
Chapter 7
Statistical Inference for Non-inferiority
of a Diagnostic Procedure Compared
to an Alternative Procedure, Based
on the Difference in Correlated Proportions
from Multiple Raters

Hiroyuki Saeki and Toshiro Tango

Abstract In a clinical trial of diagnostic procedures to indicate non-inferiority,
the efficacy is generally evaluated on the basis of the results from multiple raters
who interpret and report their findings independently. Although we can handle the
multiple results from the multiple raters as if there were a single rater by considering
consensus evaluations or majority votes, this handling is not recommended for
the primary evaluation. Therefore, all results from the multiple independent raters
should be used in the analysis. This chapter addresses a non-inferiority test, confi-
dence interval and sample size formula, for inference of the difference in correlated
proportions between the two diagnostic procedures based on the multiple raters.
Moreover, we illustrate the methods with data from studies of diagnostic procedures
for the diagnosis of oesophageal carcinoma infiltrating the tracheobronchial tree and
for the diagnosis of aneurysm in patients with acute subarachnoid hemorrhage.

7.1 Introduction

In situations where an accepted standard diagnostic procedure exists, it is possible
to plan a clinical trial to confirm that a new diagnostic procedure is superior
to the standard diagnostic procedure. However, if it will be expected that the
efficacy of the new diagnostic procedure is not lower than that of the standard
diagnostic procedure and the new diagnostic procedure is less or non-invasive,
less or non-toxic, inexpensive or easy to operate in comparison with the standard

H. Saeki (�)
FUJIFILM RI Pharma Co. LTD., Chuo-ku, Tokyo, Japan
e-mail: sahiroyuki@ffri.co.jp

T. Tango
Center for Medical Statistics, Minato-ku, Tokyo, Japan
e-mail: tango@medstat.jp

© Springer-Verlag Berlin Heidelberg 2014
K. van Montfort et al. (eds.), Developments in Statistical Evaluation of Clinical
Trials, DOI 10.1007/978-3-642-55345-5__7

119

mailto:sahiroyuki@ffri.co.jp
mailto:tango@medstat.jp


120 H. Saeki and T. Tango

procedure, we can plan a non-inferiority study. A non-inferiority study of two
diagnostic procedures is designed to indicate that the sensitivity or specificity of
the new diagnostic procedure is no more than 100� percent inferior compared
with the sensitivity or specificity of the standard procedure, respectively, where
�.0 < � � 1/ is a pre-specified acceptable difference between the two proportions.
In general, sensitivity is defined as the probability that a result of a diagnostic
procedure is positive when the subject has the disease, and specificity is defined as
the probability that a result of a diagnostic procedure is negative when the subject
does not have the disease. These two measures are very important to evaluate the
performance of the diagnostic procedure. However, these measures are calculated on
the basis of different populations of subjects. Therefore, we consider the statistical
inference for the difference in sensitivities in this chapter. However, the same
methods can be applied to examine the difference in the specificities using a different
study population.

If two diagnostic procedures are performed on each subject, the difference in
proportions for matched-pair data has a correlation between the two diagnostic
procedures. Nam [10] and Tango [17] derived the same non-inferiority test for the
difference in proportions for matched-pair categorical data based on the efficient
score in which the pairs were independent. Tango [17] also derived the confidence
interval based on the efficient score. However, these methods are only applicable
to the case where the results of the two diagnostic procedures are evaluated by
a single rater. Multiple independent raters often evaluate the diagnoses obtained
from these diagnostic procedures (see, e.g., [6]). If multiple raters are involved
in the evaluation, the differences in proportions for matched-pair data also have
correlations between different raters. Although we can apply the aforementioned
methods by considering consensus evaluations or majority votes to handle multiple
results from the multiple raters as if there were a single rater, these methods are
not recommended for the primary evaluation [1, 2, 12]. The consensus evaluations
may produce a bias caused by non-independent evaluations. For example, senior or
persuasive raters may affect the evaluations of junior or passive raters. Moreover,
the majority votes cannot take into account the variability in results of the multiple
raters. Therefore, all results from the multiple independent raters should be used in
the analysis.

In this chapter, we introduce a non-inferiority test, confidence interval and sample
size formula proposed by Saeki and Tango [14], for inference of the difference in
correlated proportions between two diagnostic procedures on the basis of the results
from the multiple independent raters where the matched pairs are independent.
Furthermore, we consider a possible procedure based on majority votes and we
conduct Monte Carlo simulation studies to examine the validity of the proposed
methods in comparison with the procedure based on majority votes. Finally, we
illustrate the methods with data from studies of diagnostic procedures for the
diagnosis of oesophageal carcinoma infiltrating the tracheobronchial tree [13] and
for the diagnosis of aneurysm in patients with acute subarachnoid hemorrhage [4].
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7.2 Design

7.2.1 Data Structure and Model

Consider a clinical experimental design where a new diagnostic procedure (or
treatment) and a standard diagnostic procedure (or treatment) that are independently
performed on the same subject (or matched pairs of subjects) and independently
evaluated by K raters are compared. Each rater’s judgment is assumed to take on
one of two values: 1 represents that the subject is diagnosed as ‘positive’, and 0
indicates that the subject is diagnosed as ‘negative’. Suppose we have n subjects. If
we consider only subjects with a pre-specified disease, we use a positive probability
as a measure, that is, sensitivity. On the other hand, if we consider subjects without
the disease, we use a negative probability as a measure, that is, specificity. In the
following, we consider a situation on the basis of sensitivity.

