
Chapter 10
Different Methods to Analyse the Results
of a Randomized Controlled Trial
with More Than One Follow-Up Measurement

Jos W.R. Twisk

Abstract In this chapter, an overview is given of different methods to analyse
data from a randomised controlled trial (RCT) with more than one follow-up
measurement. For a continuous outcome variable, a classical GLM for repeated
measurements can be used to analyse the difference in development over time
between the intervention and control group. However, because GLM for repeated
measurements has some major disadvantages (e.g., only suitable for complete
cases), it is advised to use more advanced statistical techniques such as mixed model
analysis or Generalised Estimating Equations (GEE). The biggest problem with the
analysis of data from an RCT with more than one follow-up measurement is the
possible need for an adjustment for baseline differences. To take these differences
into account a longitudinal analysis of covariance, an autoregressive analysis or a
‘combination’ approach can be used. The choice for a particular method depends on
the characteristics of the data. For dichotomous outcome variables, an adjustment
for baseline differences between the groups is mostly not necessary. Regarding the
more advanced statistical techniques it was shown that the effect measures (i.e. odds
ratios) differ between a logistic mixed model analysis and a logistic GEE analysis.
This difference between these two methods was not observed in the analysis of
a continuous outcome variable. Based on several arguments (e.g., mathematical
complexity, unstable results, etc.), it was suggested that a logistic GEE analysis
has to be preferred above a logistic mixed model analysis.

10.1 Introduction

Randomized controlled trials (RCT’s) are considered to be the gold standard for
evaluating the effect of a certain intervention [10]. In a randomized controlled trial,
the population under study is randomly divided into an intervention group and a
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non intervention or control group (e.g., a placebo group or a group with ‘usual’
care). Regarding the analysis of RCT data a distinction must be made between
studies with only one follow-up measurement and studies with more than one
follow-up measurement. When there is only one follow-up measurement relatively
simple statistical techniques can be used to evaluate the effect of the intervention,
while when more than one follow-up measurement is considered, in general, more
advanced statistical techniques are necessary.

In the past decade, an RCT with only one follow-up measurement has become
very rare. At least one short-term follow-up measurement and one long-term
follow-up measurement ‘must’ be performed. However, more than two follow-up
measurements are usually performed in order to investigate the ‘development over
time’ of the outcome variable, and to compare the ‘developments over time’ among
the intervention and control group. Sometimes these more complicated experimental
designs are analysed with simple cross-sectional methods, mostly by analysing the
outcome at each follow-up measurement separately, or sometimes even by ignoring
the information gathered from the in-between measurements, i.e. only using the
last measurement as outcome variable to evaluate the effect of the intervention.
Besides this, summary statistics are often used. The general idea behind a summary
statistic is to capture the longitudinal development of an outcome variable over
time into one value; the summary statistic. With a relative simple cross-sectional
analysis these summary statistics can be compared between the intervention and
control group in order to analyse the effect of the intervention. One of the most
frequently used summary statistics is the area under the curve (AUC) [14]. However,
nowadays mostly more advanced statistical methods such as mixed model analysis
or generalised estimating equations (GEE analysis) [8, 19] are used to analyze
RCT data with more than one follow-up measurement. In this chapter, the different
methods will be discussed by using an example dataset in which the effect of a new
therapy (i.e. intervention) for low back pain is evaluated. The example dataset is
a manipulated dataset from an RCT in which patients who seek care in a private
physical therapy clinic with low back pain as primary complaint were included.
Besides a baseline measurement, three follow-up measurements were performed at
6, 12 and 18 months respectively. In the present example, two outcome variables
will be considered: one continuous outcome variable and one dichotomous outcome
variable. The continuous outcome variable is a score on a questionnaire aiming to
measure complaints, while the dichotomous outcome variable reflects whether the
patient is recovered or not; this is based on subjective self-report.

