
Chapter 7
Compression

As discussed in Chap. 5, SanssouciDB is a database designed to run transactional
and analytical workloads in enterprise computing. The underlying data set can
easily reach a size of several terabytes in large companies. Although memory
capacities of commodity servers are growing, it is still expensive to process those
huge data sets entirely in main memory. Therefore, SanssouciDB and several other
modern in-memory storage engines use compression techniques on top of the initial
dictionary encoding to decrease the total memory requirements. Columnar storage
of data is well suited for compression, as data of the same type and domain is stored
consecutively and can thus be processed efficiently.

Another advantage of compression is that it reduces the amount of data that
needs to be transferred between main memory and CPUs, thereby increasing the
performance of query execution. We discuss this in more detail in Chap. 16 on
materialization strategies.

This chapter introduces several lightweight compression techniques, which pro-
vide a good trade-off between compression rate and additional processing overhead
for encoding and decoding. There are also a large number of so-called heavyweight
compression techniques. They achieve much higher compression rates, but encoding
and decoding is prohibitively expensive for their usage in the context of enterprise
applications. An in-depth discussion of many compression techniques can be found
in [LSFZ10, AMF06].

7.1 Prefix Encoding

In real-world databases, we often find the case that a column contains one
predominant value while the remaining values appear only seldom. Under this
circumstance, we would store the same value very often in an uncompressed format.
Prefix encoding is a simple way to handle this situation more efficiently. To apply
prefix encoding, the data sets need to be sorted by the column with the predominant
value and the attribute vector has to start with the predominant value.

H. Plattner, A Course in In-Memory Data Management,
DOI 10.1007/978-3-642-55270-0__7, © Springer-Verlag Berlin Heidelberg 2014

45

46 7 Compression

(a) (b)

Fig. 7.1 Prefix encoding example. (a) Dictionary, (b) dictionary-encoded attribute vector (top)
and prefix-encoded dictionary-encoded attribute vector (bottom)

To compress the column, the predominant value should not be stored explicitly
every time it occurs. This is achieved by saving the number of occurrences of the
predominant value and one instance of the value itself in the attribute vector. Thus,
a prefix-encoded attribute vector contains the following information:

• number of occurrences of the predominant value
• valueID of the predominant value from the dictionary
• valueIDs of the remaining values

7.1.1 Example

Given is the attribute vector of the country column from the world population
table, which is sorted by population of countries in descending order. Thus, the
1.4 billion Chinese citizens are listed first, then Indian citizens and so on. The
valueID for China, which is situated at position 37 in the dictionary (see Fig. 7.1a),
is stored 1.4 billion times at the beginning of the attribute vector in uncompressed
format. In compressed format, the valueID 37 will be written only once, followed
by the remaining valueIDs for the other countries as before. The number of
occurrences “1.4 billion” for China will be stored explicitly. Figure 7.1b depicts
the uncompressed and compressed attribute vectors for this example.

The following calculation illustrates the compression rate. First of all the number
of bits required to store all 200 countries is calculated as dlog2.200/e which results
in 8 bit.

Without compression the attribute vector stores the 8 bit for each valueID 8
billion times:

8 billion � 8 bit D 8 billion Byte D 7:45 GB

7.2 Run-Length Encoding 47

If the country column is prefix-encoded, the valueID for China is stored only
once in 8 bit instead of 1.4 billion times 8 bit. An additional 64 bit integer field
is added to store the number of occurrences. Consequently, instead of storing 1.4
billion times 8 bit, only 64 bit C 8 bit D 72 bit are really necessary. The complete
storage space for the compressed attribute vector is now:

.8 billion � 1:4 billion/ � 8 bit C 64 bit C 8 bit D 6:15 GB

Thus, in our example 1.3 GB (17 %) of storage space is saved. Another advantage
of prefix encoding is the possibility to directly access a position, as the location in
the compressed attribute vector can be calculated. For example, to find all male
Chinese the database engine can determine that only tuples with row numbers from
1 to 1.4 billion should be considered and then filtered by the gender value.

