].

mt + 2ωux + 2mux + umx = −γ uxxx , t > 0, x ⊕ R (1)

where m = u − α2uxx , u(x, t) stands for the fluid velocity, x ⊕ R and t > 0. The
constants α2 and γ

c0
are squares of length scales, c0 = ≥

gh is the linear wave speed
for undisturbed water at rest at spatial infinity.

Equation (1) is completely integrable and its traveling wave solutions contains
both the Korteweg-de Vries solitons and the Camassa-Holm peakons as limiting
cases [4]. When α ∈ 0, this equation becomes the Korteweg-de Vries equation

ut + 2ωux + 3uux = −γ uxxx
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which for ω = 0, has the famous smooth soliton solution u(x, t) = u0sech2(x −
ct)

≥
u0γ /2. Instead taking γ− > 0 in the Eq. (1), it turns out to be the Camassa-

Holm equation

ut − α2uxxt + 2ωux + 3uux = α2(2ux uxx + uuxxx ).

Tian, Fang and Gui, applying Kato’s semigroup approach, obtained the well-
posedness of the equation and showed the existence of global smooth solutions.
The authors proved that the equation has solutions that exist for indefinite times as
well as solutions that blow up in finite time, [13].

Biswas and Kara [1] obtained the 1-soliton solution by the aid of solitary wave
ansatz. The conserved quantities were obtained by utilising the interplay between
the multipliers and underlying Lie point symmetry generators of the equation.

In [10] Liu and Yin established the local well-posedness by using Kato’s theory
for the generalized Dullin-Gottwald-Holm equation

ut − utxx + (h(u))x + buxxx = a

(
g⊂(u)

2
u2

x + g(u)uxx

)
x
. (2)

They proved the orbital stability of the peaked solitary waves.
Symmetry groups have several different applications in the context of nonlinear

differential equations. For example, they are used to obtain exact solutions and con-
servation laws of partial differential equations (PDEs) [3, 5]. The classical method
for finding symmetry groups of PDEs is the Lie group method [2, 6, 11, 12].

In this work, we study Eq. (2) with a, b ⊗= 0 from the point of view of the theory of
symmetry group transformations in PDEs. We determine the subclasses of equations
which are self-adjoint.We also determine, by using the notation and techniques of the
work [8, 9], some nontrivial conservation laws for Eq. (2). The paper is organized as
follows. In Sect. 2we give the Lie symmetries of (2) equation. In Sect. 3we determine
the subclasses of equations of (2) which is self-adjoint. In Sect. 4 we obtain some
nontrivial conservation laws for Eq. (2). Finally, in Sect. 5 we give conclusions.

2 Classical Symmetries

To apply the Lie classical method to Eq. (2) we consider the one-parameter Lie group
of infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u) + O(ε2), (3)

t∗ = t + ετ(x, t, u) + O(ε2), (4)

u∗ = u + εη(x, t, u) + O(ε2), (5)

where ε is the group parameter. We require that this transformation leaves invariant
the set of solutions of Eq. (2). This yields to an overdetermined, linear system of
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equations for the infinitesimals ξ(x, t, u), τ (x, t, u) and η(x, t, u). The associated
Lie algebra of infinitesimal symmetries is the set of vector fields of the form

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (6)

Having determined the infinitesimals, the symmetry variables are found by solv-
ing the characteristic equation which is equivalent to solving the invariant surface
condition

η(x, t, u) − ξ(x, t, u)
∂u

∂x
− τ(x, t, u)

∂u

∂t
= 0. (7)

The set of solutions of Eq. (2) is invariant under the transformation (3)–(5) provided
that

pr(3)v(Δ) = 0 when Δ = 0,

where pr(3)v is the third prolongation of the vector field (6) given by

pr(3)v = v +
∑

J

ηJ (x, t, u(3))
∂

∂u J

where

ηJ (x, t, u(3)) = DJ(η − ξux − τut ) + ξuJx + ηu Jt ,

with J = ( j1, . . . , jk), 1 ≤ jk ≤ 2 y 1 ≤ k ≤ 3. Hence we obtain the following 13
determining equations for the infinitesimals:

τu = 0,
τx = 0,
ξu = 0,
ηuu = 0,
2ηux − ξxx = 0,
ηuxx − 2ξx = 0,
3guuηx + 8guηux − 4ξxx gu = 0,
guηu + guuη + τt gu − ξx gu = 0,
2guuηu + guuuη + τt guu − ξx guu = 0,
−agηxxx + bηxxx + huηx − ηt xx + ηt = 0,
aguη + aτt g − aξx g − bτt + bξx − ξt = 0,
2aguηx + 3agηux − 3bηux + ηtu − 3aξxx g + 3bξxx − 2ξt x = 0,
2aguηxx + 3agηuxx − 3bηuxx + 2ηtux − huuη − τt hu − ξx hu − aξxxx g
+bξxxx − ξt xx + ξt = 0.

(8)
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From (8) we obtain g, h, ξ = ξ(x, t), τ = τ(t), φ = (δ+ξx ) u
2 + ν with δ = δ(t) and

ν = ν(x, t) where ξ , τ , δ and ν are related by the following conditions:

ξxxx − 4ξx = 0,
guu (ξxx u + 2νx ) = 0,
2aξxx guu + δt + 4aguνx − 3aξxx g + 3bξxx − 3ξt x = 0,
(aguδ + aξx gu) u + 2aguν + (2aτt − 2aξx ) g − 2bτt + 2bξx − 2ξt = 0,
(guuδ + ξx guu) u + guδ + 2guuν + (2τt − ξx ) gu = 0,
(guuuδ + ξx guuu) u + 2guuδ + 2guuuν + 2τt guu = 0,
(huuδ + ξx huu − 2aξxxx gu) u − 4aguνxx

+2huuν + (2τt + 2ξx ) hu − aξxxx g + bξxxx − 2ξt = 0,
(δt + ξxx hu − aξxxxx g + bξxxxx − ξt xxx + ξt x ) u + (2b − 2ag) νxxx

+2hνx − 2νt xx + 2νt = 0.

(9)

Solving system (9) we obtain that if g and h are arbitrary functions the only symme-
tries admitted by (2) are

ξ = k1, τ = k2, η = 0. (10)

The generators are X1 = ∂

∂x
(corresponding to space translational invariance) and

X2 = ∂

∂t
(time translational invariance). In the following cases Eq. (2) have extra

symmetries:

Case 1: If g = (a1u + a2)n + a3 and h =
(

b1
a1

(a1u + a2)
)n+1 + (aa3 − b)u, n ⊗= 1,

a1 ⊗= 0,

ξ = (b − aa3)k1n t + k2, τ = −k1n t + k3, η = k1
a1

(a1u + a2).

The generators are: X1, X2 and X1
3 = (b − aa4)n

2
t

∂

∂x
− n

2
t

∂

∂t
+ 1

2a1
(a1u +a2)

∂

∂u
.

Case 2: If g = a1u + a2 and h = b1
2 u2 + b2u, a1 ⊗= 0, b1 ⊗= aa1,

ξ = c1k1t + k3, τ = k1t + k2, η = −k1(u + c2).

WehaveX1,X2 andX2
3 = c1t

∂

∂x
+t

∂

∂t
−(c2+u)

∂

∂u
, where c1 = − aa1b2+bb1−aa2b1

b1−aa1

and c2 = b2+b−aa2
b1−aa1

.

Case 3: If g = a1u + a2 and h = aa1
2 u2 + (aa2 − b)u, a1 ⊗= 0

ξ = k1t + k2, τ = k3t + k4, η = −k3u + (b − aa2)k3 + k1
aa1

.
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The generators are X1, X2 and X3
3 = t

∂

∂x
+ 1

aa1

∂

∂u
, X3

4 = t
∂

∂t
− (u +c1)

∂

∂u
, where

c1 = b−aa2
aa1

.

Case 4: If g = c=constant and h = ku with k ⊗= ac − b,

ξ = k1, τ = k2, η = k3u + α(x, t),

where
(ac − b)αxxx − kαx + αt xx − αt = 0. (11)

In this case besides X1 and X2 we obtain the generators X4
3 = u

∂

∂u
and X→ =

α(x, t)
∂

∂u
.

Case 5: If g = c and h = (ac − b)u with c ⊗= b
a ,

ξ = k1e2x+2(b−ac)t + k3e2(ac−b)t−2x + (ac − b)β(t) + k2, τ = β(t),

η = u
(

k1e2x+2(b−ac)t − k3e2(ac−b)t−2x + k5
)

+ α(x, t),

where α satisfies Eq. (11) with k = ac − b.

We obtain the generators: X1, X2, X→, X5
3 =

(
∂

∂x
+ u

∂

∂u

)
e2[x+(b−ac)t], X5

4 =(
∂

∂x
− u

∂

∂u

)
e−2[x+(b−ac)t].

Case 6: If g = a1 ea2 u + a3 and hu = k ea2 u − b + a a3

ξ = a2 (b − a a3) k2 t + k1, τ = k3 − a2 k2 t, η = k2.

The generators are: X1, X2 and X6
3 = a2 (b − a a3) t

∂

∂x
− a2t

∂

∂t
+ ∂

∂u
.

Case 7: If g = a2 ln(a1 u + b1) + b2 and hu = aa2 ln(a1u + b1) + b3,

ξ = k3t + k1, τ = k2, η = k3
aa1a2

(a1u + b1).

The generators are X1, X2 and X7
3 = t

∂

∂x
+ a1u + b1

aa1a2

∂

∂u
.
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3 Determination of Self-Adjoint Equations

In [8] Ibragimov introduced a new theorem on conservation laws. The theorem is
valid for any system of differential equations where the number of equations is equal
to the number of dependent variables. The new theorem does not require existence
of a Lagrangian and this theorem is based on a concept of an adjoint equation for
nonlinear equations.

Consider an sth-order partial differential equation

F(x, u, u(1), . . . , u(s)) = 0 (12)

with independent variables x = (x1, . . . , xn) and a dependent variable u, where
u(1) = {ui }, u(2) = {ui j }, . . . denote the sets of the partial derivatives of the first,
second, etc. orders, ui = ∂u/∂xi , ui j = ∂2u/∂xi∂x j . The adjoint equation to (12)
is

F∗(x, u, ν, u(1), ν(1), . . . , u(s), ν(s)) = 0, (13)

with

F∗(x, u, ν, u(1), ν(1), . . . , u(s), ν(s)) = δ(νF)

δu
, (14)

where
δ

δu
= ∂

∂u
+

→∑
s=1

(−1)s Di1 · · · Dis

∂

∂ui1···is

(15)

denotes the variational derivative (the Euler-Lagrange operator), and ν is a new
dependent variable. Here

Di = ∂

∂xi
+ ui

∂

∂u
+ ui j

∂

∂u j
+ · · ·

are the total differentiations.
Equation (12) is said to be self-adjoint if the equation obtained from the adjoint

Eq. (13) by the substitution ν = u :

F∗(x, u, u, u(1), u(1), . . . , u(s), u(s)) = 0,

is identical to the original Eq. (12). In other words, if

F∗(x, u, u(1), u(1), . . . , u(s), u(s)) = λ(x, u, u(1), . . .)F(x, u, u(1), . . . , u(s)).

(16)
Let us single out self-adjoint equations from the equation of the form (2). Equa-

tion (14) yields
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F∗ ∞ agνxxx − bνxxx + aguuxνxx + aguuxxνx − aguu (ux )
2 νx

−huνx + νt xx − νt − 3aguuux uxxν − 3
2aguuu (ux )

3 ν.
(17)

By substituting ν = u into (17) we obtain

F∗ ∞ aguxxx − buxxx − 3aguuuux uxx + 2aguux uxx − 3
2aguuuu (ux )

3

−aguu (ux )
3 − huux + utxx − ut .

(18)

Comparing F∗ with F we obtain the following result:

PropositionEquation F ∞ ut−utxx+(h(u))x+buxxx−a

(
g⊂(u)

2
u2

x + g(u)uxx

)
x
=

0 is self-adjoint if g and h are arbitrary functions.

4 General Theorem on Conservation Laws

We use the following theorem on conservation laws proved in [8]. Any Lie point,
Lie-Bäcklund or non-local symmetry

X = ξ i (x, u, u(1), . . .)
∂

∂xi
+ η(x, u, u(1), . . .)

∂

∂u
(19)

of Eq. (12) provides a conservation law Di (Ci ) = 0 for the simultaneous system
(12), (13). The conserved vector is given by

Ci = ξ iL + W

[
∂L

∂ui
− D j

(
∂L

∂ui j

)
+ D j Dk

(
∂L

∂ui jk

)
− · · ·

]

+D j (W )

[
∂L

∂ui j
− Dk

(
∂L

∂ui jk

)
+ · · ·

]
+ D j Dk(W )

[
∂L

∂ui jk
− · · ·

]
+ · · · ,

(20)

where W and L are defined as follows:

W = η − ξ j u j , L = ν F
(
x, u, u(1), . . . , u(s)

)
. (21)

The proof is based on the following operator identity (N.H. Ibragimov 1979):

X + Di (ξ
i ) = W

δ

δu
+ DiN

i , (22)

where X is operator (19) taken in the prolonged form:

X = ξ i ∂

∂xi
+ η

∂

∂u
+ ζi

∂

∂ui
+ ζi1i2

∂

∂ui1i2
+ · · · ,
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ζi = Di (η) − u j Di (ξ
j ), ζi1i2 = Di2(ζi1) − u ji1 Di2(ξ

j ), . . . .

For the expression of operatorN i and a discussion of the identity (22) in the general
case of several dependent variables to see [7] (Sect. 8.4.4).

We will write the generators of a point transformation group admitted by Eq. (2)
in the form

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u

by setting t = x1, x = x2. The conservation law will be written

Dt (C
1) + Dx (C

2) = 0. (23)

Now we use the Ibragimov’s Theorem on conservation laws to establish some
conservation laws of Eq. (2). We obtain trivial conservation laws for g = a1u + a2,
from generators X1 and X2.
For Case 2, g = a1u+a2, h = | b1

2 +b2u, from generatorX3
2 we obtain the conserved

vector associated,

C1 = − (ux )
2 − u2 − b2+b−aa2

b1−aa1
u,

C2 = 1
6(b1−aa1)

[((
12aa1b1 − 12a2a12

)
u2

+ (
6aa1b2 + (12aa2 − 12b) b1 + 18aa1b − 18a2a1a2

)
u

+ (6aa2 − 6b) b2 − 6b2 + 12aa2b − 6a2a22
)

uxx

+ (
3aa1b2 + (6b − 6aa2) b1 − 3aa1b + 3a2a1a2

)
(ux )

2

+ ((12b1 − 12aa1) u + 6b2 + 6b − 6aa2) utx + (
4aa1b1 − 4b12

)
u3

+ ((6aa1 − 9b1) b2 + (3aa2 − 3b) b1) u2 + (
(6aa2 − 6b) b2 − 6b22

)
u
]
.

We use the symmetry of the Case 3 of Eq. (2) for g = a1u + a2 and h = aa1
2 u2 +

(aa2 − b)u with a1 ⊗= 1. Proceeding as before we obtain the conserved vector
associated with the following symmetries.
For X3

3:

C1 = 1

aa1
u,

C2 = −uuxx + b

aa1
uxx − a2

a1
uxx − 1

2
(ux )

2 − 1

aa1
utx + 1

2
u2 − b

aa1
u + a2

a1
u.

(24)
For X3

4:

C1 = − (ux )
2 − u2 +

(
b

aa1
− a2

a1

)
u,
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C2 = 2aa1u2uxx + 3(aa2 − b)uuxx + (b − aa2)2

aa1
uxx + b − aa2

2
(ux )

2 + 2uutx

+ a2a − b

a1
utx − 2

3
aa1u3 + 3

2
(b − aa2)u

2 − (b − aa2)2

aa1
u.

(25)
For Case 4, if g = c and h = ku, from generator X→ = α(x, t), where α satisfies
Eq. (11), the normal form for this group is W = α(x, t). By applying (20) the vector
components are

C1 = − 1
3ανxx + 1

3αxνx − 1
3αxxν + αν = 0.

C2 = −aαcνxx + αbνxx + aαx cνx − αx bνx + 1
3αtνx − 2

3ανt x + 1
3αxνt

+αkν − aαxx cν + αxx bν − 2
3αt xν.

(26)

Setting ν = u in (26)

C1 = −αuxx
3 + αx ux

3 − αxx u
3 + αu.

C2 = −aαcuxx + αbuxx + aαx cux − αx bux + 1
3αt ux − 2

3αutx + 1
3αx ut

+αku − aαxx cu + αxx bu − 2
3αt x u.

(27)

We simplify the conserved vector (27) by transferring the terms of the form Dx (. . .)

from C1 to C2 and obtain

C1 = (α − αxx )u.

C2 = α(b − ac)uxx + αx (ac − b)ux − αutx + αx ut + αku − αxx (ac − b)u.

For Case 5, if g = c and h = (ac − b)u, from generators X5
3 = ∂

∂x
+ u

∂

∂u
and

X5
4 = ∂

∂x
− u

∂

∂u
, proceeding as in the Case 1 we obtain the conserved vector

associated,

C1 = n
(
(ux )

2 + u2
)
,

C2 = 2 (b − ac) nuuxx + (ac − b) n (ux )
2 − 2nuutx + (ac − b) nu2,

where n = ±1.

5 Conclusions

In this work we have considered the generalized Dullin-Gottwald-Holm Eq. (2).
We have derived the Lie classical symmetries. We have determined the subclasses
of Eq. (2) which are self-adjoint. By using a general theorem on conservation laws
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proved by Nail Ibragimov we found conservation laws for some of these partial
differential equations without classical Lagrangians. We point out that in physical
systems, many conservation laws that arise can usually be identified with a physical
quantity, like energy or linear momentum, being conserved. Finally, we remark that
the search for conservation laws is also useful to determine potential symmetries.
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Semi Analytical Solutions of a Heat-Mass
Transfer Problem Via Group Theoretic
Approach

Mina B. Abd-el-Malek and Medhat M. Helal

Abstract Problem of heat-mass transfer in non-Newtonian power law,
two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid
over an inclined plate has been studied by applying the method of group theoretic
approach. The governing system of nonlinear partial differential equation describing
the flow and heat transfer problem are transformed into a system of nonlinear ordi-
nary differential equation which has been solved semi analytically. Exact solutions
for the dimensionless temperature and concentration profiles, are presented graph-
ically for different physical parameters and for the different power law exponents
n ⊕ (0, 0.5) and for n > 0.5. Also the effect of n, the Prandtl number, and the
heat generation parameter on both the temperature and the concentration of the fluid
inside the boundary layer have been studied.

1 Introduction

The flow of non-Newtonian fluids, including the power-law model, has attracted the
interest of many researchers and scientists in the recent time due to its several appli-
cations in food, polymer, petrol-chemical, geothermal, rubber, paint and biological
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industries, as mentioned in [1]. The main difficulty in the analytical consideration of
the power-law fluid flow is the non-linearity of governing differential equations.

Similarity analysis is convenientmethods of reducing systemof partial differential
equations into system of ordinary differential equations. Group theoretic method, is
a class of methods which lead to a reduction of the number of independent variables,
which were first introduced by Birkhoff [2] in 1948. In 1966 and then in 1968,Moran
and Gaggioli [3, 4] presented a theory which has led to improvements over earlier
similaritymethods. Similarity analysis has been applied intensively byGabbert [5] in
1967. For more discussions see Ames [6, 7], Bluman and Cole [8], Boisvert et al. [9],
Gaggioli andMoran [10, 11]. Throughout the history of similarity analysis, a variety
of problems in science and engineering have been solved.Many physical applications
are carried out by Abd-el-Malek et al. [12, 13].

In 2006, Sivasankaran et al. [14], have applied the Lie group analysis to study
the same problem but without considering the power-law fluid in the momentum
equation, the heat generation in the energy equation, and the thermophoretic velocity
in the diffusion equation.

In the present work, we provide semi analytical solution and qualitative discus-
sion for the laminar boundary-layer flow of non-Newtonian power law fluids using
group theoretic approach. Under the application of one-parameter group, the govern-
ing system of partial differential equations and the associated boundary conditions
are reduced to a system of ordinary differential equations with the corresponding
boundary conditions, which are solved semi analytically.

2 The Mathematical Formulation

Following system [15], by Olajuwon in 2009, we study the following system:

∂u

∂x
+ ∂v

∂y
, (1)

u
∂u

∂x
+ v

∂u

∂y
= −ν

∂

∂y

(
− ∂u

∂y

)n + gβ(T − T≥) cosα + gβ∈(C − C≥) cosα (2)

u
∂T

∂x
+ v

∂T

∂y
= k

ρcρ

∂2T

∂y2
+ Q

ρc
(T − T≥) (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− ∂

∂y

(
VT (C − C≥)

⎧
, (4)

where Eqs. (1)–(4) represent respectively, continuity, momentum, energy, and diffu-
sion equations. This system is subjected to the following boundary conditions

u = v = 0, T = Tw, C = Cw at y = 0, while, u = 0, T = T≥, C = C≥ as y ⊂ ≥, (5)
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Fig. 1 The physical problem

where “u” and “v” are velocity components; “x” and “y” are space coordinates as
illustrated in Fig. 1; T , Tw, and T≥ are the temperature of the fluid inside the
boundary layer, the plate and the fluid temperature in the free stream, respectively.
The plate ismaintained at a temperatureTw, and the free stream air is at a temperature
T≥, where T≥ > Tw to a cold surface. C, Cw, C≥ are the concentration of the fluid
inside the boundary layer, beside the plate, and the fluid concentration in the free
stream, respectively; ν is the kinematic viscosity of the fluid; g is the acceleration
due to gravity; β is the coefficient of thermal expansion; β∈ is the coefficient of
expansion with concentration; k is the thermal conductivity of fluid; ρ is the density
of the fluid; cρ is the specific heat of the fluid; Q is the heat generation constant;
D is the diffusion coefficient; α is the angle of inclination, n is the non-Newtonian
parameter (power index). The thermophoretic velocity VT , has the form:

VT = −kν

Tr

∂T

∂y
(6)

where Tr, is some reference temperature and ν is the thermo-phoretic coefficient.
The non-dimensional variables are:

x̄ = xU≥
ν

, ȳ = yU≥
ν

, ū = u

U≥
v̄ = v

V≥
, θ(x, y) = T(x, y) − T≥

Tw − T≥
, φ(x, y) = C(x, y) − C≥

Cw − C≥
. (7)

The stream function formulation is:

ū = ∂ψ

∂y
, v̄ = −∂ψ

∂x
(8)
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By this assumption, the governing differential Eqs. (1)–(4) transform to:

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= −nνUn−2≥

(
− ∂2ψ

∂y2

)n−1 ∂3ψ

∂y3

+ g cosα

U2≥

⎨
βθ(Tw − T≥)q1(x) + β∈φ(Cw − C≥)q2(x)

⎩
(9)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
= k

ρcρU≥
q3(x)

∂2θ

∂y2
+ Q

ρcρU≥
q4(x)θ (10)

∂ψ

∂y

∂θ

∂x
−∂ψ

∂x

∂θ

∂y
= D

U≥
q5(x)

∂2φ

∂y2
+ kν

U≥Tr
(Tw−T≥)q6(x)

(
φ

∂2θ

∂y2
+∂θ

∂y

∂φ

∂y

)
. (11)

The corresponding boundary and initial conditions become,

∂ψ

∂x
= ∂ψ

∂y
= 0, θ = 1, φ = 1 at y = 0, and

∂ψ

∂y
= 0, θ = 0, φ = 0, as y ⊂ ≥,

(12)
where the functions qi(x); i = 1, 2, ..., 6 are auxiliary functions in x that are useful
in applying the group theoretic approach and must vanish at the end.

3 Solution of the Problem

Solution depends on the application of a one-parameter group transformation to the
system of partial differential Eqs. (9)–(11), where the two independent variables will
be reduced by one and the equations will be transformed to a system of ordinary dif-
ferential equations in only one independent variable, which is the similarity variable.

3.1 The Group Systematic Formulation

The procedure is initiated with the group G, a class of transformation of one
parameter “a” of the form

G : S̄ = Ks(a)S + Ps(a), (13)

where, “S” stands for x, y; ψ, θ, φ, q1(x), q2(x), q3(x), q4(x), q5(x), and q6(x)
and the K ⊗s and P⊗s are real-valued functions and at least differentiable in the real
argument “a”.



