
Chapter 16
Multi-state Models Used in Oncology Trials

Birgit Gaschler-Markefski, Karin Schiefele, Julia Hocke,
and Frank Fleischer

Abstract Among the surrogate endpoints for overall survival (OS) in oncological
trials, progression-free survival (PFS) is used as an important endpoint especially
in first or second line of cancer therapies. Basic formulae for the determination of
sample sizes based on time to event data can be found in the literature. Assumptions
about the distributions of the survival time for OS and PFS, the accrual time and the
censoring time are of key importance. Most often only uniformly distributed patient
accrual and no censoring are mentioned, whereas the event time is assumed to be
exponentially distributed. Considering the dependence between PFS and OS, we
will investigate how a three-state model that includes states of progression/response
and death can be used for a joint modelling of progression-free survival and overall
survival. Sample size/power calculations are discussed for the three-state model and
compared to the estimations based on exponentially distributed OS times. These
sample size calculations are based on the assumption of piecewise uniformly accrual
and exponentially distributed censoring time. The new three-state model approach
results in a 10–30 % lower sample size and a corresponding higher power. An
application to a Phase III lung cancer trial illustrates how the new approach can
be successfully applied to the planning of a trial and to the monitoring of the needed
events for the PFS and OS analyses.

16.1 Introduction

Oncological trials are often performed as event-driven trials, i.e. trial length and
analysis time points are tied to the occurrence of a specific number of events. The
most commonly used endpoint for new anticancer drug studies is overall survival
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(OS). If a patient develops progression of the tumor, then the therapy will be stopped
and the patient will be switched to another (probably new) anticancer therapy.
With regard to this, progression-free survival (PFS) is also used as a trial endpoint
especially in early stages of cancer therapy. We will analyse OS mathematically by
incorporation of the PFS information via a multi-state model. Multi-state models
are probabilistic models which allow for studying transitions of a subject (in this
context a person or patient) between different states over the course of time. In this
chapter, an introduction to the basic concepts of multi-state modelling will be given
and models commonly used in medical contexts, especially in oncology, will be
presented.

In oncology as well as other indications like stroke or asthma a time to
event outcome is often used as primary endpoint. For operational aspects it may
be important to plan the time points of the final analysis and possible interim
analyses. The time points of the interim analyses and final analysis in time to event
studies are in most cases driven by the needed number of events (landmark event
number). Therefore, a precise monitoring and prediction of the time point for the
landmark event number is needed. The estimation of this time point with respect
to OS can be derived based on different assumptions on the distribution of the
lost-to-follow-up and the overall survival. For estimation of the time to occurrence
of the landmark event number in this article an illness-death model, i.e. a three-state
model for OS, is applied instead of the frequently used but oversimplifying
assumption of exponentially distributed OS. An application to a phase III lung
cancer trial illustrates how the new approach can be successfully applied to monitor
event numbers for the OS analyses.

This chapter is structured as following: Different kinds of relevant multi-state
models will be defined and their application to different contexts given. Of
special interest is the three-state model for estimation of the time point of the
landmark event number. Therefore, in the second part, after introducing the model
assumptions as well as deriving relevant distributions, the expected number of
events depending on the current time point and the planned accrual period will
be derived. Based on this, the predicted landmark event time may be derived. We
will compare the three-state model with an alternative one, which is restricted to
exponentially distributed OS and does not account for progression. How the choice
of the model influences sample size and power calculations is shown in an example.
The performance of our new approach is demonstrated on real data of a non-small
cell lung cancer trial.

16.2 Background Information

This section is based on models for the analysis of data with the primary endpoint
being the time until occurrence of a certain event, which is also called failure. In the
following an overview about common multi-state models will be given, whereas the
kind of model is defined by the types of states it is consisting of.
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16.2.1 Overview of Multi-state Models

The nonnegative random variable T corresponds to the period of time lasting from
the initial time t0 (e.g. time point of birth, randomisation, etc., mostly t0 D 0) to
the occurrence of the event of interest. In accordance to common terminology T is
assumed to be continuous on RC. For analysis of discrete failure time distributions
see for example [20].

Definition 16.1. A right-continuous piecewise constant stochastic process X.t/;

t 2 Œ0; 1/ with a finite state space S D f1; : : : ; ng; n 2 N; is called a multi-state
model (MSM).

The value of the process corresponds to the state occupied at time t and the initial
distribution of the stochastic process is noted by �s.0/ D P.X.0/ D s/ for s 2 S

(cf. [25]). The shift from one state to another is referred to as a transition or an
event.

