
Chapter 13
Statistical Validation of Surrogate Markers
in Clinical Trials

Ariel Alonso, Geert Molenberghs, and Gerard van Breukelen

Abstract The increasing cost of drug development has raised the demand on
the use of biomarkers as surrogate endpoints for the evaluation of new drugs in
clinical trials. However, failed past attempts to use surrogate endpoints made it
clear that, before deciding on the use of a candidate surrogate endpoint, it is of
the utmost importance to investigate its validity. Such validation process has proven
challenging for conceptual and practical reasons. In the present chapter, some of
the statistical methods introduced for the evaluation of surrogate markers will be
discussed. Emphasis will be made on the so-called meta-analytic approach and its
information-theoretic version, where information from several units is combined to
carry out the validation exercise. The methods will be illustrated using a case study
in ophthalmology.

13.1 Motivations and Antecedents

Recent discoveries in medicine and biology are opening an entire range of pos-
sibilities for the development of new treatments. However, these unquestionable
achievements are also facing us with the challenge of having to evaluate a large
number of promising therapies, using increasingly complex and costly clinical
trials [2].

One of the most important factors influencing the duration and complexity of
modern clinical trials is the choice of the endpoint used to assess drug efficacy.
Actually, the most sensitive and relevant clinical endpoint, the so-called “true”
endpoint, might often be difficult to use. This can happen, for instance, if mea-
surement of the true endpoint is costly (e.g., to diagnose “cachexia”, a condition
associated with malnutrition and involving loss of muscle and fat tissue, expensive
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equipment measuring content of nitrogen, potassium and water in the patient’s body
is required); requires a long follow-up time (e.g., survival in early stage cancers);
or requires a large sample size due to a low incidence of the event (e.g., short-
term mortality in patients with suspected acute myocardial infarction). A plausible
strategy in these circumstances is the use of biomarkers for efficacy. The pursue of
this strategy has been further encouraged by recent developments in many medical
and biological fields that have considerably increased the number of promising
biomarkers for the assessment of efficacy. In addition, a growing number of new
drugs have a well-defined mechanism of action at the molecular level, allowing drug
developers to measure the effect of these drugs on the relevant biomarkers [15].

Basically, one would like to replace the problematic true endpoint by a biomarker,
which is measured earlier, more conveniently, or more frequently. From a regulatory
perspective, a biomarker is not considered an acceptable endpoint for a determina-
tion of efficacy of new drugs, unless it has been shown to function as a valid indicator
of clinical benefit, i.e., unless it is a valid surrogate marker [5].

Because of the possible benefits for the duration and cost of clinical trials,
surrogate markers have been used in medical research for a long time [12, 14].
However, in spite of all its potential advantages, the use of surrogate endpoints
in the development of new therapies has always been controversial. This may
be due to a number of unfortunate historical instances where treatments showing
a highly positive effect on a surrogate endpoint, were ultimately shown to be
detrimental to the subjects’ clinical outcome. One of such unfortunate events was the
approval by the Food and Drug Administration (FDA) in the United States of three
antiarrhythmic drugs: encainide, flecainide and moricizine, based on their efficacy to
effectively suppress arrhythmias. It was believed that, since arrhythmia is associated
with an almost fourfold increase in the rate of cardiac-complication-related death,
the drugs would also reduce the death rate. Nonetheless, a clinical trial conducted
after the drugs had been approved and introduced into clinical practice showed that,
in fact, the death rate among patients treated with encainide and flecainide was more
than twice the one among patients treated with placebo [8]. An increase of the risk
was also detected for moricizine.

Behind many of these failures in the initial use of surrogate endpoints, was the
logical but naive perception that surrogacy could be established by only evaluating
the association between the biomarker on the one hand and the corresponding true
endpoint on the other hand. Nevertheless, these failed past attempts made clear that
the mere existence of an association between a biomarker and the true endpoint
is not sufficient for using the former as a surrogate, i.e., a good correlate is not
automatically a good surrogate [14]. The recognition of this fact opened an exciting
and fruitful debate about the properties that a good surrogate should satisfy. After
more than 20 years of research, this debate is far from settled and many questions
and practical issues still need to be addressed. This notwithstanding, our level of
knowledge has been dramatically increased and plethora statistical methods are now
available for the evaluation of surrogate markers.

In Sect. 13.2 some important definitions are given. The single-trial methods and
the meta-analytic approach to the validation of surrogate markers are introduced
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in Sects. 13.3 and 13.4 respectively. Section 13.5 describes some of the issues that
emerge when the true and/or the surrogate endpoints are not normally distributed
and in Sects. 13.6 and 13.7 a unified approach based on information theory is intro-
duced. The meta-analytic approach is illustrated using a case study in Sect. 13.8 and
the implementation of this method in widely used software packages is addressed in
Sect. 13.10. Eventually, some final comments are presented in Sect. 13.11.

