
Chapter 2
Bayesian Decision Theory and the Design
and Analysis of Randomized Clinical Trials

Andrew R. Willan

Abstract Traditional approaches to the analyses and sample size determinations for
randomized clinical trials are based on tests of hypotheses and rely on arbitrarily set
error probabilities and smallest clinically important differences. Recently Bayesian
methods have been proposed as an alternative. In particular, many authors have
argued that Bayesian decision theory and associated value of information methods
can be used to the determine if current evidence in support of a new health care
intervention is sufficient for adoption and, if not, the optimal sample size for a future
trial. Value of information methods incorporate current knowledge, the value of
health outcome, the incidence and accrual rates, time horizon and trial costs, while
maximizing the expected net benefit of future patients and providing an operational
definition of equipoise. In this chapter value of information methods are developed
in detail and illustrated using a recent example from the literature.

2.1 Introduction

The standard approach to the analysis and sample size determination for a
randomized clinical trial (RCT) is based on the use of tests of hypotheses and
the frequentists definition of probability. Consider a randomized clinical trial in
which a new health care intervention, referred to as Treatment and labeled T , is
compared to an existing intervention, referred to as Standard and labeled as S .
The trial is conducted for the purpose of considering the adoption of Treatment if
it is superior to Standard. This type of trial is often referred to as a superiority
trial. Let Y be the random variable representing the primary outcome where
larger values of Y are preferred, such as survival (where Y D 1 if the patient
survives, 0 otherwise), survival time, quality-adjusted survival time or net benefit.
Let E.Y ji/; i D T; S be the expected value of the outcome for a patient randomized
to i , and let � D E.Y jT / � E.Y jS/. Thus, larger values of � favour Treatment.
Typically, in a superiority trial the data is used to test the null hypothesis H W � � 0
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versus the alternative hypothesis A W � > 0. Treatment is considered for adoption
if, and only if, H is rejected in favour of A. The probability of falsely rejecting
H, referred to as the Type I error probability, is set to some relatively small value.
Sample size is determined by specifying the smallest clinically important (positive)
difference for � , labelled as �SCID, and requiring that the probability of failing to
reject H when � � �SCID is less that some relatively small value, referred to as the
Type II error probability.

There are many problems with this approach. Firstly, the value selected for the
Type I error probability is somewhat arbitrary and is almost always set to 0:05.
Using the same value for the probability of a Type I error for every trial ignores
the seriousness of the error, which clearly varies from trial to trial. Thus, a trial that
randomizes patients with age-related macular degeneration between two different
wavelengths of laser coagulation [42] uses the same probability of falsely declaring
Treatment superior, as does a trial of Caesarean section versus vaginal delivery for
women presenting in the breech position [23]. Declaring one wavelength superior to
another when they are the same is not a serious error since selecting the wavelength
is a matter of simply dialing the appropriate frequency and the only difference to
patients is the colour of the light observed during the procedure. However, in the
latter, declaring Caesarean section superior when it is the same as vaginal delivery
is a serious error. Assigning the same probability to the two errors makes no sense,
quite apart from the fact that the value of 0:05 is somewhat arbitrary in the first
place. Also somewhat arbitrary is the typical choice of 0:2 for the probability of a
Type II error. It means that there is a 20 % chance that the effort and money invested
in the trial will be wasted, even if a clinically important difference between the
treatments exists. Again, it fails to reflect the seriousness of making the error. The
choice of �SCID can be less arbitrary and can be estimated by polling clinicians and
decision makers. However, in practice it is often back-solved from the sample size
equation after substituting in a sample size that reflects constraints relating to patient
recruitment and budget. Even if �SCID is a reasonable, clinically determined estimate
of the smallest clinically important difference, there is a range of values for the true
treatment difference that is less than the smallest clinically important difference,
for which the probability of rejecting the null hypothesis and adopting Treatment is
greater than 50 %. This sometimes referred to as a Type III error.

In response to these problems, many authors have proposed alternative methods
[1, 3, 9, 11–16, 18–22, 25, 26, 28, 33–35, 43–49, 52]. In particular many authors
have proposed the application of decision theory and associated expected value of
information methods for assessing the evidence from RCTs and for determining
optimal sample size for future trials. The application of decision theory to the
design and sample size determination is the subject of the remainder of this chapter.
In Sect. 2.2 an introduction to the cost-effectiveness analysis of RCTs is given,
complete with an illustrative example. The use of decision theory in the design
and analysis of RCTs is given in Sect. 2.3 and illustrated with the same example
in Sect. 2.4. A summary and discussion are given in Sect. 2.5.
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2.2 Cost-Effectiveness Analysis of Randomized Clinical
Trials

Consider the cost-effectiveness comparison of a new health care intervention
referred to as Treatment and labeled T , with an existing health care intervention
referred to as Standard and labeled S . The health care interventions could be
therapeutic, preventive or diagnostic. Let ej and cj be the respective mean measure
of effectiveness and cost for patients receiving intervention j , where j D T; S . The
measure of effectiveness is framed in the positive, such as surviving the duration
of interest, survival time or quality-adjusted survival time. Cost includes not just
cost of the interventions, but all down-stream health care cost over the duration of
interest and might, depending on the perspective taken, include non-health care cost,
such as time lost from work, etc. Let �e D eT � eS and �c D cT � cS .

