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Preface to the Series

Contributions to Mathematical and Computational Sciences

Mathematical theories and methods and effective computational algorithms are
crucial in coping with the challenges arising in the sciences and in many areas of
their application. New concepts and approaches are necessary in order to overcome
the complexity barriers particularly created by nonlinearity, high-dimensionality,
multiple scales and uncertainty. Combining advanced mathematical and computa-
tional methods and computer technology is an essential key to achieving progress,
often even in purely theoretical research.

The term mathematical sciences refers to mathematics and its genuine sub-fields,
as well as to scientific disciplines that are based on mathematical concepts and
methods, including sub-fields of the natural and life sciences, the engineering
and social sciences and recently also of the humanities. It is a major aim of this
series to integrate the different sub-fields within mathematics and the computational
sciences, and to build bridges to all academic disciplines, to industry and other fields
of society, where mathematical and computational methods are necessary tools for
progress. Fundamental and application-oriented research will be covered in proper
balance.

The series will further offer contributions on areas at the frontier of research,
providing both detailed information on topical research, as well as surveys of the
state-of-the-art in a manner not usually possible in standard journal publications. Its
volumes are intended to cover themes involving more than just a single “spectral
line” of the rich spectrum of mathematical and computational research.

The Mathematics Center Heidelberg (MATCH) and the Interdisciplinary Center
for Scientific Computing IWR) with its Heidelberg Graduate School of Mathemat-
ical and Computational Methods for the Sciences (HGS) are in charge of providing
and preparing the material for publication. A substantial part of the material will be
acquired in workshops and symposia organized by these institutions in topical areas
of research. The resulting volumes should be more than just proceedings collecting
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papers submitted in advance. The exchange of information and the discussions
during the meetings should also have a substantial influence on the contributions.

This series is a venture posing challenges to all partners involved. A unique
style attracting a larger audience beyond the group of experts in the subject areas
of specific volumes will have to be developed.

Springer Verlag deserves our special appreciation for its most efficient support in
structuring and initiating this series.

Heidelberg, Germany Hans Georg Bock
Willi Jager
Otmar Venjakob



Preface

Iwasawa Theory is one of the most active fields of research in modern Number
Theory. The great interest in Iwasawa Theory is reflected by the highly successful
bi-annual series of international conferences, starting in 2004 in Besancon and
continuing in Limoges, Irsee and Toronto with a scientific committee formed by
John Coates, Ralph Greenberg, Cornelius Greither, Masato Kurihara, and Thong
Nguyen Quang Do. The Iwasawa 2012 Conference, organized by Otmar Venjakob
and Thanasis Bouganis, took place in Heidelberg (July 30-August 3) and drew
in over 120 participants. It was supported by the Mathematics Center Heidelberg
(MATCH) and by the European Research Council (ERC) Starting Grant IWASAWA
awarded to Otmar Venjakob. This volume, Iwasawa Theory 2012 — State of the
Art and Recent Advances, presents research and overview articles contributed by
conference speakers and participants, as well as lecture notes from an introductory
mini-course given by Chris Wultrich and Xin Wan and held the week before the
conference.

One can argue that Iwasawa Theory has its roots in the early nineteenth century
and in the work of Ernst Kummer (29 January 1810-14 May 1893), who studied
the class number of the cyclotomic field Q({,), in his approach to prove Fermat’s
Last Theorem. Kummer not only provided a solution to the theorem for a large
class of prime exponents, but also discovered a link between the p-divisibility of
the class number of Q({,) and the values of the Riemann zeta function at the
negative integers. This link between arithmetic expressions and special values of
zeta functions, which was later refined in the work of Herbrand and Ribet, lies at
the heart of modern number theory. It is the earliest example of a range of highly
conjectural deep relations between arithmetic expressions and L-values, the most
celebrated of which is the Conjecture of Birch and Swinnerton-Dyer.

However it was Kenkichi Iwasawa (September 11, 1917-October 26, 1998) and
his Main Conjecture that completely transformed our view of the arithmetic of
cyclotomic fields. Indeed Iwasawa, inspired by the work of Andre Weil on the Zeta
Function of varieties over finite fields, initiated the systematic investigation of the
p-part of the class number in the cyclotomic extension of Q. Not only did he manage
to prove his deep theorems with respect to the growth of the p-part of the class
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viii Preface

number in such extensions; he also formulated his Main Conjecture, which relates
the size of a particular Galois module to the Kubota-Leopold p-adic L-function. This
conjecture would go on to serve as the prototype for an array of Main Conjectures,
which predict a deep relation between p-adic L-functions and arithmetic invariants
of abelian varieties or, even more generally, motives.

The Main Conjecture for cyclotomic fields is now a theorem, and considerable
progress has also been made on other fronts, such as the Main Conjectures for CM
fields, for elliptic modular forms and the Main Conjectures for abelian varieties
over function fields. The proofs of all these Main Conjectures involve an impressive
combination of various strands of pure mathematics such as K-theory, automorphic
forms and algebraic geometry, contributing enormously to the popularity of the
subject. Iwasawa Theory has not stopped growing in terms of its complexity and
generalization. Undoubtedly the work of Hida, and his investigation of what are
now referred to as Hida families, has transformed the way that we view [wasawa
Theory today. There has been also great interest in extending Iwasawa Theory to a
non-abelian setting, where the focus is on the arithmetic behavior of the underlying
motive over a p-adic Lie extension. A vast generalization of the Main Conjectures to
this non-abelian setting has now been formulated and there have already been some
first results, both in the number field and in the function field case.

It is exactly these astonishing new and rapid developments that the Iwasawa
Conference series seeks to address. The main aim is to bring together experts from
different strands in or closely related to Iwasawa Theory to report on recent develop-
ments and exchange ideas. The series has also established a tradition of very lively
and pleasant meetings, a tradition that was strengthened by the 2012 conference.
Events such as the half-day-long cruise on the Neckar River undoubtedly helped to
create an inviting and stimulating atmosphere for the conference participants.

The week before the 2012 conference a preparatory mini-course was offered by
Chris Wultrich and Xin Wan, aimed to introduce graduate students and newcomers
to the field. While Chris Wultrich offered an overview of several basic aspects of
Iwasawa Theory, Xin Wan provided an introduction to the work of Skinner and
Urban on the Main Conjecture for elliptic modular forms. Their lecture notes,
Overview of Some Iwasawa Theory by Chris Wultrich and Introduction to Skinner-
Urban’s Work on the Main Conjecture for GL2 by Xin Wan, are now presented as
part of this volume. The organizers would like to take this opportunity to thank them
again for their excellent lecture series in the summer of 2012 and their contributions
to this volume.

The talks given in the Iwasawa 2012 conference covered the wide range of devel-
opment in Iwasawa Theory over the past several years, and were complemented by
a poster session. Not every contribution in this volume is based on a talk given
during the conference; some of the contributions are survey articles, while others
are original research articles appearing for first time in printed form.

Acknowledgements It is of course only the efforts of the contributors that made this volume
possible, and the editors are grateful to them. Moreover the editors would like to thank the
referees for their valued work, and to thank once again the speakers and the participants of the
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2012 conference and the preparatory lecture series. Further the editors would like to express their
gratitude to Birgit Schmoetten-Jonas for her support with organizing the 2012 conference and
editing this volume, which has been nothing less than indispensable. Lastly, it is our pleasure to
thank MATCH and ERC for their financial support, as well as Mrs. Allewelt and Dr. Peters from
Springer Verlag for their excellent collaboration in editing this volume.

Durham, UK Thanasis Bouganis
Heidelberg, Germany Otmar Venjakob
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Lecture Notes



Overview of Some Iwasawa Theory

Christian Wuthrich

1 Introduction

These are the notes to lectures given at Heidelberg in July 2012. The intention
was to give an concise overview of some topics in Iwasawa theory to prepare
the participants for the conference. As a consequence, they will contain a lot of
definitions and results, but hardly any proofs and details. Especially I would like to
emphasise that the word “proof” should be replaced by “sketch of proof™ in all cases
below. Also, I have no claim at making this a complete introduction to the subject,
nor is the list of references at the end. For this the reader might find (Greenberg
2001) a better source.

The talks were given in four sessions, which form the four sections of these
notes. We start by the classical Iwasawa theory for the class group, including the
fundamental result of Iwasawa on the growth of class groups in Z,-extensions. We
also describe Stickelberger elements, cyclotomic units and the main conjecture. This
first section also contains the basic facts about Iwasawa algebras.

The second section introduces Iwasawa theory for elliptic curves by studying the
growth of the Selmer group. We define Mazur-Stickelberger elements and the p-adic
L-functions and state the main conjecture in this context. The third section includes
the proof of the control theorem for Selmer groups (in the ordinary case) and the
formula for the leading term of the characteristic series of the Selmer group. The last
section shows how one generalises Selmer groups to various Galois representations.
We conclude with a rough and short explanation about Kato’s Euler system.

C. Wauthrich (B)
School of Mathematical Sciences, University of Nottingham, Nottingham, UK
e-mail: christian.wuthrich@nottingham.ac.uk; christian.wuthrich@gmail.com

T. Bouganis and O. Venjakob (eds.), Iwasawa Theory 2012, Contributions 3
in Mathematical and Computational Sciences 7, DOI 10.1007/978-3-642-55245-8__1,
© Springer-Verlag Berlin Heidelberg 2014
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4 C. Wuthrich
2 Iwasawa Theory of the Class Group

Let F be a number field and let p be an odd prime. Suppose we are given a tower
of Galois extensions F = F© c F() ¢ F® c ... such that the Galois group of
F™ /F is cyclic of order p" for all n = 1. Write C ™ for the p-primary part of the
class group of F™ and write p for its order.

Theorem 1 (Iwasawa 1959). There exist integers W, A, v, and ny such that

en=up'+An+v foralln = ny.

2.1 Zp-Extensions

Let me first describe the tower of extensions that we are talking about. Set F(*®) =
J F™. The extension F)/F is called a Zp,-extension as its Galois group I”
is isomorphic to the additive group of p-adic integers since it is the projective
limit of cyclic groups of order p”. The most important example is the cyclotomic
Zp-extension: If F = Q, then the Galois group of Q(,n)/Q is (/) ", which is
cyclic of order (p —1) p"~'. So there is an extension Q=1 /Q contained in Q( yn)
such that Q(* is a Z ,-extension of Q. For a general F, the cyclotomic Z ,-extension
is F(©) — @(00) .F.

It follows from the Kronecker-Weber theorem that Q) is the unique
Z,-extension of Q. It would be a consequence of Leopoldt’s conjecture that
the cyclotomic Z,-extension is the only one for any totally real number field,
see Neukirch et al. (2000, Theorem 11.1.2). For a general number field F, the
compositum of all Z,-extension contains at least Z;,ZH in its Galois group where
1, denotes the number of complex places in F. For an imaginary quadratic number
field F, for instance, the theory of elliptic curves with complex multiplication
provides us with another interesting Z,-extension, the anti-cyclotomic Z,-
extension. It can be characterised as the only Z,-extension F(*)/F such that
F () /Q is a non-abelian Galois extension.

Lemma 1 (Proposition 11.1.1 in Neukirch et al. 2000). The only places that can
ramify in F(®) | F divide p and at least one of them must ramify.

In the cyclotomic Z,-extension of F, all places above p are ramified and there are
only finitely many places above all other places.

2.2 The Iwasawa Algebra and Its Modules

Let O be a “coefficient ring”, for us this will always be the ring of integers in a
p-adic field; so O = Z,, is typical. There is a natural morphism between the group
rings O[Gal(F m/F )], which allows us to form the limit
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— 1 (n)
A =1im O[Gal(F "/ F)].
n

This completed topological group ring, called the Iwasawa algebra and also denoted
by O[I], is far better to work with than the huge group ring O[I"].

Proposition 1. 70 a choice of a topological generator y of I, there is an
isomorphism from A to the ring of formal power series O[T] sending y to T + 1.

