
Chapter 14
Biomarker-Based Designs of Phase III Clinical
Trials for Personalized Medicine

Shigeyuki Matsui, Takahiro Nonaka, and Yuki Choai

Abstract Advances in biotechnology and genomics have accelerated development
of molecularly targeted treatments and prognostic and predictive biomarkers,
particularly, in oncology. This chapter provides an overview of various biomarker-
based designs for phase III randomized clinical trials to evaluate clinical utility of
a biomarker or biomarker-based treatment, including biomarker-strategy, enrich-
ment, and randomize-all designs. We also provide a simulation comparison of
the randomize-all designs in terms of their ability to assert treatment efficacy for
the correct patient population. Complex adaptive designs with development and
validation of predictive biomarkers are also discussed.

14.1 Introduction

A key component to realize personalized medicine is the development of biomarkers
for treatment selection. Biomarkers that are particularly important for personalized
medicine can be broadly categorized as prognostic or predictive biomarkers.
Prognostic biomarkers are pretreatment or baseline measurements that predict the
long-term risk for untreated patients or those receiving the standard treatment, and
thus can aid in the decision of whether a patient needs a more aggressive treatment
(when diagnosed with high-risk) or no additional treatment (when diagnosed with
low-risk). Predictive biomarkers are baseline measurements that provide informa-
tion about which patients are likely or unlikely to benefit from a specific treatment.
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A predictive biomarker is often designated for the use of a particular new treatment,
as a companion biomarker in the development of the new treatment. For example, a
biomarker that captures overexpression of the growth factor receptor protein HER-2,
which transmits growth signals to breast cancer cells, can be a companion biomarker
in developing a molecularly-targeted drug for breast cancer patients, trastuzumab
(Herceptin R�), which blocks the effects of HER-2 [24].

A biomarker needs to be validated before its clinical application. Analytical
validation refers to establishment of robustness and reproducibility of the assay
and accuracy of measurement, such as sensitivity and specificity, relative to a gold
standard assay if one is available [3, 22]. Clinical validity refers to establishment
of the ability of the biomarker in predicting clinical outcomes in individual
patients [22]. For a prognostic biomarker, correlation between biomarker status and
a clinical endpoint, such as disease-free or overall survival, may indicate clinical
validity. For reliable clinical validation of a predictive biomarker for a survival
endpoint, a randomized clinical trial would be required to estimate treatment effects
(of a new treatment relative to a control treatment) unbiasedly and to assess whether
the treatment effects vary depending on the status of the biomarker, i.e., a treatment-
by-biomarker interaction.

The establishment of clinical utility of a biomarker or a new treatment based
on a biomarker is finally required as a phase III study before their clinical
applications [22]. Randomized clinical trials serve as a gold standard in this
phase [2, 7, 9, 13, 16, 17, 20, 23]. One category of biomarker-based designs is
to establish clinical utility for the developed biomarker itself. The biomarker-
strategy designs have such an objective. Another category is to establish clinical
utility of a new treatment with the aid of a biomarker. The enrichment designs
and randomize-all designs have such an objective. The former is to randomize
a biomarker-defined subpopulation of patients, while the latter is to randomize
the entire patient population, but entail a prospective analysis plan based on the
biomarker.

In this chapter, we provide an overview of various biomarker-based designs of
phase III clinical trials for personalized medicine. We emphasize again that the
two categories of the biomarker-based designs hold distinct objectives, although
they have often been discussed as if all of them can be options of biomarker-
based designs for a particular situation. We first outline the first category, i.e., the
biomarker-strategy designs, in Sect. 14.2. We then focus on the second category;
we outline the enrichment designs in Sect. 14.3 and the randomize-all designs in
Sect. 14.4. The randomize-all designs can be more complex, reflecting the fact
that the development and clinical validation of predictive biomarkers is generally
difficult before initiating a phase III clinical trial. Typically, they involve some
form of adaptive analysis that can demonstrate treatment efficacy for either the
overall population or a biomarker-defined subpopulation of patients based on the
observed performance of the biomarker. We provide a simulation study to assess
their ability to assert treatment efficacy for the right patient population in Sect. 14.5.
More complex adaptive designs with both developing and validating a predictive
biomarker or genomic signature are outlined in Sect. 14.6. We present concluding
remarks in Sect. 14.7.