The probability for being in state j 2 S at time t 2 RC given that the process
started in i 2 S at u 2 RC, u < t , is called the transition probability and is noted by

pi;j .t; u/ D P.X.u/ D j jX.t/ D i;Ht / ; (16.1)

whereas Ht denotes the history of the process X.:/ (a �-algebra in mathematical
terms). Ht consists of all the information of the process from the initial time (mostly
time point 0) until t , i.e. all of the previous states and related times of transition in
the interval Œ0; t �. Based on (16.1), the state probabilities �j .t/ D P.X.t/ D j / are

�j .t/ D
X

i2S

�i .0/pi;j .0; t/ (16.2)

for j 2 S and t 2 RC. The transition intensity (also called transition rate, hazard
function or (age-specific) failure rate) is defined by

˛i;j .t/ D lim
�t&0

pi;j .t; t C �t/

�t
: (16.3)

The ˛i;j .t/ gives the instantaneous event (or failure) rate at time t , provided
the individual has been event-free until t . Consequently, the product ˛i;j .t/�t

corresponds to the approximate probability of an event in Œt; t C �t/, given there
has been no event until t (cf. [23]). A state i 2 S is called absorbing when it
is not possible to leave this state once it has been reached and therefore, it holds
˛i;j .t/ D 0 for all t 2 RC and j 2 S . The time point when the process has left state
i 2 S and first reaches j 2 S is called transition time.

Different kinds of models are defined by dependency of the transition intensity
on time (cf. [25]):
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1. Time homogeneous models have transition rates being constant over time, i.e.
pi;j .t; u/ depends only on u � t and so it holds pi;j .t; u/ D pi;j .0; u � t/.

2. Markov models have transition intensities only depending on the current state
and neither on more of the previous states nor on future states, i.e. for i; j 2 S

and t; u 2 RC with 0 � t < u

P.X.u/ D j jX.t/ D i;Ht / D P.X.u/ D j jX.t/ D i/ : (16.4)

3. Semi-(homogeneous) Markov models have transition intensities depending on
the current state i 2 S as well as on the time spent in state i .

In the following, only time-homogeneous Markov models will be analysed.
For further description and examples on semi-(homogeneous) Markov models see
e.g. [4] or [34].

A more detailed introduction to the theory of stochastic processes and multi-state
models may be found in [3] (Chapter I). Also a good overview about multi-state
models is given in [1, 25] and [18].

16.2.2 Types of Models

Uni-directional (or progressive) models allow for forward transitions only; once
a state has been left, it can not be returned to it again. On the other hand in bi-
directional (or alternating) models, the process can return to each state provided
that it does not enter an absorbing state. Alternating models are relevant for e.g.
reversible diseases but they would not be considered in detail in this chapter.

16.2.2.1 k-State Model

The k-state model is characterized by k � 1 transient but uni-directional passable
states (k 2 N, k � 2) and one absorbing state. Commonly, the first of the transient
states is the starting point and the absorbing state is reachable from each of the
transient states. Each of the following kinds of k-state models is Markovian. A
method for testing the Markov property for example in a three-state progressive
model is presented in [30].

Mortality Model

The simplest kind of the k-state model is the mortality model (two-state model)
consisting of only two states (cf. Fig. 16.1). The process starts in ‘0’ (alive) and stops
after reaching the absorbing state ‘1’ (dead). It holds ˛1;0.t/ D 0 for all t 2 RC and
the initial distribution is �0.0/ D 1. For example, Birnbaumer et al. apply this model
to the kinetics of an enzyme [7].
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0
alive

1
dead

Fig. 16.1 Mortality model

0
randomisation

2
death

1
progressive
disease

Fig. 16.2 Three-state model

Disability Model

The disability model (three-state model) is the specific multi-state model regarded
in more detail in the subsequent sections. It consists of one absorbing and two
transient states. Common applications of this model are state sequences like ‘healthy
– diseased – death’ or as illustrated in Fig. 16.2 ‘disease – progressive disease (PD)
– death’. The first mentioned setting enables inferences on the incidence of the
regarded disease as well as on health rate whereas the decision if death rates of
healthy subjects and patients differ may be problematic (cf. [25] p. 2). Andersen [2]
applied the three-state model to the setting ‘illness – comorbity – death’.

Obviously, for ˛0;1 D 0 the disability model corresponds to the mortality model
illustrated in Fig. 16.1. The transition probabilities introduced in (16.1) are for the
three-state model given by (cf. [1, 25])

p0;0.s; t/ D exp

�
�

Z t

s

˛0;1.u/ C ˛0;2.u/ du

�
; (16.5)

p1;1.s; t/ D exp

�
�

Z t

s

˛1;2.u/ du

�
; (16.6)

p0;1.s; t/ D
Z t

s

p0;0.s; u�/˛0;1.u/p1;1.u; t/ du ; (16.7)

p2;2.s; t/ D 1 ; (16.8)

p1;2.s; t/ D
Z t

s

p1;1.s; u�/˛1;2.u/ du ; (16.9)

p0;2.s; t/ D
Z t

s

p0;0.s; u�/Œ˛0;2.u/ C ˛0;1.u/p1;2.u; t/„ ƒ‚ …
D˛�

0;2.u;t /

� du : (16.10)
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Fig. 16.3 Four-state model

The probability to stay in state 0 from time s until t is equal to the probability that
the (random) time point of leaving this state is after t . It is well known that for a

random variable T with hazard rate h.:/ it holds P.T > t/ D exp
n
� R t

0
h.u/du

o
.