The proof is given in Theorem 5.3.5 of Neukirch et al. (2000). By the Weierstrass
preparation theorem, an element f(7) € O[T] can be written as a product of a
power of the uniformiser of O times a unit of O[7'] and times a distinguished poly-
nomial, which, by definition, is a monic polynomial whose non-leading coefficients
belong to the maximal ideal.

Let X ™ be a system of abelian groups with an action by Gal(F ™/ F). If there
is a naturally defined norm map X **D — X then we can form X = lim X

and consider it as a compact A-module. For instance the class groups C ("()_above
have a natural norm map between them. Also lots of naturally defined cohomology
groups will have such a map, too. Suppose now 0/Z, is unramified, otherwise the
power of p below must be replaced by a power of the uniformiser of O.

Proposition 2. Let X be a finitely generated A-module. Then there exist integers
r, S, t, my, My, ..., Mg, Ny, Ny, ... Ny, irreducible distinguished polynomials fi, fa,
... f1, and a morphism of A-modules

s t
X— AFGB@A/p’”"AEB@A/f;jA

i=1 j=1

whose kernel and cokernel are finite.

Proofs can be found in Serre (1995), Neukirch et al. (2000, Theorem 5.3.8) or quite
different in Washington (1997, Theorem 13.12) and Lang (1990, Theorem 5.3.1).
The main reason is that A is a 2-dimensional local, unique factorisation domain.

As the ideals f; A and the integers r,..., n, are uniquely determined by X, we
can define the following invariants attached to X. The rank of X is ranks(X) = r.
The w-invariant is (X)) = > ;_, m; and the A-invariant is A(X) = th=1 nj-
deg(f;). Finally, if r = 0,

1
char(X) = p*¥). l_[ il A
j=I

is called the characteristic ideal of X. If r = 0, s < 1 and all f; are pairwise
coprime, then X — A/ char(X) has finite kernel and cokernel.

Let us summarise the useful properties of A-modules in a lemma. Write X a)
for the largest quotient of X on which I"™ = Gal(F(® /F ™) acts trivially.
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Lemma 2. Let X be a A-module.

1. X is finitely generated if and only if X is compact and X is a finitely generated
Z,-module.

2. Suppose X is a finitely generated A-module. Then X is A-torsion, i.e., the
A-rank of X is 0, if and only if X rw) has bounded 7 ,-rank.

3. If Xrw is finite for all n, then there are constants v and ny such that | X pow| =
per withe, = u(X) - p" + A(X) -n 4+ v forall n = ny.

Proofs can be found in §5.3 of Neukirch et al. (2000). Note that if X = A/f
for an irreducible f, then X is finite, unless f is a factor of the distinguished
polynomial ™ = (1 + T)”" — 1 corresponding to a topological generator of I""").

2.3 Proof of Iwasawa’s Theorem

I will sketch the proof of Theorem 1 only in the simplified case when F has a single
prime p above p and that this prime is totally ramified in F(®/F. Let L™ be the
p-Hilbert class field of F™, i.e., the largest unramified extension of F whose
Galois group is abelian and a p-group. By class field theory the Galois group of
L™/ F® is isomorphic to C ™.

Set L = | JL®™, which is a Galois extension of F(° with Galois group
X = lim C ™. The action of '™ on C™ translates to an action of I" on X given
by the following. Let y € I" and x € X. Choose a lift g of y to the Galois group of
L /F and set x” = gxg~'. So X is a compact A-module.

Define K to be the largest abelian extension of F inside L. Then L® and
F () are contained in K. The maximality of K shows that the Galois group of
K/ F©) must be equal to X .

L)
X K
Vs
F()
r 1.0

Since K/F©® is unramified and F(®/F is totally ramified at p, the inertia
group / at a prime above p in K gives a section of the map from Gal(K/F) — I.
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Since K = L©, we have Gal(K/F () = C© =: C and it has a trivial action of
I' on it. Hence C is isomorphic to X . Replacing in this argument F by F™ we
can also conclude that X o) = C™.

In particular, it is always finite. Hence X is a finitely generated torsion A-module
and Lemma 2 (c) implies the theorem. O

Iwasawa has given an example in Iwasawa (1973) of a Z,-extension with
w(X) > 0, however he conjectured that «£(X) = 0 whenever the tower is the
cyclotomic Z,-extension. This was shown to be true by Ferrero—Washington (1979)
when F/Q is abelian.

The above proof can also be used to show that if F = Q then the class group of
Q™ has no p-torsion. Conjecturally this may even be true for F = Q(u )T, see
Sect. 2.8.

2.4 Stickelberger Elements

Let K be an abelian extension of Q. By the Kronecker-Weber theorem, there is a
smallest integer m such that K C Q(u,,) called the conductor of K. For each a €
(Z/mz)x write o, for the image of ¢ under the map (Z/mz)X >~ Gal(Q(um)/Q) —
Gal(K/Q) = G. The Stickelberger element for K is defined to be

eKz—% > a-0;' €Q[G]

I<a<m
(a,m)=1

and the Stickelberger ideal is I = Z[G] N Ok Z[G]. 1t is not difficult to show that
I = I’0k with I’ being the ideal in Z[G] generated by all ¢ — o, with (¢c,m) = 1,
see Washington (1997, Lemma 6.9).

Theorem 2 (Stickelberger). The Stickelberger ideal I annihilates the class group
of K.

This means that for any fractional ideal a and any integer ¢ coprime to m, the ideal
becomes principal after applying (¢ — o,) Ok to it. It is important to note that this
theorem does not say anything interesting when K is totally real as then 0k is a
multiple of the norm Ng,q. Hence it will not give us information about the class
number of Q(u,)". For a quadratic imaginary field K, this is an algebraic version
of the analytic class number formula for K, see the remark (b) after theorem 6.10
in Washington (1997).

Here is the idea of the proof, for details see Washington (1997, Theorem 6.10)
or Lang (1990, Theorem 2.4).

Proof. We consider only the case K = Q(u,) for some odd prime p. In each
ideal class there is a prime ideal q of degree 1, i.e., it is split above some prime
£ = 1 (mod p). Take the Dirichlet character y modulo £ of order p such that
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x(a) = a“=Y/? (mod q) for all a. Fix a primitive {-th root of unity £. The Gauss
sum of y is defined to be

Ga(y) =— > xw&" €Qup. o).

u mod £

One can show that Ga(y) - Ga(y) = £ and that we have Ga(y)“ %) e Q(u p) for
all ¢ coprime to p. Finally a detailed analysis of the valuation of this Gauss sum at
all primes above £ reveals that for any 8 € Z[G] such that 80k € Z[G], we have

that ¢#% = (Ga( )())ﬁ O is a principal ideal in the ring of integers Og of K.

2.5 p-Adic L-Functions

Consider the cyclotomic Z,-extension F ) of F = Q(u p) for some odd prime p.
Write G for the Galois group of F™ = Q(p ,.+1) over Q and G = l(iilG(”) =

Gal(F(®/Q).Then G = A x I"' with A = G© and I' = Gal(F®/F). We write

y. for the image of o, in I". The cyclotomic character y: G — Z;‘ splits accordingly
into the Teichmiiller character w: A — Z; andx:I" — 1+ pZ,.Soforanya € 7%,
the character @ sends o, to a (p — 1)-st root of unity with w(a) —a € pZ, and
k(ya) = (a) = a/w(a).

Fori € %/(,—1yz, consider the projector
g
f=-—7 Y w'(a)o;" €Z,[4]
a=1

to the w' -eigenspaces. We split up the Stickelberger element 0 = 0. € Q[G™)]
for the field F™ into p— 1 elements 6" € Q,[Gal(F ™/ F)] defined by ¢; - 0" =
9;") - &;; explicitly

n 1 —i - n
9’():_W Y ae7(@-y," €QGal(F™/F)].

I<a<p"t!
pta
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Lemma3. Ifi # 1 then 0 € Z,[Gal(F™/F)] and if i # 0,1, then 6; =
(9,-("))nBl belongs to l(iillp [Gal(F™ /F)] = A. Ifi # 0 is even then 6; = 0.

Recall that the generalised Bernoulli numbers for a Dirichlet character y of
conductor m are defined by

at

" te > 1
ZX(a)em,_ 1 = ZB’*X F
a=1 r=0

An explicit computation (Washington 1997, Theorem 7.10) links the elements 6;
to these Bernoulli numbers and the traditional Bernoulli numbers B,. Recall that
the B, , and B, also turn up as values of the complex L-function L(s, y) and
the Riemann zeta-function (Washington 1997, Theorem 4.2). Hence we find the
interpolation property.

Theorem 3. For any even integer r = 1, we have

1, Br —
O =~ = p ) =L = (L= pH =),

Furthermore, for any r = 1 and any even j # r (mod p — 1), we have
B, i .
K (O1-)) = ——’*“r” =L(~-raw).

For any s € Z, we can extend «*: I" — 1 + pZ, linearly to k*: A — Z,. The
p-adic L-functions are defined to be L, (s, @/ ) = k*(#1—;). To represent the p-adic
L-function as a map y — yx(61—;) is analogue to Tate’s description of complex
L-functions in his thesis; often these maps are written as measures on the Galois
group I".

Now L, (s, w’) is an analytic function in s and the existence of such a function
satisfying the above theorem is equivalent to strong congruences between the values
of L(s,w/ ) for negative integers s. For instance, one can deduce the Kummer
congruences (Washington 1997, Corollary 5.14) from the theorem.

Leopoldt showed that L ,(1, w/) satisfies a p-adic analytic class number formula
involving the p-adic regulator, see Washington (1997, Theorems 5.18 and 5.24).
The p-adic L-function for j = 0 corresponding to 6; is not in A, instead it has a
simple pole at s = 1.

The above L-functions are in fact the branches of the p-adic zeta-function
discovered by Kubota and Leopoldt. There are generalisations to a much larger
class of L-functions: Suppose K is a totally real number field and F/K an abelian
extension of degree prime to p. Let y be a character of the Galois group of
F/K into the algebraic closure of QQ, and suppose that F is still totally real.
Take O to be the ring Z,[x] generated by the values of y. Then there is a p-adic
L-function L, € O[I'] such that k(L) = L,(s, ) satisfies L,(1 —r, x) =
L(l—r yo™)- ]_[p‘p(l — yo " (p)N(p)"™") for all r > 1. See for instance Wiles
(1990).
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2.6 The Main Conjecture

Let 3 < i < p — 2 be an odd integer. Consider the projective limit X of the
p-primary parts of the class groups of F™ = Q(u pn+1). Since A acts on this
Z,-module, we can decompose it into eigenspaces for this action. Let X; = ¢; X,
which is now a finitely generated torsion A = Z,[I"]-module. Hence it makes
sense to talk about its characteristic ideal.

Theorem 4 (Main conjecture). The ideal char(X;) is generated by 6; for all odd
3J<i<p-2

This was first proven by Mazur-Wiles (1984), then generalised to totally real fields
by Wiles (1990). These proofs use crucially the arithmetic of modular forms. Later a
proof was found using the Euler system of cyclotomic units, see Coates and Sujatha
(2006) and the appendix in Lang (1990).

This theorem has many implications (some of which were known before the
conjecture was proved). We can split up the p-primary part C of the class group
of Q(u ) into eigenspaces C; = &;C

Theorem 5. For everyodd3 < i < p — 2, the order of C; is equal to the order of
Zp/Bl,a)_i .

Theorem 6 (Herbrand-Ribet (Ribet 1976)). For any odd 3 < i < p — 2, the
character ' appears in C /C? if and only if p divides the numerator of B ;.