Semi Analytical Solutions of a Heat-Mass Transfer Problem 591

3.2 The Invariance Analysis

To transform the differential equation, transformations of the derivatives are obtained
from G via chain—rule operations:

S̄i = (Ks

Ki

⎧
Si, S̄ij = ( Ks

KiKj

⎧
Si, i = x, y; j = x, y, (14)

where, “S” stands for x, y; ψ, θ, φ, q1(x), q2(x), q3(x), q4(x), q5(x), and q6(x).
Equations (9)–(11) are said to be invariantly transformed whenever

∂ψ̄

∂ ȳ

∂2ψ̄

∂ x̄∂ ȳ
− ∂ψ̄

∂ x̄

∂2ψ̄

∂ ȳ2
+ nνUn−2≥

(
− ∂2ψ̄

∂ ȳ2

)n−1 ∂3ψ̄

∂ ȳ3
− g cosα

U2≥
⎨
βθ̄(Tw − T≥)q̄1(x̄)

−β∈φ̄(Cw − C≥)q̄2(x̄)
⎩ = H1(a)

⎪∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
+ nνUn−2≥

(
− ∂2ψ

∂y2

)n−1 ∂3ψ

∂y3

− g cosα

U2≥

⎨
βθ(Tw − T≥)q1(x) − β∈φ(Cw − C≥)q2(x)

⎩⎝
(15)

∂ψ̄

∂ ȳ

∂θ̄

∂ x̄
− ∂ψ̄

∂ x̄

∂θ̄

∂ ȳ
− k

ρcρU≥
q̄3(x̄)

∂2θ̄

∂ ȳ2
− Q

ρcρU≥
q̄4(x̄)θ̄

= H2(a)
⎪∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− k

ρcρU≥
q3(x)

∂2θ

∂y2
− Q

ρcρU≥
q4(x)θ

⎝
(16)

∂ψ̄

∂ ȳ

∂θ̄

∂ x̄
− ∂ψ̄

∂ x̄

∂θ̄

∂ ȳ
− D

U≥
q̄5(x̄)

∂2φ̄

∂ ȳ2
− kν

U≥Tr
(Tw − T≥)q̄6(x̄)

(
φ̄

∂2θ̄

∂ ȳ2
+ ∂θ̄

∂ ȳ

∂φ̄

∂ ȳ

)

= H3(a)
⎪∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− D

U≥
q5(x)

∂2φ

∂y2
− kν

U≥Tr
(Tw − T≥)q6(x)

(
φ

∂2θ

∂y2
+ ∂θ

∂y

∂φ

∂y

)⎝
(17)

for some functions H1(a), H2(a), and H3(a), which may be constants.
Substitution from (13) into Eqs. (15)–(17) for the independent variables, the func-

tions and their derivatives yield

(Kψ)2

Kx(Ky)2

(∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
+ nνUn−2≥

( Kψ

(Ky)2

)n−1 Kψ

(Ky)3

(
− ∂2ψ

∂y2

)n−1 ∂3ψ

∂y3

−g cosα

U2≥

⎨
Kq1Kθβθ(Tw − T≥)q1(x) − β∈φ(Cw − C≥)Kq2Kφq2(x)

⎩ + R1(a)

= H1(a)
⎪∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
+ nνUn−2≥

(
− ∂2ψ

∂y2

)n−1 ∂3ψ

∂y3
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− g cosα

U2≥

⎨
βθ(Tw − T≥)q1(x) − β∈φ(Cw − C≥)q2(x)

⎩⎝
(18)

KψKφ

KxKy

(∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
− Kθ Kq3

(Ky)2
k

ρcρU≥
q3(x)

∂2θ

∂y2
− QKθ Kq4

ρcρU≥
q4(x)θ + R2(a)

= H2(a)
⎪∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− k

ρcρU≥
q3(x)

∂2θ

∂y2
− Q

ρcρU≥
q4(x)θ

⎝
(19)

and

KψKφ

KxKy

(∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
− KφKq5

(Ky)2

D

U≥
q5(x)

∂2φ

∂y2

− kν

U≥Tr
(Tw − T≥)

Kq6Kθ Kφ

(Ky)2
q6(x)

(
φ

∂2θ

∂y2
+ ∂θ

∂y

∂φ

∂y

)
+ R3(a)

= H3(a)
⎪ ∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− D

U≥
q5(x)

∂2φ

∂y2
− kν

U≥Tr
(Tw −T≥)q6(x)

(
φ

∂2θ

∂y2
+ ∂θ

∂y

∂φ

∂y

)⎝
(20)

R1(a) = −g cosα

U2≥

⎨
βθ(Tw − T≥)(Kq1Pθ q1 + Kθ Pq1θ + Pθ Pq1)

− β∈φ(Cw − C≥)(Kq2Pφq2 + KφPq1θ + PφPq2)
⎩

(21)

R2(a) = − k

ρcρU≥
Pq3Kθ

(Ky)2

∂2θ

∂y2
− Q

ρcρU≥
(Kq4Pθq4 + Kθ Pq4θ + Pq4Pθ ) (22)

and

R3(a) = − D

U≥
Pq5Kφ

(Ky)2
− kν

U≥Tr
(Tw − T≥)Pq6 Kθ Kφ

(Ky)2

(
φ

∂2θ

∂y2
+ ∂θ

∂y

∂φ

∂y

)
(23)

The invariance of Eqs. (18)–(20) follows. This is satisfied by putting

Pφ = Pθ = Pqi = 0; i = 1, 2, ..., 6 (24)

and
(Kψ)2

Kx(Ky)2
= (Kψ)n

(Ky)2n+1 = Kθ Kq1 = Kq2Kφ = H1(a), (25)

KψKφ

KxKy
= Kq3Kθ

(Ky)2
= Kθ Kq4 = H2(a), (26)

KψKφ

KxKy
= Kq5Kφ

(Ky)2
= Kq6Kθ Kφ

(Ky)2
= H3(a), (27)
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Moreover, the boundary conditions (12) are also invariant, that implies

Kθ Kφ = 1. (28)

Equations (24)–(28) yield

Kψ = (Ky)
2n−1
n−2

(Kx)
1

n−2

, Kq1Kq2 = (Ky)
2

n−2

(Kx)
n

n−2
, Kq4 = (Ky)

n+1
n−2

(Kx)
n−1
n−2

, Kq3 = Kq5 = Kq6 = (Ky)
3n−3
n−2

(Kx)
n−1
n−2

(29)

Finally, we get the one-parameter group G which transforms invariantly, the differ-
ential Eqs. (9)–(11) and the boundary conditions (12). The group G is of the form

G :

⎞⎫⎫⎫⎫⎫⎫⎫⎫⎫⎫⎫⎫⎡
⎫⎫⎫⎫⎫⎫⎫⎫⎫⎫⎫⎫⎣

x̄ = Kx + Px, ȳ = Kyy + Py, Ψ̄ = (Ky)
n+1
n−2

(Kx)
n−1
n−2

ψ + Pψ, θ̄ = θ, φ̄ = φ,

q̄1 = q̄2 = (Ky)
2

n−2

(Kx)
n

n−2
, q̄3 = (Ky)

3n−3
n−2

(Kx)
n−1
n−2

q3, q̄4 = (Ky)
n+1
n−2

(Kx)
n−1
n−2

q4, q̄5 = (Ky)
3n−3
n−2

(Kx)
n−1
n−2

q5,

q̄6 = (Ky)
3n−3
n−2

(Kx)
n−1
n−2

q6

(30)

3.3 The Complete Set of Absolute Invariants

Our aim is to make use of group theoretic method to represent the problem in the
form of an ordinary differential equation (similarity representation) in a single inde-
pendent variable (similarity variable). Then we have to proceed in our analysis to
obtain a complete set of absolute invariants. In addition to the absolute invariant of
the independent variable, there are nine absolute invariants of the dependent vari-
ables:ψ, θ, φ, qi(x), i = 1, 2, ..., 6. If η = η(x, y) is the absolute invariant of the
independent variables, then

gj
(
x, y;ψ, φ, qi(x), i = 1, 2, ..., 6

⎧ = Fj[η(x, y)], j = 1, 2, ..., 9 (31)

which are the nine absolute invariants corresponding to ψ, θ, qi, i = 1, 2, ..., 6. A
function gj

(
x, y;ψ, φ, qi(x), i = 1, 2, ..., 6

⎧
j = 1, 2, ..., 9 is an absolute invariant

of a one parameter group if it satisfies the following first-order linear differential
equation:

11⎤
i=1

(αiSi + βi)
∂g

∂Si
= 0, (32)

where Si stands for x, y;ψ, φ, qi(x), i = 1, 2, ..., 6, and;
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αi = ∂KSi

∂a
(a0), βi = ∂PSi

∂a
(a0), i = 1, 2, ..., 11, (33)

where a0 denotes the value of “a” which yields the identity element of the group.
From group (30) and (33), we get: βi = 0, i = 3, 4, ..., 11.
At first, we seek the absolute invariant of the independent variables. Owing to

(32), η(x, y) is an absolute invariant in condition the following first-order partial
differential equation is satisfied:

(α1x + β1)
∂η

∂x
+ (α2y + β2)

∂η

∂y
= 0. (34)

Case(1): γ1 = β1
α1

�= 0, γ2 = β2
α2

�= 0, and γ = α2
α1

�= 0. Equation (34), has a
solution of the form

η(x, y) = y + γ2

(x + γ1)γ
. (35)

Case(2): α1 = α2 = 0, and β = β2/β1. Equation (34) gives the solution

η(x, y) = y + βx. (36)

Case(3): α2 = β2 = 0. Equation (34), has solution in the form

η(x, y) = y. (37)

Case(4): α1 = β1 = 0. Equation (34), has solution in the form

η(x, y) = x. (38)

Case(5): α1 = β2 = 0. Equation (34) has a solution

η(x, y) = ye
α2
β1

x
(39)

Case(6): α2 = β1 = 0. Equation (34) has a solution

η(x, y) = xe
β2
α1

y
(40)

Similarly, analysis the absolute invariants of the dependent variables:ψ, θ, andφ are:

ψ(x, y) = Γ (x)Ψ (η), θ(x, y) = Θ(η), φ(x, y) = Φ(η). (41)
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3.4 The Reduction to Ordinary Differential Equation

As the general analysis proceeds, the established forms of the dependent and indepen-
dent absolute invariant are used to obtain ordinary differential equation. Generally,
the absolute invariant η(x, y) has the form given in (35).

Case(1): γ1 = β1
α1

�= 0, γ2 = β2
α2

�= 0, and γ = α2
α1

�= 0.

Substituting from (35) and (41) into (9) yields

Γ (x)Γ ⊗(x)Ψ ⊗2
(x + γ1)

2γ − γΓ 2(x)Ψ ⊗2
(x + γ1)

2γ+1 − Γ (x)Γ ⊗(x)Ψ ⊗⊗Ψ
(x + γ1)

2γ + nν(U≥)n−2 Ψ ⊗⊗⊗(−Ψ ⊗⊗)n−1

(x + γ1)
(2n+1)γ

− gβ(Tw − T≥) cosα

(U≥)2
q1(x)Θ − gβ(Cw − C≥) cosα

(U≥)2
q2(x)Φ = 0. (42)

For (42) to be reduced to an expression in a single independent variable η, its
coefficients should be constants or functions of η only. Thus,

2γ + 1 = (2n + 1)γ, (43)

Γ (x) = 1. (44)

From which we get γ = 1
2n−1 . Therefore, the absolute invariant η(x, y) takes the

form
η(x, y) = y + γ2

(x + γ1)
1

2n−1

, (45)

consequently, Eq. (42) reduces to

− Ψ ⊗2

2n − 1
+ nν(U≥)n−2Ψ ⊗⊗⊗(|Ψ ⊗|)n−1 − gβ(Tw − T≥)

(U≥)2
cosα(x + γ1)

2n+1
2n−1 Θ

− gβ(Cw − C≥)

(U≥)2
cosα(x + γ1)

2n+1
2n−1 Φ = 0. (46)

But since the coefficients in Eq. (46) are not functions in only or constants, then case
(1) should be rejected. Case(2): α1 = α2 = 0, and β = β2/β1. Substituting from
(36) and (41) into (9)–(11), we obtain:

naν(U≥)n−2Ψ ⊗⊗⊗(|Ψ ⊗|)n−1 − Gr cosαΘ − Gc cosαΦ = 0, (47)

(2n − 1)Θ ⊗⊗ + PrHeΘ = 0, (48)

Φ ⊗⊗ − τSc(ΦΘ ⊗⊗ + Φ ⊗Θ ⊗) = 0, (49)
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with the following appropriate corresponding conditions

Ψ ⊗ = 0, Θ = 1, and Φ = 1, at η = 0; Ψ ⊗ = 0, Θ = 0, and Φ = 0, as η ⊂ ≥.

(50)

where the non-dimensional parameters introduced in the Eqs. (47)–(49) are defined
as follows:

• thermal Grashof number: Gr = gνβ(Tw−T≥)

b2(U≥)3

• solutal Grashof number: Gc = gνβ(Cw−C≥)

b2(U≥)3

• Prandlt number: Pr = ν2ρcρ

kbU≥
• heat generation parameter: He = U≥Q(2n−1)

bν2ρcρ• Schmidt number: Sc = ν/D
• Thermo—phoretic parameter: τ = − k

Tr
(Tw − T≥)

where a and b are positive constants.
It is clear from Eq. (48), we have different cases for n, namely n ⊕ (0, 0.5), n =

0.5 and n > 0.5.
Case(3): α2 = β2 = 0. Its results are similar to case(2).
Case(4): α1 = β1 = 0. Gives a trivial solution.
Case(5): α1 = β2 = 0. Has no solution.
Case(6): α2 = β1 = 0. Has no solution.

4 Numerical Results

The solution of Eq. (48) under its appropriate boundary conditions takes the form

Θ(η) =

⎞⎫⎫⎫⎡
⎫⎫⎫⎣
cos

(⎦ PrHe

2n − 1
η
⎧
, n > 0.5,

e
−

⎢
PrHe
1−2n η

, n < 0.5.

(51)

where η≥ is a sufficiently large number which makes Θ ⊂ 0 at the appropriate

distance η≥, for the first case of (51), η≥ = π
2

⎢
2n−1
PrHe . Double successive integrals

to Eq. (49) using its boundary

Φ(η) =
( I(η) − I≥

I0 − I≥

)
eScτΘ(η), (52)

where I(η) =
⎥

e−ScτΘ(η)dη, and I0, I≥ are the values of I(η) at η = 0 and η≥,

respectively. After computing Θ(η) and Φ(η) we can calculate Ψ (η) numerically
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Fig. 2 Effect of n on the dimensionless temperature profiles across the boundary layer (Pr =
1, He = 0.2, Sc = 0.22, τ = 1, ν = 1, U≥ = 1, Gr = 0.9, Gc = 1, and α = 30◦)

Fig. 3 Effect of n on the dimensionless concentration profiles across the boundary layer (Pr =
1, He = 0.2, Sc = 0.22, τ = 1, ν = 1, U≥ = 1, Gr = 0.9, Gc = 1, and α = 30◦)

fromEq. (47). The variation of dimensionless temperature profiles for different values
of n; with He = 0.2 and Pr = 1.0 is illustrated in Fig. 2. It is interesting to note that
the value of the minimum temperature decreases with increase in n ⊕ (0, 0.5) and
also the value of the maximum temperature increases with increase in the value of
n > 0.5. It is interesting to note from Fig. 2 and from (48) that the fluid flow will
experience zero temperature for n = 0.5.

The variation of dimensionless concentration profiles for different values of n;
with He = 0.2, Pr = 1.0, Sc = 0.22 and τ = 1 is presented in Fig. 3. It is observed
that boundary shows zero concentration at n = 0.5. The boundary layer thickness
starts to increase again for n > 0.5.

Figures4 and 5 display the effects of Pr on the temperature and concentration
profiles, respectively. Physically speaking, Pr is an important parameter in heat
transfer processes as it characterizes the ratio of thicknesses of the viscous and
thermal boundary layers. Increasing the value of Pr causes the fluid temperature
and its boundary layer thickness to decrease significantly as it is clear Fig. 4. This
decrease in temperature produces a net reduction of the thermal buoyancy effect
in the momentum equation which results in less induced flow along the plate and
consequently, the fluid velocity decreases. In addition, it is clear that the concentration
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Fig. 4 Effect of Pr on the dimensionless temperature profiles across the boundary layer (He =
1, Sc = 0.22, τ = 1, ν = 1, U≥ = 1, Gr = 0.9, Gc = 1, and α = 30◦)

Fig. 5 Effect of Pr on the dimensionless concentration profiles across the boundary layer
(He = 1, Sc = 0.22, τ = 1, ν = 1, U≥ = 1, Gr = 0.9, Gc = 1, and α = 30◦)

Fig. 6 Effect of He on the dimensionless temperature profiles across the boundary layer
(Pr = 0.7, Sc = 1, τ = 1, ν = 1, U≥ = 1, Gr = 0.9, Gc = 1, and α = 30◦)

distribution inside the boundary layer also decreases. These behaviors are illustrated
in Fig. 5.

Figure6 shows the temperature profile for various values of He; with n = 0.3
and 3.0. It is observed that the fluid temperature decreases with increase in He and
the rate at which the temperature approaches zero is fast for high value of He. It is
observed that the fluid temperature tends to minimum for the fluids with n < 0.5 and
experience a maximum for the fluids with n > 0.5.
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Fig. 7 Effect of He on the dimensionless concentration profiles across the boundary layer
(Pr = 0.7, Sc = 1, τ = 1, ν = 1, U≥ = 1, Gr = 0.9, Gc = 1, and α = 30◦)

Fig. 8 Effect of Sc on the dimensionless concentration profiles across the boundary layer (Pr =
1, He = 0.2, τ = 1, ν = 1, U≥ = 1, Gr = 0.9, Gc = 1, and α = 30◦)

Figure7 shows the concentration profile for various values of He; with n = 0.3
and 3.0. It is observed that the fluid concentration approaches its minimum faster
with a high value of He. The concentration profile converges vertically as He ⊂ ≥.

Figure8 illustrates the influence of Sc on the concentration profiles. By analogy
with the Pr, the Sc is an important parameter in mass transfer processes as it charac-
terizes the ratio of thicknesses of the viscous and concentration boundary layers. Its
effect on the species concentration boundary-layer thickness has similarities to the
Pr effect on the thermal boundary-layer thickness, i.e., increases in the values of Sc
cause the species concentration boundary layer thickness to decrease significantly.

5 Conclusion and Comments

Group theoretic approach is a powerful tool for solving the two-dimensional
boundary-layer flow of non-Newtonian power-law fluids and for obtaining the veloc-
ity profiles. Referring to the numerical results and the illustrated figures it is observed
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that: (a) For all values of n, the value of the minimum temperature decreases with
increase in n ⊕ (0, 0.5) and also the value of the maximum temperature increase
with increase in the value of n > 0.5. The boundary layer thickness decreases as
n ⊕ (0, 0.5), thus the fluid flow shows zero concentration at n = 0.5. The boundary
layer thickness starts to increase again for n > 0.5. (b) Increasing the value of Pr
causes the fluid temperature and its boundary layer thickness to decrease significantly
and consequently, the fluid velocity decreases. In addition, the concentration distri-
bution inside the boundary layer also decreases. (c) The fluid temperature decreases
with the increase in He, and the rate at which the temperature reaches zero is fast
with a low value of He. (d) The fluid concentration reaches its maximum faster with
a high value of He. (e) Increasing in Sc forces the species concentration boundary
layer thickness to decrease significantly.
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Realizations of Affine Lie Algebra A(1)
1 at

Negative Levels

Jilan Dong and Naihuan Jing

Abstract A realization of the affine Lie algebra A(1)
1 and the relevant Z -algebra at

negative level−k is given in terms of parafermions. This generalizes the recent work
on realization of the affine Lie algebra at the critical level.

1 Introduction

Since the sixties the theory of affine Lie algebras has been one of the popular
subjects in mathematical physics. Its physical applications and mathematical prop-
erties usually depend on whether one can use the matrix method to give a concrete
realization or representation. This approach has been used in dual resonance mod-
els, infinitesimal Bäcklund transformations in soliton theory etc. The first concrete
realization of the affine Lie algebra ŝl(2) was Lepowsky-Wilson’s vertex operator
representation at level one [18] and was then generalized to arbitrary types by Kac
et al. [15]. Later the homogeneous realization of simply laced affine Lie algebras
at level one was given by Frenkel and Kac [12] and Segal [19]. Fermionic realiza-
tions were also constructed by Frenkel [10] and Kac and Peterson [16], and were
generalized to arbitrary types by Feingold and Frenkel [9].

Representations of the affine Lie algebras at other levels also have attracted a lot
of attention [5–7, 14, 17]. Wakimoto [20] derived a general scheme to realize the
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affine Lie algebra of type A(1)
1 and this was generalized to higher rank by Feigin

and Frenkel [8]. Generally speaking, highest weight representations of the affine Lie
algebras with integral levels are built from the theory of vertex operators in terms
of bosonic or fermionic operators. Recently Adamović [1] used vertex superalge-
bras to study critical modules ŝl2(C). Dunbar et al. [7] also gave a new represen-
tation of at the critical level using some technique similar to semi-infinite wedge
products. This paper is a generalization of their work to arbitrary negative integral
level using the theory of parafermions. Parafermions are introduced in statistical
mechanics and conformal field theory, they are also related to Majorana fermions,
fractional superstring, mirror symmetry, and have close connections with exclusion
statistics, quantum computations, Bose-Einstein condensates etc. [2–4]. In particu-
lar, the parafermions, sometimes regarded as Z -algebras proposed in [22] contribute
to various extensions of the Ising model and 3-state Potts model, all of which are
basically relevant to A(1)

1 . These works show that the Z -algebra at a positive integral

level is identical with that of A(1)
1 -parafermions.

In the monograph [5], Dong and Lepowsky constructed canonical generalized
vertex operator algebras for ĝ (of simply laced types Â, D̂ or Ê) and pointed out
that the corresponding quotient space for the vacuum space of any positive integer
level k standard Ĝ-module is a module of the generalized vertex operator algebra.
Furthermore, as an illustration, they showed in details the construction for A(1)

1 . They
used the vacuum space of L(k, 0) (k ⊕ N) in terms of a natural Heisenberg subalgebra
of A(1)

1 to define a quotient spaces of this vacuum space by the action of an infinite
cyclic group, and then realized the parafermion algebra as the canonically modified
Z -algebra acting on certain quotient spaces.

In [7] the affine Lie algebra ŝl2(C) at the critical level −2 was realized using the
generalized Clifford algebra. This shows that the case of negative level can be treated
by parafermions as well. In this paper we generalize this result and realize the affine
Lie algebra ŝl2 at negative levels by parafermions. Although many results at negative
levels are quite similar to the positive integral levels,we still give a complete treatment
of the realization with the hope that this may be useful to understand Lusztig’s theory
of the relationship betweenquantumgroups and affineLie algebras. For completeness
we include all necessary computation of operator product expansions of parafermions
and also provide the detailed verifications of the Z -algebra relations.

The paper is organized as follows. In section two we first recall the basic
definitions. The later part of section two reviews some basic results of parafermi-
ons based on [7], and briefly explains the physicists’ approach to parafermion fields
with respect to each form of current algebras, operator product expansions and so
on, and also studies in detail the generalized commutation relations and in particular
modifications needed in the paper. In section three, a parafermionic representation of
A(1)
1 at level −k (k ⊕ N) is constructed and corresponding results for the associated

Z -algebra are given.
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2 Basic Definitions

2.1 The Affine Lie Algebra ̂sl2

Let ŝl2(C) be the affine Lie algebra of type A(1)
1 , which is generated by a 1-

dimensional central c, a degree derivation d = 1≥tλt and elements a(m) = a≥tm ⊕
sl2(C)≥C[t, t−1], whereC[t, t−1] is the algebra of Laurent polynomials in the inde-
terminate t . The Lie bracket operation is defined by

[c, ŝl2(C)], [d, a(m)] = ma(m)

[a(m), b(n)] = [a, b](m + n) + T r(ab)mcαm+n,0
(1)

for all m, n ⊕ Z, a, b ⊕ sl2(C). The Chevalley basis of sl2 consists of X, Y, H :

H =
(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)

with brackets
[H, X ] = 2X, [H, Y ] = −2Y, [X, Y ] = H (2)

Besides the presentation of A(1)
1 with the basis {H(p), X (m), Y (n), c | p, m, n ⊕

Z}, satisfying the commutation relations (1), there is also the Kac-Moody definition
by the Chevalley generators

{
hi , e j , fk |i, j, k ⊕ {0, 1}}, subject to the conditions

[hi , e j ] = Ai j e j , [hi , f j ] = −Ai j f j , [ei , f j ] = αi j h j , (3)

where A = (Ai j ) =
(

2 −2
−2 2

)
is the generalized Cartan matrix.

