
Chapter 1
Statistical Models and Methods for Incomplete
Data in Randomized Clinical Trials

Michael A. McIsaac and Richard J. Cook

Abstract In this chapter we discuss several models by which missing data can arise
in clinical trials. The likelihood function is used as a basis for discussing different
missing data mechanisms for incomplete responses in short-term and longitudinal
studies, as well as for missing covariates. We critically discuss common ad hoc
strategies for dealing with incomplete data, such as complete-case analyses and
naive methods of imputation, and we review more broadly appropriate approaches
for dealing with incomplete data in terms of asymptotic and empirical frequency
properties. These methods include the EM algorithm, multiple imputation, and
inverse probability weighted estimating equations. Simulation studies are reported
which demonstrate how to implement these procedures and examine performance
empirically.

1.1 Introduction

In well-conducted randomized clinical trials, randomization eliminates the possible
effect of confounding variables in the assessment of treatment effects. That is, when
the assignment of the treatment to patients is carried out by random allocation,
different treatment groups will have similar distributions of demographic and
clinical features, so any differences seen in the distribution of responses between
the treatment groups are attributable to the different treatments they receive. There
are a number of other rationale put forward for use of randomization in health
research [40], but it is the elimination of the effect of confounding variables and
facilitation of causal inference that has had the most profound impact in advancing
scientific understanding.

Following recruitment and randomization, however, participants in clinical trials
often withdraw before completion of follow-up, leading to incomplete outcome
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data. Incomplete data can of course arise for a variety of reasons; many illustrative
examples can be seen in the second chapter of Molenberghs and Kenward [26].
Depending on the reasons for withdrawal, the individuals who remain in the study
may no longer form groups with similar distributions of the demographic and
clinical features, which compromises the validity of causal inferences. The purpose
of this article is to discuss models and mechanisms by which incomplete data can
arise in clinical trials, the consequences missing data can have on the interpretation
of study results, and methods which can be employed to minimize the effect of these
consequences. A clear understanding of the practical and statistical issues involved
with incomplete response data will improve ability to critically appraise the clinical
literature.

The remainder of this chapter is organized as follows. In Sect. 1.2 we discuss
the problem of incomplete binary responses. We restrict attention to the case of a
binary treatment indicator and a single binary confounding variable to simplify the
discussion, calculations, and empirical studies, but we remark on practical issues
with more complex settings at the end of this section. We discuss the case of
incomplete longitudinal data in Sect. 1.3, and the problem of incomplete covariates
in Sect. 1.4. Concluding remarks are made in Sect. 1.5.

1.2 Incomplete Binary Response Data

1.2.1 Models and Measures of Treatment Effect

Consider a balanced two-arm clinical trial in which patients are randomized to
receive either an experimental treatment or standard care. Let X D 1 indicate that a
patient was allocated to receive experimental therapy and X D 0 otherwise, where
P.X D 1/ D 0:5. Suppose the outcome of interest is whether the patient had a
successful response; we let Y D 1 if this is the case and Y D 0 otherwise. We
illustrate the problem of dependently missing data by considering a situation with
a single additional binary variable V , where V D 1 indicates the presence of a
particular feature and V D 0 otherwise; P.V D 1/ D p. Suppose that the variable
V is an effect modifier [33] so that the treatment has a different effect for individuals
with and without the feature. This may be represented by the logistic model

P.Y D 1jX; V I �/ D expit.�0 C �1X C �2V C �3XV/ ; (1.1)

where � D .�0; �1; �2; �3/
0. In most situations there will be sub-populations between

which there is variation in the event rate and the effect of treatment; (1.1) is the
simplest model which accommodates this phenomenon.

While (1.1) may reflect reality, in clinical trials we typically aim to assess
treatment effects based on marginal models (i.e. models that do not condition on
prognostic variables such as V ); indeed provided X is independent of V , the causal
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effect of treatment is typically defined in terms of such a model. Thus the logistic
model used for treatment comparisons is formulated as

P.Y D 1jX I ˇ/ D expit.ˇ0 C ˇ1X/ ; (1.2)

where ˇ D .ˇ0; ˇ1/
0. Of course,

P.Y D 1jX I ˇ/ D EV ŒP.Y D 1jX; V I �/I p� ; (1.3)

since V is independent of X due to randomization, and so it is possible to obtain the
functional form of ˇ in terms of .� 0; p/0.

The resulting response rates in the control and treatment arms are pC D P.Y D
1jX D 0/ D expit.ˇ0/ and pT D P.Y D 1jX D 1/ D expit.ˇ0 Cˇ1/, respectively.
Some common measures of treatment effect include the absolute difference AD D
pT � pC , the number needed to treat NNT D .pT � pC /�1, the relative risk RR D
pT =pC , and the odds ratio OR D ŒpT =.1 � pT /�=ŒpC =.1 � pC /� [16,22]. When the
experimental treatment has a higher response rate, the AD and NNT measures are
positive and the RR and OR are larger than one.

Let I.A/ be an indicator function such that I.A/ D 1 if A is true and I.A/ D 0

otherwise. If response data are incomplete, in order to thoroughly discuss modeling
issues it is necessary to introduce a new random variable R D I.Y observed/,
so R D 1 if Y is observed and R D 0 otherwise. The biases that result from
incomplete data arise if there is an association between the response (Y ) and
whether we observe it or not (R). There are a variety of ways of introducing an
association between Y and R including through bivariate binary models [6] and
shared random effect models [1]. Here we consider the setting in which both Y and
R are associated with the covariates X and V . When V is unknown, an association
between Y and R exists because of the omission of V from the analysis. We adopt
this framework because when V is known, there are a variety of approaches to
incorporating information about V into the analyses to mitigate problems, as we
discuss in the following sections.