13.2 Some General Definitions

The terms “endpoint”, “biomarker”, and “marker” have often been interchangeably
used to refer simply to a random variable that can be measured over the course of
the disease process. Variables that are measured early in the course of the disease are
frequently suggested as potential surrogates for those that are measured later. The
following definitions, introduced by the Biomarker Definitions Working Group, are
nowadays widely accepted and adopted in the biomedical literature [4]:

• Clinical endpoint: a characteristic or variable that reflects how a patient feels,
functions, or survives;

• Biomarker: a characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention;

• Surrogate endpoint: a biomarker that is intended to substitute for a clinical
endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm
or lack of benefit or harm).

It is important to point out that, although extremely useful, the previous
definitions do not include all situations one may encounter in practice. For instance,
in our case study we analyze a potential surrogate that is not a biomarker, but an
intermediate endpoint that has clinical meaning of its own. This is frequently the
case in medical fields like, for instance, oncology, where progression-free survival
is often considered as a potential surrogate for survival.

13.3 Single-Trial Methods

All earlier approaches to the validation of surrogate markers were framed in a
single-trial setting, i.e., it was assumed that information on both the surrogate (S )
and the true endpoint (T ) was available from a single clinical trial. Within this
setting Prentice introduced in 1989 the first formal definition of surrogacy. Basically,
Prentice proposed to define a surrogate endpoint as

a response variable for which a test of the null hypothesis of no relationship to the treatment
groups under comparison is also a valid test of the corresponding null hypothesis based on
the true endpoint [21].
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Symbolically, Prentice’s definition can be written

f .S jZ/ D f .S/ , f .T jZ/ D f .T / ; (13.1)

where f .X/ denotes the probability distribution of random variableX and f .X jZ/
denotes the probability distribution of X conditional on the treatment variable
Z. Note that this definition involves the triplet .T; S;Z/ and, consequently, the
endpoint S is a surrogate for T always with respect to the effect of some specific
treatmentZ. This implies that, at least in principle, if a new treatment is considered,
then the validation process would need to be repeated. Prentice and other authors
supplemented the previous definition with the following set of operational criteria
that has become known as the Prentice’s Criteria: (1) treatment has a significant
impact on the surrogate endpoint f .S jZ/ ¤ f .S/, (2) treatment has a significant
impact on the true endpoint f .T jZ/ ¤ f .T /, (3) the surrogate endpoint has a
significant impact on the true endpoint f .T jS/ ¤ f .T /, and (4) the full effect
of treatment upon the true endpoint is captured by the surrogate f .T jS;Z/ D
f .T jS/ [5].

The latter two are Prentice’s original criteria and it has been proven that the
definition and criteria are only equivalent when both the surrogate and the true
endpoints are binary [5]. Note that the first two criteria measure the departures from
the null hypothesis used in (13.1) and the third criterion implies that the surrogate
has a prognostic value for the true endpoint. Finally, the fourth criterion requires S
to fully capture the effect of treatment on the true endpoint, that is, there is no effect
of treatment on the true endpoint after correcting for the surrogate.

Freedman et al. argued that the last criterion raises conceptual problems, since it
requires the statistical test for the treatment effect on the true endpoint to be non-
significant after adjustment for the surrogate [16]. In general, the nonsignificance
of this test does not prove that the effect of treatment on the true endpoint is totally
captured by the surrogate [5, 13]. Freedman further proposed to shift the paradigm
from hypothesis testing to estimation and to calculate the so-called proportion of
treatment explained (PTE). The PTE is the proportion of the treatment effect on
the true endpoint captured by the surrogate and is defined as PTE D .ˇ � ˇS/ˇ,
where ˇ denotes the effect of the treatment on the true endpoint emanating from
f .T jZ/ and ˇS is the effect of the treatment on the true endpoint after adjusting by
the surrogate and can be calculated using f .T jS;Z/.

Note that PTE is large when ˇS is small relative to ˇ, Prentice fourth criterion
implies ˇS D 0 and therefore, if this criterion holds, PTE D 1. Freedman
suggested that a good surrogate is one for which PTE is close to one. However,
some conceptual problems also surround PTE, the most paradoxical one is that it
is not a proportion. In fact, PTE can take any value on the real line, making its
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interpretation problematic [5]. Freedman himself acknowledged that the confidence
limits for PTE will tend to be rather wide or even unbounded if Fieller’s confidence
intervals are used.

Frangakis and Rubin strongly criticized the conceptual foundation of Prentice’s
fourth criterion and the PTE [13]. They pointed out that the treatment effect on
the true endpoint used in these two procedures is obtained after conditioning on
the surrogate, i.e., a post-randomization variable and, consequently, is not a causal
effect. Further, they proposed to assess surrogacy using the so-called principal
stratification which is based on the potential outcomes model often used in causal
inference. It has been argued that this method suffers from a similar drawback as the
Prentice’s definition and criteria, in that it is too stringent and difficult to implement
in practice [27]. In addition, the intrinsically unobserved nature of the vector of
potential outcomes implies that untestable assumptions are unavoidable.