10.2 Continuous Outcome Variables

Table 10.1 shows descriptive information for both the intervention and control group
at baseline and at the three follow-up measurements.
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Table 10.1 Descriptive
information regarding the
example with a continuous
outcome variable

Intervention Control

Complaints Mean (sd) N Mean (sd) N

Baseline 3.25 (0.40) 74 3.47 (0.43) 82

Time-point 1 3.03 (0.45) 68 3.25 (0.48) 71

Time-point 2 2.89 (0.51) 64 3.18 (0.57) 73

Time-point 3 2.83 (0.47) 67 3.12 (0.55) 73

Table 10.2 Results of a GLM for repeated measurements performed on the example dataset with
a continuous outcome variable

Overall time effect Overall intervention effect Intervention*time interaction

p < 0:001 p < 0:001 p D 0:74

10.2.1 Generalised Linear Model (GLM) for Repeated
Measurements

Although GLM for repeated measurements can not be seen as a new (more
advanced) statistical technique to analyse longitudinal data, it can be used to analyse
a continuous outcome variable measured in an RCT with more than one follow-
up measurement. The basic idea behind GLM for repeated measurements (which
is also known as (multivariate) analysis of variance ((M)ANOVA) for repeated
measurements) is the same as for the well known paired t-test. The statistical test is
carried out for the T � 1 absolute differences between subsequent measurements.
In fact, GLM for repeated measurements is a multivariate analysis of these T � 1

absolute differences between subsequent time-points. Multivariate refers to fact
that T � 1 differences are used simultaneously as outcome variable. Besides the
‘multivariate’ approach, the same research question can also be answered with a
‘univariate’ approach. This ‘univariate’ procedure is comparable to the procedures
carried out in simple analysis of variance (ANOVA) and is based on the ‘sum
of squares’, i.e. squared differences between observed values and average values.
In most software packages, the results of both the ‘multivariate’ and ‘univariate’
approach are provided at the same time. From a GLM for repeated measurements
with one dichotomous determinant (i.e. intervention versus control), basically three
‘effects’ can be derived [14]. An overall time-effect (i.e. is there a change over time,
independent of the different groups), an overall group effect (i.e. is there a difference
between the groups on average over time) and, most important, a group*time
interaction effect (i.e. is there a difference between the groups in development over
time). Table 10.2 shows the results of a GLM for repeated measurements performed
on the example dataset, while Fig. 10.1 shows the so called ‘estimated marginal
means’ resulting from the GLM for repeated measurements.

From Table 10.2 it can be seen that there is an overall time effect, an overall
intervention effect but no intervention*time interaction effect. From Fig. 10.1
(and also from Table 10.1), however, it can be seen that the baseline values of
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Fig. 10.1 Estimated
marginal means derived from
a GLM for repeated
measurements performed on
the example dataset with a
continuous outcome variable
( ____ control,
. . . intervention)

both groups are different. This is a problem that often occurs in RCT data which
should be taken into account in the analysis evaluating the effect of the intervention.
Different baseline values for the therapy and the control group causes ‘regression
to the mean’. If the outcome variable at a certain time-point t D 1 is a sample of
random numbers, and the outcome variable at the next time-point t D 2 is also a
sample of random numbers, then the subjects in the upper part of the distribution at
t D 1 are less likely to be in the upper part of the distribution at t D 2, compared to
the other subjects. In the same way, the subjects in the lower part of the distribution
at t D 1 are less likely than the other subjects to be in the lower part of the
distribution at t D 2. The consequence of this is that, just by chance, the change
between t D 1 and t D 2 is correlated with the initial value. For the group with
higher baseline values, a decrease in the outcome variable is much easier to achieve
than for the group with the lower baseline value. It is clear that this problem arises
in the analysis of the example dataset. Therefore, the consequence is that when the
intervention group and control group differ at baseline, a comparison of the changes
between the groups can lead to either an overestimation or an underestimation of
the intervention effect [15].

There is, however, a nice way to adjust for the phenomenon of regression to the
mean. This approach is known as ‘analysis of covariance’. With this technique the
value of the outcome variable Y at the second measurement is used as outcome
variable in a linear regression analysis, with the observation of the outcome variable
Y at the first measurement as one of the covariates:

Yit2 D ˇ0 C ˇ1Yit1 C ˇ2Xi C � � � C "i ; (10.1)

where Yit2 D observations for subject i at time-point t D 2; ˇ1 D regres-
sion coefficient for Yit1; Yit1 D observations for subject i at time-point t D 1;
ˇ2 D regression coefficient for Xi ; Xi D intervention variable and "i D error for
subject i .
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Table 10.3 Results of a GLM for repeated measurements adjusted for the baseline differences
performed on the example dataset with a continuous outcome variable

