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I. Introduction

Phytomyxea comprises a group that histori-
cally was considered as fungi (Sparrow 1960;
Waterhouse 1972) and for that reason is
included here. Recent classifications place Phy-
tomyxea in the protistan supergroup Rhizaria
(Adl et al. 2005; Bass et al. 2009; Cavalier-Smith
and Chao 2003), and molecular studies have led
to the recognition of two orders within Phyto-
myxea (Bass et al. 2009; Cavalier-Smith and
Chao 2003): Plasmodiophorida (the plasmo-
diophorids sensu stricto) and Phagomyxida
(phagomyxids). Major reviews of the Phyto-
myxea, in addition to John Karling’s mono-
graph The Plasmodiophorales (1968), include
Maire and Tison (1909), Cook (1933), Dylewski

(1989), Dick (2001), and Neuhauser et al.
(2010).

The most commonly recognized Phyto-
myxea are the plant pathogens Plasmodiophora
brassicae Woronin, the causal agent of clubroot
of cabbage and other brassicaceous crops world-
wide (Cook and Schwartz 1930; Dixon 2009), and
Spongospora subterranea (Wallroth) Lagerheim,
the causal organism of powdery scab of potato
(Kole 1954; Merz 2008; Merz and Falloon 2009).
Also of economic significance are Spongospora
nasturtii M. W. Dick, the causal agent of crook
root in watercress (Tomlinson 1958), and Poly-
myxa betae Keskin, the vector for beet necrotic
yellow vein virus (BNYVV), which causes rhizo-
mania of sugar beet (McGrann et al. 2009).
Spongospora nasturtii, S. subterranea, and
Polymyxa graminis Ledingham also serve as
vectors for plant-pathogenic viruses (Cooper
and Asher 1988; Kanyuka et al. 2003; Rochon
et al. 2004).

Karling (1981) proposed unified terminology to allevi-
ate problems with nomenclature for stages in the life
cycles of plasmodiophorids that had accumulated over
the years because of contributions from researchers in a
variety of disciplines. His major concern was the use of
the term cyst for the single-celled resting structure that
was not the result of a zoospore encysting on a
substrate. By replacing the term cyst with resting
spore, for consistency, the recommended term for the
collection of resting spores would be sporosorus instead
of cystosorus. Other terms recommended by Karling
included sporogenic, when referring to developmental
stages that lead to resting spores, and sporangial, when
referring to developmental stages that lead to thin-
walled sporangia (zoosporangia) that contain zoos-
pores. Sporogenic and sporangial phases of plasmodio-
phorid life cycles have also been referred to as
secondary and primary, respectively.
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A unique type of nuclear division in Phyto-
myxea, cruciform division, was observed in
P. brassicae as early as 1899 but was referred to
as promitosis or protomitosis because it resem-
bled some of the nuclear divisions in several
protozoa (Cook 1933; Karling 1968). The cur-
rently used descriptive adjective cruciform was
introduced by Blomfield and Schwartz (1910)
because at metaphase the persistent nucleolus
is elongated parallel to the spindle and perpen-
dicular to the plate of chromatin, thus forming a
crosslike (cruciform) configuration when viewed
from the side (Figs. 4.1 and 4.2). Additional
descriptive terms used for this type of nuclear
division include Saturn stage as a synonym for
cruciform and double anchor or dumbbell stage
formid to late anaphase (Blomfield and Schwartz
1910; Cook 1933) (Fig. 4.3). Features of cruci-
form divisions based on ultrastructural observa-
tions (Keskin 1971; Braselton et al. 1975;
Dylewski et al. 1978; Garber and Aist 1979b;
Dylewski andMiller 1983) (Figs. 4.1–4.3) include
a persistent membrane of either nuclear enve-
lope or endoplasmic reticulum origin, intranuc-
lear spindle, centrioles at both poles, and a
nucleolus that remains throughout nuclear divi-
sion.

