
Chapter 6
Recent Developments in Group-Sequential
Designs

James M.S. Wason

Abstract In a group-sequential trial, patients are recruited in groups, and their
response to treatment is assessed. After each group is assessed, an interim analysis is
conducted. At each interim analysis, the trial can stop for futility, stop for efficacy,
or continue. The main advantage of group-sequential designs is that the expected
number of patients is reduced compared to a design without interim analyses. There
are infinitely many possible group-sequential designs to use, and the choice strongly
affects the operating characteristics of the trial. This chapter discusses optimal and
admissible group-sequential designs. Optimal designs minimise the expected sam-
ple size at some specified treatment effect; admissible designs optimise a weighted
sum of trial properties of interest, such as expected sample size and maximum
sample size. Methods for finding such designs are discussed, including a detailed
description of an R package that implements a quick search procedure. Recent
applications of group-sequential methodology to trials with multiple experimental
treatments being tested against a single control treatment are also described.

6.1 Group-Sequential Designs Background

The traditional approach to analysing a randomised controlled trial is to conduct
a statistical test of some null-hypothesis after a planned number of patients are
recruited. In most disease areas, the number of patients is limited and so recruitment
is generally time-consuming. Thus, data on the effect of treatment on early patients
are available before recruitment is finished. A group-sequential design allows for
multiple tests of the null-hypothesis as data is accrued. These earlier tests are
referred to as interim analyses. The trial design may allow for early stopping if
results from an interim analysis suggest the experimental treatment is significantly
better than the control treatment. This is referred to as stopping for efficacy. The
design may also allow for early stopping for futility if the results at an interim
analysis suggest the trial is unlikely to end in success. A third reason for stopping
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is for safety – for example if the new treatment causes unacceptable side-effects.
We just consider designs that allow stopping on the basis of whether or not the
new treatment is effective, but one can also incorporate safety monitoring [5] into
group-sequential designs.

The main advantages of group-sequential designs over designs that have no
interim analyses (referred to as fixed sample-size trials) are:

1. Due to the possibility of early stopping, the expected sample size used in a trial
will be lower than a fixed sample-size trial with the same significance level and
power;

2. If the experimental treatment is less effective than the control treatment, the
trial may stop early, meaning fewer patients are subjected to an ineffective
experimental treatment;

3. In the long run, due to lower expected sample sizes, a limited set of patients can
support more trials.

Group-sequential designs also have disadvantages:

1. More analyses means more statistical and data-management support is required;
2. Interim analyses require data to be unblinded before the end of the trial, meaning

more potential for bias;
3. Since the null hypothesis is tested multiple times, the significance level of each

analysis must be lower than that of the fixed sample-size trial in order to control
the overall significance level; thus, if the trial continues to the end without
stopping, the sample size used in the group-sequential trial will be larger than
the fixed sample size trial.

Group-sequential designs are less useful when the outcome of interest takes a
long time to observe, since recruitment will often be completed before the data on
the effect of treatment on early patients are available. In settings where the treatment
outcome is observed relatively quickly, the efficiency and ethical advantages of
group-sequential designs are generally thought to outweigh the disadvantages.

In this chapter we will restrict attention to one-sided group-sequential designs.
These are used when the null-hypothesis is tested against a one-sided alternative
hypothesis. One-sided group-sequential tests are more relevant in clinical trials, as
the experimental treatment is generally not of interest if it is worse than the control
treatment.

A one-sided group-sequential design is parametrised by: (1) the number of
patients to be recruited at each stage; (2) the futility boundaries, determining the
threshold for futility stopping at each analysis; and (3) the efficacy boundaries,
determining the thresholds for efficacy stopping at each analysis. The constraints on
the design are the overall type-I error rate and power of the design. Since there are
more parameters than constraints, there are an infinite number of possible designs to
choose from. The choice of design is extremely important as it affects the statistical
properties of the design, such as expected sample size.

There are three main approaches to choosing a design. The first is to constrain
the stopping boundaries using some shape function. Commonly used functions are
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those of Pocock [22], O’Brien and Flemming [20], and Whitehead [33]. The main
advantage of this approach is that it is quick to find a design; the main disadvantage
is that the properties of the design, such as expected sample size, may not be
desirable for the investigator. A second approach is to use a more flexible family
of stopping boundary functions. For example, the power-family of group-sequential
tests, proposed by Pampallona and Tsiatis [21], is a single-parameter family of
stopping boundary shapes. By varying the parameter, the properties of the resulting
design differ. A third approach, is to search over the full set of parameters in order
to choose the design that best matches the desired properties of the investigator.

This chapter provides an overview of some recent methodological developments
in group-sequential designs, and is organised as follows: in Sect. 6.2, notation for
the rest of the chapter is given; in Sect. 6.3 some background on optimal designs is
provided; in Sect. 6.4 the ı-minimax design is motivated, and a simulated annealing
technique to find optimal designs is discussed; in Sect. 6.5 the concept of admissible
designs is motivated and discussed; in Sect. 6.6 the problem of not knowing the
variance of the treatment response at the design stage is addressed; in Sect. 6.7
an R package which allows quick finding of admissible designs is described; in
Sect. 6.8, extensions of group-sequential methods to multi-arm multi-stage designs
are discussed; finally in Sect. 6.9, some limitations and possible extensions of the
methods in the chapter are discussed.

6.2 Notation

Consider a randomised two-arm group-sequential design with up to J analyses.
The j th analysis takes place after nj patients have been randomised to each arm,
and their treatment response measured. The response of patient i on the control
arm, X0i , is assumed to be distributed as N.�0; �2/, with the response of patient i

on the experimental arm, X1i , is assumed to be distributed as N.�1; �2/. Here, the
value of �2 is assumed to be known, although unknown variance will be addressed
in Sect. 6.6. The parameter of interest is the difference in mean response between
the experimental and control arms, �1 � �0, and is labelled ı. The null-hypothesis
tested is H0 W ı � ı0. A design is required such that the probability of rejecting
the null is at most ˛ when H0 is true, and at least 1 � ˇ when ı � ı1, where ı1 is
the clinically relevant difference (CRD). The value of ı0 will generally be set to 0,
indicating that any improvement is of interest. These two constraints are referred to
as the type-I error and power constraints respectively. A design which meets both
constraints is called feasible.

