
Chapter 11
Insert

This chapter outlines what happens when inserting a new tuple into a table
(execution of an insert statement). Compared to a row-based database, the insert
in a column store is a bit more complicated. For a row-oriented database, the
new tuple is simply appended to the end of the table, i.e., the tuple is stored
as one piece. SanssouciDB uses column-orientation to store the data physically.
A detailed description of the differences between row stores and column stores is
given in Chap. 8. In a column store, adding a new tuple to the database means to
add a new entry to every column that the table consists of. Internally, every column
consists of a dictionary and an attribute vector (see Chap. 6). Adding a new entry
to a column means to check the dictionary and adding a new value if necessary.
Afterwards, the respective value of the dictionary entry is added to the attribute
vector of the column. Since the dictionary is sorted, adding a new entry to a column
results in three different scenarios:

1. Adding without a new dictionary entry
2. Adding with a new dictionary entry, without resorting the dictionary
3. Adding with a new dictionary entry, with resorting the dictionary

In this chapter, we will give a step by step explanation of the three different
scenarios.

11.1 Example

In this example, we insert the data of a new person into the world_population
table (see Fig. 11.1) that we used before. The example outlines what happens for
the column lname, representing the last name of a person, and fname, representing
the first name of a person.

H. Plattner, A Course in In-Memory Data Management,
DOI 10.1007/978-3-642-55270-0__11, © Springer-Verlag Berlin Heidelberg 2014

77



78 11 Insert

Fig. 11.1 Example database table named world_population

Fig. 11.2 Initial status of the lname column

11.1.1 Inserting without New Dictionary Entry

To demonstrate a scenario were we have an insert without a new entry to the
dictionary, we will look at the insert of the last name attribute to the lname column
of our world_population table. Attribute vector and dictionary of the lname column
are initially filled as displayed in Fig. 11.2.

To add the string Schulze to the column, we need to look up whether it already
exists in the dictionary. Since there is another person named Sophie Schulze
(recordID four of the world_population table) in the database, the dictionary for
the lname column already contains an entry with the string Schulze. As one can see
from Fig. 11.3, the dictionary position of Schulze is “3”.

Since Schulze is on position 3 of the dictionary, we append 3 to the end of the
attribute vector (see Fig. 11.4).

11.1.2 Inserting with New Dictionary Entry

When inserting the first name, the first name dictionary is scanned for the string
Karen. As shown in Fig. 11.5, this name is not present in the dictionary, yet.



11.1 Example 79

Fig. 11.3 Position of the string Schulze in the dictionary of the lname column

Fig. 11.4 Appending valueID of Schulze to the end of the attribute vector

Fig. 11.5 Dictionary for first name column

Therefore, the name is appended to the end of the first name dictionary (see
Fig. 11.6).

As outlined in Chap. 6, the dictionary needs to be kept sorted. After appending
Karen to the end of the dictionary, the dictionary needs to be resorted. Therefore,
as shown in Fig. 11.7, a new dictionary is created with a sorted order. In the new



80 11 Insert

Fig. 11.6 Addition of Karen to fname dictionary

Fig. 11.7 Resorting the fname dictionary

Fig. 11.8 Rebuilding the fname attribute vector

dictionary most of the values have been moved to a new position. For instance, the
valueID for Michael changed from 3 to 4.

Based on the changed valueIDs of the new first name dictionary, all valueIDs of
the first name attribute vector need to be updated as well. Figure 11.8 shows the
changes to the attribute vector. For instance at position 1, the valueID for Michael
is changed from 3 to 4.



11.2 Performance Considerations 81

Fig. 11.9 Appending the valueID representing Karen to the attribute vector

In case the newly added dictionary value is inserted at the end based on the
sorting order of the dictionary, those two steps are omitted. The dictionary does not
need to be resorted and therefore the attribute vector does not need to be rebuilt.

Finally the valueID 2, representing the dictionary position of the string Karen, is
appended to the attribute vector (see Fig. 11.9).

11.2 Performance Considerations

When thinking of the world_population example, there are about 8 billion people
and 5 million unique first names. Every new entry to the dictionary may cause an
overhead regarding resorting of the dictionary and reorganization of the respective
attribute vector. Triggering resorting and reorganization at every single insert would
lead to a performance penalty, which compromises the overall performance of the
system. Therefore, an additional insert layer needs to be added, the differential
buffer. Chapter 25 explains in detail how write performance is kept at a high level
using periodic merges of the differential buffer and the main store.

The vulnerability of a column to reorganization heavily depends on the column
cardinality (the number of distinct values in a dictionary). When the dictionary only
has a few entries, it is most likely that a column needs to be reorganized with a new
insert. However, especially with attributes of low column cardinality, e.g., gender
or country, the likelihood of reorganization decreases over time, since most of the
possible values for the respective column have been inserted into the dictionary
already. In real world applications, the dictionary only changes occasionally after it
has reached a certain size. The additional steps necessary for new unique dictionary
entries will occur less frequent and therefore expensive reorganization becomes less
frequent.



82 11 Insert

11.3 Self Test Questions

1. Access Order of Structures during Insert
When doing an insert, what entity is accessed first?

(a) The attribute vector
(b) The dictionary
(c) No access of either entity is needed for an insert
(d) Both are accessed in parallel in order to speed up the process

2. New Value in Dictionary
Given the following entities:
Old dictionary: ape, dog, elephant, giraffe
Old attribute vector: 0, 3, 0, 1, 2, 3, 3
Value to be inserted: lamb
What value is the lamb mapped to in the new attribute vector?

(a) 1
(b) 2
(c) 3
(d) 4

3. Insert Performance Variation over Time
Why might real world productive column stores experience faster insert perfor-
mance over time?

(a) Because the dictionary reaches a state of saturation and, thus, rewrites of the
attribute vector become less likely.

(b) Because the hardware will run faster after some run-in time.
(c) Because the column is already loaded into main-memory and does not have

to be loaded from disk.
(d) An increase in insert performance should not be expected.

4. Resorting Dictionaries of Columns
Consider a dictionary encoded column store (without a differential buffer)
and the following SQL statements on an initially empty table: INSERT INTO
students VALUES(‘Daniel’, ‘Bones’, ‘USA’);
INSERT INTO students VALUES(‘Brad’, ‘Davis’, ‘USA’);
INSERT INTO students VALUES(‘Hans’, ‘Pohlmann’, ‘GER’);
INSERT INTO students VALUES(‘Martin’, ‘Moore’, ‘USA’);
How often do attribute vectors have to be completely rewritten?

(a) 2
(b) 3
(c) 4
(d) 5



11.3 Self Test Questions 83

5. Insert Performance
Which of the following use cases will have the worst insert performance when
all values will be dictionary encoded?

(a) A city resident database, that store all the names of all the people from that
city

(b) A database for vehicle maintenance data which stores failures, error codes
and conducted repairs

(c) A password database that stores the password hashes
(d) An inventory database of a company storing the furniture for each room


	Chapter
11 Insert
	11.1 Example
	11.1.1 Inserting without New Dictionary Entry
	11.1.2 Inserting with New Dictionary Entry

	11.2 Performance Considerations
	11.3 Self Test Questions