2.7 Cyclotomic Units

The p-adic L-function can also be constructed out of the following units. For each ¢
coprime to /m, the element ({5, — 1)/({, — 1) is a unit in Z[{,,] where {,, a primitive
m-th root of unity, called a cyclotomic unit. On the one hand they are linked to the
p-adic L-function as m varies in the powers of p; in fact the p-adic L-functions
can be obtained as a logarithmic derivatives of the Coleman series associated to the
cyclotomic unit. See Propositions 2.6.3 and 4.2.4 in Coates and Sujatha (2006). On
the other hand they are linked to the class group: When m is a power of p, the index
of the group generated by the cyclotomic units and the roots of unity in Q(u,,) is
equal to the class group order of Q(u,,)™ within the group of units in Z[¢,,].

The cyclotomic p-units {5, — 1 form an Euler system, see §3.2 in Rubin (2000),
the appendix in Lang (1990) and §5.2 in Coates and Sujatha (2006), due to the fact
that they make the Euler factors of the L-function appear in their compatibility with
respect to the norm map:

NG /0 Cme — 1) = (1= 07 (G — 1)
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for any prime £ } m. These special elements provides a powerful way of bounding
the class group in terms of values of the p-adic L-function and yield a proof of the
main conjecture.

2.8 Vandiver’s Conjecture

The theory so far only covered the minus part of the class group, i.e., C; for odd i.
Note that @; evenC; is the p-primary part of the class group of Q(u p)+.

Conjecture 1 (Vandiver). The class number of Q(u,)™ is not divisible by p.

Although one may argue (see end of §5.4 in Washington 1997) that it is not likely
to hold for all p, it is known to hold for all primes p < 39 - 2?2 see Buhler and
Harvey (2011). Moreover for all these 9,163,831 primes, the components C; are
always cyclic of order p and there are at most 7 non-trivial components. However,
probably there are primes with C; of order larger than p and probably the A-invariant
can get arbitrarily large.

It is known since Kummer that if p divides the class number of Q(u,)™ then p
divides |C;| for some odd i, see Corollary 8.17 in Washington (1997).

Proposition 3. If Vandiver’s conjecture holds for p, then C; is isomorphic to
Zp/ By i forall oddi. Moreover C,-(") is a cyclic Z,[Gal(F, / F)]-module for all n.

This is shown in Corollary 10.15 in Washington (1997).
Conjecture 2 (Greenberg 2001). If F is totally real, then X = lim C ™ is finite.

2.9 Examples

Let us first take p = 5 and so i = 3 is the only interesting value. We take y;4, to
be the generator of I" corresponding to 7' + 1. Then

0 =242.545243.54+4.5 105+ (4+4-5+57+4-5+0G) T
+(14+5+4-5+0(%)-T*+ 0(T?)

which is congruent to #3 modulo 0 = (1 + T)54 — 1; in particular the above
expression is the correct approximation for the 5-adic L-function 6. It is a unit in
A as the leading term —B; ,» = 2+ 2.5 4 --- is a 5-adic unit. Of course this is
not surprising as the class group of Q(us) is trivial. So here X = 0 and e, = 0 for
all n.
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Now to the first irregular prime p = 37. Here the Bernoulli number Bj; is
divisible by 37. Accordingly, we expect a non-trivial @° part in the class group
of Q(u37). Indeed the approximation to the 37-adic L-function is

0 =14.37 433377 + 1337 + OG37*) + (16 + 6-37 +32-37> + OG37)) - T
+(29+9-37+13-37° + 0(37%)) - T* + O(T?).

This is not a unit as —B; ,—s is divisible by 37. From the fact that the second

coefficient is a unit, we conclude that 65 is a unit times a linear factor. Hence X

is a free Zs;-module of rank 1 and e, = n + 1 for all n. The fact which underlies
the proof of Ribet’s theorem is that the Eisenstein series

B3 .
G =-3.3; +ZZd3lq

n=1 dln

= TI0932I0AIT 4 49147483649 g% +617673396283948 ¢ +4611686020574871553 g4+

of weight 32 is congruent modulo one of the primes above 37 in Q(u12) to the
cuspform

f =q+§12q2+(—5132+§122—§12)q3—§122q4+(2{132+§f2—2§122—2)q5+---

of weight 2 for the group I'1(37) and character ™.

3 Iwasawa Theory for Elliptic Curves

3.1 Examples

Let Q) /Q be the cyclotomic Z ,-extension of Q and let E/Q be an elliptic curve.
The theorem of Mordell-Weil shows that the group E(Q) is finitely generated for
all n. Is this still true for E(Q(°®) ? In particular is the rank of E(Q")) bounded
as n grows? The analogy with the case of global function fields suggests that this
should be the case.

There is a second interesting group attached to E. For any elliptic curve E over a
number field F, the Tate-Shafarevich group III(E/ F ™) is a certain torsion abelian
group whose definition we give in Sect.3.2. We write I1I" for its p-primary part
which is conjectured to be finite for all n. The first four examples were computed
with the methods in Stein and Wuthrich (2013).
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3.1.1 Example 1
Let E be the elliptic curve given by
E:  y* 4+ xy = x> — 6511x — 203353

which has E(Q) = HI(E/Q) = 0 and it is labelled 174b2 in Cremona’s
table (Cremona 1997). It has bad reduction at 2 (additive), 3, and 29 (both split
multiplicative).

If p = 5 then the rank of E(Q™) is zero for all n and the group ITI™ is trivial,
too. Since a p-torsion group can not act with a single fixed point on a p-primary
group, we have that £(Q)) has no p-torsion for all 7.

3.1.2 Example 2

Let us take the same curve but now with p = 7. Then the rank will still be zero
for all n. However if [III"| = p thene, = p" +2n — 1 foralln = 0. So
the Tate-Shafarevich group will explode in this case. Note that this curve has a 7-
isogeny defined over Q and one Tamagawa number is 7 and the number of points in
the reduction over F7 has 7 points. So p = 7 appears in various places. In fact IIT1"
is formed of p" — 1 copies of %/ »z and two copies of z/ -

3.1.3 Example 3

Again with the same curve, but this time for the prime p = 13. Once more the rank
remains 0 in the tower, however the p-primary part of IILI(E/Q™) grows with

e :LLPn_EJ
! pr—1 2

for all n. This formula is shown in Kurihara (2002). For instance ¢y = e¢; = 0,
ey = 12,e3 =168, e4 = 2,208, ... Visibly the growth does not obey the same type
of regularity as in the previous examples. The difference is that E has supersingular
reduction at p = 13.

3.1.4 Example 4
Let us consider now the curve 5692al

E: y2 = x* 4+ x> — 18x + 25
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which has E(Q) = Z (0,5) & Z(1, 3). For p = 3, one can show that the rank is 6
over QY and it is 12 for all Q") with n > 2. The 3-primary part of III(E/Q®™) is
trivial for all n. Note however that we do not know if III( E/Q) is finite or not.

3.1.5 Example 5

Finally, consider the curve 11a3

and consider the anti-cyclotomic Zs-extension above F' = @(\/—_7) The construc-
tion of Heegner points allows us to produce points of infinite order P") € E(F ™).
The tower of points is compatible in the sense that the trace of P to the layer
below is (—1) - P~V It can be shown that these points and their Galois conjugates
generate a group of rank p” in E(F ). Hence this is an example in which the rank
is not bounded. See Bertolini (2001).

3.2 Selmer Groups

Let E/F be an elliptic curve over a number field F. Set X' to be the finite set of
places in F consisting of all places above p, all places of bad reduction for £ and
all infinite places.

For any field K, we write H'(K,-) for the group cohomology of continuous
cochains for the profinite absolute Galois group Gal(K /K ). The notation H L(F,")
will stand for the cohomology for the Galois group G 5 (F') of the maximal extension
of F that is unramified outside F', see Neukirch et al. (2000, §8.3); it can also be
described as the étale cohomology group H/, (Spec(O )\ X, ) for the corresponding
étale group scheme. If the Galois module M is finite p-primary, then Hy (F, M)
is finite, see Neukirch et al. (2000, Theorem 8.3.19). If M is a finitely generated
Zp,-module then so is H ’2 (F, M), see Rubin (2000, Proposition B.2.7). For any
abelian group A, we will denote the Pontryagin dual Homgz (A4, %) by A

For any finite extension K/ F, we define the Tate-Shafarevich group III(E/K)
to be the kernel of the localisation map

H'(K.E) > [[H'(K..E)

where the product runs over all places v of K and K, denotes the completion at v.
The non-trivial elements in III(£/K) have an interpretation as curves of genus 1
defined over K with Jacobian isomorphic to E and which are counter-examples
to the Hasse principle, see Milne (2006, §17). It is known that III(E/K) is a
torsion abelian group such that the Pontryagin dual of the p-primary part is a finitely
generated Z ,-module for every prime p. It is conjectured that ITII( £/ K) is finite.
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Let m be a power of p. For any extension K of F, the long exact sequence of
cohomology for E[m] gives the Kummer exact sequence

OHE(K)/mE(K)KHH1 (K,E[m])—H"(K,E)[m]—0.

For any finite extension K of F, we define the m-Selmer group Sel” (E/K) as the
elements in H'(K, E[m]) that restrict to elements in the image of the local Kummer
map «,: E(K,)/p*E(K,) — H'(K,, E[m]) for all places v of K. This contains
naturally E(K)/mE(K) as a subgroup whose quotient is III(E£/K)[m]. Since all
cocycles in the Selmer group are unramified outside X', we get an exact sequence

0 —— Sel™(E/K) — H}(K,E[m]) —— EB:HI(KV,E)[m}.

In particular, this shows that Sel” (E/K) is finite. We can now form the two limits,
induced by the inclusion and the multiplication by p map between E[p*] and
E[p**1]. We set

S(E/K) = ri)nSelpk(E/K) C HL(K, W) and

k
S(E/K) = 1(11136:11”‘(15/10 C HL(K.T)
k
where T = l(iI_nkE [p¥] is the (compact) p-adic Tate module and W =
l'i)nk E[p¥] = E[p*™] is the (discrete) p-primary torsion of E. It is true that

lim HL (K, E[p*]) = Hy(K.T) by an argument of Tate, see Neukirch et al. (2000,
Corollary 2.3.5).

The corresponding limit versions of the Mordell-Weil group are
li_n)lE(K)/pkE(K) and LiilE(K)/pkE(K). The first can be seen to be equal
to E(K) ®; Y/y ,» Which is isomorphic to a direct sum of rank(E(K)) copies of
QI’/ZP. The latter is equal to E£(K) ®z Z,, which is equal to the sum of rank(E (K))
copies of Z, plus the finite group E(K)[p°°]. By passing to the limits, we find the
exact sequences

0 —— E(K)®%/z, — 8(E/K) —— I(E/K)[p"] ——0

0——E(K)9Z, &(E/K) — lim, II(E/K)[p] —> 0

where the lower sequence remains exact because we have taken projective limits of
finite groups. The group on the right hand side of the second line is a free Z,-module
which is conjecturally trivial. The first line combines nicely the rank information
with the Tate-Shafarevich group. The Pontryagin duals of the first line and all the
groups in the second line are finitely generated Z,-modules.



16 C. Wauthrich

Later in Sect. 5, we will give another description of 8(E/K) which does not use
the Kummer map, but uses the modules W and T only.

3.3 Iwasawa Theory for the Selmer Group

Given a Zp-extension F©/F, we consider the limit S(E/F(®) =
lim_ S(E/F ™) and its dual

X = 8(E/F®) = im§(E/F") )

n

which is naturally a compact A-module. The maps are induced by the natural
inclusion E(F™) — E(F”*D) and the restriction map on the Tate-Shafarevich
groups. Hence, if the Mordell-Weil group stabilises after a few steps, as in all but the
last example above, then X will contain a Z ,-module of this rank. The other natural
limit 1}31,1 G&(E/F™) with respect to the corestriction map is less interesting: If the

Mordell-Weil group stabilises, meaning that E(F () = E(F™) for some n, and
the Tate-Shafarevich groups are finite, then this limit is trivial.

Lemma 4. The Selmer group X is a finitely generated A-module for any
Zp-extension.