At a given interim analysis j , the z-statistic for testing H0, Zj , is calculated:

Zj D
r

nj

2�2

Pnj

iD1 Xi1 � Pnj

iD1 Xi0

nj

: (6.1)
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If Zj > ej , the trial stops for efficacy; if Zj � fj , the trial stops for futility. If it is
between the two thresholds, the trial continues to stage j C 1. The value of eJ is set
to fJ to ensure that a decision is made at the last interim analysis.

The number of design parameters is 3J � 1: J parameters for the sample size at
each stage, J efficacy parameters e D .e1; : : : ; eJ ), and J futility parameters f D
.f1; : : : ; fJ �1/ (actually J � 1 free parameters as fJ D eJ ). Generally the number
of parameters is reduced by assuming a constant number of patients recruited per
stage to each treatment arm, n, called the group-size. With this assumption, the value
of nj will be equal to jn. This reduces the number of parameters to 2J .

The vector of random variables .Z1; Z2; : : : ; ZJ / has a multivariate normal

distribution with mean vector
�q

n
2�2 ı;

q
2n
2�2 ı; : : : ;

q
Jn

2�2 ı
�

, and covariance matrix

˙ , where the .i; j /th entry of ˙ , ˙ij, is equal to
q

min.i;j /

max.i;j /
, [31]. Finding the

probability of stopping for efficacy at stage j , ˘j , involves multivariate integration.
Stopping for efficacy at the j th stage happens if and only if .Z1; : : : ; Zj �1/ were
all between the futility and efficacy stopping boundaries, and Zj is above ej . The
probability of this is:

˘J .ı/ D
Z e1

f1

Z e2

f2

: : :

Z ej �1

fj �1

Z 1

ej

fZ.j /
.z1; : : : ; zj /dzj : : : dz1 ; (6.2)

where fZ.j /
is the pdf of .Z1; : : : ; Zj /. Note that the mean of Z.j / depends on ı,

but the covariance does not. Equation (6.2) can be evaluated using the technique
of Genz and Bretz [10], or the technique of Armitage [2, 18], described further in
Chap. 19 of Jennison and Turnbull [13]. Note that the normality of the test statistics
is the main assumption used and not the normality of the treatment endpoint –
therefore other types of endpoints such as binary and time-to-event for which there
are asymptotically normally distributed test statistics can be considered within this
framework [13].

The probabilities ˘1.ı/; : : : ; ˘J .ı/ can be summed to give the total probability
of stopping for efficacy. Setting ı D ı0 will give the type-I error rate, and setting ı D
ı1 will give the power. A similar formula as (6.2) can be used to find the probability
of stopping for futility at each stage. From the probabilities of stopping for futility
and efficacy at each stage, the expected sample size can be straightforwardly found.

6.3 Optimal Group-Sequential Designs

Within the context of group-sequential designs, an optimal design is one that
satisfies the required type-I error rate and power (i.e. it is feasible), and out of all
possible feasible designs, it optimises some criterion of interest. Criteria considered
tend to be some function of the sample size, for example the expected sample size
at some value of ı.
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Finding an optimal design involves searching over the stopping boundary
parameters as well as the sample size parameters. With the constraints described
in Sect. 6.2, searching for an optimal J -stage group-sequential design involves
searching over 2�J parameters, as the final futility and efficacy threshold are set to
be the same. There are just two constraints: the type-I error and the power. This is a
computationally challenging problem when J > 2, as the number of parameters is
large and there are many local optima in the set of designs to be searched.

The method of dynamic programming was proposed for finding symmetric (i.e.
the type-I error rate, ˛, is equal to the type-II error rate, ˇ) optimal one-sided group-
sequential designs [7] and optimal two-sided designs [8]. This was extended to
non-symmetric designs by Barber and Eales [3]. The method works by defining
a Bayes decision theory problem for which the optimal group-sequential design is
the solution. The decision theory problem is to decide between D0 W ı D 0 and
Dı W ı D ı�, with the cost of making decision D with true treatment difference ı

equal to C.D0; ı�/ D dı for D D D0, and C.Dı; 0/ D d0 for D D Dı. For any
other value of ı, C.D; ı/ is set to be 0. Backwards induction can be used to find the
design that minimises a given objective function, such as expected sample size at
the null hypothesis. A numerical search over (d0; dı) is conducted in order to find
the design giving the correct type-I error rate and power. This final design will then
be the optimal one.

Generally this method can be used to find an optimal design when the optimality
criterion is the expected sample size at a specific value of ı (or sums of expected
sample sizes at different values of ı). However, in the next section an optimality
criteria is proposed that is of potential interest and that cannot be optimised using
dynamic programming.

6.4 ı-Minimax Design and Simulated Annealing

The expected sample size of a group-sequential design depends on the true treatment
effect. If an optimal design is chosen for a particular treatment effect, then the design
may perform poorly when the true treatment effect varies from the design value.
For designs allowing stopping for both futility and efficacy, the expected sample
size increases in ı monotonically to a maximum and then decreases monotonically.
Intuitively this is because as ı increases, the probability of the trial stopping early
for futility decreases monotonically, but the probability of the trial stopping early
for efficacy increases monotonically. A slightly more formal explanation is given in
Wason, Mander and Thompson [31].

