Chapter 8
Design and Analysis of Clinical Trial Simulations

Kazuhiko Kuribayashi

Abstract Clinical trial simulation is a powerful tool for supporting decision making
in designing clinical trials, and plays an important role in clinical research and drug
development. In clinical trial simulation, however, the design is often not well-
considered and the results are empirically assessed. In this chapter, we present points
to consider when planning a clinical trial simulation, and discuss how to design a
clinical trial simulation employing a fractional factorial design and how to analyze
the simulation results.

8.1 Introduction

Clinical trial simulation (CTS) is a process to mimic the conduct of a clinical
trial on computers by generating the outcomes for each virtual patient based on
the prespecified models and/or assumptions. CTS is a powerful tool for supporting
decision making in designing clinical trials, and plays an important role in clinical
research and drug development. The primary objective of CTS is to investigate
the validity and robustness of study designs under various design scenarios and/or
assumptions.

When planning clinical trials, complicated study designs such as adaptive designs
are considered to achieve the objectives efficiently. Trial operating characteristics
should be assessed at the planning stage of such complicated study designs. In
particular, assessments of operating characteristics and factors that may influence
them would help not only to select an optimal study design, but also to provide a
guidance for trial monitoring. Since statistical theory for such study designs is often
complicated and their operating characteristics are assessed analytically only under
relatively strong assumptions, we usually rely on Monte Carlo simulations. CTS is
relatively easily conducted to evaluate the operating characteristics under various
practical settings. CTS is also useful for traditional fixed designs. In actual clinical
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trials, it is not unusual to deviate from the study protocol, and assessments of the
effects of such deviations on the outcomes would be a key to study success.

In CTS, the number of simulations is often not objectively determined and the
results are empirically assessed. Moreover, the design of factor arrangements is
often not well-considered. It seems to be practical to perform simulations at all
possible combinations of levels across all factors, which is a full factorial design.
CTS generates virtual patient responses under a number of scenarios, which are
combinations of levels of various factors. The number of combinations increases
greatly with the increase in the number of factors and their levels. We often
encounter difficulties to conduct simulations for all possible combinations of the
levels with sufficient numbers of replications within a reasonable time. In such
cases, if simulations are conducted with insufficient replications, then it is important
to evaluate the Monte Carlo error. On the other hand, we can reduce the number of
combinations of levels of factors by employing a fractional factorial design, which
is a factorial design in which only an adequately chosen subset of the combinations
required for the full factorial design is selected to be run (e.g., [6]).

In this chapter, we present points to consider when planning CTS and discuss
how to design CTS and how to analyze the results. In Sect. 8.2, protocol develop-
ment of CTS and how to determine the number of simulations based on the Monte
Carlo error are described. In Sect. 8.3, the design of CTS using orthogonal array and
the analysis of simulation results are presented. An example of an adaptive group
sequential design is illustrated in Sect. 8.4. Finally, some remarks are provided in
Sect. 8.5.

8.2 Planning of Clinical Trial Simulations

8.2.1 Protocol Preparation

As poorly designed and poorly conducted clinical trials produce questionable
results, poorly designed and poorly conducted CTS also make inappropriate choices
of study designs and statistical methods. Hence, CTS should be planned with similar
rigor as clinical trials, in particular, if the purpose of CTS is to provide information
on decision making in designing clinical trials. Planning the CTS, “protocol”, which
describes what the objectives of the simulation are, how the simulation is to be
performed and how the results are assessed, should be prepared as clinical trials
[2,5,12]. The protocol also includes the rationale for all the specifications of the
CTS plan. An example of the contents of the protocol is as follows.

Objectives of the Simulation Study Clearly defined objectives of the simulation
study should be stated in the protocol. This includes how to assess questions of
interest by simulation and how to leverage the simulation results to decision making.
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Scenarios and Factors to Investigate with Rationale Scenarios of the clinical
outcome to be investigated by simulation should be described along with some
rationale. The scenarios include favorable, unfavorable and highly possible ones.
Factors and their levels to be examined should be also described.