Initially, cost-effectiveness inference was centred on the parameter R � �c=�e,
which is referred to as the incremental cost-effectiveness ratio (ICER) and is the
cost of achieving each additional unit of effectiveness from using Treatment rather
than Standard. For example, suppose the probability of surviving the duration of
interest was 0:6 for a patient receiving Standard and 0:7 for a patient receiving
Treatment and the respective mean costs for Standard and Treatment over the
duration of interest were $14,000 and $15,000 respectively. The ICER D .15; 000�
14; 000/=.0:7� 0:6/ D $10; 000 per life saved or death averted. Many authors have
discussed inference on the cost-effectiveness ratio [4–6, 8, 27, 30–32, 37, 40, 41, 50].

Due to the concerns regarding ratio statistics, focus has shifted from the
incremental cost-effectiveness ratio to the incremental net benefit (INB). Let the
net benefit (NB) of intervention j be defined as NBj � ej � � cj where � is
the threshold value for a unit of effectiveness (e.g., the value of saving a life or
the value of a year of life gained). The INB is defined as b � NBT � NBS D
eT � � cT � .eS� � cS / D �e� � �c . The term �e� is the incremental effectiveness
(benefits) expressed in monetary terms and the term ��c subtracts the incremental
costs, leaving the incremental net benefit. When INB is positive, Treatment is
considered value-for-money and should be considered for adoption, subject to
budgetary constraints and the level of uncertainty. In the simple example above
b � 0:1� � 1;000 and is positive for values of the threshold greater than $10,000
(i.e., the ICER). Many authors have discussed inference on the incremental net
benefit [2, 7, 24, 29, 36, 38, 39, 53–56].

Suppose O�e and O�c are the respective estimates of �e and �c from a study, such
as a clinical trial or an observational study, where individual patient measures of
effectiveness and cost have been recorded. Let V. O�e/, V. O�c/ and C. O�e; O�c/ be the
relevant variances and covariance. For more on parameter estimation the reader is
referred to Willan and Briggs [57]. Assuming no prior information, and invoking the
central limit theorem, the posterior pdf for the incremental net benefit can be given
by N.b0; v0/, where b0 D O�e� � O�c and v0 D V. O�e/�

2 C V. O�c/ � 2C. O�e; O�c/�.
Inference regarding INB, which is an attempt to characterize the cost-effectiveness
of Treatment compared to Standard and the corresponding uncertainty, can best
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be presented by a plot the cost-effective acceptability curve (CEAC), which is
the probability that the INB is positive (i.e., that Treatment is cost-effective) as a
function of the threshold value for a unit of effectiveness and, invoking the central
limit theorem, can be calculated as ˚

�
b0=

p
v0

�
, where ˚.�/ is the cdf for the

standard normal random variable. The CEAC passes through 0.5 at � D ICER,
crosses the vertical axis at the probability that Treatment is cost saving (i.e.,
O�c < 0), and is asymptotic to the right to the probability that Treatment is more

effective (i.e., O�e > 0). For more on the CEAC the reader is referred to Fenwick et
al. [17].

2.2.1 The CADET-Hp Trial

The CADET-Hp Trial is a double-blind, placebo-controlled, parallel-group, multi-
centre, randomized controlled trial performed in 36 family practitioner centres
across Canada. The results are published in Chiba et al. [10] and Willan [51].
Patients 18 years and over with uninvestigated dyspepsia of at least moderate sever-
ity presenting to their family physicians were eligible for randomization, provided
they did not have any alarm symptoms and were eligible for empiric drug therapy.
Patients were randomized between T : Omeprazole 20 mg, metronidazole 500 mg
and clarithromycin 250 mg, and S : Omeprazole 20 mg, placebo metronidazole and
placebo clarithromycin.

A total of 288 patients were randomized, 142 .D nT / to Treatment and 146 .D
nS / to Standard. Both regimens were given twice daily for 7 days. The binary
measure of effectiveness was treatment success and defined as the presence of no
or minimal dyspepsia symptoms at 1 year. Total cost was determined from the
societal perspective and are given in Canadian dollars. A summary of the parameter
estimates is given in Table 2.1. The details regarding parameter estimation are
given in the Appendix. Assuming no prior information and invoking the central
limit theorem, the posterior pdf for the INB is normal with mean 0:1371� C 53:01

Table 2.1 Parameter estimates for the CADET-Hp trial

Treatment Standard

.nT D 142/ .nS D 146/

Proportion of successes 0.5070 0.3699 Difference D O�e D 0:1371

Average cost 476.97 529.98 Difference D O�c D �53:01

V(Proportion of successes) 0.00176 0.001596 Sum D OV
� O�e

�
D 0:003356

V(Average cost) 2,167 2,625 Sum D OV
� O�c

�
D 4; 792

C(Proportion of successes, �0:2963 �0:4166 sum D OC
� O�e; O�c

�
D �0:7129

mean cost)
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Fig. 2.1 The
cost-effectiveness
acceptability curve for the
CADET-Hp trial
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and variance 0:003356�2 C 4782 C 1:426�. The cost-effectiveness acceptability

curve, given by ˚
�
0:1371� C 53:01=

p
0:003356�2 C 4782 C 1:426�

�
, is shown

in Fig. 2.1. Because Treatment is observed to increase effectiveness (i.e., O�e > 0)
and decrease cost (i.e., O�c < 0), the INB will be positive and the CEAC will be
greater than 0:5 for all positive values of the threshold value (�).