Suppose that the missing data model is

P.R D 1jX; V I ˛/ D expit.˛0 C ˛1X C ˛2V C ˛3XV/ ; (1.4)

where ˛ D .˛0; ˛1; ˛2; ˛3/0. This model accommodates a different dependence on
V in the two treatment arms. We assume in this idealized setting that R ? Y jX; V .
Since X ? V by randomization, the marginal proportion of missing data is

pR D P.R D 1I ˛; p/ D EX fEV ŒP.R D 1jX; V /�g

D
1X

xD0

1X

vD0

P.R D 1jX D x; V D vI ˛/ P.V D vI p/ P.X D x/ ;

where P.V D vI p/ D pv.1 � p/1�v, and P.X D x/ D 1=2 if randomization is
balanced. The joint probability mass function for Y; RjX is



4 M.A. McIsaac and R.J. Cook

P.Y; RjX I �/ D EV ŒP.Y jX; V I �/ P.RjX; V I ˛/�

D
1X

vD0

P.Y jX; V D vI �/ P.RjX; V D vI ˛/P.V D vI p/ ;

(1.5)

where � D .˛0; � 0; p/0. From (1.5) we can derive the conditional odds ratio for the
association between Y and R given X as

ORY;RjX D P.Y D 1; R D 1jX I �/

P.Y D 1; R D 0jX I �/

�
P.Y D 0; R D 1jX I �/

P.Y D 0; R D 0jX I �/
;

and we can calculate the conditional probability

P.Y jX; RI �/ D P.Y; RjX I �/

P.RjX I �/
D P.Y; RjX I �/

P1
yD0 P.Y D y; RjX I �/

: (1.6)

So, thus far we have defined a simple model for Y jX; V and RjX; V under the
assumption that Y and R are conditionally independent given .X; V /. When we
condition on X but not V , the response Y and the missing data indicator R are
associated (i.e. dependent). We have mentioned that this setting was problematic,
but here we will explore why this is the case.

1.2.2 Parameter Estimation with Incomplete Response Data

1.2.2.1 Complete-Case Analyses

Complete-Case Analyses when Covariate V Is Unknown

The likelihood function is perhaps the most fruitful starting point when considering
inference based on parametric models [39]. When response data may be incomplete,
the availability of the response of interest is stochastic, and hence the observed data
likelihood is

L / P.Y; R D 1jX/R P.R D 0jX/1�R :

Noting that P.Y; R D 1jX/ D P.Y jR D 1; X/P.R D 1jX/, this may be re-
expressed as LY jRD1;X � LRjX where

LY jRD1;X D �
P.Y D 1jR D 1; X/Y P.Y D 0jR D 1; X/1�Y

�R
(1.7)
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is obtained from P.Y jR D 1; X/R by considering the two possible realizations of
Y , and

LRjX D P.R D 1jX/R P.R D 0jX/1�R : (1.8)

When responses are not available from all individuals in a sample, it is tempting
to restrict attention to individuals with complete data and base analyses on this
subset. This restriction, however, implicitly conditions on R D 1 so that a complete-
case maximum likelihood analysis actually maximizes the partial likelihood (1.7).
It appears that (1.8) does not contain information about the parameters we are
interested in because it relates to the missing data process alone. Note however that
while (1.7) is indexed by � , the quantities estimated by standard analyses based on
available data (i.e. the sub-sample of individuals with R D 1) are

ˇ
�
0 D logit P.Y D 1jX D 0; R D 1I �/

and

ˇ
�
1 D logit P.Y D 1jX D 1; R D 1I �/ � ˇ

�
0 :

These parameters differ from ˇ0 and ˇ1 whenever P.Y jX; R D 1/ ¤
P.Y jX/, which will occur here if P.Y jX; V / ¤ P.Y jX/ and P.RjX; V / ¤
P.RjX/. Using (1.6), we can compute the naive measures of treatment
effect which are actually being estimated from complete-case analyses:
AD� D P.Y D 1jX D 1; R D 1/ � P.Y D 1jX D 0; R D 1/, NNT� D 1=AD�,
RR� D P.Y D 1jX D 1; R D 1/=P.Y D 1jX D 0; R D 1/, and
OR� D ŒP.Y D 1jX D 1; R D 1/=P.Y D 0jX D 1; R D 1/�=ŒP.Y D
1jX D 0; R D 1/=P.Y D 0jX D 0; R D 1/�.

To explore this more fully, we consider here some specific parameter configura-
tions. Let P.X D 1/ D 0:5 and P.V D 1/ D 0:5. In the response model (1.1),
we let �2 D 0 and �3 D log 2 so the odds ratio characterizing the treatment effect
is twice as big for those with V D 1 compared to those with V D 0. We set
ˇ1 D log 1:5 in (1.2), so the marginal odds ratio of the treatment effect is 1.5,
and we solve for �0 and �1 so that P.Y D 1jX D 0/ D expit.ˇ0/ D 0:5 (i.e.
the probability of response is 0.5 in the control arm). The marginal relative risk is
therefore 1.2. In the missing data model (1.4) we set ˛1 D ˛2 D 0 and for each ˛3

we solve for ˛0 so that P.R D 1/ D 0:5.
Figure 1.1 displays a plot of RR� and OR�, the limiting values of complete-

case estimators of RR and OR, as a function of ˛3. When ˛3 D 0, the probability
of the response being missing is the same for all individuals regardless of their
covariates (data are missing completely at random, in the terminology of Little
and Rubin [20]), so P.RjX; V / D P.RjX/ D P.R/. In this case, RR� D RR D 1:2

and OR� D OR D 1:5. When ˛3 < 0, complete-case estimators of these effect
measures will be too small and hence correspond to a understatement of the effect
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Fig. 1.1 Limiting values of naive complete-case estimators of the relative risk (RR�) and odds
ratio (OR�) as a function of ˛3

of treatment. Conversely, when ˛3 > 0, the inferences regarding the benefit of
treatment are anti-conservative.

Complete-Case Analyses when Covariate V Is Known

If we are able to identify the variable V which renders Y and R conditionally
independent (i.e., Y ? RjX; V ), another option is to write the observed data
likelihood based on the conditional model as

L / P.Y; R D 1jX; V /R ŒP.R D 0jX; V /�1�R :

Since P.Y; R D 1jX; V / D P.Y jX; V /P.R D 1jY; X; V / and P.R D
1jY; X; V / D P.R D 1jX; V / this can in turn be written as LY jX;V � LRjX;V

where LY jX;V / P.Y jX; V / and LRjX;V / P.RjX; V /. In practice one would
naturally restrict attention to the partial likelihood LY jX;V , since we are not typically
interested in modeling the missing data process unless it is necessary. As seen
above, a complete-case analysis with restriction to individuals with R D 1 yields
inconsistent estimators of ˇ when we just condition on X , however when we
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condition on V as well, a complete-case analysis gives consistent estimators for � .
Identification of variables like V which are prognostic for Y and associated with the
missing data process is therefore key to ensure consistent estimation of parameters.
It is not sufficient for these variables to be associated with the response alone or the
missing data status alone since in either case such variables cannot render Y and R

conditionally independent.
While conditioning on a suitable V seems to have solved our problem, the catch

is that we did not want to condition on V in our assessment of the treatment effect –
we are estimating � instead of ˇ, so we are estimating the wrong thing! We do have
the option of modeling V jX , which amounts to modeling the marginal distribution
of V since X was determined by randomization, and given an estimate of p as Op,
we can compute a crude estimate by solving for ˇ in

QP .Y D 1jX I Q̌/ D
1X

vD0

P.Y D 1jX; V D vI O�/ Opv.1 � Op/1�v :

Due to the so-called curse of dimensionality, this process is considerably more
challenging and undesirable when V is high dimensional (i.e. a vector) [30]. A
very convenient and more direct approach to estimating ˇ is obtained using inverse
probability weights as we describe in the next sub-section.

