
31Genetic Algorithms

Robert Klein and Oliver Faust

31.1 General Idea

Many optimization problems of the type arising in scheduling and routing (see
Chaps. 10 and 12) are of combinatorial nature, i.e. solutions are obtained by
combining and sequencing solution elements. When solving such problems to
optimality, the number of solutions to be examined exponentially grows with the
problem size. For example, for n solution elements nŠ different sequences exist.

Since the 1990s, genetic algorithms (GA) have become increasingly popular as
a means for solving such optimization problems heuristically, i.e. for determining
near-optimal solutions within reasonable time. One of the main reasons for this
popularity is the relative ease of programming at least a simple genetic algorithm.
Furthermore, many researchers have observed empirically that already basic ver-
sions of GA will give very acceptable results without excessively fine-tuning them
for the problem on hand. Finally, since GA work on a representation (coding) of
a problem (see Sect. 31.2), it is possible to adapt existing procedures to modified
problem versions quite easily or to write one general computer program for solving
many different problems. GA were initially developed by Holland and his associates
at the University of Michigan and the first systematic but rather technical treatment
was published in Holland (1975). Reeves (1997) and Reeves (2010) provide a
detailed overview on the topic. For comprehensive descriptions from a practical
point of view, we refer to Goldberg (1989), Haupt and Haupt (2004), Michalewicz
(1999) and Reeves and Rowe (2003).

According to the biological evolution, GA work with populations of individuals
which represent feasible solutions for the problem considered. The populations
are constructed iteratively through a number of generations. Following the idea

R. Klein • O. Faust (�)
University of Augsburg, Universitätsstraße 16, 86159 Augsburg, Germany
e-mail: robert.klein@wiwi.uni-augsburg.de; oliver.faust@wiwi.uni-augsburg.de

H. Stadtler, C. Kilger and H. Meyr (eds.), Supply Chain Management and Advanced
Planning, Springer Texts in Business and Economics,
DOI 10.1007/978-3-642-55309-7__31, © Springer-Verlag Berlin Heidelberg 2015

537

mailto:robert.klein@wiwi.uni-augsburg.de
mailto:oliver.faust@wiwi.uni-augsburg.de


538 R. Klein and O. Faust

Evaluation

Selection

Fig. 31.1 Template for a single iteration of a genetic algorithm

Table 31.1 Data of an example problem

j 1 2 3 4 5 6 7 8

dj 5 4 7 8 3 2 6 4

rdj 0 2 4 16 18 28 25 28

ddj 17 10 13 28 22 31 36 36

cj 3 2 5 3 4 1 3 4

of Darwinism (“survival of the fittest”), each individual of the current generation
“contributes” to the subsequent one according to its quality which is measured by a
fitness value. This is achieved by selecting individuals randomly with the probability
of choosing a certain individual depending on its fitness value (see Sect. 31.3).
In order to obtain the next generation from the individuals selected, two basic
operations exist (see Sect. 31.4). Using a crossover, the features of two (parent)
individuals are recombined to one or more new (child) ones. By mutation, some
features of an individual are modified randomly. A template for a single iteration
of a genetic algorithm is depicted in Fig. 31.1. Usually, GA are executed until a
prespecified stopping criterion is fulfilled, e.g. a certain number of generations has
been evaluated or a time limit is reached.

Recently, hybrid approaches have been developed which incorporate local search
algorithms (LSA) in GA in order to leverage problem-specific knowledge (see
Sect. 31.5). The local search part of these so-called memetic algorithms (MA) is
typically executed after recombination.

In the following, we discuss the different aspects of GA in more detail. To ease
presentation, the following production scheduling problem is considered. A number
n of jobs has to be processed on a single machine (with simultaneous execution
being impossible). Each job j D 1; : : : ; n has a fixed processing time (duration)
of dj periods and preemption is not allowed. Furthermore, job j cannot be started
before its release date rdj and should be terminated until a due date ddj . In case
it is finished later than ddj , a penalty cost cj for each time unit of tardiness arises.
Hence, the problem consists of finding a schedule, i.e. a starting time sj for each
job, such that the total tardiness costs are minimized. The data of an example with
n D 8 jobs are given in Table 31.1.



31 Genetic Algorithms 539

31.2 Populations and Individuals

As stated before, a population consists of a set of individuals. Each individual is
represented by a vector (string) of fixed length in which the corresponding solution
is coded by assigning specific values to the vector elements (string positions). In
order to obtain the solution associated with an individual, the respective string has
to be decoded. Both the dimension (length) of the string as well as the domains (sets
of feasible values) of the string positions depend on which representation is chosen
for coding the solution.