Because the mean INB is positive regardless of the threshold value, and because
Treatment is observed to reduce cost and therefore budget constraints may not be
an issue, it may seem obvious that Treatment should be adopted. But this would
ignore the uncertainty regarding the INB (i.e., v0 > 0). Because of this uncertainty,
there is a positive probability that the INB is negative. (For � D 250, the probability
that INB is negative, i.e., 1 � CEAC for � D 250, is 0:12.) Therefore, there is
a positive expected opportunity loss associated with the net benefit maximizing
decision (action) to adopt Treatment and the optimal action might be to obtain more
information (e.g., another trial) to reduce the uncertainty and decrease the expected
opportunity loss. Whether or not another trial is optimal, and the optimal size of
the trial if it is, will depend on the trade-offs between the additional cost and the
reduction in expected opportunity loss. This is covered in the next section.

2.3 Decision Theory and Value of Information in RCT
Research

2.3.1 Introduction

In response to the many problems associated with sample size determinations
based on tests of hypotheses and power arguments, many authors have proposed
alternatives [1,3,9,11–16,18–22,25,26,28,33–35,43–49,52]. In particular, among
others, Willan and Pinto [43], Eckermann and Willan [14–16], Willan [44, 45],
Willan and Kowgier [46], and Willan and Eckermann [47–49] propose methods
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based on decision theory and the expected value of information that determines the
sample size for maximizing the difference between the expected cost of the trial and
the expected value of the information provided by the results. Fixed, variable and
opportunity trial costs are considered. In addition to providing optimal sample sizes,
these methods can identify circumstances when the current information is sufficient
for decision making, see Willan [44]. Details of the approach are given below.

2.3.2 Opportunity Loss in Decision Making

To recognize the role that decision theory can play in the analysis and design of
RCTs one must understand the definition of opportunity loss and how to determine
its expected value. To that aim we use an example based on a simple bet on the
toss of a (not necessarily fair) coin. The decision to accept the bet on the coin
toss has an associated opportunity loss, and one can determine its expected value
based on the current information regarding the outcome of a toss of the coin. The
more information one has regarding the toss of the coin, the less is the expected
opportunity loss. The chance to gather additional information should be accepted
only if the cost of doing so is less than the reduction in the expected opportunity cost
provided by the additional information. The reduction in the expected opportunity
loss provided by additional information is referred to as the expected value of
information (EVSI).

Suppose Karl has tossed a particular coin on 12 occasions and noted that it came
up heads on 9 of them. He must now decide whether or not to accept the following
bet: On a new toss of the coin, if it comes up heads he wins $1,000 and if it comes
up tails he loses $1,000. Let the random variable X D 1 if the next toss of the
coin is a head, and 0 otherwise. A reasonable pdf for X to reflect the uncertainty
regarding the next toss (i.e., the value of X ) is Bernulli(�), given by Pr.X D x/ D
�x.1 � �/1�x , where � is the probability that the next toss of the coin is a head. The
utility of accepting the bet is $1,000 if the toss is a head and �$1,000 if it is tail,
and as a function of X , equals 1;000X � 1;000.1 � X/ D 1;000.2X � 1/, with
expectation 1;000.2� � 1/. The utility of refusing the bet is zero, since nothing is
gained or lost. Karl’s previous experience with the coin has provided him with some
knowledge regarding � . In general, if Karl had observed r heads in n tosses, and
assuming he had no other prior knowledge or opinions regarding � , the posterior
distribution for � is Beta.a0; b0/, where a0 D r C 1 and b0 D n � r C 1, with
mean a0=.a0 Cb0/ and variance a0b0=

˚
.a0 C b0/

2.a0 C b0 C 1/
�
. The pdf and cdf,

denoted by fB.� I a0; b0/ and FB.� I a0; b0/ respectively, are given by

fB.� I a0; b0/ D Œ.a0 C b0 � 1/Š= f.a0 � 1/Š.b0 � 1/Šg� �a0�1.1 � �/b0�1 and

FB.� I a0; b0/ D
a0Cb0�1X

j Da0

.a0 C b0 � 1/Š

j Š.a0 C b0 � 1 � j /Š
�j .1 � �/a0Cb0�1�j
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Therefore, Karl’s current knowledge regarding � after observing 9 heads in 12
tosses is characterized by a beta distribution with mean 10=14 D 0:7143 and
variance 10 � 4=

˚
.10 C 4/2.10 C 4 C 1/

� D 0:01361, and his expected utility for
the decision to accept the bet is 1;000.2 � 0:7143 � 1/ D 428:6. Since his expected
utility for the decision to refuse the bet is 0, he should accept the bet if he wants
to maximize expected utility. Nonetheless, there is an opportunity loss associated
with deciding to accept the bet. In general, the opportunity loss associated with a
decision is the utility of the best decision minus the utility of the decision made.
The opportunity loss of accepting the bet depends on whether the coin comes up
heads or tails. If it comes up heads there is no opportunity loss because, in that case,
accepting the bet is the best decision. If the coin comes up tails, the best decision
would have been to refuse the bet. The utility of refusing the bet is zero, but the
utility of accepting the bet when it comes up tails is �$1,000. Thus, the opportunity
loss of accepting the bet when it comes up tails is the utility of refusing the bet
minus the utility of accepting the bet, i.e., 0 � .�1;000/ D $1;000. Consequently,
Karl’s opportunity loss function is 1;000 � I (coin comes up tails), where I.�/ is the
indicator function. Therefore, Karl’s expected opportunity loss based on the current
information (EOL0) is given by

EOL0 D 1;000 � Pr.� < 0:5/ D 1;000 � FB.0:5I 10; 4/: That is,

EOL0 D 1;000

13X

j D10

13Š

j Š.13 � j /Š
0:513 D 46:14:

Therefore, based on current information, Karl faces an expected opportunity
loss of $46.14 associated with the decision to accept the bet which is his expected
utility-maximizing course of action.