1.2.2.2 Use of Inverse Probability Weights

Suppose we have a sample of n independent subjects giving data f.Yi ; Xi ; Vi /; i D
1; 2; : : : ; ng. The score function for the logistic regression model in (1.2) resulting
from (1.7) can be written as

S.ˇ/ D
nX

iD1

Ri .Yi � E.Yi jXi I ˇ//

�
1

Xi

�
:

With complete data (i.e. if P.Ri D 1/ D 1; i D 1; 2; : : : ; n) this has expectation
zero and hence yields a consistent estimator for ˇ [23]. With incomplete data
however,

EŒS.ˇ/� D EX

˚
EY jX

˚
ERjY;X ŒS.ˇ/�

��

D
nX

iD1

EX

�
EY jX

	
P.Ri D 1jYi ; Xi / .Yi � E.Yi jXi I ˇ//

�
1

Xi

�
�
;

which does not in general equal zero. If the probability of a response being
missing depends on Y given X , then inconsistent estimators are obtained for ˇ;
the corresponding limiting values are the ˇ� given in the previous section.
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Now again suppose we are able to identify V as a covariate which renders Y ?
RjX; V . In this case we can employ the model for P.R D 1jY; X; V / D P.R D
1jX; V I ˛/ in an inverse probability weighted estimating function defined as

U.ˇ/ D
nX

iD1

Ri

P.Ri D 1jXi; Vi I ˛/
.Yi � E.Yi jXi I ˇ//

�
1

Xi

�
(1.9)

[32]. Taking the expectation of (1.9) as before yields

EŒU.ˇ/� D
nX

iD1

EX;V

�
EY jX;V

	
ERjY;X;V

�
Ri

P.Ri D 1jXi ; Vi /
.Yi � E.Yi jXi I ˇ//

�
1

Xi

��
�

D
nX

iD1

EX;V

�
EY jX;V

	
.Yi � E.Yi jXi I ˇ//

�
1

Xi

�
�

D
nX

iD1

EX

�
EV jX

�
.E.Yi jXi ; Vi / � E.Yi jXi I ˇ//

�
1

Xi

���

D
nX

iD1

EX

	
.E.Yi jXi I ˇ/ � E.Yi jXi I ˇ//

�
1

Xi

�

D 0 (1.10)

and so a consistent estimator of ˇ is obtained from (1.9) [11].
Note that in practice the parameters in the model P.RjX; V I ˛/ must be

estimated and this can easily be carried out via logistic regression since R is a binary
variable. Naive standard errors which do not recognize that the weights have been
estimated can lead to invalid tests (with incorrect type I error rates) and invalid
confidence intervals (with coverage rates not compatible with the nominal level).
Large sample theory for correct variance estimation is beyond the scope of this
note, but see Robins et al. [32] for general results or Chen and Cook [3] for simpler
results corresponding to the present formulation.

1.2.2.3 Multiple Imputation

Multiple imputation is, in its simplest implementation, a simulation-based approach
to creating complete data from an incomplete dataset. Again suppose that we have
identified a covariate V which renders Y ? RjX; V , and the model for Y jX; V is
given by (1.1). A multiple imputation approach involves fitting a model to Y jX; V

based on individuals with complete data, even though Y jX is the model of interest.
The fitted model would give a consistent maximum likelihood estimator O� , along
with the asymptotic covariance matrix for O� , I �1. O�/, where I .�/ is the expected
information matrix from an analysis based on (1.1). Since � is not of interest, this
fitted model is simply used to generate complete data which are then analyzed with
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the model of interest. The particular steps in such analyses are described in the
following paragraphs.

The approach has a Bayesian flavour in that after fitting Y jX; V we sample from
MVN( O� , I �1. O�/) to obtain another realization of the 4�1 parameter vector O� which
we denote by g.1/. If the response for any individual is missing, then we simulate
the binary response as a Bernoulli variate with probability expit.g.1/

0 C g
.1/
1 X C

g
.1/
2 V C g

.1/
3 XV / using the respective covariate values. This yields the first imputed

value for each individual with missing data, and we label the realized response y.1/.
After each individual with incomplete data in the dataset has a response simulated
based on g.1/, a second sample is drawn from MVN( O� , I �1. O�/) and labelled g.2/.
Using this value, one samples a second value Y .2/ � Bern.expit.g.2/

0 C g
.2/
1 X C

g
.2/
2 V C g

.2/
3 XV// for each person with a missing response data. This procedure is

repeated m times until we have m “complete” datasets. For each of the m “complete”
datasets we then fit the model of interest given by (1.2).

Let Ǒ.r/
1 denote the estimate of ˇ1 from the r th imputed data set and !.r/ D

cvar. Ǒ.r/
1 / be the naive variance estimate ignoring the fact that some data had

been imputed by simulation. The combined estimate of ˇ1 obtained by multiple

imputation is simply the average, so NǑ
1 D Pm

rD1
Ǒ.r/
1 =m is the reported point

estimate from multiple imputation. Let N! D Pm
rD1 !.r/=m denote the average of the

naive (within imputation) variance estimates, and let !� D .m � 1/�1
Pm

rD1.
Ǒ.r/
1 �

NǑ
1/

2 denote the variation between imputation samples. Rubin [36] argues that the

asymptotic variance of NǑ
1 is var. NǑ

1/ D N! C .1 C m�1/!� and

NǑ
1 � ˇ1r

var
� NǑ

1

 � tum

approximately, where the degrees of freedom are given by

um D .m � 1/

	
1 C m N!

.1 C m/!�


2

:

Wang and Robins [42] prove consistency and derive the large sample properties of
estimators arising from multiple imputation under correct model specification. More
refinements to the estimated degrees of freedom have since been made [2] and are
implemented in SAS. We will not get into these issues here, but remark simply that
one appeal of multiple imputation is the ability to make use of auxiliary variables
such as V when constructing the imputation model. In the context of longitudinal
data with missing at random processes (see Sect. 1.3), this can be achieved by
adopting a joint model for the responses over time (e.g., a mixed model) and, while
the primary analysis is to be based only on a final response, intermediate values
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can ensure a more suitable imputation process which may translate to more precise
estimates of treatment effects and more powerful tests.