Although we see that we have reduced the required amount of main memory, it is
evident that we still store redundant information for all other countries. Therefore,
we introduce run-length encoding in the next section.

7.2 Run-Length Encoding

Run-length encoding is a compression technique that works best if the attribute
vector consists of few distinct values with a large number of occurrences. For
maximum compression rates, the column needs to be sorted, so that all the same
values are located together. In run-length encoding, value sequences with the same
value are replaced with a single instance of the value and

• either its number of occurrences or
• its starting position as offsets.

Figure 7.2 provides an example of run-length encoding using the starting
positions as offsets. Storing the starting position speeds up access, as we can find
the correct offset via binary search.

7.2.1 Example

Applied to our example of the country column sorted by population, instead of
storing all 8 billion values (7.45 GB), we store two vectors:

• one with all distinct values: 200 times 8 bit
• the other with starting positions: 200 times 33 bit with 33 bit necessary to store

the offsets up to 8 billion (dlog2(8 billion)e D 33 bit). An additional 33 bit field
at the end of this vector stores the number of occurrences for the last value.

48 7 Compression

(a) (b)

Fig. 7.2 Run-length encoding example. (a) Dictionary, (b) dictionary-encoded attribute vector
(top) and compressed dictionary-encoded attribute vector (bottom)

Hence, the size of the attribute vector can be significantly reduced to approxi-
mately 1 kB without any loss of information:

200 � .33 bit C 8 bit/ C 33 bit � 1 kB

7.3 Cluster Encoding

Cluster encoding works on equal-sized blocks of a column. The attribute vector
is partitioned into N blocks of fixed size (typically 1,024 elements). If a cluster
contains only a single value, it is replaced by a single occurrence of this value.
Otherwise, the cluster remains uncompressed. An additional bit vector of length N

indicates which blocks have been replaced by a single value (1 if replaced, 0 oth-
erwise). Figure 7.3 depicts an example for cluster encoding with the uncompressed
attribute vector on the top and the compressed attribute vector on the bottom. Here,
the blocks only contain four elements for simplicity.

7.3.1 Example

Given is the city column (1 million different cities) from the world population table.
The whole table is sorted cascadingly by country and city. Hence, cities, of the same
country, are stored next to each other. Consequently, the occurrences of the same city
values are stored next to each other, as well. Twenty bit are needed to represent 1
million city valueIDs (dlog2(1 million)e D 20 bit). Without compression, the city
attribute vector requires 18.6 GB (8 billion times 20 bit).

7.3 Cluster Encoding 49

Fig. 7.3 Cluster encoding example with a block size of 4

Now, we compute the size of the compressed attribute vector illustrated in
Fig. 7.3. With a cluster size of 1,024 elements the number of blocks is 7.8 million
(
˙

8 billion rows
1024 elements per block

�
). In the worst case every city leads to 1 incompressible block.

Thus, the size of the compressed attribute vector is computed from the following
sizes:

incompressible blocks C compressible blocks C bit vector

D 1 million � 1024 � 20 bit C .7:8 � 1/ million � 20 bit C 7:8 million � 1 bit

D 2; 441 MB C 16 MB C 1 MB

� 2:4 GB

With a resulting size of 2.4 GB, a compression rate of 87 % (16.2 GB less space
required) can be achieved in our example.

Cluster encoding does not support direct access to records. The position of a
record needs to be computed via the bit vector. As an example, consider the query
that counts how many men and women live in Berlin (for simplicity, we assume that
only one city with the name “Berlin” exists and the table is sorted by city).