For ease of explanation, let us consider the case of K D 2 first. The resulting
types of matched observations and probabilities are naturally classified as a 4 � 4

contingency table shown in Table 7.1, where C.1/ or �.0/ denotes a positive or
negative judgment on a procedure, respectively. For example, y1101 denotes the
observed number of matched type {C on the new procedure by rater 1, C on the
new procedure by rater 2, � on the standard procedure by rater 1, C on the standard
procedure by rater 2} and r1101 indicates its probability.

Let �
.k/
N (�.k/

S ) denote the probability that rater k judges as positive on the new
(standard) diagnostic procedure of a randomly selected subject. Then, it will be
naturally calculated as

�
.1/
N D r11�� C r10�� ; �

.2/
N D r11�� C r01�� (7.1)

Table 7.1 A 4 � 4 contingency table for matched-pair categorical data in the case of two raters

Standard procedure

Judgment of (Rater 1, Rater 2) (C,C) (C,�) (�,C) (�,�) Total

New procedure (C,C) r1111 r1110 r1101 r1100 r11::

.y1111/ .y1110/ .y1101/ .y1100/ .y11::/

(C, �) r1011 r1010 r1001 r1000 r10::

.y1011/ .y1010/ .y1001/ .y1000/ .y10::/

(�, C) r0111 r0110 r0101 r0100 r01::

.y0111/ .y0110/ .y0101/ .y0100/ .y01::/

(�, �) r0011 r0010 r0001 r0000 r00::

.y0011/ .y0010/ .y0001/ .y0000/ .y00::/

Total r::11 r::10 r::01 r::00 1

.y::11/ .y::10/ .y::01/ .y::00/ (n)
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and �
.1/
S and �

.2/
S are defined in a similar manner. Let �N and �S denote the

probability of a positive judgment on the new and standard diagnostic procedures,
respectively. Then, these probabilities can, in general, be defined as follows:

�N D !.1/�
.1/
N C !.2/�

.2/
N ; (7.2)

�S D !.1/�
.1/
S C !.2/�

.2/
S ; (7.3)

where !.k/ (!.1/ C !.2/ D 1) denotes the weight for rater k, showing the difference
in the raters’ evaluation skill. However, raters are usually selected among the raters
with at least equivalent skill, and it is assumed in this paper that

!.k/ D 1=K .k D 1; : : : ; K/ : (7.4)

Therefore, these probabilities can be defined as follows:

�N D �
.1/
N C �

.2/
N

2
D r11�� C r10�� C r01��

2
; (7.5)

�S D �
.1/
S C �

.2/
S

2
D r��11 C r��10 C r��01

2
: (7.6)

On the basis of the form of the expressions of (7.5) and (7.6), the 4 � 4 contingency
table is found to be reduced to the 3 � 3 contingency table shown in Table 7.2,
where p`m (x`m) denotes the probability (observed number of observations) that `

raters judge as positive on the new procedure and m raters judge as positive on the
standard procedure. Then, we have

�N D p2� C 1

2
p1�

D p20 C .p21 C 1

2
p10/ C .p22 C 1

2
p11/ C 1

2
p12 ; (7.7)

Table 7.2 A 3 � 3 contingency table for matched-pair categorical data in the case of two raters

Standard procedure

Judgment of (Rater 1, Rater 2) (C, C) (C,�) or (�,C) (�,�) Total

New procedure (C, C) p22 p21 p20 p2:

.x22/ .x21/ .x20/ .x2:/

(C, �) or (�, C) p12 p11 p10 p1:

.x12/ .x11/ .x10/ .x1:/

(�, �) p02 p01 p00 p0:

.x02/ .x01/ .x00/ .x0:/

Total p:2 p:1 p:0 1

.x:2/ .x:1/ .x:0/ .n/
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�S D p�2 C 1

2
p�1

D p02 C .p12 C 1

2
p01/ C .p22 C 1

2
p11/ C 1

2
p21 : (7.8)

Let � denote the difference in positive probabilities; that is,

� D �N � �S

D p20 C 1

2
.p21 C p10/ � p02 � 1

2
.p12 C p01/ ; (7.9)

and its sample estimate will be

Q� D 1

n

�
x20 C 1

2
.x21 C x10/ � x02 � 1

2
.x12 C x01/

�
; (7.10)

which clearly shows that the inference on � can be made by the observed vector x D
.x20, x21 Cx10, x02, x12 Cx01, x22 Cx11 Cx00/ following a multinomial distribution
with parameters n and p D .p20, p21 C p10, p02, p12 C p01, p22 C p11 C p00/.