Thus each design has a treatment effect, Qı, that leads to the design having
the maximum expected sample size over all possible values of ı. This is called
the worst-case-scenario treatment effect. The optimality criterion of choosing the
feasible design with the lowest maximum expected sample size was proposed for
two-stage trials with binary outcomes by Shuster [25]. The design showed some
good properties such as low expected sample sizes at the null treatment effect



102 J.M.S. Wason

and CRD. The design was extended to two-stage trials with normally distributed
outcomes by Wason and Mander [30] and named the ı-minimax design, as it has
the lowest maximum expected sample size over ı. To find the ı-minimax design for
two-stages, it is feasible to use a grid-search technique, as the number of parameters
(i.e. futility and efficacy boundary parameters, and group-size) is low. For more than
two-stages, there are too many parameters to perform a grid-search. The dynamic
programming algorithm proposed by Barber and Jennison [3] works when the
optimality criterion is independent of the design; however the value of Qı depends
on the design, thus a different method must be used for J > 2. In Wason et al. [31],
use of a stochastic search technique called simulated annealing was proposed to find
the ı-minimax design.

The simulated annealing algorithm is described in detail in the supplementary
material of Wason et al. [31], and C code is available on the author’s website (http://
sites.google.com/site/jmswason). Each iteration of the simulated annealing process
consists of two steps. The first step is to generate a new candidate design from the
current design (i.e. the design which the process is currently at). The second step is
to decide whether the process should move from the current design to the candidate
design. Both steps rely on so-called ‘temperature’ parameters. At the end of each
iteration, the temperature parameters are reduced. As the temperature parameters
fall: (1) the candidate design generated at each iteration will, on average, be closer
to the current design; and (2) the process is less likely to move to a design that is
worse. In this way, the process is more likely to explore the space of designs towards
the beginning, with the aim of avoiding getting stuck at a local optimum.

For two and three-stage designs, simulated annealing is quick and reliable, with
results not varying considerably between independent runs. However, for four or
more stages, the process takes longer and becomes less reliable. The reason that
it takes longer is that evaluating the operating characteristics of a design is more
time-consuming when there are more stages. The process is less reliable because
the number of parameters is greater and there are more local optima in the space of
possible designs. One can run the simulated annealing process for longer in order
to improve reliability, but of course this takes longer. With four or five stages,
it is recommended that a number of independent simulated annealing processes
with different random number seeds are run. The best resulting design can then
be chosen.

The ı-minimax design is comparable to the triangular design proposed by
Whitehead and Stratton [33]. In the case of a symmetric (˛ D ˇ) and fully sequential
(i.e. interim analyses after each patient), as the type-I error rate converges to 0, the
resulting triangular stopping boundaries minimise the maximum expected sample
size. It is thus of interest to see whether the ı-minimax design adds anything over
the use of the triangular stopping boundaries. Table 6.1 shows, for ı0 D 0, ı1 D 1,
� D 3 and various values of J , the expected sample size of the null-optimal design
(optimal at ı D ı0), the CRD-optimal design (optimal at ı D ı1), the ı-minimax
design, and the triangular test at: (1) the null treatment effect, i.e. 0; (2) the CRD, i.e.
1; (3) the worst-case-scenario treatment effect. Also shown is the maximum sample
size used by the design if early stopping does not take place.

http://sites.google.com/site/jmswason
http://sites.google.com/site/jmswason
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Table 6.1 Expected and maximum sample sizes per arm of investigated designs for different
numbers of stages. The random variable N denotes the sample size per arm used with a specified
design

Null-optimal CRD-optimal ı-minimax Triangular design

J D 2 E.N jı D ı0/ 107.6 118.0 110.9 111.2

E.N jı D ı1/ 130.5 117.1 119.4 117.6

E.N jı D Qı/ 138.9 136.8 133.3 132.2

Maximum sample size 170 172 180 180

J D 3 E.N jı D ı0/ 94.9 105.7 98.0 100.4

E.N jı D ı1/ 128.9 107.0 109.2 108.4

E.N jı D Qı/ 137.3 130.0 125.9 125.5

Maximum sample size 183 186 189 192

J D 4 E.N jı D ı0/ 88.7 98.0 92.7 98.3

E.N jı D ı1/ 119.1 102.2 105.0 106.1

E.N jı D Qı/ 130.6 125.5 122.0 124.9

Maximum sample size 192 196 196 204

J D 5 E.N jı D ı0/ 85.4 92.1 89.2 96.0

E.N jı D ı1/ 113.1 99.3 102.8 103.9

E.N jı D Qı/ 126.8 122.5 119.6 123.0

Maximum sample size 200 210 205 210

Table 6.2 Group-size, futility stopping boundaries, and efficacy stopping boundaries of five-stage
optimal and triangular designs

Design n f e

Null-optimal 40 .�0:24; 0:37; 0:76; 1:09; 1:56/ .3:01; 2:47; 2:23; 2:03; 1:56/

CRD-optimal 42 .�0:51; 0:29; 0:83; 1:33; 2:05/ .2:14; 2:05; 2:09; 2:15; 2:05/

ı-minimax 41 .�0:52; 0:34; 0:92; 1:38; 1:83/ .2:54; 2:09; 2:03; 1:96; 1:83/

Triangular 42 .�0:85; 0:30; 0:98; 1:49; 1:90/ .2:55; 2:10; 1:96; 1:91; 1:90/

When J D 2 or 3, the ı-minimax and triangular designs have very similar
expected sample size properties. The ı-minimax design in fact has a higher
maximum expected sample size for J D 2; 3, but this is because the equations
determining the triangular design, given in Jennison and Turnbull [13], for given
˛ ¤ ˇ do not result in the feasibility constraints being met exactly (the triangular
design has ˛ D 0:0517 and 0:0512 for J D 2 and J D 3 respectively). For J D 4

and 5 the ı-minimax design is more distinct, having a 7.1 % reduction in expected
sample size under the null, and a 5.7 % reduction for J D 4, compared to the
triangular design.