Simulation Study Design CTS usually generates virtual patient responses under
combinations of levels of various factors. This is considered as a factorial exper-
iment. The design of factor arrangements should be well-considered. The factor
arrangements in the simulation, such as full factorial design, fractional factorial
design or split-plot design (e.g., [6]), should be explained.

Data Generation Method A thorough description of data generation methods
should be provided. This includes the rationale for selections of assumed distri-
butions, required parameters for statistical models and correlation structure of the
covariates.

The random number generation method should be described. The quality of
simulation depends very much on the quality of the pseudorandom numbers.
Unreliable algorithms should not be employed.

The data generated should simulate situations that enable to generalize the
simulation results, and should be checked by using some statistics, such as summary
statistics for distributions of the covariates and Kaplan-Meier estimates for time-to-
event data.

It might be useful to simulate data by bootstrapping or permutation from real
clinical trial data for creating resemblance to reality.

It is also useful to apply the inclusion and exclusion criteria of the clinical trial
to generated data.

Assessments The operating characteristics quantifying the performance of the
study design, such as power, expected sample size and so on, to be evaluated in
CTS, should be defined.

Determination of the Number of Simulation Replications The rationale for the
number of simulation replications should be stated. The number of simulations can
be determined based on the Monte Calro error. Details are described in the next
section.

Statistical Evaluation The analysis methods for the simulation results should be
stated. How to handle ill-conditioned cases, such as failure to estimate parameters
of interest due to non-convergence and/or infrequent events, should be described.

8.2.2 Determination of the Number of Simulation Replications

The estimated accuracy of operating characteristics, which is the amount of the
Monte Carlo error, depends on the number of simulation replications R. Once
the target amount of the Monte Carlo error is chosen, the number of simulation
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replications is determined using the inversely proportional relationship between the
Monte Carlo error and the square root of the number of replications [8].

Let 0 be an operating characteristic to be evaluated by simulation, and OB the
estimate based on the R simulations. For instance, when the operating characteristic
to be evaluated by simulation is the power or the probability of type I error, letting
I[-] be an indicator function which equals 1 when the argument is true, O otherwise,
z(") the test statistics at the rth simulation and c the critical value, the estimate of the
power or the probability of type I error is provided by

Opguer = Z I > c].

1—1

The estimate of the expected sample size based on the R simulation replications is
provided by

where N () denotes the sample size at the rth simulation. The variability of the
estimated operating characteristics is quantified by the Monte Carlo error

MCE(§®) = V(W)

where V(-) denotes the variance [8]. To estimate the Monte Carlo error, the R
simulation replications need to be replicated a sufficient number of times. This
would be impractical since an additional investment of time is required. If 6® g
asymptotically normal, then the estimated Monte Carlo error is obtained as

MCE asym(em)—;_ " R_lz(sm——zsm), 1)

r=1

where S denotes an outcome related to the operating characteristic at the rth
simulation, such as S = I [z") > ¢] for the power or the probability of type I error
and S = N for the expected sample size. If §® is not asymptotically normal,
the bootstrap method can be employed. B sets of bootstrap samples with size R,
St,85,...,8%, are drawn with replacement from § = {S®, §®  §®}
generated by R simulations, and é(R)(S’f), é(R)(S;),. L OB (S3) are calculated
for each bootstrap sample. A bootstrap estimate of the Monte Carlo error is
provided by

B B
. 1 . L1 . o\ 2
MCEpo(8'F)) = -1 E (Q(R)(Sb)— 5 E 9(R)(Sb))

b=1

b=1
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The number of simulation replications R can be determined by the target amount
of the Monte Carlo error and the variation between simulations oy in (8.1). When an
operating characteristic to be evaluated is the binomial proportion, such as the power
or the probability of type I error, the variation between simulations is obtained as

op =01 -0).

where Q denotes the assumed value of the proportion. Letting MCE' be a target
amount of the Monte Carlo error, the required number of simulations is

R = (%)2 . (8.2)

For example, when estimating the probability of type I error with the Monte Carlo
error 0.001 in a one-sided test with significance level 0.025, 24,375 simulations
are required. In the case of Monte Carlo error 0.005, 975 simulations are required.
It is not unusual to have much uncertainty in the assumed value of the power. In
such case, the calculation using O = 0.5, which gives the largest variation between
simulations, is on the safe side. When Q = 0.5, 10,000 simulations are required to
achieve a 0.005 for the Monte Carlo error. This means that the Monte Carlo error of
the binomial probability estimated by 10,000 simulations is at most 0.005.