Proof. We should show by Lemma 2 that X is a finitely generated Z,-module;
this is the dual of the I'-fixed part of S(E/F ). Later in Theorem 11, we will
show that this is not too far from the dual of S(E/ F), which is a finitely generated
Z,-module.

Conjecture 3 (Mazur 1972). If E has good ordinary reduction at all places in F
above p and F(®)/F is the cyclotomic Z p-extension, then the Selmer group X is a
torsion A-module.

Note that this conjecture implies, by Proposition 2, that the largest free Z,-module
in X has finite rank A(X), so by the above this will imply that the rank of E (F ™)
stabilises. Moreover we have:

Proposition 4. If the conjecture holds then E(F©®) is a finitely generated
Z-module. Suppose that IIL(E | F™)[p®)] is finite for all n, then there are constants
. A, v, ng such that if |ILL(E / F™)[p*™]| = p®, then e, = ju p" + An + v for all
n = ng.

Proof. The first part is Theorem 1.5 in Greenberg (1999). For the second part, we
will have to show that X [« is very close to the dual of S(E/F ™) for all n. This is
done in the control Theorem 12 below.

As shown by the Examples 3.1.4 and 3.1.5, none of the two assumptions in
Mazur’s conjecture can be removed. Here are two important result in support of
the conjecture.



Overview of Some Iwasawa Theory 17

Theorem 7 (Mazur 1972). If E(F) and UI(E/F)[p®>] are finite, then the
conjecture holds.

The main result of Kato (2004) implies the following.

Theorem 8. Let E be an elliptic curve defined over Q and let F be an abelian
extension of Q. Suppose that E has good ordinary reduction at p, then the Selmer
group for the cyclotomic Z,-extension is a torsion A-module.

3.4 Mazur-Stickelberger Elements

Let £/Q be an elliptic curve. We will suppose that £ has good reduction at p. Let
g be a Néron differential on E; this is just g—; when E is given by a global minimal

model. The canonical lattice Z for E is the image of [: H; (E (©), Z) — Csending
a closed path y on E(C) to fy wg. We define §2;; to be the smallest positive element
of Z.

The theorem of modularity (Breuil et al. 2001) shows that there exists a
morphism ¢, of curves Xo(N) — E defined over Q. We take one of minimal
degree. If f is the newform corresponding to the isogeny class of E, then there is a
natural number ¢, called the Manin constant, such that ¢ - ¢} (w) is equal to the
differential 2777 f(z)dz on Xo(N) corresponding to f, written here as a differential
in the variable z on the upper half plane JH. For the so-called optimal curve in the
isogeny class one expects ¢ = 1.

For any rational number r = -, consider the ray from r to i oo in the upper half
plane. Its image in Xo(N)(C) is a (not necessarily closed) path {r, co} between two
cusps.

Proposition 5 (Manin 1972). There is a natural number t = 1 such that, for all
r € Q thevalue of A ¢ (r) = 2mi flroo f(z) dz belongs to % Zsg.

This is clear for the closed paths, i.e., when r is (N )-equivalent to i co. The proof
for general r uses the Hecke operators 7; on Xo(N).
We define the (plus) modular symbol [r]* by

] = QL .Re(zm[ f(z)dz) €qQ,

E

see Cremona (1997) for more details. For an abelian field K of conductor m, we
define the Stickelberger element for E to be

Ork= Y [%]+oa € Q[Gal(K/Q)].
1<a<m
(a,m)=1
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Let £ be a prime of good reduction. The £-th coefficient a of f satisfies {—a;+1 =
#E(IFy). If £ does not divide m, then

N/ (OE/0unn) = (—00) (1 —ac oy + 0;2)(Ok/a(um)-

which can be deduced from the action of the Hecke operator 7y on Xo(N).

3.5 The p-Adic L-Function

Let p be a prime of good reduction for E. Write now @g') for the Stickelberger
element for the field Q" and write G™ = Gal(Q™/Q). We define the map
j:Q[G™] — Q[G" V] to send an element of G to the sum over all its preimages
in G@*D_ Then the norm N: Q[G"+D] — Q[G™] sends O 1o

ML) =0y 6 — j(O47).

This is shown using the Hecke operator 7). Let « be a root of the polynomial X2 —
a, X + p. We set

1 1 _
(n) (n) .~ (n—1)
L = o O — ) J(@7) 2

foralln = 1. Then Lf = (L(,?))n;l belongs to LiLnQ[Gal(Q(”)/Q)] and it is called
the p-adic L-function of E. Explicitly, we have

1 a 1t 1 at
(n) _
Ly = Z (an+1 [pn+l] T2 [ﬁ] )'V”'

1<a<p"t!
pta

Suppose now that £ has good ordinary reduction at p. Then a, is a p-adic unit and
hence we can find one root @ which belongs to Z;. Because the denominator of [ -]
is uniformly bounded, £ ¢ actually belongs to Q, ® A and in many cases it is known
that L € A. For the supersingular case there is no unit root & and £ will never

belong to A, see Pollack (2003).

Theorem 9. The p-adic L-function satisfies the interpolation properties

1\2 L(E,1
1en =(-2)" (QE ) 3)
and
G L(E,y,1
x(ep) = 1) LELD )

25



Overview of Some Iwasawa Theory 19

for all character y of conductor p"*' on I, i.e., that factor through Gal(Q™ /Q)
but not through Gal(Q"~V /Q).

The proof connecting the corresponding finite sums of modular symbols to the
Mellin transform of the modular form can be found in formula (8.6) and §14
of Mazur et al. (1986).

Theorem 10 (Rohrlich 1984). Only finitely many of the values x(Lg) in Eq. (4)
are zero. In particular L # 0.

Again, we can define the analytic function L ,(E,s) = «*~'(Lg). If L(E, 1) #
0, we know that E(Q) is finite. As a consequence of the above theorem, we see that
L,(E,1) # 0asa # 1. Moreover the value L ,(E, 1) is then predicted by the Birch
and Swinnerton-Dyer conjecture.

Conjecture 4 (p-adic version of the Birch and Swinnerton-Dyer conjecture (Mazur
et al. 1986)). The order of vanishing of L,(E,s) ats = 1 is equal to the rank of
E(Q). The leading term of its series at s = 1 is equal to

(1 1 )z Reg,(E/Q) - #II(E/Q) -], ¢
o (HEQ)rors)”

where ¢, are the Tamagawa numbers and Reg,(E /Q) is the p-adic regulator, see
Sect.4.2.

It would be very interesting to know that the order of vanishing of L ,(E, s) is equal
to the order of vanishing of L(E,s). However this is only known when the p-adic
L-function vanishes to order at most 1 by Perrin-Riou (1987).

3.6 The Main Conjecture

Let £/Q and suppose E has good ordinary reduction at p. By Theorem 8, we can
associate to E the characteristic ideal char(X) of the dual of the Selmer group in (1).
Under the same hypothesis, we have constructed a p-adic L-function (2).

Conjecture 5 (main conjecture). The p-adic L-function L is a generator for the
characteristic ideal char(X).

The other series of lectures will talk about the main result by Skinner and Urban
on this conjecture. See Wan (2014) in these proceedings.

The generalisations to higher weight modular forms for IH(N) with p } N and
P 1 a, is fairly straight forward, see Mazur et al. (1986). For the extensions to
p | N,but p> } N, one has to be a bit careful as the case of split multiplicative
reduction behaves differently due to the presence of exceptional zeroes because
o = 1. Finally the generalisation to the supersingular case is clearly much more
complicated. To my knowledge the generalisation to additive reduction, i.e., when
p? | N, is not yet fully done.
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4 The Leading Term Formula

4.1 Control Theorem

As before let E/F be an elliptic curve and let F®)/F be a Z p-extension. Recall
that X is the dual of the limit Selmer group S(E/F () as defined in (1) and we
are interested in comparing X with the dual of S(E/ F). For a place v € X, write
J) = [T H' (F°, E)[p*]. We have the following diagram

0 ——=8(E/FN — = HL(F©) W)l

veX
Wa T/} Tibm

0 S(E/F) = HL(FW) —— @ H'(F\.E)[p”]

&)

We want to bound the kernel and cokernel of a. Even if it is clear that E(F ()" =
E(F), it is not obvious what happens to the map

E(F)® %, — (E(F™) @ Ufy,)"

as a non-divisible point in E(F) can become divisible by p in E(F®).

Theorem 11. The kernel of « is finite and the dual of the cokernel is a finitely
generated 7.,-module.

Proof. The inflation-restriction sequence (Neukirch et al. 2000, Proposition 1.6.6)
for the Hi-cohomology of W = E[p*>] gives that the kernel of B is
H' (I HY(F°),W)) and the cokernel lies in H?(I", HX(F® W)). Now the
dual of D = HY(F©®) W) = E(F)[p*™] has Z,-rank at most 2. Hence the
dual of the exact sequence

—1
0 pr DD Dr 0

shows that H!(I", D) = D has the same corank as D! = E(F)[p®], which is
finite. Hence the kernel of 8 and « are finite. In fact, if D is finite as in almost all
cases, then the kernel of 8 has the same order as E(F)[p®°].

The cokernel of B is trivial, because H(I', D) = lim, H?(I', E(F©)[p]) and
the latter groups are trivial because I" has cohomological dimension 1, see Neukirch
et al. (2000, Proposition 1.6.13). Since B is surjective we see that the duals of
HL(F©® W) and S(E/F©))" are finitely generated Z,-modules.

Note that this proves Lemma 4 saying that X is a finitely generated A-module.
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Theorem 12 (Control theorem). Suppose that E has good ordinary reduction at
all primes that ramify in F® | F. Then the map « has finite kernel and cokernel.

Proof. From the previous proof, we see that we are left to show that the cokernel
of « is finite. By the snake lemma applied to (5), it suffices to show that the kernel
of @y, is finite under our hypothesis.

Let v € X. By local Tate duality (Tate 1995b), the group H'(F,, E)[p*™] is
the Pontryagin dual of the p-adic completion E (F,))* = limE(F,)/p*E(F,) of
the local points. The structure of elliptic curves over local f fields, see chapter 7
in Silverman (2009), can be used to show that E(F,)* is finite if v 4 p and it is
a finitely generated Z,-module of rank [F, : Q,] if v | p. Choose a place w above v
in F (%) We wish to show that the kernel of

Yor H' (. E) [p*)——=H' (R E) [p]
is finite. Again by Tate duality this map is dual to the norm map
%o E(F®)*——E(F)*,

The following lemmas will conclude this proof.

We will write x=y if there is a p-adic unit u such that x = u - y.

Lemma 5. [f v splits completely in F°/F, then kery, = 0. Otherwise, if v is
unramified, then #ker y,=c,, the Tamagawa number of E | F,. In particular ker y,
is non-zero for only finitely many v.

Proof. If v splits completely, then F™ = F, and the “norm” map is clearly
surjective.

First assume v 4 p. The local extension Fyf.oo) / F, is unramified and so the Néron
model of £ will not change in this extension. Let @ be its group of components and
write E? for the connected component of the special fibre. Then we have that

0——E(F,)* E(F)* &(F,) —=0

because the points in the formal group E are divisible by p when v } p. Now the
norm map on the left hand side is surjective because of Lang’s theorem (Lang 1956).
On the right hand side instead the norm map will be the zero map for sufficiently
large n. Hence ker y, is dual to & (F,)*.

Now assume v | p, but the extension F(®/F is unramified at v. The argument
is the same as above, except that we now have to show that the norm is surjective on
the formal groups. That is done in the part (a) of the following lemma.
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Lemma 6. Let E be an elliptic curve over a p-adic field K and let L/ K be a
cyclic extension of degree a power of p. Let m, and mg be the maximal ideals of L
and K respectively.

1. If L/ K is unramified then the norm map on the formal group E(mL) — E(mK)
is surjective.

2. If L/K is ramified and E has good ordinary reduction. Then the cokernel of the
norm map on the formal groups is finite.