In our example, a solution can be represented by a sequence S of jobs. That is, the
string consists of n positions and each position can take one of the values 1; : : : ; n

(with all positions having different values). For decoding the string, we proceed as
follows. The jobs are considered in accordance to the sequence S . The job j in
turn is started at the smallest possible point in time sj � rdj at which its execution
does not overlap with a job already scheduled. After having scheduled all jobs, the
total tardiness costs can be computed. Consider the string S D h1; 2; 3; 4; 5; 6; 7; 8i
for our example. By decoding this sequence, the solution shown in the Gantt-chart
of Fig. 31.2 is obtained. The numbers within the bars denote the job numbers and
the tardiness of the jobs, respectively. The lengths of the bars correspond to the
processing times.

Job 1 can be started at the earliest point in time s1 D 0. Scheduling job 2 results
in s2 D 5 due to the processing of job 1 which does not allow for a smaller starting
time. After terminating job 2, job 3 can begin at s3 D 9, hence, finishing three
periods after its due date dd3 D 13. The jobs 4 and 5 are scheduled subsequently.
Job 6 cannot be launched earlier than s6 D rd6 D 28. Finally, the jobs 7 and 8 are
considered with the latter terminating after 40 periods. The total tardiness costs are
3 � 5 C 5 � 4 C 4 � 4 D 51.

Note that we have chosen the above representation, because it is well suited for
a large number of scheduling and routing problems and, hence, is used by a large
number of GA for such problems (Reeves 1997). Alternatively, GA are often applied
using a representation where solutions are coded in a bitwise fashion, i.e. each string
position can take either the value 0 or 1. Such a representation is appropriate, when
it has to be decided whether certain elements are part of a solution or not.

In any application of GA, an important question consists of choosing an
appropriate population size P , i.e. the number of individuals considered in each
iteration. If the population size is too small, the search space of feasible solutions
may only be evaluated partially, because just a few existing individuals are
recombined in each iteration and these individuals increasingly resemble each
other with each additional generation. Otherwise, in case of a too large population
size, also rather poor individuals may be considered for recombination. This is
in particular disadvantageous in case that for each new string large parts of the
corresponding solution have to be reconstructed as in our example, which requires a
considerable computational effort. Hence, with an increasing problem size, most
of the computational time will be spent for constructing solutions rather than



540 R. Klein and O. Faust

1/0

0 5 10 15 20 25 30 35 40 time

2/0 3/3 4/0 5/5 6/0 7/0 8/4

Fig. 31.2 Gantt-chart for S D h1; 2; 3; 4; 5; 6; 7; 8i

examining the search space and the search will only proceed slowly towards high-
quality solutions. In the literature, most successful applications of GA propose an
even-numbered population size of P 2 Œ50; 100� (Reeves 1997).

Finally, an initial population has to be determined before starting a genetic
algorithm. Most commonly, the corresponding individuals are obtained by randomly
assigning values to the string positions. In our example, sequences of jobs may be
constructed randomly. Alternatively, simple heuristics, such as randomized priority-
rule based approaches, may be applied in order to start the search with promising
solutions.

31.3 Evaluation and Selection of Individuals

As stated previously, individuals contribute to the next generation with a probability
depending on their fitness value. For this purpose, a gene pool consisting of P

copies of individuals is constructed. For those individuals with a high fitness value,
several copies are included in the pool, i.e. the individuals are selected several times,
whereas for those with low values no copy may be contained at all. This reflects the
analogy to biological evolution. The best individuals should contribute to the next
generation the most often, i.e. their positive features are reproduced in many of the
new individuals. By way of contrast, the worst ones with a low selection probability
should be discarded and, hence, “die off”.

In the most simple form, determining the fitness values vi for the individuals i D
1; : : : ; P consists in computing the objective function values fi of the corresponding
solutions.

For maximization problems, the selection process often used within GA can
be subdivided in the following two steps. In the first step, a roulette wheel with
i D 1; : : : ; P slots sized according to the fitness values vi D fi is constructed.
For this purpose, the total fitness of the population is computed by T D PP

iD1 vi .
Subsequently, each individual i is assigned a selection probability of pi D vi =T

as well as a cumulative probability qi D Pi
hD1 ph. In the second step, the roulette

wheel is spun P times. In each iteration, a single individual is selected, i.e. a copy
is included in the gene pool, as follows. After generating a random float number
ˇ 2 .0; 1/, the individual i D 1 is chosen in case of ˇ � q1. Otherwise, the i -th
individual with qi�1 < ˇ � qi is picked.