Overall time effect Overall intervention effect Intervention*time interaction

p < 0:001 p D 0:04 p D 0:14

Fig. 10.2 Estimated
marginal means derived from
a GLM for repeated
measurements adjusted for
the baseline differences
performed on the example
dataset with a continuous
outcome variable ( ____
control, . . . intervention)

In the analysis of covariance, the change is defined relative to the value of Y at
t D 1. This relativity is expressed in the regression coefficient ˇ1 and, therefore, it is
assumed that this method adjusts for the phenomenon of regression to the mean. In
fact the effect of the intervention is evaluated assuming the same baseline value for
both groups. The same idea can be used in a GLM for repeated measurements; i.e.
the analysis can be adjusted for the baseline value. This approach is also known as
(M)ANCOVA for repeated measurements. Table 10.3 and Fig. 10.2 show the results
of a GLM for repeated measurements adjusting for the baseline value performed on
the example dataset.

Although GLM for repeated measurements is often used, it has a few major
drawbacks. First of all, it can only be applied to complete cases; all subjects with
one or more missing observation are not part of the analyses. Secondly, GLM for
repeated measurements is mainly based on statistical significance testing, while
there is more interest in effect estimation. Because of this, nowadays, new more
advanced statistical techniques, such as mixed model analysis and GEE analysis are
mostly used.

10.2.2 More Advanced Analysis

The questions answered by a GLM for repeated measurements could also be
answered by more advanced methods, such as mixed model analysis and GEE
analysis [14]. The advantage of the more advanced methods is that all available
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data is included in the analysis, while with GLM for repeated measurements only
those subjects with complete data are included. Another important advantage of the
more advanced analyses is that they are basically regression techniques, from which
the effect estimates (i.e. the magnitude of the effect of the intervention) and the
corresponding confidence intervals can be derived.

The general idea behind all statistical techniques to analyse longitudinal data
is that because of the dependency of observations within a subject an adjustment
must be made for ‘subject’. The problem, however, is that the variable ‘subject’ is a
categorical variable that must be represented by dummy variables. Suppose there are
200 subjects in a particular study. This means that 199 dummy variables are needed
to adjust for subject. Because this is practically impossible, the adjustment for
‘subject’ has to be performed in a more efficient way and the different longitudinal
techniques differ from each other in the way they perform that adjustment [14].

Mixed model analysis is also known as multilevel analysis [4, 13], hierarchical
linear modeling or random effects modeling [6]. As has been mentioned before, the
general idea behind all longitudinal statistical techniques is to adjust for ‘subject’ in
an efficient way. Adjusting for ‘subject’ actually means that for all subjects in the
longitudinal study, different intercepts are estimated. The basic principle behind the
use of mixed model analysis in longitudinal studies is that not all separate intercepts
are estimated, but that (only one) variance of those intercepts is estimated, i.e. a
random intercept. It is also possible that not only the intercept is different for each
subject, but that also the development over time is different for each subject, in
other words, there is an interaction between ‘subject’ and time. In this situation
the variance of the regression coefficients for time can be estimated, i.e. a random
slope for time. In fact, these kind of individual interactions can be added to the
regression model for all covariates. In a regular RCT, however, assuming a random
slope for the intervention effect is not possible, because the intervention variable is
time-independent [13]. When a certain subject is assigned to either the intervention
or control group, that subject stays in that group along the intervention period.
An exception is the cross-over trial, in which the subject is his own control and
the intervention variable is time-dependent. In this situation the intervention effect
can be different for each subject and therefore a random slope for the intervention
variable can be assumed. For mixed model analysis, one has to choose which
coefficients have to be assumed random. This choice can be based on the result
of a likelihood ratio test.