Table 6.2 shows the design parameters for each five-stage design, and Fig. 6.1
shows the stopping boundaries of the three optimal designs graphically. Although
the expected sample size patterns are similar, the stopping boundaries of the
ı-minimax and triangular designs are somewhat different. Generally the ı-minimax
design is marginally more likely to stop at the first stage, although this is balanced
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Fig. 6.1 Futility and efficacy
stopping boundaries, in terms
of test statistics, of the
null-optimal, CRD-optimal,
and ı-minimax design for
˛ D 0:05; ˇ D 0:1; � D
3; ı0 D 0; ı1 D 1
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by it being slightly less likely to stop once the trial is at a later stage. The maximum
sample sizes are similar, but differ between the designs for some values of J (see
Table 6.1).

The ı-minimax design has desirable properties in comparison to the other two
optimal designs. By definition it has the lowest maximum expected sample size
of the three designs, but it also has low expected sample sizes across the range of
treatment effects considered. When the treatment effect is close to ı0, its expected
sample size is only slightly higher than that of the null-optimal design; similarly its
expected sample size is only slightly higher than that of the CRD-optimal design
when ı is close to ı1. The optimal designs perform well when ı is close to the
treatment effect for which they are optimal, but poorly when ı is different. As one
would expect, the expected sample size curves shifts downwards as J increases,
indicating that including more stages results in lower expected sample sizes at each
value of ı. The relative shapes of the curves change slightly, especially as ı increases
past ı1.

Minimising the expected sample size is an important objective in trials, but it
is also of interest to control the maximum potential sample size. A design which
yields a small improvement in expected sample size at a cost of a large increase
in maximum sample size is unlikely to be preferred in practice. Table 6.1 shows
that the ı-minimax and triangular designs generally have larger maximum sample
sizes compared to null-optimal and CRD-optimal designs. All the optimal designs
have maximum sample sizes noticeably larger than the sample size required for the
one-stage design (155).

6.5 Admissible Designs

Optimal designs tend to have large maximum sample sizes, which can be
problematic for planning individual trials. In addition, they may perform poorly
with respect to other criteria of interest. For example, the null-optimal design has
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a relatively high maximum expected sample size. Admissible designs have been
proposed in order to balance over more than one criteria of interest.

The first work on admissible designs was in the context of two-stage trial
designs with binary outcomes and only futility stopping allowed. These designs
have been well studied in the literature due to their relative simplicity and the fact
that all possible designs can be enumerated (as sample size and stopping boundary
parameters are all integers). Simon [26] discussed and recommended two designs
for this type of trial. The first was the ‘optimal’ design (in the terminology of
Sect. 6.4, the null-optimal design). The second was the ‘minimax’ design, which
chooses the design with the lowest expected sample size at the null out of all designs
that have the lowest maximum sample size. Jung et al. [14] noted that the optimal
design has a relatively large maximum sample size, and the minimax design has a
relatively large expected sample size. These observations motivated investigation of
‘admissible’ designs, which would balance the two criteria.

To do this, the authors specified a loss function as the weighted sum of the
expected sample size under the null treatment effect and the maximum sample size:
!E.N jH0/ C .1 � !/ max.N /, for ! 2 Œ0; 1�. Admissible designs are feasible
designs that minimise the loss function for some value of w. Additional information
is available in Jung et al. [14] about how this corresponds to admissible decision
rules in Bayesian decision theory. The optimal and minimax designs are admissible
(for ! D 1 and 0 respectively), but other admissible designs also exist which
balance the two quantities in different ways. Admissible designs exist that show
very small increases in expected sample size compared with the optimal design,
but large decreases in the maximum sample size. In practice, such a design may be
preferable to the optimal design, as a small maximum sample size is desirable.

Mander et al. [17] extend the ideas in Jung et al. to phase II trials with
binary outcomes allowing early stopping for efficacy. When stopping for efficacy
is allowed, the expected sample sizes at treatment effects other than the null are also
of interest. Designs that are admissible with respect to the expected sample size at
the null, the expected sample size at the CRD, and the maximum sample size are
evaluated.

When considering normally distributed endpoints, finding admissible designs
is more challenging. This is because the stopping boundary parameters are non-
integer and so infinitely many feasible designs exist. This is as opposed to the
binary outcome case where the stopping boundary parameters are integers, and so
all designs can be enumerated. Instead, in Wason et al. [31], it was argued that the
maximum expected sample size could be used as a surrogate for all expected sample
sizes of interest. The loss function in this case is:

!E.N j Qı/ C .1 � !/ max.N / : (6.3)

The advantage of just considering the two criteria in (6.3) is that it is
computationally feasible to find all admissible designs. For each possible maximum
sample size, the futility and efficacy parameters can be chosen so that the maximum
expected sample size is minimised. Any other design with that maximum sample
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Table 6.3 Properties of
admissible designs for
J D 3; max.N / D maximum
sample size per arm, !

interval gives the values of !

that would lead to that design
being the admissible design
of choice

max.N / E.N jı0/ E.N jı1/ E.N jQı/ ! interval

156 117.29 124.73 139.02 [0,0.426)

159 107.34 121.43 134.97 [0.426,0.539)

165 102.05 114.78 129.83 [0.539,0.713)

168 101.44 112.55 128.62 [0.713,0.820)

171 100.21 111.23 127.96 [0.820,0.843)

177 98.19 111.14 126.84 [0.843,0.921)

186 98.74 109.19 126.07 [0.921,0.981)

189 98.20 109.88 126.01 [0.981,1]

Fig. 6.2 Expected sample
sizes of ı-minimax design
(solid line) and admissible
design with N D 171 in
Table 6.3 (dashed line)
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size cannot be admissible because loss function (6.3) will always be higher (unless
! D 0). No design with maximum sample size greater than that of the ı-minimax
design can be admissible, as such a design would have both a higher maximum
sample size and a higher maximum expected sample size.

As an illustration, Table 6.3 displays the properties of the possible admissible
designs for ı0 D 0, ı1 D 1, � D 3, ˛ D 0:05, 1 � ˇ D 0:9.