In a separate line of research, Buyse et al. showed that, for continuous and nor-
mally distributed endpoints, PTE can be decomposed in three different quantities:
the first one merely is the ratio of the surrogate and true endpoint variances and,
therefore, it only represents a scale factor, the other two are the so-called relative
effect RE and the adjusted association �Z [7]. The relative effect is defined as
RE D ˇ=˛, where ˛ is the treatment effect on the surrogate emanating from f .S jZ/
and ˇ is defined as before. Notice that, unlike Prentice’s fourth criterion and the
PTE, the treatment effects involved in RE are not adjusted by post-randomization
variables and, hence, have a direct causal interpretation. Indeed, ˛ and ˇ are simply
the average causal effects of the treatment on the surrogate and the true endpoint
respectively. The adjusted association is the correlation between the surrogate and
the true endpoint after adjusting by treatment and is defined as �Z D Corr.S; T jZ/.

The relative effect tries to enable prediction of the treatment effect on the
true endpoint based on the treatment effect on the surrogate, but to do so strong
and untestable assumptions have to be made. Essentially, in a single trial setting
one is confronted with the problem of estimating the relationship between both
average causal effects using a single observation, namely the vector of treatment
effects .˛; ˇ/. A way out of the problem is to assume that E.ˇj˛/ D RE � ˛,
i.e., the average causal effects satisfy the regression through the origin equation
ˇ D RE � ˛ C ". Regression through the origin has often been surrounded by
controversy due to the paradoxical results it can produce, like negative coefficients
of determination and negative F ratios. Even when there are theoretical reasons to
believe that the function relating the two variables of interest does pass through the
origin, regression through the origin may be problematic if the relationship between
the variables of interest is not linear in a neighborhood of zero. Moreover, if the
data at hand lie far from zero, then the assumption of linearity at this point becomes
impossible to evaluate. This lack of replication is a fundamental problem of all the
previously discussed approaches and it can only be overcome when more than one
pair .˛; ˇ/ is available for the analysis.
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13.4 Data from Several Trials: The Meta-analytic Approach

Over the years, it has become clear that the single trial setting is too restrictive
for the evaluation of surrogate markers and a general agreement has been growing
regarding the need of replication at the trial level as well. A first formal proposal
along these lines, using Bayesian methods, was given by Daniels and Hughes [11].
Buyse et al. extended these ideas using the theory of linear mixed-effects
models and Gail et al. extended it further using generalized estimating equations
methodology [7, 17]. In what follows, we describe the approach as proposed by
Buyse et al. under the assumption that both endpoints are normally distributed
and in Sects. 13.5–13.7 other types of endpoints will be addressed. To that end let
us assume that data from i D 1; : : : ; N trials are available, in the i th of which
j D 1; : : : ; ni subjects are enrolled. Further, let us denote the true and surrogate
endpoints for patient j in trial i by Tij and Sij, respectively, and the indicator
variable for the new treatment by Zij. The random treatment allocation in a clinical
trial context naturally leads to the following bivariate model(

Tij D �Ti C ˇiZij C "T ij ;

Sij D �Si C ˛iZij C "Sij ;
(13.2)

where �Ti and �Si are trial-specific intercepts quantifying the average response in
the control group, ˇi and ˛i are trial-specific average causal effects and "T ij and
"Sij are correlated error terms, assumed to be zero-mean normally distributed with
covariance matrix

˙ D
�
�TT �TS
�TS �SS

�
; (13.3)

i.e., (13.3) denotes the within-trial covariance matrix of T and S after adjusting
by treatment and considering the patient the level of analysis. Furthermore, due to
replication at the trial level, one can decompose the trial-specific parameters in the
following way

0
BB@
�Si

�T i

˛i

ˇi

1
CCA D

0
BB@
�S

�T

˛

ˇ

1
CCA C

0
BB@
mSi

mTi

ai

bi

1
CCA ; (13.4)

where the second term on the right hand side of (13.4) is assumed to follow a zero-
mean normal distribution with covariance matrix

D D

0
BB@
dSS dST dSa dSb
dST dTT dTa dTb

dSa dTa daa dab
dSb dTb dab dbb

1
CCA : (13.5)
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Essentially, (13.5) denotes the between-trial covariance matrix of intercepts and
treatment effects on T and S , considering now trial the level of analysis. Buyse
et al. investigated how the treatment effect on the true endpoint can be predicted by
the treatment effect on the surrogate [7]. The main idea is to predict the treatment
effect on T in a new trial i D 0 based on: (a) information obtained in the validation
process using trials i D 1; : : : ; N , and (b) the estimate of the treatment effect on
S in the new trial i D 0. To this end, these authors notice that .ˇ C b0jmS0; a0/

follows a normal distribution with mean and variance

E.ˇ C b0jmS0; a0/ D ˇ C
�
dSb

dab

�T �
dSS dSa

dSa daa

��1 �
�S0 � �S
˛0 � ˛

�
; (13.6)

Var.ˇ C b0jmS0; a0/ D dbb �
�
dSb

dab

�T �
dSS dSa

dSa daa

��1 �
dSb

dab

�
: (13.7)

If the treatment effect on the surrogate conveys a lot of information about the
treatment effect on the true endpoint, then the conditional variance (13.7) will be
close to zero. In that case, there would be an almost deterministic relationship
between the treatment effects on the true and surrogate endpoint, and a very accurate
prediction of the first one would be possible if the second one has been observed.
Based on these ideas Buyse et al. proposed to assess surrogacy at the trial level using
the coefficient of determination

R2trial D R2bi jmSi ;ai
D

�
dSb

dab

�T �
dSS dSa

dSa daa

��1 �
dSb

dab

�
: (13.8)

This coefficient measures how precisely the treatment effect on the true endpoint
can be predicted, provided that the treatment effect on the surrogate endpoint has
been observed in a new trial (i D 0). It is unitless and ranges in the unit interval
if the corresponding covariance matrix D is positive-definite, two desirable features
for its interpretation.