SELECT gender, COUNT(gender)
FROM world_population
WHERE city = ‘Berlin’
GROUP BY gender

To find the recordIDs for the result set, we look up the valueID for “Berlin” in the
dictionary. In our example, illustrated in Fig. 7.4, this valueID is 3. Then, we scan
the cluster-encoded city attribute vector for the first appearance of valueID 3. While
scanning the cluster-encoded vector, we need to maintain the corresponding position
in the bit vector, as each position in the vector is mapped to either one value (if the
cluster is compressed) or four values (if the cluster is uncompressed) of the cluster-
encoded city attribute vector. In Fig. 7.4, this is illustrated by stretching the bit vector
to the corresponding value or values of the cluster-encoded attribute vector. After
the position is found, a bit vector lookup is needed to check whether the block(s)
containing this valueID are compressed or not to determine the recordID range

50 7 Compression

Fig. 7.4 Cluster encoding example: no direct access possible

containing the value “Berlin”. In our example, the first block containing “Berlin” is
uncompressed and the second one is compressed. Thus, we need to analyze the first
uncompressed block to find the first occurrence of valueID 3, which is the second
position, and can calculate the range of recordIDs with valueID 3, in our example
10 to 16. Having determined the recordIDs that match the desired city attribute, we
can use these recordID to access the corresponding gender records and aggregate
according to the gender values.

7.4 Indirect Encoding

Similar to cluster encoding, indirect encoding operates on blocks of data with N

elements (typically 1,024). Indirect Encoding can be applied efficiently if data
blocks hold a few distinct values. It is often the case if a table is sorted by another
column and a correlation between these two columns exists (e.g., name column if
table is sorted by countries).

Besides a global dictionary used by dictionary encoding in general, additional
local dictionaries are introduced for those blocks that contain only a few distinct
values. A local dictionary for a block contains all (and only those) distinct values
that appear in this specific block. Thus, mapping the larger global valueIDs to
even smaller local valueIDs can save space. Direct access is still possible, however,
an indirection is introduced because of the local dictionary. Figure 7.5 depicts an
example for indirect encoding with a block size of 1,024 elements. The upper part

7.4 Indirect Encoding 51

Fig. 7.5 Indirect encoding example

shows the dictionary-encoded attribute vector, the lower part shows the compressed
vector, a local dictionary and the used pointer structure to directly access the starting
positions of the respective blocks. This is necessary, because the blocks may use
different amounts of bits to represent their values, as shown in the example. The
first block contains only 200 distinct values and is compressed. The second block
in this example is not compressed since it contains too many distinct values to take
advantage of the additional dictionary of indirect encoding.

7.4.1 Example

Given is the dictionary-encoded attribute vector for the first name column (5 million
distinct values) of the world population table that is sorted by country. The number
of bits required to store 5 million distinct values is 23 bit (dlog2(5 million)e D
23 bit). Thus, the size of this vector without additional compression is 21.4 GB
(8 billion � 23 bit).

Now we split up the attribute vector into blocks of 1,024 elements resulting in 7.8
million blocks (

˙
8 billion rows
1024 elements

�
). For our calculation and for simplicity, we assume that

each set of 1,024 people of the same country contains on average 200 different first
names and all blocks will be compressed. The number of bits required to represent
200 different values is 8 bit (dlog2.200/e D 8 bit). As a result, the elements in
the compressed attribute vector need only 8 bit instead of 23 bit when using local
dictionaries.

Dictionary sizes can be calculated from the (average) number of distinct values
in a block (200) multiplied by the size of the corresponding old valueID (23 bit)
being the value in the local dictionary. For the reconstruction of a certain row, a
pointer to the local dictionary for the corresponding block is stored (64 bit). Thus,
the runtime for accessing a row is constant. The total amount of memory necessary
for the compressed attribute vector is calculated as follows:

52 7 Compression

Fig. 7.6 Indirect encoding example

local dictionaries C compressed attribute vector

D .200 � 23 bit C 64 bit/ � 7:8 million blocks C 8 billion � 8 bit

D 4:2 GB C 7:6 GB

� 11:8 GB

Compared to the 21.4 GB for the dictionary-encoded attribute vector, a saving of
9.6 GB (44 %) can be achieved in our example.