When the variation between simulations is unknown, such as the expected sample
size, it can be estimated by simulation. First, R simulations are tentatively conducted
and {SM,S@ . SP are obtained. Next, Rj, R, ..., R, samples are drawn
with replacement. That is, ST = {S1, ... S®} §3 = (SO §Ry |
S; = {§W, ..., S®)} are generated. The Monte Carlo error is estimated in
each set, and the variation between simulations oy is estimated as the slope

by applying the least-squares method to the paired data, (LR, Dﬁbool(é(Rl))),

"
(i a0, (i @8

8.2.3 Determination of the Number of Bootstrap Samples

When employing the bootstrap method to estimate the Monte Carlo error, the
accuracy depends on the number of bootstrap samples B. The number of bootstrap
samples is determined so that the probability that the relative error of the bootstrap
estimates of the Monte Carlo error falls within a certain range is ensured [1]. That
is, we choose B such that

MCEpo0 (A(R))?
boot( ) <1+ )’) .

l—a):Pr(l—y< —
V(@(R))
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where w and y denote a small probability and a small positive value, respectively.
Suppose that the distribution of 6P is approximately normal and X%_l =(B-1)
MCEoo (0®)2 / V(§®) has approximately a chi-squared distribution with
(B — 1) degrees of freedom. Since B is large enough to ignore the difference
between B and B — 1, the approximation

MCEpoo (A®))?

MCEo 070" _ y)
V(@(R))

~Pr(B(1-y) < x3 <B(l+y))

Pr(l—y<

4R

VTV (O®)

%Pr(B(l—y)<B+\/ZB

()

can be obtained. The number of bootstrap samples to achieve a relative error less
than y with probability 1 — w is approximately

207 (5)°
),2

< B(1 + )/))

B~

For example, 769 bootstrap samples are required to achieve a relative error ranged
from 0.9 to 1.1 with probability 0.95.

8.3 Design and Analysis of CTS by Orthogonal Arrays

In CTS, operating characteristics quantifying the performance of the study design
are evaluated under a number of scenarios, which are combinations of the levels
across various factors. This is considered as a factorial experiment. In practice, CTS
is often conducted at all possible combinations of levels across all factors, which is a
full factorial experiment. In that case, the number of combinations increases greatly
with an increase in the number of factors and their levels. For example, with ten
factors each taking two levels, a full factorial experiment would have 210 = 1,024
combinations in total. This means R simulations at each combination have to be
replicated 1,024 times. It can easily be imagined that such a full factorial experiment
with a sufficient number of simulations for each combination requires a great deal
of time. In that case, it might be difficult to perform CTS with sufficient replications.
On the other hand, we can try to reduce of the number of combinations of the levels
of the factors.
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Table 8.1 Orthogonal array

Columns
for 2 levels, Lg(27)

Run |1 |2 |3 |4 |5 |6 |7
1 1111|111
2 1112|222
3 1221|122
4 112221211
5 2 0121|212
6 2 0122|121
7 2021 1|2 21
8 2 /2112|112
a bjla|c |a | bla

b c |c |b

c

A full factorial experiment evaluates the main effect of each factor as well as
the effects of interactions between factors. For ten factors, each taking two levels,
the full factorial experiment requires 1,024 simulation runs and allows to evaluate
1,013 interactions including ;¢C, = 45 two-factor interactions, ;¢C; = 120 three-
factor interactions, . . ., 10Cjo = 1 ten-factor interactions. However, usually it is very
difficult to interpret higher-order interactions, such as more than three factors. Such
higher-order interactions could be negligible. If so, there is no need to employ a full
factorial experiment. Rather a fractional factorial experiment, which is a factorial
experiment in which only an adequately chosen subset of the combinations required
for the full factorial experiment is selected to be run, may be useful and the factors
are easily assigned by Taguchi’s orthogonal array (e.g., [6]).