It should be noted that x20 is the frequency such that the number of raters judging
as positive on the new procedure is larger than the number of raters judging as
positive on the standard procedure by 2 and that .x21 C x10/ is the frequency
such that the number of raters judging as positive on the new procedure is larger
than the number of raters judging as positive on the standard procedure by 1.
Similarly, x02 is the frequency such that the number of raters judging as positive
on the standard procedure is larger than the number of raters judging as positive
on the new procedure by 2 and .x12 C x01/ is the frequency such that the number
of raters judging as positive on the standard procedure is larger than the number
of raters judging as positive on the new procedure by 1. These observations lead
to a generalization to K raters. The resulting types of matched observations and
probabilities are classified as a .K C 1/ � .K C 1/ contingency table similar to
Table 7.2. However, the method is reduced to the following. Let nNk denote the
frequency such that the number of raters who judge as positive on the new procedure
is larger than the number of raters who judge as positive on the standard procedure
by k and let qNk indicate such probability. Namely, we have

nNk D
X

`�mDk

x`m ;

qNk D
X

`�mDk

p`m ;

where ` is the number of raters who judge as positive on the new procedure, and m

is the number of raters who judge as positive on the standard procedure. Similarly,
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let nSk denote the frequency such that the number of raters who judge as positive on
the standard procedure is larger than the number of raters who judge as positive on
the new procedure by k and let qSk indicate such probability. Then, we have

nSk D
X

`�mD�k

x`m ;

qSk D
X

`�mD�k

p`m ;

and qN 0 D qS0 and nN 0 D nS0. Namely, for K raters, the inference on � can be
made by the vector of random variables n D .nN 0; nN1; : : : ; nNK ; nS1; : : : ; nSK/

following a multinomial distribution with parameters n and q D .qN 0; qN1; : : : ; qNK ,
qS1; : : : ; qSK/. Then, we have

�N D
KX

kD1

!.k/�
.k/
N D 1

K

KX
kD1

k

KX
mD0

pkm D 1

K

KX
kD1

kpk�

D 1

K

KX
kD1

kqNk C 1

K

KX
kD1

kpkk C 1

K

X
`;m2K
`<m

`p`m C 1

K

X
`;m2K
m<`

mp`m ;

�S D
KX

kD1

!.k/�
.k/
S D 1

K

KX
kD1

k

KX
`D0

p`k D 1

K

KX
kD1

kp�k

D 1

K

KX
kD1

kqSk C 1

K

KX
kD1

kpkk C 1

K

X
`;m2K

`<m

`p`m C 1

K

X
`;m2K

m<`

mp`m : (7.11)

Therefore, the difference in positive probabilities (7.9) is generalized to

� D �N � �S D
� 1

K

KX
kD1

kpk�
�

�
� 1

K

KX
kD1

kp�k
�

D 1

K

KX
kD1

k.qNk � qSk/ : (7.12)

Then, the estimate Q� given in (7.10) is generalized to

Q� D 1

nK

KX
kD1

k.nNk � nSk/ : (7.13)
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7.2.2 Problems in Consensus Evaluations or Majority Votes

Although we can handle multiple results from the multiple raters as if there
were a single rater by considering consensus evaluations or majority votes, these
handlings are not recommended for the primary evaluation [1,2,12]. The consensus
evaluations may produce a bias caused by non-independent evaluation, even if the
consensus evaluations are performed after individual evaluations by the multiple
raters are completed. For example, senior or persuasive raters may affect the
evaluations of junior or passive raters. Moreover, the majority votes cannot take
into account the variability in results of the multiple raters. For ease of explanation,
let us consider the case of K D 3. The resulting types of matched observations
are classified as a 4 � 4 contingency table in Table 7.3. In this case, Q�KD3 can be
addressed from (7.13) as

Q�KD3 D 1

n

�
.nN 3 � nS3/ C 2

3
.nN 2 � nS2/ C 1

3
.nN1 � nS1/

�
;

where .nN 3 � nS3/ D .x30 � x03/, .nN 2 � nS2/ D f.x31 C x20/ � .x13 C x02/g and
.nN1 � nS1/ D f.x32 C x21 C x10/ � .x23 C x12 C x01/g. If we adopt the majority
votes, the 4 � 4 contingency table shown in Table 7.3 is transformed to the 2 � 2

contingency table shown in Table 7.4, and the estimate of the difference between
�N and �S on the basis of the results from the majority votes will be

Q�MV D .b � c/

n
D 1

n
f.nN 3 � nS3/ C .nN 2 � nS2/ C .x21 � x12/g :

We should focus on two problems in Q�MV .

Table 7.3 A 4�4 contingency table for matched-pair categorical data in the case of three raters

Standard procedure

(C, C, �) (C, �, �)

or or

(C, �, C) (�, C, �)

Judgment of or or

(Rater 1, Rater 2, Rater 3) (C, C, C) (�, C, C) (�, �, C) (�, �, �)

New procedure (C, C, C) x33 x32 x31 x30

(C, C, �) or (C, �, C) or x23 x22 x21 x20

(�, C, C)

(C, �, �) or (�, C, �) or x13 x12 x11 x10

(�, �, C)

(�, �, �) x03 x02 x01 x00
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Table 7.4 A 2�2 contingency table transformed from Table 7.3 by majority votes

Standard procedure

Judgment (C) (�)

New procedure (C) a b

.D x33 C x32 C x23 C x22/ .D x30 C x31 C x20 C x21/

.D nN 3 C nN 2 C x21/

(�) c d

.D x03 C x13 C x02 C x12/ .D x11 C x10 C x01 C x00/

.D nS3 C nS2 C x12/

1. Q�MV involves .nN 2 �nS2/ and .x21 �x12/ without the weights of the contribution
for �N and �S from �

.1/
N , �

.2/
N , �

.3/
N and �

.1/
S , �

.2/
S , �

.3/
S .