1.2.3 An Illustrative Simulation Study

Here we report on a simple simulation study to illustrate these methods. We let
pC D 0:5, P.V D 1/ D p D 0:5, ˇ1 D log 1:5, �2 D log 0:5 and �3 D
log 2. These specifications can be used to obtain values for �0 and �1. Note that the
true odds ratio exp.ˇ1/, which would be consistently estimated in the absence of
missing data, is 1.5 in this formulation (ˇ1 � 0:4055). We then specify the missing
data model as ˛1 D 0, ˛2 D log 2, ˛3 D log 4, and ensure that P.R D 1/ D
pR D 0:5, so 50 % of subjects will have incomplete response data and there is a
differential degree of association between Y and R in the control and treatment
arms. The limiting value of a naive estimate of ˇ1 is 0:4831 based on the earlier
calculations, giving an asymptotic bias of approximately 0:0777.

Two thousand datasets of n D 500 individuals were simulated and the following
analyses were carried out: (i) a complete-case likelihood analysis using (1.7),
(ii) an inverse weighted analysis using (1.9) with weights known, (iii) an inverse
weighted analysis with weights estimated via logistic regression, and (iv) multiple
imputation with m D 20 and the imputation model based on Y jX; V . In all cases the
response model was simply based on Y jX . The empirical biases, empirical standard
errors (ESE), average asymptotic standard errors (ASE), and empirical coverage of
nominal 95 % confidence intervals (ECP) are reported in Table 1.1.

The empirical biases of the complete-case analyses (expected since �3 ¤ 0

and ˛3 ¤ 0) are apparent, and this leads to empirical coverage probabilities
less than the nominal 95 % level. The bias from the inverse weighted analyses

Table 1.1 Simulation results of naive and adjusted analyses using inverse weighting (known and
estimated weights) and multiple imputation; P.X D 1/ D 0:5; P.V D 1/ D 0:5; pC D 0:5;
ˇ0 D 0, ˇ1 D log 1:5, �0 D 0:347, �1 D 0:059, �2 D log 0:5,�3 D log 2,pR D 0:5;
˛0 D �0:654, ˛1 D 0, ˛2 D log 2, ˛3 D log 4, Number of subjects = 500; Number of simulations
= 2,000

Method of analysis Parameter Bias ESE ASE ECP

Complete-case analysis ˇ0 �0.072 0.201 0.196 93.3

ˇ1 0.076 0.268 0.260 93.1

Weighted analysis ˇ0 �0.005 0.204 0.199 95.1

(Known weights) ˇ1 0.009 0.278 0.274 94.1

Weighted analysis ˇ0 �0.004 0.203 0.200 95.2

(Estimated weights) ˇ1 0.008 0.279 0.275 94.3

Multiple imputationa ˇ0 �0.004 0.203 0.195 94.2

(m D 20) ˇ1 �0.004 0.281 0.277 94.2
a m indicates the number of complete pseudo-datasets created for multiple imputation
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with known and estimated weights are negligible and the empirical coverage
probabilities are compatible with the 95 % level. The biases are similarly small for
the estimators based on multiple imputation and the empirical coverage probabilities
are compatible with the 95 % level for these as well. Also noteworthy is the
similarity in the standard errors of the estimates based on inverse weighting and
multiple imputation.

1.2.4 Further Remarks

In many clinical settings there are a number of ad hoc alternative approaches for
dealing with missing response data. In dermatology trials, for example, it is common
to use so-called non-responder imputation [12, 28]. If, as we have described here,
the response Y D 1 indicates a successful response to treatment (e.g. alleviation
of symptoms), then in non-responder imputation (NRI), individuals who do not
provide a response are assigned a value Y D 0 (i.e. they did not remain in the
trial and report an alleviation of symptoms). The rationale for this crude form of
imputation may arise from the notion that anything other than completing the course
of treatment and exhibiting a good clinical response is undesirable and hence should
be treated as a failure. An intuitively appealing aspect of this form of imputation is
that all patients randomized are utilized in the analysis. However with NRI, a naive
estimator of the probability of a successful response given X is, in fact, consistent
for the joint probability P.Y D 1; R D 1jX/; this reflects that individuals must both
provide a response and the response must be successful. The validity of estimates
achieved through this method depends, therefore, on the process giving rise to the
missing data. If R ? .Y; X/, estimates of response rates within treatment arms (and
therefore also estimates of AD) are conservative in that they are down-weighted by
the probability of a response being observed (in fact, we are consistently estimating
P.Y D 1jX/ � P.R D 1/). When data are not missing completely at random,
NRI analyses will not yield consistent estimates of RR, OR, or AD. Depending
on the mechanism giving rise to the missing data (which is generally unknown),
NRI analyses can lead to conservative (too small) or anti-conservative (too large)
estimates of treatment effect [25]. Despite this, NRI is commonly assumed to be a
conservative method of analysis [37].

When responses are continuous, the calculations discussed in previous sections
can be carried out following similar principles; to make this clear we wrote the
expressions in a general form using expectations and explicit probability statements
in key places. With continuous responses, however, another common crude method
of imputation is often used called mean value imputation. In this case the average
value of the response (perhaps for that particular treatment arm, or overall) is
assigned to individuals with missing responses. This strategy can also lead to
conservative or anti-conservative estimates of treatment effect depending on the
particular setting, and naive standard errors will not typically reflect the effect of
imputation.
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The discussion of multiple imputation given earlier is often referred to as
parametric multiple imputation since it relies on the explicit specification of a
parametric model to simulate the imputed data for each data set. Other versions of
multiple imputation are often adopted which employ implicit models to exploit the
data observed in the sample [15, 21]. Nonparametric multiple imputation involves
finding a set of completely observed individuals who are “similar” to an individual
with a missing response (with respect to key attributes or a summary measure)
and randomly selecting the responses from this set of similar individuals [29, 38].
This sampling is done with replacement to make up multiple complete datasets.
Here judgement is not required to specify a probability model for imputation of the
response, but rather to identify the set of “similar” individuals for each individual
with a missing response [36]. Matching, stratification or use of propensity scores
are useful for this goal, and several procedures are available in common statistical
packages to facilitate this.

1.3 Incomplete Longitudinal Data

1.3.1 Notation and Terminology

Consider a longitudinal study in which the plan is to assess each of n individuals
over K distinct assessment times. Let Yi D .Yi1; : : : ; YiK/0 denote the random vari-
able corresponding to the response vector for individual i over the K assessments.
Suppose that every individual under study has measurements taken on p baseline
covariates so that subject i has baseline covariate vector Xi D .Xi1; : : : ; Xip/0. We
assume Xi is completely observed, and let P.Yi jXi/ denote the probability model
of interest.