In addition to cruciform division, systematic
features of plasmodiophorids include multinu-
cleate protoplasts without walls (plasmodia) as
growth forms (Fig. 4.1), zoospores with two
anterior whiplash (lacking mastigonemes) fla-
gella (undulipodia) of unequal lengths (Leding-
ham 1934; Kole and Gielink 1961), centrioles
paired in an end-to-end fashion (Braselton and
Miller 1973) (Fig. 4.4), environmentally resistant
resting spores (Figs. 4.6 and 4.7), and intracellu-
lar, biotrophic growth forms (Dylewski 1989).
Phagomyxida share these features with Plasmo-
diophorida, with the exception of environmen-
tally resistant resting spores: resting spores have
not been documented for Maullinia I. Maier,
E. R. Parodi, R. Westermeier et D. G. Müller,
or Phagomyxa Karling.

II. Life Cycle

Difficulties with describing phytomyxid life
cycles arise in part because members of this

group are obligate, intracellular biotrophs; no
member has been shown conclusively to com-
plete a life cycle in culture free of host cells.
Dylewski’s (1989) diagrammatic representation
of the life cycle for members of the plasmodio-
phorids was in turn based on Karling’s (1968)
summary and serves as the basis for the life
cycle presented here (Fig. 4.8). It should be
emphasized that this generalized life cycle is
the result of a compilation of observations
made by various investigators and that varia-
tions in this scheme either have not been docu-
mented fully or are not currently understood.

Two major phases are recognized in the
plasmodiophorid life cycle. The sporogenic
(secondary) phase, which has not been
observed in phagomyxids, culminates in the
production of resting spores. The sporangial
(primary) phase produces secondary zoospores
within relatively thin-walled (zoo)sporangia.

In plasmodiophorids the life cycle arbi-
trarily may be considered to begin with a rest-
ing spore, a cell that contains a single nucleus
and has an environmentally resistant cell wall.
Resting spores may remain viable for several
years, rendering infected soils unsuitable for
susceptible hosts (Macfarlane 1952). The cell
walls of P. brassicae (Yukawa and Tanaka
1979) and S. subterranea (Lahert and Kavanagh
1985) consist of three layers; P. brassicae cell
walls contain chitin, lipids, and protein
(Buczacki and Moxham 1983; Moxham and
Buczacki 1983). The thickness of cell walls
varies among members of the group (Figs. 4.6
and 4.7), but there has been no systematic treat-
ment of the variations. Resting spores may
occur singly, as in the genus Plasmodiophora
Woronin, or in aggregations, sporosori, which
remain the major morphological criterion for
designating genera within Plasmodiophorida.

Upon germination, a resting spore releases
a single, heterokont, biflagellated, uninucleate,
free-swimming, primary zoospore (Kole and
Gielink 1962; Macfarlane 1970; Merz 1997).
When a zoospore encounters the wall of a
potential host cell, the zoospore encysts and
retracts its flagella (Aist and Williams 1971;
Claxton et al. 1996; Merz 1997). A dense, pro-
jectile-like structure (Stachel) is within a tubu-
lar cavity (Rohr), and together these pass with
the majority of the zoospore’s cytoplasm into

100 S. Bulman and J.P. Braselton



Figs. 4.1–4.5 TEMs of dividing nuclei of Phytomyxea.
Figs. 4.1–4.4 Sporangial plasmodia of Spongospora
nasturtii on watercress. Fig. 4.1 Survey TEM of young
plasmodium with synchronous cruciform divisions.
Nucleoli are elongated perpendicularly to the chroma-
tin and centrioles are at the poles (arrow). Fig. 4.2 TEM
of metaphase (“Saturn stage”) of cruciform nuclear
division. Fig. 4.3 TEM of anaphase of cruciform nuclear
division (“double anchor stage”). Fig. 4.4 TEM of
transitional nucleus, with one pair of centrioles in the