14 Biomarker-Based Designs of Phase III Clinical Trials 249

14.2 Biomarker-Strategy Designs

With a biomarker-strategy design, patients are randomized either to a strategy of
using the biomarker in determining their treatment or to a strategy of not using
the biomarker in determining treatment. The primary objective is thus to compare
two strategies with and without use of the biomarker in determining treatment.
An example is a randomized trial for recurrent ovarian cancer that compares the
strategy of determining treatment based on tumor chemosensitivity (predictive)
assays with a strategy of using physician’s choice of chemotherapy based on
standard practice [5] (see Fig. 14.1a). Another example is a randomized trial for
non-small cell lung cancer that compares a strategy of using a standard treatment
(cisplatin+docetaxel) exclusively with a biomarker-based strategy in which patients
diagnosed to be resistant to the standard treatment based on the biomarker are treated
with an experimental treatment (gemcitabine+docetaxel) and the rest are treated
with the standard treatment [4]. In these designs, the biomarker is evaluated only
for the patients assigned to the biomarker-based strategy arm.

Randomize

Biomarker-based treatment

Standard-of-care-based treatment

Randomize

Biomarker-based treatment

Randomize treatment

Measure biomarker

and identity

discordant cases

Randomize

Standard-of-care-based
treatment

Biomarker-based
treatment

a

b

c

Fig. 14.1 Biomarker strategy designs
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For the latter type of design with an experimental treatment, the biomarker-based
arm can perform better if the experimental treatment is efficacious, regardless of
whether the biomarker is predictive or not. Some authors proposed a modification
in which patients in the non-biomarker-based arm undergo a second randomization
to receive one of the same two treatments being used in the biomarker-based arm,
i.e., the control and experimental treatments [13,17] (see Fig. 14.1b). By measuring
the biomarker status in all of the patients, the modified design would allow clinical
validation of the biomarker as a predictive biomarker, through comparing treatment
effects across the biomarker-based subsets of patients.

The strategy-based designs fundamentally include patients treated with the same
treatment in both the biomarker-based and the non-biomarker-based arms, resulting
in a large overlap in the number of patients receiving the same treatment within the
two strategies being compared. Thus, a very large number of patients are required
to be randomized to detect a diluted, small overall difference in the endpoint
between the two arms. One modification is to randomize the two strategies to
only the patients for whom the two treatments guided by the two strategies differ
(see Fig. 14.1c). This modification requires measurement of the biomarker in all of
the patients before randomization. The modified design is generally much more
efficient than the original biomarker-strategy design. The modified design was
employed in a randomized clinical trial, called the MINDACT study. In this trial,
a biomarker-based strategy based on the MammaPrint prognostic signature was
compared to that based on standard clinical prognostic factors for determining
whether to utilize chemotherapy in women with node-negative estrogen receptor-
positive breast cancer, in which discordant cases between the two strategies were
subject to randomization [1].

14.3 Enrichment Designs

An enrichment or targeted design is based on a predictive biomarker and compares
a new treatment and a control treatment only in biomarker-“positive” (BC) patients
who are expected to be responsive to the new treatment based on the biomarker (see
Fig. 14.2). Thus, the enrichment design assesses treatment efficacy only in the BC
patients, and not in the entire patient population, including biomarker-negative (B�)
patients. In this design, all enrolled patients need to be screened for evaluating the
biomarker status.

The efficiency of the enrichment design relative to the standard approach
of randomizing all patients without using the biomarker at all depends on the
prevalence of the BC patients and on the effectiveness of the new treatment in the
B� patients [12, 18]. In particular, when fewer than half of the patients are BC
and the new treatment is relatively ineffective in the B� patients, the enrichment
design can be conducted with much smaller numbers of randomized patients. The
enrichment design was employed in the development of trastuzumab; metastatic
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Fig. 14.2 Enrichment design

breast cancer patients whose tumors expressed HER-2 in an immunohistochemistry
test were eligible for randomization [24].

The enrichment design is appropriate for contexts where there is compelling
biological evidence for believing that the B� patients will not benefit from the new
treatment and that including them would raise ethical concerns [20,23]. In addition,
before initiating the trial, the biomarker used for enrichment must be analytically
validated with established assay accuracy, reproducibility, and robustness.

When the biological basis is not compelling and/or assay accuracy is incomplete,
assessment of clinical validity of the biomarker as a predictive biomarker would
be needed. As the enrichment design does not allow it because of the absence of
comparison of the new treatment with the control in the B� patients, the following
designs with randomization of both BC and B� patients, i.e., randomize-all or
all-comers designs, are an alternative choice for such situations.