The two equivalent descriptions of A(1)
1 are related under the following

correspondence

e0 ∈ Y (1), f0 ∈ X (−1), h0 = −H(0) + c,
e1 ∈ X (0), f1 ∈ Y (0), h1 = H(0)

Recall that the weight space Vμ = {v ⊕ V | h · v = μ(h)v,⊂h ⊕ ε}, where ε =
(⊗n⊕ZH(n))⊗Cc⊗Cd is the Cartan subalgebra of ŝl2(C). A highest weight module
V (Δ) = ⊗μ≤ΔVμ, or the highest weight representation , is the space generated by a
highest weight vector vΔ of weight Δ such that ei vΔ = 0, hi vΔ = Δ(hi )vΔ. The central
element c acts on V (Δ) as a scalar k, which will be called the level of the module.

The elements of Heisenberg subalgebra h′ = (⊗n →=0H(n))⊗Cc of A(1)
1 obey the

following relations which are special cases of Eq. (1):

[H(m), H(n)] = 2mcαm+n,0 (4)
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Given level −k, any negative integer. Let S(h′−) the space of symmetric poly-
nomials generated by elements in h′− = ⊗n<0H(n). Then there is a canonical
representation of the Heisenberg algebra h′ on S(h′−) via the actions in accordance
with Eq. (1):

c · 1 = k, H(0) · v = 0,
H(m) · v = H(m)v, m < 0
H(m) · v = −2mkλH(m)(v), m > 0

(5)

In fact, this can be verified pretty straightforward, one needs only to observe that
[H(m), H(n)] · v = −2mkαm+n,0v is valid under bracket relations.

We denote by a(z) = ∑
m⊕Z a(m)z−m the power formal series. Here and later,

z, w mean any formal variables. In this form, A(1)
1 is usually called a current algebra.

To write commutation relations in formal series, we need to introduce the formal
α-function α(w

z ) = ∑
m⊕Z(w

z )n , which possesses the fundamental property: for any
f (w, z) ⊕ End(V )[[w, w−1, z, z−1]] such that

limw∞z f (w, z) = f (z, z), f (w, z)α(
w

z
) = f (z, z)α(

w

z
)

exists. More information on delta functions can be found in [11].
The commutation relations of the affine Lie algebra can now be given as follows.

[H(z), X (w)] = 2X (w)α(w
z )

[H(z), Y (w)] = −2X (w)α(w
z )

[X (z), Y (w)] = H(w)α(w
z ) − kwλwα(w

z )

(6)

2.2 Parafermions

We now discuss the parafermion theory [21]. Let δ be the root system of the simple
Lie algebra g and let M (or M mod k ML ) denote the root lattice spanned byδ, where
−k is identified with the level in the corresponding affine Lie algebra ĝ and ML is the
long root sublattice. Let Eω be the root vector of g, and we normalize the Chevalley
basis of g via [Eω, Eθ ] = πωθ Eω+θ if ω + θ ⊕ δ. It is well-known that πωθ ⊕ Z.

General parafermions are defined for elements of M , but we will focus on
parafermionic fields ζω(z), ζθ(w) for roots ω, θ ⊕ δ [13]. For two such parafermi-
ons the radial ordered product is defined as a multivalued function owning to the
mutually semilocal property between them (cf. [21]). Instead of (anti-)commtativity
the key relation is

R(ζω(z)ζθ(w)) = (−1)
ωθ
−k R(ζθ(w)ζω(z)). (7)
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For simplicity we will drop the symbol R. For ω, θ ⊕ δ the operator product
expansion for two parafermions can be formulated as (cf. [2])

ζω(z)ζθ(w)(z −w)−
ωθ
k = N

(
ζω(z)ζθ(w)

)+ πω,θ

z − w
ζω+θ(w)+ αω+θ,0 Iζω(z)ζθ(w)

(z − w)2
(8)

in which N
(
ζω(z)ζθ(w)

)
can be seen as infinitesimal of higher order in z − w,

namely inside O(z − w). Note that the regular part of the expression in parentheses
satisfy

N
(
ζω(z)ζθ(w)

) = N
(
ζθ(w)ζω(z)

)
,

and

πω,θ =
{

πωθ/
∪−k, if ω + θ ⊕ δ

0, otherwise
,

where Iζω(z)ζθ(w) are some constants to be fixed later.
According to parafermion theory, the conformal dimension of ζl(z), l ⊕ δ is

defined by νl = l2
2k + n(l) [13], where n(l) is the minimal number of roots ωi in

δ by which l can be composed, ω = ∑n(l)
i=1 ωi . Note that Eq. (8) can be equivalently

written as

ζω(z)ζθ(w) = (z −w)νω+θ−νω−νθ [αω+θ,0 Iζω(z)ζθ(w) +πω,θζω+θ(w)+· · · ]. (9)

In this case νω = ν−ω = 1 and ν0 = 0, therefore Eq. (9) is simply

ζω(z)ζθ(w)(z − w)−
ωθ
k

= (z − w)n(ω+θ)−2[αω+θ,0 Iζω(z)ζθ(w) + πω,θζω+θ + O(z − w)].

For ζ±ω(z) associated to Lie algebra sl2(C), we find that Iζω(z)ζθ(w) = −kzw
for ω = −θ, and it is 1 otherwise. We define the normal ordered product

: ζω(z)ζθ(w) : (z − w)−
ωθ
k = N

(
ζω(z)ζθ(w)

)
. (10)

We define the contraction function by

ζω(z)ζθ(w)︸ ︷︷ ︸(z − w)−
ωθ
k = ζω(z)ζθ(w)(z − w)−

ωθ
k − : ζω(z)ζθ(w) : (z − w)−

ωθ
k

(11)
Then Eq. (8) can be written by

ζω(z)ζθ(w)(z − w)−
ωθ
k =

{
: ζω(z)ζω(w) : (z − w)− 2

k , if ω = θ

: ζω(z)ζ−ω(w) : (z − w)
2
k + −kzw

(z−w)2
, if ω = −θ

(12)
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Now for the affine Lie algebra ŝl2 we define the Z -algebra operators Aω(z), A↔−ω(z)
for ζω(z), ζ−ω(z). Using Eq. (12), we get the following equations:

Aω(z)Aω(w)︸ ︷︷ ︸(z − w)− 2
k = A↔−ω(z)A↔−ω(w)︸ ︷︷ ︸(z − w)− 2

k = 0,

Aω(z)A↔−ω(w)︸ ︷︷ ︸(z − w)
2
k = −kzw

(z−w)2
,

A↔−ω(w)Aω(z)︸ ︷︷ ︸(w − z)
2
k = −kzw

(w−z)2
.

(13)

The operator Aω (or A↔
ω) acts on the field operator δΔ,Δ̄(w, w̄) with charge (Δ, Δ̄)

(cf. [2, 4, 13, 22]) as follows.

Aω(z)δΔ,Δ̄(w, w̄) =
∞∑

m=∞
(z − w)−m−1+ ωΔ

k Aω,Δ
m δΔ,Δ̄(w, w̄), (14)

then the component operator Aω,Δ
m acts on δΔ,Δ̄ via

Aω,Δ
m δΔ,Δ̄(w, w̄) =

∫
w

dz

2σ i
(z − w)m− ωΔ

2k Aω(z)δΔ,Δ̄(w, w̄).

Weare interested only in parafermionsζω , carrying charge (ω, 0)withδω,0(w, w̄)

[13]:

Aω(z)δω,0(w, w̄) =
∞∑

m=∞
(z − w)−m−1+ 2

k Aω,ω
m δω,0(w, w̄). (15)

2.3 Action of the Group Algebra

The group algebra C(Zω) is the associative algebra generated by enω (n ⊕ Z) under
the multiplication

e0 = 1, emω · enω = e(m+n)ω. (16)

where m, n ⊕ Z. The group algebra C(Zω) acts on itself via multiplication, and we
also introduce the operator h(0) (h ⊕ h) which acts on C(Zω) by

h(0) : C(Zω) ∞ C(Zω)

eω ∗∞ ≤h, ω⊥eω

so we get [h(0), eω] = ≤h, ω⊥eω . Using the operator h(0) we naturally define the
operator zh ⊕ (EndC(Zω)){z}(can be seen as zh(0)) for h ⊕ Zω by
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zh · eω = z≤h,ω⊥eω. (17)

Then we get
[ω(0), zθ ] = 0,

zωeθ = z≤ω,θ⊥eθ zω = eθ zω+≤ω,θ⊥. (18)

3 Construction of the Parafermion Representations
of A(1)

1 and Z-Algebra

3.1 Action of Heisenberg Subalgebra

We define the following exponential operators on the space S(h′−) and their
properties are given in Proposition 3.1.

E±+(z) = exp(∀ ∑
n>0

H(−n)
kn zn)

E±−(z) = exp(± ∑
n>0

H(n)
kn z−n)

Proposition 3.1 On the space S(h′−) we have

E+±(z)E−±(z) = E−±(z)E+±(z) = 1
E++(z)E∀+(z) = E∀+(z)E++(z)
E−+(z)E∀+(z) = E∀+(z)E−+(z)
λz(E±+(z)E±−(z)) = ∀E±−(z)E±+(z)

∑
n →=0

H(n)
k z−n−1

(19)

E+±(z)E+±(w) = E+±(w)E+±(z)
E−±(z)E−±(w) = E−±(w)E−±(z)

(20)

E+±(z)E−±(w) = E−±(w)E+±(z)

E±+(z)E∀−(w) = E∀−(w)E±+(z)(1 − z
w )− 2

k

E±+(z)E±−(w) = E±−(w)E±+(z)(1 − z
w )

2
k

(21)

Proof These identities are proved by the Campbell-Hausdorf-Witt theorem. The
commutativity relations are easy consequence of the fact that H(m) and H(n) com-
mute if m →= −n. For the other identities we compute that

λz(E−+(z)E−−(z)) = λz(exp(− ∑
n →=0

H(n)
kn z−n)) = E−+(z)E−−(z)

∑
n →=0

H(n)
k z−n−1.
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For the last two relations in Eq. (21), we use the identity ex1ex2 = ex2ex1e[x1,x2]
if x1, x2 commute with [x1, x2]:

E++(z)E−−(w) = E−+(w)E++(z)exp([ ∑
m>0

−H(−m)
km zm,− ∑

n>0

H(n)
kn w−n])

= E−+(w)E++(z)exp(− ∑
m,n>0

2mcαm−n,0

k2mn
zmw−n)

= E−+(w)E++(z)(1 − z
w )− 2

k . �

3.2 The Realization

Let V = S(h′−)≥ < δω,0(ϕ, ϕ) > ≥C(Zω), we define the map σ : ŝl2(C) ∞
End(V ){z} as follows:

X (z) ∗−∞ E++(z)E+−(z) ≥ Aω(z)eωz− ω
k

Y (z) ∗−∞ E−+(z)E−−(z) ≥ A↔−ω(z)e−ωz
ω
k

H(z) ∗−∞ H(z) ≥ 1
c ∗−∞ −k
d ∗−∞ deg.

Theorem 3.1 (σ, V ) defines a representation of A(1)
1 .

Proof For convenience, we just check the relations in Eq. (6).

X (z)X (w) ∗∞ E++(z)E+−(z)E++(w)E+−(w) ≥ Aω(z)eωz− ω
k Aω(w)eωw− ω

k

= E++(z)E++(w)E+−(z)E+−(w)(1 − w

z
)−

2
k ≥ Aω(z)Aω(w)e2ωz− ω

k − 2
k w− ω

k

= E++(z)E++(w)E+−(z)E+−(w)≥ : Aω(z)Aω(w) : (z − w)−
2
k e2ω(zw)−

ω
k

+E++(z)E++(w)E+−(z)E+−(w) ≥ Aω(z)Aω(w)︸ ︷︷ ︸(z − w)−
2
k e2ω(zw)−

ω
k

= E++(z)E++(w)E+−(z)E+−(w)≥ : Aω(z)Aω(w) : (z − w)−
2
k e2ω(zw)−

ω
k

Hence,

[X (z), X (w)] = X (z)X (w) − X (w)X (z)

= E++(z)E++(w)E+−(z)E+−(w) ≥
(
: Aω(z)Aω(w) : (z − w)−

2
k

− : Aω(w)Aω(z) : (w − z)−
2
k ) e2ω(zw)−

ω
k

= 0
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By similar method we get [Y (z)Y (w)] = 0. Next notice that

X (z)Y (w) ∗∞ E++(z)E+−(z)E−+(w)E−−(w) ≥ Aω(z)eωz− ω
k A↔−ω(w)e−ωw

ω
k

= E++(z)E−+(w)E+−(z)E−−(w)(1 − w

z
)
2
k ≥ ( : Aω(z)A↔−ω(w) : + Aω(z)A↔−ω(w)︸ ︷︷ ︸ )

eω−ωz− ω
k + 2

k w
ω
k

= E++(z)E−+(w)E+−(z)E−−(w)≥ : Aω(z)A↔−ω(w) : (z − w)
2
k z− ω

k w
ω
k

+E++(z)E−+(w)E+−(z)E−−(w) ≥ −kzw

(z − w)2
z− ω

k w
ω
k

Thus we get the computation as expected

[X (z), Y (w)] = X (z)Y (w) − Y (w)X (z)

= E++(z)E−+(w)E+−(z)E−−(w) ≥ ( : Aω(z)A↔−ω(w) : (z − w)
2
k − : A↔−ω(w)Aω(z)

: (w − z)
2
k
)
z− ω

k w
ω
k

+E++(z)E−+(w)E+−(z)E−−(w) ≥ ( −kzw

(z − w)2
− −kzw

(w − z)2
)
z− ω

k w
ω
k

= −k E++(z)E−+(w)E+−(z)E−−(w)z− ω
k w

ω
k wλwα(

w

z
)

= −kwλw

(
E++(z)E−+(w)E+−(z)E−−(w)z− ω

k w
ω
k α(

w

z
)
)

+kwλw(E++(z)E−+(w)E+−(z)E−−(w))z− ω
k w

ω
k α(

w

z
)

+kwE++(z)E−+(w)E+−(z)E−−(w)λw(z− ω
k w

ω
k )α(

w

z
)

= −kwλwα(
w

z
) + kw

∑
n →=0

H(n)
k wn−1w

ω
k z− ω

k α(w
z ) + ωw

ω
k z− ω

k α(w
z )

= −kwλwα(
w

z
) + ∑

n →=0
H(n)w−nα(w

z ) + H(0)α(w
z )

= H(w)α(
w

z
) − kwλwα(

w

z
).

It is easy to compute that

[H(z), E−+(w)] = ∑
m⊕Z

[H(m), e

∑
n>0

H(−n)
kn wn

]z−m = E−+(w)
∑
m⊕Z
n>0

[H(m),H(−n)]
kn z−mwn

= E−+(w)
∑
m⊕Z
n>0

2mcαm−n,0
kn z−mwn = E−+(w)

∑
n>0

−2z−nwn .
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A similar calculation for [H(z), E++(w)], [H(z), E−−(w)], [H(z), E+−(w)] yields

[H(z), X (w)] = [H(z), E++(w)]E+−(w) ≥ Aω(w)eωw− ω
k

+E++(w)[H(z), E+−(w)] ≥ Aω(w)eωw− ω
k + E++(w)E+−(w) ≥ Aω(w)[H(0), eω]w− ω

k

= 2E++(w)E+−(w)
( ∑

n>0
z−nwn + ∑

n<0
z−nwn + 1

) ≥ Aω(w)eωw− ω
k

= 2E++(w)E+−(w) ≥ Aω(w)eωw− ω
k = 2X (w)α(

w

z
).

It is immediate that [H(z), Y (w)] = −2Y (w)α(w
z ). �

The action of c shows that the representation of A(1)
1 just obtained has the level

−k.

3.3 The Z-Algebra

Furthermore we can get the representation of Z -algebra as in [7]. We remark that
this Z -algebra is fundamentally different from the Z -algebra in [21]. Taken the same
definition of formal power series Z±(z), x(γ1, z), x(γ2, z):

Z+(z) = Z(ω, z) = E−+(z)X (z)E−−(z), Z−(z) = Z(−ω, z) = E++(z)Y (z)E+−(z),

and the generalized commutator brackets

[[x(γ1, z), x(γ2, z)]] = x(γ1, z)x(γ2, z)(1 − w

z
)

(γ1,γ2)

c − x(γ2, z)x(γ1, z)(1 − w

z
)

(γ1,γ2)

c ,

for γ1, γ2 = ±ω, we can check that the lemmas given in paper [7] still hold. We
state them here in Lemma 3.1 and Lemma 3.2.

Lemma 3.1 Let Z-operators Z(z) = Z+(z), Z−(z), we have that

[E±+(z), Z(w)] = 0, [E±−(z), Z(w)] = 0 (22)

Proof For n →= 0, simple calculation yields

[H(n), X (w)] = ∑
m⊕Z

[H(n), X (m)]w−m = ∑
m⊕Z

2X (m + n)w−m = 2X (w)wn

and write x1 = λs(esx1)|s=0, the following equations follow from [x1, ex2 ] =
ex2 [x1, x2]
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[H(n), E−−(w)] = E−−(w)[H(n),
∑

m>0

H(m)
km w−m]

= E−−(w)
∑

m>0

2ncαm+n,0
km w−m = −2E−−(w)wnα−m,n<0 ,

[H(n), E−+(w)] = −2E−+(w)wnαm,n>0 .

Note that

[H(n), Z+(w)] = [H(n), E−+(w)X (w)E−−(w)]
= [H(n), E−+(w)]X (w)E−−(w) + E−+(w)[H(n), X (w)]E−−(w)

+E−+(w)X (w)[H(n), E−−(w)]
= ( − 2wnαm,n>0 + 2wn + 2wnα−m,n<0

)
E−+(w)X (w)E−−(w) = 0.

Similiarly, [H(n), Z−(w)] = [H(−n), Z±(w)] = 0, so

[E+−(z), Z+(w)] = E+−(z)[
∑
n>0

H(n)

kn
z−n, Z+(w)] = 0

The calculation for the other brackets is similar. �

Lemma 3.2 One has

[[Z±(z), Z±(w)]] = 0
[[Z+(z), Z−(w)]] = H(0)α(w

z ) − kwλwα(w
z )

(23)

Proof We calculate the product using Proposition 3.1 together with Lemma 3.1

Z−(z)Z−(w) = Z−(z)E++(w)Y (w)E+−(w)E++(w)Z−(z)Y (w)E+−(w)

= E++(w)E++(z)Y (z)
(
E−+(w)E++(w)

)
E+−(z)Y (w)E+−(w)

= E++(w)E++(z)Y (z)E−+(w)E+−(z)E++(w)(1 − w

z
)
2
k Y (w)E+−(w)

= E++(w)E++(z)Y (z)E−+(w)
(
E+−(z)Z−(w)

)
(1 − w

z
)
2
k

= E++(w)E++(z)Y (z)E−+(w)E++(w)Y (w)E+−(w)E+−(z)(1 − w

z
)
2
k

= E++(w)E++(z)Y (z)Y (w)E+−(w)E+−(z)(1 − w

z
)
2
k

Consequently,

[[Z−(z)Z−(w)]] = Z−(z)Z−(w)(1 − w

z
)−

2
k − Z−(w)Z−(z)(1 − z

w
)−

2
k

= E++(z)E++(w)[Y (z), Y (w)]E+−(z)E+−(w) = 0
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The calculation for [[Z+(z), Z+(w)]] is similar.
Also

Z+(z)Z−(w) = E++(w)E−+(z)X (z)Y (w)E+−(w)E−−(z)(1 − w
z )− 2

k

Z−(w)Z+(z) = E−+(z)E++(w)Y (w)X (z)E−−(z)E+−(w)(1 − z
w )− 2

k

[[Z+(z)Z−(w)]] = Z+(z)Z−(w)(1 − w

z
)
2
k − Z−(w)Z+(z)(1 − z

w
)
2
k

= E++(w)E−+(z)[X (z)Y (w)]E+−(w)E−−(z)

= E−+(z)E++(w)H(w)α(
w

z
)E−−(z)E+−(w) − E−+(z)E++(w)kwλwα(

w

z
)E−−(z)E+−(w)

= H(w)α(
w

z
) − kw

(
λw(E−+(z)E++(w)E−−(z)E+−(w)α(

w

z
))

− λw
(
E−+(z)E++(w)E−−(z)E+−(w)

)
α(

w

z
)

)

= ∑
m⊕Z

H(m)w−mα(w
z ) − kwλwα(w

z ) + kw
∑

m →=0

H(m)
k w−m−1α(w

z )

= H(0)α(
w

z
) − kwλwα(

w

z
) �

For A(1)
1 -module V = S(h′−)≥≤δω,0(ϕ, ϕ)⊥≥C(Zω) in Theorem 3.1, we define

the vacuum space Φ(V ) of V by

Φ(V ) = {v ⊕ V, ε′+ = ⊗n>0H(n) | ε′+ · v = 0}.

Observe that we can decompose V by V = S(h′−) ≥ Φ(V ), then we get Φ(V ) =
δω,0(ϕ, ϕ) ≥ C(Zω) and furthermore.

Theorem 3.2 The map σΦ : Z ∞ gl(Φ(V )) gives a representation of Z-algebra
on the vacuum space Φ(V ) at level −k via the action:

Z+(z) ∗−∞ Aω(z)eωz− ω
k

Z−(z) ∗−∞ A↔−ω(z)e−ωz
ω
k

.

Proof Under the map σ we have

Z+(z)Z+(w) ∗∞ Aω(z)eωz− ω
k Aω(w)eωw− ω

k

= Aω(z)Aω(w)e2ωz− 2
k (zw)−

ω
k

Therefore,

[[Z+(z), Z+(w)]] = Z+(z)Z+(w)(1 − w

z
)−

2
k − Z+(w)Z+(z)(1 − z

w
)−

2
k

∗∞ (
Aω(z)Aω(w)(z − w)−

2
k − Aω(w)Aω(z)(w − z)−

2
k
)
e2ω(zw)−

ω
k
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= ( : Aω(z)Aω(w) : (z − w)−
2
k − : Aω(w)Aω(z) : (w − z)−

2
k
)
e2ω(zw)−

ω
k

+(
Aω(z)Aω(w)︸ ︷︷ ︸(z − w)−

2
k − Aω(w)Aω(z)︸ ︷︷ ︸(w − z)−

2
k
)
e2ω(zw)−

ω
k = 0

Similar calculations produce [[Z−(z), Z−(w) = 0]]. Note that

Z+(z)Z−(w) ∗∞Aω(z)eωz− ω
k A↔−ω(w)e−ωw

ω
k

= Aω(z)A↔−ω(w)z
2
k z− ω

k w
ω
k

Z−(w)Z+(z) ∗∞ A↔−ω(w)Aω(z)w
2
k z− ω

k w
ω
k

Then

[[Z+(z), Z−(w)]] = Z+(z)Z−(w)(1 − w

z
)
2
k − Z−(w)Z+(z)(1 − z

w
)
2
k

∗∞ (
Aω(z)A↔−ω(w)(z − w)

2
k − A↔−ω(w)Aω(z)(w − z)

2
k
)
z− ω

k w
ω
k

= ( : Aω(z)A↔−ω(w) : (z − w)
2
k − : A↔−ω(w)Aω(z) : (w − z)

2
k
)
z− ω

k w
ω
k

+(
Aω(z)A↔−ω︸ ︷︷ ︸(z − w)

2
k − A↔−ω(w)Aω(z)︸ ︷︷ ︸(w − z)

2
k
)
z− ω

k w
ω
k

= ( −kzw

(z − w)2
− −kzw

(w − z)2
)
z− ω

k w
ω
k = −kwλwα(

w

z
)z− ω

k w
ω
k

= −kwλw
(
α(

w

z
)z− ω

k w
ω
k
) + kwα(

w

z
)λw(z

ω
k w− ω

k )

= −kwλwα(
w

z
) + az

ω
k w− ω

k α(
w

z
) = H(0)α(

w

z
) − kwλwα(

w

z
),

from which the theorem follows. �
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Invariance and Symmetries of Cubic
and Ternary Algebras

Richard Kerner

Abstract A class of Z3-graded associative algebras with cubic Z3-invariant
constitutive relations is investigated. The invariant forms on finite algebras of this
type are given in the low dimensional cases with two or three generators. We show
how the Lorentz symmetry represented by the SL(2, C) group emerges naturally
without any notion of Minkowskian metric, just as the invariance group of the Z3-
graded cubic algebra and its constitutive relations. Its representation is found in terms
of Pauli matrices. The relationship of this construction with the operators defining
quark states is also considered.