end-to-end orientation characteristic for the group
shown in longitudinal view (larger arrow) and the
other centriolar pair in transverse view (smaller
arrow). Fig. 4.5 Tetramyxa parasitica on Ruppia mar-
itima. TEM of transitional sporogenic plasmodium
with profiles of synaptonemal complexes in the nuclei
and one centriole shown at a pole. Centriole (arrow),
chromatin (Ch), nucleolus/ i (Nu), persistent mem-
brane (M), synaptonemal complex (SC), and transmis-
sion electron micrograph (TEM)
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an outgrowth (adhesorium) from the main
body of the encysted zoospore (Keskin and
Fuchs 1969; Aist and Williams 1971; Claxton
et al. 1996). Encystment of the zoospore with
the formation of Stachel and Rohr takes
approximately 2 h, formation of the adhesor-
ium approximately 1 min, and the injection of
zoospore contents through the host cell wall
and plasma membrane into the host cytoplasm
approximately 1 s (Aist and Williams 1971;
Williams 1973).

Once within the host cell, the contents of
the zoospore begin to grow by cruciform divi-
sions (Fig. 4.1). The boundary between the plas-
modium and host cytoplasm may be either a
single, unit membrane for somemembers of the
group (Braselton and Miller 1975) or a bound-
ary thicker than a single membrane consisting
of several layers for others (Williams and
McNabola 1970).

What determines the path of development a
plasmodium at this stage will take is not under-
stood. For some phytomyxids, e.g., members of
the genera Polymyxa Ledingham and Ligniera
Maire & Tison, sporangial and sporogenic plas-
modia may occur within adjacent cells of the
same host tissue (Miller 1959). For others, such

as P. brassicae and S. subterranea, sporangial
plasmodia generally occur in root epidermal
cells, particularly root hairs, whereas sporo-
genic plasmodia occur in cortical cells. For Sor-
osphaera veronicae Schröter,1 sporogenic
development is confined to shoots, whereas
sporangial development occurs only in the
roots (Miller 1958).

Conditions of the host growth mediummay
influence the development of the phytomyxid.
For example, when Woronina pythii Goldie-
Smith infects a Pythium sp. that has been grow-
ing in medium for less than a few days, the W.
pythii will follow sporangial development. If,
however, the host has been growing in medium
for several days, and the medium is “stale,” the
W. pythii will follow sporogenic development
(Miller and Dylewski 1983).

When a plasmodium, whether sporangial
or sporogenic, reaches a stage of maturity
where growth ceases, cruciform divisions no
longer occur, and the nuclei become difficult to
see in paraffin-sectioned specimens. The nuclei
in part are difficult to recognize because the
nucleoli either are reduced in size to below the
resolution of optical microscopy or have disap-
peared altogether. Terms for this stage used by
earlier microscopists included akaryotic stage,
enucleate stage, chromidial stage, and transi-
tional stage. Because nuclei are now known to
be present during this stage of development
(Fig. 4.5), transitional stage is the most appro-
priate term because this stage marks a change in
the development of the plasmodium from a
period of growth to a period of differentiation.
Nuclei in this stage may be referred to as transi-
tional nuclei.

Fig. 4.6 Plasmodiophora brassicae. TEM of resting
spores in root cell of Chinese cabbage

1 Sorosphaera has been used throughout this review because

historically Sorosphaera was the name used in the literature

for the genus. Neuhauser and Kirchmair (2011) noted, how-
ever, that since both Phytomyxea and Foraminifera are now

recognized as members of the supergroup Rhizaria (Archi-

bald and Keeling 2004; Bass et al. 2009; Burki et al. 2010),
based on the International Code of Zoological Nomenclature

(ICZN), a homonomy exists between the plasmodiophorid

Sorosphaera J. Schröter and the foraminiferan Sorosphaera
Brady. To resolve the homonomy, Neuhauser and Kirchmair
(2011) proposed that Sorosphaerula nom. n. replace Soro-
sphaera J. Schröter for this genus.

102 S. Bulman and J.P. Braselton



Up to the transitional stage, there are no
obvious morphological distinctions between
sporogenic or sporangial plasmodia (Miller
1959); the only time it is possible to determine
definitively what type of plasmodium is present
is in those situations where the two types of
development occur in different host tissues as
in P. brassicae and S. subterranea. Miller and
Dylewski (1983) noted, however, that sporo-
genic plasmodia of W. pythii contained more
lipoidal globules than sporangial plasmodia at
the time cleavage is initiated. Nuclear divisions
that occur in either sporogenic or sporangial
transitional plasmodia are not of the cruciform
type and, therefore, are referred to as noncruci-

form divisions. Although noncruciform divi-
sions in both sporangial and sporogenic
plasmodia appear similar at the level of optical
microscopy, their prophases and, consequently,
the type of division, may be distinguished by
ultrastructural criteria.