3. If v | p is totally ramified and E has good ordinary reduction, then #ker yvész
where N, is the number of points in the reduction E (F,).

Proof. For the proof of the first point uses the filtration by E(mk ), the formal
logarithm that gives an isomorphism E(m]z) ~ 1+ mlz for large enough k, the
fact that H'(IFy /Fg,Fp) = 0 for the residue fields, and the surjectivity of the norm
map on units (Serre 1968, Proposition V.3).

The proof of the latter two can be found in Lubin and Rosen (1978). It relies
on the fact that the formal group of E becomes isomorphic to the multiplicative
formal group over the ring of integers of the completion of the maximal unramified
extension of F).

A different and more accessible proof of item 3 in the above lemma is explained
in Lemma 4.6 in Greenberg (1999). It should be noted that both item 2 and item 3
are no longer valid when the reduction is supersingular. The theory in the case of
good supersingular reduction at primes above p is quite different.

One can now add a proof for Theorem 7. If E(F) and III(E/F)[p°°] are both
finite, then so is S(E/ F'). By the control Theorem 12, this implies that X is finite.
Since the I"-coinvariants A = Z, of A are not finite, we see that X is a torsion A-
module. In fact, we see that this holds for all Z ,-extensions, not just the cyclotomic.
In Example 3.1.5, the rank of E(F)is 1.

4.2 p-Adic Heights

We will now construct an analogue to the real-valued Néron-Tate height. We present
a version inspired by Bloch (1980). Let £/ F be an elliptic curve and we suppose
that E has good ordinary reduction at all places above p that are ramified. To each
cohomology class in H'(F, T) represented by a cocycle §&: Gy = Gal(F/F) —
T = T,(E), we associate an extension

0 Tou T: T 0
where T = 1(111,&[[)1{], also denoted by Z, (1), is a free Z,-module of rank 1 on
which G acts via the cyclotomic character. As a Z,-module 7t = T, & T, but

the G p-action is given by

o(¢, P) = (0({')-(3(&5, a(P)), o(P)) forf € Typand P €T,
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with e: T x T — T,u denoting the Weil-pairing (Silverman 2009, §3.8). It is not
hard to show that the class of the extension 7¢ does not depend on the chosen cocycle
and that the boundary maps d: H'(F, T) — H'*!(F, T,u) are given by applying
the Weil-pairing to the cup-product with &, at least up to sign.

Consider now the commutative diagram with exact rows

0 —— H'(F,Tyt) ——= H'(F,T) —— H'(F.T) ——> H(F, T,

| | | |

1o,
00— HVH](FV7TP[J) ‘>HVHI(FV7T§) - HVH](E”T) ‘>HVH2(FV7TP:LL)

(6)

with the product running over all places in F. It follows from global class field
theory that the downwards arrow on the right is injective (Neukirch et al. 2000,
Corollary 9.1.8.1i) if T is replaced by w ,; that the limit is still surjective needs an
additional argument (Tate 1976, Corollary to Proposition 2.2). On the left we have
the map from the p-adic completion (F*)* of F* to ]_[v(FvX)*.

Choose an topological generator y. Let [: I” — Z, be the map that send y to 1.
For each place v consider the composition

l

A Ef Ag r Zp

where A% is the idele group of F' and the map that follows it is the reciprocity
map. This map extends to the completion A,: (FVX)* — Z,. In case F(™/F is
the cyclotomic Z,-extension, then / is a multiple of log, ok. For finite places v
away from p, the map is simply A,(x) = (logp(/c(y))_l - log(#F,) - v(x) where
F, is the residue field. For places above p, we get A,(x) = —(logp(lc()/))_1 .
log,(Nk,/q, (X))

Suppose now £ belongs to S(E/F). Let G(E/ F)° be the subgroup of G(E/F)
of all elements 7 such that res,() € E(F,)* lies in the image of the norm from
E (Fyf.oo) )* for all places v. By Lemmas 5 and 6, this subgroup has finite index in
GS(E/F).Letn € G(E/F)°. Since both res, (1) and res, (£) belong to the image of
E(F,)* inside H'(F,,T), their cup-pairing is trivial. This is again a consequence
of local Tate duality (Tate 1995b). Hence res, (1) is sent to 0 by d,. By the injectivity
of the right arrow in (6), we conclude that there is an element ¢ in H'(F, T¢) that
maps to in H'(F, T).

For each place v, we will define a local lift {, € H'(F,, T¢). Since n € G(E/F)°,

there is an element 7, € H I(FVS.OO), T') whose norm is res, (7). Pick any lift of 7, to
HI(F,S.OO), T¢) and define ¢, to be its norm in H'(F,, T¢).
By construction res, ({) — ¢, € H'(F,, Tz) maps to 0 in H'(F,, T) and hence we

can viewed it as an element in H'(F,, Typ) = (FVX)*. We set

(E.m) = A(res, (D) — &) €Z,y.
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It is not hard to check that this element is independent of the choices made, because
both (F*)* and the norms from H' (FVE.OO), T, ) lie in the kernel of ) A,.

Since &(E/F)° has finite index, we can linearly extend this to a pairing on
S(E/F) with values in Q,. This is called the canonical p-adic height pairing
corresponding to the Z,-extension and the choice of y. Note that this construction
only works under the assumption that £ has good ordinary reduction at the ramified
places. For the generalisation to any Galois representation, which is de Rham at
places above p, see Perrin-Riou (1995, §3.1.2).

There is a variant of this construction: Let § € G(E/F)° and n = (n), €
S(E/F ), then one can construct in a similar way an element of Q!’/Zp. This time

one lifts res, (™) € H'(F\", W) to H\(F", T; ® ©r/y,) ete. It turns out that the
map §: S(E/F)° — Hom(8(E/F©)), %/, ) = X has its image in X”'. Now the
p-adic height pairing can be described involving the map 7: X©' — X — Xr.

Proposition 6 (Proposition 3.4.5 in Perrin-Riou 1992). There is a commutative
diagram

Xr z xT
| )
8(E/F) —— = Homy, (&(E/F),Z,) S(E/F)°

P

(N

where h, is the p-adic height pairing and 1 is a naturally defined surjective Z,-
morphism with finite kernel.

Finally one should mention that the p-adic height pairing has also an analytic
description using canonical p-adic sigma-functions o, for all ramified places. These
are well-explained in Mazur and Tate (1991) and a fast algorithm for computing
them was found in Mazur et al. (2006) using Kedlaya’s algorithm. For instance, if
E/Qand P = (x,y) € E(Q) is a point that has good reduction everywhere and
reduces to 0 at p, then h,(P) = log,(0,(P)) — log,(e) where e is the square
root of the denominator of x. In general the formula allows one to compute the
p-adic height with only the information of E over F together with the explicit
maps A,.

Conjecture 6 (Schneider 1982). The canonical p-adic height pairing for the cyclo-
tomic Zp-extension on an elliptic curve with good ordinary reduction at all places
above p is non-degenerate.

Suppose III(E/ F)[p®°] is finite. Choose a basis of E(F) modulo torsion and let
Reg,(E/F) € Q) be the determinant of the p-adic height pairing on this basis.
The number Reg ,(E/F) = Reg,(E/F) -log, (k(y))rk E(F) i5 independent of the
choice of y. The above conjecture then says that Reg,, (E / F) # 0 in the cyclotomic
case. For the anti-cyclotomic Z,-extension it can well be that the p-adic height is
degenerate.
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4.3 Leading Term

The following theorem was proved by Perrin-Riou for curves with complex
multiplication then in general by Schneider (1985). See Perrin-Riou (1993) for the
details to complete our sketch of proof.

Let F(®) /FbeaZ p-extension such that all ramified places are totally ramified.
Write X' (ram) for the set of all the ramified places in F and denote by S the set of
all places that split completely in F ().

As before, identify A with Z,[T] via the choice of a topological generator y.
Let Fx(T) € Z,[T] be a generator of the characteristic ideal for X.

Theorem 13. Suppose E has good ordinary reduction at all ramified places above
p and suppose that the canonical p-adic height for F® /F is non-degenerate.
Then

1. X is A-torsion;

2. The characteristic series Fx (T') has a zero of order rankz,, (G(E/F)) atT = 0;

3. If ILI(E/F)[p*™] is finite then the leading term Fg(0) of Fx(T) at T = 0
satisfies

x Reg,(E/F) -#I1(E/F)[p™] - [1,¢s cv
Fi(0)= Y ——— .
" veZl’_(r[am) (#E(F)tors)z

If the main conjecture holds for a curve E/Q, then the finiteness of III(E/Q)[p*°]
and the non-degeneracy of the p-adic height pairing imply the p-adic BSD
conjecture, up to a p-adic unit in the leading term. This is because 1 — 1/a=N,,.
Theorem 13 together with Kato’s Theorem 16 can be used to give a new efficient
algorithm (Stein and Wuthrich 2013) for the determination of the rank of £ (Q) and
upper bounds of III(£/Q)[p*°] for almost all p.

The proof of this theorem follows surprisingly closely what Tate (1995a) did in
the function field case to reduce BSD to the finiteness of the p-primary part of the
Tate-Shafarevich group. The algebraic part relies on the following lemma which can
be deduced from Proposition 2.

Lemma 7. Let X be a finitely generated A-module and suppose the cokernel of
7: X" — Xr is finite. Then

1. X is A-torsion;
2. 7 has finite kernel;
X #coker(mw) __

3. The leading term of its characteristic series satisfies Fy(0)= Frer). = q(m).

If X is finite, then ¢ () is the Euler-characteristic ]_[il=0 #H' (F, S(E/F(w)))(_l)l .
A proof in this case can be found in §3 of Coates and Sujatha (2000) or in §4 of the
chapter of Coates et al. (1999) contributed by Greenberg.
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Proof (Proof of Theorem 13). From diagram (7) and the assumption that /s, has
finite kernel and cokernel, we find that 7 must have finite cokernel. Hence the
lemma applies and we are left to determine the value of ¢ (7). Note that § has now
also finite kernel and cokernel.

Global duality (Neukirch et al. 2000, Theorem 8.6.13) gives us a long exact
sequence.

0 ——= 8(E/F) —— HL(F,W)

T

EEBZ H'(F,.E)[p~]

/

L —

0 ~— HY(F.W) < &(E/F)

Because X is A-torsion we have that lim &(E/F™) = 0 as shown in Perrin-Riou
(1992, §3.1.7). When taking the limit of these above sequence over n, the resulting
exact sequence is

0——=8(E/F¥)—HL(F),W)— @ /") ——0

veX
where J,* =[], H'(F>, E)[p*].
Now we can produce the following big diagram with exact rows. As it is too long

we write it in two parts, the top two arrows on the right continue as the lower two
arrows on the left.

0— S(E/FCNT —— HL(F®) W)l DU ——— .

d d oy

0—8(E/F) ———=HL(F,W) ——— GEBEHI(FV,E)[p“’] — .

o> 8(EJF™) )y ——=HL(F™) W)p ——0

il |

——————>GB(EJF) ————= H}(FW) ———0

To show that the two right squares commute requires some work (Perrin-Riou 1992,
§4.4 and 4.5). By the way, I am cheating slightly as in fact the term &(E/ F) should
be replaced by &(E/ F)° and other terms should be modified accordingly. Also one
has to show that (JV(OO)) r = 0 to get the exactness in the top right corner; this
follows from the triviality of H2(F,, E)[p™], again by local Tate duality.