2. x32, x10 and x23, x01 do not take part in Q�MV , because these values are involved
in the cells ‘a’ and ‘d’ in Table 7.4.

Therefore, it is important that all results from the multiple independent raters are
used in the analysis appropriately.

7.3 Methods for Statistical Inference

In this section, we shall introduce methods for statistical inference of the dif-
ference �, that is, a non-inferiority test, confidence interval and formula for
determination of sample size.

7.3.1 Non-inferiority Test

The non-inferiority hypothesis will be formulated as

H0 W �N D �S � �; H1 W �N > �S � � ;

where � (0 < � � 1) is a pre-specified acceptable difference in two probabilities.
Let

ı D � C � D �N � .�S � �/ D 1

K

KX
kD1

kqNk �
� 1

K

KX
kD1

kqSk � �
�

: (7.14)

Then, under the null hypothesis, the log-likelihood function without constant terms
is expressed as
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L D L.�/ D nN 0 log.qN 0/ C nNK log.qNK/ C
K�1X
kD1

nNk log.qNk/ C
KX

kD1

nSk log.qSk/

D nN 0 log.1 � ı C � � A � B � C / C nNK log.ı � � C A/

C
K�1X
kD1

nNk log.qNk/ C
KX

kD1

nSk log.qSk/ ; (7.15)

where � D .ı; qN1; : : : ; qN.K�1/; qS1; : : : ; qSK/T is the parameter vector of
dimension 2K and

A D 1

K

� KX
kD1

kqSk �
K�1X
kD1

kqNk

�
; B D

K�1X
kD1

qNk ; C D
KX

kD1

qSk :

Then, the score test for testing the null hypothesis H0 W ı D 0 against H1 W ı > 0 is
expressed as

ZS D
�

@L

@ı

ˇ̌
ˇ
ıD0; qNkDOqNk ; qSkDOqSk

�r� OI �1

�
11

ˇ̌
ıD0; qNkDOqNk ; qSkDOqSk

�H0 N.0; 1/ ;

(7.16)

where . OqN1; : : : ; OqN.K�1/; OqS1; : : : ; OqSK/ is the vector of the maximum likelihood
estimators under the null hypothesis, which is the unique solution for the following
equations:

@L

@qNk

ˇ̌̌
ˇ
ıD0

D 0; .k D 1; : : : ; K � 1/ ; (7.17)

@L

@qSk

ˇ̌
ˇ̌
ıD0

D 0; .k D 1; : : : ; K/ : (7.18)

These equations can be obtained iteratively using the quasi-Newton method with
constraints. The R function ‘constrOptim’ is useful for the quasi-Newton method
with constraints. Further, . OI �1/11 indicates the .1; 1/th element of the (2K � 2K)
inverse Fisher information matrix evaluated at the maximum likelihood estimators.
On the other hand, we can consider a test based on the sample estimate T for the
difference ı

T D Q� C � D 1

nK

KX
kD1

k.nNk � nSk/ C � : (7.19)

The variance of T evaluated at the null hypothesis ı D 0 is

VarH0.T / D 1

n

"
1

K2

KX
kD1

k2.qNk C qSk/ � �2

#
:
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Therefore, the normal deviate for testing H0 W ı D 0 against H1 W ı > 0 is
expressed as

ZND D
1

nK

PK
kD1 k.nNk � nSk/ C �r

1
n

h
1

K2

PK
kD1 k2. OqNk C OqSk/ � �2

i �H0 N.0; 1/ : (7.20)

It can be shown that when K D 1, the normal deviate test statistic, ZND, is
equivalent to the score test statistic ZS [10, 17]. When K D 2 or 3, we confirmed
that ZS and ZND were approximately equal using the example data (see Sect. 7.5).
However, we have not been able to show the equivalence between ZS and ZND

analytically. On the other hand, by using the observed proportions QqNk D nNk=n,
QqSk D nSk=n instead of the maximum likelihood estimators, we can construct a
Wald-type test statistic for testing H0 W ı D 0 against H1 W ı > 0:

ZW D
1

nK

PK
kD1 k.nNk � nSk/ C �r

1
n

h
1

nK2

PK
kD1 k2.nNk C nSk/ � �2

i �H0 N.0; 1/ : (7.21)

When � D 0, the Wald-type test ZW is identical to Schouten’s [15] generalized
McNemar test although Schouten’s test statistic is presented in a different form.
When K D 1, the Wald-type test ZW is identical to the unconditional test for
non-inferiority of Lu and Bean [7]. When � D 0 and K D 1, both the normal
deviate test ZND and the Wald-type test ZW are identical to the McNemar test [9].

7.3.2 Confidence Interval

Testing non-inferiority with an acceptable difference � at a one-sided significance
level ˛=2 is equivalent to judging whether the lower limit of the 1 � ˛ level
confidence interval is greater than ��. The score-type approximate confidence
limits for the difference in two proportions, �, are the two solutions to the equation

1
nK

PK
kD1 k.nNk � nSk/ � �r

1
n

h
1

K2

PK
kD1 k2. OqNk C OqSk/ � �2

i D ˙Z˛=2 ; (7.22)

where the plus and minus signs indicate the lower limit �low and the upper
limit �up, respectively, and Z˛=2 is the upper ˛=2 percentile of the standard normal
distribution. These two limits can be found using an iterative numerical method such
as the secant method (see, e.g., [17]). On the other hand, we can easily derive the
Wald-type confidence interval:
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CIW W 1

nK

0
@ KX

kD1

k.nNk � nSk/ ˙ Z˛=2

vuut KX
kD1

k2.nNk C nSk/

1
A : (7.23)

Equation (7.23) utilizes the variance evaluated under the null hypothesis and is
identical to Schouten’s [15] Wald-type confidence interval.