Suppose Karl is given the opportunity to pay $20.00 to toss the coin 12 more
times. The question is: Is the additional information worth $20.00? In decision
theory that question is interpreted as: Will the additional information provided by
12 more tosses reduce the expected opportunity loss by more than $20.00? Suppose
Karl tosses the coin 12 more times and observes r heads. The posterior distribution
is Beta(a1; b1), where a1 D a0 C r D 10 C r and b1 D b0 C .12 � r/ D 16 � r . The
posterior expected opportunity loss if Karl observes r heads in 12 tosses is

EOL1 D 1;000 � Pr.� < 0:5/ D 1;000 � FB.0:5I 10 C r; 16 � r/:

Since the expected opportunity loss is a function of the number of heads observed,
the expected value of the expected opportunity loss must be taken with respect to
the random variable number of heads observed, denoted Y . Thus, the expected
opportunity loss including the new information provided by the 12 coin tosses
(EOL1) is given by



36 A.R. Willan

EOL1 D
12X

rD0

f1;000 � FB.0:5I 10 C r; 16 � r/ � Pr.Y D r/g

D 1;000

12X

rD0

8
<

:

25X

j D10Cr

25Š

j Š.25 � j /Š
0:525 3Š

rŠ.3 � r/Š
�r

0 .1 � �0/
12�r

9
=

;

D 29:87:

where �0 D a0=.a0 C b0/ D 0:7143, Karl’s current mean of � . Therefore, the
expected value of sample information provided by the 12 coin tosses is EOL0 �
EOL1 D 46:14 � 29:87 D $16:27, which is less that the offered cost of $20.00.
Therefore, Karl’s optimal action is to accept the bet based the information from
the initial 12 tosses. To emphasize here, Karl’s optimal decision is to accept the
bet without paying for the additional information because the cost of the additional
information exceeds the amount by which it would reduce the expected opportunity
loss. As illustrated in later sections, a similar situation arises in evaluating evidence
from a clinical trial. Because of the uncertainty inherent in the evidence, the decision
to adopt the utility-maximizing intervention will be associated with an expected
opportunity loss. Additional evidence should be sought only if the cost of attaining
the evidence is the less than the amount by which it reduces the expected opportunity
loss.

Suppose now that Karl was offered the opportunity, prior to deciding whether or
not to accept the bet, to make as many tosses as he wished at $0.50 a toss. If he took
12 tosses the $6.00 cost would be less than the expected value of information of
$16.27. The question now is: What is the optimal number of tosses? The answer is:
It is the number of tosses that maximizes the difference between the expected value
of sample information and the cost of making the tosses. The difference between
the expected value of information and the cost is referred to as the expected net
gain (ENG). If we let m be the number of tosses taken, then the posterior expected
opportunity loss is

EOL1.m/ D
mX

rD0

f1;000 � FB.0:5I 10 C r; 4 C m � r/ � Pr.Y D r/g

D 1;000 � 0:516 �
mX

rD0

8
<

:

13CmX

j D10Cr

.13 C m/ŠmŠ�r
0 .1 � �0/

m�r

j Š.13 C m � j /ŠrŠ.m � r/Š

9
=

;
;

where �0 D a0=.a0 C b0/ D 0:7143, Karl’s current mean of � . Plots of the EVSI
(i.e., EOL0 � EOL1.m/) and total cost (i.e., 0:5 m), as functions of m, are given in
Fig. 2.2. By inspection, the difference between the expected value of information
and total cost is maximized at 34 tosses, where the expected value of sample
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Fig. 2.2 The expected value
of information and total cost
for the coin toss example
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information D $37:06 and the total cost is $17.00, yielding an expected net gain of
$20.06. As illustrated in later sections, an analogous situation arises when assessing
the evidence from an RCT. One must decide to adopt the utility-maximizing
intervention or, if given the chance, perform another trial which should be performed
only if the maximum amount by which the expected opportunity loss is reduced (i.e.,
EVSI) exceeds the cost of the trial. That is, only if the maximum ENG is positive.

It may seem odd that the expected opportunity loss based on the initial 12 tosses
is only $46.14, given that Karl has a 1 � �0 D 0:2957 probability of losing $1,000.
But the expected opportunity loss relates to the uncertainty regarding � , not its actual
value. That is, if Karl knew for certain that the probability of heads is 0:55, his
expected opportunity loss is zero, even though there is a 0.45 probability that he
will lose $1,000. The value of perfect information, when you have it, is zero. Karl
accepts the bet if the expected value of the utility (i.e., 1;000.2�0 � 1/) is greater
than zero because we have assumed Karl is risk-neutral, that is, a dollar lost has
the same value as a dollar won. Being risk-neutral makes most sense if the bet can
be accepted or refused numerous times, thus spreading the risk of any single bet
over many others. Based on the information Karl has from the initial 12 tosses, the
probability that he will lose money on a single toss is 1 � �0 D 0:2857. However on
k tosses he will lose money only if less than a half of them are heads, that is, with
probability

k�X

rD0

kŠ

rŠ.k � r/Š
�r

0 .1 � �0/
k�r ;

where k� is the largest integer less than k=2. So, for 10 tosses the probability of
losing money is 0:03764 and for 20 tosses it is 0:01171.
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2.3.3 The Expected Value of Sample Information