Within GEE, the adjustment for the dependency of observations is done in a
slightly different way, i.e. by assuming (a priori) a certain ‘working’ correlation
structure for the repeated measurements of the outcome variable [8,19]. Depending
on the software package used to estimate the regression coefficients, different
correlation structures are available. They basically vary from an ‘exchangeable’
(or ‘compound symmetry’) correlation structure, i.e. the correlations between
subsequent measurements are assumed to be the same, irrespective of the length of
the measurement interval, to an ‘unstructured’ correlation structure. In this structure
no particular structure is assumed, which means that all possible correlations
between repeated measurements have to be estimated.
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In the literature it is assumed that GEE analysis is robust against a wrong choice
for a correlation structure, i.e. it does not matter which correlation structure is
chosen, the results of the longitudinal analysis will be more or less the same [9,12].
However, when the results of analysis with different working correlation structures
are compared to each other, the magnitude of the regression coefficients are
different [14]. It is therefore important to realize which correlation structure should
be chosen for the analysis. Although the unstructured working correlation structure
is always the best, the simplicity of the correlation structure also has to be taken
into account. The number of parameters (in this case correlation coefficients) which
needs to be estimated differs for the various working correlation structures. The best
option is therefore to choose the simplest structure which fits the data well. The first
step in choosing a certain correlation structure can be to investigate the observed
within-person correlation coefficients for the outcome variable. It should be kept
in mind that when analyzing covariates, the correlation structure can change (i.e.
the choice of the correlation structure should better be based conditionally on the
covariates).

Within the framework of the more advanced statistical techniques, several models
are available to evaluate the effect of an intervention. In an RCT with more than one
follow-up measurement, the simplest model that can be used is

Yit D ˇ0 C ˇ1Xi C � � � C "it; (10.2)

where Yit D observations for subject i at time t ; ˇ0 D intercept; ˇ1 D regression
coefficient for Xi ; Xi D intervention variable and "it D error for subject i at time t .

With this model the outcome variable at the different follow-up measurements
is compared between the therapy and control group simultaneously. This is compa-
rable to the comparison of the post-test value between two groups in a pre-post
test design. It should be noted that with this model, the influence of possible
differences at baseline between the two groups is ignored. In the example dataset,
however, it was seen that there is a (big) difference in baseline values between the
intervention and control group and that this difference can cause regression to the
mean. The intervention effect estimated with the standard model shown in (10.2), is
therefore not correct. To adjust for differences at baseline, a longitudinal analysis of
covariance can be used:

Yit D ˇ0 C ˇ1Xi C ˇ2Yit0 C � � � C "it; (10.3)

where Yi t D observations for subject i at time t ; ˇ0 D intercept; ˇ1 D regression
coefficient for Xi ; Xi D intervention variable; ˇ2 D regression coefficient for
observation at t0; Yit0 D observation for subject i at time t0 and "it D error for
subject i at time t .

The general idea behind a longitudinal analysis of covariance is that the outcome
variable at each of the follow-up measurements is adjusted for the baseline
value. The regression coefficient of interest, i.e. the regression coefficient for
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Table 10.4 Average effect of the intervention over time estimated with both mixed model
analysis and GEE analysis with a standard analysis, a longitudinal analysis of covariance and an
autoregressive analysis

Effect 95 % confidence interval p-value

Mixed models

Standard analysis �0.23 �0:38 to �0:09 <0:01

Longitudinal analysis of covariance �0.14 �0:27 to �0:01 0:03

Autoregressive analysis �0.17 �0:26 to �0:07 <0:01

GEE analysis

Standard analysis �0.23 �0:38 to �0:09 <0:01

Longitudinal analysis of covariance �0.14 �0:27 to �0:02 0:03

Autoregressive analysis �0.15 �0:24 to �0:06 <0:01

the intervention variable reflects the overall ‘adjusted’ difference between the
intervention and control group over time.

Another possible way to analyse RCT data with more than one follow-up is to
use a so-called autoregressive analysis. In an autoregressive analysis the outcome
variable is not adjusted for the baseline value, but each measurement of the outcome
variable is adjusted for the value of the outcome variable one time-point earlier:

Yit D ˇ0 C ˇ1Xi C ˇ2Yit�1 C � � � C "it; (10.4)

where Yit D observations for subject i at time t ; ˇ0 D intercept; ˇ1 D regression
coefficient for Xi ; Xi D intervention variable; Yit�1 D observation for subject i
at time t � 1; ˇ2 D regression coefficient for observation at t � 1 (autoregression
coefficient) and "it D error for subject i at time t .

The idea underlying an autoregressive analysis is that the value of an outcome
variable at each time-point is primarily influenced by the value of this variable one
measurement earlier. To estimate the ‘real’ influence of the intervention variable on
the outcome variable, the model should therefore adjust for the value of the outcome
variable at time-point t � 1. In fact, with an autoregressive analysis, the ‘adjusted’
changes between subsequent measurements are compared between the therapy and
the control group. Table 10.4 shows the results of the three analyses performed on
the example dataset. For all analyses the results of both a mixed model analysis and
a GEE analysis are shown.