One special case of the model given in (13.2) is the so-called reduced model,
which assumes that the intercepts, i.e. the average responses in the control group,
are constant across trials. Under this assumption, expressions (13.6) and (13.7)
reduce to

E.ˇ C b0ja0/ D ˇ C dab

daa
.˛0 � ˛/ ;

Var.ˇ C b0ja0/ D dbb � d2ab

daa
;

with corresponding

R2trial D R2bi jai D d2ab

daadbb
: (13.9)
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Similar to the logic in (13.6) and (13.7), the conditional model for ˇi given �Si

and ˛i can be written as

ˇi D �0 C �1�Si C �2˛i C "i ; (13.10)

where expressions for the coefficients .�0; �1; �2/ follow from (13.4) and (13.5). In
case the surrogate is perfect at the trial level (R2trial D 1), the error term in (13.10)
vanishes and the linear relationship becomes deterministic, implying that ˇi equals
the systematic component of (13.10).

Notice first that, unlike for the RE, the regression line (13.10) does not neces-
sarily pass through the origin. Secondly, this new approach avoids the conceptual
problems surrounding the RE, since the relationship between ˇi and ˛i is studied
across a family of units, rather than in a single unit. By virtue of replication, it is
possible to check the stated relationship for the treatment effects and, if the posited
linear relation does not hold, alternative regression functions can be considered.
Nevertheless, one has to be aware of a potentially low power to discriminate between
candidate regression functions.

At the individual level, one tries to assess how an individual’s surrogate outcome
is predictive for the true endpoint outcome. To this end, one needs to construct the
conditional distribution of T , given S and Z. From (13.2) we obtain

TijjZij; Sij � N
˚
�Ti � �TS��1

SS
�Si C .ˇi � �TS�

�1
SS
˛i /Zij

C �TS�
�1
SS
SijI �TT � �2

TS
��1
SS

�
:

The association between both endpoints after adjustment by treatment is captured
by the coefficient of determination

R2ind D �2
ST

�SS�T T
: (13.11)

Basically, the R2ind is the squared correlation between both endpoints once we
have adjusted for treatment and trial and, therefore, it is a natural extension of
the adjusted association. Unlike the trial level surrogacy, the individual level does
not depend on the treatment and it can be interpreted as a quantification of the
biological plausibility of the surrogate. An endpoint producing a high individual
level surrogacy is always a potential surrogate, however, it may fail to be predictive
at the trial level for a specific treatment that follows a causal path that completely
avoids it.

Although elegant, the above hierarchical model often poses a considerable
computational challenge [5]. To address this problem, Tibaldi et al. suggested
several simplifications, like treating the trial-specific parameters in (13.2) as fixed
effects in a two-stage approach [25]. The first-stage model will take the form (13.2)
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and at the second stage, the estimated treatment effect on the true endpoint is
regressed on the estimated treatment effect on the surrogate and the intercept
associated with the surrogate endpoint as

Ǒ
i D �0 C �1 O�Si C �2 Ǫ i C "i : (13.12)

Essentially, the trial-level surrogacy R2trial is assessed by regressing Ǒ
i on . O�Si ; Ǫi /

and the individual-level value is calculated as before, using the estimates
from (13.3). Notice that, when the fixed-effects approach is chosen, there is a
need to adjust for the heterogeneity in information content between trial-specific
contributions. One way of doing so is weighting the contributions according to trial
size. This gives rise to a weighted linear regression model (13.12) in the second
stage.

Another cornerstone of the meta-analytic method is the choice of unit of analysis
such as, for example, trial, center, or country. This choice may depend on practical
considerations, such as the information available in the data, experts’ considerations
about the most suitable unit for a specific problem, the amount of replication at a
potential unit’s level, and the number of patients per unit. From a technical point of
view, the most desirable situation is where the number of units and the number of
patients per unit is sufficiently large. Of course, after choosing a specific unit for the
analysis, one always has to reflect carefully on the status of the results obtained.
Arguably, they may not be as reliable as one might hope for, and one should
undertake every effort possible to increase the amount of information available. This
issue has been covered at large by Cortiñas et al. and we refer the interested reader
to this work for more details [9].

13.5 Other Types of Endpoints

In the previous section, the formalism developed by Buyse et al. was introduced
using the simplest setting where both endpoints are Gaussian random variables
measured cross-sectionally. However, this is not always the case, for example, one
can encounter:

• Binary (dichotomous): the surrogate and/or true endpoints are binary, for
instance, biomarker value below or above a certain threshold (e.g., viral load
in HIV+ patients below detection limit) or clinical “success” (e.g., tumor
shrinkage).