Next, the transgression map ¢ is part of the short exact sequences from the
degenerating Hochschild-Serre spectral sequence. It is injective and the cokernel
is equal to Hy(F () W), However the group HL(F (%) W) is trivial as shown
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in §3.4.1 in Perrin-Riou (1992). This shows that ¢ is an isomorphism. So the big
diagram gives the equality

9@-q®~"-a(@n) 9@ =1.
On the other hand the diagram (7) gives the equation
48) - 4(0) - (@) - q(0) = q(hy)

In the proof of Theorem 11 we have seen that ¢(8)= (#E(F)lors)_l if E(F©))[p>]
is finite, which follows without too much difficulty from Lubin and Rosen (1978)
under our assumptions. In Lemmas 5 and 6 we found that

(P yv)é(]—[ o ] Nf)_l.

veS VE X (ram)

Finally, we know that E(F) ® Z, has index #E(F)[p*>°] in G(E/F) if the Tate-
Shafarevich group is finite. Hence

Reg, (E/F)

Q(hp)é #E(F)lors-

It is not difficult to see that g(1) = #ILI(E/F)[p°°] under our hypothesis. The
neglected index of [S(E/F) : (E/F)°] would have cancelled.

5 Selmer Groups for General Galois Representations

Let T be a free Z,-module of finite rank with an action of Gr = Gal(F/F).
We will suppose that only finitely many places ramify in 7'; so 7" has an action of
Gz (K) for a finite set X' containing the places above p andoo. Let V =T ® Q,
and W = V/T =T ® QI’/ZP. So far we were dealing with the example 7, =
T,E and W; = E[p*] and V is then a 2-dimensional Galois representation. But
of course there are lots of other examples, such as more general subquotients of
étale cohomology groups of varieties defined over F with Q ,-coefficients or Galois
representation attached to modular forms.

We wish to define the Selmer group however we have no longer a Kummer map
k:? = HY(F,,W)or?— H'(F, T).In order to understand how to define it in
the general case, we look at how we could describe the image of « in the case of an
elliptic curve.
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5.1 Local Conditions at Places Away from p

Letv € X be a prime not dividing p. Then the Kummer maps are E(F,) ® @ﬂ/zp —
H'(F,,W;) and E(F,)* — H'(F,,T;). Recall that E(F,) contains with finite
index a group isomorphic to m,, the maximal ideal of F,. Hence E(F,) ® ¥/, , =0
and E(F,)* = E(F,)[p™®] = W is finite.

Here is the general definition for v } p. Define the subgroup H }-(FV, V) by the
exact sequence

0——=H{(F,V)—=H"(F,,V)—=H"'(1,V)
(8)

where I = I, is the inertia subgroup in Gal(F,/F,). By the restriction-inflation
sequence, Hjl, (F,, V) is isomorphic to H!'(F"/F,, V') where F" is the maximal
unramified extension of F,. Then we define H }(Fv, W) as the image of H}-(FV, V)
under the map H'(F,,V) — H'(F,,W). Also Hjl, (F,,T) is the preimage of
H(F,,V) from the map H'(F,,T) — H'(F,, V).

For the case of the elliptic curve, we find H } (F,,Ve) =0forallv { p: In fact,
we have in general that H}.(Fv, V) = V!/(Fr,—1)V! by Lemma 1.3.2 in Rubin

(2000). If the reduction is good then V! = V, by the Néron-Ogg—Shafarevich
criterion (Silverman 2009, Theorem 7.7.1) and Fr,, the Frobenius of Gal(F,"/ F,),
acts with eigenvalues different from 1. If the reduction is multiplicative, then V,/ =
Q,(1) and the group H_}l, (F,, Vi) is again trivial. Finally if the reduction is additive,
then V,/ = 0. Since we have the exact sequence

0=V — W — ~H(F,, T,)—H"(F,,V,)—=H'(F,,W;)

we obtain that H}V(Fv, W) =0= E(Fv)®Ql’/Zp and H}.(Fv, Ty) = E(F)[p™] =
E(F)*.

It would be tempting to define in general H ! (Fv, W) without passing through V'
by replacing V' with W in (8). However the elhptlc curve example explains that this
does not work. In general, we have that H | (Fv, W) is the divisible part of the kernel
of H'(F,,W) — H'(I,,W) and H!} (F‘, T) has finite index in the corresponding
kernel for T'; see Rubin (2000, Lemma 1.3.5).

5.2 Local Conditions at Places Above p

Let now v be a place above p. The definition of the group H } (F,, V) is given by
Bloch-Kato (1990) by asking that
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04>H (FHV>4>H (FV7V>4>H1(FV7V®Bcris>
)]

is an exact sequence, where B is a certain period ring of Fontaine.

Now, if V' is ordinary, one can give an easier definition. Here a general
representation V is called ordinary if there is a decreasing filtration Fil' V of
Gal(F,/ F,)-stable subspaces of V such that the inertia group I acts like the i-th
power of the cyclotomic character on the quotient Fil’ V/ Fil' *! V. For an ordinary
elliptic curve, we consider the kernel of the reduction on E[p*] which is the p*-
torsion £ [p¥] of the formal group. Then Fil' V, = TPE ® Q, sits in the middle
between Fil? V; = 0 and Fil’ V, = V.

We set FTV = Fil' V and then Greenberg (1989) shows that

0——H}(F,V)—H"(F,,V)—H' (17 14 /F+v)
(10)

is exact. The subgroups H }1, (F,,W)and H }1, (F,, T) are again defined as the image
and preimage of H } (F,, V), respectively.

5.3 The Selmer Groups

The Selmer groups are now defined as the following kernels. They are often denoted
by H}V(F, W) and H}V(F, T).

0——=80W) —Hi(FEW) —= @1 BW) [ p .

vex

0— > &(T) —=HL\FT) — @ Hl(E»T)/H}(F )
veX v

They are now defined only in terms of 7" and equal to the previously defined Selmer
group for elliptic curves. If III(E/ F) is finite, then we have a way to determine the
rank and the order of the Tate-Shafarevich group from the Galois representation V;
only. Note that the L-function L(E, s) is also constructed from V; only.

For instance, if T = Z, has a trivial G r-action on it, then S(QP/ZP) is the dual
of the p-primary part of the class group. If T = Z,(1) is of rank 1 with the action
by GF given by the cyclotomic character, then S(QP/ZP(I)) sits in a short exact
sequence between 0% ® @y, , and the p-primary part of the class group.



30 C. Wuthrich
6 Kato’s Euler System

In this section we give a quick and very imprecise overview of the work of Kato
(2004) where he proves one divisibility in the main conjecture for elliptic curves
(and modular forms of higher weight). See also Scholl (1998) and Colmez (2004).

Let £/Q be an elliptic curve and p an odd prime at which E has good reduction.
Let N be the conductor of E. We assume that E[p] is an irreducible Gg-module
and hence all Gg-stable lattices in V, E are equal up to a scaling factor.

6.1 Construction of the Euler System

Let M be an integer. Pick an integer m = 5 coprime to 6 M . For any elliptic curve
A over a field k/Q, we can construct a division polynomial f,, € k(A)>, which
is a function of divisor div(f,,) = —m?*(0) + > pe pm) (P) normalised such that
[a]* fw = fn forall a coprime to m. Consider the maps g;"' fori = 1 or 2 that sends
a point in the modular curve Y (M) represented by (A4, Q1, Q,) to f,,(Q;). Itis a
rational function on Y (M) without zero, i.e., g; € O(Y(M))*, called a Siegel unit.
It can be shown that the function g; = g;’") ® mzl_l in O(Y(M)) ® Qis independent
of the choice of m. They give rise to Beilinson element in KZ(O(Y(M ))X) ® Q,
defined as the Steinberg symbol {g1, g2}

Such pairs of modular units can now be sent through a chain of maps. For a
square-free r coprime to pN, we take M = N p"*!r and consider the map

X(M) X(N) ® Q" (1) —2—~E Q" (u,).

We chase the pair of modular units through the maps (see §8.4 in Kato 2004)
O(r (M) x O (¥ (M) — H3 (Y(V)/Q") (), Z,(2))

twist a la Soulé

1 (Y(N)/Q (), Z,(1))

Hl(@(")(ﬂ,),Héll(Y( ) Zp(l)))

H! (Q(n) (1), TE) ®Q
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where we used that Héll(F, Z,,(l)) = T%. Poincaré duality relates Héll(Yo(N), Q,,)
to modular symbols as it is equal to the homology H; (Xo(N)(C), {cusps}, Z) ®Q,
of paths between cusps. See §4.7 and §8.3 in Kato (2004).

The image of the Siegel units produce now elements c,(.") in H (Q(")(ur), T)
that form an Euler system for a certain lattice 7 in 7 ® Q,. See example 13.3
in Kato (2004) for details. In particular, (cﬁ") ). belongs to lim  H'(Q™ (w,), T). If
£ is a prime not dividing rpN then they satisfy the norm re(ﬁilons

a 1
cor(c") = (1 ~ Lo+ 7 0[2)(4”)).

See proposition 8.12 in Kato (2004) for the precise statement deduced from the
Hecke operators on the modular curves.

6.2 Relation to p-Adic L-Function

Suppose E has good ordinary reduction at p and let & € Z, be the unit root of
Frobenius. We continue to assume that E[p] is irreducible. The general “dual of

exponential” a la Bloch-Kato has a very explicit description for elliptic curves. It is
the map

A
exp*: E(le))* s (E(le)) ® Qp/Zp) N (@;”)
which is a linear extension of the formal logarithm on the formal group with respect

to the invariant differential w;. Based on the work of Coleman, Perrin-Riou has
constructed an Iwasawa theoretic version which interpolates these maps:

A
Col: H! := (E(Q;W) ® Qp/zp) > A

It is an injective A-morphism with finite cokernel such that for all character y of I
of conductor p"*!, we have

G
x(Col(z)) = O;,l(Jer) Z x(0)exp*(o (z("))).
0€Gal(Q™ /Q)

See the appendix of Rubin (1998) for details of the construction.
One of the main theorems of Kato is

Theorem 14. There is an element ¢(*) € 1(£n HL(Q™,T) ® Q closely related to

the ones constructed above such that Col(¢(®) = L,

This is theorem 16.6 in Kato (2004) with the “good choice” of ¥y as in 17.5. This
is the technically most difficult part of Kato (2004). It implies that the Euler system
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is non-trivial by Theorem 10. If the representation p: Gg — GL(T}) is surjective,
then ¢(® is integral by his theorem 12.5.4.

6.3 Euler System Method

For each i, the limit H! = 1(21 HL(Q™, Ty) is a finitely generated A-module,
11

which does not depend on X' as long as it contains p. The existence of a non-trivial

Euler system ot e l(in H'Y(Q™(u,), Ty) proves the following.

Theorem 15 (Theorem 12.4 in Kato 2004).

1. H? is A-torsion.

2. H' is a torsion-free A-module of rank 1.
3. If E[p] is an irreducible Gg-module, then H' is free of rank 1.

See also Rubin (2000). The statement that H? is A-torsion is called the weak
Leopoldt conjecture and it is believed to hold for many Galois representations 7 .
Global duality together with basic results deduced from the above theorem provides
us with an exact sequence

00—

1 1
Here ¢(* € H' ® Q is the part of the Euler system that is sent to the p-adic

L-function £; by the Coleman map; therefore Col sends the second term into
A/ L A with finite cokernel. Hence the main conjecture is equivalent to

Conjecture 7. The characteristic ideal of H? and of H'/c¢(® A are equal.

The advantage of this formulation is that it does not involve the p-adic L-function
and makes sense in the supersingular case as well.

Theorem 16 (Theorem 17.4 in Kato 2004). Suppose E has good ordinary
reduction at p. Then

1. X is a torsion A-module;

2. There is an integer t = 0 such that the characteristic ideal char(X) divides
P Lg A

3. If the representation p: Gg — GL(T}) is surjective, then char(X) divides Lg A.
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Introduction to Skinner-Urban’s Work
on the Iwasawa Main Conjecture for GL,

Xin Wan

1 Introduction

These notes are an introduction to the recent work of Christopher Skinner and
Eric Urban (2010) proving (one divisibility of) the Iwasawa main conjecture for
GL,/Q (see Theorem 1). We give the necessary background materials and explain
the proofs. We focus on the main ideas instead of the details and therefore will
sometimes be brief and even imprecise.