According to Fig. 16.2, leaving state 0 corresponds to switching into state 1 or 2 and
since these are exclusive events, the hazard of the time point leaving state 0 is given
by the sum of the single hazard rates. So Eq. (16.5) is verified, (16.6) can be shown
analogously. Since p0;1.s; t/ corresponds to staying in state 0 until an infinitesimal
time unit before u, with u an arbitrary time between s and t , switching to state 1 at
u and staying there until t , (16.7) is clear.

The overall transition rate ˛�
0;2.u; t/ corresponds in case of discrete time to the

probability P.X.t/ D 2jX.u/ D 0/ and is for continuous time equal to ˛0;2.u/ C
˛0;1.u/ p1;2.u; t/.

In some settings it is necessary to consider also the state ‘response’, leading to
a four-state model as shown in Fig. 16.3. Since patients having suffered progressive
disease are assumed not being able to respond to the treatment without adjustment
of dose/treatment, the state switches between ‘progression’ and ‘response’ are only
one-directional.

In oncological trials, in particular in the metastatic setting, commonly the
treatment is changed after occurrence of progressive disease in order to stop further
progression. This new or adopted therapy is called second line treatment or kth line
treatment in case of further previous switches. Modelling this proceeding leads to
the k-state model (cf. Fig. 16.4).

16.2.2.2 Further Models

The recurrent events model consists of k transient states and optionally an absorbing
state at the end of the line, whereas the transient ones only can be passed one
after another. This model is applied if the event of interest occurs repeatedly,
e.g. hospitalization, birth of a child, infections, recurrence of cancer, etc. A broad
overview about the analysis of recurrent events is given in the book of Nelson [24],
for further reading see also [21] or [8].
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1
1st line progr.

2
2nd line progr.

3
3rd line progr.

0
death

4
4th line progr.

...

Fig. 16.4 k-state model

Adding further mutually exclusive absorbing states to the mortality model (i.e.
death caused by different reasons) is called competing risks model. An introduction
to the theory of those models is for example given in Beyersmann et al. [6] as well as
in [28] and [13]. R. Chappell discusses in his manuscript two different methods for
analysing competing risks models [9]. When switching to an absorbing state censors
a non-terminal event, we are faced with semi-competing risks models which have
been studied in [15] or [26]. Some authors (cf. [1], Section 3.6) call those models
bone marrow transplantion model, since this setting is the common application.
The bivariate model is used for modelling bivariate failure times, e.g. the survival
of twins. For a more detailed description of this see for example [18], Section 5.2.

16.2.3 Recent Research in Multi-state Modelling

In recent research there are numerous applications of multi-stage modelling in the
medical context given. Especially for models of chronic diseases this approach
is frequently used. A three-state model for cognitive aging and suffering from
dementia, with a kind of ‘sub-state’ (the pre-diagnosis) between ‘healthy’ and
‘ill’ and an increased transition rate after this additional state, is given by Dantan
et al. [12]. They used a mixed-model approach and regarded non-informative
censoring. An informative censoring mechanism is given in the model of Sweeting
et al., which is a type of hidden Markov model for the analysis of disease progression
in hepatitis C [31]. Lan and Datta compare a semi-Markov five-state model to a
Markovian four-state model, both with assumption of log-normal as well as Weibull



290 B. Gaschler-Markefski et al.

distributed transition times and an uniformly or rather Weibull distributed censoring
mechanism, in the context of measurement of sexual development of juvenile in
puberty [22]. A four-state model with Weibull distributed transition rates for survival
of dental fillings was developed by Joly et al. [19].

The most prominent area for multi-state modelling is the analysis of survival
time and time until non-fatal events in oncology. There are numerous extensions
and adjustments of the above basic modelling approaches. Only a few examples will
be given. Porta et al. [27] combine a three-state model, including the possibility of
disease recurrence, with a competing risk model and apply their dynamic model to
patient data on bladder cancer. In some cases, the patient history has an effect on the
transition rates and consequently the Markov property is no longer given. Putter and
van Houwelingen model this by introduction of frailties (i.e. unobservable random
interaction of survival times of different individuals). They apply this in the context
of a three-state model, a competing risks model, a recurrent event model as well as a
recurrent event model combined with mutually exclusive endpoints to breast cancer
patient data [29]. Different kinds of multi-state Markov models with consideration
of several progression stages are given in [35] and also applied to breast cancer data.

16.2.4 Questions to Be Solved=Data to Be Collected

Patients in oncological trials will typically receive several lines of treatment
because of treatment adjustment after suffering progressive disease. For the sake
of simplicity, in the following only a three-state model is investigated, i.e. each
of the patients considered receives at most one change of treatment regime after
progression. There are two endpoints being of interest in oncological trials, the
primary endpoint is progression-free survival (PFS) and the key secondary one is
overall survival (OS), both visualized gray-colored in Fig. 16.5. We are primarily

0
random.