From Table 10.4 it can first be seen that the results derived from a mixed
model analysis and the results derived from a GEE analysis are more or less the
same. Furthermore, it can be seen that the standard analysis gives a higher effect
measure compared to the other two methods. This has to do with the fact that
with the standard analysis, the differences at baseline between the intervention
and control group are not taken into account. Because the intervention group has
lower values all over the follow-up period, the intervention effect obtained from the
standard analysis is overestimated. In the example dataset the differences between
an analysis of covariance and an autoregressive analysis are small. Slightly higher
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effect estimates for the autoregressive analysis and slightly smaller 95 % confidence
intervals.

Although the longitudinal analysis of covariance is mostly used, it is questionable
whether or not this is correct. In fact, the adjustment for baseline for all the follow-
up measurements can overestimate the overall therapy effect. This is especially true
when the effect of the therapy is particularly found in the first part of the follow-
up period [14]. In the present example this is not really the case, so therefore, the
longitudinal analysis of covariance and the autoregressive analysis gave more or
less the same results. It is sometimes argued that both analyses are not correct.
This has to do with the fact that in a RCT only the differences at baseline are
caused by chance. Differences between the groups at the follow-up measurements
are probably mostly caused by the intervention and should therefore not be adjusted
for. To take that into account, a so-called ‘combination’ approach is suggested [17].
In this ‘combination’ approach, the first follow-up measurement is adjusted for the
baseline differences, but the next follow-up measurements are not adjusted anymore
for either the baseline differences (as in the longitudinal analysis of covariance) or
the value of the outcome one time-point earlier (as in the autoregressive analysis).
Although this approach makes sense, it is not much used in practice.

Up to now, the more advanced analyses performed were aimed to estimate
an overall intervention effect. Sometimes, however, one is more interested in
the estimation of effects at the different follow-up measurements. This can be
done in a simple way by performing separate analyses at the different follow-up
measurements, either by comparing the change between the baseline measurements
and the three follow-up measurements or by performing three separate analyses of
covariance (see Tables 10.5 and 10.6).

As expected, the results derived from the analysis of change scores are totally
different from the results derived from the analyses of covariance. This has to do
with the fact that the analyses of change scores not adjust for the difference at
baseline. The analyses of covariance take into account these differences and because
the intervention group has a lower value for the outcome variable at baseline, the
effect derived from analyses of covariance are much higher than the ones derived
from the analyses of change scores. Performing separate analyses, however, is
theoretically wrong because the separate analyses are highly dependent on each

Table 10.5 Effects of the
intervention at different
time-point estimated with
three separate analyses of
change scores

Effect 95 % confidence interval p-value

Time-point 1 �0:01 �0:16 to 0:15 0.90

Time-point 2 �0:02 �0:18 to 0:14 0.79

Time-point 3 �0:06 �0:21 to 0:08 0.38

Table 10.6 Effects of the
intervention at different
time-point estimated with
three separate analyses of
covariance

Effect 95 % confidence interval p-value

Time-point 1 �0:12 �0:26 to 0:03 0.11

Time-point 2 �0:18 �0:34 to �0:01 0.05

Time-point 3 �0:19 �0:35 to �0:03 0.03
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Table 10.7 Effects of the intervention at different time-point derived from one longitudinal
analysis estimated with a mixed model analysis with a longitudinal analysis of covariance and
an autoregressive analysis

Effect 95 % confidence interval p-value

Longitudinal analysis of covariance

Time-point 1 �0.10 �0:26 to 0:05 0.19

Time-point 2 �0.14 �0:30 to 0:01 0.07

Time-point 3 �0.18 �0:34 to �0:03 0.02

Autoregressive analysis

Time-point 1 �0.13 �0:27 to 0:01 0.07

Time-point 2 �0.16 �0:31 to �0:02 0.03

Time-point 3 �0.22 �0:36 to �0:07 <0.01

other. To obtain the separate effects in one analysis, time and the interaction between
the intervention variable and time can be added to the longitudinal analysis of
covariance and the autoregressive analysis.

Table 10.7 shows the results of the analyses performed on the example dataset in
order to obtain the effects of the intervention at the three follow-up measurements.