Table 8.1 shows an example of an orthogonal array for 2 levels. This table is
represented by Lg(27), where “L” stands for Latin squares because orthogonal array
is an expansion of Latin squares, “8” indicates the number of rows, “2” means
the number of levels and “7” is the number of columns. When selecting any two
columns from this table, they include four types of combinations, (1,1), (1,2), (2,1)
and (2,2), with the same frequency. We allocate a factor to one of the columns and
assign 1 for one level and 2 for the other level, and then conduct simulations for
eight combinations of the levels of the factors.

When the number of factors is three, this is equivalent to the full factorial
experiment. But if some interactions are negligible, then we can allocate more than
three factors. Consider a simulation study with four factors, say A, B, C and D,
each taking two levels, and no interactions between the factors. The full factorial
experiment requires 16 simulation runs. In contrast, a fractional factorial design
using the orthogonal array presented in Table 8.2 requires 8 simulation runs. The
four factors, A, B, C and D are allocated to 4 columns out of 7 and 8 combinations
of the levels of the factors are determined. We can examine the main effects of the
factors based on results of the 8 simulation runs.
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Table 8.2 Assignment of

) Columns
factors in an orthogonal array Run |1 |2 [3 [4[5[6[7 |Combinations
1 (111 1111  ABCD
2 11 |1 2]2]2 2 |aBCiD,
3 0122|1122 |4,B0D,
4 122 2211 A4BGD
5 (2012 1]2]1 2 |4BCD,
6 |21 22121  ABGD
7 20201 1221  A4BCD
8§ 12|21 21|12 |A4:BCD,
4B |C D

In the example above, we used an array with 2 levels in each factor and 7 columns
for simplicity. If each factor takes the same number of levels, then corresponding
orthogonal arrays are available. For factors with three levels, L7 (313), which has
27 rows and 13 columns, is available. Orthogonal arrays can handle factors taking
different number of levels. For example, when allocating a factor taking 4 levels to
Lg(27), we choose any two columns and allocate the 4 levels to each of 4 types of
combinations, (1,1), (1,2), (2,1) and (2,2).

Simulation results based on the orthogonal array can be analyzed as a factorial
experiment since all the factors are orthogonal. In the case of Table 8.2, the total
sum of squares Sy is the summation of the sum of squares of the factors, A, B, C,
D and the error:

St =8S44+Sp+Sc+Sp+S.,

where S, denotes the sum of squares of the error, and the effects of the factors are
evaluated by analysis of variance.

8.4 An Illustrative Example: Adaptive Group
Sequential Trial

We describe a process of CTS using an example, that applies an adaptive group
sequential trial.

Consider a one-sided test with significance level a(= 0.025) of the null
hypothesis Hy : @, = p, against the alternative hypothesis H; : u, > u, in
a confirmatory trial with two treatments. Now suppose the response of the test
treatment x ~ N (i, 02), that of the control y ~ N(iy,0?),and § = (ux—uy)/0.

This trial employs a group sequential design with the sample size 2n( allowing
an interim analysis with 2tny (0 < ¢ < 1) subjects. When the test statistic doesn’t
cross the boundary at the interim analysis, the sample size is re-estimated based on
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the conditional power and increased up to 2rng (r > 1). Let 2n be the re-estimated
sample size, X; and y; denote the sample means at the interim analysis in each
treatment group, respectively, and 8 = (X1 — y1)/o. The test statistic at the interim
analysis is given by

At the final analysis, the weighted Wald statistic
=Vt +Vl-t

is used as the test statistic [3], where

~

) X2 — 2
7 = =
/2 2
n—ingy o n—itngp

denotes the Wald statistic based on 2(n — tngy) subjects entered after the interim
analysis. Cui et al. [3] showed that the weighted Wald statistic z has the same
distribution as with the original sample size 2no under the null hypothesis. So we
can use the original boundary without inflation of the probability of type I error even
when increasing the sample size.