These notes are organized as follows. In Sect.2 we formulate various Iwasawa
main conjectures for modular forms. We also explain an old result of Ribet to
illustrate the rough idea of the strategy behind the later proofs. In Sects.3 and 4
we introduce the notions of automorphic forms and Eisenstein series on the unitary
group GU(2, 2). Section 5 is devoted to explaining the Galois argument. Sections 6—
9 give the tools used in the computation for the Fourier and Fourier-Jacobi
coefficients of various Eisenstein series, which is a crucial ingredient in the
argument. In Sect. 10 we give an example of a theorem of the author generalizing
the Skinner-Urban work.

2 Main Conjectures

We introduce the objects required to state the Iwasawa main conjectures for GL,.
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2.1 Families of Characters

Let p be an odd prime. Choose ¢ : C =~ C,. Let Gg = Gal(Q/Q) and Qy C
Q(upoo) be the cyclotomic Z,-extension of Q. Let Iy = Gal(Q/Q). Let Ag :=
Zp[[Igll. We also define Ay = Aga = Ag ®z, A for A a Z,-algebra. Let ¥ =
¥y : Gg — A be the composition of Gg — I with Iy < Ag. Let eg be a
character of Q*\Ag which is the composition of ¥q with the reciprocity map of
class field theory (normalized using geometric Frobenius elements). Take y € I’
to be the topological generator such that e(y) = 1 4+ p where € is the cyclotomic
character giving the canonical isomorphism Gal(Q(up~)/Q) =~ Z;. Foreach ¢ €
ppeo and integer k we let Yy ¢ be the finite order character of Q*\Ag that is the

composition of ¥g with the map Af@ — (C;‘ that maps y to £(1 + p)*. We also
write ¥ for ¥ . We let w be the Teichimuller character.

2.2 Characteristic Ideals and Fitting Ideals

Let A be a Noetherian normal domain and X a finite A-module. The characteristic
ideal char4(X) C A is defined to be zero if X is not torsion and

chary(X) = {x € Alordpx > length,,(Xp), for all height one primes P C A}.
Now take any presentation
A"—> A" > X -0

of X. The Fitting ideal is defined by the ideal of A generated by all the determinants
of the s X s minors of the matrix representing the first arrow.

Remark 1. Fitting ideals respect any base change while characteristic ideals do not
in general.

2.3 Selmer Groups for Modular Forms

Let f = Y2 a.,q" € Sk(N.v¥), k > 2, be a cuspidal eigenform with
character Vo of (Z/NZ)* and let L/Q, be a finite extension containing all Fourier
coefficients a, of f.Let Oy be the ring of integers of L. Assume that f is ordinary,
which means that a;, is a unitin Op. Let p = pr : Gg — Aut, Vy be the usual two
dimensional Galois representation associated to f. Then it is well known (by Wiles
1988, for example) that there is a Gg,-stable L-line ij' C Vy such that V¢ / Vf+ is

unramified. We fix a Gg-stable Oy lattice T¢ C Vy and let Tf+ =TrN Vf+.
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Definition 1 (Selmer Groups). Let X' be a finite set of primes.

Sel (Ty) := ker{H'(Q, Ty ®0, A, W) = H'(I,,(Ty/T;") ®0, A5, (¥™")

[ H'Ue.Ty® 45,0 )
LFEpLES

where A} = Homg,(A4,Q,/Z,) is the Pontryagin dual and A (¥~") means
that the Galois action is given by the character ¥~!. Let

XLZ(Tf) = Homzp (SelLE(Tf)s Qp/Zp)

and

charfo (f) = charag o, (X7 (Ty)).

2.4 p-Adic L-Functions

Let0 < n < k — 2 be an integer and ¢ # 1 a p'~'th root of unity. Let ¥ be a finite
set of primes. We define the algebraic part of a special L-value for f by:

p”‘("“)n!LZ(f, w{—lwn’ n+ 1)
(—271’[)”T(Iﬁglw”)[?sfgn((_l)m)

Lo (fys " n+1) i=ay(f)™

where a,( f) is the p-adic unit root of x> —a ,x + pF "y = 0, T(¥) is a Gauss sum
for ¥ and £27F are Hida’s canonical periods of f. (There is also a formula for { = 1
which is more complicated which we omit here.) The p-adic L-function is a certain
element £% Yo € Aq,0, characterized by the following interpolation property. Let
¢Gnet Ao, = Op(¢) be the 07, homomorphism sending y to {(1 + p)”. Then:

¢Vl,§('£‘§@) ulg(f W; o",n+1),0<n=<k-2.

This was constructed in Amice and Velu (1975), and also Mazur et al. (1986).

2.5 The Main Conjecture

The Iwasawa main conjecture for f is the following

Conjecture 1. The module X (T ) is a finite torsion Ag,e, -module and charfQ
is generated by £ 7.
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The main result that we are going to prove in this lecture series is:

Theorem 1 (Kato, Skinner-Urban). Suppose f has trivial character, weight 2
and good ordinary reduction at p. Suppose also that:

* The residual representation p s is irreducible.
» Forsome p # L||N, py is ramified at L.

Then the Iwasawa main conjecture is true in Ag o, ®z, Qp. If, moreover, there
exists an Op-basis of Ty with respect to which the image of py contains SLy(Z,),
then the equality holds in Ag,o, .

The last condition is put by Kato (2004) who proved “2”. It is satisfied, for example,
by the p-adic Tate modules of semistable elliptic curves if p > 11. We will focus
on Skinner-Urban’s proof for “C”. The technical condition (ii) can be removed by
working with forms over totally real fields and a base change trick.

2.6 Two and Three-Variable Main Conjectures

More p-adic characters: Let K/Q be an imaginary quadratic extension such that
p splits as vovp, where vy is determined by our chosen isomorphism ¢ : C >~ C,.
By class field theory there is a unique Zi-extension of X unramified outside p,
which we denote by Koo. Let G := Gal(K/K) and 'y := Gal(Ks0/X). There is
an action of complex conjugation ¢ on I'yx. We write I'j + for the subgroup on which
¢ acts by 1. For any Z -algebra A C Qp we define: Ag<A = A[[I'x]], AIKA =
[[1'%]] and generators y T of 1'% by requiring recsc, (1 + p)? , a1+ p)iZ) =y*
Here recyx,, is the reciprocity map of class field theory. (Note that K, >~ Q, x Q,.)
Let Wi be the composition Gy — Iy — A;‘C’ 4+ We define llfg% similarly. We
also define characters e, sjic of K*\AX by composing &5, egic with the reciprocity
map.
Now let f be a cuspidal eigenform of weight k& > 2. We define the set of
arithmetic points by:

X%+ ={¢ : OL homomorphism Ax o, — Q,:o(vh
=T+ p) o) =878 € ol

For ¢ € X9, let 6, = > ¥ x7'&; with & 1= (¢ 0 W) (€ "2 1) and let
fo, be the conductor of 04. In partlcular we show that for any finite set X' of primes
containing all the bad primes (all the primes where f or X is ramified), we have the
two variable p-adic L-function L?K € Agx o, such that:

) (e = 2))2g(0)Nm(5a,0) LE.(f. 65,k — 1)
2mi)*— 2[2+.Q_

$(LFsc) = usa,(f)" ™),
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for any sufficiently ramified ¢ € DC‘}J{, where 0 is the different of X and uy is a
p-adic unit depending on f. We remark that if {~ = 1 then our special L-value is
just the product of the special L-values for f and f ® yx twisted by some i such
that ¢ o Nm = 6. Here y« is the quadratic character for I/ Q

We can also define Selmer groups Sel?, e and X %, Facs char¥ T in the exact same
way as in the one-variable case. We have the two-variable main conjecture:

Conjecture 2. X7, Fac is a finite torsion Ag o, -module. Furthermore charxf is
principal and generated by L%{

Additionally f can be embedded in a Hida family of ordinary cuspidal eigen-
forms f (we discuss these in the next section in more detail). We can form a
three-variable p-adic L-function fo and formulate a 3 variable main conjecture.

2.7 Comment on the Proof

The cyclotomic main conjecture for modular forms (Conjecture 1) is deduced from a
partial inclusion in three-variable main conjecture. Roughly speaking the inclusion
charggc C (L 5) in the three-variable main conjecture, when specialized to the
cyclotomic Z, —extension of K, implies that the inclusion charsg.charyg,, .0 €
Lrolre XCKsQ) in the cyclotomic main conjecture for f and f ® yx. By Kato’s
work, this in turn implies that charyg = (£ sg) and charrg 5 0 = (£ 1@ y4.0)-

We will focus on proving the inclusion charf%< - (LEK) in the three variable
main conjecture in the rest of the paper. The general strategy for proving this
inclusion is: the product of LJZC and the Y-imprimitive Kubota-Leopodlt p-adic
L-function LZ attached to the trivial character gives the congruences between
Eisenstein serles and cusp forms on the unitary similitude group GU(2,2) =
the same congruences between reducible and irreducible Galois representations
= required extension class in H!(X,—). The first arrow is by the Langlands
correspondence and the second is a Galois theoretic argument, the so-called “lattice
construction”.

2.8 A Theorem of Ribet

In this section we review Ribet’s proof of the converse to Herbrand’s theorem (Ribet
1976). This illustrates the main ideas in the strategy. In this section we set Op = Z,,
A the maximal ideal of O,k = Op/A.

TheoremZ Suppose j € [2,p — 3] is an even number. If p|¢(1 — ) then
H! (Gg,F(w'™7)) # 0 (the group of everywhere unramified classes is non-zero).



40 X. Wan

Proof. For j # 2, we make use of the level 1 weight j Eisenstein series:

¢ —J)

Ej(q) = — t > oii(m)g”

n>1

where 0;_1(n) = >4, d/71If pl¢(1 — j), then E; “looks” like a cusp form
modulo p. We divide the proof into three steps:

Stepl:  Construct a cusp form f’ € S;(SL2(Z),Z,) such that f' = E;(mod p)
(in terms of g-expansion). This is a case by case study using the fact that the ring
of modular forms of level 1 is C[Ey4, E¢].

Step 2:  Prove that f’ can be replaced by an eigenform f € S;(SL2(Z,),0r)
whose Hecke eigenvalues are the same as those of E; modulo p. This can be
proven by easy commutative algebra (essentially a lemma of Deligne and Serre).

Step 3:  The lattice construction: construct the class by comparing the Galois
representations of E; and f. Note that the Galois representation for E; is
€/~ @ 1. Itis easy to see that there is a 0y € I, such that e/ ~'(0y) # 1(mod p).
Since a,(f) = oj—1(p) = 1(mod p), f is ordinary. As we have noted before,

i—1
ael T x . .
0 f|G@,, = ( ) for some unramified character . Take a basis {v, v»}
o

such that

i—1
pr(00) = (ej (00) 1)-

Write p = ps and p(0) = (a,, b

o d(r) for o € O[Gq].

Claim:

@) ag,dy,byc; € O foro,t € O1[Gg] and @, = 0/ "Y0),d, = 1,bsc, =
0(mod p);

(b) €:={cs : 0 € O1[Gg]} is a non-zero fractional ideal.

(¢) ¢, =0ifo € I, forall £.

Proof of the claim: Let ¢ := m(% -1, := #1(00)(00 —e/7(00));

one can check: p(€;) = ((1) g) and p(ey) = (g (1)) Thus a, = tracep(e;0) € Op

and tracep(e;0) = trace(e/~! 4 1)(e;0) = €/~!(0). The claim for d, is proven
similarly. Also since p(o)p(t) = p(07), b = a5y — asa, = 0(mod p).

(b) follows from the irreducibility of p and (c) can be seen from the description
for pngp above and the triviality of p|;, for £ # p.