We restrict attention to incomplete longitudinal data due to drop-out, and suppose
that the last time an observation for individual i occurred was at time Ki ; this is a
random variable and we let ki denote its realization, as illustrated in Fig. 1.2. We can
then partition the response vector as Yi D . NYi ; Y �

i /, where NYi D .Yi1; : : : ; YiKi /
0

is observed and Y �
i D .Yi;Ki C1; : : : ; YiK/ is missing. Let Ri D .Ri1; : : : ; RiK/0

be the corresponding vector of missing data indicators, where Rik D I.k � Ki /,
k D 1; : : : ; K . We can therefore equivalently think of Ri as a random vector or Ki

as a random variable. Little and Rubin [20] and Rubin [35] define three classes of
missing data mechanisms for this context.

Data are said to be missing completely at random (MCAR) if missingness (failing
to observe a value) does not depend on any observed or unobserved measurements,
i.e. P.Ri jYi ; Xi/ D P.Ri /. Data are said to be missing at random (MAR) if,
conditional on the observed data, missingness does not depend on the data that
are unobserved; that is, P.Ri jYi ; Xi / D P.Ri j NYi ; Xi /. Data are said to be not
missing at random or, equivalently, missing not at random (MNAR) if missingness
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| | | | |

1 2 3 4 5

Yi1 Yi2 Yi3 Yi4 Yi5

Ri1 = 1 Ri2 = 1 Ri3 = 1 Ri4 = 0 Ri5 = 0

ASSESSMENTS

Fig. 1.2 Schematic of schedule of assessments in longitudinal study with K D 5 for an individual
with ki D 3

depends on the value of the realized (but unobserved) response, i.e. P.Ri jYi ; Xi /

cannot be simplified. It is perhaps worth emphasizing that these terms must be
used and interpreted in the context of the available information (or at least the
information being used); MNAR mechanism can become a MAR mechanism in
light of additional information used judiciously.

1.3.2 Likelihood-Based Methods of Estimation and Inference

As in the univariate case, the likelihood for incomplete longitudinal data is devel-
oped by specifying the joint distribution of response variable Yi and the missing data
indicators Ri (or equivalently Ki ), given the covariates Xi . Two classes of models
have been proposed based on alternative factorizations of the joint distribution of
.Yi ; Ri /jXi [19]: one is based on selection models [20], the other is based on pattern
mixture models [10, 18].

With selection models, the joint distribution of Yi and Ri is factored as

P.Ri ; Yi jXi I ˇ; ˛/ D P.Ri jYi ; Xi I ˛/ P.Yi jXi I ˇ/ ; (1.11)

where the distribution of Ri , P.Ri jYi ; Xi I ˛/, is indexed by a vector of parameters
˛ and the distribution of Yi , P.Yi jXi I ˇ/, is indexed by a vector of ˇ.

With pattern-mixture models, the factorization of the joint distribution is

P .Ri ; Yi jXi I ˇ; ˛/ D P .Yi jXi; Ri I �/ P .Ri jXi I �/ ; (1.12)

where in P.Yi jXi ; Ri I �/, the distribution of Yi , is defined separately for each
missing data configuration and indexed by parameters �, and the distribution of Ri ,
P.Ri jXi I �/, is known up to parameters � .

When we are concerned with the parameters of the marginal distribution of Y ,
averaged over the missing data patterns, it is in many senses more natural to use
selection models, because people do not want to make inference conditional on the
missing data indicators. In the following, we focus on selection models.
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To describe the likelihood based approach we derive the joint density of the
observed data . NYi ; Ri / by integrating out the missing data Y �

i in the selection model
of the joint distribution as

P.Ri ; NYi jXi I ˛; ˇ/ D
Z

P.Ri j NYi ; Y �
i ; Xi I ˛/ P. NYi ; Y �

i jXi I ˇ/ dY�
i :

Let NY D f NYi ; i D 1; 2; : : : ; ng and R D fRi ; i D 1; 2; : : : ; ng for a sample of n

independent subjects. Then the observed-data joint likelihood for .˛0; ˇ0/0 is

L.˛; ˇI NY ; R/ D
nY

iD1

Z
P.Ri j NYi ; Y �

i ; Xi I ˛/ P. NYi ; Y �
i jXi I ˇ/ dY�

i : (1.13)

When the missing data mechanism is MAR, P.Ri j NYi ; Y �
i ; Xi/ D P.Ri j NYi ; Xi /

and (1.13) becomes

L.˛; ˇI NY ; R/ D
nY

iD1

�
P.Ri j NYi ; Xi I ˛/

Z
P. NYi ; Y �

i jXi I ˇ/ dY�
i

�
(1.14)

D
nY

iD1

˚
P.Ri j NYi ; Xi I ˛/ P. NYi jXi I ˇ/

�
:

If the parameters ˛ and ˇ are functionally independent, then likelihood inference for
ˇ from (1.14) is the same as a likelihood inference for ˇ from the observed “partial”
likelihood simply using the available data

L.ˇI NY / D
nY

iD1

P. NYi jXi I ˇ/ : (1.15)

Thus likelihood functions are unaffected by MAR mechanisms and this has
contributed in part to the popularity of mixed effects models for the analysis of
longitudinal data. If data are MNAR, then the simplification in (1.14) is not possible
and we must use (1.13). This likelihood may lead to identifiability problems and so
sensitivity analyses are often advocated for this case [31].

We remark that, as in the univariate case, one can sometimes identify an auxiliary
covariate Vi which renders Ri ? Y �

i j NYi ; Xi ; Vi , so that inclusion of Vi in the
analysis causes the missing data mechanism to be MAR. In this case, consider

P.Ri ; NY jXi; Vi / D
Z

P.Ri j NYi ; Y �
i ; Xi ; Vi / P. NYi ; Y �

i jXi; Vi / dY�
i

D P.Ri j NYi ; Xi ; Vi / P. NYi jXi; Vi / :
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This is only useful if we aim to estimate the effect of both Xi and Vi on the
distribution of Yi . Again, however, Vi may be useful for multiple imputation (as
in Sect. 1.2.2.3) or for inverse weighting as we discuss in the next section.