The above selection process bears the difficulty that if the objective is min-
imization instead of maximization as in our example, a transformation of the
objective function values has to be performed. One simple transformation consists



31 Genetic Algorithms 541

of defining an upper bound F which exceeds all possible objective function values
and subsequently using the fitness value vi D F � fi . Another difficulty is that the
scale on which the values are measured may not be considered appropriately. For
example, values of 1,020 and 1,040 are less distinctive than values of 20 and 40.

Therefore, two possible alternatives for designing the selection process have
been proposed in the literature. When using a ranking approach, the individuals
are ordered according to non-deteriorating fitness values with ri denoting the rank
of individual i . Subsequently, a selection probability is computed by, e.g. pi D 2ri=

.P � .P C 1//. In this case, the best individual with ri D P has the chance of
pi D 2=.P C1/ of being selected. This is roughly twice of that of the median whose
chance is pi D 1=P . With the values pi on hand, the selection can be performed by
spinning the roulette wheel as described above.

The other possibility is the tournament selection. In this approach, a list of
individuals is obtained by randomly permuting their index numbers i D 1; : : : ; P .
Afterwards, successive groups of L individuals are taken from the list. Among these
individuals, the one with the best objective function value is chosen for reproduction
and a copy is added to the gene pool. Then, the process is continued with the next L

individuals until the list is exhausted or the gene pool contains P copies, whatever
comes first. In the first case, the tournament process is continued to determine the
missing members of the gene pool after determining a new list randomly.

Except for the tournament selection, the above approaches have in common that
there is no guarantee that the best of all individuals is selected for reproduction.
From the optimization perspective this may not be efficient. Therefore, the concept
of elitism has been introduced which consists of putting a copy of the best individual
into the gene pool by default and applying the roulette wheel and ranking approaches
only P � 1 times. In generalized versions, a larger number of individuals is chosen
by default.

31.4 Recombination andMutation

For the recombination process, a pair of individuals is chosen from the gene
pool either randomly or systematically. A crossover is carried out with a certain
probability � , i.e. the pair is recombined into two new individuals. In case that
no recombination is performed, the original individuals become part of the new
population with a probability of 1 � � . This process is repeated until P individuals
have been considered and, hence, a new population with P individuals has been
obtained. In the literature, different values for � have been proposed with values of
� < 0:6 not being efficient (Reeves 1997).

In the following, we describe the simple 1-point crossover which is the one
most commonly used. In general, it is defined for strings with length n as follows.
For each pair of parent individuals X and Y , a crossover point h 2 Œ1; n � 1� is
determined randomly. Afterwards, a first individual is obtained by concatenating the
first h string positions of X with the n�h last positions of Y . The second individual



542 R. Klein and O. Faust

1 2 3 4 5 6 7 8X

2 3 1 5 6 4 8 7Y

1 2 3 4 5 6 8 7 A

2 3 1 5 4 6 7 8 B

h=4

Fig. 31.3 1-Point crossover
for sequence representations

is obtained just the other way round. Unfortunately, this definition does not work
for every possible representation of solutions. For our example problem, such a
crossover results in individuals with feasible solutions when the representation
based on priority values is applied but fails for the representation relying on
sequences. In the latter case, it yields individuals with some jobs occurring twice
and others being discarded.

Therefore, a different approach is used for sequence based representations, the
principle of which is depicted for two possible strings of our example problem
(Fig. 31.3). After selecting a crossover point h 2 Œ1; n�1� randomly, the first h string
positions of the parent individual X are copied into the child one A. Subsequently,
the remaining n � h positions are filled up with those elements which have not
been considered yet in the order in which they are contained in individual Y . The
second child B is constructed accordingly now starting with the first h positions of
individual Y . Note that in our example both individuals obtained by the crossover
yield better objective function values than their parent ones. The total tardiness costs
of the schedules represented by X and Y are 51 and 93, whereas for A and B we
obtain 47 and 29, respectively.

In addition to recombination, mutation is applied for some of the new individuals
to diversify the search, i.e. to avoid that the same set of solutions is examined
repeatedly through a number of consecutive generations. For this purpose, a
probability ı with which each individual is mutated has to be specified. According
to the selection process, the decision whether to mutate an individual or not can
be made by randomly generating a number from the interval .0; 1/. The usual
approaches for determining ı are either to choose a very small value, e.g. ı D 0:01

or to use a value ı D 1=n, because there is some theoretical and practical evidence
that this is a reasonable value for many problems (Reeves 1997). In general,
mutation consists of randomly altering the value at a random string position. In order
to preserve the feasibility for sequence based representations, two more versatile
mutation possibilities are distinguished. Within an exchange mutation, two string
positions are randomly selected and the corresponding elements are interchanged. In
our example, the positions three and six may be selected for individual A resulting
in the mutated sequence A0 D h1; 2; 6; 4; 5; 3; 8; 7i. A shift mutation consists of
randomly choosing a single string position and moving the corresponding element
by a random number of positions to the left or right. After selecting position
six of individual B and left shifting the element by three positions, we yield
B 0 D h2; 3; 6; 1; 5; 4; 7; 8i.



