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1 Introduction

Let p be a prime number, and let k be an algebraically closed field of characteristic
p. Let W D W.k/ denote the ring of Witt vectors with coefficients in k, and let K
denote the quotient field of W . We fix a p-divisible commutative formal group law
G of height h over k and denote by R WD Rdef

G the universal deformation ring of
G representing isomorphism classes of deformations of G to complete noetherian
local W -algebras with residue class field k. Denote by G the universal deformation
of G to R and by Lie.G/ the Lie algebra of G. For any integer m, the m-th tensor
power Lie.G/˝m of Lie.G/ can be viewed as the space of global sections of a vector
bundle on the universal deformation space Spf.R/ which is equivariant for a natural
action of the automorphism group � WD Aut.G/ of G.

If G is of dimension one, then the formal scheme Spf.R/ is known as the moduli
space of Lubin-Tate. It plays a crucial role in Harris’ and Taylor’s construction of
the local Langlands correspondence for GLh.Qp/. Moreover, the � -representations
Lie.G/˝m and their cohomology figure prominently in stable homotopy theory (cf.
the introduction to Devinatz and Hopkins (1995)). Still assuming G to be one
dimensional, a detailed study of the � -representation R was given in Kohlhaase
(2013). For h D 2 it led to the computation of the continuous � -cohomology of
R, relying on the foundational work of Devinatz, Gross, Hopkins and Yu. The only
prior analysis of p-adic representations stemming from equivariant vector bundles
on deformation spaces of p-divisible formal groups concern the p-adic symmetric
spaces of Drinfeld. These were studied extensively by Morita, Orlik, Schneider and
Teitelbaum (cf. Orlik 2008; Schneider and Teitelbaum 2002 and our remarks at the
end of Sect. 2).
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The aim of the present article is to generalize and strengthen some of the
results of Gross and Hopkins (1994) and of the author in Kohlhaase (2013). To
this end, Sect. 1 and the first part of Sect. 2 give a survey of the theory of p-
divisible commutative formal group laws. This includes the classification results
of Dieudonné, Lazard and Manin, as well as the deformation theoretic results of
Cartier, Lubin, Tate and Umemura. It follows from the work of Dieudonné and
Manin that the group � is a compact Lie group over Qp (cf. Corollary 1).

In the second part of Sect. 2, we prove that the action of � on Lie.G/˝m extends
to the Iwasawa algebra � WD W �� � of � over W . This gives Lie.G/˝m the
structure of a pseudocompact module over � (cf. Corollary 2 and Theorem 5). In
Sect. 3, we pass to the global rigid analytic sections .Lie.G/˝m/rig of our vector
bundles and show that the action of � extends to a continuous action of the locally
analytic distribution algebra D.� / of � over K . As a consequence, the action of
� on the strong continuousK-linear dual of .Lie.G/˝m/rig is locally analytic in the
sense of Schneider and Teitelbaum (cf. Theorems 6 and 7).

We note that the continuity and the differentiability of the action of � on Rrig

were first proven by Gross and Hopkins if G is of dimension one (cf. Gross and
Hopkins 1994, Propositions 19.2 and 24.2). Using the structure theory of the algebra
D.� /, we arrive at a more precise result for arbitrarym and G, avoiding the use of
the period morphism. Our approach essentially relies on a basic lifting lemma for
endomorphisms of G which is also at the heart of the strategy followed by Gross
and Hopkins (cf. Lemma 1 and Proposition 1).

A major question that we have to leave open concerns the coadmissibility of
theD.� /-modules .Lie.G/˝m/rig in the sense of Schneider and Teitelbaum (2003),
section 6. Taking sections over suitable affinoid subdomains of Spf.R/rig, it is
related to the finiteness properties of the resulting Banach spaces as modules over
certain Banach completions of�˝W K . In Sect. 4, we assumeG to be of dimension
one and consider the restriction of .Lie.G/˝m/rig to an affinoid subdomain of
Spf.R/rig over which the period morphism of Gross and Hopkins is an open
immersion. By spelling out the action of the Lie algebra of � , we show that one
naturally obtains a continuous module over a complete divided power enveloping
algebra OU dp

K .Vg/ constructed by Kostant (cf. Theorem 8). Here Vg is a Chevalley order
in the split form of the Lie algebra of � . If h D 2 and m � �1 then in fact
.Lie.G/˝m/rig gives rise to a cyclic module over OU dp

K .Vg/ (cf. Theorem 9). This result
might indicate that .Lie.G/˝m/rig does not give rise to a coherent sheaf for the
Fréchet-Stein structure of D.� / considered in Schneider and Teitelbaum (2003),
section 5 (cf. Remark 3).

Gross and Hopkins (1994) consider formal modules of dimension one and finite
height over the valuation ring o of an arbitrary non-Archimedean local field. The
case of p-divisible formal groups corresponds to the case o D Zp . However, neither
the deformation theory nor the theory of the period morphism have been worked out
in detail for formal o-modules of dimension strictly greater than one. This is why
we restrict to one dimensional formal groups in Sect. 4 and to p-divisible formal
groups throughout.
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Conventions and notation. If S is a commutative unital ring, if r is a positive
integer, and if X D .X1; : : : ; Xr/ is a family of indeterminates, then we denote by
S�X� D S�X1; : : : ; Xr� the ring of formal power series in the variablesX1; : : : ; Xr
over S . We write f D f .X/ D f .X1; : : : ; Xr/ for an element f 2 S�X�. If
n D .n1; : : : ; nr / 2 Nr is an r-tuple of non-negative integers then we set jnj WD
n1 C : : : C nr and Xn WD X

n1
1 � � �Xnr

r . If i and j are elements of a set then we
denote by ıij the Kronecker symbol with value 1 2 S if i D j and 0 2 S if i 6D j .
If h is a Lie algebra over S then we denote by U.h/ the universal enveloping algebra
of h over S . Throughout the article, p will denote a fixed prime number.

2 Formal Group Laws

LetR be a commutative unital ring, and let d be a positive integer. A d -dimensional
commutative formal group law (subsequently abbreviated to formal group) is a d -
tuple G D .G1; : : : ; Gd / of formal power series in 2d variables Gi 2 R�X; Y � D
R�X1; : : : ; Xd ; Y1; : : : ; Yd �, satisfying

(F1) Gi .X; 0/ D Xi ,
(F2) Gi .X; Y / D Gi.Y;X/, and
(F3) Gi .G.X; Y /;Z/ D Gi.X;G.Y;Z//

for all 1 � i � d . It follows from the formal implicit function theorem (cf.
Hazewinkel 1978, A.4.7) that for a given d -dimensional commutative formal group
G there exists a unique d -tuple �G 2 R�X�d of formal power series with trivial
constant terms such that

Gi.X; �G.X// D 0 for all 1 � i � d

(cf. also Zink 1984, Korollar 1.5). Thus, if S is a commutative R-algebra, and if
I is an ideal of S such that S is I -adically complete, then the set I d becomes a
commutative group with unit element .0; : : : ; 0/ via

x CG y WD G.x; y/ and � x WD �G.x/:

Example 1. Let R D Z and d D 1. The formal group OGa.X; Y / D X C Y is
called the one dimensional additive formal group. We have � OGa .X/ D �X . The

formal group OGm.X; Y / D .1 C X/.1 C Y / � 1 is called the one dimensional
multiplicative formal group. We have � OGm.X/ D

P1
nD1.�X/n.

Let G and H be formal groups over R of dimensions d and e, respectively.
A homomorphism from G to H is an e-tuple ' D .'1; : : : ; 'e/ of power series
'i 2 R�X� D R�X1; : : : ; Xd � in d -variables over R with trivial constant terms,
satisfying

'.G.X; Y // D H.'.X/; '.Y //:
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If ' W G ! G0 and  W G0 ! G00 are homomorphisms of formal groups then
we define  ı ' through . ı '/.X/ WD  .'.X//. This is a homomorphism from
G to G00. We let End.G/ denote the set of endomorphisms of a d -dimensional
commutative formal group G over R, i.e. of homomorphisms from G to G. It is
a ring with unit 1G D X D .X1; : : : ; Xd /, in which addition and multiplication
are defined by .' CG  /.X/ WD G.'.X/;  .X//, .�'/.X/ WD �G.'.X// and
 � ' WD  ı '. In particular, End.G/ is a Z-module. Given m 2 Z, we denote by
Œm�G 2 R�X�d the corresponding endomorphism of G. We denote by Aut.G/ the
automorphism group of G, i.e. the group of units of the ring End.G/.

Denoting by .X/ the ideal ofR�X� generated byX1; : : : ; Xd , the freeR-module

Lie.G/ WD HomR..X/=.X/
2; R/

of rank d D dim.G/ is called the Lie algebra of G (or its tangent space at 1G). It
is an R-Lie algebra for the trivial Lie bracket. Non-commutative Lie algebras occur
only for non-commutative formal groups (cf. Zink 1984, Kapitel I.7). AnR-basis of
Lie.G/ is given by the linear forms . @

@Xi
/1�i�d sending f C.X/2 to @f

@Xi
.0/. Here @f

@Xi
denotes the formal derivative of the power series f with respect to the variable Xi .