1 Introduction

In most of the textbooks introducing the Lorentz-Poincaré group the accent is put on
the transformation properties of space and time coordinates, and the invariance of the
Minkowskian metric tensor gμν = diag(+,−,−,−). But neither the components
of gμν , nor the space-time coordinates of an observed event can be given an intrin-
sic physical meaning; they are not related to any conserved or directly observable
quantities.

A more reliable physical content of Lorentz transformations is revealed when
they are applied to the observable and measurable quantities such as electric charges
and currents, or frequencies and wavelengths of electromagnetic waves. The Lorentz
transformations apply directly to the four-current jμ = [ρc, j] and to the four-vector
kμ = [ω/c, k]. Two galilean observers comparing these quantities will arrive at
the transformation property which is in agreement with charge conservation and the
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(relativistic) Doppler effect: in the appropriate units, one has

jμ
⊕ = Λμ⊕

ν jν, kμ⊕ = Λμ⊕
ν kν, (1)

The differential form of the Lorentz force,

dp
dt

= q E + q
v
c

≥ B (2)

combined with the energy conservation of a charged particle under the influence of
electromagnetic field

dE

dt
= q E · v (3)

is also Lorentz-invariant:
dpμ = q

mc
Fμ

ν pνds, (4)

where pμ = [p0, p] is the four-momentum and Fμ
ν is the Maxwell-Faraday ten-

sor. Reliable experimental confirmations of the validity of Lorentz transformations
concern measurable quantities such as charges, currents, energies (frequencies) and
momenta (wave vectors) much more than the less intrinsic quantities which are the
differentials of the space-time variables. In principle, the Lorentz transformations
could have been established by very precise observations of the Doppler effect alone.

It is often said that the vector space to which belong wave four-vectors kμ is dual
to the space-time in which we all live. But from the purely experimental point of
view, the first vector space accessible for observation is the space of conserved wave
vectors kμ, and our space-time is its dual space. It should be also reminded that the
Lorentz transformations first concerned the electromagnetic field and the forces it
imposed on charged point-like masses, according to the formula (2).

Our questioning about the sources of Lorentz-Poincaré symmetry should not stop
at the stage of forces, which are but expressions of effects of countless fundamental
interactions, just like the thermodynamical pressure is in fact an averaged result of
countless atomic collisions. On a classical level, when theory permits, the symbolical
force can be replaced by a more explicit expression in which fields responsible for
the forces do appear, like in the case of the Lorentz force (4).

But the fields acting on a test particle are usually generated by more or less distant
charges and currents, according to the formula giving the retarded four-potential
Aμ(xλ):

Aμ(r, t) = 1

4πc

∫ ∫ ∫
jμ(r⊕, t − |r−r⊕|

c )

| r − r⊕ | d3r⊕. (5)

Then we get the field tensor given by

Fμν = ∂μ Aν − ∂ν Aμ.
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The macroscopic currents are generated by electrons’ collective motion. A single
electron whose wave function is a bi-spinor gives rise to the Dirac current

jμ = ψ†γ μψ, (6)

with

ψ† = ψ̄T γ 5, where γ 5 = γ 0γ 1γ 2γ 3 =
(

I2 0
0 −I2

)
, I2 =

(
1 0
0 1

)
.

In fact, the four-component complex functionψ is composed of two two-component
spinors, ξα and χβ̇ [1],

ψ =
(

ξ

χ

)
,

which are supposed to transform under two non-equivalent representations of the
SL(2, C) group:

ξα⊕ = Sα
α⊕ξα, χβ̇ ⊕ = Sβ̇

β̇ ⊕χβ̇ ⊕ , (7)

The electric charge conservation is equivalent to the annulation of the four-divergence
of jμ:

∂μ jμ =
⎧
∂μψ†γ μ

⎨
ψ + ψ† ⎩

γ μ∂μψ
⎪ = 0, (8)

from which we infer that this condition will be satisfied if we have

∂μψ†γ μ = −mψ† and γ μ∂μψ = mψ, (9)

which is the Dirac equation. In terms of the spinorial components ξ and χ the Dirac
equation can be seen as a pair of two coupled equations which can be written in terms
of Pauli’s σ -matrices:

(
−i�

1

c

∂

∂t
+ mc

)
ξ = i�σ · ∇χ,

(
−i�

1

c

∂

∂t
− mc

)
χ = i�σ · ∇ξ. (10)

The relativistic invariance imposed on this equation is usually presented as follows:
under a Lorentz transformation Λ the 4-current jμ undergoes the following change:

jμ ∈ jμ
⊕ = Λμ⊕

μ jμ. (11)

This means that the matrices γ μ must transform as components of a 4-vector, too.
Parallelly, the components of the bi-spinor ψ must be transformed in a way such as
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to leave the form of the Eq. (9) unchanged: writing symbolically the transformation
of | ψ > as | ψ ⊕ >= S | ψ >, and < ψ ⊕ |=< ψ | S−1, we should have

jμ
⊕ =< ψ ⊕ | γ μ⊕ | ψ ⊕ >=< ψ | S−1γ μ⊕

S | ψ >= Λμ⊕
μ jμ = Λμ⊕

μ < ψ | γ μ | ψ >

(12)
from which we infer the transformation rules for gamma-matrices:

S−1γ μ⊕
S = Λμ⊕

μ γ μ. (13)

The relativistic quantum mechanics combines the electron and positron states in a
singleDirac bi-spinorψ comprising the two aforementioned two-component spinors,
and transforming under a 4 × 4 representation of SL(2, C) group.

The usual way of presenting the joint effect of a Lorentz transformation Λ on the
coordinates and the wave function is as follows:

xμ ∈ xμ⊕ = Λμ⊕
ν xν, ψ ⊕(xμ⊕

) = ψ ⊕(Λμ⊕
ν xν) = S(Λ)ψ(xν). (14)

This formula suggests that the transformation S of the states in the Hilbert space
is imposed by the Lorentz transformation acting on the space-time coordinates, but
in fact, decrypted from transformation properties of classical macro-objects such as
wave vectors or the 4-momentum.

In view of the analysis of the causal chain, it seems more appropriate to write the
same transformations with Λ depending on S:

ψ ⊕(xμ⊕
) = ψ ⊕(Λμ⊕

ν (S)xν) = Sψ(xν) (15)

This form of the same relation suggests that the transition form one quantum state to
another, represented by the unitary transformation S is the primary cause that implies
the transformation of observed quantities such as the electric 4-current, and as a final
consequence, the apparent transformations of time and space intervalsmeasuredwith
physical devices.

Although mathematically the two formulations are equivalent, it seems more
plausible that the Lorentz group resulting from the averaging of the action of the
SL(2, C) in the Hilbert space of states contains less information than the original
double-valued representation, than the other way round.

In what follows, we shall draw physical consequences from this approach.

2 Pauli’s Exclusion Principle and the SL(2, C) Group

Our Universe, such as we know it now, could never exist without fermionic matter.
If bosons were only present, they would all condensate in one common fundamental
state, and only small fluctuations around that state would constitute the history of
the Universe. On the contrary, fermions tend to occupy different states whenever
possible, thus enlarging the overall configuration space.
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The Pauli exclusion principle [2], according to which two electrons cannot be
in the same state characterized by identical quantum numbers, is one of the most
important cornerstones of quantum physics. This principle not only explains the
structure of atoms and therefore the entire content of the periodic table of elements,
but it also guarantees the stability of matter preventing its collapse, as suggested
by Ehrenfest [3], and proved later by Dyson [3, 4]. The relationship between the
exclusion principle and particle’s spin, known under the name of the “spin-and-
statistic theorem”, represents one of the deepest results in quantum field theory [1].

In purely algebraical terms Pauli’s exclusion principle amounts to the anti-
symmetry of wave functions describing two coexisting particle states. The easiest
way to see how the principle works is to apply Dirac’s formalism in which wave
functions of particles in given state are obtained as products between the “bra” and
“ket” vectors [5].

Consider the probability amplitude to find a particle in the state | x >,

Φ(x) =< ψ | x > . (16)

The wave function of a two-particle state of which one is in the state | x > and
another in the state | y > is represented by a superposition

| ψ >=
⎝

Φ(x, y) (| x > ⊂ | y >). (17)

It is clear that if the wave function Φ(x, y) is anti-symmetric, i.e. if it satisfies

Φ(x, y) = −Φ(y, x), (18)

then Φ(x, x) = 0 and such states have vanishing both their wave function and
probability. It is easy to prove using the superposition principle, that this condition
is not only sufficient, but also necessary. Let us suppose that Φ(x, x) vanish. This
should remain valid in any basis provided the new basis | x ⊕ >, | y⊕ > was obtained
from the former one via an unitary transformation. Let us form an arbitrary state
being a linear combination of | x > and | y >,

| z >= α | x > +β | y >, α, β ⊗ C,

and let us form the wave function of a tensor product of such a state with itself:

Φ(z, z) =< ψ | (α | x > +β | y >) ⊂ (α | x > +β | y >), (19)

which develops as follows:

α2 < ψ | (x, x) > +αβ < ψ | (x, y) > +βα < ψ | (y, x) > +β2 < ψ | (y, y) >=
= Φ(x, y) = α2 Φ(x, x) + αβ Φ(x, y) + βα Φ(y, x) + β2 Φ(y, y). (20)
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Now, as Φ(x, x) = 0 and Φ(y, y) = 0, the sum of remaining two terms will vanish
if and only if (18) is satisfied, i.e. if Φ(x, y) is anti-symmetric in its two arguments.

After second quantization, when the states are obtained with creation and anni-
hilation operators acting on the vacuum, the anti-symmetry is encoded in the anti-
commutation relations

ψ(x)ψ(y) + ψ(y)ψ(x) = 0 (21)

where ψ(x) | 0 >=| ψ >.
Now, according to the experiment, electrons having identical energy andmomenta

can still display two different states; in fact, this is the only possibility for two
electrons to occupy otherwise identical states. This is why for a given principal
quantum number n there are only 2n2 possible electron states in the corresponding
electron shell. Therefore, if these states (which are just two opposite directions of
spin) are labeled | 1 > and | 2 >, their tensor product should contain only the
anti-symmetric sector,

| 1 > ⊂ | 2 >= − | 2 > ⊂ | 1 >,

This property can be also expressed by admitting the existence of an anti-symmetric
two-form in the Hilbert space of two-electron states, which can be normalized to 1
as follows:

εαβ = −εβα, α, β = 1, 2; ε12 = −ε21 = 1, ε11 = 0, ε22 = 0.

According to the superposition principle, another basis in the Hilbert space of two-
electron states can be chosen; however, the Pauli principle should hold independently
of such transformation. One should have then, after a linear transformation

| ψα >∈| ψα⊕ >= Sα
α⊕ | ψα >,

the same anti-symmetric 2-form:

εα⊕β ⊕ = Sα
α⊕ Sβ

β ⊕ εαβ (22)

Requiring the invariance of the form εαβ , i.e. postulating that εα⊕β ⊕
has the same

components as before,

ε1⊕2⊕ = −ε2⊕1⊕ = 1, ε1⊕1⊕ = 0, ε2⊕2⊕ = 0

leads to the unique condition on the components of the complex 2 × 2 matrix S,
namely

detS = 1, (23)
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which determines the group SL(2, C) as the invariance group of tensor products of
electron states.

The existence of the positron implies the existence of a different, although similar
sector of Hilbert space of states. The complex conjugate matrices of the SL(2, C)

group yield another representation, which is not equivalent. It acts on the complex
conjugate spinors, whose indeces are labeledwith dots, tomake the difference clearly
visible [1]. We have therefore a skew-symmetric two-form

εα̇β̇ = −εβ̇α̇, α̇, β̇ = 1, 2; ε1̇2̇ = −ε2̇1̇ = 1, ε1̇1̇ = 0, ε2̇2̇ = 0.

3 Ternary Generalization of Pauli’s Principle

The electrons and positrons satisfying Dirac’s equation are considered as elementary
particles not only because their propagation is well described by the solutions of this
equation and because they satisfy other physical predictions like the gyromagnetic
ratio equal to 2, but also because there is no experimental evidence of any internal
structure.

The situation is quite different when protons and neutrons are being considered.
Although at first approximation their behavior can be also described quite success-
fully by the same Dirac equation, only with different mass parameter (and zero
electric charge in the case of the neutron), their physical parameters other than spin
do not display values imposed by the Dirac equation. The magnetic momentum is
different and does not have the required gyromagnetic ratio. Moreover, high energy
experiments known as the deep inelastic scattering show that the gamma-photons
with very high energy penetrate inside the nucleon and are scattered by almost point-
like entities, whose characteristic dimensions must be at least three orders smaller
than that of the proton itself: about 10−16 cm versus 10−13 cm. These conctituents of
nucleons are called quarks, and their characterstic dimensions are close to the size
of the electron. Apparently, the Lorentz symmetry is valid also for quarks; however,
like in the case of the electrons, one may think that it is not imposed by what is
happening in the macroscopic world, but is a result of the action of certain form of
SL(2, C) in the Hilbert space of quantum states of quarks.

In the formalism called “Quantum Chromo-Dynamics” (QCD) quarks are con-
sidered as fermions, endowed with spin 1

2 . Free quarks are inaccessible for direct
observation, only three quarks or anti-quarks can coexist inside a fermionic baryon
(respectively, anti-baryon), and a pair quark-antiquark can form ameson with integer
spin. Besides, they have to belong to different colors, also a three-valued set. There
are two quarks in the first generation, u and d (“up” and “down”), which may be
considered as two states of a more general object, just like proton and neutron are
regarded upon as two isospin component of a doublet called “nucleon”. With this in
mind we see that in the same bound state there is place for two quarks in the same
u-state or d-state, but not three.
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This suggests that a convenient generalization of Pauli’s exclusion principlewould
be the statement that no three quarks in the same state can be present in a nucleon.
Let us require then the vanishing of wave functions corresponding to the tensor
product of three (but not necessarily two) identical states. That is, we require that
Φ(x, x, x) = 0 for any state | x >. As in the former case, it is easy to prove that the
necessary symmetry condition for that to be true in any basis is

Φ(x, y, z) + Φ(y, z, x) + Φ(z, x, y) = 0. (24)

Let us consider an arbitrary superposition of three different states, | x >, | y > and
| z >,

| w >= α | x > +β | y > +γ | z >

and apply the same criterion, Φ(w, w, w) = 0. We get then, after developing the
tensor products,

Φ(w, w, w) = α3Φ(x, x, x) + β3Φ(y, y, y) + γ 3Φ(z, z, z)

+ α2β[Φ(x, x, y) + Φ(x, y, x) + Φ(y, x, x)] + γα2[Φ(x, x, z) + Φ(x, z, x) + Φ(z, x, x)]
+ αβ2[Φ(y, y, x) + Φ(y, x, y) + Φ(x, y, y)] + β2γ [Φ(y, y, z) + Φ(y, z, y) + Φ(z, y, y)]
+ βγ 2[Φ(y, z, z) + Φ(z, z, y) + Φ(z, y, z)] + γ 2α[Φ(z, z, x) + Φ(z, x, z) + Φ(x, z, z)]
+ αβγ [Φ(x, y, z) + Φ(y, z, x) + Φ(z, x, y) + Φ(z, y, x) + Φ(y, x, z) + Φ(x, z, y)] = 0.

(25)

The three diagonal expressions Φ(x, x, x), Φ(y, y, y) and Φ(z, z, z) vanish by
virtue of the original assumption; in what remains, every combination preceded by
an independent powers of three independent numerical coefficients α, β and γ , must
vanish separately.

This can be achieved if the following Z3 symmetry is imposed on the wave
functions of three arguments:

Φ(x, y, z) = j Φ(y, z, x) = j2 Φ(z, x, y), with j = e
2π i
3 (26)

where j = e
2π i
3 is the cubic root of unity, satisfying j3 = 1, j + j2 + 1 = 0

Note that the complex conjugates of functions Ψ (x, y, z) transform under cyclic
permutations of their arguments with j2 = j̄ replacing j in the formula (26):

Φ(x, y, z) = j2 Φ(y, z, x) = j Φ(z, x, y). (27)

In terms of operators acting on vacuum state producing stateswith definite number
of quarks (or antiquarks) this property will be translated into the following cubic
commutation relation generalizing Pauli’s principle in the Z3-graded case [6, 7]:

θ Aθ BθC = j θ BθCθ A = j2 θCθ Aθ B, (28)
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with j = e2iπ/3, the primitive root of 1. We have 1 + j + j2 = 0 and j̄ = j2.
We shall also introduce a similar set of conjugate generators, θ̄ Ȧ, Ȧ, Ḃ, ... =

1, 2, ..., N , satisfying similar condition with j2 replacing j :

θ̄ Ȧθ̄ Ḃ θ̄ Ċ = j2 θ̄ Ḃ θ̄ Ċ θ̄ Ȧ = j θ̄ Ċ θ̄ Ȧθ̄ Ḃ, (29)

A direct consequence of these constitutive relations is the impossibility of forming
products of more than three quark or anti-quark operators. The proof is straightfor-
ward, using the associativity:

θ Aθ BθCθ D = j θ BθCθ Aθ D = j2 θ Bθ Aθ DθC = j3 θ Aθ Dθ BθC = j4 θ Aθ BθCθ D,

and because j4 = j �= 1, the only solution is θ Aθ BθCθ D = 0.
In order to make the constitutive relations for the set of operators θ A and θ̄ Ḃ

complete, we have to impose binary commutation relations between the “quark” and
“anti-quark” generators. The two sets can be united in a common algebra if we decide
which commutation relations should be imposed on the binary products θ Aθ̄ Ḃ and
θ̄ Ḃθ A.

Looking at the cubic commutation relations (28) and (29) we see that the product
of tho θ ’s behave as an element of grade 2; however, we would like to make a clear
distinction between such a product and a conjugate element θ̄ Ḃ . Luckily enough, there
exists such a possibility, namely, to require the following commutation relations:

θ Aθ̄ Ḃ = − j θ̄ Ḃθ A, θ̄ Ḃθ A = − j2 θ Aθ̄ Ḃ, (30)

as proposed in [8].

4 The Covariance Principle Applied to Finite Groups

We shall concentrate our attention on two simplest permutation groups, S2 and S3.
The S2 group contains only two elements, the identity keeping two items unchanged,
and the only non-trivial permutation of two items, (ab) ∈ (ba). This permutation
is cyclic, so the S2 group coincides with its Z2 subgroup.

The simplest representations of the Z2 group are realised via its actions on the
complex numbers, C1. Three different inversions can be introduced, each of them
generating a different representation of Z2 in the complex plane C1:

(i) the sign inversion, z ∈ −z;
(ii) complex conjugation, z ∈ z̄;
(iii) the combination of both, z ∈ −z̄.
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One should not forget about the fourth possibility, the trivial representation
attributing the identity transformation to the two elements of the group, includ-
ing the non-trivial one:

(iv) the identity transformation, z ∈ z;

Let us recall once again the principle of covariance:
Any meaningful quantity described by a set of functions ψ A (xμ), A, B, ... =

1, 2, ..., N , μ, ν, ... = 0, 1, 2, 3 defined on the Minkowskian space-time must be
a representation of the Lorentz group, i.e. it should transform following one of its
representations:

ψ A⊕
(xμ⊕

) = ψ A⊕
(Λμ⊕

ρ xρ) = S A⊕
B (Λμ⊕

ρ ) ψ B (xρ). (31)

which can be written even more concisely,

ψ (x ⊕) = S(Λ)(ψ (x)). (32)

The important assumption here being the representation property of the linear trans-
formations S(Λ):

S(Λ1)S(Λ2) = S(Λ1Λ2). (33)

The same principle can be applied in the discrete case, when continuous variables
are replaced by indeces, and the group of continuous transformations by permuta-
tions.

In the case of the S2 group, instead of a set of functions defined on the space-time,
we consider the mapping of two indices into the complex numbers, i.e. a matrix or a
two-valenced complex-valued tensor. Under the non-trivial permutation π of indices
its value should change according to one of the possible representations of Z2 in the
complex plane. This leads to the following four possibilities:

(i) The trivial representation defines the symmetric tensors:

Sπ(AB) = SB A = SAB,

(ii) The sign inversion defines the anti-symmetric tensors:

Aπ(C D) = ADC = −AC D,

(iii) The complex conjugation defines the hermitian tensors:

Hπ(AB) = HB A = H̄AB,

(iv) (−1)× complex conjugation defines the anti-hermitian tensors.

Tπ(AB) = TB A = −T̄AB,
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Table 1 The multiplication
table for the S3 symmetric
group

1 j j2 − ≥ ∗
1 1 j j2 − ≥ ∗
j j j2 1 ∗ − ≥
j2 j2 1 j ≥ ∗ −
− − ≥ ∗ 1 j j2

≥ ≥ ∗ − j2 1 j
∗ ∗ − ≥ j j2 1

Consider now the symmetric group S3.
The group S3 containing all permutations of three different elements is a special

case among all symmetry groups SN . It is exceptional because it is the first in the
row to be non-abelian, and the last one that possesses a faithful representation in the
complex place C1.

It contains six elements, and can be generatedwith only two elements, correspond-
ing to one cyclic and one odd permutation, e.g. (abc) ∈ (bca), and (abc) ∈ (cba).
All permutations can be represented as different operations on complex numbers as
follows.

Let us denote the primitive third root of unity by j = e2π i/3.
The cyclic abelian subgroup Z3 contains three elements corresponding to the three

cyclic permutations, which can be represented via multiplication by j , j2 and j3 = 1
(the identity).

(
ABC
ABC

)
∈ 1,

(
ABC
BC A

)
∈ j,

(
ABC
C AB

)
∈ j2, (34)

Odd permutations must be represented by idempotents, i.e. by operations whose
square is the identity operation. We can make the following choice:

(
ABC
C B A

)
∈ (z ∈ z̄),

(
ABC
B AC

)
∈ (z ∈ ẑ),

(
ABC
C B A

)
∈ (z ∈ z∗), (35)

Here the bar (z ∈ z̄) denotes the complex conjugation, i.e. the reflection in the
real line, the hat z ∈ ẑ denotes the reflection in the root j2, and the star z ∈ z∗
the reflection in the root j . The six operations close in a non-abelian group with six
elements, and the corresponding multiplication rules is shown in Table1:

As in the Z2 case, one can define the Z3-irreducible three-forms.
There are three possibilities of an action of Z3 being represented bymultiplication

by a complex number: the trivial one (multiplication by 1), and the two other repre-
sentations, the multiplication by j = e2π i/3 or by its complex conjugate,

j2 = j̄ = e4π i/3

T ⊗ T : TABC = TBC A = TC AB, (36)
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(totally symmetric)

S ⊗ S : SABC = j SBC A = j2 SC AB, (37)

( j-skew-symmetric)

S̄ ⊗ S̄ ; S̄ABC = j2 S̄BC A = j S̄C AB , (38)

( j2-skew-symmetric).
The space of all tri-linear forms is the sum of three irreducible subspaces,

Θ3 = T → S → S̄

the corresponding dimensions being, respectively, (N 3 + 2N )/3 for T and
(N 3 − N )/3 for S and for S̄ .