From Table 10.7 it can be seen that the differences between the results obtained
from a longitudinal analysis of covariance and the ones obtained from an autore-
gressive analysis are comparable to the differences between the two analyses in the
estimation of the overall effect over time (see Table 10.4). Table 10.7 only shows
the results from a mixed model analysis. It is obvious that the results obtained from
a GEE analysis are comparable.

An approach to evaluate the effect of an intervention at different time-points
is provided by Fitzmaurice et al. [3]. In this approach all measurements are used
as outcome (including the baseline measurement). The following model (which is
basically an extension of the standard model shown in (10.2)) is then used:

Yit D ˇ0 C ˇ1Xi C ˇ2 time1 C ˇ3 time2 C ˇ4 time3 C ˇ5Xi � time1

Cˇ6Xi � time2 C ˇ7Xi � time3 C � � � C "it;
(10.5)

where Yit D observations for subject i at follow-up time t , ˇ1 D the regression
coefficient for Xi ; Xi D intervention variable and time1, time2, time3 D dummy
variables for time and "it D error for subject i at time t .

In this model, the ˇ1 coefficient reflects the differences between the two groups at
baseline, ˇ1 C ˇ5 reflects the differences between the two groups at the first follow-
up measurement, while ˇ1 C ˇ6 reflects the differences between the two groups
at the second follow-up measurement and ˇ1 C ˇ7 the differences between the two
groups at the third follow-up measurement. Although, this is a nice way of analysing
the effect of the intervention at the different time-points, it does not adjust for the
differences between the groups observed at baseline, or in other words, it does not
adjust for possible regression to the mean.
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Table 10.8 Effects of the intervention at different time-point derived from one longitudinal
analysis estimated with a mixed model analysis based on (10.5) and (10.6)

Effect 95 % confidence interval p-value

Standard analysis

Time-point 1 �0.22 �0:38 to �0:06 <0.01

Time-point 2 �0.27 �0:43 to �0:11 <0.01

Time-point 3 �0.29 �0:46 to �014 <0.001

Standard analysis without the intervention variable

Time-point 1 �0.11 �0:24 to 0:03 0.13

Time-point 2 �0.16 �0:30 to �0:02 0.03

Time-point 3 �0.19 �0:32 to �0:05 <0.01

Table 10.8 shows the results of the two analyses performed on the example dataset estimated with
a mixed model analysis

An alternative approach to tackle this problem is to use the same model but
without the intervention variable:

Yit D ˇ0 C ˇ1 time1 C ˇ2 time2 C ˇ3 time3 C ˇ4Xi � time1

CXi � time2 C ˇ6Xi � time3 C � � � C "it;
(10.6)

where Yit D observations for subject i at follow-up time t , Xi D intervention
variable and time1; time2; time3 D dummy variables for time and "it D error for
subject i at time t .

Because the intervention variable is not in the model, the baseline values for
both groups are assumed to be equal and are reflected in the intercept of the model
(i.e. ˇ0). In this model, the coefficients of interest are the same as in the model with
the intervention variable. The only difference is that now the effects of intervention
at the different time-points are adjusted for the differences at baseline (Fig. 10.8).

The analyses based on (10.6) (i.e. the model without the intervention variable)
are basically the same as a longitudinal analysis of covariance. The difference in
the effect estimates between the two approaches is caused by a different number
of observations (due to missing values). When the two analyses would have been
performed on a full dataset without any missing values, the results of the two
analyses would have been exactly the same.

Although longitudinal analysis of covariance is mostly used to analyse the effect
of an RCT with more than one follow-up measurement one should be careful with
the interpretation of the results of such an analysis. In some situations, it is better
to use an autoregressive analysis. However, when differences at baseline occur
between the groups, they must be taken into account in the analysis.
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Table 10.9 Number of subjects recovered at different time-points for both the intervention and
control group

Intervention Control
Recovered Not recovered Recovered Not recovered

Time-point 1 10 58 5 66

Time-point 2 21 43 14 59

Time-point 3 25 42 12 61

Fig. 10.3 Percentage of
subjects recovered at different
time-points for both the
intervention and control
group
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10.3 Dichotomous Outcome Variables

The statistical models used for the analysis of dichotomous outcome variables
derived from an RCT with more than one follow-up measurement are somewhat
less complex than the models discussed for the analysis of a continuous outcome
variable. This has to do with the fact that in general an adjustment for differences in
baseline values is not necessary, because all subjects have the same value at baseline
(e.g. all subjects are not recovered). As has been mentioned before, the example
dataset used in this section is derived from the same RCT that has been used in the
example with a continuous outcome variable. However, in this section the outcome
is dichotomous reflecting whether the patient is recovered or not. Table 10.9 shows
the number of subjects recovered versus the number of subjects not recovered in the
intervention and in the control group at the three follow-up measurements, while
Fig. 10.3 shows the percentages over time for both groups.