The conditional power given z; at the interim analysis is provided by

1 1 8
CPy =Prz>c|z)=1-0 c\/ —Zl\/ L

1—1 11—t [ 2|~
n—ingy

where ¢ denotes the boundary at the final analysis and @(-) denotes the cumulative
distribution function of the standard normal distribution. The sample size to achieve
the conditional power CP is obtained as

2
2 (C\/ — -4y 15 — M1—CP)
52

n= + g ,

where u;_cp = ®~!(1 — CP). The boundaries for efficacy and futility stopping are
calculated based on O’Brien-Fleming type «-spending function [9].

Suppose that we would like to assess the influence of the minimum requirement
for sample size increase (A), target conditional power (B), upper limit of sample
size (C) and timing of interim analysis (D) on the overall power, and to estimate
the optimal combination of the levels of the factors, and also evaluate the expected
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Table 8.3 Factors and their levels

Factor Levels

Minimum requirement for sample size increase (A) z1 > lower boundary, CP; > 0.5
Target conditional power (B) CP=0.8,CP=0.9

Upper limit of sample size (C) r=2r=3

Timing of interim analysis (D) t=03,t=0.5

Monte Carlo error
Monte Carlo error

T T T T 1 T T TV 1
11478
0.08'0093002 0.04 0.06 0.08 0.10 0 5000 10000 15000

1HR R

Fig. 8.1 Plots of the four pair of the estimated Monte Carlo error and the size of bootstrap samples
and the line fitted by the least-squares method

sample size at that combination. Table 8.3 shows the levels of interest of the factors.
In addition, we have interests in 2 two-factor interactions, A x B and B x C, while
the others are negligible.

The number of simulations is determined based on the Monte Carlo error
in estimating the power and the expected sample size. For the power, 10,000
simulations are required to estimate it with 0.005 of Monte Carlo error when the
variation between simulations gy = 0.5, which is largest. The variation between
simulations for the expected sample size is estimated by simulation. Thousand
simulations are conducted using the following levels of the factors shown in
Table 8.3: A : z; > Lower boundary, B : CP = 0.9,C : r =2,D : ¢t = 0.5.
From the simulation results {S1, ..., 190} four sets of bootstrap samples with
the size { R, R, R3, R4} = {200, 400, 600, 800} are drawn with replacement, and
the Monte Carlo error for each bootstrap sample is calculated. The variation between
simulations is estimated as 6y = 53.57 by the least-squares method applied to the
four pairs of the estimated Monte Carlo error and the size of the bootstrap samples.
Figure 8.1 shows the plots of the four pair values and the fitted line. The number of
simulations required to estimate the expected sample size with 0.5 of the Monte
Carlo error is calculated by assigning 65 = 53.57 and MCE' = 0.5 to (8.2).
This provides R’ = 11,478. Taking into consideration the above calculations, we
determine to conduct 10,000 simulations.
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Table 8.4 Assignment of factors and simulation results

Columns
Run 1 2 3 4
1 1 1 1 1
2 1 1 1 2
3 1 2 2 1
4 1 2 2 2
5 2 1 2 1
6 2 1 2 2
7 2 2 1 1
8 2 2 1 2
A B A C
X
B

4 Based on 10,000 replications

Table 8.5 Analysis of variance for the simulation result

Factors Df Sum Sq

A 1 0.00001200
B 1 0.00000421
C 1 0.00173460
D 1 0.00300313
AX B 1 0.00004512
BxC 1 0.00000012
Residuals 1 0.00000040
Total 7 0.00479960

—_—N = NN =N =W

A X =N ===
SIS ISR SRS BN

Mean Sq

0.00001200
0.00000421
0.00173460
0.00300313
0.00004512
0.00000012
0.00000040

149

Simulation results®

Combinations Power

A1 BC D,
A1B1Cy Dy
A1B,C Dy
A1B, G, D,
A2B,C Dy
A2B1Cy Dy
A2B,C, D,
A, B,Cy D>

F value
29.6420
10.3827

4282.9753

7415.1235

111.4198
0.3086

0.9508
0.9422
0.9156
0.9840
0.9197
0.9877
0.9525
0.9425

Pr(>F)