2
death

0,1
1
PD 1,2

time • • •

0,2

PFS

OS

l

l l

Fig. 16.5 Three-state model with constant transition rate
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interested in information on overall survival. Instead of modelling OS via a single
random variable, we can also incorporate the information on PFS by use of a
three-state model for OS. A careful and precise definition of tumor progression
is crucial [16] for accurate determination of PFS. Since there are no standard
regulatory criteria, the RECIST criteria [14, 33] for solid tumours or other criteria
can be used, e.g. for specific hematologic indications see [10] or [11].

Definition 16.2. The time from randomisation until death from any cause is called
overall survival (OS).

Commonly, oncological trials are performed as event-driven trials, which means
the trial length as well as the analysis time points are related to the occurrence of
a specific number of events. So the study duration is a random quantity and the
estimation of the time point t� when the required number of events is observed is
in question. At the begin of the study the estimated duration will be calculated and
this value will be updated during the course of the trial. Furthermore, the time t�
of occurrence of the landmark event number is also relevant for planning of any
interim analysis.

16.3 Statistical Methods

16.3.1 Model Assumptions

In the following, we will concentrate on the three-state model as given in Figs. 16.2
and 16.5.

16.3.1.1 Modelling of PFS and OS

For simplicity reasons, the transition rates (as defined in Eq. (16.3)) are assumed to
be constant over time:

˛0;1.t/ D �0;1 ;

˛0;2.t/ D �0;2 ;

˛1;2.t/ D �1;2 ;

(16.11)

with �i;j 2 RC for i D 0; 1; j D 1; 2. From Eq. (16.11) follows that the random
time to progression (TTP), i.e. the period between randomization and occurrence
of progression, is exponentially distributed with parameter �0;1. Furthermore, the
random time between progression and death as well as between randomization
and dying directly is also exponentially distributed with parameter �1;2 and �0;2,
respectively.
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According to the definition of PFS, the PFS time corresponds to the waiting
time of the stochastic process in the initial state 0, i.e. the PFS time is given by
T0 D minft 2 RC W X.t/ ¤ 0g. Based on this, the PFS time is exponentially
distributed with parameter �0;1 C �0;2.

In the regarded context, death is termed event. Let f .t/ and g.t/ be the density
function of the event time and the lost to follow up time, respectively. The event
times as well as the censoring times are assumed to be stochastically independent
and identically distributed for all individuals i D 1; : : : ; N . Because of this, the
subscript i may be suppressed for the censoring and event times in order to shorten
expressions. The censoring process is assumed to follow an exponential distribution
with parameter � , i.e. g.t/ D � e�� t for t 2 RC. Note that the quantities derived
in the following may also be given in case that no censoring is assumed. Without
consideration of censoring it is � D 0.

Since OS is the event of interest, the overall survival time will be denoted by the
random variable T . The distribution of T is depending on the present state of the
process, so the distribution function of OS is for t 2 RC given by

FT;C .t/ D P.T � t; C > T / D P.C > T jT � t/ � P.T � t/

D �0;1�1;2

.�0;1 C �0;2 � �1;2/.�1;2 C �/

�
1 � e�.�1;2C�/t

�

� .�1;2 � �0;2/.�0;1 C �0;2/

.�0;1 C �0;2 � �1;2/.�0;1 C �0;2 C �/

�
1 � e�.�0;1C�0;2C�/t

�
:

(16.12)

In case that there is no censoring regarded, the previous distribution function
simplifies to

FT .t/ D P.T � t/

D 1 � �0;1

�0;1 C �0;2 � �1;2

e��1;2t C �1;2 � �0;2

�0;1 C �0;2 � �1;2

e�.�0;1C�0;2/t :

(16.13)

A more detailed derivation of the above equations may be found in the appendix and
in Fleischer et al. [16]. For determination of corr.PFS; OS/ see Fleischer et al. [16].
Heng et al. applied these results and showed that the PFS time can be used as an
intermediate endpoint for OS [17].

For a patient being already progressive, the event time is the waiting time in
state 1 and therefore the distribution of overall survival in this case is

FT;C .t/ D �1;2

�1;2 C �

�
1 � e�.�1;2C�/t

�
: (16.14)
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16.3.1.2 Modelling the Accrual Process

It is assumed that all patients enrolled during the accrual period will also be
randomized, i.e. screening failures are not considered. The following derivations
will be done for an one-arm trial, whereas generalizations to multi-arm trials work
in an analogous manner (cf. [5]).

There are two different approaches for modelling the accrual process, the
common one is a Poisson-process. Especially in case of numerous randomized
patients, it is possible to loose restriction on randomized accrual by assumption
of a fixed accrual rate r 2 RC over the whole time period.