Consider the problem of determining the sample size for a randomized clinical trial
designed to examine the cost-effectiveness of Treatment in comparison to Standard.
The trial is conducted with the purpose of adopting Treatment if it is found to be
cost-effective. Treatment is cost-effective if the INB is greater than zero. Recall
from Sect. 2.2 that the INB is defined as b � �e� � �c , where � is the threshold
value for a unit of health outcome (effectiveness); �e D eT � eS , where ej , for
j D T; S , is the mean effectiveness for intervention j ; and �c D cT � cS , where
cj , for j D T; S , is the mean cost for intervention j . Recall that b � eT � � cT �
.eS� � cS /, so that INB D NBT � NBS , where NBj .� ej � � cj / is the net benefit
for intervention j .

In the following, the threshold value is initially considered fixed for ease of nota-
tion but can be allowed to vary, as demonstrated later when examining robustness.
Let the current information regarding incremental net benefit be characterized by a
normal prior pdf with mean b0 and variance v0, where b0 > 0 and v0 > 0. Since the
prior mean INB (b0) is positive, adopting Treatment, rather than retaining Standard
maximizes the expected net benefit for future patients. However, since the prior
variance of INB (v0) is positive, adopting Treatment is not necessarily the optimum
decision facing a decision maker. Consideration must be given to collecting more
information, i.e., conducting another trial. Decision uncertainty resulting from a
positive v0 implies that a decision maker faces an opportunity loss when adopting
Treatment, even though doing so is the decision that maximizes expected net benefit
for future patients. The opportunity loss per patient associated with the decision to
adopt Treatment is defined as the utility of the best decision minus the utility of
adopting Treatment. Since, in this context, utility equals net benefit, the opportunity
loss becomes the maximum of (NBT , NBS ) minus NBT . The maximum of (NBT ,
NBS ) depends on b, the INB. If b is positive, then NBT > NBS , and NBT is the
maximum. On the other hand, if b is not positive, then NBT � NBS , and NBS is the
maximum. Thus the opportunity loss per patient associated with adopting Treatment
(OLppT ), as a function of INB, is given by:

OLppT .b/ D
(

Max.NBT ; NBS / � NBT D NBS � NBT D �b W b � 0

Max.NBT ; NBS / � NBT D NBT � NBT D 0 W b > 0

)

:

When INB is positive there is no opportunity loss associated with adopting Treat-
ment since future patients would receive the net benefit-maximizing intervention.
However, if Treatment is adopted when incremental net benefit is negative, future
patients would not receive the net benefit-maximizing intervention and each patient
would experience a reduction in net benefit equal to the absolute value of INB. A
plot of OLppT .b/ is given in Fig. 2.3.

Taking the expected value of OLppT .b/ with respect to the current information
regarding incremental net benefit which, as assumed above, is characterized by a
normal prior pdf with mean b0 and variance v0, yields the prior expected opportunity
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Fig. 2.3 The opportunity
loss function per patient of
adopting Treatment

OLppT (b) = 0 : b > 0 b 

loss per patient (EOLppT 0). Letting fN .xI �; v/ be the pdf for normal random
variable with mean � and variance v, then

EOLppT 0 D
Z

1

�1

OLppT .b/fN .bI b0; v0/db D
Z 0

�1

�bfN .bI b0; v0/db D D .b0; v0/ ;

where

D .�; v/ D Œv=.2�/�
1
2 exp

���2=.2v/
�� �

h
˚.��=v

1
2 / � I.� � 0/

i
I (2.1)

where ˚.�/ is the cdf for the standard normal random variable; and, I.�/ is the
indicator function, see Willan and Pinto [43] for details. The expected opportunity
loss per patient, multiplied by the number of future patients, is the total expected
opportunity loss and is also known as the expected value of perfect information,
since if the decision maker had perfect information (i.e., v0 D 0), the opportunity
loss could be avoided by adopting Treatment if b0 is positive and retaining Standard,
otherwise. Applying decision theory, as illustrated in Sect. 2.3.2, the expected value
of sample information (EVSI) of a new trial is the amount by which the information
from the new trial reduces the total expected opportunity loss.

Suppose a new trial of n patients per arm is conducted where O�e and O�c are the
respective estimators of �e and �c from the trial data. Thus, the estimate of INB
based on the trial data is Ob D O�e� � O�c and relying on the central limit theorem
regarding the distribution of Ob the posterior mean and variance for incremental net
benefit are given by:

b1 D v1

 
b0

v0

C n Ob
�2C

!

and v1 D
 

1

v0

C n

�2C

!�1

;

where �2C is the sums over treatment arm of the between-patient variances of
net benefit, and is assumed known or determinable from prior data. Details for
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estimating �2C for the CADET-Hp trial are given in the Appendix. The posterior (i.e.,
post-trial) expected opportunity cost per patient is given by EOLpp1 D D.b1; v1/.
EOLpp1 is a function of the random variable Ob and to determine the expected
reduction in per-patient opportunity loss, with the purpose of identifying the optimal
sample size, the expectation of EOLpp1 must be taken with respect to Ob. Applying
the central limit theorem, the predictive distribution for Ob is N.b0; v Ob/, where
v Ob D v0 C �2C=n, and the expected value of EOLpp1 with respect to v Ob becomes,
see Willan and Pinto [43],