Any homomorphism ' W G ! H of formal groups as above gives rise to an
R-linear ring homomorphism '� W R�Y1; : : : ; Ye� ! R�X1; : : : ; Xd �, determined
by '�.Yi / D 'i for all 1 � i � e. It is called the comorphism of '. It maps .Y / to
.X/, hence .Y /2 to .X/2, and therefore induces an R-linear map

Lie.'/ W Lie.G/ �! Lie.H/

via Lie.'/.ı/.h C .Y /2/ WD ı.'�.h/ C .X/2/. In the R-bases . @
@Xi
/i (resp.

. @
@Yj
/j ) of Lie.G/ (resp. Lie.H/), the map Lie.'/ is given by the Jacobian matrix

.
@'i
@Xj
.0//i;j 2 Re�d of '. If ' W G ! G0 and  W G0 ! G00 are homomorphisms

of formal groups, then . ı '/� D '� ı  � and Lie. ı '/ D Lie. / ı Lie.'/. If
H D G then one can use (F1) to show that the map .' 7! Lie.'// W End.G/ !
EndR.Lie.G// is a homomorphism of rings. In particular, Lie.G/ becomes a module
over End.G/ and we have Lie.Œm�G/ D m � idLie.G/ for any integerm.

If p is a prime number and if R is a complete noetherian local ring of residue
characteristic p, then a homomorphism ' W G ! H of formal groups is called
an isogeny if the comorphism '� makes R�X� a finite free module over R�Y � (cf.
Tate 1967, section 2.2). Of course, this can only happen if d D e. A formal group
G over a complete noetherian local ring R with residue characteristic p is called
p-divisible, if the homomorphism Œp�G W G ! G is an isogeny. In this case the rank
of R�X� over itself via Œp��G is a power of p, say ph (cf. Tate 1967, section 2.2; this
result can also be deduced from Zink 1984, Satz 5.3). The integer h DW ht.G/ is
called the height of the p-divisible formal groupG.

If R D k is a perfect field of characteristic p, the necessary tools to effectively
study the category of p-divisible commutative formal groups over k were first
developed by Demazure (1986, Chapter III). His methods were later generalized
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by Cartier in order to describe commutative formal groups over arbitrary rings
(cf. Lazard 1975, Chapters III & IV, or Zink 1984, Chapters III & IV).

Sticking to the case of a perfect field k of characteristic p, we denote by W WD
W.k/ the ring of Witt vectors over k. Let � D .x 7! xp/ denote the Frobenius
automorphism of k, as well as its unique lift to a ring automorphism of W . Recall
that a ��1-crystal over k is a pair .M; V /, consisting of a finitely generated free
W -module M and a map V W M ! M which is ��1-linear, i.e. which is additive
and satisfies

V.am/ D ��1.a/V .m/ for all a 2 W; m 2M:

We shall be interested in those ��1-crystals .M; V / which satisfy the following two
extra conditions (here D stands for Dieudonné):

(D1) pM � V.M/

(D2) V modp is a nilpotent endomorphism of M=pM .

For the following fundamental result cf. Zink (1984), page 109.

Theorem 1 (Dieudonné). If k is a perfect field of characteristic p then the
category of p-divisible commutative formal groups over k is equivalent to the
category of ��1-crystals over k, satisfying (D1) and (D2). �

Let W ŒF; V � be the non-commutative ring generated by two elements F and V
overW subject to the relations

VF D FV D p; Va D ��1.a/V and Fa D �.a/F for all a 2 W:

The equivalence of Theorem 1 associates with a p-divisible commutative formal
group G its (covariant) Cartier-Dieudonné module MG . This is a V -adically
separated and complete module overW ŒV; F � such that the action of V is injective.
Since G is p-divisible, also the action of F is injective, and the underlying W -
module of MG is finitely generated and free. In particular, the pair .MG; V / is
a ��1-crystal over k, satisfying pMG D VFMG � VMG , i.e. condition (D1).
Condition (D2) follows from the V -adic completeness of MG . We also note that
V and F give rise to a short exact sequence

of k-vector spaces in which dimk.MG=pMG/ D ht.G/ and dimk.MG=VMG/ D
dim.G/.

Conversely, if .M; V / is a ��1-crystal over k satisfying (D1), then V is injective.
In fact, (D1) implies that V becomes surjective (and hence bijective) over the
quotient field K of W . Setting F WD V �1p, the W -module M becomes a module
over W ŒF; V � which is V -adically separated and complete if condition (D2) is
satisfied.
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Recall that a ��1-isocrystal over k is a pair .N; f / consisting of a finite
dimensional K-vector space N and a ��1-linear bijection f W N ! N . If .M; V /
is a ��1-crystal over k which satisfies (D1) then .M ˝W K; V ˝ idK/ is a ��1-
isocrystal over k. The ��1-isocrystal which in this way is associated with the
Cartier-Dieudonné module of a p-disivible commutative formal group G over k,
classifies G up to isogeny (cf. Zink 1984, Satz 5.26 and the remarks on page 110;
alternatively, consult Demazure 1986, Chapter IV.1).

Given integers r and s with r > 0, consider the ��1-isocrystal over k given by
.KŒt�=.t r �ps/; t ı�/. HereKŒt� denotes the usual commutative polynomial ring in
the variable t over K on which � acts coefficientwise. If k is algebraically closed,
we have the following fundamental classification result of Dieudonné and Manin
(cf. Zink 1984, Satz 6.29; Demazure 1986, Chapter IV.4; Lazard 1975, Proposition
VI.7.42).

Theorem 2 (Dieudonné-Manin). If k is an algebraically closed field of charac-
teristic p then the category of ��1-isocrystals over k is semisimple. The simple
objects are given by the ��1-isocrystals .KŒt�=.t r � ps/; t ı �/, where r and s are
relatively prime integers with r > 0. �

To a pair .r; s/ of integers as in Theorem 2 corresponds a particular p-divisible
commutative formal group Grs over k inside the isogeny class determined by the
��1-isocrystal .KŒt�=.t r � ps/; t ı �/. According to Lazard (1975), Proposition
VI.7.42, the endomorphism ring of Grs is isomorphic to the maximal order of the
central division algebra of invariant s

r
C Z 2 Q=Z and dimension r2 over Qp .

Corollary 1. IfG is a p-divisible commutative formal group over an algebraically
closed field k of characteristic p then the endomorphism ring End.G/ of G is an
order in a finite dimensional semisimple Qp-algebra. Endowing End.G/ with the p-
adic topology and the automorphism group Aut.G/ ofG with the induced topology,
Aut.G/ is a compact Lie group over Qp .

Proof. That End.G/ is a p-adically separated and torsion free Zp-module can
easily be proved directly, using that G is p-divisible. It also follows from the fact
that the Cartier-Dieudonné module of G is free over W . According to Theorem 2
and the subsequent remarks there are central division algebrasD1; : : : ;Dn over Qp

and natural numbersm1; : : : ; mn such that

End.G/˝Zp Qp ' Mat.m1 �m1;D1/ � : : : �Mat.mn �mn;Dn/

as Qp-algebras. Since End.G/ is p-adically separated, it is bounded in End.G/˝Zp

Qp. Thus, it is a lattice in a finite dimensional Qp-vector space and must be
finitely generated over Zp . This proves the first assertion. Endowing End.G/ with
the p-adic topology, it becomes a topological Zp-algebra and Aut.G/ becomes a
compact topological group for the subspace topology. By the above arguments, it
is isomorphic to an open subgroup of

Qn
iD1 GLmi .Di /, hence naturally carries the

structure of a Lie group over Qp .
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3 Deformation Problems and Iwasawa Modules

We continue to denote by k a fixed algebraically closed field of characteristic p. We
also fix a p-divisible commutative formal group G of dimension d over k. Denote
by W D W.k/ the ring of Witt vectors of k and by Ck the category of complete
noetherian commutative local W -algebras with residue class field k. Let R be an
object of Ck and let m be the maximal ideal of R. A deformation of G to R is
a pair .G0; �G0/, where G0 is commutative formal group over R and �G0 W G !
G0 modm is an isomorphism of formal groups over k. Two deformations .G0; �G0 /

and .G00; �G00/ of G to R are said to be isomorphic if there is an isomorphism f W
G0 ! G00 of formal groups over R such that the diagram

is commutative. Let DefG denote the functor from Ck to the category Sets of
sets which associates with an object R of Ck the set of isomorphism classes of
deformations ofG toR. If dim.G/ D 1, then the following theorem was first proved
by Lubin and Tate (1966, Theorem 3.1), building on the work of Lazard. It was
later generalized by Cartier und Umemura, independently (cf. Cartier 1968,1969;
Umemura 1977).