At start of the trial, we assume a linear randomization with rate r 2 RC.
Therefore, the number of patients randomized until the current calendar time tc
is given by N.tc/ D r � tc . In general, the observed randomization rate at time
t > tc will be different from r . Henceforth, from current time tc randomization of
the remaining N � N.tc/ patients is assumed with constant rate r.tc/, whereas

r.tc/ D
(

0; if N.tc/ � N ;
N �r �tc
a.tc /�tc

; else ;
(16.15)

for tc 2 RC and a.tc/ denoting the end of the randomization period. With
u � tc a future time-point, the density of the randomization rate for the remaining
randomization time is

r.tc ; u/ D N � r � tc

a.tc/ � tc
I.0;a.tc /�tc /.u/ ; (16.16)

because of assumption of uniformly accrual in the remaining time interval.

16.3.2 Prediction of OS Events

In the following, we will derive a closed formula for the expected number of events
at a future time point t , depending on the current time point tc . Based on this, the
expected time point of the landmark number of events can be calculated. Let the
number of events (i.e. deaths) observed until a certain time t 2 RC be given by the
random variable D.t/. Then, EŒD.t/jN;Htc � is the conditional expectation of the
number of events that will be observed by calendar time t > tc , given the data up
to current calendar time tc . The value in question is the predicted calendar time t�
when the required number of events Od is expected, i.e. EŒD.t�/jN;Htc � D Od .

The expected number of events is given by

EŒD.t/jN;Htc � D d.tc/ C EŒDR.t/jN;Htc � C EŒDNR.t/jN;Htc � ; (16.17)
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with d.tc/ 2 N0 the number of events until the current time tc , which is not a
random variable but rather an observed quantity. EŒDR.t/jN;Htc � is the number of
newly expected events between tc and t of patients being already randomized at
tc given the data up to tc and EŒDNR.t/jN;Htc � denotes the analogous quantity for
patients randomized between tc and t .

16.3.2.1 Calculation of EŒDR.t/jN;Htc
�

The conditional expectation EŒDR.t/jN;Htc � of the patients already randomized,
alive and on study at time tc who will have been observed to die by time t , has to be
distinguished between patients who have already progressed until time tc or not. Let
Yi.t/ D 0 if patient i has not progressed until t and is under observation and at risk
for an event at time t and Yi .t/ D 1 if the patient has already suffered progressive
disease. Therefore, EŒDR.t/jN;Htc � is

EŒDR.t/jN;Htc � D EŒDR.t/; Y.tc/ D 0jN;Htc � C EŒDR.t/; Y.tc/ D 1jN;Htc � ;

(16.18)

with EŒDR.t/; Y.tc/ D 0jN;Htc � the expected number of events of patients not
progressive until tc and EŒDR.t/; Y.tc/ D 1jN;Htc � the analogous quantity of
patients already progressive at time tc .

Let Ei , i D 1; : : : ; N denote the random variable for the randomization time of
the i th patient and let �i denote the observed randomization time of the i th patient.
It is assumed that the randomization time Ei of every individual is stochastically
independent from the associated event and censoring times. The randomization time
of each individual is measured from t D 0, the calendar date when the first patient
is randomized. The individual survival times (overall survival) and censoring times
are measured from the calendar date of a patients randomization. The probability
that the i th patient is at risk between tc � �i and t � �i , i.e. the probability that the
i th patient has the event time within the time interval .tc � �i ; t � �i / and does not
get censored before the event, given that the patient survived uncensored at tc � �i ,
is denoted by Pf;g

i .tc; t/. It is

Pf;g
i .tc; t/ D P.T < C; T 2 .tc � �i ; t � �i /jT > tc � �i ; C > tc � �i /

D
R t��i

tc��i
f .u/

DP.C >u/‚ …„ ƒ
P.T < C jT D u/ du

.1 � F.tc � �i //.1 � G.tc � �i //

D F.t � �i / � F.tc � �i / � R t��i

tc��i
f .u/G.u/ du

.1 � F.tc � �i //.1 � G.tc � �i //
:
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The dependency of Pf;g
i .tc; t/ on the distribution of the event and censoring times

is symbolized by the indexes f and g, the corresponding density functions. By the
assumption of memoryless distributions for the event and the censoring time (i.e.
for F.:/ and G.:/) it holds

Pf;g
i .tc ; t/ D P.T < C; T 2 .0; t � tc//

D
Z t�tc

0

f .u/P.C > u/„ ƒ‚ …
D1�G.u/

du

D F.t � tc/ �
Z t�tc

0

f .u/G.u/ du ;

(16.19)

whereas the first transformation uses the definition of memoryless distributions.
Obviously, in this case the risk probability of patient i is independent of the
individual randomization time �i , i D 1; : : : ; N . In the following, we will provide
that event times and censoring times follow memoryless distributions.