The following example query that selects the birthdays of all people named
“John” in the “USA” shows that indirect encoding allows for direct access:

SELECT b i r t h d a y
FROM w o r l d _ p o p u l a t i o n
WHERE fname = ‘ John ’ AND c o u n t r y = ‘USA’

Listing 7.1 Birthdays for all residents of the USA with first name John

As the table is sorted by country, we can easily identify the recordIDs of the
records with country=“USA”, and determine the corresponding blocks to scan the
“fname” column by dividing the first and last recordID by the cluster size. Then, the
valueID for “John” is retrieved from the global dictionary and, for each block, the
global valueID is translated into the local valueID by performing a binary search on
the local dictionary. This is illustrated in Fig. 7.6 for a single block. Then, the block
is scanned for the local valueID and corresponding recordIDs are returned for the
birthday projection. In most cases, the starting and ending recordID will not match
the beginning and the end of a block. In this case, we only consider the elements
between the first above found recordID in the starting block up to the last found
recordID for the value “USA” in the ending block.

7.5 Delta Encoding 53

7.5 Delta Encoding

The compression techniques covered so far reduce the size of the attribute vector.
There are also some compression techniques to reduce the data volume in the
dictionary as well. Let us assume that the data in the dictionary is sorted alpha-
numerically and we often encounter a large number of values with the same prefixes.
Delta encoding exploits this fact and stores common prefixes only once.

Delta encoding uses a block-wise compression like in previous sections with
typically 16 strings per block. At the beginning of each block, the length of the
first string, followed by the string itself, is stored. For each following value, the
number of characters used from the previous prefix, the number of characters added
to this prefix and the characters added are stored. Thus, each following string can be
composed of the characters shared with the previous string and its remaining part.
Figure 7.7 shows an example of a compressed dictionary. The dictionary itself is
shown in Fig. 7.7a. Its compressed counterpart is provided in Fig. 7.7b.

7.5.1 Example

Given is a dictionary for the city column sorted alpha-numerically. The size of the
uncompressed dictionary with 1 million cities, each value using 49 Byte (we assume
the longest city name has 49 letters), is 46.7 MB.

For compression purposes, the dictionary is separated into blocks of 16 values.
Thus, the number of blocks is 62,500 (1 million cities

16
). Furthermore, we assume the

following data characteristics to calculate the required size in memory:

• average length of city names is 7
• average overlap of 3 letters
• the longest city name is 49 letters (dlog2(49)e D 6 bit).

The size of the compressed dictionary is now calculated as follows:

block size � number of blocks

D encoding lengths C 1st city C 15 other cities � number of blocks

D ..1 C 15 � 2/ � 6 bit C 7 � 1 Byte C 15 � .7 � 3/ � 1 Byte/ � 62; 500

� 5:4 MB

Compared to the 46.7 MB without compression the saving is 42.2 MB (90 %).

54 7 Compression

(a) (b)

Fig. 7.7 Delta encoding example: (a) Dictionary, (b) Compressed dictionary

7.6 Limitations

What has to be kept in mind is that most compression techniques require sorted
sets to tap their full potential, but a database table can only be sorted by one
column or cascadingly if no other auxiliary data structures are used. Furthermore,
some compression techniques do not allow direct access. This has to be carefully
considered with regard to response time requirements of queries.