A. Sporogenic (Secondary) Plasmodia

Transmission electron microscopy of transi-
tional nuclei in plasmodia known to be of the
sporogenic type revealed synaptonemal com-
plexes (Fig. 4.5), indicators of prophase I of
meiosis (Garber and Aist 1979a; Braselton
1995). The noncruciform divisions that occur
either immediately preceding or during cleav-
age of the protoplasm leading to the formation
of incipient resting spores are therefore inter-
preted as being meiotic, as had been suspected
by others (Cook 1933; Webb 1935; Heim 1955).
Cleavage of cytoplasm into uninucleate cells
leads to the formation of resting spores as cell
walls are deposited.

Fig. 4.7 Polymyxa betae. TEM of resting spores in a
sporosorus in root cell of sugar beet

Fig. 4.8 Summary diagram of generalized life cycle for
members of Plasmodiophorida

Rhizaria: Phytomyxea 103



B. Sporangial (Primary) Plasmodia

Synaptonemal complexes have not been
observed in the transitional nuclei of sporangial
plasmodia (Dylewski and Miller 1984), and the
noncruciform divisions that occur during or
immediately preceding cleavage of a plasmo-
dium into sporangial lobes are therefore not
interpreted as being meiotic. Cleavage of spo-
rangial plasmodia results in the formation of
lobes with relatively thin walls, each lobe con-
taining four or more secondary zoospores; the
walls of the lobes may partially disintegrate,
leaving passages between the lobes (Ledingham
1935, 1939; Miller 1958; Clay and Walsh 1990).
One or more of the lobes may develop a dis-
charge papilla, through which zoospores pass
freely from one lobe to another and eventually
discharge into the surrounding environment
(D’Ambra and Mutto 1977; Miller and Dylewski
1983; Clay andWalsh 1990). Some investigators
refer to the collection of lobes as a sporangium
(zoosporangium) because the collection pre-
sumably developed from one plasmodium or
there are continuities between lobes once walls
between them disintegrate [see Miller (1958)
for a review of this terminology; Barr 1979].
Others use the term sporangiosorus for the
collection of lobes, considering each lobe as a
sporangium (Buczacki and Clay 1984).

C. Relationship of Life Cycle Phases

The relationship of the two life cycle phases is
not completely understood. Dobson and Gab-
rielson (1983) reported that sporangial devel-
opment is needed prior to sporogenic
development in P. brassicae; sporogenic devel-
opment is interpreted as being initiated by sec-
ondary zoospores produced from sporangia.
Other observations for S. subterranea and
P. brassicae respectively by Kole and Gielink
(1963) and Mithen and Magrath (1992) have
indicated that primary zoospores may give
rise directly to sporogenic (secondary) infec-
tions and to sporangial infections. Secondary
zoospores likewise may produce sporangial

(primary) infections or, under some condi-
tions, initiate sporogenic (secondary) infec-
tions (Kole and Gielink 1963; Mithen and
Magrath 1992).

D. Karyogamy

The major unresolved aspect of phytomyxid life
cycles is the location of karyogamy. Karling
(1968) summarized the knowledge of sexuality
in the group as “. . .largely indirect and pre-
sumptive,” and the statement continues to be
the best summary of our understanding of sex-
uality for Phytomyxea. After suggesting earlier
that karyogamy possibly occurred in fused
zoospores, Kole (1954) reviewed observations
of fusion of zoospores of S. subterranea and
noted that karyogamy could not be documen-
ted in fused zoospores. The idea that secondary
zoospores fuse prior to initiating primary (spo-
rogenic) infections in P. brassicae was pre-
sented by Ingram and Tommerup (1972) and
Dobson and Gabrielson (1983). Tommerup and
Ingram (1971) and Buczacki and Moxham
(1980) suggested that karyogamy may occur
later in sporogenic plasmodia immediately
preceding meiotic divisions.