The classical way to analyse the results of such an RCT is to analyse the
difference in proportion of patients experiencing recovery between the intervention
and the control group at each of the three follow-up measurements, by simply
applying a Chi-square test. Furthermore, at each of the follow-up measurements,
the effect of the intervention can be estimated by calculating the relative risk
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Table 10.10 Effects (expressed as relative risks) of the intervention at different time-points
estimated with three separate analyses

Relative risk 95 % confidence interval p-value

Time-point 1 1.60 0.77–3.33 0.15

Time-point 2 1.45 0.93–2.24 0.07

Time-point 3 1.83 1.12–2.99 0.01

Table 10.11 Effects (expressed as odds ratios) of the intervention at different time-points esti-
mated with three separate analyses

Odds ratio 95 % confidence interval p-value

Time-point 1 2.28 0.74–7.05 0.15

Time-point 2 2.06 0.94–4.50 0.07

Time-point 3 3.03 1.37–6.68 0.01

(and corresponding 95 % confidence interval). The relative risk is defined as the
proportion of subjects recovered in the intervention group, divided by the proportion
of subjects recovered in the control group [10]. Table 10.10 summarizes the results
of the analyses.

From Table 10.10 it can be seen that the effect of the intervention at the first and
second follow-up measurement is more or less the same, while at the third follow-up
measurement the effect of the intervention is somewhat greater and also statistically
significant.

It is, of course, also possible to estimate the effect of the intervention with a more
advanced longitudinal technique. Because of the nature of the outcome variable, a
logistic mixed model analysis or a logistic GEE analysis should be used instead of
a linear mixed model analysis or a linear GEE analysis. It should be noted that for
a dichotomous outcome variable GLM for repeated measurements is not possible.
Furthermore, it should be realized that as a result of a logistic longitudinal analysis,
odds ratios are calculated. Odds ratios are often interpreted as relative risks, but
they are not the same. Owing to the mathematical background of the odds ratios and
relative risks, the odds ratios are always an overestimation of the ‘real’ relative risk.
This overestimation becomes stronger as the proportion of ‘cases’ (i.e. recovered
patients) increases. To illustrate this, the odds ratios for intervention versus control
were calculated at each of the follow-up measurements (see Table 10.11).

From the results in Table 10.11 it can be seen that the calculated odds ratios are
bigger than the relative risks shown in Table 10.10, and that the confidence intervals
are wider, but that the significance levels are the same. So, when a logistic GEE
analysis is carried out, one must realize that the results (i.e. odds ratios) obtained
from such an analysis cannot be interpreted as relative risks.

Table 10.12 presents the results of a logistic mixed model analysis and a logistic
GEE analysis in which the average effect of the intervention over time is analysed.

The most intriguing finding regarding the comparison of the two analyses is
that the odds ratio obtained from a logistic mixed model analysis is much higher
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Table 10.12 Average effect of the intervention over time estimated with both mixed model
analysis and GEE analysis

Odds ratio 95 % confidence interval p-value

Mixed model analysis 3.94 1.29–12.04 0.02

GEE analysis 2.15 1.13–4.10 0.02

compared to the odds ratio obtained from a logistic GEE analysis. This is not just a
coincidence, but this has a theoretical background; i.e. the odds ratio obtained from
a logistic mixed model analysis will always be bigger than the one obtained from a
logistic GEE analysis.