7.7 Self Test Questions

1. Sorting Compressed Tables
Which of the following statements is correct?

(a) If you sort a table by the amount of data for a row, you achieve faster read
access

(b) Sorting has no effect on possible compression algorithms
(c) You can sort a table by multiple columns at the same time
(d) You can sort a table only by one column

2. Compression and OLAP / OLTP
What do you have to keep in mind if you want to bring OLAP and OLTP
together?

(a) You should not use any compression techniques because they increase CPU
load

(b) You should not use compression techniques with direct access, because they
cause major security concerns

(c) Legal issues may prohibit to bring certain OLTP and OLAP datasets together,
so all entries have to be reviewed

(d) You should use compression techniques that give you direct positional
access, since indirect access is too slow

7.7 Self Test Questions 55

3. Compression Techniques for Dictionaries
Which of the following compression techniques can be used to decrease the size
of a sorted dictionary?

(a) Cluster Encoding
(b) Prefix Encoding
(c) Run-Length Encoding
(d) Delta Encoding

4. Compression Example Prefix Encoding
Suppose there is a table where all 80 million inhabitants of Germany are assigned
to their cities. Germany consists of about 12,200 cities, so the valueID is
represented in the dictionary via 14 bit. The outcome of this is that the attribute
vector for the cities has a size of 140 MB. We compress this attribute vector with
Prefix Encoding and use Berlin, which has nearly 4 million inhabitants, as the
prefix value. What is the size of the compressed attribute vector?
Assume that the needed space to store the amount of prefix values and the
prefix value itself is neglectable, because the prefix value only consumes 22 bit
to represent the number of citizens in Berlin and additional 14 bit to store the key
for Berlin once. Further assume the following conversions: 1 MB D 1,000 kB,
1 kB D 1,000 B

(a) 0.1 MB
(b) 133 MB
(c) 63 MB
(d) 90 MB

5. Compression Example Run-Length Encoding Germany
Suppose there is a table where all 80 million inhabitants of Germany are assigned
to their cities. The table is sorted by city. Germany consists of about 12,200
cities (represented by 14 bit). Using Run-Length Encoding with a start position
vector, what is the size of the compressed city vector? Always use the minimal
number of bits required for any of the values you have to choose and include all
needed auxiliary structures. Further assume the following conversions: 1 MB D
1,000 kB, 1 kB D 1,000 B

(a) 1.2 MB
(b) 127 MB
(c) 5.2 kB
(d) 62.5 kB

6. Compression Example Cluster Encoding
Assume the world population table with 8 billion entries. This table is sorted
by countries. There are about 200 countries in the world. What is the size of the
attribute vector for countries if you use Cluster Encoding with 1,024 elements per
block assuming one block per country can not be compressed? Use the minimum
required count of bits for the values and include all needed auxiliary structures.

56 7 Compression

Further assume the following conversions: 1 MB D 1,000 kB, 1 kB D 1,000 B

(a) � 9 MB
(b) � 4 MB
(c) � 0.5 MB
(d) � 110 MB

7. Best Compression Technique for Example Table
Find the best compression technique for the name column in the following table.
The table lists the names of all inhabitants of Germany and their cities, i.e. there
are two columns: first_name and city. Germany has about 80 million inhabitants
and 12,200 cities. The table is sorted by the city column. Assume that any subset
of 1,024 citizens contains at most 200 different first names.

(a) Run-Length Encoding
(b) Indirect Encoding
(c) Prefix Encoding
(d) Cluster Encoding

References

[AMF06] D. Abadi, S. Madden, M. Ferreira, Integrating compression and execution in column-
oriented database systems, in Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data , SIGMOD ’06 (ACM, New York 2006), pp. 671–
682

[LSFZ10] C. Lemke, K.-U. Sattler, F. Faerber, A. Zeier, Speeding up queries in column stores,
in Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science,
vol. 6263 (Springer, Heidelberg, 2010), pp. 117–129

	Chapter
7 Compression
	7.1 Prefix Encoding
	7.1.1 Example

	7.2 Run-Length Encoding
	7.2.1 Example

	7.3 Cluster Encoding
	7.3.1 Example

	7.4 Indirect Encoding
	7.4.1 Example

	7.5 Delta Encoding
	7.5.1 Example

	7.6 Limitations
	7.7 Self Test Questions
	References