Theorem 3. The functor DefG W Ck ! Sets is representable, i.e. there is an object
Rdef
G of Ck and a deformation G of G to Rdef

G with the following universal property.
For any object R of Ck and any deformation .G0; �G0/ of G to R there is a unique
W -linear local ring homomorphism ' W Rdef

G ! R and a unique isomorphism
Œ'� W '�.G; �G/ ' .G0; �G0/ of deformations of G to R.1 If h D ht.G/ and d D
dim.G/ denote the height and the dimension ofG, respectively, then theW -algebra
Rdef
G is non-canonically isomorphic to the power series ring W �u1; : : : ; u.h�d/d � in

.h� d/d variables over W . �
It follows from the universal property of the deformation .G; �G/ that the

automorphism group Aut.G/ of G acts on the universal deformation ring Rdef
G

by W -linear local ring automorphisms. Indeed, given � 2 Aut.G/, there is a
unique W -linear local ring endomorphism � of Rdef

G and a unique isomorphism
Œ�� W ��.G; �G/ ' .G; �G ı �/ of deformations of G to Rdef

G . It follows from

1Here '�.G; �G/ D .'�.G/; �G/, where '�G is obtained by applying ' to the coefficients of G.
Since ' induces an isomorphism between the residue class fields of Rdef

G and R, we may identify
GmodmRdef

G
and '�Gmodm.
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the uniqueness that the resulting map Aut.G/ ! End.Rdef
G / factors through a

homomorphism

Aut.G/ �! Aut.Rdef
G /

of groups. It is this type of representation that we are concerned with in this article.
To ease notation we shall denote by

R WD Rdef
G

the universal deformation ring of our fixed p-divisible commutative formal group
G over k. Let m denote the maximal ideal of R. For any non-negative integer n we
denote by Gn WD GmodmnC1 the reduction of the universal deformation G modulo
the ideal mnC1 of R. We have G ' G0 via �G.

Lemma 1. If n is a non-negative integer then the ring homomorphism
End.GnC1/! End.Gn/, induced by reduction modulo mnC1, is injective.

Proof. The formal group GnC1 is p-divisible because the comorphism Œp��
GnC1

is
finite and free. Indeed, it is so after reduction modulo m, and one can use Bourbaki
(2006), III.2.1 Proposition 14 and III.5.3 Théorème 1, to conclude. Since the ideal
mnC1.R=mnC2/ ofR=mnC2 is nilpotent, the claim follows from the rigidity theorem
in Zink (1984), Satz 5.30.

The preceding lemma allows us to regard all endomorphism rings End.Gn/ as
subrings of End.G0/. The main technical result of this section is the following
assertion.

Proposition 1. For any non-negative integer n the subring End.Gn/ of End.G0/

contains pn End.G0/.

Proof. We proceed by induction on n, the case n D 0 being trivial. Let n � 1

and assume the assertion to be true for n � 1. Set Rn WD R=mnC1. Let ' 2
pn�1 End.G0/ � End.Gn�1/ and choose a family Q' 2 Rn�X�d of power series
with trivial constant terms such that Q'modmnRn D '. The d -tuple of power series
Œp�Gn ı Q' is then a lift of p'. We claim that it is an endomorphism of Gn.

Note first that Œp�Gn ı Q' depends only on ' and not on the choice of a lift Q'.
Indeed, if Q' 0 is a second lift of ' with trivial constant terms, set  WD Q' 0 � Q'.
Setting 	 WD . Q' C  / �Gn Q', we have Q' 0 D Q' CGn 	. Further, the power series
	 satisfies 	modmn D ' �Gn�1 ' D 0, hence has coefficients in mnRn. Since
pmn � mnC1 and .mn/m � mnC1 for any integer m � 2, we have Œp�Gn ı 	 D 0

and hence

Œp�Gn ı Q' 0 D Œp�Gn . Q' CGn 	/ D .Œp�Gn ı Q'/CGn .Œp�Gn ı 	/ D Œp�Gn ı Q';

as desired.
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If 
 2 Rn�X�d is a family of power series with trivial constant terms, set ı
 WD
ı
.X; Y / WD 
.XCGn Y /�Gn 
.X/�Gn 
.Y /. Since Q' reduces to an endomorphism
of Gn�1, the power series ı Q' has coefficients in mn. As above, this implies Œp�Gn ı
ı Q' D 0 and thus

ıŒp�Gnı Q' D .Œp�Gn ı Q'/.X CGn Y /�Gn .Œp�Gn ı Q'/.X/ �Gn .Œp�Gn ı Q'/.Y /
D Œp�Gn .ı Q'/ D 0:

As a consequence, Œp�Gn ı Q' 2 End.Gn/, and thus p' 2 End.Gn/. Since ' was
arbitrary, we obtain the desired inclusion pn End.G0/ � End.Gn/.

According to Corollary 1, the group Aut.G/ is a profinite topological group. A
basis of open neighborhoods of its identity is given by the subgroups 1Cpn End.G/
with n � 1. If m denotes the maximal ideal of the local ring R, the W -algebra
R is a topological ring for the m-adic topology. We are now ready to prove
the following result, a particular case of which was treated in Kohlhaase (2013),
Proposition 3.1. The argument is borrowed from the proof of Gross and Hopkins
(1994), Lemma 19.3. Let us put

� WD �0 WD Aut.G/ and �n WD 1C pn End.G/ for n � 1:

Theorem 4. The action of � on R D Rdef
G is continuous in the sense that the map

..�; f / 7! �.f // W � � R ! R is a continuous map of topological spaces. Here
� � R carries the product topology. If n is a non-negative integer then the induced
action of �n on R=mnC1 is trivial.

Proof. As in the proof of Kohlhaase (2013), Proposition 3.1, it suffices to prove the
second statement. Let � 2 �n and consider the deformation .Gn; �G ı �/ of G to
Rn D R=mnC1. Denote by prn W R ! Rn the natural projection and let �n denote
the unique ring homomorphism �n W R! Rn for which there exists an isomorphism
of deformations Œ�n� W .�n/�.G; �G/ ' .Gn; �G ı �/ (cf. Theorem 3). Note that also
the ring homomorphism prn ı � W R! Rn admits an isomorphism of deformations
.prn ı �/�.G; �G/ ' .Gn; �G ı �/, namely the reduction of Œ�� modulo mnC1. By
uniqueness, we must have �n D prn ı � and Œ�n� D Œ�� mod mnC1.

Since the map .� 7! �G ı � ı ��1
G
/ is a ring isomorphism End.G/ ! End.G0/,

Proposition 1 shows that �G ı � ı ��1
G
2 Aut.Gn/ and therefore defines an

isomorphism of deformations .prn/�.G; �G/ D .Gn; �G/ ' .Gn; �G ı �/. By
uniqueness again, we must have �n D prn ı � D prn. This implies that � acts
trivially on Rn and that Œ�� mod mnC1 D �G ı � ı ��1

G
.

If H is a profinite topological group then we denote by

�.H/ WD W �H � WD lim �
n�1;NEoH

.W=pnW /ŒH=N �
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the Iwasawa algebra (or completed group ring) ofH overW . The above projective
limit runs over all positive integers n and over all open normal subgroups N of
H . If n and n0 are positive integers with n0 � n, and if N and N 0 are two open
normal subgroups ofH withN � N 0, then the transition map .W=pnW /ŒH=N �!
.W=pn

0

W /ŒH=N 0� is the natural homomorphism of group rings induced by the
surjective homomorphism H=N ! H=N 0 of groups and the surjective ring
homomorphismW=pnW ! W=pn

0

W . Endowing each ring .W=pnW /ŒH=N �with
the discrete topology, �.H/ is a topological ring for the projective limit topology.
It is a pseudocompact ring in the terminology of Brumer (1966), page 442, because
each of the rings .W=pnW /ŒH=N � is Artinian. Recall that a complete Hausdorff
topological�.H/-moduleM is called pseudocompact, if it admits a basis .Mi /i2I
of open neighborhoods of zero such that each Mi is a �.H/- submodule of M for
which the �.H/-moduleM=Mi has finite length. For brevity, we will set

� WD �.Aut.G//:

Corollary 2. The action of Aut.G/ on R D Rdef
G extends to an action of � and

gives R the structure of a pseudocompact�-module.

Proof. Since R is m-adically separated and complete, we may consider the natural
isomorphism

R ' lim �
n�0

R=mnC1:

According to Theorem 4, the action of the group ring W ŒAut.G/� on R=mnC1
factors through .W=pnC1W /ŒAut.G/=.1 C pn End.G//� where 1 C pn End.G/ is
an open normal subgroup of Aut.G/. Thus, R=mnC1 can be viewed as a �-module
via the natural ring homomorphism�! .W=pnC1W /ŒAut.G/=.1Cpn End.G//�.
The transition maps in the above projective limit are then�-equivariant. This proves
the first assertion.

As for the second assertion, the ideals mnC1 of R are open and �-stable, being
the kernels of the �-equivariant projections R ! R=mnC1. They form a basis of
open neighborhoods of zero ofR, and the quotientsR=mnC1 are even of finite length
overW � �.