7.3.3 Sample Size

To calculate the sample size required for testing the null hypothesis H0 W ı D 0

against the alternative hypothesis H1 W ı > 0, we only have to consider the following
properties of the statistic T :

EH0.T / D 0 ;

EH1.T / D � C � ;

S D lim
n!1 nVarH1.T / D

"
1

K2

KX
kD1

k2.qNk C qSk/ � �2

#
:

On the other hand, we have

R D lim
n!1 nVarH0 .T / D

"
1

K2

KX
kD1

k2. NqNk C NqSk/ � �2

#
;

where . NqNk; NqSk/, k D 0; : : : ; K , are the asymptotic values of the maximum
likelihood estimators . OqNk; OqSk/, k D 0; : : : ; K . These asymptotic values are
solutions to (7.17) and (7.18). From the aforementioned equations, the approximate
sample size n required for 100.1 � ˇ/ power of a one-sided normal deviate test at
˛=2 level is given by

n D
 

Z˛=2

p
R C Zˇ

p
S

� C �

!2

: (7.24)

When K D 1, the derived formula for determining the sample size agrees with that
proposed by Nam [10]. The sample sizes required for 80 % power of a one-sided
non-inferiority test at ˛=2 D 2:5 % for K D 2, 3, � D 0:1, 0:05, and various values
of .qN 3, qN 2, qN1, qS3, qS2, qS1/ with �N � �S D � D 0 are shown in Table 7.5.
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Table 7.5 Sample sizes calculated by formula (7.24) for nominal power D 80 % of a non-
inferiority test at ˛=2 D 2:5 % for K D 2, 3, � D 0:1, 0:05, �N � �S D � D 0, qN 3 D qS3,
qN 2 D qS2, qN1 D qS1

K � qN 3 D qS3 qN 2 D qS2 qN1 D qS1 Sample size

2 0:1 � 0:05 0:05 117 (81.7)

� 0:05 0:1 132 (81.9)

� 0:1 0:05 187 (80.7)

� 0:1 0:1 204 (80.7)

0:05 � 0:05 0:05 417 (80.6)

� 0:05 0:1 487 (81.0)

� 0:1 0:05 718 (80.8)

� 0:1 0:1 793 (80.2)

3 0:1 0:05 0:02 0:05 120 (81.5)

0:05 0:02 0:1 126 (81.5)

0:05 0:05 0:1 142 (80.8)

0:1 0:02 0:05 190 (80.4)

0:1 0:02 0:1 197 (80.3)

0:1 0:05 0:1 215 (79.8)

0:05 0:05 0:02 0:05 428 (80.2)

0:05 0:02 0:1 459 (80.0)

0:05 0:05 0:1 536 (80.2)

0:1 0:02 0:05 730 (81.1)

0:1 0:02 0:1 763 (80.7)

0:1 0:05 0:1 844 (80.5)

The parenthetical values are empirical power .%/ based on 10,000 replicates

7.4 Simulation

We have indicated here the results of simulation studies for the methods at a
one-sided 2:5 % level for the case of K D 3 and sample size n D 25, 50

or 100 with 10; 000 replicates. Simulation data were generated on the basis of
a multinomial distribution by considering typical situations for parameter values
.qN 3; qN 2; qN1; qS3; qS2; qS1/ and non-inferiority margin � D 0:1. In assessing
the performance of the methods based on the majority votes, we transformed the
simulation data based on the following definitions: qN D .qN 3 C qN 2 C 1

3
� qN1/,

qS D .qS3 C qS2 C 1
3

� qS1/.

7.4.1 Non-inferiority Test

We performed Monte Carlo simulation studies to assess the empirical size and power
of the normal deviate test statistic ZND, the Wald-type test statistic ZW and the test
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Table 7.6 Empirical sizes of the normal deviate test ZND, the Wald-type test ZW and the test
based on majority votes ZMV at ˛=2 D 2:5 % for K D 3, �N � �S D � D �0:1, � D 0:1 based
on 10,000 replicates

Size (%)

n qN 3 qN 2 qN1 qS3 qS2 qS1 ZND ZW ZMV

100 0.01 0.02 0.05 0.11 0.02 0.05 2.2 4.6 1.7

0.01 0.02 0.1 0.11 0.02 0.1 2.3 4.3 1.3

0.01 0.05 0.1 0.11 0.05 0.1 2.2 3.7 1.6

50 0.01 0.02 0.05 0.11 0.02 0.05 2.0 5.9 1.5

0.01 0.02 0.1 0.11 0.02 0.1 2.2 5.5 1.3

0.01 0.05 0.1 0.11 0.05 0.1 2.2 4.6 1.4

25 0.01 0.02 0.05 0.11 0.02 0.05 1.6 8.0 1.1

0.01 0.02 0.1 0.11 0.02 0.1 1.9 7.3 0.9

0.01 0.05 0.1 0.11 0.05 0.1 2.4 5.9 1.2

Table 7.7 Empirical powers of the normal deviate test ZND, the Wald-type test ZW and the test
based on majority votes ZMV at ˛=2 D 2:5 % for K D 3, �N � �S D � D 0, � D 0:1 based on
10,000 replicates