III. Classification

A. Phylogeny

Although many mycologists and plant patholo-
gists have treated Phytomyxea as fungi (Spar-
row 1960; Waterhouse 1972), others have
grouped them with the protozoa (Barr 1992).
Beginning with the sequencing of the P. brassi-
cae ribosomal 18S gene (Castlebury and Dom-
ier 1998), DNA sequence phylogenies placed
phytomyxids with a wide assemblage of protists
in the Cercozoa (Cavalier-Smith and Chao
1997, 2003). Further evidence of a close rela-
tionship between phytomyxids and cercozoans
came with confirmation that they shared a
unique one- or two-amino-acid insertion
between ubiquitin monomers (Archibald and
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Keeling 2004). These insertions have been
found in Cercozoa and Foraminifera but not
in all other eukaryotes studied to date, includ-
ing radiolarians (Archibald et al. 2003; Bass
et al. 2005). Subsequently, Cercozoa was
incorporated into a supergroup of diverse pro-
tists, the Rhizaria, which has been almost
entirely circumscribed through molecular evi-
dence (Bass et al. 2005; Moreira et al. 2007;
Nikolaev et al. 2004) and which has an evolu-
tionary closeness to two chromalveolate
groups, stramenopiles and alveolates (Burki
et al. 2007, 2008; Hackett et al. 2007;
Rodriguez-Ezpeleta et al. 2007).

Although Phytomyxea is well settled in the
Rhizaria, the position of the phytomyxids with
respect to other rhizarians is not established.
Ribosomal 18S sequences show the parasitic
Phytomyxea and Ascetosporea, along with reti-
culose protists, solidly grouped in the subphy-
lum Endomyxa (Bass et al. 2005, 2009; Cavalier-
Smith 2003). The first phylogenomic study to
include large numbers of phytomyxid gene
sequences placed Phytomyxea with Gromia
Dujardin and a clade of Acantherea and Fora-
minifera separate from the core Cercozoa
(Burki et al. 2010). Increased density of 18S
sequences from cultivated protists and anony-
mous sequences from environmental sources
indicate that the terrestrial/freshwater Vampyr-
ellidae in the Proteomyxidea are the closest
known relatives of Phytomyxea (Bass et al.
2009). If confirmed, this will show that parasit-
ism has arisen twice, independently of free-
living ancestors in the Phytomyxea and Asce-
tosporea (Bass et al. 2009).

B. Genera and Species

Genera and species are based on morphological
criteria; the biological species concept is not
applicable for this group because sexuality has
not been observed. Ten genera are recognized
in the order Plasmodiophorida (Braselton 1995;
Dylewski 1989; Karling 1968): Ligniera; Mem-
branosorus Ostenfeld & Petersen; Octomyxa
Couch, Leitner & Whiffen; Plasmodiophora;
Polymyxa; Sorodiscus Lagerheim & Winge; Sor-
osphaera; Spongospora Brunchorst; Tetramyxa

Goebel, and Woronina. Two genera are
currently recognized in the Phagomyxida:
Maullinia (Maier et al. 2000) and Phagomyxa
(Schnepf 1994; Schnepf et al. 2000). Karling
(1968) listed 35 recognized species in his
consideration of Plasmodiophorales.

The genera of plasmodiophorids are based
on the morphologies of sporosori as seen
through compound optical microscopy. For
several genera, sporosoral morphologies are
incorporated into their generic names, such as
Tetramyxa (four resting spores per sporo-
sorus), Octomyxa (eight resting spores per
sporosorus), Membranosorus (sporosorus con-
sisting of resting spores primarily in a single
layer), Sorodiscus (resting spores arranged in a
disk-shaped sporosorus), Sorosphaera (resting
spores arranged in a sphere), and Spongospora
(resting spores arranged in a spongy-looking
sporosorus). Although Palm and Burk (1933),
and subsequently some reviewers of the group
(e.g., Olive 1975), questioned the reliability of
using sporosoral morphology, it has continued
to be the main criterion for delimiting genera of
plasmodiophorids. Species within genera are
generally based on what hosts are infected by
the given organism, with specific epithets reflect-
ing the host name. Examples include pythii, cal-
litrichis, betae, graminis, subterranea, nasturtii,
brassicae, heterantherae, and veronicae.