• Categorical (polychotomous): the surrogate and/or true endpoints are categorical,
for instance, biomarker value falling in successive, ordered classes (e.g., choles-
terol levels <200, 200–299, 300+ mg/dl) or clinical response (e.g., complete
response, partial response, stable disease, progressive disease).
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• Longitudinal or repeated measures: the surrogate and/or true endpoints are
longitudinally measured, for instance, biomarker (e.g., CD4+ counts over time)
or clinical outcome (e.g., blood pressure over time).

• Multivariate longitudinal: the surrogate and/or true endpoints are multivariate
outcomes measured longitudinally, for instance, several biomarkers (e.g., CD4+
and viral load over time) or several clinical measurements (e.g., dimensions of
quality of life over time).

• Time to event: the surrogate and/or true endpoints are failure-time random
variables, for instance, time to cancer recurrence as a surrogate marker for
survival.

Assessing surrogacy in these more complex scenarios raises a number of difficult
challenges. Firstly, one now needs to deal with highly complicated hierarchical
models. These models frequently bring severe numerical issues and the use of
alternative, simplified approaches like the ones proposed by Tibaldi et al., becomes
unavoidable. Secondly, based on the outputs of these models, one needs to define
meaningful measures to quantify surrogacy at both the trial and individual level.

If one is ready to only consider linear models to study the relationship between
the treatment effect on the surrogate and the true endpoint, then the methodology
previously described can be applied in a straightforward fashion to quantify trial
level surrogacy. At the individual level, however, abandoning the realm of normality
has much deeper implications. Indeed, based on this meta-analytic paradigm, several
individual-level measures have been proposed. For instance, in the binary-binary
setting Renard et al. assumed that the observed dichotomic outcomes emerge from
two latent and normally distributed variables . QS; QT /. Essentially, it is assumed that
the surrogate (true endpoint) takes value one when corresponding latent variable
exceeds a threshold value, i.e., when QS > �S ( QT > �T ) and zero otherwise. In this
framework, using a bivariate probit model, these authors defined individual-level
surrogacy as R2ind D �2QS QT , which is the correlation at the latent level. Alternatively,

they also defined R2ind D  , the global odds ratio between both binary endpoints
estimated from a so-called bivariate Plackett-Dale model [22].

When the true endpoint is a survival time and the surrogate is a longitudinal
sequence, Renard et al., using Henderson’s model, proposed to study the individual
level based on a time function defined as R2ind.t/ D corrŒW1.t/;W2.t/�

2, where
.W1.t/;W2.t// is a latent bivariate Gaussian process [23]. Burzykowski et al.
approached the case of two failure-time endpoints based on copula models and
quantified the individual level surrogacy using Kendall’s 	 [6].

Using multivariate ideas, the so-called R2
 has been proposed to evaluate
surrogacy when both responses are measured longitudinally [1]. TheR2
 coefficient
quantifies the association between both longitudinal sequences and is defined using
the covariance matrices emanating from a hierarchical model that characterized
the joint distribution of both endpoints. Furthermore, the R2
 can be incorporated
into a more general framework allowing for interpretation in terms of canonical
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correlations of the error vectors, based on which, one can define a family of
individual-level parameters [1].

All these examples underscore a limitation of the meta-analytic methodology
so far: different settings require different definitions and in some of these settings,
the association is measured at a latent level, hampering interpretation. Furthermore,
in all cases, a joint and often non-standard model for both endpoints is needed,
frequently representing a serious computational burden. In the next section, a unified
approach to the validation of surrogate markers based on information theory will be
introduced. Furthermore, it will be argued that this approach may help to overcome
some of the aforementioned problems.

13.6 An Information-Theoretic Unification

Information theory, originated as a rigorous science in the 1940s, deals with the
study of problems concerning complex systems, and has been applied in a variety
of fields such as modern communication theory. In spirit and concepts, information
theory has its mathematical roots connected with the idea of disorder or entropy
used in thermodynamics and statistical mechanics. An early attempt to formalize
the theory was made by Nyquist in 1924 who recognized the logarithmic nature
of information [19]. Another major contribution in this area came in 1948 when
Shannon published a remarkable paper on the properties of information sources and
communication channels [24].

R.A. Fisher’s well-known measure of the amount of information supplied by data
about an unknown parameter is the first use of information in statistics. Further,
Kullback and Leibler in 1951 studied another statistical information measure,
involving two probability distributions associated with the same experiment [18].

The concept of entropy lies at the center of information theory and it can be
interpreted as a measure of the randomness or uncertainty associated with a random
variable. If Y is a discrete random variable taking values fk1; k2; : : : ; kmg with
probability function P.Y D ki / D pi , then the entropy of Y is defined as

H.Y / D �EŒlogP.Y /� D �
X
i

pi logpi :

H.Y / can be interpreted as the average uncertainty associated with P . The joint and
conditional entropies are defined in an analogous fashion. Entropy is always non-
negative and satisfies H.Y jX/ � H.Y / for any pair of random variables .X; Y /,
with equality holding under independence. Basically, the previous inequality states
that uncertainty about Y can only decrease if additional information (X ) becomes
available. Furthermore, entropy is invariant under a bijective transformation [10].
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Similarly, the so-called differential entropy hd .Y / of a continuous random
variable Y with density fY .y/ and support SfY is defined as

hd .Y / D �EŒlog fY .Y /� D �
Z
SfY

fY .y/ logfY .y/ dy :

Differential entropy enjoys some but not all properties of entropy, it can be
infinitely large, negative, or positive, and is coordinate dependent. For a bijective

transformationW D �.Y /, it follows that hd .W / D hd .Y /�EW
�

log
ˇ̌̌
d��1

dw .W /
ˇ̌̌�

.