Any three-form W α
ABC maps A ⊂ A ⊂ A into a vector space X of dimension

k, α, β = 1, 2, ...k, so that Xα = W α
ABC θ Aθ BθC can be represented as a linear

combination of forms with specific symmetry properties,

W α
ABC = T α

ABC + Sα
ABC + S̄α

ABC ,

T α
ABC := 1

3
(W α

ABC + W α
BC A + W α

C AB), (39)

Sα
ABC := 1

3
(W α

ABC + j W α
BC A + j2 W α

C AB), (40)

S̄α
ABC := 1

3
(W α

ABC + j2 W α
BC A + j W α

C AB), (41)

As in the Z2 case, the three symmetries above define irreducible 3-forms.

5 General Definition of Invariant Forms

Let us consider multilinear forms defined on the algebraA ⊂ ¯A . Because only cubic
relations are imposed on products in A and in ¯A , and the binary relations on the
products of ordinary and conjugate elements, we shall fix our attention on tri-linear
and bi-linear forms, conceived as mappings ofA ⊂ ¯A into certain linear spaces over
complex numbers.

Let us consider a tri-linear form ρα
ABC . We shall call this form Z3-invariant if we

can write:
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ρα
ABC θ Aθ BθC = 1

3

⎞
ρα

ABC θ Aθ BθC + ρα
BC A θ BθCθ A + ρα

C AB θCθ Aθ B
⎫

=

= 1

3

⎞
ρα

ABC θ Aθ BθC + ρα
BC A ( j2 θ Aθ BθC ) + ρα

C AB j (θ Aθ BθC )

⎫
,

(42)

by virtue of the commutation relations (28).
From this it follows that we should have

ρα
ABC θ Aθ BθC = 1

3

⎞
ρα

ABC + j2 ρα
BC A + j ρα

C AB

⎫
θ Aθ BθC , (43)

from which we get the following properties of the ρ-cubic matrices:

ρα
ABC = j2 ρα

BC A = j ρα
C AB . (44)

Even in this minimal and discrete case, there are covariant and contravariant
indices: the lower and the upper indices display the inverse transformation property.
If a given cyclic permutation is represented by a multiplication by j for the upper
indices, the same permutation performed on the lower indices is represented by
multiplication by the inverse, i.e. j2, so that they compensate each other [9].

Similar reasoning leads to the definition of the conjugate forms ρ̄α̇

Ċ Ḃ Ȧ
satisfying

the relations similar to (44) with j replaced be its conjugate, j2:

ρ̄α̇

Ȧ ḂĊ
= j ρ̄α̇

ḂĊ Ȧ
= j2 ρ̄α̇

Ċ Ȧ Ḃ
(45)

In the simplest case of two generators, the j-skew-invariant forms have only two
independent components:

ρ1
121 = j ρ1

211 = j2 ρ1
112,

ρ2
212 = j ρ2

122 = j2 ρ2
221,

and we can set

ρ1
121 = 1, ρ1

211 = j2, ρ1
112 = j,

ρ2
212 = 1, ρ2

122 = j2, ρ2
221 = j.

The anti-symmetric tensor εAB and its inverse εBC enable us to define the dual
ρ-matrices:

ρ ABC
β = εαβρα

DE F εADεB EεC F . (46)

It is easy to check that the dual cubic matrices ρ ABC
α have exactly the same properties

as the original ones, ρβ
DE F , with indeces 1 and 2 interchanged.
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6 The Symmetry Group of Invariant 3-Forms

The idea of covariance can be applied now to cubic algebraic structures introduced
in the Sect. 2.

The constitutive cubic relations between the generators of the Z3 graded algebra
can be considered as intrinsic if they are conserved after linear transformations with
commuting (pure number) coefficients, i.e. if they are independent of the choice of
the basis.

LetU A⊕
A denote a non-singular N × N matrix, transforming the generators θ A into

another set of generators, θ B⊕ = U B⊕
B θ B .

We are looking for the solution of the covariance condition for the ρ-matrices:

Λα⊕
β ρ

β
ABC = U A⊕

A U B⊕
B U C ⊕

C ρα⊕
A⊕ B⊕C ⊕ . (47)

Now, ρ1
121 = 1, and we have two equations corresponding to the choice of values

of the index α⊕ equal to 1 or 2. For α⊕ = 1⊕ the ρ-matrix on the right-hand side is
ρ1⊕

A⊕ B⊕C ⊕ , which has only three components,

ρ1⊕
1⊕2⊕1⊕ = 1, ρ1⊕

2⊕1⊕1⊕ = j2, ρ1⊕
1⊕1⊕2⊕ = j,

which leads to the following equation:

Λ1⊕
1 = U 1⊕

1 U 2⊕
2 U 1⊕

1 + j2 U 2⊕
1 U 1⊕

2 U 1⊕
1 + j U 1⊕

1 U 1⊕
2 U 2⊕

1 = U 1⊕
1 (U 2⊕

2 U 1⊕
1 − U 2⊕

1 U 1⊕
2 ),

(48)

because j2 + j = −1. For the alternative choice α⊕ = 2⊕ the ρ-matrix on the
right-hand side is ρ2⊕

A⊕ B⊕C ⊕ , whose three non-vanishing components are

ρ2⊕
2⊕1⊕2⊕ = 1, ρ2⊕

1⊕2⊕2⊕ = j2, ρ2⊕
2⊕2⊕1⊕ = j.

The corresponding equation becomes now:

Λ2⊕
1 = U 2⊕

1 U 1⊕
2 U 2⊕

1 + j2 U 1⊕
1 U 2⊕

2 U 2⊕
1 + j U 2⊕

1 U 2⊕
2 U 1⊕

1 = U 2⊕
1 (U 1⊕

2 U 2⊕
1 − U 1⊕

1 U 2⊕
2 ),

(49)

The two remaining equations are obtained in a similar manner. We choose now the
three lower indices on the left-hand side equal to another independent combination,
(212). Then the ρ-matrix on the left hand side must be ρ2 whose component ρ2

212 is
equal to 1. This leads to the following equation when α⊕ = 1⊕:

Λ1⊕
2 = U 1⊕

2 U 2⊕
1 U 1⊕

2 + j2 U 2⊕
2 U 1⊕

1 U 1⊕
2 + j U 1⊕

2 U 1⊕
1 U 2⊕

2 = U 1⊕
2 (U 1⊕

2 U 2⊕
1 − U 1⊕

1 U 2⊕
2 ),

(50)
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and the fourth equation corresponding to α⊕ = 2⊕ is:

Λ2⊕
2 = U 2⊕

2 U 1⊕
1 U 2⊕

2 + j2 U 1⊕
2 U 2⊕

1 U 2⊕
2 + j U 2⊕

2 U 2⊕
1 U 1⊕

2 = U 2⊕
2 (U 1⊕

1 U 2⊕
2 − U 2⊕

1 U 1⊕
2 ).

(51)

Λ2⊕
1 = −U 2⊕

1 [det(U )], (52)

The remaining two equations are obtained in a similar manner, resulting in the
following:

Λ1⊕
2 = −U 1⊕

2 [det (U )], Λ2⊕
2 = U 2⊕

2 [det(U )]. (53)

The determinant of the 2 × 2 complex matrix U A⊕
B appears everywhere on the right-

hand side. Taking the determinant of the matrix Λα⊕
β one gets immediately

det (Λ) = [det (U )]3. (54)

However, the U -matrices on the right-hand side are defined only up to the phase,
which due to the cubic character of the covariance relations and they can take on
three different values: 1, j or j2, i.e. the matrices j U A⊕

B or j2 U A⊕
B satisfy the same

relations as the matrices U A⊕
B defined above. The determinant of U can take on the

values 1, j , or j2 if det(Λ) = 1.
Up to this point, there is no reason yet to impose the unitarity condition. It can be

derived if we require the same behavior for the duals, ρDE F
β . This extra condition

amounts to the invariance of the anti-symmetric tensor εAB , and this is possible only
if the determinant of U -matrices is 1 (or j or j2, because only cubic combinations
of these matrices appear in the tranformation law for ρ-forms.

A similar covariance requirement can be formulated with respect to the set
of 2-forms mapping the quadratic quark-anti-quark combinations into a four-
dimensional linear real space. As we already saw, the symmetry (30) imposed on
these expressions reduces their number to four. Let us define two quadratic forms,
π

μ

AḂ
and its conjugate π̄

μ

Ḃ A

π
μ

AḂ
θ Aθ̄ Ḃ and π̄

μ

Ḃ A
θ̄ Ḃθ A. (55)

The Greek indices μ, ν... take on four values, and we shall label them 0, 1, 2, 3.
The four tensors π

μ

AḂ
and their hermitian conjugates π̄

μ

Ḃ A
define a bi-linear

mapping from the product of quark and anti-quark cubic algebras into a linear four-
dimensional vector space, whose structure is not yet defined.

Let us impose the following invariance condition:

π
μ

AḂ
θ Aθ̄ Ḃ = π̄

μ

Ḃ A
θ̄ Ḃθ A. (56)
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It follows immediately from (30) that

π
μ

AḂ
= − j2 π̄

μ

Ḃ A
. (57)

Such matrices are non-hermitian, and they can be realized by the following substi-
tution:

π
μ

AḂ
= j2 i σ

μ

AḂ
, π̄

μ

Ḃ A
= − j i σ

μ

Ḃ A
(58)

where σ
μ

AḂ
are the unit 2 matrix for μ = 0, and the three hermitian Pauli matrices

for μ = 1, 2, 3.
Again, we want to get the same form of these four matrices in another basis.

Knowing that the lower indices A and Ḃ undergo the transformation with matrices

U A⊕
B and Ū Ȧ⊕

Ḃ
, we demand that there exist some 4 × 4 matrices Λ

μ⊕
ν representing the

transformation of lower indices by the matrices U and Ū :

Λμ⊕
ν πν

AḂ
= U A⊕

A Ū Ḃ⊕
Ḃ

π
μ⊕
A⊕ Ḃ⊕ , (59)

It is clear that we can replace the matrices πν

AḂ
by the corresponding matrices σν

AḂ
,

and this defines the vector (4 × 4) representation of the Lorentz group.

It can be checked that now det (Λ) = [detU ]2
⎡
detŪ

⎣2
.

The group of transformations thus defined is SL(2, C), which is the covering
group of the Lorentz group.

With the invariant “spinorial metric” in two complex dimensions, εAB and ε Ȧ Ḃ

such that ε12 = −ε21 = 1 and ε1̇2̇ = −ε2̇1̇, we can define the contravariant compo-
nents πν AḂ . It is easy to show that the Minkowskian space-time metric, invariant
under the Lorentz transformations, can be defined as

gμν = 1

2

⎞
π

μ

AḂ
πν AḂ

⎫
= diag(+,−,−,−) (60)

Together with the anti-commuting spinors ψα the four real coefficients defining a
Lorentz vector, xμ π

μ

AḂ
, can generate now the supersymmetry via standard definitions

of super-derivations. Let us then choose the matrices Λα⊕
β to be the usual spinor

representation of the SL(2, C) group, while the matrices U A⊕
B will be defined as

follows:

U 1⊕
1 = jΛ1⊕

1 , U 1⊕
2 = − jΛ1⊕

2 , U 2⊕
1 = − jΛ2⊕

1 , U 2⊕
2 = jΛ2⊕

2 , (61)

the determinant of U being equal to j2. Obviously, the same reasoning leads to
the conjugate cubic representation of SL(2, C) if we require the covariance of the
conjugate tensor

ρ̄
β̇

Ḋ Ė Ḟ
= j ρ̄

β̇

Ė Ḟ Ḋ
= j2 ρ̄

β̇

Ḟ Ḋ Ė
,
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by imposing the equation similar to (47)

Λα̇⊕
β̇

ρ̄
β̇

Ȧ ḂĊ
= ρ̄α̇⊕

Ȧ⊕ Ḃ⊕Ċ ⊕Ū
Ȧ⊕
Ȧ

Ū Ḃ⊕
Ḃ

Ū Ċ ⊕
Ċ

. (62)

The matrix Ū is the complex conjugate of the matrix U , with determinant equal to j .
Moreover, the two-component entities obtained as images of cubic combinations

of quarks, ψα = ρα
ABCθ Aθ BθC and ψ̄ β̇ = ρ̄

β̇

Ḋ Ė Ḟ
θ̄ Ḋ θ̄ Ė θ̄ Ḟ should anti-commute,

because their arguments do so, by virtue of (30):

(θ Aθ BθC )(θ̄ Ḋ θ̄ Ė θ̄ Ḟ ) = −(θ̄ Ḋ θ̄ Ė θ̄ Ḟ )(θ Aθ BθC )

We have found the way to derive the covering group of the Lorentz group acting on
spinors via the usual spinorial representation. Spinors are obtained as a homomor-
phic image of tri-linear combinations of three quarks (or anti-quarks). The quarks
transform with matrices U (or Ū for the anti-quarks), but these matrices are not
unitary: their determinants are equal to j2 or j , respectively.

So, quarks cannot be put on the same footing as classical spinors; they transform
under the Z3 × SL(2, C) group. There are strong reasons to believe that their wave
functions in the Schroedinger picture should not obey exactly the same equations as
the electrons; a modified version of Dirac’s equation should be found to explain why
they do not propagate as ordinary solutions do,while their tri-linear combinations can
propagate if extra selection rules (only combinations with three different “colors")
display behavior similar to that of the ordinary spin-one-half particles.

7 A Z3 Generalization of Dirac’s Equation

Lets us first underline the Z2 symmetry of Maxwell and Dirac equations, which
implies the hyperbolic character of both systems, and thereforemakes the propagation
possible. Maxwell’s equations in vacuo can be written as follows:

1

c

∂E
∂t

= ∇ ≥ B, −1

c

∂B
∂t

= ∇ ≥ E. (63)

These equations can be decoupled by applying the time derivation twice, which
in vacuum, where divE = 0 (and divB = 0 which holds always) leads to the
d’Alembert equation satisfied by both components separately:

1

c2
∂2E
∂t2

− ∇2E = 0,
1

c2
∂2B
∂t2

− ∇2B = 0.

Nevertheless, neither of the components of the Maxwell tensor, be it E or B, can
propagate separately alone. It is also remarkable that although each of the fields E
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and B satisfies a second-order propagation equation, due to the coupled system (63)
there exists a quadratic combination satisfying the first-order equation, the Poynting
four-vector:

Pμ =
⎤

P0, P
⎦
, P0 = 1

2

⎧
E2 + B2

⎨
, P = E ≥ B, ∂μ Pμ = 0. (64)

TheDirac equation for the electron displays a similar Z2 symmetry, with two coupled
equations which can be put in the following form:

i�
∂

∂t
ψ+ − mc2ψ+ = i�σ · ∇ψ−,

− i�
∂

∂t
ψ− − mc2ψ− = −i�σ · ∇ψ+, (65)

where ψ+ and ψ− are the positive and negative energy components of the Dirac
equation; this is visible even better in the momentum representation:

⎤
E − mc2

⎦
ψ+ = cσ · pψ−,

⎤
−E − mc2

⎦
ψ− = −cσ · pψ+. (66)

Note that the same effect (negative energy states) can be obtained by changing the
direction of time, and putting the minus sign in front of the time derivative, as sug-
gested by Feynman [10]. Each of the components satisfies the Klein-Gordon equa-
tion, easily obtained by successive application of two operators and diagonalization:

⎞
1

c2
∂2

∂t2
− ∇2 − m2

⎫
ψ± = 0

As in the case of the electromagnetic waves, neither of the components of this com-
plex entity can propagate by itself; only all the components can [11].

As it follows from the experiment, the two types of quarks, u and d, cannot
propagate freely, but can form a freely propagating particle perceived as a fermion,
but only under an extra condition: they must belong to three different species called
colors; short of this they do not form a freely propagating entity. Therefore, quarks
should be described by three fields satisfying a set of coupled linear equations, with
the Z3-symmetry playing a similar role that the Z2-symmetry plays in the case
of Maxwell’s and Dirac’s equations. Instead of the “−” sign multiplying the time
derivative, we should use the cubic root of unity j and its complex conjugate j2

according to the following scheme:

∂

∂t
| ψ >= Ĥ12 | φ >, j

∂

∂t
| φ >= Ĥ23 | χ >, j2

∂

∂t
| χ >= Ĥ31 | ψ >,

(67)
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Wedonot specify yet the number of components in each state vector, nor the character
of the hamiltonian operators on the right-hand side; the three fields | ψ >, | φ > and
| χ > should represent the three colors, none of which can propagate by itself. The
quarks being endowed with mass, we can suppose that one of the main terms in the
hamiltonians is the mass operator m̂; and let us suppose that the remaining parts are
the same in all three hamiltonians. This will lead to the following three equations:

∂

∂t
| ψ > −m̂ | ψ >= Ĥ | φ >,

j
∂

∂t
| φ > −m̂ | φ >= Ĥ | χ >,

j2
∂

∂t
| χ > −m̂ | χ >= Ĥ | ψ >, (68)

Supposing that the mass operator commutes with time derivation, by applying three
times the left-hand side operators, each of the components satisfies the same common
third order equation:

⎞
∂3

∂t3
− m̂3

⎫
| ψ >= Ĥ3 | ψ > . (69)

The anti-quarks should satisfy a similar equation with the negative sign for the
Hamiltonian operator. The fact that there exist two types of quarks in each nucleon
suggests that the state vectors | ψ >, | φ > and | χ > should have two components
each. When combined together, the two postulates lead to the conclusion that we
must have three two-component functions and their three conjugates:

(
ψ1
ψ2

)
,

(
ψ̄1̇
ψ̄2̇

)
,

(
ϕ1
ϕ2

)
,

(
ϕ̄1̇
ϕ̄2̇

)
,

(
χ1
χ2

)
,

(
χ̄1̇
χ̄2̇

)
.

which may represent three colors, two quark states (e.g. “up” and “down”), and two
anti-quark states (with anti-colors, respectively) [12, 13].

Finally, in order to be able to implement the action of the SL(2, C) group via its
2×2matrix representation defined in the previous section,we choose theHamiltonian
Ĥ equal to the operator σ · ∞, the same as in the usual Dirac equation. The action
of the Z3 symmetry is represented by factors j and j2, while the Z2 symmetry
between particles and anti-particles is represented by the “−” sign in front of the time
derivative. An additional Z2-symmetry comes from the presence of two components
in each wave function, so that the final symmetry is Z3 × Z2 × Z2, resulting in
twelve-component wave functions. The differential system that satisfies all these
assumptions is as follows:
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−i�
∂

∂t
ψ+ − mc2ψ+ = −i�cσ · ∞ϕ−,

i�
∂

∂t
ϕ− − jmc2ϕ− = − j i�cσ · ∞χ+

−i�
∂

∂t
χ+ − j2mc2χ+ = − j2i�cσ · ∞ψ−,

i�
∂

∂t
ψ− − mc2ψ− = −i�cσ · ∞ϕ+,

−i�
∂

∂t
ϕ+ − jmc2ϕ+ = − j i�cσ · ∞χ−,

i�
∂

∂t
χ− − j2mc2χ̄ = − j2i�cσ · ∞ψ+, (70)

Here we made a simplifying assumption that the mass operator is just proportional
to the identity matrix, and therefore commutes with the operator σ · ∞.

The functions ψ, ϕ and χ are related to their conjugates via the following third-
order equations:

−i
∂3

∂t3
ψ =

⎞
m3c6

�3
− i(σ · ∞)3

⎫
ψ̄ =

⎞
m3c6

�3
− iσ · ∞

⎫
(Δψ̄),

i
∂3

∂t3
ψ̄ =

⎞
m3c6

�3
− i(σ · ∞)3

⎫
ψ =

⎞
m3c6

�3
− iσ · ∞

⎫
(Δψ), (71)

and the same, of course, for the remaining wave functions ϕ and χ .
This equation can be solved by separation of variables; the time-dependent and

the space-dependent factors have the same structure:

A1 e
ω t + A2 e

j ω t + A3e
j2 ω t , B1 e

k.r + B2 e
j k.r + B3 e

j2 k.r

The nine complex solutions can be displayed in a 3 × 3 matrix as follows:

⎢
⎥

eω t−k·r eω t− jk·r eω t− j2k·r
e jω t−k·r e jω t− jk·r e jω t− j2k·r
e j2ω t−k·r e j2ω t−k·r e j2ω t− j2k·r


 (72)

and their nine independent entries can be represented in a basis of real functions as
⎢
⎥

A11 eω t−k·r A12 eω t+ k·r
2 cosk · ξ A13 eω t+ k·r

2 sink · ξ

A21 e− ω t
2 −k·r cosωτ A22 e− ω t

2 + k·r
2 cos(ωτ − k · ξ) A23 e− ω t

2 + k·r
2 cos(ωτ + k · ξ)

A31 e− ω t
2 −k·r sinωτ A32 e− ω t

2 + k·r
2 sin(ωτ + k · ξ) A33 e− ω t

2 + k·r
2 sin(ωτ − k · ξ)


 (73)
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where τ =
∪
3
2 t and ξ =

∪
3
2 kr. The parameters ω, k and m must satisfy the cubic

dispersion relation:
ω3 = k3x + k3y + k3z − 3 kx kykz + m3 (74)

This relation is invariant under the simultaneous change of sign ofω, k and m, which
suggests the introduction of another set of solutions constructed in the same manner,
but with minus sign in front of ω and k, which we shall call conjugate solutions.

Its solutions can be readily found in the exponential form :

Ψ ↔ ekμxμ = eωt−k·r, with
ω3

c3
= m3 + k3x + k3y + k3z − 3kx kykz . (75)

The functions displayed in the matrix do not represent a wave; however, one can
produce a propagating solution by forming certain cubic combinations, e.g.

eω t−k·r e− ω t
2 + k·r

2 cos(ωτ − k · ξ) e− ω t
2 + k·r

2 sin(ωτ − k · ξ) = 1

2
sin(2ωτ − 2k · ξ).

This model can explain why a single quark cannot propagate, while three quarks can
form a freely propagating state.
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Calculation of Decay Times
for Simple Modules

Olav Gravir Imenes

Abstract How can the physical processes of decay be modeled in a mathematically
sensibleway?One possiblemodel, due to Laudal, see [3, 4, 6], is to start with an alge-
bra A(σ ) of observables, assumed to contain all parameters of the states, represented
by generators of the sub-algebra A, together with the parameters parametrising the
dynamics of the phenomena we are studying. The geometry of the moduli space
of isomorphism classes, Simp(A(σ )), of simple modules, ρ : A(σ ) ⊕ Endk(V ),
will reflect how the system behave. A metric can be assumed to model time, and
the canonical Dirac derivation δ of A(σ ) generalizes the equation of motion. Any
simple module corresponds to a point of a “world curve”. As time goes by, this point
may leave the space Simp(A(σ )). This can be interpreted as a decay process, and the
semi-simple representation, corresponding to the non-simple limit-representation,
is said to be a system that have experienced decay. We shall consider the case of
the harmonic oscillator, and show how to calculate decay and life-times of specific
phenomena.

1 The Space of Simple Modules

Let k be a field of characteristic zero and let A be a finitely generated associative
k-algebra. Consider left modules ρ : A ⊕ Endk(V ) where V is a k-vector space.
Define the space of simple modules,

Simpn(A) := {ρ : A ⊕ Endk(V )|ρ simple, dim V = n}/ ≥ , (1)

where two modules ρ and ρ∈ are identified if they are isomorphic. For n = 1,
A := Simp1(A) is the space of k-points of A. For each n, it is possible to construct
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a finitely generated k-algebra C(n), and a family, ρ̃ : A ⊕ Mn(C(n)), such that
any homomorphism p : C(n) ⊕ k(p), i.e. any k-point of C(n), corresponds to a
module ρ : A ⊕ Endk(V ) = Mn(k) via the diagram,

A

ρ
������������

ρ̃ �� Mn(C(n))

p

��
Mn(k(p))

The existence of such families has been proved by Laudal [6]. Not all points in
Simp1C(n) correspond to simple modules. However, Laudal has proved that if k
is algebraically closed, there exists a Zariski open subspace U (n) ⊂ Simp1(C(n))

corresponding to simple modules, see Laudal [6], Chapter 3, Theorem 3.4.8. The
correspondence between U (n) and simple n-dimensional A-modules is not neces-
sarily one-to-one. A finite number of points in U (n) may correspond to isomorphic
module structures, thus the same point in Simpn(A).