31 Genetic Algorithms 543

31.5 Memetic Algorithms

GA are able to quickly explore the search space and find regions with high-
quality solutions. However, they typically exhibit less efficiency with regard to the
exploitation of promising regions of the search space. In contrast, LSA are able
to quickly exploit a given region, scanning the neighborhood of a current solution
in search of better adjacent solutions. Therefore, LSA implement a move operator
which is used for moving through the neighborhood. While this approach allows
for quickly finding local optima using a problem-specifically defined neighborhood,
LSA tend to insufficiently explore the search space.

MA constitute a hybridization of GA and LSA, and are therefore meant to
embody the best of both worlds. The name of this class of evolutionary algorithms
stems from the word memes defined by Dawkins (2006). A meme can be regarded
as valuable knowledge which is transferred from one generation to another. In the
context of optimization, LSA are used to incorporate problem-specific knowledge
into chosen individuals by finding new individuals with better fitness values
within their neighborhood. There are two ways to achieve this: Lamarckian MA
replace every individual altered by LSA whereas Baldwinian MA keep the original
individuals and replace their fitness values with those of the new individuals
generated by the LSA.

As LSA can be regarded as systematic mutations guided by problem-specific
knowledge, LSA in MA most commonly substitute the mutation operator and are
thus executed after recombination. If mutation shall also be applied, the mutation
operator should differ from the move operator of the applied local search algorithm
in order to achieve diversification by searching in a different neighborhood.
Individuals are either chosen randomly for alteration by LSA or according to their
fitness value.

MA have successfully been used for solving a number of scheduling problems.
For further reading we refer to Eiben and Smith (2007) and Moscato and Cotta
(2010).

31.6 Conclusions

The previous expositions aim at reviewing the basic ideas of GA in the context of
solving combinatorial optimization problems. They also show that a large variety
of design possibilities exist when implementing GA for particular problems. This
includes choosing a representation of solutions, a selection mechanism as well
as efficient recombination and mutation strategies. Fortunately, as stated at the
beginning, already basic versions of GA are robust in the sense that they are able to
yield satisfying results for many problems.

Depending on the problem to be solved, it may be difficult to consider constraints
appropriately, i.e., to avoid that infeasible solutions are obtained throughout the
solution process. Within production scheduling, such constraints may be due to



544 R. Klein and O. Faust

generalized precedence relationships among jobs or to time windows for their
execution. In order to overcome such difficulties, several concepts have been
developed. The most common one is to modify the objective function by a penalty
term such that infeasible solutions are assigned a low fitness value.

References

Dawkins, R. (2006). The selfish gene (30th anniversary ed.). New York: Oxford University Press.
Eiben, A., & Smith, J. (2007). Introduction to evolutionary computing (1st ed., corrected 2nd

printing). Natural Computing Series. Berlin: Springer.
Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading:

Addison-Wesley.
Haupt, R.,& Haupt, S. (2004). Practical genetic algorithms (2nd ed.). Hoboken: Wiley.
Holland, J. (1975). Adaptation in natural and artificial intelligence. Ann Arbor: University of

Michigan Press.
Michalewicz, Z. (1999). Genetic algorithms C data structures D evolution programs (3rd ed.).

Berlin: Springer.
Moscato, P., & Cotta, C. (2010). A modern introduction to memetic algorithms. In M. Gendreau &

J.-Y. Potvin (Eds.), Handbook of Metaheuristics (2nd ed.). International Series in Operations
Research and Management Science (Vol. 146, Chap. 6, pp. 141–183). New York: Springer.

Reeves, C. (1997). Genetic algorithms for the operations researcher. INFORMS Journal on
Computing 9, 231–250.

Reeves, C. (2010). Genetic algorithms. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of
Metaheuristics (2nd ed.). International Series in Operations Research and Management Science
(Vol. 146, Chap. 5, pp. 109–139). New York: Springer.

Reeves, C., & Rowe, J. (2003). Genetic algorithms: Principles and perspectives: A guide to GA.
Boston: Kluwer Academic.


	31 Genetic Algorithms
	31.1 General Idea
	31.2 Populations and Individuals
	31.3 Evaluation and Selection of Individuals
	31.4 Recombination and Mutation
	31.5 Memetic Algorithms
	31.6 Conclusions
	References