For the expectation EŒDR.t/jN;Htc � we get

EŒDR.t/jN;Htc � D
N.tc/X

iD1

.1 � Yi.tc// � Pf0;g
i .tc; t/ C

N.tc/X

iD1

Yi .tc/ � Pf1;g
i .tc; t/ :

Since Pf;g
i .tc; t/ is independent of i (cf. (16.19)), we obtain

EŒDR.t/jN;Htc � D N0.tc/ � Pf0;g
i .tc ; t/ � IY.tc /D0

C .N.tc/ � N0.tc// � Pf1;g
i .tc; t/ � IY.tc /D1 ;

(16.20)

with N0.tc/ the number of patients not yet progressive and N.tc/�N0.tc/ the number
of randomized patients suffering progression until tc . In the above equations, the
index of the density f symbolises the corresponding distribution function of the
event time, i.e. f0.t/ denotes the density function of OS of a randomized patient
(cf. (16.12)) and f1.t/ is the density of OS time for a patient already progressive
(cf. (16.14)).

The probability of dying between tc � �i and t � �i given that PFS > tc � �i

equals the probability of dying before t � tc , irrespective of the randomization time.
By plugging Pf0;g

i .tc ; t/ into formula (16.20) we get

EŒDR.t/jY.tc/ D 0; N;Htc � D N0.tc/

�0;1 C �0;2 � �1;2

�
�0;1�1;2

�1;2 C �

�
1 � e�.�1;2C�/.t�tc/

�

� .�1;2 � �0;2/.�0;1 C �0;2/

�0;1 C �0;2 C �

�
1 � e�.�0;1C�0;2C�/.t�tc/

��
:

(16.21)
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If the patient has already progressed his further survival follows the distribution
given in (16.14) and therefore

EŒDR.t/jY.tc/ D 1; N;Htc � D .N.tc/ � N0.tc//
�1;2Œ1 � e�.�1;2C�/.t�tc/�

�1;2 C �
:

(16.22)

Altogether, the expected number of events of the patients already randomized is
given by

EŒDR.t/jN;Htc � D N0.tc/

�0;1 C �0;2 � �1;2

�
�0;1�1;2

�1;2 C �

�
1 � e�.�1;2C�/.t�tc/

�

� .�1;2 � �0;2/.�0;1 C �0;2/

�0;1 C �0;2 C �

�
1 � e�.�0;1C�0;2C�/.t�tc/

��

C .N.tc/ � N0.tc//
�1;2Œ1 � e�.�1;2C�/.t�tc/�

�1;2 C �
:

(16.23)

So the expected number of events in the subset of patients being already randomized,
depends on the distribution parameters of the event times as well as on the number
of patients suffering progression until tc .

16.3.2.2 Calculation of EŒDNR.t/jN;Htc
�

For determination of the expected number of events of patients not yet randomized,
it has to be distinguished between three different scenarios.

Scenario 1 The randomization is finished, tc is after end of randomization period
a.tc/. Thus, no more patients will be recruited after tc and for 0 � a.tc/ � tc < t it
is EŒDNR.t/jN;Htc � D 0 (Fig. 16.6).

Scenario 2 The randomization is not yet finished, tc is before end of randomization
and the planned time of analysis t is after a.tc/.The expected number of events for
0 � tc < a.tc/ � t is

EŒDNR.t/jN;Htc � D
Z a.tc /�tc

0

r.tc; u/P.T < C; T 2 .0; t � tc � u// du

D
Z a.tc /�tc

0

r.tc; u/

�Z t�tc�u

0

f .s/.1 � G.s// ds

�
du ;

(16.24)

with r.tc ; u/ D N �r �tc
a.tc /�tc

, G.s/ D e��s and f .s/ the density function of OS which
may be derived from (16.12) (Fig. 16.7).
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Fig. 16.6 Scenario 1 | | | |
t = 0 a(tc) tc t

Fig. 16.7 Scenario 2 | | | |
t = 0 tc a(tc) t

Fig. 16.8 Scenario 3 | | | |
t = 0 tc t a(tc)

Scenario 3 The randomization is not yet finished. The planned time for interim
analysis t is after tc but before end of randomization (Fig. 16.8).

EŒDNR.t/jN;Htc � D
Z t�tc

0

r.tc; t/

�Z t�tc�u

0

f .s/.1 � G.s// ds

�
du;

with the analogous variables as given in scenario 2.
With regard on the definition of randomization rate (cf. (16.16)), assumption of

linear randomization and the above, EŒDNR.t/jN;Htc � may be given in closed form:

EŒDNR.t/jN;Htc � D

8
ˆ̂<

ˆ̂:

0; if a.tc/ � tc < t ;
N �N.tc /

a.tc /�tc

R a.tc /�tc
0

Pf;g
i .u; t � tc/ du; if tc < a.tc/ � t ;

N �N.tc /

a.tc /�tc

R t�tc
0

Pf;g
i .u; t � tc/ du; if tc < t � a.tc/ :

Insertion of the distribution function of the event and censoring times gives finally

EŒDNR.t/jN;Htc � D

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0; if 0 � a.tc/ � tc < t ;