Power (%)

n qN 3 qN 2 qN1 qS3 qS2 qS1 ZND ZW ZMV

100 0:01 0:02 0:05 0:01 0:02 0:05 97:2 99:3 85:8

0:01 0:02 0:1 0:01 0:02 0:1 95:7 98:4 78:6

0:01 0:05 0:1 0:01 0:05 0:1 89:5 93:2 62:2

50 0:01 0:02 0:05 0:01 0:02 0:05 70:6 89:6 45:8

0:01 0:02 0:1 0:01 0:02 0:1 68:4 85:2 38:1

0:01 0:05 0:1 0:01 0:05 0:1 60:1 72:7 29:7

25 0:01 0:02 0:05 0:01 0:02 0:05 22:7 69:6 15:2

0:01 0:02 0:1 0:01 0:02 0:1 22:9 65:5 10:0

0:01 0:05 0:1 0:01 0:05 0:1 25:0 50:6 10:8

statistic based on the majority votes ZMV . ZMV was calculated using the method
of Nam [10] and Tango [17]. Table 7.6 presents the empirical sizes. For the set of
parameter values .qN 3; qN 2; qN1; qS3; qS2; qS1/ considered here, the empirical sizes
for the normal deviate test ZND are generally closer to the nominal ˛=2-level of
2:5 % than those for the Wald-type test ZW or the test based on the majority votes
ZMV . The empirical sizes of ZW tend to be quite inflated. The empirical sizes of
ZMV , on the other hand, tend to be quite reduced. Table 7.7 presents the empirical
powers for the alternative hypothesis H1 W �N D �S for the case of � D 0:1. The
differences in powers between ZND and ZW are generally small. When the sample
size is small, however, the empirical powers of ZW are far greater than those of
ZND. On the other hand, the empirical powers of ZMV are far smaller than those of
ZND under all situations.
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Table 7.8 Coverage probabilities of the score-type 95 % confidence interval, the Wald-type 95 %
confidence interval and the 95 % confidence interval based on the majority votes for K D 3 based
on 10,000 replicates generated under the null hypothesis �N � �S D � D �0:1

Coverage prob. (%)

n qN 3 qN 2 qN1 qS3 qS2 qS1 score-type CIW CIMV

100 0:01 0:02 0:05 0:11 0:02 0:05 95:0 94:8 96:4

0:01 0:02 0:1 0:11 0:02 0:1 94:9 94:9 97:3

0:01 0:05 0:1 0:11 0:05 0:1 94:7 95:2 96:7

50 0:01 0:02 0:05 0:11 0:02 0:05 94:7 94:2 96:7

0:01 0:02 0:1 0:11 0:02 0:1 94:7 94:4 97:7

0:01 0:05 0:1 0:11 0:05 0:1 95:0 95:1 97:1

25 0:01 0:02 0:05 0:11 0:02 0:05 95:3 93:7 97:7

0:01 0:02 0:1 0:11 0:02 0:1 95:4 93:9 98:4

0:01 0:05 0:1 0:11 0:05 0:1 95:9 94:6 97:9

7.4.2 Confidence Interval

We performed Monte Carlo simulation studies to evaluate the coverage probability
of the score-type confidence interval, the Wald-type confidence interval CIW

and the confidence interval based on the majority votes CIMV . CIMV was calcu-
lated using the method of Tango [17]. Table 7.8 shows the empirical coverage
probabilities of the score-type 95 % confidence interval, the Wald-type 95 %
confidence interval and the 95 % confidence interval based on the majority votes
under the hypothesis �N � �S D � D �0:1. It shows that the score-type
confidence interval and the Wald-type confidence interval both generally perform
very well. However, when n D 25, the score-type confidence interval outperforms
the Wald-type confidence interval. On the other hand, the confidence interval based
on the majority votes shows a conservative property.

7.5 Example

7.5.1 Study of Diagnostic Procedures for the Diagnosis
of Oesophageal Carcinoma Infiltrating
the Tracheobronchial Tree

Here, we shall consider the data presented by Rapp-Bernhardt et al. [13]. They
compared the sensitivities between axial computed tomography (CT) slices and
minimal intensity projection (MIP) in 21 patients with oesophageal carcinoma
infiltrating the tracheobronchial tree. The bronchoscopic findings were determined
as the gold standard. Three radiologists, working independently of each other and
without knowledge of the findings on the gold standard, assessed separately the
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Table 7.9 A 4 � 4 contingency table (K D 3) of the assessments of MIP and axial CT slices by
three radiologists (True positive (TP: C) and false negative (FN: �) by three radiologists (1, 2,
3): I (C, C, C), II (C, C, � or C, �, C or �, C, C), III (C, �, � or �, C, � or �, �, C),
IV (�, �, �)) (Rapp-Bernhardt et al. [13])