1.3.3 Generalized Estimating Equations

Using standard notation for generalized linear models of binary data, we let
E.Yikjxi / D P.Yik D 1jxi/ D �ik and var.Yikjxi / D �ik.1 � �ik/, k D
1; : : : ; K . Furthermore, we let ˙i .ˇ; �/ D cov.Yi jxi / D A

1
2
i Q.�/A

1
2
i where

Ai D diagf�ik.1 � �ik/; k D 1; : : : ; Kg and Q.�/ is a K � K working correlation
matrix with .k; k0/ entry, Qkk0.�/, parameterized in terms of a vector of association
parameters �. A marginal generalized linear model is formed by letting g.�ik/ D
x0

ikˇ where g.�/ is a known link function and ˇ D .ˇ0; : : : ; ˇp/0 is a .p C 1/ � 1

vector of regression coefficients.
Generalized estimating equations for ˇ take the form

U.ˇ; �/ D
nX

iD1

Ui .ˇ; �/ D 0 (1.16)

where Ui.ˇ; �/ D G0
i .ˇ/˙�1

i .ˇ; �/.Yi � �i /, with �i D .�i1; : : : ; �iK/0 and
Gi .ˇ/ D @�i .ˇ/=@̌ 0 a K � .p C 1/ matrix of derivatives [17]. If Ǒ is the solution
for fixed � D �o, then asymptotically

p
n. Ǒ � ˇ/ � N.0; var.

p
n. Ǒ � ˇ/// with

var.
p

n. Ǒ � ˇ// D ŒA�1.ˇ; �o/�ŒB.ˇ; �o/�ŒA�1.ˇ; �o/�0 ; (1.17)

where A.ˇ; �/ D E.@Ui.ˇ; �/=@̌ 0/ and B.ˇ; �/ D E.Ui .ˇ; �/U 0
i .ˇ; �//. When �

is not specified, estimation of ˇ is facilitated by iteratively replacing � with a
p

n-
consistent moment-type estimate based on estimates of ˇ at successive iterations of
a scoring algorithm [17].

The functional form of Qkk0.�/, k ¤ k0, k; k0 D 1; : : : ; K , is typically unknown,
but even if the correlation structure is misspecified, consistent estimators of ˇ

arise from solving (1.16), and (1.17) will still hold. However, misspecification of
the correlation structure in (1.16) can lead to inefficient estimators of ˇ and, in
more extreme cases, problematic asymptotic properties arise for the solution [7].
In many cases, the working independence assumption can yield quite efficient
estimators [41], so we set Qkk0.�/ D �o D 0 for k ¤ k0 in what follows. An
estimate of (1.17) is obtained in this case by computing

cvar.
p

n. Ǒ � ˇ// D Œ OA�1. Ǒ; �o/�Œ OB. Ǒ; �o/�Œ OA�1. Ǒ; �o/�0 ; (1.18)
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where

OA. Ǒ; �o/ D �n�1

nX

iD1

G0
i .

Ǒ/A�1
i . Ǒ; �o/Gi . Ǒ/;

and

OB. Ǒ; �o/ D n�1

nX

iD1

G0
i .

Ǒ/A�1
i . Ǒ; �o/.yi � O�i /.yi � O�i /

0
A

�1
i . Ǒ; �o/Gi . Ǒ/ :

As in the univariate case, however, this estimating equation approach is not
appropriate when data are incomplete and not missing completely at random.

Selection models provide a natural framework for characterizing factors which
affect the risk of attrition in longitudinal studies. Let Rik D I.k � Ki / and
NRik D fRi1; : : : ; Rikg, k D 1; : : : ; Ki . Selection models involve modeling the

conditional probability of drop-out at each visit, which we denote here as 	ik D
P.Rik D 0jRi1 D � � � D Ri;k�1 D 1; yi ; xi /. As mentioned in Sect. 1.3.1, the
nature of the relation between this conditional probability of drop-out, covariates,
and (possibly missing) responses determines the impact that drop-outs have on
inferences regarding the regression coefficients in the response model. We restrict
attention here to settings in which data are MAR, with any covariate dependence
based only on previously observed covariates or responses. In this case, 	ik may be
a function of NYi and Xi , but not of Y �

i . Let H
y
ik D fyi1; : : : ; yi;k�1g be the history

of response Y up to time k. In practice, we typically let 	ik depend on H
y
ik and Xi .

Since Rik is a binary variable it is convenient to formulate logistic regression
models for the conditional probability of drop-out given by

log.	ik=.1 � 	ik// D w0
ik˛.k/ ; (1.19)

where ˛.k/ D .˛
.k/
0 ; : : : ; ˛

.k/
qk /0 is a .qk C 1/ � 1 vector of regression coefficients

characterizing the nature of the relationship between wik and 	ik, and wik is a
covariate vector containing relevant observed information in H

y
ik and Xi .

The inverse-weighted estimating equations under the working independence
assumption take the form

U.ˇ; ˛/ D
nX

iD1

Ui .ˇ; ˛/ D 0 (1.20)

where under cluster-specific weights as discussed by Fitzmaurice [9],

Ui.ˇ; ˛/ D G0
i .ˇ/˙�1

i .ˇ/
i .˛/.Yi � �i / ;

˙i .ˇ/ D diagf	ik.1 � 	ik/; k D 1; : : : ; Ki g, 
i.˛/ D I.Ki D ki /=�i .˛/, and
�i .˛/ D P.Ki D ki j NYi ; xi I ˛/. We often assume all subjects are available for the
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first assessment, so �i .˛/ D 	i2.˛/ if ki D 1, �i .˛/ D .1 � 	i2.˛//	i3.˛/ if
ki D 2, �i .˛/ D .1 � 	i2.˛//.1 � 	i3.˛// if ki D 3, etc. In practice, an estimate of
˛ can be obtained by fitting ordinary logistic regression models to the missing data
indicators as appropriate. Inserting Ǫ into (1.20) gives estimating equations which
can be solved for ˇ in the usual fashion [32].

1.3.4 Naive Methods of Imputation

The “last observation carried forward” (LOCF) imputation approach for dealing
with missing values due to drop-outs operates as follows: if ki < K , missing
observations at visits k D ki C 1; : : : ; K are replaced with the value of the most
recently observed response (i.e. yiki ). To distinguish the actual (possibly latent)
responses from the pseudo-responses used under this imputation scheme, we use
Y �

i to denote the response vector under LOCF imputation. Therefore Y �
ik D Yik

for k � ki and Y �
ik D Yiki for k > ki , k D 1; 2; : : : ; K . Assumptions made for

the response Yi are adopted for the pseudo-response Y �
i since analyses are typically

carried out under the assumption that they are in some sense equivalent. In fact,
in most situations for which the assumptions regarding Yi are true, they will not
be true for Y �

i , implying that the estimating equation (1.16) is misspecified for the
pseudo response. The frequency properties of estimators of ˇ based on Y �

i have
been investigated under a wide range of settings by several authors [5, 27] based
on the theory of misspecified models [34, 43]. As with the other naive imputation
approaches discussed earlier, LOCF leads to inconsistent estimators in a wide
variety of settings and can result in either conservative or anti-conservative estimates
of treatment effect.