At this time we are on the verge of a better
understanding of Phytomyxea speciation based
on molecular phylogenetics. While confirming
the expected close relationship between the
Polymyxa spp. and S. veronicae, comparisons
of ribosomal DNA sequences have shown that
there is considerable phylogenetic distance
between S. subterranea and S. nasturtii (Bul-
man et al. 2001), which supported the renaming
of these two members of the genus from their
previously recognized formae speciales
(Dick 2001).

Misidentification of some genera and species or incom-
plete studies have led to confusion as to whether all of
the currently recognized genera are valid. Palm and
Burk (1933) concluded that the presently recognized
genera Ligniera, Membranosorus, and Sorodiscus
should be considered as synonyms of Sorosphaera. It
should be emphasized that their conclusion was based
on observations of one plant of Veronica sp. infected
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with S. veronicae. Analyses of chromosomal numbers
through serial sections of synaptonemal complexes
showed that ultrastructural karyotypes of the recog-
nized genera differ, supporting the retention of the
ten recognized genera of Plasmodiophorida as valid
taxa (Braselton 1995).

A paper that has led to confusion about two genera was
by Wernham (1935) in which Membranosorus heter-
antherae Ostenfeld & Petersen (Ostenfeld and Petersen
1930) was renamed Sorodiscus heterantherae. Wern-
ham’s misidentification created some doubt as to the
validity of the genus Membranosorus (Karling 1968;
Olive 1975), which apparently has led to its exclusion
from other systematic reviews (Cavalier-Smith 1993).
Ultrastructural and karyotypic studies (Braselton 1983,
1989b) supported the view that Membranosorus is a
valid genus.

C. Molecular Applications

Molecular investigations of Phytomyxea lag
behind those for other microbial groups of
comparable economic significance. P. brassicae
has been the most extensively studied phyto-
myxid; the progression of molecular studies in
this organism was summarized by Siemens
et al. (2009). A consistent driver of molecular
studies for phytomyxids has been the need for
rapid and accurate detection of the important
plant pathogens and viral vectors. This need
has led to progress toward rDNA-targeted,
quantitative-PCR assays for P. brassicae
[reviewed in Faggian and Strelkov (2009)],
S. subterranea (Lees et al. 2008; van de Graaf
et al. 2003), and Polymyxa spp. (Vaı̈anopoulos
et al. 2007; Ward et al. 2005).

From the earliest studies (Buhariwalla and
Mithen 1995; Buhariwalla et al. 1995; Ito et al.
1994; Möller and Harling 1996), molecular tech-
niques have been used for detecting genetic
diversity within species. Molecular techniques
for differentiating the highly variable P. brassi-
cae accessions remain at an exploratory phase
(e.g., Manzanares-Dauleux et al. 2001), but
examinations of ribosomal sequences have
been successful in delimiting new variations in
the genus Polymyxa (Legrève et al. 2002).

Large-scale genomic studies have not been
completed for any phytomyxid. This is in part
because of the need to sort plant from phyto-
myxid sequences (Burki et al. 2010). There has

been progress, however, in revealing the struc-
ture of several genes from P. brassicae (Siemens
et al. 2009) and constructing a pilot-scale DNA
library for S. subterranea (Bulman et al. 2011).
Brodmann et al. (2002) attributed an increase in
trehalose in roots and hypocotyls of Arabidop-
sis thaliana (L.) Heynh. infected with P. brassi-
cae to the expression of a putative trehalose
synthase gene from P. brassicae. An in-depth
characterization of a phytomyxid gene was
completed for a putatively secreted proteolytic
enzyme from P. brassicae (Feng et al. 2010).
Given the plummeting cost of generating new
DNA sequences, complete phytomyxid gen-
omes are undoubtedly accessible, although cor-
rect assembly plus a full and detailed
annotation of such genomic data will be more
time consuming.