E ObEOLpp1 D E ObD.b1; v1/ D
Z 1

�1
D.b1; v1/f . ObI b0; v Ob/d Ob D I1 C I2 C I3; where

I1 D p
v0=.2�/�2C exp

��b2
0=2v0

�
=.nv Ob/;

I2 D �b0˚
��b0=

p
v0

�C v3=2
0 exp

��b2
0=2v0

� ı �
v Ob

p
2�
�

; and

I3 D b0˚
��b0

p
v Ob=v0

� � v0 exp
��b2

0v Ob=.2v2
0/
� ıq

2�v Ob:

Thus, the expected value of sample information of a trial of n patients per arm is
given by

EVSI.n/ D B.n/
˚
D.b0; v0/ � E ObD.b1; v1/

�
;

where B.n/ refers to the post-trial patient horizon, defined as the number of patients
who could potentially receive the new intervention following the trial and therefore
can benefit from a reduction in the opportunity loss. For an incidence rate of k

patients per year, a time horizon of h years and a trial duration of t.n/ years,
B.n/ D k fh � t.n/g. The time horizon is the duration for which the decision to
either adopt Treatment or perform another trial is relevant. Although there is no
software packages for determining EVSI, it components can be calculated directly
from the formulae using a spreadsheet.

2.3.4 Expected Total Cost

The cost of a trial is assumed to have two components, one financial and the other
reflecting opportunity costs. Let Cf be the fixed financial cost of setting up a trial
and let Cv be the variable financial cost per patient. Then the total financial cost of
a trial with n patients per arm is Cf C 2nCv. The assumption is made that since b0

is positive, if the trial is not performed, all future patients would receive Treatment.
This is referred to as the assumption of perfect implementation. It is also assumed
that while the trial is performed, all patients outside the trial and half the patient
within the trial will receive Standard. All patients who receive Standard while the
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trial is performed, denoted as D.n/, pay an expected opportunity cost equal to
b0. The decision to perform the trial means that these patients have an expected
reduction in net benefit equal to b0 because they will receive Standard rather than
Treatment. Therefore D.n/ D kt.n/�n. That is, the number of patients who receive
Standard because of the trial are all the patient who are incident while the trial
is performed, minus the n patients who receive Treatment in the trial. Therefore,
the expected total cost (ETC) of delaying the decision and performing the trial is
ETC.n/ D Cf C 2nCv C D.n/b0.

The function t.n/, an important part of the functions of B.n/ and D.n/, will
depend on what assumptions are made regarding the proportion of patients that are
recruited into the trial and the duration between when the last patient is randomized
and when the trial results are available. These assumptions and their implications
are discussed in Sect. 2.4 using the CADET-Hp trial as an example.

2.3.5 The Expected Net Gain and Optimal Sample Size

Given b0, v0, �2C, h and k, the EVSI is a function of the sample size n, given as
EVSI.n/ D B.n/

˚
D.b0; v0/ � E ObD.b1; v1/

�
. Likewise, given b0, Cf and Cv, the

expected total cost is a function of the sample size n, given as ETC.n/ D Cf C
2nCv CD.n/b0. The expected net gain is defined as ENG.n/ � EVSI.n/�ETC.n/.
Considering the trial in isolation, and being free of budget constraints, let n� be that
value of n that maximizes the expected net gain. That is, ENG.n�/ � ENG.n/ for
all positive integers n. If ENG.n�/ � 0 then optimal sample size is zero and the
current information, i.e., b0 and v0, is sufficient for decision making. In this case
no trial is necessary, since the expected value of the information from the trial is
less than the expected total cost, regardless of the sample size. On the other hand, if
ENG.n�/ > 0, the decision maker is in a state of equipoise and the optimal decision
is to delay adopting Treatment, even though b0 > 0, and perform a trial with n�
patients per arm.

2.4 Applying VOI Methods: The CADET-Hp Trial

Suppose, for sake of illustration, the threshold value of a treatment success is $250,
i.e., � D 250. Assuming no prior information, the current mean and variance for
incremental net benefit is given by:

b0 D 0:1371 � 250 � .�53:01/ D 87:285;

v0 D 0:003356 � 2502 C 4;792 � 2 � .�0:7129/ � 250 D 5;344:7;
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and, invoking the central limit theorem, the prior pdf for INB for the planning of a
new trial is N.87:285; 5;344:7/. The probability that Treatment is cost-effective for
� D 250 is 0.88, see Fig. 2.1. Since b0 > 0 the net benefit maximizing decision,
based on current evidence, is to adopt Treatment (i.e., add the antibiotics) for future
patients. However, since v0 > 0, the decision to adopt Treatment is associated with
an expected per-patient opportunity loss of D.87:285; 5;344:6/ D 4:1528 (from
Eq. 2.1), and the optimal decision might be to delay the adoption of Treatment and
perform another trial. Performing another trial would be optimal if the reduction in
total expected opportunity loss (i.e., the expected value of sample information) is
greater than the expected total cost, that is, if the expected net gain is greater than
zero.