From Table 6.3, using the value of max.E.N // as an admissibility criterion is a
good surrogate for jointly considering E.N jı0/ and E.N jı1/, since the two latter
quantities generally decrease as the former does. The table includes the range of !’s
(i.e. the weighting put on the maximum expected sample size) for which each design
is best. For instance, if the two quantities are each given equal weight .! D 0:5/, the
second design in the table is the best one to pick. The choice of ! may depend on
several factors. For instance, if the trial is being carried out in an area with limited
patient numbers, ! might be chosen to be low, since it would be desirable to reduce
the maximum sample size. In other situations, a higher value of ! may be preferred,
since on average the number of patients required is reduced.

Figure 6.2 shows the expected sample size curve of the ı-minimax design for
a range of values of ı. Also included is the expected sample size curve for the
admissible design from Table 6.3 with max.N / D 171. The difference in the
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expected sample size curves is very small, but there is a 9.5 % reduction in the
maximum sample size. This indicates that by relaxing the requirement for optimality
very slightly, a big improvement in other characteristics of interest is possible.

6.6 Unknown Variance

A common assumption made in the design of group-sequential trials is that the
variance of the treatment response, �2 is known for each arm. In practice this is
unlikely to be the case, and if the postulated value is incorrect, then the operating
characteristics of the trial can be strongly affected.

Various techniques to allow for unknown variance have been proposed in the
literature. Shao and Feng [24] suggest using Monte-Carlo simulation to choose an
appropriate critical value. Although this technique would be too computationally
intensive to be used in conjunction with a search for optimal designs, it could be
used to modify the final design’s stopping boundaries. Jennison and Turnbull [12]
show how one can convert boundaries for the known variance case to the unknown
variance case using a recursive algorithm.

Jennison and Turnbull [13] propose a method for converting the stopping
boundaries that is simpler than the recursive algorithm and less computationally
intensive than simulation. Recall that fj and ej are the stopping boundaries for
analysis j , and nj is the number of patients per arm that are randomised by the
time of the analysis. Then the thresholds for stopping in terms of p-values are
attained from the quantile of the normal distribution, i.e. 1 � ˚.ej / and 1 � ˚.fj /

respectively. With unknown variance, when ı D 0, the test-statistics would be
marginally distributed as a Student’s t-distribution with 2nj �2 degrees of freedom.
Therefore by substituting in new stopping boundaries f 0

j D T2nj �2.1 � ˚.fj //

and e0
j D T2nj �2.1 � ˚.ej //, where Tp is the cumulative distribution function of

Student’s t-distribution with p degrees of freedom, the design will marginally have
the correct stopping characteristics (under the null) at each stage. The overall type-I
error rate of the trial will still differ from its nominal value because the assumed
correlation between test-statistics when the variance is known will differ from the
actual correlation when it is unknown (the size of the difference is investigated later
on in this section).

Table 6.4, taken from Wason et al. [31], shows the type-I error rate and power
for the five-stage ı-minimax design for ı1 D 1; � D 3; ˛ D 0:05; ˇ D 0:1 as the
true value of � differs from 3. Three scenarios are considered: (1) no modification is
made, (2) t-tests are used with the known-variance stopping boundaries, (3) t-tests
are used with the stopping boundaries modified using the quantile-substitution
method. The type-I error rate and power are estimated from 250; 000 independent
replicates each.

The simulated type-I error rates show that methods (2) and (3) both work well.
The type-I error rates are very close to the required level of 0.05, with quantile-
substitution working slightly better. The power is not controlled as the value of
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Table 6.4 Type-I error rate and power estimates as the true standard deviation varies from the
assumed value of 3

Type I error Power
T-test with T-test with

� Z-test T-test modified boundaries Z-test T-test modified boundaries

1 0.000 0.051 0.050 1.000 1.000 1.000

1.5 0.000 0.052 0.050 0.998 1.000 1.000

2 0.000 0.051 0.050 0.984 0.995 0.995

2.5 0.021 0.052 0.050 0.95 0.965 0.965

3 0.050 0.051 0.050 0.900 0.900 0.899

3.5 0.086 0.052 0.050 0.851 0.810 0.809

4 0.124 0.052 0.051 0.807 0.714 0.712

4.5 0.158 0.052 0.051 0.768 0.626 0.623

5 0.189 0.051 0.050 0.737 0.550 0.547

Table 6.5 Type-I error rate and power estimates as the true standard deviation varies from the
assumed value of 1

Type I error Power
T-test with T-test with

� Z-test T-test modified boundaries Z-test T-test modified boundaries

0.25 0.000 0.070 0.054 1.000 1.000 1.000

0.5 0.000 0.069 0.052 0.997 1.000 1.000

0.75 0.011 0.069 0.053 0.964 0.986 0.985

1 0.050 0.069 0.052 0.900 0.902 0.893

1.25 0.102 0.068 0.052 0.832 0.768 0.750

1.5 0.154 0.069 0.052 0.775 0.64 0.613

1.75 0.201 0.069 0.052 0.726 0.533 0.503

2 0.236 0.069 0.052 0.691 0.455 0.424

� increases however. To overcome this, an adaptive design would be required in
which the sample size of the rest of the trial is chosen depending on the estimated
variance; an example of this is given in Whitehead et al. [34]. The good performance
of both methods (2) and (3) could be due to the large group-size resulting in
the degrees of freedom of the t-distribution being sufficiently high to allow the
standard normal to be a good approximation. To see what happens when the group-
size is lower, results are shown for the five-stage ı-minimax design with � D 1.
This results in a group-size of 4, f D .�0:914; �0:026; 0:698; 1:177; 1:761/, and
e D .2:980; 2:308; 2:048; 1:976; 1:761/. It is clear that the type-I error rate is less
well controlled in this case (Table 6.5), although the T-test in conjunction with the
quantile-substitution method controls the type-I error rate fairly well.