Let Lie.G/ denote the Lie algebra of the universal deformation G of G. This is
a free module of rank d D dim.G/ over R. Given � 2 Aut.G/, we extend the
ring automorphism � W R ! R to an automorphism � W R�X�! R�X� by setting
�.Xi/ D Xi for all 1 � i � d . It induces a homomorphism � W Lie.G/! Lie.��G/
of additive groups. We define Q� W Lie.G/ ! Lie.G/ as the composite of the two
additive maps
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with Œ�� W ��G! G as above. Given a second element � 0 2 Aut.G/, we define � 0 W
Lie.��G/ ! Lie.� 0�.��G// as before. Further, � 0�Œ�� W � 0�.��G/ ! � 0�G denotes
the homomorphism obtained by applying � 0 2 Aut.R/ to the coefficients of Œ�� 2
R�X�d . One readily checks that the diagram

is commutative. Further, the uniqueness assertion in Theorem 3 implies that Œ� 0�� D
Œ� 0� ı � 0�Œ��. Therefore,

.� 0�/� D Lie.Œ� 0��/ ı .� 0�/ D Lie.Œ� 0�/ ı Lie.� 0�Œ��/ ı � 0 ı �
D Lie.Œ� 0�/ ı .� 0 ı Lie.Œ��/ ı .� 0/�1/ ı � 0 ı � D Q� 0 ı Q�:

As a consequence, we obtain an action of Aut.G/ on the additive group Lie.G/
which is semilinear for the action on R in the sense that

Q�.f � ı/ D �.f / � Q�.ı/ for all f 2 R; ı 2 Lie.G/:

To ease notation, we will again write �.ı/ for Q�.ı/.
Given a positive integer m we denote by Lie.G/˝m the m-fold tensor product of

Lie.G/ over R with itself. This is a free R-module of rank dm with a semilinear
action of Aut.G/ defined by

�.ı1 ˝ � � � ˝ ım/ WD �.ı1/˝ � � � ˝ �.ım/:

We also set Lie.G/˝0 WD R and Lie.G/˝m WD HomR.Lie.G/˝.�m/; R/ if m is a
negative integer. In the latter case Lie.G/˝m is a free R-module of rank d�m with a
semilinear action of Aut.G/ defined through

�.'/.ı1 ˝ � � � ˝ ı�m/ WD �.'.��1.ı1/˝ � � � ˝ ��1.ı�m///:

For any integerm we endow the R-module Lie.G/˝m with the m-adic topology for
which it is Hausdorff and complete. By the semilinearity of the Aut.G/-action, the
R-submodules mn Lie.G/˝m are Aut.G/-stable for any non-negative integer n.

As an easy consequence of Proposition 1 and Theorem 4, we obtain the following
result.

Theorem 5. Let m and n be integers with n � 0. The action of Aut.G/ on
Lie.G/˝m is continuous in the sense that the structure map Aut.G/�Lie.G/˝m !
Lie.G/˝m of the action is continuous. Here the left hand side carries the
product topology. The induced action of 1 C p2nC1 End.G/ on the quotient
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Lie.G/˝m=mnC1 Lie.G/˝m is trivial. In particular, the action of Aut.G/ on
Lie.G/˝m extends to an action of � and gives Lie.G/˝m the structure of a
pseudocompact�-module.

Proof. As in the proof of Theorem 4 and Corollary 2, it suffices to show that the
action of 1C p2nC1 End.G/ on Lie.G/˝m=mnC1 Lie.G/˝m is trivial. By definition
of the action and Theorem 4 we may assume m D 1. Setting Gn D G mod mnC1,
as before, we have Lie.G/=mnC1 Lie.G/ D Lie.Gn/. Since 2nC 1 � n, Theorem 4
and its proof show that the map � mod mnC1 W Lie.Gn/ ! Lie.Gn/ is given by
Lie.�G ı � ı ��1

G
/ where �G ı � ı ��1

G
is contained in 1 C p2nC1 End.G0/ � 1 C

pnC1 End.Gn/ (cf. Proposition 1). Therefore, it suffices to show that the natural
action of 1 C pnC1 End.Gn/ � End.Gn/ on Lie.Gn/ is trivial. However, if ' 2
End.Gn/ and if ı 2 Lie.Gn/, then

Lie.1C pnC1'/.ı/ D ı C pnC1 Lie.'/.ı/ D ı;

because pnC1 2 mnC1.

Before we continue, let us point out an important variant of the deformation
problem considered above. It concerns the moduli problems considered by Rapoport
and Zink (1996).

Let G be a fixed p-divisible group over the algebraically closed field k of
characteristic p, i.e. an fppf -group scheme over Spec.k/ for which multiplication
by p is an epimorphism. Denoting by Nilp the category of W -schemes on which
p is locally nilpotent, let MG W Nilp ! Sets denote the set valued functor
which associates to an object S of Nilp the set of isomorphism classes of pairs
.G0; �G0 /, where G0 is a p-divisible group over S and �G0 W GS ! G0

S
is a quasi-

isogeny (cf. Rapoport and Zink 1996, Definition 2.8). Here S denotes the closed
subscheme of S defined by the sheaf of ideals pOS . According to Rapoport and
Zink (1996), Theorem 2.16, the functor MG is represented by a formal scheme
which is locally formally of finite type over Spf.W /. If G is a p-divisible one
dimensional commutative formal group law as in Sect. 1, then MG is the disjoint
union of open subschemes Mn

G , n 2 Z, which are non-canonically isomorphic to
Spf.Rdef

G / (cf. Rapoport and Zink 1996, Proposition 3.79). The reason is that any
quasi-isogeny of height zero between one dimensional p-divisible formal group
laws over k is an isomorphism.

One can generalize the moduli problem even further by considering deformations
of p-divisible groups with additional structures such as polarizations or actions by
maximal orders in finite dimensional semisimple Qp-algebras (cf. Rapoport and
Zink 1996, Definition 3.21). The corresponding deformation functors are again
representable, as was proven by Rapoport and Zink (1996, Theorem 3.25). An
important example was studied by Drinfeld (cf. Rapoport and Zink 1996, 3.58). The
generic fiber of the representing formal scheme is known as Drinfeld’s upper half
space over K . Instead of continuous representations of Aut.G/ as in Theorem 4,
it gives rise to an important class of p-adic locally analytic representations
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in the sense of Schneider and Teitelbaum. This particular class of representations
was studied extensively by Morita, Orlik, Schneider and Teitelbaum (cf. Orlik 2008;
Schneider and Teitelbaum 2002). It found aritheoremetic applications to the de
Rham cohomology of varieties which are p-adically uniformized by Drinfeld’s
upper half space (cf. Kohlhaase and Schraen 2012). In the next section we shall
see that the deformation spaces we consider here give rise to locally analytic
representations, as well.

4 Rigidification and Local Analyticity

We keep the notation of the previous section and denote by k an algebraically closed
field of characteristic p and byG a fixed commutativep-divisible formal group over
k. Let h and d denote the height and the dimension ofG, respectively. We denote by
W the ring of Witt vectors of k and by K the quotient field of W . We let R D Rdef

G

denote the universal deformation ring of G (cf. Theorem 3).
According to Theorem 3, the rigidification Spf.R/rig of the formal scheme

Spf.R/ in the sense of Berthelot (cf. de Jong 1995, section 7) is isomorphic to the

.h� d/d -dimensional rigid analytic open unit polydisc VB.h�d/d
K overK . We let

Rrig WD O.Spf.R/rig/

denote the ring of global rigid analytic functions on Spf.R/rig. Any isomorphism
R ' W �u� of local W -algebras extends to an isomorphism

Rrig ' f
X

˛2N.h�d/d

c˛u˛ j c˛ 2 K and lim
j˛j!1

jc˛jr j˛j D 0 for all 0 < r < 1g

of K-algebras, where j � j denotes the p-adic absolute value on K . This allows us
to view Rrig as a topological K-Fréchet algebra whose topology is defined by the
family of norms jj � jj`, given by

jj
X

˛

c˛u˛jj` WD sup
˛

fjc˛jp�j˛j=`g

for any positive integer `. Letting Rrig
` denote the completion of Rrig with respect to

the norm jj � jj`, the K-algebra Rrig
` can be identified with the ring of rigid analytic

functions on the affinoid subdomain

B
.h�d/d
` WD fx 2 Spf.R/rig j jui .x/j � p�1=` for all 1 � i � .h � d/d g

of Spf.R/rig. Further, Rrig ' lim �` R
rig
` is the topological projective limit of the K-

Banach algebras Rrig
` . In fact, by a cofinality argument and Bosch et al. (1984),
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6.1.3 Theorem 1, Rrig is the topological projective limit of the system of affinoid
K-algebras corresponding to any nested admissible open affinoid covering of
Spf.R/rig.

By functoriality, the automorphism group � D Aut.G/ of G acts on Spf.R/rig

by automorphisms of rigid analytic K-varieties. This gives rise to an action of �
on Rrig by K-linear ring automorphisms. By the above cofinality argument, any
of these automorphisms is continuous. The goal of this section is to show that the
induced action on the strong topological K-linear dual of Rrig is locally analytic in
the sense of Schneider and Teitelbaum (2002, page 451).

Fix an algebraic closure Kalg of K . According to de Jong (1995), Lemma 7.19,
the maximal ideals of the ring RK WD R ˝W K are in bijection with the points of
Spf.R/rig. It follows from Bosch et al. (1984), 7.1.1 Proposition 1, that the latter are
in bijection with the Gal.KalgjK/-orbits of

VB.h�d/d
K .Kalg/ WD fx 2 .Kalg/.h�d/d j jxi j < 1 for all 1 � i � .h � d/d g:

A point x representing one of these orbits corresponds to the kernel of the surjective
K-linear ring homomorphismRK ! K.x/ WD K.x1; : : : ; x.h�d/d / � Kalg, sending
f .u/ to f .x/.