1.4 Missing Covariates

1.4.1 Likelihood Analyses

Now consider a setting of a clinical trial in which the secondary analyses are
directed at fitting a regression model which controls for a variable Z in addition
to the treatment indicator; for the sake of simplicity we again suppose Z is a binary
variable. One might simply specify a model with the main effects, but we consider
a model of the form

P.Y D 1jX; ZI �/ D expit .�0 C �1X C �2Z C �3XZ/ : (1.21)

This would be of interest if there are questions about whether the effect of treatment
was significantly different in different subgroups defined by a binary covariate Z,



18 M.A. McIsaac and R.J. Cook

for example, in which case �3 is parameter of primary interest. Such questions
arise frequently when the goal is to examine the robustness and generalizability
of findings; in cancer trials, for example, the aim may be to investigate whether
the effect of chemotherapy varies according to tumour type. Some centers may
not collect complete histological data and in such circumstances covariate data on
tumour type will be incomplete.

Let C D I.Z observed/ indicate whether the covariate value was recorded. The
observed data likelihood can then be written as

L / P.Y; Z; C D 1jX/C P.Y; C D 0jX/1�C ; (1.22)

where we can marginalize over Z with
P

z P.Y; Z D z; C D 0jX/ to obtain
P.Y; C D 0jX/, the contribution from individuals for whom Z is unobserved.

As in the case of incomplete responses, the tendency is to focus on simple
analyses such as those restricted to individuals with complete covariate data. In this
case the adopted likelihood would be based on the response model with the implicit
condition C D 1 and so is proportional to

P.Y jZ; X; C D 1/ D P.C D 1jY; Z; X/ P.Y jZ; X/P
y P.C D 1jY D y; Z; X/ P.Y D yjZ; X/

D P.C D 1jY; Z; X/

P.C D 1jZ; X/
P.Y jZ; X/ : (1.23)

If C ? Y jZ; X , then (1.23) reduces to P.Y jZ; X/ and a complete-case analysis
will yield consistent estimators of �, but otherwise inconsistent estimators are
obtained; we show this by example in the simulation studies that follow. Note
that with incomplete covariate data, missingness can depend on the potentially
missing variable (Z) and a complete-case analysis remains valid because it involves
conditioning on this covariate; this is in contrast to the setting of missing responses
where the missing data must be modelled. However even when valid, this complete-
case analysis ignores the information contained in the responses from individuals
with incomplete data, and therefore may result in less than optimal efficiency.

1.4.2 An EM Algorithm

If one makes assumptions regarding the distribution of the incomplete covariate in
likelihood analyses based on (1.22), one can exploit information from individuals
with C D 0 and improve efficiency. To see this note that the second term in (1.22),

P.Y; C D 0jX/ D
1X

zD0

P.Y jZ D z; X/ P.Z D zjX/ P.C D 0jY; Z D z; X/ ;
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is indexed by � (as well as the parameters in P.ZjX/ and those of the missing data
process). If P.C jY; Z; X/ D P.C jY; X/ or P.C jX/, then the missing data process
can be modelled using observed data (Y and X ). If P.C jY; Z; X/ D P.C jZ; X/,
then while this is a desirable missing data process for complete-case analysis
(see (1.23)), in this setting there is a need to make uncheckable assumptions about
the missing data process, since the dependence between C and Z given X cannot
be modelled in general. Progress can be made here if an auxiliary variable V can be
found which satisfies C ? ZjX; V; Y (see Sects. 1.4.3 and 1.4.4).

The assumptions that are needed to exploit information from individuals with
C D 0 could include the fully specified conditional covariate distribution, or simply
its parametric form. In the latter case, the EM algorithm offers a convenient method
for estimation [8]. The complete data likelihood LC corresponding to (1.22) is
proportional to

ŒP.C jY; Z; X/ P.Y jZ; X/ P.ZjX/�C ŒP.C jY; Z; X/ P.Y jZ; X/ P.ZjX/�1�C :

We typically work with the “partial” complete data likelihood

LC / ŒP.Y jZ; X/ P.ZjX/�
C

ŒP.Y jZ; X/ P.ZjX/�
1�C (1.24)

under the assumption that the information regarding � in the missing-data model is
negligible. Working with (1.24) then requires an expression for

P.ZjC D 0; Y; X/ D P.C D 0jY; Z; X/ P.Y jZ; X/ P.ZjX/P
z P.C D 0jY; Z D z; X/ P.Y jZ D z; X/ P.Z D zjX/

(1.25)

for the expectation step of the EM algorithm, which if C ? ZjY; X gives simply

P.Y jZ; X/ P.ZjX/P
z P.Y jZ D z; X/ P.Z D zjX/

: (1.26)

It is clear from (1.26) that, provided P.C jY; Z; X/ D P.C jY; X/, the partial
complete data likelihood (1.24) can be used if assumptions are made regarding the
distribution of ZjX . In fact, when treatment is randomly assigned, only the marginal
distribution of Z is required since Z ? X . However, if C depends on Z given Y and
X , then there is an identifiability problem and (1.25) cannot be evaluated without
strong assumptions regarding the missing data process.

1.4.3 Multiple Imputation with Missing Covariates

Suppose now that there exists a completely observed covariate V which renders
C ? ZjY; X; V . Again for simplicity we assume V is binary with P.V D 1/ D p
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and P.V D 0/ D 1 � p. Multiple imputation can be carried out using a model
for P.ZjY; X; V; C / D P.ZjY; X; V / and because Z ? C jY; X; V , the model for
ZjY; X; V can be fitted based on individuals with complete data. For illustration
here, we adopt a simpler model whereby P.ZjV; X; Y / D P.ZjV; X/ which can
be easily fitted using a saturated logistic regression model,

P.Z D 1jX; V / D expit.ı0 C ı1X C ı2V C ı3XV/ : (1.27)

Suppose the missing data model is

P.C D 1jX; V / D expit.˛0 C ˛1X C ˛2V C ˛3XV/ ; (1.28)

and the response is generated according to

P.Y D 1jX; Z; V / D expit.��
0 C ��

1 X C ��
2 Z C ��

3 XZ C ��
4 V / : (1.29)

The response model of interest (1.21) can be recovered by noting that P.Y D
1jX; Z/ D EV jX;ZŒP.Y D 1jX; Z; V /�.

The association between Y and C given X and Z is determined by the joint
model

P.Y; C jX; Z/ D
X

v

P.Y jX; Z; V D v; C /P.C jX; Z; V D v/P.V D vjX; Z/

D
X

v

P.Y jX; Z; V D v/P.C jX; V D v/P.V D vjZ/ :

If we simply fit the response model in (1.21), a complete-case analysis is generally
invalid in this setting because C 6? Y jX; Z due to the omission of the variable V

in (1.21).
Following the same arguments as given earlier, for any given data set we may

carry out multiple imputation of Z based on the model P.ZjY; X; V /. If this
model is fit and an estimate of ı is obtained, by standard large sample theory
Oı � MVN.ı;I �1. Oı//.