Thus it seems that quantile substitution is a straightforward, but effective method
to control the type-I error rate when the variance is unknown.
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6.7 OptGS: An R Package for Optimal and Admissible
Group-Sequential Designs

The consideration of optimal and admissible group-sequential designs has been
motivated in the previous sections. All the theory to implement finding such
designs is available in the literature, but it takes a lot of work to implement from
scratch. There are some existing software packages that implement group-sequential
designs, summarised by Wassmer and Vandemeulebroecke [32]. The IML module
in SAS R� contains routines that allow calculation of stopping boundaries that give
a specified type-I error rate. In R, the package gsDesign [1] allows the user to find
boundaries and group-size required for several group-sequential designs, including
O’Brien-Flemming and Pocock. Commercially available stand-alone programs that
implement group-sequential designs include ADDPLAN, East, PASS, and PEST.
However, none of these software packages include a function that searches for
optimal or admissible designs.

FORTRAN code that implements searching for optimal designs using dynamic
programming, as described in Barber and Jennison [3] is available from Stuart
Barber’s webpage (http://www1.maths.leeds.ac.uk/~stuart/Research/Software/
0118.tar). Compilation of the code requires some technical computing knowledge,
as it requires installation of the GNU Scientific Library. The code would also
not be extendable to all optimality criterion, for example the maximum expected
sample size. In this section, the R package OptGS [28] is described, which is freely
available from the author’s website (http://sites.google.com/site/jmswason). The
package allows quick searching for designs that are near-optimal, or admissible with
respect to four optimality criteria. Instead of simulated annealing, an extension of
the Power-family is used. This extension allows a wide range of stopping boundary
shapes, but considerably reduces the time taken to search. A quick method for
searching is desirable so that investigators may explore many possible admissible
designs in a short time.

6.7.1 Two-Parameter Power Family

The power family of group-sequential tests was first proposed by Emerson and
Flemming [9] for symmetric designs (i.e. ˛ D ˇ). Pampallona and Tsiatis [21]
extended the family to allow non-symmetric designs (˛ ¤ ˇ). In this section we
consider the formulation of Pampallona and Tsiatis. The family is indexed by a
parameter �, which determines the shape of the stopping boundaries. The power-
family stopping boundaries are:

ej D Ce.J; ˛; ˇ; �/.j=J /��0:5

fj D ı1

q
Ij � Cf .J; ˛; ˇ; �/.j=J /��0:5 ;

where Ij D 2nj =�2.

http://www1.maths.leeds.ac.uk/~stuart/Research/Software/0118.tar
http://www1.maths.leeds.ac.uk/~stuart/Research/Software/0118.tar
http://sites.google.com/site/jmswason
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To meet the required constraint eJ D fJ , the value of IJ is set to:

IJ D 2nJ =�2 D
˚
Ce.J; ˛; ˇ; �/ C Cf .J; ˛; ˇ; �/

�2

ı2
: (6.4)

For a specific value of �, Cf .J; ˛; ˇ; �/ and Ce.J; ˛; ˇ; �/ take values such
that the design has correct type-I error rate and power. Varying � changes the
shape of the boundaries, and thus the operating characteristics of the design, with
higher values generally giving designs with lower expected sample sizes, but higher
maximum sample sizes.

Although the power-family provides a flexible range of stopping boundary
shapes, it does not provide enough flexibility to include optimal designs. For optimal
designs, the shape of the efficacy stopping boundaries will differ from the shape of
the futility stopping boundaries.

OptGS uses a straightforward extension to the power family: introducing two
shape parameters �f and �e, allowing the shape of the futility and efficacy
boundaries to differ, and thus allowing greater flexibility in shape. The stopping
boundaries are:

ej D Ce.J; ˛; ˇ; �/.j=J /�e�0:5

fj D ı1

q
Ij � Cf .J; ˛; ˇ; �/.j=J /�f �0:5 : (6.5)

Note that Eq. (6.4) still ensures eJ D fJ .
Given values of .J; �f ; �e; Cf ; Ce/, the group-size and stopping boundaries are

determined from (6.4) and (6.5). As in Pampallona and Tsiatis [21], for each value
of .�f ; �e/, values of Cf and Ce exist so that the design has desired type-I error
rate, ˛, and power, 1 � ˇ. These values can be found by searching for the values of
.Cf ; Ce/ that minimise the following function:

.˛�.J; �f ; �e; Cf ; Ce/ � ˛/2 C .ˇ�.J; �f ; �e; Cf ; Ce; ı/ � ˇ/2 ; (6.6)

where ˛�.�/ and ˇ�.�/ are the type-I and type-II error rate of the design given by
.J; �f ; �e; Cf ; Ce/. The value of (6.6) is 0 if and only if the type-I error rate and
power of the design are equal to the required values. In OptGS, this minimisation is
performed using the Nelder-Mead algorithm [19].

The Nelder-Mead algorithm is also used to search over values of .�f ; �e/ in
order to find an optimal design. Almost surely, the optimal value of .�f ; �e/ will
imply a non-integer group size. To get a final design with integer group-size, two
additional optimisations are run. The first with the constraint that the final group-size
is equal to the group-size implied by the optimal .�f ; �e/ rounded up. The second
instead rounding down. Of the designs found, the one that is closer to optimal is
picked as the final design. Additional details are provided in Wason [28].



6 Recent Developments in Group-Sequential Designs 111

OptGS allows the user to find a design that balances the three optimality criteria
discussed in Sect. 6.4 as well as the maximum sample size. A vector of weights,
.!1; !2; !3; !4/, is specified by the user such that all are non-negative. Then the
feasible design is found that minimises the following function:

!1E.N jı D ı0/ C !2E.N jı D ı1/ C !3 maxE.N / C !4Jn1 : (6.7)

This design balances the three optimality criteria together with the maximum
sample size. Note that one of !1, !2, and !3 must be strictly positive, because an
infinite number of designs will exist with the lowest maximum sample size.

6.7.2 Comparison of OptGS and Simulated Annealing

Table 6.6, taken from Wason [28], shows the time taken to find J -stage null-optimal
designs using SA and using OptGS. A single M5000 SPARC 2.4 GHz processor
was used to carry out all computation. Ten independent simulated annealing (SA)
searches were carried out for each value of J because SA is a stochastic process,
and results may vary between runs. The average and minimum expected sample size
under the null over the ten processes are shown in the table.