14.4 Randomize-All Designs

Randomization can be either unstratified or stratified on the basis of the predictive
biomarker. Unstratified randomization does not diminish the validity of inference
regarding treatment effects within the BC or B� subsets of patients with moderate-
to-large sizes. Under unstratified randomization, biomarker can be measured at the
time of analysis. This strategy may permit such situations where an analytically
validated biomarker is not available at the start of the trial but will be available by
the time of analysis [20, 23]. However, careful consideration for missing biomarker
data is needed for ensuring collection of sufficient numbers of patients with
observed status of biomarker. On the other hand, stratified randomization requires
determination and measurement of biomarker at the start of the trial, but ensures
that all randomly assigned patients have biomarker status observed (see Fig. 14.3).
For other practical considerations in randomized trials with biomarkers, see the
references [2, 7, 9, 13, 17, 19, 20, 25, 26, 28].
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Fig. 14.3 Randomized-all design with prestratification based on the biomarker

The randomize-all designs can demonstrate the efficacy of the treatment for
either the overall population or a biomarker-based subset of patients, through
inspecting the predictive capability of the biomarker candidate based on the
observed trial data. Various designs with a single biomarker candidate have
been proposed, including fixed-sequence (FS), fallback (FB), and treatment-by-
biomarker-interaction (TBBI) designs.

In what follows, we specifically consider these designs to compare a new
treatment and a control treatment based on survival outcomes using a log-rank
test. For a particular patient population, we assume proportional hazards between
treatment arms and use the asymptotic distribution of a log-rank test statistic S

under equal treatment assignment and follow-up, S � N.�; 4=E/ [27]. Here � is
the logarithm of the ratio of the hazard function under the new treatment relative to
that under the control treatment, and E is the total number of events observed.

For a clinical trial with a given number of events, we express a standardized test
statistic for testing treatment efficacy for the BC subset of patients as

ZC D O�C=
p

VC ;

where O�C is an estimate of �C, such as a log-rank statistic SC, and VC D 4=EC.
Similarly, we have a test statistic Z� D O��=

p
V� for testing treatment efficacy for

the B� subset, where V� D 4=E�. We consider the following standardized test
statistic for testing treatment efficacy for the overall population,

Zoverall D O�overall=
p

Voverall ;

where O�overall D .EC O�C C E� O��/=.EC C E�/ and Voverall D 4=Eoverall D
4=.EC C E�/. We assume that the aforementioned standardized statistics follow
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asymptotically normal distributions with variance 1, where the means of ZC; Z�;

and Zoverall are �C=
p

VC; ��=
p

V�, and
p

Voverall.�C=VC C ��=V�/, respectively.

14.4.1 FS (Fixed-Sequence) Designs

If evidence from biological or early trial data suggests the predictive ability of the
biomarker, it is reasonable to consider first testing treatment efficacy for the BC
subset of patients. In such a situation, one would not expect the treatment to be
effective in the B� patients unless it is effective in the BC patients. As such, the
following FS design is derived [20, 23]. In the first stage, we compare the treatment
versus control in the BC patients using the test statistic ZC at a significance level
of 5 %. If this test is significant, we proceed to the second stage; otherwise, the
analysis is stopped. In the second stage, we compare the treatment versus control
in the B� patients using the test statistic Z� at a significance level of 5 %. All tests
are two-sided. This sequential approach controls the experiment-wise Type I error
at 5 %. When both the first test for the BC patients and the second test for the
B� patients are significant, one may assert treatment efficacy for the overall patient
population. When only the first test for the BC patients is significant, one may assert
treatment efficacy only for future patients who are biomarker positive. We refer to
this method as the FS-1 design.

A simple way for determining sample size in this design is to ensure the
prespecified level of power, such as 90 %, for the first test, and calculate the required
number of events for the BC patients, EC. This coincides with the required number
of events for randomized patients in the enrichment designs. In this calculation, the
number of events for the B� patients, E�, is not determined at the design stage. The
B� patients are enrolled concurrently until sufficient numbers of the BC patients
with EC are enrolled. As such, E� can depend on the prevalence of BC, pC, and
the event rates �C and �� in the BC and B� control groups, respectively, at the
time that there are EC events in the BC subset. Specifically,

E� D EC
�

��
�C

� �
1 � pC

pC

�

is held approximately [20]. We expect a small (large) E�, especially when pC
is large (small). A small E� can lead to a lack of power for detecting clinically
important treatment effects in the B� patients at the second stage. On the other
hand, a large E� can yield ethical and practical concerns about enrolling a large
number of the B� patients who are unlikely to benefit from the treatment [23].
Hence, sample size determination and/or planning of an interim futility analysis for
the B� patients would be warranted.