The tangent space of a point ρ ⊗ Simpn(A) is

TSimpn(A),ρ = Ext1A(V, V ) = Derk(A,Endk(V ))/Triv(A,Endk(V )) , (2)

where Triv(A,Endk(V )) denotes the set of trivial or inner derivations, defined by
ξ ⊗ Triv(A,Endk(V )), if there exist a φ ⊗ Endk(V ), such that ξ(a) = [φ, ρ(a)] :=
φρ(a) − ρ(a)φ.

2 Dynamics on the Space of Modules

For every point ρ ⊗ Simpn(A) and every derivation δ ⊗ Derk(A, A), we have
a tangent vector of Simpn(A) at ρ. These tangent vectors provides us with a
1-dimensional distribution, and ingoodcases,with a vector field [δ], onSimp1(C(n)).
We have the following theorem due to Laudal.

Theorem 2.1 For any δ ⊗ Derk(A, A) and every p ⊗ Simp1(C(n)), with local ring

Ĉ(n)mp , there exists a derivation [δ] ⊗ Derk(Ĉ(n)mp , Ĉ(n)mp ), and an element

Q ⊗ End
Ĉ(n)m p

(V ⊗k Ĉ(n)mp ) such that, as operators on V ⊗k Ĉ(n)mp , we must

have
ρ̃(δ(a)) = [δ](ρ̃(a)) + [Q, ρ̃(a)] . (3)

Proof See Laudal [6], Chapter 4, Theorem 4.2.1. �→
The element Q corresponds to the Hamiltonian. Since Simp1(C(n)) is not a fine
moduli space, we needed to restrict to the formal case. However, doing this at every
point p ⊗ Simp1(C(n)), leave us with a vector field [δ] on Simp1(C(n)) given by δ.
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Laudal [4] introduces time as a metric on the moduli space, in this case Simp1(C(n))

or Simpn(A). A deformation or change of state of the system, as defined by a simple
representation, corresponds to a change of representation. Since time, according to
our sensations, is a measure of change, it seems reasonable to let time be the measure
of change, the metric, in this space of representations. An integral curve of [δ] will
be a history of the system, and the arc-length of this curve is a measure of the time
passed.

When we have chosen a point, ρ, corresponding to a module, we are interested
in the evolution of the module along the integral curve, given by [δ], through this
point. The metric g on Simp1(C(n)), or on Simpn(A), gives the arc-length of a given
integral curve, and is therefore the natural measure of change, time.

3 The Notions of Interaction and Decay

In physics, a system can be specified by a LagrangianL , fromwhich anHamiltonian
H acting on aHilbert spaceH is found. The states of the system are vectorsΨ ⊗ H .

If the Hamiltonian H depends upon time, we can view the changing of the Hamil-
tonian H as a deformation in the following way: Let H be a Hilbert space and
let ρt : A := k∞x0, .., x3, dx0, .., dx3∪ ⊕ Endk(H ) be a homomorphism of alge-
bras parametrised by t , i.e. a family of A-modules, with structure maps defined by
ρt (xi ) = qi , ρt (dxi ) = πi (H(t)), where πi (H(t)) is the canonical momentum.
Note that in this setting we have considered πi as a function of the Hamiltonian
H instead of the Lagrangian L . As time pass, the module ρt1 is deformed into the
module ρt2 . A state Ψ (t) ⊗ H describe the particle content of the system as time
passes.

We refer to Laudal [6], Theorem 4.2.2, for a discussion of the possibility to use
the time-dependent Hamiltonian as the propulsor.

To model interactions, physicists split, at some fixed time, the Hamiltonian: H =
H0 + I . The ‘unperturbed’, or ‘free’, system that we understand, is represented by
H0, while I is the interaction term, see for example Huang [1] p. 139. Both H0
and I are time-dependent. The starting configuration of the system is given by the
structure map ρ0, given by H0, and an initial state Ψi . The end configuration is
given by ρ0 and a final state Ψ f . When the interaction part, I , is turned on, say
at t = t1, ρ0 is deformed into ρt1 , which is deformed further as time passes, but
deformed back again to ρ0 when the interaction is turned off. The module itself has
not changed, only the state. The module, (ρ0,H ), determines the particle type, for
example what the physicists call leptons, while the state determine the specifics, for
example may Ψi be an electron and a neutrino. Since the module is unchanged, the
final state Ψ f still describes leptons, but now it may represent a family of different
types of leptons. This happens if the interaction process include a gauge group action
on the Hilbert space. Under the action of a gauge group, usually a Lie algebra, g,
the Hilbert space H may have a natural splitting H = ↔∞

j=1H j . An in-state
Ψi = ∑

l⊗L Ψi (l) ⊗ ↔l⊗LHl , where L is an index set, is interpreted as a collection
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of certain particles, indexed by the elements of L . Now the out-stateΨ f may have the
form Ψ f = ∑

p⊗P Ψ f (p) ⊗ ↔p⊗PHp, representing quite different particles. Thus
Ψi andΨ f may correspond to the same particle type, but to very different collections
of particles.

Physicists talk about decay as a special case of an interaction in the sense that
the particles given by Ψi have decayed into the particles described by Ψ f , see for
example Weinberg [8], Sects. 3.2 and 3.4. The representations parametrised by the
time parameter t are usually simple modules, and therefore both the decayed system
and the original system is in a sense the same.

Decay in Laudal’s model is different; we start with a simple module ρ : A ⊕
Endk(V ), and let a derivation δ ⊗ Derk(A, A) guide the deformation of ρ, by using
Theorem 2.1, into a non-simple module. This will be interpreted as if ρ has experi-
enced decay. Thus a condition for decay in our sense is that [δ] ∗= 0. This is not a
requirement in physics.

In Laudal’s model, each simple module correspond to a ‘time point’ in a moduli
space consisting of n-dimensional simple modules, thus we start with a module, and
end up with time, which is the measure of change on the moduli space. This is in
opposition to the above description, where we start with time as a parameter, and
obtain a certain family of modules. For both cases, an interaction is described by a
deformation.

To explain our sense of decay, we interpret the family ρ̃ as the particle type, for
example what physicists call a lepton. A state ψ̃ ⊗ C(n) ⊗k V specifies certain
parts of the system, for example that we have a lepton which is an electron with spin
up, a neutrino, etc. A point p : C(n) ⊕ k(p) specifies a test particle, or starting
configuration. If the particle type is stable, i.e. if [δ] = 0, then after a time τ , we
will still have a lepton, because ρ0 and ρτ correspond to isomorphic modules, but
we may have an electron with spin down, etc. If the derivation [δ] guide the particle
into another point in Simpn(A), the particle may be unstable, and we no longer
necessarily have a lepton. We may for example have two different particle types, and
this is what we interpret as ‘decay’. See also [2] for a discussion of how to model
electroweak interactions as stable points, i.e. points where [δ] = 0.

4 Harmonic Oscillator

The harmonic oscillator is a system in which the second order rate of change of
displacement from its equilibrium, is proportional to the displacement. We consider
the one-dimensional harmonic oscillator, which is given by the k-algebra of observ-
ables H(σ ) = k∞x, dx∪, the free non-commutative k-algebra on two symbols. This
k-algebra has a natural derivation δ ⊗ Derk(H(σ ), H(σ )), given by the harmonic
oscillator ideal,

δ(x) = dx, δ(dx) = −ω2x . (4)

The above equation is a force law.
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Remark 4.1 Using the phase space construction of Laudal [5], it can be written

H(σ ) := Ph∞(k[x])/(d2x + ω2x), ω ⊗ k . (5)

We will let ω = 1, i.e. δ2(x) = −x . We consider the space of 2-dimensional
representations of the harmonic oscillator.

Theorem 4.1 There exists a C(2) ≥= k[t1, .., t5], and a versal family of2-dimensional
H(σ )-modules given by

ρ̃ : H(σ ) −⊕ M2(C(2))

x ≤−⊕
(
0 1 + t3
t5 t4

)

dx ≤−⊕
(

t1 t2
1 + t3 0

)
. (6)

There exists a Zariski-open subset U (2) of Simp1(C(2)) such that each point in U (2)
corresponds to a simple module.

Proof See Laudal [6], Chapter 3, Example 3.3. �→
The polynomial

f := det(ρ̃([x, y])) = ((1+t3)
2−t2t5)

2+(t1(1+t3)+t2t4)(t4(1+t3)+t1t5) , (7)

is called the Formanek center. The set of zeroes of f , Z( f ), corresponds to non-
simple modules.

Let a general point (t1, ..., t5) ⊗ Simp1(C(2)) provide a preparation or a startcon-
figuration of the system. We use the natural vector field [δ], defined by Eq. (4), to
find how the starting point evolves. The derivation came from the fact that we have
an harmonic oscillator.

Laudal [6], Example 4.4, calculates integral curves for the harmonic oscillator
given by δ2(x) = x , in the moduli space consisting of two-dimensional repre-
sentations of Ph(k[x]).

In this paper we shall calculate integral curves of the vector field [δ] for an har-
monic oscillator given by δ2(x) = −x . For this harmonic oscillator, it is possible
for a system described by a simple module to decay into a system described by a
non-simple module. We want to calculate the amount of time until this happens. We
do this by considering a metric g on Simp2(H(σ )), the time, to find the arc-length of
the integral curve from the starting point until decay. For visualization and physical
purposes we will let k = R.

The “formal flow” of an observable a ⊗ H(σ ) with respect to δ is exp(τδ)(a),
which acts on the completion of H(σ ). In this example we can use the local formal
case of Theorem 2.1 and Eq. (3) to obtain a vector field [δ] on Simp1(C(n)) which
governs the evolution of the system, and whose formal flow, parametrised by τ , is
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ρ̃τ (a) := exp(τ [δ])(ρ̃(a)) = ρ̃(exp(τδ)(a)) . (8)

We expand the right hand side of Eq. (8), and use Eq. (4) with ω = 1, to obtain
expressions for ρ̃τ (x) and ρ̃τ (dx) for the case of the harmonic oscillator. For each
τ , we need to write the structure map ρ̃τ as a versal family of the form of Eq. (6).
During calculations, this is accomplished by finding an U (τ ) such that

ρ̃τ (x) = U (τ )(ρ̃(x) cos τ + ρ̃(dx) sin τ)U−1(τ )

ρ̃τ (dx) = U (τ )(ρ̃(x) sin τ + ρ̃(dx) cos τ)U−1(τ ) . (9)

This is an analytical expression. The first problem is to find where the modules along
the integral curves degenerate, i.e. for which τ ’s are ρ̃τ a non-simple module. To
determine if the module given by Eq. (9) is a non-simple module, we can, in the case
of 2-dimensional representations, solve the equation 0 = det(ρ̃τ ([dx, x])). For the
force-law δ2(x) = −x we find that for the most general points t ⊗ Simp1(C(2)),
the above equation holds if τ = ±π/4. Going forward in time, we have found a
maximum time for decay. Note that the derivation [δ] provide us with a direction as
well as an integral curve. For τ = π/4 we find from Eq. (9) that the eigenvalues of
ρ̃(x) and ρ̃(dx) are the same, namely

λρ̃(x) = λρ̃(dx) =
⊥
2

4
(t1 + t4) ± λ0 , (10)

where λ0 := 1
4

⎧
2t24 − 4t1t4 + 2t21 + 8t5 + 8 + 16t3 + 8t23 + 8t5t2 + 8t2 + 8t3t5 + 8t2t3.

In Fig. 1 we have visualized the evolution, and subsequent decay. Suppose our start-
ing point is (t1, t2, t3, t4, t5) = (0, 2.25,−0.5, 0, 1.5), a point corresponding to a
simple module. The derivation δ, given by Eq. (4), gives four integral curves in the
space Simp1(C(2)), two of which are shown in Fig. 1, corresponding to the same
curve in Simp2(H(σ )). The particle represented by the starting point is said to have
experienced decay when the integral curves reach a point corresponding to a non-
simple module, in the figure represented by the curved surface, the zeros of the
polynomial f of Eq. (7).

This far we have only showed that the derivation [δ] gives integral curves, which,
if we start with a simple module, will lead us to a non-simple module, we have not
yet introduced clocks. Now choose a metric g on Simp2(H(σ )). Integrating along
the integral curve will give us an arc-length, which we interpret as the amount of time
until decay. We express the chosen metric g in local coordinates on Simp2(H(σ ))

using the trace ring of invariants of the module given by Eq. (6),

u1 = tr(dx) = t1
u2 = − det(dx) = t2(1 + t3)
u3 = tr(xdx) = (1 + t3)2 + t2t5
u4 = tr(x) = t4
u5 = − det(x) = t5(1 + t3) .

(11)
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Fig. 1 A subset of Simp1(C(2)) where t1 = t4 = 0. The curved surface is the subset consisting
of non-simple modules. Each point not on this surface correspond to a simple module. The plane
surface is the subset where t5 = 1.5. One of the curves start at the point (0, 2.25,−0.5, 0, 1.5) and
is drawn until it reaches a non-simple module. The other curve, below the curved surface, represents
the same isomorphism classes of modules

Thus we let time be a metric g expressed on Simp1(k[u1, ..., u5]). For a general
starting point (t1, t2, t3, t4, t5) ⊗ Simp1(C(2)), the evolution of the system is given
as the following parametrised curve in Simp1(k[u1, ..., u5]),

u∈
1 = u1 cos τ + u4 sin τ

u∈
2 = − u1u4 sin τ cos τ + u2 cos

2 τ + u3 sin τ cos τ + u5 sin
2 τ

u∈
3 = (u2

1 + u2
4) sin τ cos τ + 2(u5 + u2) sin τ cos τ + u3 (12)

u∈
4 = u1 sin τ + u4 cos τ

u∈
5 = − u1u4 sin τ cos τ + u2 sin

2 τ + u3 sin τ cos τ + u5 cos
2 τ ,

where u1, .., u5 are given by Eq. (11). As defined above, time passed is measured as
the arc-length of this curve.We have a non-simplemodule if the polynomial of Eq. (7)
is zero. By using Eq. (11) this can be written as

f = (u∈
3)

2 − 4u∈
2u∈

5 + u∈
1u∈

3u∈
4 + (u∈

1)
2u∈

5 + (u∈
4)

2u∈
2 = 0 . (13)

If we use Eq. (11) we can find the corresponding points for a point in Simp1(C(2)),
which resulted in the two corresponding integral curves of Fig. 1.

The new local coordinates of Eq. (11) means that the image in Fig. 1 becomes
the image of Fig. 2. The two curves of Fig. 1 correspond to the curve of Fig. 2. The
following theorem show that if k = C, then each point in Simp2(H(σ )) corresponds
to four points in Simp1(C(2)).
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Fig. 2 A visualization of a subset of Simp2(H(σ )) parametrised by the coordinates of Eq. (11)
where u1 = u4 = 0. The curved surface is the subset consisting of non-simple modules. Each point
not on this surface correspond to a simple module. The curve corresponds to the curves in Fig. 1.
The arc-length of the curve is the time until decay

Theorem 4.2 Let k = C and consider the versal family given by Eq. (6). Let
(t1, t2, t3, t4, t5) be a point in Simp1(C(2)) such that t2 ∗= 0, t5 ∗= 0. The follow-
ing four points in Simp1(C(2)) corresponds to isomorphic modules,

(t1, t2, t3, t4, t5)

(
t1,

(1 + t3)
⊥

t2⊥
t5

,
⊥

t2t5 − 1, t4,
(1 + t3)

⊥
t5⊥

t2

)

(t1,−t2,−2 − t3, t4,−t5)

(
t1,− (1 + t3)

⊥
t2⊥

t5
,−⊥

t2t5 − 1, t4,− (1 + t3)
⊥

t5⊥
t2

)
.

(14)

These are the only points corresponding to this isomorphism class of modules.

Proof Let (t ∈1, t ∈2, t ∈3, t ∈4, t ∈5) ⊗ Simp1(C(2)) be a point corresponding to the same
module. The invariants of Eq. (11) gives, if 1 + t ∈3 ∗= 0, that

((1 + t ∈3)2)2 − u3(1 + t ∈3)2 + u2u5 = 0 . (15)

Solving the above equation gives

(1 + t ∈3)2 = (1 + t3)
2 or (1 + t ∈3)2 = t2t5 . (16)

For 1+ t ∈3 = 0, we obtain from Eq. (11) that either 1+ t3 = 0 or t2 = t5 = 0, which
means that Eq. (16) also holds for 1+ t ∈3 = 0. Now using Eqs. (16) and (11) gives the
four points of Eq. (14). We have now shown that there cannot be more than these four
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points. To show that these four points corresponds to isomorphic modules, i.e. that
there exist U such that

Uρ(x)U−1 = ρ∈(x), Uρ(dx)U−1 = ρ∈(dx) , (17)

we compute the following U ’s;

U =
(
1 0
0 −1

)
, U =

⎨
⎩ −t1t5

⊥
t2− t4(1+t3)

⊥
t2

(1+t3)2−t2t5

⊥
t2⊥

t5
−t1(1+t3)

⊥
t5−t2t4

⊥
t5

(1+t3)2−t2t5

⎪
⎝ . (18)

Combining the two U ’s give the transformation to the last point. �→

5 Calculating the Arc-length

We want to calculate the arc-length of the parametrised curves given by Eq. (12)
between the starting point at τ = 0 and the point where decay have occurred. This
may be interpreted as the time until decay.

Let g = ∑
i, j gi j dui du j be a metric on Simp2(H(σ )) and let γ be a path

parametrized by τ , and let the coordinates of γ be given by functions ui (τ ). The
arc length s of γ is then

s =
τ1⎞

τ0

⎫⎡⎡⎣⎤
i, j

gi j (u(τ ))
dui

dτ

du j

dτ
dτ . (19)

The interesting thing is to calculate the arc-length between a starting point τ0, cor-
responding to a simple module (initial point), and a point τ1, corresponding to a
non-simple module, where the system has experienced decay.

To calculate analytically the arc length for curves given by Eq. (12), is a tedious
task, and we have therefore opted to calculate the path length numerically using
MATLAB [7]. In addition we numerically search for semi-simple modules along
the path, as we know that τ = π/4 only provides us with a maximum value. To
show the path lengths visually, we have restricted ourselves to starting points in a
two-dimensional subset of Simp1(C(2)) where t1 = 0, 0 < t2 < 5,−1 < t3 < 4,
t4 = 0, t5 = 1.5. This corresponds to the plane t5 = 1.5 of Fig. 1. If we let the metric
on Simp2(H(σ )), corresponding to the notion of decay, be given by gi j = δi j ,
the time until decay for these starting points are shown in Fig. 3. The slopes of the
graph of Fig. 3 near the Formanek center are due to the numerical calculations. If
done analytically, the non-simple modules would probably have been cut out from
otherwise gently sloped graphs.
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Fig. 3 Time until decay: The vertical axis measures the time it takes for the Dirac derivation to
push a point in the subset t1 = 0, 0 < t2 < 5,−1 < t3 < 4, t4 = 0, t5 = 1.5 into decay

6 Back to the Physics

In physics, we would have a device for producing particles with a given probability
for specific measurements of the observables. The eigenvalues of the observables
would be these measurements. In quantum mechanics, the commutation relation
between position and momentum observables is fixed. However, when we consider
finite dimensional representations, which is the case in this paper, this relation have
to be changed. We therefore obtain an extra degree of freedom.

For the harmonic oscillator given by Eq. (5), consider observables with two dif-
ferent eigenvalues since we use two-dimensional representations. The eigenvalues
of the observables of Eq. (6) are

λx =1

2
t4 ± 1

2

⎧
t24 + 4t5(1 + t3) = 1

2
u4 ± 1

2

⎧
u2
4 + 4u3

λdx =1

2
t1 ± 1

2

⎧
t21 + 4t2(1 + t3) = 1

2
u1 ± 1

2

⎧
u2
1 + 4u3 . (20)

If we have a device producing particles with λx = ±α, λdx = ±β, the possible
starting points are (0, t2, t3, 0, t5) ⊗ Simp1(C(2)) such that

α2 = t5(1 + t3), β2 = t2(1 + t3) , (21)

where t2 ∗= 0, t3 ∗= −1, t5 ∗= 0. We have that certain one-dimensional subsets of
points in Simp1(C(2)) satisfies Eq. (21) and we can assign a probability for each of
the points in this subset to be the starting point. The different points have different
decay times, and therefore we may give probabilities to the decay times, i.e. we
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Fig. 4 Decay time as a function on the subset of Simp1(C(2)) consisting of the t3-axis, except the
point t3 = −1

cannot say that a product of the particle producing device has a determined decay
time.

We may for example consider the subset consisting of the t3-axis in the space
Simp1(C(2)) except for the point t3 = −1. Then the possible start points are para-
metrised by t3 such that we consider

⎦
0, β2/(1 + t3), t3, 0, α2/(1 + t3)

⎢
. In Fig. 4

we plot decay times as a function of t3 for α = 1, β = 1.5. Note that this function is
not defined for t3 = −1. Also note the zero values for t3 = −1 ± ⊥

1.5. However,
the sloping of the graph near these zero values are due to the numerical calculations.

We are now able to talk about an average of decay times. Also note that the extra
degree of freedom in this example was due to the fact that we did not specify the
commutation relation between position and momentum. To choose t3 is in effect
to choose this commutation relation when the possible eigenvalues for position and
momentum are given.
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On the Detection of Permutation Polynomials

Mazen Gharibah

Abstract MultivariatePublic key cryptosystems arewidely spread andever evolving
domain. This study aims to find new techniques to characterize and detect permu-
tation polynomials over finite fields, which enable us to find trapdoor, one way,
functions that are essential to build robust cryptosystems. Let f be a polynomial
over Fq , a finite field of order q, where q = pm , p is a prime number. If f induces a
bijective mapping, one-to-one mapping, of Fq , we call f a permutation polynomial
over Fq . In order to detect these polynomials, we constructed a program implement-
ing multiple algorithms based on Galois field arithmetic. As a result, we have the
number of all possible permutation polynomials in the fields F4, F8 and F16.

1 Introduction

The entire cryptographic schemes and systems are results of a long timemathematical
researches and studies. Every cryptographic algorithm is based upon mathematical
keystones, such as modular arithmetic [1], finite fields [9], and permutation polyno-
mials [8].

Most of today’s public key cryptosystems [5] are based on permutation polyno-
mials, two common examples are RSA [7] and Dickson scheme [11].

Current cryptography algorithms were believed to be unbreakable by cryptanaly-
sis attacks, until Peter Shor presented his algorithm that can factorize an integer N in
polynomial time [13]. Shor’s algorithm relies on what is called Quantum Comput-
ers [2], the new generation of computers based on Richard P. Feynman’s proposal
in 1984. This new era of quantum computers along with their quantum algorithms
raise a big challenge for modern cryptographers.
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Many scientists believe it is time to be prepared for the quantum challenge and it is
time to focus on other classes of cryptography, like post quantum cryptography [2],
which are not vulnerable to Shor’s algorithm or any other quantum-based attacks.

Thus, a successful attempt to improve some of the public key algorithms should
start with one of the most essential building blocks, i.e. Permutation Polynomials
(PP). Over the last few decades, the interest for studying and analyzing these polyno-
mials has been gradually increased considering their applications in key exchanges
schemes, encryption and decryption, for an example see [6].

Unfortunately, a few techniques has been presented to test whether a given polyno-
mial is a permutation polynomial or not and to state how many of these polynomials
are there, most of these techniques are complicated, theoretical and without real
world implementations, for example consider [10] and [15].

In this paper, a new application for determining if a given polynomial is a permu-
tation polynomial and for listing the accurate number of such polynomials in a given
finite field is proposed, along with a detailed analysis about these polynomials, their
definition, their features and their number in the fields F4, F8, and F16. (See Sect. 4).

Due to the excessive mathematical aspects behind this research, some concepts
are briefly reviewed. In Sect. 2, modular arithmetic and finite fields, their definitions
and some of their applications have been re-examined.

In Sect. 3, a general view of polynomials over finite fields applications are shortly
studied, particularly Multivariate Quadratic Polynomials (MQP) in public key cryp-
tography [17].

2 Modular Arithmetic

Modular arithmetic is a symbolic transformation; it can be viewed as a mapping
between the integers domain and the integers modulo p domain, where p is also an
integer.

This mapping makes the arithmetic operations easier, thus saves computational
time. Once the solution in the second domain is obtained, it can be converted back
to the original domain.