One can now quantify the amount of uncertainty in Y , expected to be removed
if the value of X were known, by I.X; Y / D h.Y / � h.Y jX/, the so-called mutual
information, where h D H in the discrete case and h D hd for continuous random
variables. It is always non-negative, zero if and only if X and Y are independent,
symmetric, invariant under bijective transformations of X and Y , and I.X;X/ D
h.X/.

Additionally, if Y is a n-dimensional random vector, then the entropy-power of
Y can be defined as

EP.Y / D 1

.2�e/n
e2h.Y / :

The differential entropy of a continuous normal random variable is given by
h.Y / D 1

2
log

�
2�e�2

�
, a simple function of the variance and, therefore, on the

natural logarithmic scale EP.Y / D �2, i.e., for the normal distribution variability
and information are equivalent concepts. However, this equivalence does not hold
in the general case. Indeed, in general, EP.Y / � Var.Y / with equality if and only if
Y is normally distributed.

We can now define an information-theoretic measure of association as

R2h D EP.Y /� EP.Y jX/
EP .Y /

; (13.13)

which ranges in the unit interval, equals zero if and only if .X ;Y / are independent,
is symmetric, is invariant under bijective transformation of X and Y , and, when
R2h ! 1 for continuous models, there is usually some degeneracy appearing in the
distribution of (X ;Y ); often Y D 
.X/ with probability one for some nontrivial
function 
. This means that there exists a deterministic relationship between X

and Y . There is a direct link between R2h and the mutual information: R2h D 1 �
e�2I .X ;Y /. For Y discrete: R2h � 1 � e�2H.Y /, implying that R2h has an upper bound
smaller than 1; in this setting it is better to consider

R2hmax D R2h
1 � e�2H.Y / ;

reaching 1 when both endpoints are deterministically related.
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Surrogacy can now be redefined preserving previous proposals as special cases.
It is important to point out that, although the focus will be on the individual-level
surrogacy, all results apply to the trial level as well. Let Y D T and X D S be the
true and surrogate endpoints, respectively. S would be considered a good surrogate
for T at the individual (trial) level, if a “large” amount of uncertainty about T (the
treatment effect on T ) is reduced when S (the treatment effect on S ) is known.
This definition, in spite of being based on formal concepts rooted in information
theory, is simple and intuitive, since the idea behind surrogacy is to reduce our
lack of knowledge about a true endpoint through the use of a surrogate alternative.
At the trial level, the situation is similar: we want to gain information about the
unobserved treatment effect on the true endpoint using the known treatment effect
on the surrogate.

The R2h coefficient is a valuable tool to evaluate surrogacy in practice. R2h � 1

implies that our potential surrogate is promising, and could be interpreted as follows:
once the surrogate is known, almost all of our uncertainty about the true endpoint
will be removed. On the other hand, R2h � 0 evidences a poor surrogate, unable to
reduce our uncertainty about the true endpoint.

For the cross-sectional normal-normal case, Alonso and Molenberghs have
shown that R2h D R2ind [1]. The same holds forR2
, defined in a longitudinal context.
Finally, when the true and surrogate endpoints have distributions in the exponential

family, then LRF
P! R2h when the number of subjects per trial goes to infinity,

where LRF denotes the likelihood reduction factor introduced by Alonso et al. [3].
These authors also showed that (13.13) can be estimated based on f .T jZ;S/ and
f .T jZ/, i.e., two univariate models that can often be easily fitted using standard
software packages, in contrast to the original meta-analytic approach that requires
the fitting of the complex joint hierarchical model f .T; S jZ; ˛; ˇ/.

13.7 Fano’s Inequality and the Theoretical Plausibility
of Finding a Good Surrogate

Fano’s inequality relates prediction accuracy with different information-theoretic
concepts and, when applied to the evaluation of surrogate endpoints, this inequality
sets a limit for our capacity to successfully predict the true endpoint using the
surrogate [3, 10]. For continuous endpoints it can be written as

E
	
.T � g.S//2
 � EP.T /.1 � R2h/ : (13.14)

Note that nothing has been assumed about the distribution of both the surrogate and
true endpoint and no specific form has been considered for the prediction funct-
ion g.
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Essentially, Fano’s inequality states a lower bound for the prediction error and
this lower bound can be decomposed in two different elements. The second element
on the right side of (13.14) depends on the surrogate through the value of R2h,
the first element, however, is an intrinsic characteristic of the true endpoint and
it is independent of the surrogate. It is clear from (13.14) that the prediction error
increases with EP.T / and, consequently, if the true endpoint has a large entropy-
power then a surrogate should produce a close to one R2h to have some predictive
value. In other words, the surrogate would need to be almost deterministically
related to the true endpoint to have some predictive power. Essentially, this
inequality hints on the fact that, for some true endpoints, the search for a good
surrogate may be a dead end street.