In another variation of the FS design, the second stage involves testing treatment
efficacy for the overall population rather than for the subset of B� patients [13].
With this approach, when only the test for the BC subset in the first stage is
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significant, one may assert treatment efficacy for the BC subset. When the second
overall test is significant (following a significant result in the first stage), one may
assert treatment efficacy for the overall population. We refer to this method as the
FS-2 design.

14.4.2 FB (Fallback) Designs

When there is limited confidence in the predictive biomarker, it is generally
reasonable to assess treatment efficacy for the overall patient population and prepare
the subset analysis as a fallback option. Specifically, in the first stage, the treatment
is compared with the control overall at a reduced significance level ˛1, such as 3 %.
If this test is significant, the analysis is stopped. Otherwise, in the second stage, the
treatment is compared with the control for the BC patients at a reduced significance
level ˛2, such as 2 %, in order to control the experiment-wise type I error rate within
5 % in testing treatment efficacy for the overall population or BC subset [19,28]. All
tests are two-sided. The significance level ˛2 can be specified by taking into account
the correlation between the first test in the overall population and the second test in
the subset of BC patients [25, 26, 28]. Specifically, the covariance (or correlation)
between ZC and Zoverall reduces to

p
pC. As the test on treatment efficacy for

the overall patient population precedes the fallback test for the BC patients, it is
reasonable to set the significance values such that ˛1 � ˛2. When the first test is
significant, one may assert treatment efficacy in the overall population. On the other
hand, when only the second test for the BC patients is significant (following a non-
significant result of the first test for the overall population), one may assert treatment
efficacy only in future BC patients.

Sample size determination will be based on the first test on treatment efficacy
for the overall population, like in the traditional randomized trials, apart from the
use of the significance level ˛1.<0:05/. Because of possible treatment effects that
are clinically important in the BC patients, it is advisable to perform sample size
calculation for the second test for the BC patients and plan for the option of delaying
the second stage analysis until collection of the required number of events for the
BC patients when it is needed [23].

14.4.3 TBBI (Treatment-by-Biomarker Interaction) Designs

TBBI designs, like FB designs, are used when there is limited confidence in
the predictive biomarker. This approach involves deciding whether to compare
treatments overall or within the biomarker-based subsets based on a preliminary test
of interaction of treatment and biomarker [17, 20, 23]. Here the test of interaction is
to assess whether there is no difference in treatment effects (in term of the relative
hazards ratio between the two treatment arms) between the BC and B� subsets
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of patients. Specifically, we use the following standardized statistic for testing the
interaction:

Zint D
O�C � O��p
VC C V�

:

It is reasonable to consider a one-sided interaction test to detect larger treatment
effects in the BC subset [20, 23]. To be specific, we propose the following design:
a preliminary test of interaction is performed as the first stage using Zint at a
one-sided significance level of ˛int. If this test is not significant, the treatment is
compared with the control overall using Zoverall at a two-sided significance level
˛3. Otherwise, the treatment is compared with the control in the BC patients using
ZC at a two-sided significance level ˛4. Here the significance levels, ˛3 and ˛4, are
chosen such that the experiment-wise type I error rate in testing treatment efficacy
for the overall population or BC subset is less than or equal to 5 % based on an
asymptotic distribution of Zint, Zoverall, and ZC, where the covariances between
Zint and Zoverall or ZC may reduce to cov.Zint; Zoverall/ D 0 or cov.Zint; ZC/ Dp

VC=.VC C V�/ D p
E�=.EC C E�/. Under the null hypothesis of no treatment

efficacy for the BC and B� patients (and thus indicating no effects for the overall
population), for which we will search for the significance level, ˛4, for ZC, given
˛int for Zint and ˛3 for Zoverall, to control the experiment-wise type I error rate
within 5 %, we propose to set cov.Zint; ZC/ D p

1 � pC if the hazard rate in the
BC subset can be considered to be the same as that in the B� subset. When the
predictive biomarker is prognostic, a larger number of events is expected for the
BC patients, resulting in an overestimation of the correlation. This would lead to
use of a stringent significance level of ˛4 and thus a conservative design.