2.4.1 Simplifying Assumptions

If we make the simplifying assumptions that all patients in the jurisdiction of interest
are recruited into the trial and that the results of the trial are available immediately
after the last patient is randomized, then duration of the trial will equal total sample
size divided by the incidence (i.e., t.n/ D 2n=k). Under the same assumptions the
number of patients that can benefit from the new information (B) will equal the total
patient horizon (i.e., kh) minus the 2n patients in the trial (i.e., B.n/ D kh � 2n).
The time horizon of a decision is the duration over which the decision is considered
relevant. Assuming an incidence of 80,000 per year and a time horizon of 20 years,
the plots of EVSI, ETC and ENG as functions of n are given in Fig. 2.4. The fixed
(Cf ) and variable (Cv) financial cost of the trial were assumed to be $800,000 and
$2,000, respectively. The optimal sample size is 463 patients per arm, yielding an
optimum ENG of $1,329,020 with an ETC of $2,692,413 for a return on investment
of 49 %.

Willan et al. [51] demonstrates that plotting the combinations of the threshold
value (�) and horizon (h) for which the ENG is zero provides a sensitivity analysis
for those variables, see Fig. 2.5. For combinations of � and h above the curve the

Fig. 2.4 EVSI, ETC and
ENG for the CADET-Hp
example using the unrealistic
assumptions
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Fig. 2.5 The values of the
threshold value for health
outcome and horizon for
which the ENG is zero for the
CADET-Hp example using
the unrealistic assumptions
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ENG is positive (i.e., a state of equipoise exists) and a new trial is the optimal
decision. Whereas, for combinations below the curve the ENG is negative and the
current evidence is sufficient for decision making. Note that the combination of
� D 250 and h D 20 lies above the line.

2.4.2 More Realistic Assumptions

In Sect. 2.4.1 it was assumed that all patients in the jurisdiction of interest are
recruited into the trial and that the trial results are available immediately after the
last patient is randomized. These assumptions almost never hold. Usually only a
small fraction of the eligible patients are recruited, and patients need to be followed
to observe outcomes. Further, time is required for data entry, cleaning and analysis.
If we let the annual accrual rate be denoted by a and the number of years between
when the last patient is randomized and the data is analysed be denoted by 	 , the
trial duration becomes t.n/ D 	 C 2n=a. Consequently, the number of patients
who will benefit from the trial results (B) and the number of patient incurring an
opportunity cost (D) are given by:

B.n/ D k fh � .2n=a C 	/g
D.n/ D k.2n=a C 	/ � n

For the CADET-Hp example, if we assume an accrual fraction of 1 % (i.e.,
a D 800 per year), and allow for 1 year of follow-up (necessary to observe the
measure of effectiveness) with 3 months for data entry, cleaning and analysis (i.e.,
t D 1:25), the optimal sample size is zero. A plot of the expected total cost and
expected value of sample information is given in Fig. 2.6, where it can be seen
that costs exceeds value for all sample sizes. The expected total cost have been
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Fig. 2.6 EVSI and ETC for
the CADET-Hp example
using the realistic
assumptions
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driven up by the very high expected opportunity cost for the patients who receive
Standard while the trial is conducted. These patients consist of 99 % of incident
cases while the trial is recruiting patients and 100 % during the follow-up period.
The expected opportunity cost for the 1.25 years of follow-up alone is $8,728,500.
Further, because the trial takes longer to perform the number of patients that can
benefit from the new information is reduced, which in turn reduces the EVSI. For
details, the reader is referred to Eckermann and Willan [15, 16].

2.4.3 Relaxing the Assumption of Perfect Implementation

For the solution above and in Sect. 2.4.1 the assumption has been made that if the
current mean INB is positive (i.e., b0 > 0) that all future patients would receive
Treatment in the absence of a new trial. Referred to as perfect implementation
this assumptions is unlikely to hold. To examine the effect of allowing imperfect
implementation Willan and Eckermann [48] assume that the probability that a
future patient that would receive Treatment if no additional evidence is forthcoming,
is a non-decreasing function of the strength of the evidence as measured by the
z-statistic, defined as zi D bi

ıp
vi , i D 0; 1. To demonstrate the dramatic effect

that this more realistic assumption has on the solution, the authors use a sliding
step function, where if zi � 
 , the probability that a future patient would receive
Treatment is 0, and if zi � ˇ, the probability that a future patient would receive
Treatment is 1, where 
 � ˇ. For 
 < zi < ˇ, a linear function is assumed, where
the probability that a future patient receives Treatment is .zi � 
/=.ˇ � 
/. For
perfect implementation, 
 D ˇ D 0.

Relaxing the assumption of perfect implementation can have a dramatic effect
on the value of information solution. Firstly, additional information, apart from
reducing the expected opportunity cost as before, now has value in increasing
the expected proportion of future patients receiving the net benefit maximizing
intervention (i.e., E.z1/ > z0). Secondly, the expected opportunity cost of delaying
the decision to adopt Treatment and performing a future trial is far less since only a
portion of the patients would receive Treatment in the absence of the future trial and
therefore incur an expected opportunity cost.
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To demonstrate the effect on the solution using the CADET-Hp example suppose

 and ˇ are chosen to correspond with values of the probability of Treatment being
cost-effective of 75 and 99 %, respectively, that is, 
 D ˚�1.0:75/ D 0:675

and ˇ D ˚�1.0:99/ D 2:326. (Recall that for normally distributed incremental
net benefit, the CEAC is given by ˚(z-statistic).) Based on the evidence from the
existing trial

z0 D b0

ıp
v0 D 87:28

ıp
5;345 D 1:194;

and the probability of a future patient receiving Treatment in the absence of a new
trial is

.z0 � 
/=.ˇ � 
/ D .1:194 � 0:6745/=.2:326 � 0:6745/ D 0:3135:

Consequently, the expected opportunity cost of performing new trial is less than a
third of what it is under the assumption of perfect implementation.