13.8 An Age-Related Macular Degeneration (ARMD) Trial

In what follows, the use of the meta-analytic approach will be illustrated using
a clinical trial involving patients suffering from age-related macular degeneration
(ARMD), a condition in which patients progressively lose vision [20]. Overall,
240 patients from 43 centers participated in the trial. Patients’ visual acuity was
assessed using standardized vision charts (see Fig. 13.1) displaying lines of five
letters of decreasing size, which patients had to read from top (largest letters) to
bottom (smallest letters).

The visual acuity was measured by the total number of letters correctly read. In
this example, the binary indicator for treatment (Z) is set to �1 for placebo and

Fig. 13.1 Visual acuity
study. Visual chart
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to 1 for treatment with interferon-˛. The surrogate endpoint S is the change in the
visual acuity at 6 months after starting treatment, while the true endpoint T is the
change in the visual acuity at 1 year. In the meta-analytic approach the centers in
which the patients were treated will be considered the units of analysis. Two out of
43 centers participating in the trial enrolled patients only to one of the two treatment
arms. These centers were excluded from considerations. A total of 41 centers were
thus available for analysis.

13.9 Analysis of the ARMD Trial

In this section, the data from the age-related macular degeneration trial, described
in Sect. 13.8, are used to evaluate visual acuity at 6 months as a surrogate endpoint
for visual acuity at 1 year. Primarily, one would like to assess, for a given patient,
how much information his visual acuity at 6 months provides on his visual acuity
at 1 year and, similarly, one would also like to assess how much information the
treatment effect at 6 months conveys about the treatment effect at 1 year. These
are the questions addressed by the individual- and trial-level surrogacy. Notice that
the individual level may be especially relevant for a treating physician who, having
observed a particular outcome for a patient with a treatment at 6 months, wants to
know what this means for the status of the patient at 1 year. On the other hand, the
trial level may be more relevant for a data analyst that wants to know if the follow
up period of a new trial might be shorten by 6 months in order to reduce cost.

Figure 13.2 shows the scatterplot of the two endpoints for all patients included in
the trial. Clearly, there is a correlation between both variables. Indeed, the estimated
Pearson correlation coefficient equals 0:757 and the 95% confidence interval is
CI95% D .0:688; 0:812/. We have learned in previous sections that, although
appealing, the existence of correlation does not imply that visual acuity at 6 months

Fig. 13.2 Age-related
macular degeneration trial.
True endpoint (change in
visual acuity at 1 year) versus
surrogate endpoint (change in
visual acuity at 6 months) for
all individual patients,
raw data
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is a valid surrogate and further analyses are needed. In the present section we will
follow the multi-units paradigm introduced in Sect. 13.4.

Using similar data, Buyse et al. experienced problems when fitting the full
random-effects model, irrespective of whether standard statistical software or user
developed alternatives were employed [7]. Similarly, our attempt to fit the complete
hierarchical model given in (13.2) produced an infinite likelihood and the resulting
D matrix was ill-conditioned with a condition number equal to 5.852�E15.

It is important to point out that when the full bivariate random-effects model
is used, severe numerical issues are often encountered, especially if the surrogate
and/or the true endpoint are not normally distributed. This numerical issues may
have a huge impact on the assessment of surrogacy, particularly at the trial level.
Indeed, theR2trial is computed based on the covariance matrix D and it is possible that
this matrix becomes ill-conditioned and/or non-positive definite due to numerical
problems. In such cases, the resulting quantities computed based on this matrix
might not be trustworthy. For example, in our case study, the estimated D matrix
produced a R2trial D 0:972 with a 95% confidence interval .0:955; 0:989/. Although
possible, such a large value for the trial level surrogacy inevitably raises some
doubts. Obviously, this result emanates from an ill-conditioned matrix and is
probably misleading. One way to asses the ill-conditioning of a matrix is by
reporting its condition number, i.e., the ratio of the largest over the smallest
eigenvalue. A large condition number is an indication of ill-conditioning. The most
pathological situation occurs when at least one eigenvalue is equal to zero. This
corresponds to a positive semi-definite matrix, which occurs, for example, when
the maximization procedure used to calculate the maximum likelihood estimators
converges to a boundary solution. Thus, when using the full hierarchical model in
the validation process, it is always necessary to check the D matrix to evaluate the
presence of these issues.