The following result constitutes the technical heart of this section. It is a
straightforward generalization of Gross and Hopkins (1994), Lemma 19.3.

Proposition 2. Let n and ` be integers with n � 0 and ` � 1. If � 2 �n and if
f 2 Rrig then jj�.f / � f jj` � p�n=`jjf jj`.
Proof. First assume f D ui for some 1 � i � .h � d/d . If

B
.h�d/d
` .Kalg/ WD fx 2 .Kalg/.h�d/d j jxi j � p�1=` for all 1 � i � .h � d/d g;

then jjgjj` D supfjg.x/j j x 2 B
.h�d/d
` .Kalg/g for any g 2 Rrig. Thus, we need to

see that if x 2 B
.h�d/d
` .Kalg/ and if y WD x�� D �.u/.x/, then jxi�yi j � p�.nC1/=`.

Denoting by W alg the valuation ring of Kalg, consider the commutative diagram

of homomorphisms ofW -algebras, in which the left and right oblique arrow is given
by evaluation at y and x, respectively. Choosing z 2 W alg with jzj D p�1=`, we have
xj 2 zW alg for any j . Further, p 2 zW alg because ` � 1. As a consequence, the
right oblique arrow maps mR to zW alg. Note that �.uj / 2 mR, so that we obtain
yj D uj .x � �/ D �.uj /.x/ 2 zW alg, as well. Therefore, also the left oblique arrow
maps mR to zW alg. Now consider the induced diagram
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According to Theorem 4, the upper horizontal arrow is the identity. It follows that
xi �yi 2 znC1W alg, i.e. jxi �yi j � p�.nC1/=`, as required. In particular, � stabilizes
B
.h�d/d
` .Kalg/ and therefore is an isometry for the norm jj � jj` on Rrig.

To prove the proposition, the continuity of � allows us to assume f D u˛ for
some ˛ 2 N

.h�d/d . The assertion is trivial for j˛j D 0. If j˛j > 0 choose an
index i with ˛i > 0. Define ˇ through ˇj WD ˛j if j 6D i and ˇi WD ˛i � 1. If

x 2 B
.h�d/d
` .Kalg/ and if y D x � � , then

j�.u˛/.x/ � u˛.x/j D jy˛ � x˛j D jyiyˇ � xixˇj
� maxfjyi jjyˇ � xˇj; jyi � xi jjxˇjg:

Here jyi jjyˇ � xˇj � p�1=`jj�.uˇ/ � uˇjj` � p�.nC1/=`jjuˇjj` D p�n=`jju˛jj` by
the induction hypothesis. Further, jyi � xi jjxˇj � p�.nC1/=`p�jˇj=` D p�n=`jju˛jj`,
as seen above. Thus, we obtain j�.u˛/.x/ � u˛.x/j � p�n=`jju˛jj` for all x 2
B
.h�d/d
` .Kalg/. This proves the proposition.

A topological group is a Lie group over Qp if and only if it contains an open
subgroup which is a uniform pro-p group (cf. Dixon et al. 2003, Definition 4.1
and Theorem 8.32). For the compact p-adic Lie group � D Aut.G/ we have the
following more precise result. We let

" WD 1 if p > 2 and " WD 2 if p D 2:

Lemma 2. For any non-negative integer n we have � pn

" D �"Cn. The open
subgroup �"Cn of � is a uniform pro-p group.

Proof. As for the first assertion, the proofs of Dixon et al. (2003), Lemma 5.1
and Theorem 5.2, can be copied word by word on replacing Md .Zp/ by End.G/
and GLd .Zp/ by Aut.G/. Further, �"Cn is a powerful pro-p group by Dixon et al.
(2003), Theorem 3.6 (i) and the remark after Definition 3.1. That it is uniform
follows from Dixon et al. (2003), Theorem 3.6 (ii), and the first assertion.

Fix an integer n � ". By Lemma 2 and Dixon et al. (2003), Theorem 3.6,
the group �n=�nC1 is a finite dimensional Fp-vector space. Choosing elements
�1; : : : ; �r 2 �n whose images modulo �nC1 form an Fp-basis of �n=�nC1, (Dixon
et al. 2003), Theorem 4.9, shows that .�1; : : : ; �r / is an ordered basis of �n in the
sense that the map Zrp ! �n, sending � to ��11 � � ���rr , is a homeomorphism.

Set bi WD �i � 1 2 �.�n/ and b˛ WD b
˛1
1 � � �b˛rr for any ˛ 2 Nr . By Dixon

et al. (2003), Theorem 7.20, any element ı 2 �.�n/ admits a unique expansion of
the form
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� D
X

˛2Nr
d˛b

˛ with d˛ 2 W for all ˛ 2 N
r :

For any ` � 1 this allows us to define the K-norm jj � jj` on the algebra�.�n/K WD
�.�n/˝W K through

jj
X

˛

d˛b
˛jj` WD sup

˛

fjd˛jp�"j˛j=`g:

Remark 1. A more accurate notation would be the symbol jj � jj.n/` for the above

norm on �.�n/K . It does generally not coincide with the restriction of jj � jj.m/` to
�.�n/K � �.�m/K if n � m. However, there is an explicit rescaling relation
between the families of norms .jj � jj.n/` /` and .jj � jj.m/` /` on �.�n/K (cf. Schmidt
2008, Proposition 6.2). Since we will never work with two different groups �n and
�m at once, we decided to ease notation and use the somewhat ambiguous symbol
jj � jj`.

By Schmidt (2008), Proposition 2.1 and Schneider and Teitelbaum (2003),
Proposition 4.2, the norm jj � jj` on�.�n/K is submultiplicative whenever ` � 1. As
a consequence, the completion

�.�n/K;` D f
X

˛

d˛b
˛ j d˛ 2 K; lim

j˛j!1
jd˛jp�"j˛j=` D 0g

of �.�n/K with respect to jj � jj` is a K-Banach algebra. The natural inclusions
�.�n/K;`C1 ! �.�n/K;` endow the projective limit

D.�n/ WD lim �̀�.�n/K;`

with the structure of a K-Fréchet algebra. As is explained in Schneider and
Teitelbaum (2003), section 4, a theorem of Amice allows us to identify it with the
algebra of K-valued locally analytic distributions on �n. Similarly, we denote by
D.� / the algebra of K-valued locally analytic distributions on � (cf. Schneider
and Teitelbaum 2002, section 2).

Theorem 6. For any integer ` � 1 the action of �" on Rrig extends to Rrig
` and

makesRrig
` a topological Banach module over theK-Banach algebra�.�"/K;`. The

action of � on Rrig extends to a jointly continuous action of the K-Fréchet algebra
D.� /. The action of � on the strong continuous K-linear dual .Rrig/0b of Rrig is
locally analytic in the sense of Schneider and Teitelbaum (2002), page 451.

Proof. First, we prove by induction on j˛j that jjb˛f jj` � jjb˛jj`jjf jj` for any
f 2 Rrig. This is clear if j˛j D 0. Otherwise, let i be the minimal index with ˛i > 0
and define ˇ through ˇj D ˛j if j 6D i and ˇi WD ˛i �1. In this case, Proposition 2
and the induction hypothesis imply



Iwasawa Modules Arising from Deformation Spaces of p-Divisible Formal. . . 307

jjb˛f jj` D jj.�i � 1/bˇf jj` � p�"=`jjbˇf jj`
� p�"=`p�"jˇj=`jjf jj` D jjb˛jj`jjf jj`;

as required. This immediately gives jj� � f jj` � jj�jj`jjf jj` for all � 2 �.�"/K
and f 2 RK . Thus, the multiplication map �.�"/K � RK ! RK is continuous, if
�.�"/K and RK are endowed with the respective jj � jj`-topologies, and if the left
hand side carries the product topology. Since RK is dense in Rrig

` , we obtain a map

�.�"/K;` � Rrig
` ! R

rig
` by passing to completions. By continuity, it gives Rrig

` the
structure of a topological Banach module over�.�"/K;`.

Passing to the projective limit, we obtain a continuous mapD.�"/�Rrig ! Rrig,
giving Rrig the structure of a jointly continuous module overD.�"/. Since D.� / is
topologically isomorphic to the locally convex direct sum ˚��"2�=�"�D.�"/ (cf.
Schneider and Teitelbaum 2002, page 447 bottom), Rrig is a jointly continuous
module overD.� /.

It follows from Schneider (2002), Proposition 19.9 and the arguments proving the
claim on page 98, that theK-Fréchet spaceRrig is nuclear. Therefore, Schneider and
Teitelbaum (2002), Corollary 3.4, implies that the locally convex K-vector space
.Rrig/0b is of compact type and that the action of � obtained by dualizing is locally
analytic.

Using Theorem 5, the preceding result can be generalized as follows. Fixing an
integer m, the free R-module Lie.G/˝m gives rise to a locally free coherent sheaf
on Spf.R/. For any positive integer ` we denote by .Lie.G/˝m/rig` the sections of

its rigidification over the affinoid subdomain B
.h�d/d
` of Spf.R/rig. This is a free

R
rig
` -module for which the natural Rrig

` -linear map

R
rig
` ˝R Lie.G/˝m �! .Lie.G/˝m/rig`

is bijective (cf. de Jong 1995, 7.1.11). We denote by .Lie.G/˝m/rig the space of
global sections of the rigidification of Lie.G/˝m over Spf.R/rig. This is a free Rrig-
module for which the natural Rrig-linear maps

Rrig ˝R Lie.G/˝m �! .Lie.G/˝m/rig �! lim �̀.Lie.G/˝m/rig` (1)

are bijective. Further, .Lie.G/˝m/rig ' .Lie.G/rig/˝m, where the latter tensor
products and dualities are with respect to Rrig.