Basically, both ‘longitudinal’ techniques take all measurements into account,
and use a logistic regression approach with an adjustment for the dependency of
the observations. This is done either by assuming a certain ‘working’ correlation
structure (GEE analysis) or by allowing random regression coefficients (mixed
model analysis). The difference between the two techniques is that GEE analysis
is a so-called population average approach, while mixed model analysis is a so-
called subject specific approach [14]. The different estimation procedures cause the
difference in the magnitude of the odds ratios, which is always in favour of the mixed
model analysis, i.e. the effects estimated with a logistic mixed model analysis are
always bigger than the effects estimated with a logistic GEE analysis. Because the
standard errors are also bigger for a logistic mixed model analysis (and therefore
the 95 % confidence intervals are wider), the corresponding p-values are not much
different and when conclusions are based on these p-values, they will be more or
less the same. However, when the conclusions are based on the magnitude of the
odds ratios, the conclusions will differ remarkably between the two techniques.

It should further be noted that the estimations of the regression coefficients (i.e.
odds ratios) with logistic mixed model analysis can be very complicated and often
lead to instable results. Furthermore, the results of these analyses can differ between
software packages [7, 14, 18].

It is of course also possible to estimate the effects of the intervention at the
three follow-up measurements in one analysis. This can be done in exactly the
same way as has been described for continuous outcome variables, i.e. by adding
dummy variables for time and the interaction between these dummy variables and
the intervention variable to the model. Again, this is far less complicated as for a
continuous outcome variable because in general an adjustment for differences in
baseline values is not necessary.

Table 10.13 shows the results derived from a both a logistic mixed model analysis
and a logistic GEE analysis.

From Table 10.13 it can be seen again that the odds ratios derived from a logistic
mixed model analysis are much higher than the ones derived from a logistic GEE
analysis. It can also be seen that the odds ratios derived from a logistic GEE analysis
are much closer to the ones obtained from the three separate analyses than the odds
ratios derived from a logistic mixed model analysis (Table 10.11). This suggests that
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Table 10.13 Effects of the intervention at different time-point estimated with one analysis

Odds ratio 95 % confidence interval p-value

GEE-analysis

Time-point 1 1.96 0.68–5.70 0.21

Time-point 2 1.83 0.85–3.91 0.12

Time-point 3 2.99 1.35–6.59 0.01

Mixed model analysis

Time-point 1 3.84 0.54–27.46 0.18

Time-point 2 3.63 0.75–17.65 0.11

Time-point 3 9.98 1.87–53.09 0.01

regarding the more advanced longitudinal techniques, logistic GEE analysis has to
be preferred above logistic mixed model analysis.

The data used in the present example is an example of ‘recurrent event’ data. To
analyse ‘recurrent event’ data, also some other approaches are available. Based on a
survival approach, Cox proportional hazards regression for recurrent events can be
performed [5, 11, 16]. Although there are different estimation procedures available
the general idea behind Cox proportional hazards regression for recurrent events is
that the different time periods are analysed separately adjusted for the fact that the
time periods within one patient are dependent. The idea of this adjustment is that
the standard error of the regression coefficient of interest is increased proportional
to the correlation of the observations within one subject. One of the problems using
Cox proportional hazards regression for recurrent events for RCT data is that it is
assumed that the events under study are short lasting, which means that after an
event the particular subject is directly at risk to get another event. This assumption
does not hold for most RCT’s, including the example RCT used in this chapter.
Although the events can be recurrent, most of the events are long lasting. So in
this situation, Cox proportional hazards regression for recurrent events is not very
suitable.

There are also other possibilities to model recurrent events data, such as the
continuous-time Markov process model for panel data [1] or the conditional
frailty model [2]. However, most of those alternative methods are mathematically
complicated and not much used in practice.

10.4 Discussion

In this chapter several methods were discussed that can be used to analyse data from
an RCT with more than one follow-up measurement. The data of the examples were
analysed with different software packages. GLM for repeated measurements was
performed with SPSS, while both mixed model analysis and GEE analysis were
performed with STATA. Nowadays, it is possible to perform both linear and logistic



192 J.W.R. Twisk

mixed model analysis as well as linear and logistic GEE analysis with all popular
(commercial) software packages such as SPSS, STATA, SAS and R. It should be
realised that the results of linear mixed model analysis and linear GEE analysis are
very stable; i.e. there is no difference in results obtained from the different software
packages. This also holds for logistic GEE analysis. However, for logistic mixed
model analysis this is not the case. The use of different software packages lead
to different results as well as the use of different estimation procedures within a
software package [14]. Therefore, the results obtained from a logistic mixed model
analysis should be interpreted with great caution.
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