Due to the numerical problems found with the ARMD data when fitting the
complete hierarchical model, simplifying strategies along the lines introduced by
Tibaldi et al. were called for and a two-stage approach was adopted [25]. At a
first stage, the bivariate regression model given in (13.2) was fitted considering the
trial-specific parameters as fixed effects. Within the two-stage approach, Tibaldi et
al. explored two plausible strategies for fitting the model in (13.2), the so-called
univariate and bivariate strategies, taking into account whether the surrogate and
true endpoints are modeled as a bivariate outcome or rather as two univariate ones.
In the latter case, the correlation between both endpoints is not incorporated into
the model, rendering the study of the individual-level surrogacy more involved.
However, it is important to point out that, if the trial-level surrogacy is of most
interest and the investigation of the individual-level surrogacy is only of secondary
importance, then the adoption of the univariate strategy can largely ease the
computational burden in some scenarios. For the ARMD trial, the bivariate strategy
was feasible and, hence, always adopted. In addition, the reduced model that
assumes constant intercepts across units was also employed. Finally, at the second
stage, one can consider weighted and unweighted versions of the model given
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Table 13.1 Results of the
trial and individual level
surrogacy: R2trial, Rind and
95% confidence intervals
(CI) obtained using the Delta
method for the ARMD trial

Full model

Unweighted Weighted

R2trial 0.381 0.437

R2trial CI .0:138; 0:6234/ .0:200; 0:674/

R2ind&CI 0.512, CID .0:422; 0:601/

Reduced model

Unweighted Weighted

R2trial 0.601 0:517

R2trial CI .0:404; 0:797/ .0:297; 0:738/

R2ind&CI 0.581, CID .0:499; 0:662/

in (13.12) to estimate the trial level surrogacy. A summary of all these analyses
is given in Table 13.1.

Note firstly that the individual-level surrogacy is estimated at the first stage and,
consequently, it is not affected by the strategies followed to fit the second-stage
model (weighted/unweighted). Secondly, the R2ind produced very similar results for
both the reduced and full models. However, the AIC associated with the reduced
and full model were 2668.3 and 2185.4 respectively, indicating that the assumption
of equal intercepts across units produced a poorer fit to the data.

At the trial level, the results are much more variable, with the estimates R2trial

varying from 0.38 to 0.60 across different settings. Because the full model seems to
produce a better description of the data in what follows we will focus on the results
displayed at the top panel of Table 13.1.

Taking into account that the sample size greatly varied across centers, one may
consider a weighted analysis a more reliable option in this case. Nonetheless, the
point estimate of R2trial was similar when the weighted or unweighted strategy was
used and the confidence intervals largely overlapped in both scenarios. The general
conclusion is that the trial level surrogacy seems to be rather weak, with the upper
bound of the confidence intervals never exceeding 0.7.

Figure 13.3 displays the results obtained with the full-weighted model approach.
Figure 13.3a shows a plot of the treatment effects on the true endpoint by the
treatment effects on the surrogate endpoint and the size of the points are proportional
to the sample size of each center. These effects are weakly correlated. Figure 13.3b
shows a certain degree of correlation between the measurements at 6 months and
at 1 year, after correction for treatment effect and center. Based on the previous
findings, even with the limited data available, one may conclude that the assessment
of visual acuity at 6 months seems to be a poor surrogate for the same assessment at
1 year.
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Fig. 13.3 Age-related
macular degeneration trial.
(a) Treatment effects on the
true endpoint versus
treatment effects on the
surrogate endpoint in all
centers. The size of each
point is proportional to the
number of patients in the
corresponding center. (b)
True endpoint versus
surrogate endpoint for all
individual patients, after
correction for treatment effect

13.10 Software Packages

R functions and SAS macros have been developed to implement the methods
discussed in the previous sections [26]. The ARMD trial was analyzed using the
macro SURCONCON in SAS 9.3. The macro is a slight modification of the one that
can be downloaded from http://www.ibiostat.be/software/surrogate.asp. The SAS
code to carry out the analysis, the modified version of the macro and the data set
will be available from the book’s website. A detailed account of the macro can also
be found in [26].

http://www.ibiostat.be/software/surrogate.asp
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13.11 Conclusion

The initial enthusiasm that accompanied the use of surrogate markers, was followed
by concern and skepticism after some dramatic failures. However, these failures
opened a fruitful and stimulating scientific debate that has resulted in the develop-
ment of different approaches and schools of thoughts for the validation of surrogate
markers [2]. It is now clear that surrogate markers are a powerful tool that can
play an important role in the drug development process. But it has also transpired
that they need to be properly evaluated. Consequently, the initial enthusiasm and
subsequent skepticism have been substituted by a more scientific and objective
comprehension of their potentials and limitations.

At the same time, regulatory agencies around the globe, in particular in the
United States and in Europe, have developed new policies and methods to accelerate
the approval of certain types of drugs through the use of surrogate endpoints.
In the United States, accelerated approval, sometimes referred as “conditional
approval” or subpart H, refers to an acceleration of the overall development plan by
allowing submission of an application, and if approved, marketing of a drug based
on the evidence obtained, for instance, using a surrogate endpoint while further
studies demonstrating direct patient benefit are underway. In the same way, the
European regulatory agency has developed a set of regulations that are converging
to an accelerated approval system like in the United States, perhaps with more
flexibility [5].

As the previous sections illustrate, the scientific debate and research on surrogate
markers, initiated more than 20 years ago, is still thriving and we believe this work
together with the clear regulations established by leading regulatory agencies in the
world will arguably allow, in the near future, a more rational and efficient use of this
powerful tool.
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