When the test for the BC patients is significant (following a significant result
of the preliminary interaction test), one may assert treatment efficacy only for BC
patients. When the overall test is significant (following a non-significant result of
the preliminary interaction test), one may assert treatment efficacy for the overall
population.

The TBBI designs have been discussed in the literature as a design for clinical
validation of the predictive biomarker based on a test on treatment-by-biomarker
interaction [17, 20, 23]. However, sizing the trial to have high power for the
interaction test may require a substantially large sample size, compared to sizing
trials with the other randomize-all designs. This cannot generally be justified as it
requires exposing an excessive number of B� patients to a treatment from which
they are unlikely to benefit [23].

On the other hand, the proposed TBBI design with strict control of the
experiment-wise type I error rate described above aims to assess the clinical utility
of a new treatment with the aid of the biomarker. As our simulation study indicated
(see Sect. 14.5.1), it could be more efficient compared with the other randomize-all
designs. An additional advantage of the proposed TBBI design is that even if the
interaction test is regarded as a preliminary test, a significant interaction could
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be regarded as relatively firm evidence for the clinical validity of the biomarker.
Further studies on the proposed TBBI design, including determination of optimal
levels of ˛int and ˛3 and sample size determination, would be worthwhile.

14.5 Probability of Asserting Treatment Efficacy

The randomize-all designs described in Sect. 14.4 can make either of two kinds of
assertions regarding treatment efficacy, one for the overall population and the other
for the BC subset of patients. Which of the two assertions is considered to be valid
may depend on the underlying treatment effects in the biomarker-based subsets.
Specifically, let HRC and HR� denote the hazard ratios of the treatment relative to
the control in the BC and B� subsets of patients, respectively. If the treatment truly
has clinically meaningful effects in all of the patients, e.g., HRC D HR� D 0:7,
the assertion of treatment efficacy for the overall population would be more valid
than that for the BC patients only because the latter assertion would deprive the
remaining B� patients of the chance of receiving the effective treatment. On the
other hand, if the treatment can exert a clinically important effect only in the
BC patients, e.g., HRC D 0:5, and no effect in the remaining B� patients, e.g.,
HR� D 1:0 (indicating a qualitative interaction between treatment and biomarker),
the assertion of treatment efficacy for the BC patients would be more valid than that
for the overall population because the latter assertion would yield overtreatment for
the remaining B� patients using the ineffective, even toxic treatment. Let Poverall

and Psubset denote the probability of asserting treatment efficacy for the overall
population and for the subset of BC patients, respectively.

However, there can be other scenarios in which it is not clear which of the
two assertions is valid. For example, the treatment can exert a clinically important
effect for the BC patients, e.g., HRC D 0:5, but some moderate or small
effects for the remaining B� patients, e.g., HR� D 0:8 (indicating a quantitative
interaction between treatment and biomarker). Such a treatment effect profile
could be explained by the treatment having multiple mechanisms of action, the
misclassification of responsive patients into the B� subset (low sensitivity of the
biomarker), and so on. Which of the two assertions is considered to be valid will
be determined on a case-by-case basis incorporating many factors, including the
size of the prevalence pC, possible adverse effects, treatment costs, prognosis of
the disease, availability of other treatment choices, and so on. In such situations,
the probability of asserting treatment efficacy for either the overall population or
the subset of BC patients could be another meaningful criterion. From the point
of view of treatment developers (e.g., pharmaceutical companies), this probability
would be always important, because it can be interpreted as the probability of
success in treatment development. Let Psuccess denote this probability. Apparently,
Poverall C Psubset D Psuccess for the randomize-all designs described in Sect. 14.4. As
such, there is a trade-off between the two probabilities Poverall and Psubset for a given
value of Psuccess.