0.115641
0.191572
0.009727
0.007393
0.060132
0.677171

ESS

167.97
218.28
149.38
251.75
136.25
216.65
147.34
200.95

Prop SS

0.002501
0.000876
0.361407
0.625704
0.009402
0.000026
0.000084

Table 8.6 The point estimates and 95 % confidence intervals of means at each combination of
the upper limit of the sample size (C') and the timing of the interim analysis (D)

C r=2
C2 r=3
D, t=03
D, t=05

Estimate 95% C.1
0.9347 0.9335
0.9641 0.9630
0.9688 0.9676
0.9300 0.9289

0.9358
0.9652
0.9699
0.9311

The allocation of the factors and the simulation results are shown in Table 8.4
and the analysis of variance (ANOVA) table is shown in Table 8.5. This indicates
that the upper limit of the sample size (C) and timing of the interim analysis (D)

have some effect on the power.

The point estimates and 95 % confidence intervals of means at each combination
of the upper limit of the sample size (C) and the timing of the interim analysis (D)
are calculated based on the fitted ANOVA model, and shown in Table 8.6. This table
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suggests that the combination of C, (r = 3) and D; (¢ = 0.3) is optimal. The point
estimates and 95 % confidence intervals of means at the optimal combination based
on the fitted ANOVA model are 0.9835 for the power with 95 % confidence interval
(0.9821, 0.9848) and 231.76 for the expected sample size with 95 % confidence
interval (220.23, 243.30).

This example was implemented by R [11].

8.5 Concluding Remarks

Clinical trial simulations are a statistical experiment, and should be appropriately
performed with careful planning. Even if advanced methodologies/technologies are
employed, incomplete inputs produce incomplete outputs or, as it is often said,
“garbage in, garbage out.”” CTS should be planned with similar rigor as clinical
trials, and conducted with the following two points in mind:

1. To achieve the given purpose of the simulation study, what is the best way to
obtain appropriate information with the smallest number of simulations in total?

2. To draw the accurate conclusion, how should the simulation results including the
Monte Carlo error be analyzed?

In reporting clinical trials, standard errors and 95 % confidence intervals are
routinely presented with point estimates. In reporting CTS, only point estimates are
presented in practice. As a guidance for reporting simulation studies for statistical
methods, it is pointed out that all reporting should make it easy for the reader to
assess the quality of the experimental work and the accuracy of the results [7]. In
the same way, reporting CTS should routinely include the Monte Carlo error and
95 % confidence intervals. The 95 % confidence interval is given by

(69— 1.96 MiCBym(B0). 60 + 1.96 MCELy (D)) .

where O is asymptotically normal. If it is not normal, but the distribution is
symmetric about §®, the 95 % confidence interval is estimated by the 2.5 and 97.5
percentile of 6B (S7), 60 (S73), ..., 0B (S%),

H(R) H(R)
(93[0.025]’ 93[0.975]) :

If it is not symmetric, the interval is given by

H(R H(R) H(R H(R)
(29( ) — 93[0.975]’ 29( ) — 93[0.025])

(e.g., [4]). In addition, the limitations of the conclusion and recommendation from
the simulation study should be addressed in the reporting of CTS.
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In this chapter, we discussed CTS with factors, which each takes fixed level
values. Taking into account uncertainties, including randomness in the sampling of
subjects, uncertainty about the baseline characteristics of the subject population and
uncertainty about the treatment’s clinical effects, we can consider Bayesian CTS,
which simulates parameter values from probability distributions that represent the
current state of knowledge about the parameters [10]. Bayesian CTS accounts for
all sources of uncertainty and allows more realistic assessments of the outcomes of
individual clinical trials and sequences of clinical trials for the purpose of decision
making. In Bayesian CTS as well, the concept of the experimental design discussed
here is important. This concept is applicable not only to CTS, but also to assessment
of statistical methodologies.
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