For several values of J , the optimal design found from OptGS is actually better
than that found from the best of 10 runs of SA. This is despite the shape constraint
imposed by use of the extended power-family. Only for J D 5 does SA show
some improvement over OptGS. OptGS is substantially faster than even one SA run.
Clearly, using OptGS has substantial advantages over using simulated annealing.

Table 6.7, also taken from Wason [28], shows the optimal values of
�f ; �e; Cf ; Ce for the three types of optimal design implemented in OptGS as well
as the .1; 1; 1; 1/-admissible design, i.e. the admissible design that puts equal weight
on all four operating characteristics. The results show that allowing �f to differ
from �e is necessary to allow optimal designs to be found – the null-optimal and
CRD-optimal designs have �f and �e designs with opposite signs. Interestingly,

Table 6.6 Comparison of run-time and expected sample size at ı D ı0 of designs found from
simulated annealing (SA) and OptGS

E.Nı0/ Time taken
Average from Minimum from

J 10 SA runs 10 SA runs OptGS Average SA run (s) OptGS (s)

2 108.2 107.9 107.5 18.2 0.27

3 95.2 94.8 94.8 193.5 9.91

4 89.9 89.6 89.0 373.7 13.7

5 85.6 85.7 85.8 573.6 25.5



112 J.M.S. Wason

Table 6.7 Optimal design parameters .�f ; �e; Cf ; Ce/ for various optimality criteria and num-
ber of stages. The rows labelled .1; 1; 1; 1/ correspond to the .1; 1; 1; 1/-admissible design. Note
that the expected and maximum sample sizes shown are for both treatment arms

Design J �f �e Cf Ce E.2Nı0/ E.2Nı1/ maxE.2N / max.2N /

Null-optimal 2 0:45 �0.34 1.50 1.57 215.0 285.1 293.4 340

3 0:52 �0.55 1.66 1.52 189.6 276.0 283.2 366

4 0:52 �0.41 1.74 1.53 178.0 261.4 272.1 384

5 0:53 �0.37 1.81 1.52 171.6 256.2 267.8 400

CRD-optimal 2 �0.18 0:46 1.25 1.84 241.0 234.6 276.9 344

3 �0.15 0:48 1.26 1.96 231.1 214.8 265.6 372

4 �0.13 0:49 1.27 2.03 222.7 205.5 259.0 392

5 �0.01 0:48 1.31 2.06 207.3 200.0 250.6 410

ı-minimax 2 0:30 0:33 1.40 1.74 221.4 238.7 266.5 356

3 0:33 0:33 1.48 1.79 196.8 219.4 251.9 384

4 0:32 0:32 1.51 1.82 185.8 210.0 244.2 400

5 0:32 0:32 1.53 1.84 179.7 204.2 239.4 410

.1; 1; 1; 1/ 2 �0.01 0:08 1.32 1.68 226.3 245.7 272.9 324

3 0:06 0:05 1.37 1.68 206.1 233.1 259.0 336

4 0:12 0:12 1.41 1.71 194.3 220.2 248.8 352

5 0:08 0:04 1.42 1.70 191.3 219.2 246.4 350

the ı-minimax and .1; 1; 1; 1/-admissible designs would be well approximated by
the original one-parameter power-family, as �f and �e are very close in value.

6.7.3 Tutorial on Use of OptGS

OptGS contains a single function optgs(). The arguments taken by optgs are
documented in the help file. The default arguments will produce a two-stage design
with ı0 D 0; ı1 D 1; � D 3; ˛ D 0:05; 1 � ˇ D 0:9, and .!1; !2; !3; !4/ D
.0:95; 0; 0; 0:05/. The entries of ! imply that the design of interest is the admissible
design that puts 0:95 weight on the expected sample size at the ı0, and 0:05 weight
on the maximum sample size. The output is as follows:

> optgs()

Groupsize: 84
Futility boundaries 0.5781 1.5776
Efficacy boundaries 2.9559 1.5776
ESS at null: 107.522
ESS at CRD: 145.325
Maximum ESS: 148.302
Max sample-size: 168
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The output shows the required group-size (i.e. patients to be recruited per arm
per stage); the futility and efficacy boundaries; and the operating characteristics of
the design. Note that the expected sample sizes and maximum sample size are per
arm. If the user wanted a design with three stages, then they could change the J
argument:

> optgs(J=3)

Groupsize: 60
Futility boundaries 0.1388 0.9458 1.5551
Efficacy boundaries 3.9195 2.1874 1.5551
ESS at null: 94.935
ESS at CRD: 132.496
Maximum ESS: 137.018
Max sample-size: 180

Note that the futility and efficacy boundaries now have three entries. The
expected sample sizes have all fallen, and the maximum sample size has risen, as
one would expect. The above designs put weight on the expected sample size at
the null, so will tend to have high expected sample sizes at the CRD, and also high
maximum sample sizes. If the user wanted to put some of the weight on the expected
sample size at the CRD, they could change the weights argument as follows:

> optgs(J=3,weights=c(0.5,0.45,0,0.05))

Groupsize: 62
Futility boundaries -0.0062 1.0382 1.77
Efficacy boundaries 2.2247 1.9258 1.77
ESS at null: 98.945
ESS at CRD: 110.062
Maximum ESS: 126.107
Max sample-size: 186

Note that the resulting design has a somewhat higher expected sample size at the
null, but considerably reduced expected sample size at the CRD (and also a reduced
maximum expected sample size and an increased maximum sample size despite the
respective weights not having changed).

As discussed in Sect. 6.6, in practice the assumption of known variance is not
reasonable. OptGS uses the quantile-substitution method to convert the known-
variance stopping boundaries to unknown-variance stopping boundaries. Setting the
sd.known 0 argument to F will return unknown-variance stopping boundaries:

> optgs(J=3,weights=c(0.5,0.45,0,0.05),sd.known=F)

Groupsize: 62
Futility boundaries -0.0062 1.0404 1.7749
Efficacy boundaries 2.2522 1.9351 1.7749
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ESS at null: 98.945
ESS at CRD: 110.062
Maximum ESS: 126.107
Max sample-size: 186

Notice that in this case the stopping boundaries do not differ considerably to
previously. This is because the group-size is fairly large. If the group-size was
smaller, there would be a more noticeable difference between the two.