By functoriality, the group � D Aut.G/ acts on .Lie.G/˝m/rig in such a way
that the left map in (1) becomes � -equivariant for the diagonal action on the left.
In particular, it is semilinear for the action of � on Rrig. We endow .Lie.G/˝m/rig
and .Lie.G/˝m/rig` with the natural topologies of finitely generated modules over

Rrig and Rrig
` , respectively. This makes them a nuclear K-Fréchet space and a K-

Banach space, respectively. The right map in (1) is then a topological isomorphism
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for the projective limit topology on the right. With the same cofinality argument
as for Rrig one can show that any element of � acts on .Lie.G/˝m/rig through a
continuousK-linear automorphism.

Theorem 7. Let m be an integer. For any integer ` � 1 the action of �2"�1 on
.Lie.G/˝m/rig extends to .Lie.G/˝m/rig` and makes .Lie.G/˝m/rig` a topological
Banach module over the K-Banach algebra �.�2"�1/K;`. The action of � on
.Lie.G/˝m/rig extends to a jointly continuous action of the K-Fréchet algebra
D.� /. The action of � on the strong continuous K-linear dual Œ.Lie.G/˝m/rig�0b
of .Lie.G/˝m/rig is locally analytic.

Proof. Set Mm
` WD .Lie.G/˝m/rig` . Any R-basis .ı1; : : : ; ıs/ of Lie.G/˝m can be

viewed as an Rrig
` -basis of Mm

` . Writing Mm
` D ˚siD1Rrig

` ıi , the topology of Mm
` is

defined by the norm

jj
sX

iD1
fi ıi jj` D sup

i

fjjfi jj`g if f1; : : : ; fs 2 Rrig
` :

We choose an ordered basis .�1; : : : ; �r / of �2"�1 and let bi WD �i � 1 be as
before. By induction on j˛j we will first prove the fundamental estimate jjb˛ıjj` �
jjb˛jj`jjıjj` for all ˛ 2 Nr and ı 2 .Lie.G/˝m/rig. As in the proof of Theorem 6 this
is reduced to the case j˛j D 1, i.e. b˛ D �i � 1 for some 1 � i � r . Further, we
may assume ı D f ıj for some f 2 Rrig and 1 � j � s.

There are elements r1; : : : ; rs 2 R such that �i.ıj / D Ps
�D1 r�ı� . According to

Theorem 5 we have .�i � 1/.ıj / 2 m" Lie.G/˝m, i.e. rj � 1 2 m" and r� 2 m" for
� 6D j . We claim that jjr jj` � p�c=` for any integer c � 0 and any element r 2 mc .
Indeed, this is clear for c D 0. For general c, the ideal mc of R is generated by all
elements of the form pauˇ with a 2 N, ˇ 2 N.h�d/d and aC jˇj D c. Since ` � 1
we have jpaj D p�a � p�a=`, and the claim follows from the multiplicativity of
the norm jj � jj` on R. Now

jj.�i � 1/.f ıj /jj` � maxfjj.�i � 1/.f / � �i .ıj /jj`; jjf � .�i � 1/.ıj /jj`g
D maxfjj

X

�

.�i � 1/.f /r�ı�jj`; jjf jj`jjıj �
X

�

r�ı� jj`g;

where jj.�i�1/.f /�r�jj` � jj.�i�1/.f /jj` � p.2"�1/=`jjf jj` by Proposition 2. Here
p.2"�1/=` � p�"=` D jj�i � 1jj`. Moreover, jjrj � 1jj` � p�"=` and jjr� jj` � p�"=`
if � 6D j by the above claim. This finishes the proof of the fundamental estimate.

As an immediate consequence, we obtain that jj� � ıjj` � jj�jj`jjıjj` for any
� 2 �.�2"�1/K and any ı 2 Lie.G/˝m ˝W K . The proof proceeds now as in
Theorem 6.

According to Schneider and Teitelbaum (2003), Theorem 4.10, the projective
system .�.�2"�1/K;`/` ofK-Banach algebras endow their projective limitD.�2"�1/
with the structure of a K-Fréchet-Stein algebra. In the terminology of Schneider
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and Teitelbaum (2003), section 8, the family ..Lie.G/˝m/rig` /` is a sheaf over
.D.�2"�1/; .jj � jj`/`/ with global sections .Lie.G/˝m/rig for any integer m. One
of the main open questions in this setting is whether this sheaf is coherent,
i.e. whether the �.�2"�1/K;`-modules .Lie.G/˝m/rig` are finitely generated and
whether the natural maps

�.�2"�1/K;` ˝�.�2"�1/K;`C1
.Lie.G/˝m/rig`C1 �! .Lie.G/˝m/rig`

are always bijective. This would amount to the admissibility of the locally analytic
� -representation Œ.Lie.G/˝m/rig�0b in the sense of Schneider and Teitelbaum (2003),
section 6. Nothing in this direction is known. In the next section, however, we will
have a closer look at the case dim.G/ D 1 and ` D 1. We will see that in order to
obtain finitely generated objects, one might be forced to introduce yet another type
of Banach algebras.

5 Non-commutative Divided Power Envelopes

In this final section we assume that our fixed p-divisible formal group G over the
algebraically closed field k of characteristic p is of dimension one. If h denotes the
height of G then the endomorphism ring of G is isomorphic to the maximal order
oD of the central Qp-division algebraD of invariant 1

h
C Z (cf. Gross and Hopkins

1994, Proposition 13.10). In the following we will identify End.G/ and oD (resp.
Aut.G/ and o�

D). We will also exclude the trivial case h D 1. We continue to denote
by R D Rdef

G the universal deformation ring of G (cf. Theorem 3).
Consider the period morphism ˚ W Spf.R/rig ! P

h�1
K of Gross and Hopkins,

where P
h�1
K denotes the rigid analytic projective space of dimension h � 1 over

K (cf. Gross and Hopkins 1994, section 23). In projective coordinates ˚ can be
defined by ˚.x/ D Œ'0.x/ W : : : W 'h�1.x/� where '0; : : : ; 'h�1 2 Rrig are
certain global rigid analytic functions on Spf.R/rig without any common zero. The
power series expansions of the functions 'i in suitable coordinates u1; : : : ; uh�1
can be written down explicitly by means of a closed formula of Yu (cf. Kohlhaase
2013, Proposition 1.5 and Remark 1.6). According to Gross and Hopkins (1994),
Lemma 23.14, the function '0 does not have any zeroes on B

h�1
1 � Spf.R/rig, hence

is a unit in Rrig
1 . We set

wi WD 'i

'0
2 Rrig

1 for 1 � i � h� 1:

By Gross and Hopkins (1994), Lemma 23.14, any element f 2 Rrig
1 admits a unique

expansion of the form f DP˛2Nh�1 d˛w˛ with d˛ 2 K and limj˛j!1 jd˛jp�j˛j D
0. Further, ˚ restricts to an isomorphism ˚ W Bh�1

1 ! ˚.Bh�1
1 / (cf. Gross and

Hopkins 1994, Corollary 23.15).
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Denote by Qph the unramified extension of degree h of Qp and by Zph its
valuation ring. It was shown by Devinatz, Gross and Hopkins, that there exists an
explicit closed embedding o�

D ,! GLh.Qph/ of Lie groups over Qp such that ˚ is
o�
D-equivariant (cf. Kohlhaase 2013, Proposition 1.3 and Remark 1.4). Here o�

D acts
on Spf.R/rig through the identification o�

D ' Aut.G/, and it acts by fractional linear
transformations on Ph�1

K via the embedding o�
D ,! GLh.Qph/.

The morphism ˚ is constructed in such a way that ˚�O
P
h�1
K
.1/ D Lie.G/rig. It

follows from general properties of the inverse image functor that ˚�O
P
h�1
K
.m/ D

.Lie.G/˝m/rig for any integer m. Restricting to Bh�1
1 , we obtain an o�

D-equivariant
and Rrig

1 -linear isomorphism .Lie.G/˝m/rig1 ' R
rig
1 � 'm0 of free Rrig

1 -modules of
rank one.

We denote by d the Lie algebra of the Lie group o�
D over Qp . It is isomorphic

to the Lie algebra associated with the associative Qp-algebra D. According to
Schneider and Teitelbaum (2002), page 450, the universal enveloping algebra
UK.d/ WD U.d ˝Qp K/ of d over K embeds into the locally analytic distribution
algebra D.�2"�1/. Together with the natural map D.�2"�1/ ! �.�2"�1/K;1,
Theorem 7 allows us to view

Mm
1 WD .Lie.G/˝m/rig1

as a module overUK.d/ ' U.g˝Q
ph
K/ DW UK.g/, where g WD d˝QpQph ' glh as

Lie algebras over Qph . Explicitly, the action of an element x 2 g onMm
1 is given by

x.ı/ D d

dt
.exp.tx/.ı//jtD0:

Here is the usual exponential map which is defined locally
around zero in g. Further, a sufficiently small open subgroup of GLh.Qph/ acts on
Mm
1 through the isomorphism Mm

1 ' O
P
h�1
K
.m/.˚.Bh�1

1 //. Writing an element
x 2 g as a matrix x D .ars/0�r;s�h�1 with coefficients ars 2 Qph , fix indices
0 � i; j � h � 1 and denote by xij the matrix with entry 1 at the place .i; j /
and zero everywhere else. In the following we will formally put w0 WD 1.