.N � N.tc//
h

�0;1�1;2

.�0;1C�0;2��1;2/.�1;2C�/

�
1 � e�.�1;2C�/.t�a.tc //�e�.�1;2C�/.t�tc /

.�1;2C�/.a.tc/�tc /

	
�

� .�1;2��0;2/.�0;1C�0;2/

.�0;1C�0;2��1;2/.�0;1C�0;2C�/

�
1 � e�.�0;1C�0;2C�/.t�a.tc //�e�.�0;1C�0;2C�/.t�tc /

.�0;1C�0;2C�/.a.tc/�tc /

	i
;

if 0 � tc < a.tc/ � t ;

N �N.tc/

a.tc /�tc

h
�0;1�1;2

.�0;1C�0;2��1;2/.�1;2C�/

�
t � tc � 1�e�.�1;2C�/.t�tc /

�1;2C�

	
�

� .�1;2��0;2/.�0;1C�0;2/

.�0;1C�0;2��1;2/.�0;1C�0;2C�/

�
t � tc � 1�e�.�0;1C�0;2C�/.t�tc /

�0;1C�0;2C�

	i
;

if 0 � tc < t � a.tc/ :

(16.25)
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16.3.3 An Alternative Model

As mentioned in Sect. 16.2.1, if in the three-state model (cf. Fig. 16.5) the transition
rate ˛0;1.t/ is equal to 0, we are faced with the mortality model of Fig. 16.1. Since
˛0;2.t/ is assumed to be a constant, �0;2 2 RC, the transition time from state 0
to state 2 (death) is exponentially distributed. We will call this reduced model the
exponential model.

The quantities derived above can also be given for the exponential model by
assumption of �0;1 D �1;2 D 0 in Fig. 16.5. So the distribution function of overall
survival is

FT;C .t/ D �0;2

�0;2 C �

�
1 � e�.�0;2C�/.t/

�
; (16.26)

with � the distribution parameter of censoring time. This distribution function
reduces to those of an exponentially distributed variable with parameter �0;2, when
there is no censoring considered. Furthermore, from the previous subsection follows
that it is

EŒDR.t/jN;Htc � D N.tc/ � �0;2

�0;2 C �

�
1 � e�.�0;2C�/.t�tc/

�
(16.27)

and

EŒDNR.t/jN;Htc �

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0; if 0 � a.tc/ � tc < t ;

.N �N.tc //�0;2

�0;2C�

h
1 � 1

.�0;2C�/.a.tc/�tc /

�
e�.�0;2C�/.tc�a.tc // � e�.�0;2C�/.t�tc/

�i
;

if 0 � tc < a.tc/ � t ;

.N �N.tc//�0;2

.�0;2C�/.a.tc/�tc /

h
t � tc � 1

�0;2C�

�
1 � e�.�0;2C�/.t�tc/

�i
;

if 0 � tc < t � a.tc/ :

16.3.4 Landmark Event Time

According to the formula of Schoenfeld (cf. [32]) the required number of events for
a two-sided test (with significance level ˛ and power ˇ) may be calculated via

Od � .z1� ˛
2

C z1�ˇ/2

In2.HR/�1�2

; (16.28)
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with z1�i the i th quantile of the standard-normal distribution, HR the hazard ratio of
˛�

0;2.u; t/ between treatment groups and �j the proportion of patients in treatment
group j .

The value in question is the predicted calendar time t� when for a given sample
size N the required number of events is expected, i.e. EŒD.t�/jN;Htc � D Od . The
conditional expectation of events until time t > tc , given the data up to current
calendar time tc is

EŒD.t/jN;Htc � D d.tc/ C EŒDR.t/jN;Htc � C EŒDNR.t/jN;Htc � ;

with d.tc/ the observed number of events until tc , EŒDR.t/jN;Htc � as given
in (16.23) and EŒDNR.t/jN;Htc � given in (16.25).

16.3.5 Sample-Size Calculations and Examples

On the other hand, for a fixed time point t (e.g. t the planned study duration) and Od
the required number of events until t , the required sample size can be calculated via

N D
Od

FT .t/
: (16.29)

This is based on the expected number of events corresponding to the overall number
of patients randomized until t times the event probability at t .

16.3.5.1 Example 1

Suppose the treatment effect gives a hazard ratio of 0.75 for overall survival and
of 0.67 for progression-free survival. The median OS time in the treatment and
placebo group is 12 and 9 months, whereas the median PFS time in treatment and
placebo group corresponds to 6 and 4 months, respectively. We assume an uniform
accrual rate of 40 patients per month and a 1W1 randomization between treatment and
placebo group. The significance level is 0.025 (one-sided) and the power is 80 %.
The maximum expected observation time is 23 months.