14 Biomarker-Based Designs of Phase III Clinical Trials 257

Table 14.1 Empirical probabilities of Poverall, Psubset, and Psuccess under null effects

TBBI
HRC HR� pC Prob. Traditional FS-1 FS-2 FB ˛int D 5 % ˛int D 10 %

1:0 1:0 0:1 Poverall 0:051 0:003 0:005 0:032 0:030 0:029

(null effect) Psubset 0:000 0:041 0:039 0:016 0:019 0:021

Psuccess 0:051 0:044 0:044 0:047 0:049 0:050

0:3 Poverall 0:050 0:002 0:010 0:031 0:029 0:028

Psubset 0:000 0:048 0:040 0:020 0:020 0:022

Psuccess 0:050 0:050 0:050 0:051 0:049 0:050

0:5 Poverall 0:052 0:002 0:018 0:031 0:029 0:028

Psubset 0:000 0:047 0:032 0:019 0:021 0:020

Psuccess 0:052 0:050 0:050 0:050 0:050 0:048

14.5.1 Simulations

We provide a comparison of the randomize-all designs in Sect. 14.4 in terms of
Poverall, Psubset, and Psuccess. We considered the prevalence of BC, pC D 0:1; 0:3, or
0:5. As to the underlying treatment effects within biomarker-based subsets, we con-
sidered the following scenarios: .HRC; HR�/ D .1:0; 1:0/; .0:7; 0:7/; .0:5; 1:0/, or
.0:5; 0:8/, i.e., null effects, constant effects, qualitative interaction, and quantitative
interaction. In the FB and TBBI designs, we specified the same significance levels
for the overall test, ˛1 D ˛3 D 3 %, for a fair comparison of these designs. The
significance level for the one-sided interaction test, ˛int, in the TBBI designs was
specified as 5 or 10 %. The significance levels for the BC subset tests, ˛2 and ˛4,
in the FB and TBBI designs were determined such that the experiment-wise type
I error rates were equal to 5 %. We also evaluated the traditional design without
use of a biomarker as a reference, with Poverall D Psuccess and Psubset D 0 (because
there is no option for asserting treatment efficacy for the BC subset in this design).
We conducted 10;000 simulations (clinical trials) for each configuration to obtain
empirical values of the probabilities. We provide the results when 400 patients with
a baseline event rate of 0:2 (per year) are randomized and followed up for 5 years in
each clinical trial. For larger sample sizes, Poverall; Psubset, and Psuccess became large,
but similar conclusions in terms of the relative sizes of these probabilities across the
designs under comparison were obtained. R codes for conducting simulations are
available from author upon request. A web-based simulation program that provides
estimates of required sample size for biomarker-based analysis plans for time to
event or binary endpoints is also available [15].

We first confirmed control of the experiment-wise type I error rate, i.e., Psuccess �
5 %, for all of the designs in Table 14.1. We also confirmed control of Poverall as the
specified significance levels for the overall tests, ˛1 D ˛3 D 3 %, for the FB and
TBBI designs.

Table 14.2 summarizes the empirical values of Poverall; Psubset, and Psuccess for
scenarios with non-null treatment effects. For the scenarios with constant treatment
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Table 14.2 Empirical probabilities of Poverall, Psubset, and Psuccess under non-null treatment effects