Axial CT slices

TP and FN by three radiologists I II III IV Total

MIP I 14 2 1 0 17

II 0 0 0 0 0

III 0 0 2 0 2

IV 0 0 2 0 2

Total 14 2 5 0 21

CT, computed tomography; FN, false negative;
MIP, minimal intensity projection; TP, true positive

axial CT slices and MIP. In these diagnostic procedures, stenoses were localized,
and the degree of stenosis was assessed as in real bronchoscopy. The resulting type
of matched observations was classified as a 4 � 4 contingency table for MIP versus
axial CT slices and is shown in Table 7.9 (similar to Table 7.3), where ‘C’ indicates a
true positive and ‘�’ indicates a false negative based on binary assessment where 0–
50 % of total occlusion was considered as negative and 50–100 % of total occlusion
was considered as positive. MIP is one of the reconstruction techniques of making
three-dimensional images. MIP images make it easier to appreciate the condition of
the whole tracheobronchial tree than axial CT slices. Therefore, we are interested
in the non-inferiority of MIP to axial CT slices where the non-inferiority margin is
set as � D 0:1. From Table 7.9, we have Qp3: D 17=21, Qp2: D 0=21, Qp1: D 2=21,
Qp:3 D 14=21, Qp:2 D 2=21 and Qp:1 D 5=21. Then, the sensitivities of MIP and

axial CT slices are estimated as Q�MIP D .17 C 2=3 � 0 C 1=3 � 2/ =21 D 0:841

and Q�C T D .14 C 2=3 � 2 C 1=3 � 5/ =21 D 0:810, respectively. Moreover, we
have QqN 3 D 0=21, QqN 2 D .1 C 0/=21, QqN1 D .2 C 0 C 0/=21, QqS3 D 0=21,
QqS2 D .0C0/=21 and QqS1 D .0C0C2/=21. Then, the difference in the sensitivities
between MIP and axial CT slices based on the three raters is Q�KD3 D 0:032, and
the normal deviate test has ZND D 1:753 � ZS (one-sided p-value D 0:040).
The score-type 95 % confidence interval is �0:141 to 0:181 where the lower limit
is not greater than �� D �0:1. These results suggest that the non-inferiority of
MIP to axial CT slices cannot be claimed at the one-sided 2:5 % significance level.
The Wald-type test statistic, on the other hand, suggests non-inferiority because
ZW D 3:358 with one-sided p-value <0.001 and because the Wald-type 95 %
confidence interval under the null hypothesis is �0:056 to 0:120. However, the
simulation study suggests that the Wald-type test result here is not reliable because
of its inflated empirical sizes for a quite small sample size such as n D 21. The result
of the normal-deviate test, on the other hand, may or may not be reliable because its
empirical sizes for � D 0:1 and n D 25 are shown to be around 1:6 � 2:4.
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7.5.2 Study of Diagnostic Procedures for the Diagnosis
of Aneurysm in Patients with Acute Subarachnoid
Hemorrhage

Jäger et al. [4] performed a blinded multi-rater study comparing magnetic resonance
angiography (MRA) and digital subtraction angiography (DSA) in 34 prospectively
enrolled patients who presented with acute subarachnoid hemorrhage (SAH). Two
raters independently evaluated the MRA and DSA images. The presence of an
aneurysm was evaluated on a 4-point ordinal scale (1, absent; 2, probably absent; 3,
probably present; 4, definitely present). Additionally, all aneurysms for which the
two raters had given different evaluations on the 4-point scale were subsequently
reviewed by consensus evaluations. Because the authors intended to study the inter-
rater and inter-procedure agreement, neither method was a priori taken as the gold
standard. However, they showed the data of evaluation of the MRA and DSA images
by the two raters with details of the clinical follow-up of all patients. Therefore, we
considered comparing the difference in sensitivities between MRA and DSA on the
basis of the data of 27 patients with aneurysms among the patients with SAH. Data
were analyzed on a patient-basis, taking into account only the aneurysm with the
highest ranking on the 4-point scale in each patient. We assigned the rating of true
positive (‘C’) for scores of 3 and 4 or false negative (‘�’) for scores of 1 and 2. The
resulting types of matched observations based on the two independent raters and
the consensus evaluations were classified as a 3 � 3 and 2 � 2 contingency tables,
respectively (Tables 7.10 and 7.11). DSA is a procedure in which radiographic
images of blood vessels filled with a contrast agent are digitized and then subtracted
from images obtained before administration of the contrast agent. This method
increases the contrast between the vessels and the background. However, as a
catheter (a long, thin, flexible tube) is inserted into an artery, DSA is considered
to be invasive. MRA is a procedure to image blood vessels based on MRI. Unlike
DSA that involves placing a catheter into the body, MRA is considered noninvasive.
Therefore, we are interested in the non-inferiority of MRA to DSA where the non-
inferiority margin is set as � D 0:1. From Table 7.10 based on the multiple raters,
we have Qp2: D 20=27, Qp1: D 5=27, Qp:2 D 22=27 and Qp:1 D 2=27. Then, the
sensitivities of MRA and DSA are estimated as Q�MRA D .20 C 1=2 � 5/ =27 D
0:833 and Q�DSA D .22 C 1=2 � 2/ =27 D 0:852, respectively. Moreover, we have
QqN 2 D 1=27, QqN1 D .0 C 2/=27, QqS2 D 0=27 and QqS1 D .3 C 2/=27. Then, the
difference in the sensitivities between MRA and DSA based on the two raters is
Q�KD2 D �0:019, and the normal deviate test has ZND D 1:393 � ZS (one-sided
p-value D 0:082). The score-type 95 % confidence interval is �0:141 to 0:144