IV. Occurrence, Distribution,
Maintenance, and Culture

Depending primarily on their respective hosts,
members of the Phytomyxea occur in a variety
of habitats, including terrestrial, marine, and
freshwater. Hosts range from vascular plants
to algae and water molds.

The commonly recognized plant pathogens
P. brassicae and S. subterranea and viral vectors
P. graminis and P. betae are observed on a
yearly basis on crops in various parts of the
world and may be obtained from crop plants
grown in infected soils (Colhoun 1957).

Most investigations for maintaining Phyto-
myxea in the laboratory or in glasshouse con-
ditions concern P. brassicae and S. subterranea.
Clubbed roots can be stored at –20 �C and used
for inoculum of P. brassicae for several years.
Plasmodiophora brassicae is maintained on
various Brassica L. (Brassicaceae) species
grown in soil in the greenhouse or growth
chambers by inoculating seedlings with puri-
fied resting spores or slices of infected roots
(Castlebury and Glawe 1993). Root galls are
visible 3–7 weeks after inoculation. Castlebury
et al. (1994) described how to purify resting
spores from root galls, and several reports
detailed methods for initiating infections from
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single resting spores (Buczacki 1977; Jones et al.
1982; Scott 1985; Tinggal and Webster 1981;
Voorrips 1996). Both phases of the life cycle of
P. brassicaemay be expressed on Brassica seed-
lings grown in defined, liquid, nutrient media
(Crute et al. 1981; Macfarlane 1958; Williams
et al. 1971). Methods for maintaining S. subter-
ranea in the greenhouse on potatoes and toma-
toes follow protocols similar to those used for
P. brassicae (Kole 1954).

Polymyxa graminismay be grown on wheat
in sand inoculated with infected soil samples
(Barr 1987) and P. betae by growing sugar beet
under similar conditions with sand inoculated
with soils from sugar-beet-growing regions
(Barr and Asher 1992). Neither Polymyxa spe-
cies causes hypertrophy of host tissues, so
localization of portions of roots that are
infected must be made with optical microscopy.
Both sporangial and sporogenic stages are
observable in young, intact roots viewed with
brightfield optical microscopy.

Collection of infected hosts from nature is
the method of choice for obtaining representa-
tives of Ligniera, Membranosorus, several spe-
cies of Plasmodiophora other than P. brassicae,
Sorodiscus, Sorosphaera, and Tetramyxa. With
the exception of Ligniera, these parasites cause
galls, which are easily identified with the
unaided eye on host shoots or roots, depending
on the particular host and parasite.

Membranosorus heterantherae occurs
throughout the range of the host, Heteranthera
dubia (Jacq.) MacMill. (Pontederiaceae), in
freshwater lakes and rivers in the continental
USA and southern Canada (Forest et al. 1986).
Sorosphaera veronicae has been observed to
cause shoot galls on various species of winter
annuals in the genus Veronica (Plantaginaceae)
in Athens, Ohio, USA (Harris et al. 1980);
Chapel Hill, North Carolina, USA (Braselton
and Miller 1973; Miller 1958); Sevenoaks, UK
(Blomfield and Schwartz 1910); and near La
Veta, Colorado, USA (Palm and Burk 1933).
Tetramyxa parasitica Goebel is found on spe-
cies of Zannichellia (Potamogetonaceae) and
Ruppia (Ruppiaceae) in shallow, brackish
water in Finland, Denmark, Sweden, Norway,
UK, Germany, France, Italy, the USA (Luther
1949), and the Netherlands (den Hartog 1963).

What was reported to be T. parasitica on Halo-
phila stipulacea Asch. (Hydrocharitaceae)
(Marziano et al. 1995) seems to be a species of
Plasmodiophora. Two species of Plasmodio-
phora that deserve further study are widely
distributed on their respective seagrass hosts,
P. diplantherae on Halodule species (Cymodo-
ceaceae) (den Hartog 1965; Walker and Camp-
bell 2009) and P. bicaudata on species of
Zostera (Zosteraceae) (den Hartog 1989). Soro-
discus callitrichis may be found on Callitriche
(Plantaginaceae) species throughout Sweden in
freshwater streams and ponds (Martinsson
1987).