6.8 Multi-arm Multi-stage Clinical Trials

In this section, we briefly discuss recent work that extends group-sequential design
methodology to allow testing of multiple experimental treatments against a control
treatment. If more than one experimental treatment is available for testing, then
testing all within a multi-arm trial is more efficient than separate randomised trials
of each. That is because only one control group is needed instead of one control
group per treatment. Applying group-sequential methodology to a multi-arm trial
gives a multi-arm multi-stage (MAMS) clinical trial. At each interim analysis,
treatments may be dropped for futility, or the whole trial may be stopped if an
effective treatment is found.

6.8.1 Notation

Consider a MAMS trial with J stages and K experimental treatments and one
control treatment. At each stage n patients are allocated to each remaining treatment.
The treatment response of patient i on treatment k (k D 0 represents the control
group), Xik, is assumed to be distributed as N.�k; �2

k /. The parameters of interest
are .ı.1/; : : : ; ı.K//, where ı.k/ D �k ��0. There are K null hypotheses being tested
in the trial; the kth is H

.k/
0 W ı.k/ � 0.

At a given interim analysis j , the z-statistic for testing H
.k/
0 , Z

.k/
j , is calculated:

Z
.k/
j D

s
jn

�2
k C �2

0

Pjn
iD1 Xik � Pjn

iD1 Xi0

jn
: (6.8)

If Z
.k/
j � fj , arm k is dropped for futility. If Z

.k/
j > ej , then the trial stops for

efficacy, and H
.k/
0 is rejected.
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6.8.2 Designing a MAMS Trial

As in the group-sequential case, designing a MAMS trial involves choosing the
group-size, futility boundaries and efficacy boundaries so that the type-I error and
power are as required. The type-I error is more complicated than previously as there
are multiple hypotheses. Magirr et al. [16] explain that it is sufficient to consider
the probability of rejecting any null hypothesis when ı.1/ D ı.2/ D : : : D ı.K/ D 0,
because this strongly controls the family-wise error rate. In other words, the
probability of rejecting any true null hypothesis is maximised when ı.1/ D ı.2/ D
: : : D ı.K/ D 0. The authors derive an analytic formula for this probability.

The power is also more complicated. Magirr et al. recommend powering the trial
at the least favourable configuration (LFC) of Dunnett [6]. This is the probability
of rejecting H

.1/
0 when ı.1/ D ı1 and ı.2/ D ı.3/ D : : : D ı.K/ D ı0. Here, ı1 is

the clinically relevant difference, and ı0 is the threshold such that if ı.k/ is below
ı0, treatment k is considered uninteresting. A suitable value of ı0 could be 0, with
higher values requiring a larger sample size but making it more likely that the best
treatment will be picked.

Magirr et al. show how to apply traditional stopping boundaries to MAMS
trials, for example those of Pocock. However, the same ideas of optimal and
admissible designs discussed previously can be applied. Wason and Jaki [29] discuss
considerations for searching for optimal designs in the case of a MAMS trial.

6.8.3 Future Work for Design of MAMS

MAMS trials are a very broad class of designs, with the ones considered above
being relatively straightforward. In practice, MAMS trials have been used when
the endpoints considered differ at each interim analysis, such as in the MRC
STAMPEDE trial [27]. The methodology for this is described in Royston et al. [23],
and consists of powering each individual stage separately. Efficiency could be
gained by considering the whole trial at once, as Magirr et al. do, but this becomes
difficult when the endpoint differs at each stage. Currently this area is an important
priority for research.

6.9 Discussion

There are strong ethical and efficiency arguments for the use of group-sequential
designs in practice. They reduce the average number of patients used in a trial,
and therefore allow more trials to be run using the same limited population of
patients. Statistical research in group-sequential designs has been ongoing since
the 1970s, and shows no sign of slowing down. Greater computational power
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has allowed considerable progress in areas such as searching for optimal group-
sequential designs and group-sequential multi-arm multi-stage trial designs. This
chapter has provided a summary of some of the recent research on group-sequential
designs.

We have just considered normally distributed endpoints with known variance.
Although this may at first seem highly restrictive, in fact asymptotically normally
distributed test statistics are used for binary and survival endpoints. Thus, with
some modification, methods discussed in this chapter can be used for other types
of endpoints. The known variance assumption can be overcome with methods
discussed in Sect. 6.6.

In practice, analyses may not take place when the planned number of patients
have been assessed. Some patients may have dropped out of the trial, or practical
considerations may have determined that the interim analysis must be at a certain
time. In a time-to-event trial, it is particularly hard to ensure the planned number
of events have taken place. As long as the total number of analyses is not varied
this does not cause a problem as the stopping boundaries can be modified. Jennison
and Turnbull [13] describe a method to adapt stopping boundaries from the one-
parameter power family to allow different numbers of patients at each analysis.
Additionally, fixed stopping boundaries from an optimal or admissible group-
sequential design can be interpolated using an error spending function, as described
by Kittelson and Emerson [15]. Both of these approaches control the overall type-I
error, but not necessarily the power.

Group-sequential designs are less useful when the endpoint takes a long time to
observe, such as in a time-to-event trial. In this case, one cannot pause recruitment
until a group of patients have had the effect of treatment fully observed. Although
group-sequential designs will not be able to reduce the expected number of patients
recruited, they can still be useful in order to determine if a trial should be stopped
early. Hampson and Jennison [11] propose group-sequential methods for when
treatment responses are delayed. A Bayesian approach could also be used to
incorporate early information to improve decision making at interim analyses, as
discussed in chapter 5 of Berry et al. [4].
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