By use of the exponential model for OS, 600 patients are needed for getting a
power of 80 %. Based on this sample size, 380 events are expected at observation
time t D 23 months. Using the three-state model, the above assumptions correspond
to hazard ratios in the treatment and control group of �0;1 D 0:078 and 0.116, �0;2 D
0:038 and 0.057 as well as �1;2 D 0:105 and 0.114, respectively. The expected
number of events after 23 months is 390, based on a sample size of 600. The power
in this scenario is 89 % due to the higher number of events. To get a power of 80 %
when modelling overall survival via the three-state model, a sample size of only 480
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patients is needed. On the other hand, 380 events will occur at observation time of
21.5 months, which saves 1.5 months of study duration.

16.3.5.2 Example 2

Our second example is based on data of a second line non-small cell lung cancer
trial with 1,000 patients randomized in total. The last data monitoring committee
DMC meeting has to occur after the 800th death event. A non-uniform accrual
process is observed for this trial. Eighteen months after start of randomization, the
event monitoring for this study is calculated by use of the exponential model as
well as the three-state model. Based on the time from randomization, the time from
randomization until the 800th death event is estimated for both models. We get
stable estimates for both models after about 150 randomized patients and about
40 PFS events and 15 death events observed. The exponential model gives an
estimation of 34 months and the three-state model an estimation of 29 months.
Since the target number of 800 death events has not been observed so far, we
run a simulation using the assumptions of the previous example to investigate until
when the both models will estimate the time to the 380th death event and what the
expected difference between the estimations is. The target of the 380th death event
occurred at 21.5 months (please compare Fig. 16.9).

As seen in Fig. 16.9, 240 patients were randomized, 37 death events, and 80 PFS
events were occurred after 6 months from randomization. The exponential model
gave an estimation of 25 months, and the three-state model showed an estimation
of 21.6 months (please compare Fig. 16.10). This is again a time difference of
4 months. Half of the required death events (190 OS events) were occurred after
14 months from randomization. Most of all patients were randomized and about half
of them had a PFS event. Then the exponential model gave a more exact estimation
of about 23.2 months, which is still 1.5 months more than the three-state model.

Fig. 16.9 The observed
cumulative number of events
over the time from
randomization. (Results from
the simulation example.) The
number of patients
randomised in (diamonds -
upper line), the observed
number of OS events (squares
- lower line)

Random

0

100

200

300

400

500

600

700

6 11 16 21 26 31

OS_events Target



16 Multi-state Models Used in Oncology Trials 301

Fig. 16.10 Mean and
standard error of the
estimations of the time to
380th OS event from all
simulations. The squares and
the diamonds represent the
3-state model and the
exponential model,
respectively
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16.3.5.3 Software Available

There is several software available. Multi-state models need specialised software,
most of which are written in FORTRAN, R or SAS. The library survival available
as part of S-plus and R statistical packages can be used to implement these methods.
An R package msm was developed in 2002. In addition, an user-friendly R library,
tdc.msm, was generated for the analysis of multi-state survival data. Technical
description of this is provided in the independent article Meira-Machado et al. [25].

Appendix

Derivation of FT .:/ for the disability model by assumption of exponentially
distributed state times:

FT .t/ D P.T � t/

D
Z t

0

p0;0.0; u/˛�
0;2.u; t/ du

D
Z t

0

exp

�
�

Z u

0

.˛0;1.v/ C ˛0;2.v// dv

� 

�0;2 C �0;1

�
1 � e��1;2.t�u/

��
du

D
Z t

0

exp

�
�

Z u

0

.�0;1 C �0;2/ dv

� 

�0;2 C �0;1

�
1 � e��1;2.t�u/

��
du

D
Z t

0

e�.�0;1C�0;2/u


�0;2 C �0;1

�
1 � e��1;2.t�u/

��
du
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D �0;2

Z t

0

e�.�0;1C�0;2/u du C �0;1

Z t

0

e�.�0;1C�0;2/u du

� �0;1e��1;2t

Z t

0

e�.�0;1C�0;2��1;2/u du

D ��0;2

�0;1 C �0;2

�
e�.�0;1C�0;2/t � 1

� C ��0;1

�0;1 C �0;2

�
e�.�0;1C�0;2/t � 1

�

C �0;1e��1;2t

�0;1 C �0;2 � �1;2

�
e�.�0;1C�0;2��1;2/t � 1

�

D �0;2

�0;1 C �0;2

C �0;1

�0;1 C �0;2„ ƒ‚ …
D1

�e�.�0;1C�0;2/t

�
�0;2 C �0;1

�0;1 C �0;2



„ ƒ‚ …
D1

� �0;1

�0;1 C �0;2 � �1;2

e��1;2t C �0;1

�0;1 C �0;2 � �1;2

e�.�0;1C�0;2/t

D 1 C e�.�0;1C�0;2/t

�
�0;1 � �0;1 � �0;2 C �1;2

�0;1 C �0;2 � �1;2


� �0;1

�0;1 C �0;2 � �1;2

e��1;2t

D 1 C �1;2 � �0;2

�0;1 C �0;2 � �1;2

e�.�0;1C�0;2/t � �0;1

�0;1 C �0;2 � �1;2

e��1;2t :

A slightly different derivation of this formulae is given in Fleischer et al. [16].
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