Definition 1 Let m ⊕ Z be a non-zero integer. For each a ⊕ Z , there is a unique b,
with a ≥ b mod m and 0 ∈ b < |m|

We can use b as a new representation of a in mod m domain, for example: We
can re-represent 2 by 7 in mod-5: 7 ≥ 2 (mod 5).

Definition 2 a is congruent to b modulo m, if and only if b = a + mk , where
k ⊕ Z . see the proof in [16].

Definition 3 Modulo m maps all integers into the set Zm = {0, 1, 2, ..., m − 1}.
Proof is in [16].
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The set from Definition 3. can be represented using different notations: Zm ,
Z/(m), Z/m Z . But what is Zm? In order to answer this question, some notions
have to be considered.

2.1 Rings and Fields

A ring is a triple (S,+, .) , S is a set. +, . (Addition and multiplication) are binary
operators satisfying the following axioms: f or all a, b, c ⊕ S.

1. Associativity: (a + b) + c = a + (b + c), (a · b) · c = a · (b · c).
2. Distributivity of Multiplication over addition: a · (b + c) = (a · b) + (a · c).
3. Existence of additive and multiplicative identities: 0 + a = a, 1 · a = a.
4. Existence of additive inverse: there exist−a ⊕ S such that a+(−a) = (−a)+a =

0.

When the commutativity condition is satisfied, i.e. a + b = b + a, a · b = b · a, then
the ring is called a commutative ring.

Proposition 1 Zm is a commutative ring. Why? See [3].

2.2 Finite Fields

A field is a commutative ring with at least two elements, satisfying the existence of
multiplication inverse axiom.

There exists an additive inverse in Zm , but a multiplicative inverse for every
element of Zm does not exist, as a result Zm is not a field.

In abstract algebra, a finite field or Galois field (after the French scientist Galois)
is a field that contains finite number of elements.

Theorem 1 For prime m, every element a ⊕ Z will be relatively prime to m. That
implies that there exists a multiplicative inverse for every a ⊕ Z for prime m. for a
proof see [3].

Proposition 2 (from Theorem 1.) The Commutative ring Z/m Z is finite field if and
only if m is a prime.

Definition 4 If p is a prime number, then the integers mod p form a field denoted
Fp = {0, 1, 2, p − 1}, its elements are the congruence classes of integers mod p,
under mod p addition and multiplication.

Proposition 3 If p is any prime and m is a positive integer, we have the finite field
Fpm with pm elements; this is an extension field of the finite field Fp = Z/pZ with
p elements. See [8].



654 M. Gharibah

Theorem 2 (prime field existence): For any prime power pm , a field of order pm

exists. The proof is in [14].

Theorem 3 (prime field uniqueness): for any prime integer p and any integer m,
m > 0 there is a unique field of pm elements denoted Fpm . See [14] for the proof.

2.3 Polynomials in Finite Fields

Let F[X ] denotes the polynomials over Fp in one indeterminate X .

Proposition 4 A polynomial l(X) ⊕ Fp[X ] if and only if all its coefficients are
elements over Fp. Obviously!

Definition 5 We call f (x) an irreducible polynomial over the field Fp , if f (x)

cannot be expressed as a product of two polynomials both in Fp, and both of them
of a degree lower than f (x) and greater than zero. Irreducible polynomials have no
roots over their defined fields.

For example, considering the field F23 or F8 , f (x) = x3 + x + 1 is an irreducible
polynomial over the field F8.

Obviously, in all computer related calculations, we use the field F2m and all the
operations over the field will be in mod f (x). We can represent the elements of the
field F23 using eight distinct polynomial representations:

0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1.

3 Polynomials Over Finite Fields Applications

By generalizing the idea of polynomials in one indeterminate to polynomials with n
variables, multivariate polynomials will be acquired, so the multivariate polynomials
over the finite field will be denoted as Fq [X1, X2, ..., Xn] or simply Fq [X ] where
X = (X1, ..., Xn).

The most efficient and robust post quantum cryptosystems are based onmultivari-
ate polynomials, multivariate quadratic polynomials cryptography, see [2], presents
a good example of this idea. The safety and security of these systems partially rely on
the difficulty of solving polynomial equations with multiple variables, among other
reasons which are beyond the scope of this paper.
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3.1 Multivariate Quadratic Polynomials Cryptography (MQC)

As mentioned earlier, these kinds of polynomials are widely used in post quantum
cryptography applications. For more information on MQC and its applications and
variations see [17] and [2]. All public key schemes based on these polynomials have
the following general form:

We have the polynomial vector P = (p1, p2, ..., pm)

pi =
∑

1∈i∈k∈m

γi, j,k x j xk +
n∑

j=1

βi, j x j + αi

i ∈ i ∈ m and γi, j,k, βi, j , αi ⊕ F

3.1.1 Private Key

The private key is the triple (S, P
⊂
, T ) : S ⊕ A f f −1(Fn), T ⊕ A f f −1(Fm) are

affine transformations.
P

⊂ ⊕ M Q(Fn, Fm) is a polynomial vector.
P

⊂ := (p
⊂
1, p

⊂
2, ..., p

⊂
m), m polynomials each one depends on the input variables

(x
⊂
1, x

⊂
2, ..., x

⊂
n).

3.1.2 Public Key

The public key is the composition:

S ⊗ P
⊂ ⊗ T

The output, y = S(P
⊂
(T (x)))

P
⊂
called the central mapping, the building block for all Multivariate Quadratic

Cryptosystems (MQC), it varies from one application to another, depending on the
used technique.

S(x) = Ms x + υs where Ms ⊕ F (n×n) and υs ⊕ Fn .

T (x) = MT x + υT where MT ⊕ F (m×m) and υT ⊕ Fm .
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4 Permutation Polynomials

The most important kind of polynomials over the field Fq [X ] is the permutation
polynomials (PP). Most of finite field based cryptosystems use these polynomials in
Encryption and Decryption methods.

Very few algorithms exist to test whether a given polynomial is a permutation
polynomial or not.

The general idea of these polynomials is simple. Consider the following set:

(0, 1, 2, 3, 4, 5, 6, 7)

If a function f was applied and the output was, for instance:

(2, 1, 3, 0, 7, 5, 6, 4)

It is simply said, f is a permutation function, because it permutes the input.

4.1 Definition and Properties

Considering the finite field Fq , where q = pm elements; p is a prime.
We call the polynomial L(X) ⊕ Fq [X ] a permutation polynomial, if it induces a

bijective, one-to-one, mapping from Fq to itself.
More specifically, a permutation polynomial L(X) ⊕ Fq [X ], permutes the ele-

ments of Fq , under addition and multiplication. And has the form:

L(X) =
k∑

i=0

ai X pi

Hermite’s Criterion : L(X ) is a permutation polynomial in Fq , if and only if :

1. L(X) has exactly one root in Fq .
2. For each integer t , with 1 ∈ t ∈ q − 2 and t ≥ 0(mod p) the reduction [L(X)]t

mod(xq − x) has a degree less than or equal to q − 2 and greater than zero. [4].

Corollary 1 If L(X) is a permutation polynomial in Fq of degree n ≥ 1, then
n|(q − 1) .

4.2 Algorithm for Detecting Permutation Polynomials

This algorithm aims to decide if a polynomial given as input is a permutation poly-
nomial and to count how many of these polynomials exist in a chosen finite field.
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Suppose two polynomials L and K of the second degree are given, each one of
them has two variables x and y.

L = a1x + b1y + c1xy + d1x2 + e1y2

K = a2x + b2y + c2xy + d2x2 + e2y2

Where: a1, b1, c1, d1, e1, a2, b2, c2, d2, e2 ⊕ Fq and x, y ⊕ Fq [X ][Y ].
A special library for finite fields operations has been used, it is called Galois Field

Arithmetic library, an open source library, for its original specifications and descrip-
tion see [12]. This library has been adapted to serve the purpose of our algorithm,
by developing it, so it can deal with multiple operations at once, using parallel pro-
gramming techniques and it has been modified so it can work with polynomials with
more than one variable instead of polynomials with one indeterminate as it was with
the original library.

The algorithm consists of three main steps. First step: In this step, a two dimen-
sional array will be initiated. It will be called mat, the first dimension of this array is
for handling the values and the variations of the first polynomial, the second dimen-
sion, is for the second polynomial.

Second step: All the possible cases of the two polynomials coefficients will be
visited through a main loop. This main loop includes sub loops for each coefficient
of each polynomial, in every one of these coefficients sub loops, all the values of x
and y will be considered.

The result of each of these nested loops will be stored inside the two dimensional
arraymat, where the first dimension will held the value of the first polynomial L after
substituting its coefficients values taken from the loops and performing the addition
and multiplication with respect to the rules of the finite field Fpm , and the second
dimension is dedicated to the second polynomial K in the same way. the first and
second step are shown in the following algorithm, Algorithm 1.:

Algorithm 1 Initialization procedure
1: procedure init � init proc. starts at the beginning of the algorithm
2: use Modified Finite Field Arithmetic library;
3: define CLASS Polynomial;
4: define CLASS FiniteField;
5: define Polynomial L, K;
6: define FiniteField F;
7: initiate mat [L][K];
8: for a1, b1, c1, d1, e1, a2, b2, c2, d2, e2 = 0 → q − 1 do
9: for x, y = 0 → p − 1 do
10: assign mat [substitute(L)][substitute(K)]; � substitute proc. Apply addition and multiplication

to the input polynomial
11: call checkMatrix (mat[l][k]);
12: end for
13: end for
14: end procedure
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Third Step: The previous array mat will be passed as an input to a procedure
called checkMatrix(). The checkMatrix() procedure, takes one parameter, the two
dimensional array mat, then it tests whether the values stored in mat induces a
permutation polynomial or not, by comparing each element in the array with the rest
of the elements, then the result of this comparison will be stored into a static constant
variable called varTemp. Finally, after visiting all elements in a given array, the value
stored in varTempwill be checked, and a permutation polynomial counter ppCounter
will be increased. Now, the procedure will return to the second step, the main thread.
New values for the coefficients will be taken from the nested loops, thus creating a
new array with brand new values for its elements and again this array will be passed
to the third step, as an input for the checkMatrix() procedure. Step three is illustrated
below in Algorithm 2.:

Algorithm 2 checkMatrix procedure
1: procedure checkMat(mat[l][k])
2: for i = 0 → n − 1 do
3: for j = i + 1 → n do
4: if mat[i][0] = mat[ j][0] AND mat[i][1] = mat[ j][1] then varTemp = 1;
5: end if
6: end for
7: end for
8: if varT emp = 0 then ppCounter ++;
9: end if
10: varTemp ∞ 0;
11: end procedure

This cycle of step two and three will continue until every possible value for every
coefficient along with all the values of x and y are examined.

4.3 The Number of Permutation Polynomials
in the Fields F4, F8, F16

The outputs of the previous program, in Sect. 4.2, after execution are shown in the
following tables.

Table1, shows the number of permutation polynomials over the field F4 from
different degrees of the polynomials L and K .

In Table2, the number of permutation polynomials over the field F8 is presented.
The number of permutation polynomials over the field F16 is displayed in Table3.
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Table 1 The number of permutation polynomials over F4

Degree of L Degree of K Number of PP

1 1 2880
1 2 23040
1 3 368640
2 1 23040
2 2 322560
2 3 5160960
3 1 368640
3 2 5160960
3 3 82575360

Table 2 The number of permutation polynomials over F8

Degree of L Degree of K Number of PP

1 1 3528
1 2 256704
1 3 9727984
2 1 256704
2 2 2288192
2 3 158989824
3 1 9727984
3 2 158989824
3 3 ?a

a(?) means it cannot be solved in polynomial time using a normal hardware.

Table 3 The number of permutation polynomials over F16

Degree of L Degree of K Number of PP

1 1 61200
1 2 4406400
1 3 317260800*a

2 1 4406400
2 2 ?b

2 3 ?
3 1 317260800*
3 2 ?
3 3 ?
a(*) means approximate number.
b(?) means it cannot be solved in polynomial time using a normal hardware.
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Scalar-Tensor and Multiscalar-Tensor
Gravity and Cosmological Models

Piret Kuusk, Laur Järv and Erik Randla

Abstract We consider scalar-tensor and multiscalar-tensor theories of gravity and
their formulations in the Jordan and theEinstein conformal frames.After constructing
a generic multi-scalar tensor action, we derive its full equations of motion as well as
equations for homogeneous isotropic cosmological models in the Jordan frame. We
use methods of dynamical systems in the case of two scalar fields to determine the
fixed point and conditions for its being an attractor.

1 Introduction

For decades mathematical cosmology has been based on Einstein’s theory of general
relativity (GR) where the gravitational interaction is described by the metric tensor
gμλ of a Riemannian spacetime. Present observational data are in good agreement
with general relativistic Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy with homogeneous and isotropic flat (k = 0) 3-space, a cosmological constant
α > 0 and additional cold dark matter (αCDMmodel). However, this model seems
to be somewhat phenomenological and fine-tuned: extremely small observational
value of α, very special initial and/or boundary conditions, etc.

From a mathematical point of view it is enticing to consider other possible cos-
mological models based on theories of gravity appropriately generalizing Einstein’s
GR. Such alternative theories may be constructed by supplying extra fields, modify-
ing the standard Einstein-Hilbert action to include an arbitrary function of curvature
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invariants, adding extra dimensions and branes, etc. (For a comprehensive review
see [1].) The focus of the present paper is scalar-tensor gravity (STG) and its natural
extension to multiple scalar fields (MSTG). The former is a paradigmatic example
of a versatile modification of GR, while variants of the latter have received more
attention only recently and its comprehensive treatment is still lacking.

The action functional of a general STG contains up to four arbitrary functions of
the scalar field, two of which can be fixed using a group of field redefinitions con-
taining two free functional degrees of freedom [2]. The group transforms STG from
one conformal frame and scalar field parametrization to another. A rather natural
physical interpretation of STG is obtained in the so-called Jordan conformal frame,
where the scalar field ε is coupled to the scalar curvature R via the F (ε)R term,
but not directly to the matter fields, whereas the scalar field kinetic term involves an
arbitrary function Z (ε); now F (ε) acts as a variable part of gravitational “con-
stant”. In the so-called Einstein conformal frame the action functional is reminiscent
of the Einstein GR with a minimally coupled scalar field, but the latter is directly
coupled also to the matter fields generating a nonconservation of the matter tensor.
The Einstein frame may be more suitable for finding exact solutions, since the cor-
responding results of GR can be used. For investigations in cosmology the Jordan
frame is often preferred since the matter tensor is conserved there.

STG was generalized to include an arbitrary number of scalar fields by Damour
et al. [3, 4] using the Einstein conformal frame. Besides occasional consideration
[5], a renewed interest in MSTG was ignited a couple of years ago by the claim
that the Standard Model Higgs field can support inflation provided that it is non-
minimally coupled to gravity [6]. In the wake of this idea several inflationary scenar-
ios have been proposed and investigatedwithmultiple non-minimally coupled scalars
[7–18], sometimes also embedded into the framework of supergravity [19, 20]. In
this line of studies the coupling between scalars and curvature was specified by con-
stant parameters (and not a generic function), while the calculations were carried
out in the Einstein frame. Some work has been done also in the Jordan frame, viz.
the calculation of primordial perturbations [21], and an effort to construct one-loop
effective action for a scalar multiplet non-minimally coupled to gravity [22].

The paper is organized as follows. In Sect. 2 we briefly review the basic equations
of a general scalar-tensor gravity with one scalar field in the Jordan frame as well
as in the Einstein frame. In Sect. 3 we generalize the Jordan frame equations to the
case with N scalar fields, non-minimally coupled to curvature via a generic function
of scalar fields. For clarifying the physical interpretation of the theory we choose a
gauge in the target space of scalar fields which specifies one scalar field Δ to act as
a variable part of gravitational “constant” as in STG, leaving the other N − 1 scalar
fields minimally coupled to curvature (but interacting with Δ ). In Sect. 4 we turn to
cosmology and consider models with isotropic and homogeneous flat 3-spaces in the
framework of the multiscalar-tensor gravity. We present the general equations and
also equations with only two scalar fields. In the latter case we find the fixed point
of the corresponding dynamical system and investigate conditions for its being an
attractor. Section5 is a summary and outlook.
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2 A General Scalar-Tensor Theory with One Scalar Field

We begin with a short review of the basic equations of scalar-tensor gravity with one
scalar field.

2.1 Action Functional and Field Equations in the Jordan Frame

A general scalar-tensor theory in the Jordan frame is given by the action functional
[23]

S = 1

2δ2

∫
V4

d4x
√−g

(
F R − Z gμλωμεωλε − 2δ2U

)
+ Sm[gμλ, θm] . (1)

Here δ2 is the non-variable part of the gravitational “constant”, F = F (ε), Z =
Z (ε), U = U (ε) denote arbitrary functions, which determine a distinct STG
if specified, and Sm is the matter contribution to the action as all other fields are
included in θm . Since F (ε) acts as a variable part of the gravitational coupling
“constant” 2δ2/F (ε) we assumeF (ε) > 0 in order to keep gravitation attractive
for non-exotic matter.

The corresponding field equations read

FGμλ ≡F (Rμλ − 1

2
gμλ R)

= − gμλ∇2F + ∇μωλF − 1

2
gμλZ ωπεωπε + Z ωμεωλε

− δ2gμλU + δ2T (θ)
μλ ,

⎧
2FZ + 3

ωF

ωε

ωF

ωε

⎨
∇2εa = − 3

ωF

ωε

ω2F

ωεωε
ωπεωπε − ωF

ωε
Z ωπεωπε

− F
ωZ

ωε
ωπεωπε − 4

ωF

ωε
δ2U

+ 2Fδ2 ωU

ωε
+ ωF

ωε
δ2T (θ) .

Here ∇2 ≡ gμλ∇μ∇λ and ∇μ denotes the covariant derivative with respect to the

metric gμλ . The matter tensor T (θ)
μλ follows from the matter action Sm as usual,

T (θ)
μλ (gμλ, θm) = − 2√−g

ζSm[gνσ , θm]
ζgμλ

, (2)

∇μT (θ)μ
λ = 0 .
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2.2 Action Functional and Field Equations in the Einstein Frame

Let us introduce a conformal transformation of the Jordan frame metric gμλ to the
Einstein frame metric g̃μλ ,

g̃μλ = F (ε)gμλ ,

and complement it with a redefinition of the scalar field [23]

⎧
dϕ

dε

⎨2

= 1

4F 2(ε)

⎩
2Z (ε)F (ε) + 3

dF (ε)

dε

dF (ε)

dε

⎪
.

The latter transformation introduces a natural condition on functionsF (ε),Z (ε)

which ought to be imposed in the Jordan frame formulation

2Z (ε)F (ε) + 3
dF (ε)

dε

dF (ε)

dε
> 0 . (3)

The Einstein frame action functional reads [23]

S = 1

2δ2

∫
V4

d4x
⎝−g̃

⎞
R̃ − 2g̃μλωμϕωλϕ − 2δ2Ũ (ϕ)

⎫
+ Sm[A2(ϕ)g̃μλ, θm] (4)

with R̃ ≡ R(g̃), scalar potential Ũ (ϕ) = F−2(ε)U (ε) and the Einstein frame
coupling function A(ϕ) = F−1/2(ε(ϕ)). The corresponding field equations are

G̃μλ = δ2T̃μλ + 2

⎧
ωμϕωλϕ − 1

2
g̃μλωπϕωπϕ

⎨
− δ2g̃μλŨ (ϕ) ,

∇̃2ϕ =δ2

2

⎡
−γ(ϕ)T̃ (g̃) + dŨ

dϕ

⎣
.

Here we have a redefined coupling function γ(ϕ) ≡ d ln A(ε(ϕ))
dϕ

and the Einstein

frame matter tensor T̃μλ following from the action functional (4) as in Eq. (2) is not
conserved:

∇̃μT̃ μ
λ = γ(ϕ)T̃ ωλϕ .

3 A General Scalar-Tensor Theory with N Scalar Fields

In this section we present the basic equations of scalar-tensor gravity with N scalar
fields.



Scalar-Tensor and Multiscalar-Tensor Gravity and Cosmological Models 665

3.1 Action Functional and Field Equations in the Jordan Frame

We propose the following generalization of the Jordan frame action (1) to the case
with N scalar fields εa , a, b, c, . . . = 1, 2, . . . , N :

S = 1

2δ2

∫
V4

d4x
√−g

(
F R − Zabgμλωμεaωλε

b − 2δ2U
)

+ Sm[gμλ, θm] . (5)

Here the arbitrary functions F = F (ε1, ε2, . . . , εN ), Zab = Zab(ε
1, ε2,

. . . , εN ),U = U (ε1, ε2, . . . , εN ) determine a distinct MSTG if specified. From
the action functional (5) the following field equations can be derived:

FGμλ = −gμλ∇2F + ∇μωλF−1

2
gμλZabωπεaωπεb

+ Zabωμεaωλε
b − δ2gμλU + δ2T (θ)

μλ ,⎧
2FZac + 3

ωF

ωεc

ωF

ωεa

⎨
∇2εa = − 3

ωF

ωεc

ω2F

ωεaωεb
ωπεbωπεa

− ωF

ωεc
Zabωπεaωπεb + F

ωZab

ωεc
ωπεaωπεb

− 2F
ωZac

ωεb
ωπεbωπεa − 4

ωF

ωεc
δ2U

+ 2Fδ2 ωU

ωεc
+ ωF

ωεc
δ2T (θ) .

For a more straightforward physical interpretation of the theory it is reasonable
to define a new set of scalar fields {Φ1, Φ2, . . . , ΦN−1, ΦN ≡ Δ }, setting

Δ = F (ε1, ε2, . . . , εN ) .

Taking into account that

Zabωπεaωπεb

= Zab

⎧
ωεa

ωΦi

ωεb

ωΦ j
ωπΦiωπΦ j + 2

ωεa

ωΦi

ωεb

ωΔ
ωπΦiωπΔ + ωεa

ωΔ

ωεb

ωΔ
ωπΔ ωπΔ

⎨
,

let us denote

Zij =Zab
ωεa

ωΦi

ωεb

ωΦ j
,

ZiN =Zab
ωεa

ωΦi

ωεb

ωΔ
,
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Z NN =Zab
ωεa

ωΔ

ωεb

ωΔ
,

U (Φ1, Φ2, . . . , ΦN−1, Δ ) = U (ε1, ε2, . . . , εN ) ,

where i, j, . . . = 1, 2, . . . , N − 1. The target space of scalar functions εa can be
considered as a N -dimensional Riemannian space withmetric tensorZab andwe can
use suitable coordinate transformations for imposing the following N −1 conditions:

Zi N (Φ1, Φ2, . . . , ΦN−1, Δ ) = 0 .

Let us also denote

ZNN = ψ(Φ1, Φ2, . . . , ΦN−1, Δ )

Δ
.

The action (5) now reads

S = 1

2δ2

∫
V4

d4x
√−g

(
Δ R − Zi jωπΦiωπΦ j − ψ

Δ
ωπΔ ωπΔ − 2δ2U

)
+ Sm[gμλ, θm] .

(6)

Here the scalar field Δ acts as a variable part of gravitational “constant” and the
positivity conditions (3) read 2ψ + 3 > 0, Zi j > 0.

The field equations following from the action (6) are

Δ Rμλ = δ2(Tμλ − 1

2
gμλT ) + 1

2
gμλ∇2Δ

+ ∇μωλΔ + Zi jωμΦiωλΦ
j + ψ

Δ
ωμΔ ωλΔ + δ2gμλU , (7)

(2ψ + 3)∇2Δ =
⎧

Δ
ω Zi j

ωΔ
− Zi j

⎨
ωπΦiωπΦ j − ωψ

ωΔ
ωπΔ ωπΔ − 2

ωψ

ωΦi
ωπΦiωπΔ

− 2δ2
⎧
2U − Δ

ωU

ωΔ
− 1

2
T

⎨
, (8)

Zik∇2Φi =
⎧
1

2

ω Zi j

ωΦk
− ω Zik

ωΦ j

⎨
ωπΦiωπΦ j + 1

2Δ

ωψ

ωΦk
ωπΔ ωπΔ

− ω Zik

ωΔ
ωπΦiωπΔ + δ2 ωU

ωΦk
. (9)

3.2 Action Functional and Field Equations in the Einstein Frame

Using a conformal transformation of the metric, g̃μλ = F (ε1, ε2, . . . , εN )gμλ ,
the Jordan frame action (5) obtains the Einstein frame form
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S = 1

2δ2

∫
V4

d4x
⎝−g̃

(
R̃ − 2Z̃abg̃μλωμεaωλε

b − Ũ
)

+ S̃m[F−1g̃μλ, θm] ,

where

Z̃ab = 1

4F 2

⎧
2FZab + 3

ωF

ωεa

ωF

ωεb

⎨
,

Ũ =F−2U .