Lemma 3. Let i; j and m be integers with 0 � i; j � h � 1. If f 2 Rrig
1 then

xij .f '
m
0 / D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

wi
@f

@wj
'm0 ; if j 6D 0;

.mf �Ph�1
`D1 w`

@f

@w`
/'m0 ; if i D j D 0;

wi .mf �Ph�1
`D1 w`

@f

@w`
/'m0 ; if i > j D 0:

Proof. If i D j and if t is sufficiently close to zero in Qph then exp.txi i / is
the diagonal matrix with entry exp.t/ at the place .i; i/ and 1 everywhere else
on the diagonal. Recall that GLh.Qph/ acts by fractional linear transformations
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on the projective coordinates '0; : : : ; 'h�1 of Ph�1
K . Thus, exp.txi i /.w`/ D w` if

` 6D i 6D 0, exp.txi i /.wi / D exp.t/wi if i 6D 0, and exp.tx00/.w`/ D 1
exp.t/w` for all

1 � ` � h� 1.
If i 6D j then exp.txij / D 1 C txij in GLh.Qph/. Thus, exp.txij /.w`/ D w` if

` 6D j 6D 0, exp.txij /.wj / D wj C twi if j 6D 0, and exp.txi0/.w`/ D w`=.1C twi /
for all 1 � ` � h� 1. Writing f D f .w1; : : : ;wh�1/ we have

exp.txij /.f 'm0 / D f .exp.txij /.w1/; : : : ; exp.txij /.wh�1// � exp.txij /.'0/m:

Here exp.txij /.'0/ D '0 if j 6D 0, exp.tx00/.'0/ D exp.t/'0 and exp.txi0/.'0/ D
'0C t'i if 1 � i � h� 1. It is now an exercise in elementary calculus to derive the
desired formulae.

Note that .Lie.G/˝m/rig is a D.�2"�1/-stable K-subspace of Mm
1 and hence is

g-stable. If m D 0 then Lemma 3 shows that in order to describe the g-action in the
coordinates u1; : : : ; uh�1, one essentially has to compute the functional matrix

F WD . @ui
@wj

/1�i;j�h�1:

Proposition 3. The matrix A WD .
@'i
@uj
'0 � @'0

@uj
'i /1�i;j�h�1 over Rrig is invertible

over the localization Rrig
'0 . We have F D '20A

�1, which is a matrix with entries in

'0R
rig. Moreover, we have

Ph�1
jD1 'j

@ui
@wj
2 '20Rrig for any index 1 � i � h � 1.

Proof. Let B WD .
@'i
@uj
/0�i;j�h�1 with @'i

@u0
WD 'i . We have B 2 GLh.Rrig/ by a

result of Gross and Hopkins (1994, Corollary 21.17). Setting

N WD

0

B
B
B
@

1 0 � � � 0
�'1 '0 0
:::

: : :

�'h�1 0 '0

1

C
C
C
A
; we have NB D

0

B
B
B
B
@

'0
@'0
@u1
� � � @'0

@uh�1

0
::: A

0

1

C
C
C
C
A
:

This already shows that A is invertible over Rrig
'0 . Denoting by c0; : : : ; ch�1 the

columns of B�1 D .cij /i;j 2 GLh.Rrig/, we obtain

.'�1
0

h�1X

jD0
'j cj ; '

�1
0 c1; : : : ; '

�1
0 ch�1/ D B�1N�1 D

0

B
B
B
@

'�1
0 	 � � � 	
0
::: A�1
0

1

C
C
C
A
:
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By the chain rain rule we have

ıij D @wi
@wj
D

h�1X

`D1

@wi
@u`
� @u`
@wj
D

h�1X

`D1
'�2
0 .

@'i

@u`
'0 � @'0

@u`
'i /

@u`
@wj

;

so that F D '20A�1. As seen above, the right hand side has entries in '0Rrig. Further,
we have

Ph�1
jD1 'j

@ui
@wj
DPh�1

jD1 'j '0cij D �'20ci0 2 '20Rrig for any index 1 � i �
h� 1.

Together with Lemma 3, Proposition 3 shows that x.ui / 2 Rrig for any x 2 g and
any 1 � i � h � 1, as was clear a priori. For h D 2, Lemma 3 and Proposition 3
reprove Gross and Hopkins (1994), formula (25.14).

Coming back to the g-moduleMm
1 for generalm, consider the subalgebra slh of

g over Qph . Let t denote the Cartan subalgebra of diagonal matrices in slh, and
let f"1; : : : ; "h�1g � t� denote the basis of the root system of .slh; t/ given by
"i .diag.t0; : : : ; th�1// WD ti�1 � ti . We let �1 2 t� denote the fundamental dominant
weight defined by �1 WD 1

h

Ph�1
iD1.h � i/"i . We have

�1.diag.t0; : : : ; th�1// D 1

h

h�1X

iD1
.h� i/.ti�1 � ti / D 1

h
..h� 1/t0 �

h�1X

iD1
ti / D t0

for any element diag.t0; : : : ; th�1/ 2 t � slh.

Proposition 4. For any integer m � 0, the subspace W WD P
j˛j�m K � w˛'m0 of

Mm
1 is g-stable. The action of slh on W is irreducible. More precisely, W is the

irreducible slh-representation of highest weight m � �1.
Proof. It follows from Lemma 3 thatW is stable under any element xij with j 6D 0
or i D j D 0. If 1 � i � h � 1 and if n is a non-negative integer then

xni0.w
˛'m0 / D Œ

n�1Y

`D0
.m � j˛j � `/� � w˛wni '

m
0 ;

as follows from Lemma 3 by induction. Therefore, xi0.w˛'m0 / D 0 if j˛j D m. If
j˛j < m then xi0.w˛/ has degree j˛j C 1 � m. This proves that W is g-stable.

The above formula also shows that W is generated by 'm0 as an slh-representa-
tion. If f 'm0 2 W is non-zero, then Lemma 3 shows that .x˛101 � � � x˛h�1

0.h�1//.f 'm0 / is
a non-zero scalar multiple of 'm0 for a suitable multi-index ˛. Therefore, the slh-
representationW is irreducible.

Finally, if x D diag.t0; : : : ; th�1/ 2 t then x.w˛'m0 / D .t0.m�j˛j/C
Ph�1

iD1 ˛i ti / �
w˛'m0 by Lemma 3. Here,
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t0.m � j˛j/C
h�1X

iD1
˛i ti D t0mC

h�1X

iD1
˛i .ti � t0/ D .m � �1 �

h�1X

iD1
˛i

iX

`D1
"`/.x/:

This shows that m � �1 is the highest weight of the slh-representationW .

Remark 2. The statement of Proposition 4 can be deduced from a stronger result
of Gross and Hopkins. Namely, if m D 1 then Lie.G/rig contains an h-dimensional
algebraic representation of o�

D (cf. Gross and Hopkins 1994, Proposition 23.2).
Under the restriction map Lie.G/rig ! Lie.G/rig1 , the derived representation of
g D d˝Qp Qph maps isomorphically to the g-representationW above.

We will now see that the action of g onMm
1 naturally extends to a certain divided

power completion of the universal enveloping algebraUK.g/. Note that if i; j; r and
s are indices between 0 and h � 1, then xij � xrs D ıjrxis in g ' glh. Therefore,

Œxij ; xrs� D ıjrxis � ıisxrj D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0; if j 6D r and i 6D s;
xis ; if j D r and i 6D s;
�xrj ; if j 6D r and i D s;
xi i � xjj ; if j D r and i D s:

Setting x0
ij WD pı0i�ı0j xij , one readily checks that the same relations hold on

replacing xij by x0
ij and xrs by x0

rs everywhere. It follows that the elements x0
ij span a

free Zph -Lie subalgebra of g that we denote by Vg. Since ad.x0
ij /

2 D 0 if i 6D j , and
since ."iC1�"j /.Œx0

ij ; x
0
ij �/ D 2 if i < j , it follows from Bourbaki (2006), VIII.12.7

Théorème 2 (iii), that the W -lattice Vg of g is the base extension from Z to W of a
Chevalley order of g in the sense of Bourbaki (2006), VIII.12.7 Définition 2.

For 0 � i � h � 1 and n � 0 we set

 
x0
i i

n

!

WD x0
i i .x

0
i i � 1/ � � � .x0

i i � nC 1/
nŠ

2 UK.g/:

We let U denote the W -subalgebra of UK.g/ generated by the elements .x0
ij /

n=nŠ

for i 6D j and n � 0, as well as by the elements
�
x0

i i
n

�
for 0 � i � h � 1 and n � 0.