Since species of Ligniera do not cause
hypertrophy of host tissues, compound optical
microscopy must be used to locate the various
species by examining young, intact roots of
hosts that have been collected from their native
habitats. Ligniera spp. located in this manner
include L. junci (Schwartz) Maire & Tison in
roots of Juncus triglumis L. (Juncaceae) from
englacial streams in Austria (Neuhauser and
Kirchmair 2009); L. verrucosa Maire & Tison
in roots of Veronica spp. collected from lawns
on university campuses in Athens, Ohio, USA
(Braselton 1989a; Miller et al. 1985) and Chapel
Hill, North Carolina, USA (Miller 1959); and
L. pilorum Fron & Gaillat in roots of various
grasses in Ontario, Canada (Barr 1979).

Members of the genus Woronina are found
worldwide and infect a variety of taxa of water
molds and algae. Woronina may be located by
“baiting” soil samples with hemp seeds in
Emerson’s (P/3) water for its hosts, primarily
species of Pythium (Dylewski 1987; Miller and
Dylewski 1983). Infected regions of hosts are
enlarged and are detectable with brightfield,
phase contrast, or differential interference
contrast microscopy.

Location of phagomyxids has so far been
largely a byproduct of research into their host
species. Capture of Phagomyxa bellerocheae
Schnepf and P. odontellae Kühn, Schnepf &
Bulman requires close observation and exper-
tise with phytoplankton from the Wadden Sea
(Schnepf 1994; Schnepf et al. 2000). Maullinia
ectocarpii I. Maier, E. R. Parodi, R. Westermeier
et D. G. Müller has been identified as a parasite
of economically important brown algae in Chile
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(Maier et al. 2000). The size of infections and
the culturability of its host (Ectocarpus siliculo-
sus [Dillwyn] Lyngbye) mean that this phago-
myxid represents the best chance for ongoing
studies of these organisms.

No phytomyxid has been shown to com-
plete a life cycle in culture free of host cells.
There have been, however, successes in growing
P. brassicae and S. subterranea in tissue culture
with their respective plant hosts. These studies
have used two approaches. First, P. brassicae
and S. subterranea have been propagated suc-
cessfully in hairy root cultures established by
Agrobacterium rhizogenes (Asano et al. 2006;
Qu and Christ 2007). Secondly, both P.brassicae
and S. subterranea have been propagated for
significant periods in plant callus cultures
(Asano and Kageyama 2006; Bulman et al.
2011; Ingram 1969; Tommerup and Ingram
1971; Williams et al. 1969).

V. Conclusions and Future Prospects

Phytomyxea comprises a discrete taxonomic
group that contains several members of eco-
nomic importance. Despite the extensive
applied literature on the control of the plant
pathogens P. brassicae and S. subterranea and
the viral vectors P. graminis and P. betae, sev-
eral unresolved questions about the life cycles
of members of the group remain. These include:

l Where in the life cycle does karyogamy
occur?

l What determines when a resting spore
germinates?

l How does a zoospore recognize a host cell?
l What determines whether a plasmodium will
follow sporogenic or sporangial develop-
ment?

It seems inevitable that Phytomyxea species
are more abundant and widespread than is cur-
rently known (Neuhauser et al. 2011). Searches
of potential hosts in other locations would be
rewarding, and studies of environmental DNA
samples may provide a new window into the
group by determining the presence of unde-
scribed species of Phytomyxea in terrestrial

and aquatic environments. Further studies
could include comprehensive Basic Local
Alignment Search Tool searches of anonymous
ribosomal RNA sequences in public databases
for the presence of sequences of likely phyto-
myxean origin (Lesaulnier et al. 2008), multiple
PCR-primer approaches (Stoeck et al. 2006),
and the use of PCR primers biased toward the
detection of phytomyxids (Neuhauser et al. 2011).
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