TBBI

HRC HR� pC Prob. Traditional FS-1 FS-2 FB ˛int D 5 % ˛int D 10 %

0:7 0:7 0:1 Poverall 0:758 0:083 0:106 0:690 0:658 0:623

(constant Psubset 0:000 0:036 0:013 0:007 0:045 0:079

effect) Psuccess 0:758 0:120 0:120 0:698 0:703 0:702

0:3 Poverall 0:774 0:198 0:300 0:703 0:669 0:634

Psubset 0:000 0:124 0:022 0:020 0:052 0:098

Psuccess 0:774 0:322 0:322 0:723 0:721 0:732

0:5 Poverall 0:764 0:222 0:450 0:691 0:659 0:623

Psubset 0:000 0:252 0:025 0:027 0:049 0:097

Psuccess 0:764 0:474 0:474 0:717 0:708 0:720

0:5 1:0 0:1 Poverall 0:074 0:016 0:039 0:048 0:027 0:019

(qualitative Psubset 0:000 0:301 0:279 0:178 0:296 0:304

interaction) Psuccess 0:074 0:317 0:317 0:225 0:323 0:323

0:3 Poverall 0:301 0:038 0:281 0:230 0:053 0:031

Psubset 0:000 0:719 0:476 0:449 0:706 0:743

Psuccess 0:301 0:757 0:757 0:680 0:759 0:774

0:5 Poverall 0:688 0:047 0:682 0:607 0:102 0:052

Psubset 0:000 0:891 0:256 0:305 0:825 0:893

Psuccess 0:688 0:938 0:938 0:913 0:927 0:945

0:5 0:8 0:1 Poverall 0:519 0:115 0:205 0:432 0:326 0:266

(quantitative Psubset 0:000 0:192 0:102 0:077 0:222 0:278

interaction) Psuccess 0:519 0:307 0:307 0:509 0:548 0:544

0:3 Poverall 0:762 0:232 0:644 0:692 0:369 0:270

Psubset 0:000 0:532 0:119 0:124 0:455 0:584

Psuccess 0:762 0:764 0:764 0:816 0:824 0:854

0:5 Poverall 0:914 0:214 0:882 0:873 0:403 0:288

Psubset 0:000 0:722 0:054 0:073 0:533 0:666

Psuccess 0:914 0:936 0:936 0:946 0:937 0:954

effects, .HRC; HR�/ D .0:7; 0:7/, where Poverall would be a relevant criterion, the
traditional design provided the greatest values of Poverall, as was expected. The FB
and TBBI designs provided slightly reduced values of Poverall than those of the
traditional design. On the other hand, the FS designs, especially FS-1, provided
much smaller values of Poverall. Similar trends were observed for Psuccess.

For the scenarios with a qualitative interaction, .HRC; HR�/ D .0:5; 1:0/, where
Psubset would be relevant, the FS-1 and TBBI designs performed best. The FS-2
and FB designs provided much smaller values of Psubset when pC � 0:3. With
respect to Psuccess, all biomarker-based designs, except the FB design, generally
provided comparable Psuccess values, while the traditional design provided much
smaller values of Psuccess.



14 Biomarker-Based Designs of Phase III Clinical Trials 259

Lastly, for the scenarios with a quantitative interaction, .HRC; HR�/ D
.0:5; 0:8/, the characteristics of the respective designs became clearer. The FS-2
and FB designs tended to provide larger Poverall, while the FS-1 and TBBI designs
tended to provide larger Psubset values. With respect to Psuccess, the TBBI designs
provided the largest Psuccess values, followed by the FB design with slight reductions
in Psuccess.

In summary, the FS-1 design would be suitable for cases with qualitative
interactions between treatment and biomarker and large treatment effects in the BC
patients, but could suffer from a serious lack of power for nearly constant treatment
effects in the overall population. Interestingly, the FS-2 design has quite different
properties, but was not shown to be so efficient for various profiles of treatment
effects. In contrast, a FB design would be suitable for cases with nearly constant
treatment effects in the overall population, but could suffer from a serious lack
of power for qualitative interactions between treatment and biomarker. The TBBI
designs generally performed well for various patterns of treatment effects within
biomarker-based subsets in terms of all the probabilities, Poverall, Psubset and Psuccess.
This can be explained by the effectiveness of the preliminary interaction test in
selecting the appropriate population for testing treatment efficacy.

14.6 More Complex Adaptive Designs

When the biology of the target of a new treatment is not well understood because of
the complexity of disease biology, it is quite common that a completely specified
predictive biomarker is not available before initiating the definitive phase III
trial. One approach in such situations is to design and analyze the randomized
phase III trial in such a way that both developing a predictive biomarker and
testing treatment efficacy based on the developed biomarker are possible and
conducted validly. Apparently, this approach works with randomize-all designs
without prestratification based on any biomarkers, and careful prespecification of
the analysis plan is mandatory.

Jiang et al. [10] developed the adaptive threshold design for settings where a
single predictive biomarker candidate is available but no threshold of positivity
for the biomarker is predefined. The basic idea is, for a set of candidate threshold
values .b1; : : : ; bK/ , to search for an optimal threshold value through maximizing
a log likelihood ratio of treatment effect for the patients with biomarker value �bk

over possible threshold values .k D 1; : : : ; K/ . The maximum log likelihood ratio
at the optimal threshold value is used as the test statistic. Its null distribution is
approximated by repeating the whole analysis after randomly permuting treatment
levels several thousand times. This approach can be applied to searching for a
subset determined by a positive value of any single biomarker when there is a
set of candidate binary biomarkers [23]. This approach can be used as the second
stage analysis of the FB designs or as a stand-alone basis by incorporating the log
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likelihood statistic for testing the overall treatment effects in obtaining a maximum
test statistic [10].

Another adaptive design, called adaptive signature design, is to develop a
predictor or signature using a set of covariates x, possibly high-dimensional
genomic data [6,8]. As the second stage of the FB designs, the full set of patients in
the clinical trial is partitioned into a training set and a validation set. A prespecified
algorithmic analysis plan is applied to the training set to generate a predictor. This is
a function of x and to predict, for a given patient with a particular value of x, to be
responsive or not responsive to the new treatment. The predictor is used to make a
prediction for each patient in the validation set. Then, the treatment efficacy is tested
for the patient subset predicted as “responsive” to the treatment in the validation set.