We proceed by letting d .r/ denote the r th realization from MVN. Oı�;I �1. Oı�//,
and using d .r/ to generate values for all missing Z according to P.ZjY; X; V I d .r//.
Then based on this “complete” data set, we fit P.Y jZ; X I �/ to obtain O�.r/. This is

repeated m times, and we let NO� D Pm
rD1

O�.r/=m and compute the standard errors as
described in Sect. 1.2.2.3.
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1.4.4 Inverse Probability Weighted Estimating Functions

Inverse probability weighting can be used to obtain unbiased estimating functions
for a complete-case analysis. If P.Ci jYi ; Xi ; Vi ; Zi / D P.Ci jYi ; Xi ; Vi /, then we
can write the inverse weighted estimating function as

U.ˇ/ D
nX

iD1

Ci

P.Ci D 1jYi ; Xi ; Vi /
.Yi � E.Yi jXi; Zi I �// Wi ; (1.30)

where Wi D .1; Xi ; Zi ; Xi Zi /
0, and this can be shown to have expectation zero.

Since the model in the weight indicates a dependence on .Yi ; Xi ; Vi / which are
always observed, then it can be fit and a

p
n-consistent estimator of ˛ in (1.28)

inserted; a consistent estimator of � will then be obtained by setting (1.30) equal to
zero and solving for �.

1.4.5 A Simulation Study

Here we report on a simulation study designed to demonstrate the performance
of several methods of dealing with missing covariates. We consider the response
model (1.21) with ��

4 D 0 and log 4 in (1.29) and find the parameters of the
covariate distribution to ensure these parameter values were obtained. We set
�1 D 0, �2 D log 1:5, �3 D log 0:5, P.X D 1/ D 0:5, P.V D 1/ D 0:5,
and P.Z D 1/ D 0:25 so P.Y D 1/ D 0:5. We set ı1 D 0, ı2 D 0,
ı3 D log 4 in (1.27) to ensure that, as desired, P.Z D 1/ D 0:25 based
on (1.27). Finally, setting ˛0 D �0:151, ˛1 D log 0:8, ˛2 D log 1:2 and
˛3 D log 2 in (1.28) yields P.C D 1/ D 0:5; so for 50 % of subjects we would
expect the covariate to be missing. We generated data for sample sizes of 500 and
2;000 individuals in 2,000 simulated datasets. The analyses conducted included
a complete-case analysis, inverse probability weighted analyses with known and
estimated weights, an EM algorithm for which the correct covariate distribution was
assumed, and multiple imputation. The imputation model adopted was a saturated
logistic regression model for Z given .Y; X; V /, involving eight parameters: the
intercept, three main effects, three two way interactions and a three way interaction.
The empirical biases, empirical standard errors, average asymptotic standard errors,
and empirical coverage probabilities are reported in Table 1.2 for sample sizes of
500 (left column) and 2;000 (right column). The top half of the table corresponds to
the case where C ? Y jX; Z; in the bottom half, C 6? Y jX; Z but C ? Y jX; Z; V

where V is the auxiliary covariate used for inverse weighting with P.C jX; V /, and
multiple imputation via P.ZjX; V /.

The results where Y ? C jX; Z (top half) indicate all methods yield approx-
imately unbiased estimates, close agreement between the empirical and average
asymptotic standard errors, and empirical coverage that is compatible with the
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nominal 95 % level. The efficiency gains realized by modeling the covariate
distribution are apparent by comparing the standard errors from the complete-case
analysis with those of the EM algorithm. The standard errors of the estimates from
the EM and MI algorithms are in close agreement. For the bottom half of the table,
the empirical biases from the complete-case analyses expected due to (1.23) are
apparent. The weighted analyses yielded estimators with much smaller empirical
biases and better performance with the larger sample size. Smaller biases and
smaller standard errors are seen with the EM algorithm. The multiple imputation
analyses yielded small empirical biases as well and their standard errors are in close
agreement with those of the EM algorithm. The empirical coverage probabilities
for all valid methods are compatible with the nominal 95 % level. Simulations and
analyses were carried out in R version 2.14.0 and SAS 9.2 on the Sun Solaris 10
platform.

1.5 Discussion

Incomplete data can arise in a number of settings for a variety of different reasons.
Key factors influencing the extent of the impact on standard analyses are the
proportion of missing data, and as demonstrated in this chapter, the nature of the
stochastic mechanism which causes the data to be incomplete. Even when analyses
are valid, loss of efficiency and decreased power are always issues. When possible,
the extent of missing data should always be minimized.

Likelihood methods which have been developed and applied to minimize the
effect of incomplete data are often directed at retrieving information about parame-
ters of interest and improving power, but these come at the cost of making modeling
assumptions beyond those typically made in analyses with complete data. These
additional model assumptions are explicit, for example, when a parametric multiple
imputation approach is adopted for incomplete response data. When covariates are
missing and the EM algorithm is applied, one must make assumptions regarding
the covariate distribution, which is not customary in routine analyses. When inverse
probability weights are used, a model for the missing data process must be specified,
which again is not something that is routinely done in standard analyses. The
specified models should be checked carefully since consistent estimators only result
if these are correct.

Throughout this chapter we have emphasized simple models with binary data,
primarily for transparency and so that explicit results would be easy to obtain.
When responses are continuous, inverse probability weighting changes very
little; this approach requires modeling the missing data indicator which remains
binary. Multiple imputation can be carried out in this case based on a linear
regression model. The methods for longitudinal data can be similarly adapted.
When incompletely observed covariates are continuous or categorical, the necessary
model assumptions for the EM algorithm or multiple imputation may become more
involved and robustness of inferences becomes more of a concern. When multiple
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covariates are missing, high-dimensional joint models for the covariates are required
and these can be challenging to specify and check. These challenges, in part, are
reasons for the appeal of inverse probability weighted analyses of individuals with
complete data [24].

We have considered the cases of a missing response or a single missing covariate
separately. Frequently both responses and covariates can be missing in a given
dataset and hybrid methods can be employed [4].

We have emphasized the setting in which interest lies in a regression model for a
marginal mean parameter. In some settings, association parameters (e.g. correlations
or odds ratios) are viewed as of comparable importance. This occurs when scientific
interest lies in the nature of the association structure, or if concerns lie in optimizing
efficiency. In this case, regression models can be formulated for the association
parameters and appropriate likelihood functions can be formed [13, 14]. Zhao and
Prentice [45] describe how to do this using second order estimating equations. In the
likelihood setting, the EM algorithm can be adopted and the idea of using inverse
weighting for estimating association parameters can be adapted [44].
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