Figure 2.7 contains a plot of the expected value of information and expected
total cost as a function of sample size assuming imperfect implementation as
characterized by the value of 
 and ˇ given above and the same assumption
regarding accrual and follow-up given in Sect. 2.4.2. The optimal sample size is
486, with an expected net gain of $64,299,751. Compared to Fig. 2.6 a dramatic
increase in the expected value of information is observed. This is because the new
information, apart from reducing the total expected opportunity cost, is expected
to increase the proportion of future patients receiving Treatment. For the optimal
sample size of 486 the post-trial expected probability that a future patient receives
Treatment is 0.7. Also observed is a dramatic decrease in the expected total cost,
which is a result of the reduction in expected opportunity cost as noted above.

Fig. 2.7 EVSI and ETC for
the CADET-Hp example
using the realistic
assumptions with imperfect
implementation
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2.5 Discussion

In this chapter the application of decision theory and associated value of information
(VOI) methods for the design and analysis of RCTs have been proposed as an
alternative to the standard hypothesis testing approach with its reliance on arbitrarily
chosen Type I and II error probabilities and smallest clinically important differences.
VOI methods allow for the explicit incorporation of important factors, such as
the value of health outcomes, incidence and accrual rates, time horizon, current
information, follow-up times and trial costs. They also can be used to identify those
situations where the evidence is sufficient for decision making and, where evidence
is insufficient (equipose), the optimal size of a future trial. Using VOI methods to
assess the evidence from a clinical trial or the meta-analysis of several trials provides
a more rational alternative to the standard methods since they maximize the expected
net benefit for future patients and optimize the allocation of research funding,
while providing an operational definition for equipoise. In addition, since the
EVSI increases with incidence, interventions for rarer diseases need less evidence
for adoption. Thus VOI methods help address the obvious difficulty of patient
recruitment in rare diseases.

The use of VOI methods raises a number of issues. Perhaps the most subtle is
that of jurisdiction. The assumption is made that trial financial costs are borne by
society through government or private donation-based or philanthropic agencies.
This raises an issue for research funding agencies. On whose behalf is it acting? The
answer to this question has a huge impact on VOI methods since it determines the
incidence, which is an important determinant of EVSI. Agencies acting on behalf of
small jurisdictions, such as provincial/state governments or health insurers, are less
likely to find the funding of additional trials attractive, since the optimal sample size
will be zero with greater frequency. However, for federal governments or private
donation-based or philanthropic agencies, which may take a more global view,
funding additional trials may be more attractive.

Typically VOI methods are based on the assumptions that if a new trial is carried
out, the definitive decision regarding the adoption of Treatment will be made at the
end of the trial. However, the truly optimal procedure would be to repeat the VOI
process at the end of the new trial to determine if the updated evidence is sufficient.
Relaxing this assumption leads to multi-stage designs as discussed in Willan and
Kowgier [46].

The limitations of VOI methods have mostly to do with specifying values for
the required parameters. The parameter incidence should be available from the
literature, and is generally required to establish the burden of the health condition
under study regardless of what methods are used to determine the sample size.
Similarly, regardless of the methodology used, the financial cost and accrual rate are
needed for planning and budgetary reasons. The parameters that could be considered
specific to VOI methods are the threshold value for a unit of health outcome and the
time horizon. Various threshold values for a quality-adjusted life-year have been
applied in cost-utility analyses, however threshold values for other health outcomes
are less well established. The time horizon for a new health care intervention varies
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depending on the type of intervention (e.g., pharmacological, surgical) and the
health condition under study. Time horizons of 20–25 years are often used because
they correspond to infinite time horizon with discount rates for future benefits of
around 4 or 5 %. It is worth noting that the advantage of VOI methods is that
they make the assumptions regarding threshold value of health outcome and time
horizon explicit, and although both parameters may be associated with uncertainty,
a sensitivity analysis can be performed, as illustrated in the example.

In conclusion, decision theoretic/VOI methods can be used to identify those
situations where the evidence is sufficient for decision making, and where evidence
is insufficient, the optimal size of a future trial.

Appendix

Let eji and cji be the respective observations of effectiveness and cost for patient i

receiving intervention j , where j D T; S ; i D 1; 2 : : : nj ; and nj is the number
of patients on intervention j . For the CADET-Hp trial eji D 1 if the patient is a
success, 0 otherwise.

Let Nej D 1

nj

njX

iD1

eji and Ncj D 1

nj

njX

iD1

cji

Then

O�e D NeT � NeS

O�c D NcT � NcS

OV . O�e/ D OV . NeT / C OV . NeS/ D NeT .1 � NeT /

nT

C NeS.1 � NeS/

nS

OV . O�c/ D OV . NcT / C OV . NcS / D
PnT

iD1.cTi � NcT /

nT .nT � 1/
C
PnS

iD1.cSi � NcS /

nS .nS � 1/

OC . O�e; O�c/ D OC . NeT ; NcT / C OC. NeS ; NcS/

D
�PnT

iD1 eTicTi
� � nT NeT NcT

nT .nT � 1/
C
�PnS

iD1 eSicSi

� � nS NeS NcS

nS .nS � 1/

and

O�2C D
X

j DT;S

nj

n
�2 OV . Nej / C OV . Ncj / � 2� OC. Nej ; Ncj /

o
;

where O�2C is the sum of treatment arms of the between-patient variance of
incremental net benefit.
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