This modified second stage analysis of the FB designs can be based on split-
sample [6] or cross-validation [8]. In the latter approach, at the end of the prediction
process, each of all the patients in the clinical trial is predicted as either responsive
or not. Again, the treatment efficacy is tested for the patient subset predicted as
“responsive” to the treatment. However, because this subset is determined by the
cross-validation using the all patient data, the standard asymptotic theory does not
apply. To address this issue, a permutation method that repeats the whole processes
of the cross-validated prediction analysis after randomly permuting treatment levels
is employed [8].

Recently, Matsui et al. [14] developed another framework designed to estimate
treatment effects quantitatively as a function of a continuous cross-validated
predictive score for the entire patient population, rather than qualitatively classifying
patients as in or not in a responsive subset. Average absolute treatment effects
for the entire population or a responsive subset of patients can be estimated
based on the estimated treatment effects function and tested using a permutation
method. In this framework, patient-level survival curves can be developed to predict
survival distributions of individual future patients as a function of the cross-
validated predictive score and a cross-validated prognostic score that is developed
independently from the development of the predictive score, through correlating
genomic data with survival outcomes without reference to treatment assignment.

14.7 Concluding Remarks

In this chapter, we have discussed a wide variety of biomarker-based designs of
phase III clinical trials to establish the clinical utility of a biomarker or a new
treatment with the aid of a biomarker. In biomarker-strategy, enrichment, and
prestratified randomize-all designs, collection of specimens and biomarker assays
are conducted prospectively for newly accruing patients. As these prospective
designs are highly resource-intensive and time-consuming, a study using archived
specimens is sometimes used as an alternative. This type of study is retrospective
with regard to using archived specimens, but should prospectively specify a
protocol. An unstratified randomize-all trial, possibly with the adaptive designs in
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Sect. 14.6, could be categorized to this type of study because specimens archived at
the beginning of the trial are analyzed. Simon et al. [21] proposed several conditions
for appropriately conducting such a study with archived specimens. In summary,

1. Archived specimen, adequate for a successful assay, must be available from a
sufficient large number of patients to permit appropriately powered analyses
in the pivotal trial and to ensure that the patients included in the biomarker
evaluation are representative of the patients in the trial.

2. Substantial data on the analytical validity of the biomarker must exist to ensure
that results obtained from the archived specimens will closely resemble those
that would have been obtained from analysis of specimens collected in real time.
Assays should be conducted blinded to the clinical data.

3. The analysis plan for the biomarker evaluation must be completely developed
before the performance of the biomarker assays. The analysis should focus on a
single diagnostic biomarker that is completely defined and specified. The analysis
should not be exploratory, and practices that might lead to a false-positive
conclusion (e.g., multiple analyses of different candidate biomarkers based on
archived specimens from the same trial) should be avoided.

4. The results must be validated in at least one or more similarly designed studies
using the same assay techniques.

These conditions are also applicable to previously conducted clinical trials (with
archived specimens) that evaluated the efficacy of the treatment of interest.
When substantial preliminary evidence that a new biomarker predicts treatment
responsiveness has been accumulated by the middle or completion of a phase
III trial of the treatment, one may consider assay of the biomarker in archived
specimens from this trial. As an example, an analysis based on a KRAS mutation
in a randomized trial for the anti-EGFR antibody, cetuximab, which was approved
for the treatment of advanced colorectal cancer, demonstrated that the treatment
was not effective for patients with KRAS mutations [11]. Another possibility is
to analyze archived specimens from a failed pivotal trial that showed no treatment
effect for the entire patient population using the methods for biomarker development
described in Sect. 14.6. The developed biomarker from such an analysis can provide
useful information for designing a second confirmatory trial of the same treatment,
possibly with an enrichment design with small sample sizes.

The recent advances in biotechnology and genomics have posed biostatisticians
further important roles and challenges in various phases of biomarker development
and validation, including systematic collection of specimens and measurement of
biomarker/clinical data, development of an analytically and clinically-validated
biomarker, and establishment of the clinical utility of the biomarker or biomarker-
based treatment, through utilizing archived or prospectively-collected specimens in
the context of clinical trials. Further biostatistical researches are required indeed
in this important field for accelerating modern clinical studies toward personalized
medicine.
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