It follows from Bourbaki (2006), VIII.7.12 Théorème 3, that U is a free W -module
and that a W -basis of U is given by the elements

b`mn WD .
Y

i<j

.x0
ij /

`ij

`ij Š
/ � .

h�1Y

iD0

 
x0
i i

mi

!

/ � .
Y

i>j

.x0
ij /

nij

nij Š
/

with ` D .`ij /; n D .nij / 2 N
h.h�1/=2 and m D .mi/ 2 N

h. Here the products
of the x0

ij for i < j and i > j have to be taken in a fixed but arbitrary ordering
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of the factors. For split semisimple Lie algebras these constructions and statements
are due to Kostant (cf. Kostant 1966, Theorem 1, where U is denoted by B).

We denote by OU the p-adic completion of the ring U and set

OU dp
K .Vg/ WD OU ˝W K:

According to the above freeness result, any element of OU dp
K .Vg/ can be written

uniquely in the form
P

`;m;n d`mnb`mn with coefficients d`mn 2 K satisfying

d`mn ! 0 as j`j C jmj C jnj ! 1. Therefore, OU dp
K .Vg/ is a K-algebra containing

UK.g/. We view it as a K-Banach algebra with unit ball OU and call it the complete
divided power enveloping algebra of Vg.

Theorem 8. For any integer m the action of g on .Lie.G/˝m/rig1 extends to a
continuous action of OU dp

K .Vg/.
Proof. The ring of continuousK-linear endomorphisms ofMm

1 D .Lie.G/˝m/rig1 is
a K-Banach algebra for the operator norm. Since the latter is submultiplicative, the
set of endomorphisms with operator norm less than or equal to one is a p-adically
separated and complete W -algebra. Therefore, it suffices to prove that any element
of the form .x0

ij /
n=nŠ, i 6D j , or

�x0

i i
n

�
, 0 � i � h� 1, has operator norm less than or

equal to one on Mm
1 whenever n � 0. If ˛ 2 Nh�1 and 0 � i; j � h� 1 then

xnij .w
˛'m0 / D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

˛njw˛'m0 ; if i D j 6D 0;
.m � j˛j/nw˛'m0 ; if i D j D 0;
nŠ
�
˛j
n

�
w˛w�n

j wni '
m
0 ; if i 6D j 6D 0;

nŠ
�
m�j˛j
n

�
w˛wni '

m
0 ; if i 6D j D 0;

(2)

as follows from Lemma 3 by induction. Here the generalized binomial coefficients
are defined by

 
x

n

!

WD x.x � 1/ � � � .x � nC 1/
nŠ

2 Z

for any integer x. Now jj.P˛ d˛w˛/'m0 jj1 D sup˛fjd˛jp�j˛jg. Bearing in mind our
convention w0 D 1, we obtain the claim for .x0

ij /
n=nŠ if i 6D j . If 0 � i � h � 1

then we obtain

 
x0
i i

n

!

.w˛'m0 / D
( �

˛i
n

�
w˛'m0 ; if i 6D 0;

�
m�j˛j
n

�
w˛'m0 ; if i D 0:

This completes the proof.
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Theorem 9. Let m be an integer and set c WD wmaxf�1;mgC1
1 'm0 . The U.g/-

submodule U.g/ � c of .Lie.G/˝m/rig1 is dense. If h D 2 and m � �1 then
OU dp
K .Vg/ � c D .Lie.G/˝m/rig1 .

Proof. Equation (2) shows that xmaxf�1;mgC1
01 x˛110 � � � x˛h�1

.h�1/0 � c is a non-zero scalar
multiple of w˛'m0 . Thus, KŒw� � 'm0 � UK.g/ � c, proving the first assertion.

If h D 2 and m � �1 let us be more precise. Setting m0 WD maxf�1;mg C 1,
w WD w1 and x WD x0

10, we have xn � c D .�1/nnŠp�nwnCm0

'm0 for any n � 0

because
��1
n

� D .�1/n. If f DPn�0 dnwn 2 Rrig
1 then dnpn ! 0 in K . Therefore,

� WD P
n�0 dnCm0.�p/n xn

nŠ
converges in OU dp

K .Vg/ and we have f 'm0 � � � c DPm0�1
nD0 dnwn'm0 . The latter is contained in KŒw� � 'm0 � UK.g/ � c, as seen above.

Remark 3. By a result of Lazard, the image of UK.g/ ' UK.d/ in �.�2"�1/K;1 is
dense (cf. Lazard 1965, Chapitre IV, Théorème 3.2.5). We state without proof that
the completion of UK.g/ for the norm jj � jj1 embeds continuously into OU dp

K .Vg/.
However, a formal series like

P
n�0 pn

.x0

10/
n

nŠ
D P

n�0
xn10
nŠ

does not converge
in �.�2"�1/K;1. Therefore, one might have doubts whether Mm

1 is still finitely
generated over�.�2"�1/K;1.

References

Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis. Grundlehren der mathematis-
chen Wissenschaften, vol. 261. Springer, Berlin/New York (1984)

Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres 7 et 8, Springer, Berlin (2006)
Bourbaki, N.: Algèbre Commutative, Chapitres 1 à 4, Springer, Berlin (2006)
Brumer, A.: Pseudocompact algebras, profinite groups and class formations. J. Algebra 4, 442–470

(1966)
Cartier, P.: Relèvements des groupes formels commutatifs. Séminaire Bourbaki 359, 21e année

(1968/1969)
de Jong, J.: Crystalline Dieudonné module theory via formal and rigid geometry. Publ. IHES 82,

5–96 (1995)
Demazure, M.: Lectures on p-Divisible Groups. Lecture Notes in Mathematics, vol. 302. Springer,

Berlin/Heidelberg (1986)
Devinatz, E.S., Hopkins, M.J.: The action of the Morava stabilizer group on the Lubin-Tate moduli

space of lifts. Am. J. Math. 117(3), 669–710 (1995)
Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic Pro-p Groups. Cambridge Studies in

Advanced Mathematics, vol. 61, 2nd edn. Cambridge University Press, Cambridge/New York
(2003)

Gross, B.H., Hopkins, M.J.: Equivariant vector bundles on the Lubin-Tate moduli space. Contemp.
Math. 158, 23–88 (1994)

Hazewinkel, M.: Formal Groups and Applications. Pure and Applied Mathematics, vol. 78.
Academic, New York (1978)

Kohlhaase, J., Schraen, B.: Homological vanishing theorems for locally analytic representations.
Math. Ann. 353, 219–258 (2012)

Kohlhaase, J.: On the Iwasawa theory of the Lubin-Tate moduli space. Comput. Math. 149, 793–
839 (2013)



316 J. Kohlhaase

Kostant, B.: Groups over Z. In: Algebraic Groups and Discontinuous Subgroups. Proceedings of
Symposia in Pure Mathematics, Boulder, 1965, pp. 90–98. AMS, Providence (1966)

Lazard, M.: Groupes analytiques p-adiques. Publ. I.H.’E.S. 26, 5–219 (1965)
Lazard, M.: Commutative Formal Groups. Lecture Notes in Mathematics, vol. 443. Springer,

Berlin/New York (1975)
Lubin, J., Tate, J.: Formal moduli for one-parameter formal Lie groups, Bulletin de la S.M.F. tome

94, 49–59 (1966)
Orlik, S.: Equivariant vector bundles on Drinfeld’s upper half space. Invent. Math. 172, 585–656

(2008)
Rapoport, M., Zink, Th.: Period Spaces for p-Divisible Groups. Annals of Mathematics Studies,

vol. 141. Princeton University Press, Princeton (1996)
Schmidt, T.: Auslander regularity of p-adic distribution algebras. Represent. Theory 12, 37–57

(2008)
Schneider, P.: Non-Archimedean Functional Analysis. Springer Monographs in Mathematics.

Springer, Berlin/New York (2002)
Schneider, P., Teitelbaum, J.: Locally analytic distributions and p-adic representation theory, with

applications to GL2. J. AMS 15, 443–468 (2002)
Schneider, P., Teitelbaum, J.: Algebras of p-adic distributions and admissible representations.

Invent. Math. 153, 145–196 (2003)
Schneider, P., Teitelbaum, J.: p-adic boundary values. In: Cohomologies p-adiques et applications

aritheoremétiques I. Astérisque, vol. 278, pp. 51–125 (2002); Corrigendum in Cohomologies
p-adiques et applications aritheoremétiques III. Astérisque, vol. 295, pp. 291–299 (2004)

Tate, J.: p-divisible Groups. In: Proceedings of Conference on Local Fields, Driebergen, 1966,
pp. 158–183. Springer (1967)

Umemura, H.: Formal moduli for p-divisible formal groups. Nagoya Math. J. 42, 1–7 (1977)
Zink, Th.: Cartiertheorie kommutativer formaler Gruppen. Teubner-Texte zur Mathematik, vol. 68.

Teubner, Leipzig (1984)


	Iwasawa Modules Arising from Deformation Spaces of p-Divisible Formal Group Laws
	1 Introduction
	2 Formal Group Laws
	3 Deformation Problems and Iwasawa Modules
	4 Rigidification and Local Analyticity
	5 Non-commutative Divided Power Envelopes
	References