where the lower limit is not greater than �� D �0:1. Furthermore, the Wald-
type test has Zw D 1:397 (one-sided p-value D 0:081) and the Wald-type 95 %
confidence interval under the null hypothesis is �0:139 to 0:102. From Table 7.11
based on the consensus evaluations, on the other hand, the sensitivities of MRA
and DSA are estimated as Q�MRACE D 0:926 and Q�DSACE D 0:889, respectively.
Then, the difference in the sensitivities between MRA and DSA based on the
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Table 7.10 A 3 � 3 contingency table (K D 2) of the assessments of MRA and DSA by two
neuroradiologists (True positive (TP: C) and false negative (FN: �) by two neuroradiologists (1,
2): I (C, C), II (C, � or �, C), III (�, �)) (Jäger et al. [4])

DSA

TP and FN by two radiologists I II III Total

MRA I 19 0 1 20

II 3 0 2 5

III 0 2 0 2

Total 22 2 3 27

DSA, digital subtraction angiography; FN, false negative;
MRA, magnetic resonance angiography; TP, true positive

Table 7.11 A 2 � 2

contingency table of the
assessments of MRA and
DSA by consensus
evaluations (True positive
(TP: C) and false negative
(FN: �)) (Jäger et al. [4])

DSA

TP and FN by consensus evaluations C � Total

MRA C 22 3 25

� 2 0 2

Total 24 3 27

DSA, digital subtraction angiography; FN, false negative;
MRA, magnetic resonance angiography; TP, true positive

consensus evaluations is Q�CE D 0:037, and the score test derived from Nam [10]
and Tango [17] has ZS D 1:510 (one-sided p-value D 0:066). Moreover, the
score-based 95 % confidence interval derived from Tango [17] is �0:150 to 0:227.
These results suggest that the non-inferiority of MRA to DSA cannot be claimed at
the one-sided significance level. However, although the difference in the sensitivities
based on the two raters Q�KD2 is a negative value, the difference in the sensitivities
based on the consensus evaluations Q�CE is a positive value. We consider that bias
from the consensus evaluations caused this phenomenon.

7.6 Conclusion

A non-inferiority trial of diagnostic procedures is generally evaluated on the basis
of the results from multiple independent raters who are independent of the study
centers. However, consensus evaluations or majority votes to handle multiple results
from the multiple raters are not recommended in terms of bias or loss of information
[1, 2, 12]. Therefore, it is important that all of the results from the multiple raters
are utilized appropriately in the statistical analysis. The methods addressed in
this chapter are available for inference of the difference in correlated proportions
between the two diagnostic procedures based on the multiple raters. In this chapter,
we introduced methods on the basis of sensitivity. However, the methods can be
applied to inference of the difference in specificity. Furthermore, if we need to
consider the simultaneous non-inferiority of a new diagnostic procedure to the
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standard diagnostic procedure in sensitivity and specificity, we can extend the
methods using an approach proposed by Lu et al. [8]. Lu et al. extended the score
test proposed by Nam [10] and Tango [17] for a single proportion to a simultaneous
test for both sensitivity and specificity based on the principle of intersection-union
test.

We carried out Monte Carlo simulation studies to evaluate the performance of
these methods. The normal deviate test for non-inferiority was shown to have an
empirical size closer to a nominal significance level of one-sided 2:5 % than the
Wald-type test or the test based on the majority votes. Moreover, the score-type
confidence interval had better performance than the Wald-type confidence interval
under the null-hypothesis in terms of coverage probability, when the sample size
was small. On the other hand, the confidence interval based on the majority votes
shows a conservative property.

When we plan a clinical trial to compare the efficacies between two diagnostic
procedures, it is very important to take into account the study design. The methods
addressed in this chapter are only useful for a study design in which two diagnostic
procedures are applied to each subject and all raters evaluate all subjects, that is,
paired-patient, paired-rater design. Zhou et al. [18] provided information on study
designs for diagnostic procedures in detail. Moreover, it is noted that these methods
may not be appropriate for clustered matched-pair data. Schwenke and Busse [16]
proposed a Wald-type test for clustered matched-pair data based on multiple raters.
However, the test of Schwenke and Busse is a so-called test for superiority and
cannot be used as a test for non-inferiority. If the results of the two diagnostic
procedures are evaluated by a single rater, we can apply several non-inferiority
tests for clustered matched-pair data [3, 5, 11]. Therefore, we expect that a non-
inferiority test for clustered matched-pair data on the basis of the results from
multiple raters will be developed. If there are missing data among the results from
the multiple raters in some subject, we would have to apply some kind of imputation
method, which would require future research. Furthermore, if the presence of a
qualitative interaction between the two diagnostic procedures and the multiple raters
is demonstrated, we would not be able to apply these methods for those data.
However, this problem could probably be solved by a non-statistical study, for
example, by training all of the raters on the criteria of judgment about diagnostic
procedures before the start of evaluation.

7.7 Program

The R programs for the methods of this chapter can be downloaded at http://www.
medstat.jp/downloadsaeki.html.

http://www.medstat.jp/downloadsaeki.html
http://www.medstat.jp/downloadsaeki.html
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