Analogously to the Jordan frame case, the target space of scalar fields is a N -
dimensional Riemannian space and in general Z̃ab cannot be diagonalized [24].

The corresponding field equations read

G̃μλ = 2Z̃ab

⎧
ωμεaωλε

b − 1

2
g̃μλ g̃γβωγεaωβεb

⎨
− δ2g̃μλŨ + δ2T̃ (θ)

μλ ,

Z̃ac∇̃2εa = δ2

4F

ωF

ωεc
T̃ (θ) +

⎡
1

2

ωZ̃ab

ωεc
− ωZ̃ac

ωεb

⎣
g̃μλωμεaωλε

b + δ2

2

ωŨ

ωεc
.

This form of the theory coincides with the one proposed by Damour and Esposito-
Farese [3].

4 MSTG Equations for Homogeneous and Isotropic
Cosmological Models

Let us now turn to the simplest cosmological models in the framework of MSTG
theories.

4.1 General Equations

Let us assume the flat (k = 0) Friedmann-Lemaître-Robertson-Walker (FLRW) line
element

ds2 = −dt2 + a(t)2
(

dr2 + r2(dΘ2 + sin2 Θdϕ2)
)

(10)

and take all scalar fields to be independent of spatial coordinates denoting their time
derivatives as ȧ ≡ da/dt . Then we obtain the following cosmological equations
from general Eqs. (7)–(9) assuming a perfect fluid matter tensor with matter density
π(t), pressure p(t) and equation of state p = wπ, w = const.,
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H2 = − H
Δ̇

Δ
+ 1

6
ψ

Δ̇ 2

Δ 2 + 1

6

Zi j

Δ
Φ̇i Φ̇ j + 1

3

δ2(U + π)

Δ
, (11)

2Ḣ + 3H2 = − Δ̈

Δ
− 2H

Δ̇

Δ
− 1

2
ψ

Δ̇ 2

Δ 2 − 1

2

Zi j

Δ
Φ̇i Φ̇ j + δ2(U − wπ)

Δ
, (12)

Δ̈ = − 3H Δ̇ − 1

2ψ + 3

⎧
ωψ

ωΔ
Δ̇ 2 + Zi j Φ̇

i Φ̇ j + 2
ωψ

ωΦi
Φ̇i Δ̇ − Δ

ω Zi j

ωΔ
Φ̇i Φ̇ j

⎨

+ 2δ2

2ψ + 3

⎧
2U − Δ

ωU

ωΔ
− π

2
(3w − 1)

⎨
, (13)

Φ̈k = − 3H Φ̇k + (Z−1)kl

×
⎩⎧

1

2

ω Zi j

ωΦl
− ω Zil

ωΦ j

⎨
Φ̇i Φ̇ j + 1

2Δ

ωψ

ωΦl
Δ̇ 2 − ω Zil

ωΔ
Φ̇i Δ̇ − δ2

ωU

ωΦl

⎪
(14)

together with the matter conservation law

π̇ + 3H (w + 1) π = 0 . (15)

Here H ≡ ȧ/a is the Hubble parameter which can be determined by solving the
Friedmann constraint (11)

H = − Δ̇

2Δ
∓ 1

2
√
3

⎤
(2ψ + 3)

⎧
Δ̇

Δ

⎨2

+ 2
Zi j

Δ
Φ̇i Φ̇ j + 4

δ2(U + π)

Δ
. (16)

Now we can eliminate the Hubble parameter H from Eqs. (13)–(15) and Eq. (12) for
H is derivable from the other equations.

4.2 Cosmology with Two Fields

For the case with only two scalar fields (Δ, Φ) we can write the action (6) as

S = 1

2δ2

∫
V4

d4x
√−g

⎧
Δ R − Z(Δ, Φ)ωπΦωπΦ − ψ(Δ, Φ)

Δ
ωπΔ ωπΔ − 2δ2U (Δ, Φ)

⎨

+ Sm [gμλ, θm ] .

Let us assume the FLRWmetric (10) and the absence of matter or potential domina-
tion (i.e. the energy density of the scalar potential dominates over the energy density
of cosmologicalmatter), inwhich casewe can takeπ = 0. CosmologyEqs. (13)–(14)
now read
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Δ̈ = Δ̇

⎩ −2

2ψ(Δ, Φ) + 3

⎧
Δ̇

2

ωψ

ωΔ
+ Φ̇

ωψ

ωΦ

⎨
− 3H(Δ, Φ, Δ̇ , Φ̇)

⎪

+ Φ̇2

2ψ(Δ, Φ) + 3

⎩
Δ

ω Z

ωΔ
− Z(Δ, Φ)

⎪

+ 2δ2

2ψ(Δ, Φ) + 3

⎩
2U (Δ, Φ) − ωU (Δ, Φ)

ωΔ
Δ

⎪
, (17)

Φ̈ = Φ̇

⎩ −1

Z(Δ, Φ)

⎧
Δ̇

ω Z

ωΔ
+ Φ̇

2

ω Z

ωΦ

⎨
− 3H(Δ, Φ, Δ̇ , Φ̇)

⎪

+ Δ̇ 2

2Δ Z(Δ, Φ)

ωψ

ωΦ
− δ2

Z(Δ, Φ)

ωU (Δ, Φ)

ωΦ
(18)

and the Hubble parameter (16) is

H = − 1

2Δ

⎧
Δ̇ ± 1√

3

⎦
Δ̇ 2(2ψ + 3) + 2Δ Z Φ̇2 + 4δ2Δ U

⎨
. (19)

Let us consider Eqs. (17)–(19) as a 4-dimensional dynamical system {Δ, Δ̇ , Φ, Φ̇}
and determine its fixed points assuming that ψ(Δ, Φ), Z(Δ, Φ), U (Δ, Φ) are finite
and smooth functions. The fixed point (Δ•, Φ•) where Δ̇• = 0, Δ̈• = 0, Φ̇• = 0,
Φ̈• = 0 is determined by conditions

⎩
2U (Δ, Φ) − ωU (Δ, Φ)

ωΔ
Δ

⎪
Δ•,Φ•

= 0 ,

⎩
ωU (Δ, Φ)

ωΦ

⎪
Δ•,Φ•

= 0

and the corresponding second order linearized equations for small deviations (x, x)
from the fixed point (x = Δ − Δ•, x = Φ − Φ•) read

ẍ = ±
⎢
⎥3

⎤
δ2U

3Δ




Δ•,Φ•

ẋ

+
⎩

2δ2

2ψ + 3

⎪
Δ•,Φ•

⎡⎩
ωU

ωΔ
− Δ

ω2U

ωΔ 2

⎪
Δ•,Φ•

x −
⎩
Δ

ω2U

ωΔ ωΦ

⎪
Δ•,Φ•

x

⎣
, (20)

ẍ = ±
⎢
⎥3

⎤
δ2U

3Δ




Δ•,Φ•

ẋ −
⎩
δ2

Z

⎪
Δ•,Φ•

⎡⎩
ω2U

ωΔ ωΦ

⎪
Δ•,Φ•

x +
⎩
ω2U

ωΦ2

⎪
Δ•,Φ•

x

⎣
.

(21)



670 P. Kuusk et al.

Using a shorthand notation,

k1 = ±
⎢
⎥

⎤
3δ2U

Δ




Δ•,Φ•

, k2 =
[

2δ2

(2ψ + 3)

⎡
ωU

ωΔ
− Δ

ω2U

ωΔ 2

⎣]
Δ•,Φ•

, (22)

k3 = −
[

2δ2Δ

(2ψ + 3)

ω2U

ωΔ ωΦ

]
Δ•,Φ•

, k4 = −
[

δ2

Z

ω2U

ωΔ ωΦ

]
Δ•,Φ•

, k5 = −
[

δ2

Z

ω2U

ωΦ2

]
Δ•,Φ•

,

Eqs. (20), (21) are

ẍ = k1ẋ + k2x + k3x, (23)

ẍ = k1 ẋ + k4x + k5x . (24)

The system (23), (24) has analytical solutions described by four eigenvalues

βpq = k1
2

⎢
⎥1 + (−1)q

√√√√1 + 2(k2 + k5)

k21

⎡
1 + (−1)p

⎤
1 − 4(k2k5 − k3k4)

(k2 + k5)2

⎣
 ,

(25)
where p, q = 1, 2. The solutions are given as sums of exponents and expressed
compactly in terms of matrices

x(t) =
2∑

p,q=1

K pqeβpq t ≡ Tr [KQ(t)] ,

x(t) =
2∑

p,q=1

L pqeβpq t ≡ Tr [LQ(t)] ,

where Q pq(t) = eβqpt ,K is a 2×2matrix of integration constants and the coefficients
in L are

L pq = (−1)p
⎝

(k2 − k5)2 + 4k3k4 − k2 − k5
2k3

K pq .

The fixed point (Δ•, Φ•) is attractive if the real parts of all eigenvalues are negative,
which according to further analysis translates into the condition that in Eq. (25)
minus sign in the expression (22) for k1 must be chosen together with the following
conditions:

⎩
2

2ψ + 3

⎧
ωU

ωΔ
− Δ

ω2U

ωΔ 2

⎨
− 1

Z

ω2U

ωΦ2

⎪
Δ•,Φ•

< 0 ,

[
Δ

⎡
ω2U

ωΔ 2

ω2U

ωΦ2 −
⎧

ω2U

ωΔ ωΦ

⎨2
⎣

− ωU

ωΔ

ω2U

ωΦ2

]
Δ•,Φ•

>0 , (26)



Scalar-Tensor and Multiscalar-Tensor Gravity and Cosmological Models 671

where the first term in Eq. (26) includes the determinant of the Hessian of potential
U (Δ, Φ).

An analogous investigation in the case of STG with one scalar field is performed
by Faraoni et al. [25] and in our earlier paper [26].

5 Summary and Outlook

We proposed a general multiscalar-tensor theory (MSTG) in the Jordan frame and
gave equations for spatially flat homogeneous and isotropic cosmological models in
the case of two scalar fields. If arbitrary functions of scalar fields which specify a
distinct MSTG are smooth and finite, the standard theory of dynamical systems is
applicable for determining its fixed points and their types.

In a realistic cosmological model we must take into account the observational
fact that locally, in the Solar System, spacetime is rather well described by Einstein’s
general relativity. So we are especially interested in STG and MSTG models for
which GR is an attractor. Unfortunately STG equations coincide with those of GR
at the (constant) value of Δ = Δτ where the coupling function ψ(Δ ) diverges:
ψ(Δτ) → ∞. We have investigated this case for STG in our earlier papers [26–30].
For MSTG we will consider it in more detail in our subsequent research work.
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The Other Half of Quantum Geometry:
A First Glimpse

Pedro Aguilar, Yuri Bonder, Chryssomalis Chryssomalakos
and Daniel Sudarsky

Abstract We point out that a proper treatment of quantum gravity ought to take
into account the quantum nature of the probes used to unravel spacetime geometry.
As a first step in this direction, we use extended classical probes in the study of
the geometry of a classical manifold. We comment on a limitation of the standard
Dixon-Beiglböck center-of-mass prescription, adopt in its place that of the centroid,
appropriately generalized to curved spacetimes, and calculate explicitly the effective
sectional curvature of de Sitter spacetime using a two-point-particle probe.

1 Introduction

Quantum geometry is born when a quantum “manifold” is probed by a quantum
observer. Most approaches to the subject focus on the first half of this pair, a preju-
dice that the present work attempts to counterbalance. Specifically, we consider the
case of a classical manifold being explored via quantum probes, and contemplate
on the nature of the resulting effective geometry. The fully quantum behavior of the
probes is conceptually divided in a delocalization contribution, plus an interference
term, and only the former is retained in a first approximation. Thus, we end up using

P. Aguilar (B) · C. Chryssomalakos · D. Sudarsky
Institute of Nuclear Sciences, National Autonomous University of Mexico,
PO Box 70-543, 04510 Mexico City, Mexico
e-mail: pedro.aguilar@nucleares.unam.mx

C. Chryssomalakos
e-mail: chryss@nucleares.unam.mx

D. Sudarsky
e-mail: sudarsky@nucleares.unam.mx

Y. Bonder
Physics Department, Indiana University,
Bloomington, IN 47405, USA
e-mail: ybonder@indiana.edu

A. Makhlouf et al. (eds.), Algebra, Geometry and Mathematical Physics, 673
Springer Proceedings in Mathematics & Statistics 85, DOI: 10.1007/978-3-642-55361-5_41,
© Springer-Verlag Berlin Heidelberg 2014



674 P. Aguilar et al.

extended classical probes, freely propagating in a classical manifold (spacetime). For
our program to work, an effective position is to be assigned to the probe via a suitable
center-of-mass type definition. The standard Dixon-Beiglböck [2, 6] prescription is
shown to fail an essential associativity condition, which a curved spacetime gener-
alization of the lesser known centroid naturally satisfies. We opt for the latter, and
promote the probe centroid worldlines to effective geodesics, the relative acceler-
ation of which defines an effective sectional curvature. Our approach is illustrated
by studying a two-point-particle probe freely propagating in de Sitter spacetime.
Related studies have appeared before in [3–5, 8].

2 Effective Position in a Curved Spacetime

In special relativity, a satisfactory center-of-mass (COM) definition [9] for a collec-
tion O of free point particles involves a cartesian frame comoving with O , i.e., one
where the spatial part of O’s total four momentum vanishes. In that frame, the COM
position Ξ is given by the sum of the particles’ positions ξi , each position being
weighted by the relative energy of the particle, Ξ = (

∑
i Eiξi )/(

∑
i Ei ). The COM

position in any other cartesian frame is obtained by an appropriate Lorentz transfor-
mation. In the general relativistic case, the standard generalization of the above con-
struction was given by Dixon and Beiglböck. Although the resulting center-of-mass
worldline is observer independent, the construction fails to satisfy an associativity-
like requirement.

2.1 A Problem with the Dixon-Beiglböck Prescription

Given a general spacetimeM and an extended objectO in it, consisting of N free test
point particles, the Dixon-Beiglböck centre-of-mass (DBCOM) of O is calculated
in a series of steps:

1. Pick a point x in M and a timelike tangent vector v there. Construct the space-
like hypersurface Σx,v as the union of all geodesics that pass through x and are
orthogonal to v.

2. Identify the points zi where the i-th particle’s worldline crosses Σx,v. Determine
the (assumed unique) tangent vectors ξi at x , such that exp(ξi ) = zi .

3. Parallel transport the i-th particle’s four momentum, pi , from zi to x , along the
(assumed unique) geodesic joining them — call the result p̃i . Sum the p̃i ’s over
all particles to find the total four momentum Px,v of O w.r.t. x and v.

4. Find v such that Px,v is parallel to it. Call this special value V (x) — this is the
four velocity of an observer at x “comoving” with O .

5. Project the p̃i onto V (x), to find the energy Ei of the i-th particle. Com-
pute the sum Ξx of the ξi , weighted by the relative energies Ei , i.e., Ξx =
(
∑

i Eiξi )/
∑

i Ei . Ξx is the effective vector position of O w.r.t. x . Note that
Σx,V (x) is being used in the calculation of p̃i , ξi .



The Other Half of Quantum Geometry: A First Glimpse 675

6. Define the DBCOM worldline as the collection of points x for which Ξx is zero.

The main virtue of DBCOM is observer independence. Its main weakness, it seems
to us, is its lack of associativity. By the latter we mean the following: imagine an
object Oabc consisting of three free point particles Pa , Pb, Pc. One (or at least we)
would like to be able to calculate the COM of Oabc in steps. First find the COM of
the “sub-object” Oab, consisting of Pa , Pb, then replace Oab with a point particle
Pab following the worldline of Oab’s COM with some appropriate four-momentum,
and finally calculate the COM of the pair Pab, Pc. Clearly, if the calculation is to
have any meaning at all, the result should not depend on the order of composition
of the sub-objects. Thus, if Ta , Tb, Tc, denote the energy-momentum tensors of the
above particles, or, more generally, of three extended objects, and Ta ⊕ Tb that of
Pab, we require both commutativity and associativity of ⊕: Ta ⊕ Tb = Tb ⊕ Ta , and
(Ta ⊕ Tb)⊕ Tc = Ta ⊕ (Tb ⊕ Tc). The nonassociativity of DBCOM can be traced to the
employment of the comoving observer, itself a necessary ingredient of an observer-
independent COM. Thus, DBCOM’s main virtue seems inseparable from its main
weakness—to get rid of the latter, the former must be sacrificed.

2.2 The Curved Spacetime Centroid

Keeping the above notation, we define the centroid position as follows: pick x and v
independently, and form Σx,v as in step 1 above. The vector position of the centroid
of O is then given by

Ξ(x, v) =
∑

i Ei ξi
∑

i Ei
, (1)

where Ei , ξi are computed using Σx,v. Then, Ξ(x, v) is mapped, by the exponential
map, to the centroid’s position Z(x, v) on M ,

Z(x, v) = exp (Ξ(x, v)) . (2)

Thus, given an observer’s full worldline, so that x and v are defined along it, the cen-
troid’s worldline w can be computed—it is easily shown that the above prescription
is both observer dependent and associative.

3 Effective Sectional Curvature

We explore now de Sitter spacetime using a classical extended probe. We focus in
particular on measuring a suitably defined effective sectional curvature of the x-t
plane at the origin. We follow Weinberg’s [10] notation (with K ≥ 1), taking the
metric for 1+1 de Sitter spacetime to be
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(gμν) =
(

1 0
0 −1

)

+ 1

1 + t2 − x2

(
x2 −xt

−xt t2

)

. (3)

The corresponding affine connection can be easily computed,

Γ μ
νλ = xμgνλ , (4)

resulting in the geodesic equation

d2xμ

ds2 ± xμ = 0 , (5)

with s denoting henceforth arclength, and the plus (minus) sign applying to spacelike
(timelike) curves.

The observer’s worldline is taken to be

xo(s) = 0 , to(s) = sinh s , (6)

so that the simultaneity surface Σ at to = τ is given by

xΣ(s) = sin s , tΣ(s) = τ cos s . (7)

The observer’s four velocity u at to = τ is

u = ∂s(xo(s), to(s))|to=τ = (0,
√

1 + τ 2) . (8)

Notice also that parallel transport of u from (0, τ ) to a general point (X, T ) on Σ ,
along the geodesic connecting them, leaves its components unchanged

u ≥ ũ = (0,
√

1 + τ 2) . (9)

Our strategy will be to consider a two-point-particle probe whose centroid world-
line passes through the origin, with different initial conditions supplying a family
of trajectories, indexed by a parameter ε. We then calculate the relative accelera-
tion of neighboring such trajectories at the origin and declare the result to be the
effective sectional curvature in question—in the limit of a point probe one recovers
the true sectional curvature of de Sitter spacetime, which, for the above metric, is
K = −1. Clearly, the geometry that we read off in this way owes as much to the
underlying “true” geometry as it owes to the probe used, and the particular experi-
ment employed. This fits nicely with the rather widespread recognition that, in the
realm of quantum gravity, the probe must shed its test particle guise, participating
fully in the determination of the geometry.

The worldlines wL , wR , of the two point particles (L and R) that make up the
probe are taken to be
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xL(s) = −sη sinh s , tL(s) = cη sinh s (10)

xR(s) = sη+ε sinh s , tR(s) = cη+ε sinh s , (11)

where ε ∈ 1, sη ⊂ sinh η, cη ⊂ cosh η. At t = 0 these coincide at the origin,
moving in opposite directions with slightly different rapidities. We now need to find
the intersection points of wL , wR with Σ . The worldline of a free particle,

x(s) = sη sinh s , t (s) = cη sinh s (12)

with momentum
p = (sη cosh s, cη cosh s) , (13)

crosses Σ at
(X, T ) = τ

√
1 + β2

(v, 1) (14)

(where v ⊂ tanh η andβ ⊂ vτ ), which lies a geodesic distance S = arcsin β/
√

1 + β2

from the observer at to = τ . The corresponding position vector at to = τ is then

Ξ(η) = (S, 0) , (15)

with |Ξ | = (
gμν(0, τ )ΞμΞν

)1/2 = S (notice that Ξ lives in the tangent space at
(0, τ )). For the energy of the particle at to = τ we find

E(η) = −gμν(X, T )ũμ pν = 1 + s2
η cosh2 s

cη cosh s
√

1 − c−2
η tanh2 s

. (16)

The general formula for the vector position of the probe’s centroid,

Ξcentroid = E(−η)Ξ(−η) + E(η + ε)Ξ(η + ε)

E(−η) + E(η + ε)
, (17)

gives rise to a long, uninspiring expression that is best left in obscurity. Feeding
Ξcentroid in the exponential map, we arrive at the centroid position in de Sitter
spacetime—it can be seen to move slowly to the right, owing to the slight asym-
metry of the setup.

The centroid worldline w is not, in general, a geodesic of the de Sitter metric. From
an operational point of view however, it is as close as one can get to a “straightest
curve” using this particular probe, so we declare it to be an effective geodesic. This
does not mean that we expect an effective metric to exist, with the standard properties
of a metric, for which the centroid worldlines would be true geodesics—general
arguments, which we reserve for a lengthier work [1], seem to imply that, in general,
this cannot be true. Thus, the effective geometry that emerges in our approach does
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Fig. 1 Plot of Keff at the
origin, as a function of the
rapidity η of the component
particles
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not mimic standard geometry faithfully, but only retains fragments of it, the coherent
integration of which seems a formidable task.

Following through with our program, we make use of the symmetries of de Sitter
spacetime and reflect the above setup around the t-axis, to get the same probe moving
to the left, its centroid following the worldline w⊗. The two worldlines, w and w⊗,
cross at the origin, and differ infinitesimally in their directions there, so their relative
acceleration can be used to determine an effective sectional curvature Keff. Given
that the separation vector J (s) = 2∂εΞcentroid|ε=0 between the two is, by symmetry,
orthogonal to the t-axis, we define1

Keff ⊂ −∂2|J (s)|/∂s2

|J (s)|
∣
∣
∣
∣
s=0

, (18)

where τ = sinh s ought to be substituted in J (s). Despite the prohibitive length of
intermediate results, we do get a simple formula for the sectional curvature at the
origin,

Keff(η)

K
= 2

cosh 2η

cosh4 η
− 1 ≈ 1 − 2η4 + 8

3
η6 + O(η7) , (19)

where K is the true de Sitter sectional curvature.
Our probe is point-like only at t = 0, spreading out steadily before and after that

moment. As η tends to zero, though, its behavior in a neighborhood of the origin tends
to that of a point probe, and Keff tends, accordingly, to the true sectional curvature K .
For η ≈ 1.2, Keff changes sign, and even reaches the value −K asymptotically, as η

tends to infinity. This latter behavior illustrates clearly that highly energetic probes
can distort significantly the geometry perceived by using them. A plot of Keff(η),
appears in Fig. 1.

1 This is a simplified formula for the sectional curvature that is valid in our case — see, e.g., [7].
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4 Summary and Concluding Remarks

We proposed an operational approach to classical geometry, taking into account the
quantum nature of the probes available in nature. We focused on their extended nature,
a preliminary study of which can be carried out with extended classical probes. As
an example, we used one such probe to measure an effective sectional curvature
in de Sitter spacetime, and studied its dependence on the “rapidity” of the probe’s
constituent particles—the result is plotted in Fig. 1. We expect that similar results
would show up in a fully quantum treatment of the problem, a fact that is hardly
acknowledged in most mainstream approaches to quantum gravity.

Refinements of our method include the use of realistic measuring devices to record
lengths and times, and a self consistent treatment, in which the relative acceleration of
the effective geodesics would be computed using some effective geometry, rather than
an a priori given one, as it happens here. Still, our method is valid in a perturbative
sense, as the probe approaches the point-like ideal, so that the effective and the a priori
given geometries differ infinitesimally, and the use of one or the other only affects
higher orders in the perturbative expansion—we reserve a more detailed treatment
of these matters to a lengthier publication [1].
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