Let My = Opvi, My = Cvy, M = M| & M, (which is easily seen to be the
01 [Gg]-submodule generated by v;).
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o« My,:=M, /AM, =~ k (note that € is non-zero by (b)) is a Gg stable submodule
of M := M /AM . This is because for any m, = cvy € M>, p(0)my = bycvy +
dycvy € Avi + Cv, by (a);

* By (a), Gg acts by w/ ! and 1 on M, = M /M, and M, respectively;

e The extension: 0 - M, — M — M, — 0 is non split since M is generated by
vy over O1[Gg).

Thus M gives a nontrivial extension class and it actually in H! (Q, k(w'~/)) by
claim (c).

If j = 2 the Eisenstein series E; is not holomorphic and we use £, in the
place of E,.

3 Hermitian Modular Forms on GU(n, n)

3.1 Hermitian Half Space and Automorphic Forms

Let /Q be an imaginary quadratic extension and let O be the ring of integers of .
Let GU(n, n) be the unitary similitude group associated to the pairing ( | 1") =

w, on K:
G:=GUmn,n)(A) ={g € GL,,(O® A) : gw,'s = Agwy, Ag € A™}.

Here p(g) := A, is the similitude character, and we write U := U(n,n) C G
for the kernel of u. We define Q0 = Q, to be the Siegel parabolic subgroup of G

consisting of block matrices of the form (é g) such that C = 0. Let

H, :={Z € M,(C) : —i(Z —'Z) > 0}.

(Note that H; is the usual upper half plane).

Let Z € H,,. Forax = (é ll;) € G(R) with A4, B, C, D n x n block matrices.

Let uo(Z) := CZ + D,ko(Z) = C'Z + D. We define the automorphy factor:
J(,Z) := (ue(Z2),k4(Z2)).

Let G(R)T = {g € G(R), u(g) > 0} then G(R)™ acts on H,, by

_ A, B
2(Z) == (AgZ + By)(C,Z + D)7, g=( g g).
Cg Dg



42 X. Wan

Let KI = {g € UR) : g(i) =i} (we write i for the matrix i1, € H,) and Z
be the center of G(R). We define Co := ZooKJ. Then koo > J(koo, i) defines a
homomorphism from Cy, to GL, (C) x GL,(C).

Definition 2. A weight k is a set of integers (k;+1, ...,k kn, ..., k) such that
ki>ky>...>ky,and k, >k, + 2n.

A weight k defines an algebraic representation of GL, (C) x GL,(C) by
0k (g+18-) = Plhy.k))(&+) @ P(—kypy.i—k2n) (8=)

where p(4,.....q,) 15 the dual of the usual irreducible algebraic representation of GL,
with highest weight (ay, ..., a,). Let V4 (C) be the representation of Co, given by

koo = pr © J(koo, ).
Fix K an open compact of G(A y). We let
Shg(G) = GQ™\H, x G(A)/KCos.
The automorphic sheaf wy is the sheaf of holomorphic sections of
G(QT\H, x G(Ay) x Vk(C)/KCso — G(QT\H,} x G(A/)/KC.

One can also define these Shimura varieties and automorphic sheaves in terms of
moduli of abelian varieties. We omit these here.

The global sections of wy is the space of modular forms consisting of holomor-
phic functions:

S i Hy xG(Ay) = Vi (C)

which are invariant by some open compact K of the second variable, and satisfy:

w) T (T 2) T f(0(2).8) = f(Z. %)

forall y € gKg=' N GT(Q). Also, when n = 1 we require a moderate growth
condition.

Remark 2. We will be mainly interested in the scalar-valued forms. In this case
Vi (C) is 1-dimensional of weight k = (0,...,0;«, ..., k) for some integer Kk > 2.

3.2 Hida Theory

Hida Theory GL,/Q We choose a quick way to present Hida theory. Let M
be prime to p and y a character of (Z/pMZ)*. The weight space is SpecA for
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A :=7Z,[[T]]. Let I be a domain finite over A. A point ¢ € Specl is called
arithmetic if the image of ¢ in SpecA is given by the Z,-homomorphism sending
(14+T) ¢ + p)<=2 for some k > 2 and ¢ a p-power root of unity. We usually
write kg for this «, called the weight of ¢. We also define y4 to be the character
of Zy ~ (Z/pZ)* x (1 + pZ,) that is trivial on the first factor and is given by
(1 + p) + ¢ on the second factor.

Definition 3. An [-family of forms of tame level M and character y is a formal
q-expansion f = Z;’o:o anq",a, €1, such that for a Zariski dense set of arithmetic
points ¢ the specialization f = Y - $(a,)q" of f at ¢ is the g-expansion of
a modular form of weight x4, character y )(¢a)2_"¢ where w is the Techimuller
character, and level M times some power of p.

Definition 4. The U, operator is defined on both the spaces of modular forms and
families. It is given by:

[e’¢) 00
Up(Q_and") =3 apd".
n=0 n=0

Hida’s ordinary idempotent e, is defined by e, := lim,, .o U jvﬂ‘ A form f or family
fis called ordinary if e, f = f ore,f =f.

FACT The space of ordinary families is finite and free over the ring I.

Remark 3. For Hilbert modular forms the analogues space is still finite but not free
in general. The subspace of ordinary cuspidal families is both finite and free.

Hida Theory for GU(2,2) For simplicity let us restrict to the case when the prime
to p part of the nebentypus is trivial. Fix some prime to p level group K of G(Z).
Let T be the diagonal torus of U = U(2,2). Let y be a character of T'(Z/ pZ). The
weight space is SpecA, where A, is defined to be the completed group algebra of
T(1 + pZ) = (1 + pZ)*. Let A be any domain finite over A,.

Definition 5. A weight k = (ky, k2; k3, ky4) is a set of integers k; such that k; >
ko +2>ks+4>ks+4.

Definition 6. A point ¢ € SpecA is called arithmetic if its image in SpecA; is
given by the character [k]y4.x where k is a weight and [k] is given by:

diag(t1, 12, 13, 14) > 1154 F2 b

(We identify U(Z,) ~ GL4(Z,) by the first projection of X, >~ X, x K5,) and x4
is a finite order character of T (1 + pZ).

We are going to define Hida families by a finite number of g-expansions: Let
K C G(Ay) be a level group X(K) be a finite set of representatives x of

G(Q\G(Ay)/K with x, € Q(Z,). Forany g € GU(2,2)(Ag) let S[:,'] comprise
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those positive semi-definite Hermitian matrices / in M, (X) such that Trhh' € Z for

I
all Hermitian matrices /4" such that (1 }i) € No(Q)NgkK g L

Definition 7. For any ring A finite over A, we define space of A-adic forms with
tame level K C G(A ) and coefficient ring A to be the elements:

+
F = {F }exx) € EBxeX(K)A[[qS[xl]]

such that for a Zariski dense set of arithmetic points ¢ € A the specialization Fy of
F at ¢ is the g-expansion of the matrix coefficient of the highest weight vector of
holomorphic modular forms of weight k,, and nebentypus y ygw(#; ks t, K t k2 ty ki ).

(In the Skinner-Urban case the interpolated points ¢ are of scalar weights and thus
do not need to take the highest weight vector.)

Definition 8. Some U, operators: for t* = diag(ty, 1, #3,14) € T(Q,) such that
h/t,t3/t,t3/ty € pZ,. We define an operator U,+ on the space of Hermitian
modular forms by: U,+.f = [[K*](1)]," f |xu,+ where [K*] = [k + (2,2; =2, -2)]
and f'|xu,+ is the usual Hecke operator defined by double coset decomposition
(with no normalization factors).

Hida proved that this u,+ preserves integrality of modular forms and defined an
idempotent:
ord ._ 71; n!
e’ = nll)ngo 75
A form or family F is called nearly ordinary if e’ F = F. Again, we have that the
space of nearly ordinary Hida families with coefficient ring A is finite and free over
A. This is called the Hida’s control theorem for ordinary forms.

Remark 4. 1In order to prove the finiteness and freeness (both in the GL, and
unitary group case) we need to go back to the notion of p-adic modular forms using
the Igusa tower, which we omit here.

Another important input of Hida theory is the fundamental exact sequence proved
(Skinner and Urban 2010, Chapter 6). We let C;(K) be the set of cusp labels of
genus 2 and label K (Skinner and Urban 2010, 5.4.3). Write A, for the weight ring
of U(1, 1)/Q. Then Skinner-Urban proved the following

Theorem 3. For any Aj-algebra A there is a short exact sequence

0 — M, (K?, A) = M, (K”, A) = Sigiec, )Moy (K . A1) @4, A — 0.

Here M? (K?, A) is the space of A-valued families of ordinary cusp forms on

GU(2,2), M} (K?, A) is the space of ordinary forms taking 0 at all genus 0 cusps

(Skinner and Urban 2010, 5.4). The Mgrd(Kﬁg, Ay) is the space of ordinary cusp
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Sforms on U(1, 1) with tame level group Kﬁg for Klp,g = GU(1,1)(Ay) NgKg™!
and GU(1, 1) is embedded as the levi subgroup of the Klingen Parabolic subgroup
of GU(2,2). The @ is the “Siegel operator” giving the restricting to boundary map.
The Ai-algebra structure for A, is given by the embedding Ty — T, : (t1, 1) —
(t1, 1,1, 1)

The proof is a careful study of the geometry of the boundary of the Igusa varieties
(Skinner and Urban 2010, 6.2,6.3). This theorem is used to construct a cuspidal Hida
family on GU(2, 2) that is congruent to the Klingen Eisenstein series modulo the
p-adic L-function.

One more important property of ordinary families is that the specialization of
a nearly ordinary family to a very regular weight is classical. This will be used to
ensure that the Ap-adic Hecke algebra of ordinary Ap-adic form can not have CAP
components.

4 Eisenstein Series on GU(2,2)

4.1 Klingen Eisenstein Series

Let P be the Klingen Parabolic subgroup of GU(2, 2) consisting of matrices of the
form

X 0 x x
X X X X
x 0 x x
000 x

Let Mp be the levi subgroup of P defined by
Z—1
Mp =~ GU(1, 1) x Reso, jzGom. (g, x) 1> | . HET

Let Np be the unipotent radical of P.

Observe that if 7 is an automorphic representation of GL, and v is a Hecke
character of A.Zy(c which restricts to the central character y, of 7 on Aa), then these
uniquely determine an automorphic representation sy of GU(1,1) with central
character . Now suppose we have a triple (7, vy, ) where 7 is an irreducible
cuspidal automorphic representation of GL, and ¥ and t are Hecke characters
of A% such that v/| Ay = Xn Then my X 7 is an automorphic representation of
Mp. We extend this to a representation of P by requiring that Np act trivially.
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Then Klingen Eisenstein series are forms on GU(2, 2) which are induced the above
representation of P. In fact we need to first work locally for each place v (say,
finite) of Q. Let (7, ¥, 7,) be the local triple then (7y ), X 7, is a representation
of Mp(Q,). We extend it to a representation p, of P(Q,) by requiring that Np (Q,)
acts trivially. Then we form the induced representation /(p,) = Indﬁzgigpv. When
everything is unramified and ¢, is a spherical vector of m,, there is a unique vector
f4, € I(p,) which is invariant under G(Z,) and f; (1) = ¢,. The Archimedean
picture is slightly different (see Skinner and Urban 2010, section 9.1).

Let ¢ = ®,¢, € 7w and let I(p) be the restricted product of the I(p,)’s
with respect to the unramified vectors above. If f € I(p) we let f,(g) =
S(m)%+zp(m)f(k) forg = mnk € MpNpK.Here welet K be G(Z). Note that the
[ takes values in the representation space V' of w. However & can be embedded to
the space of automorphic forms on GL,(Ag). We also write f,(g) for the function

on GU(2,2)(Ag) given by f.(g)(1).
The Klingen Eisenstein Series is defined by:

E(fizg):= Y  fyo).

y€P(Q\G(Q

This is absolutely convergent for Rez > 0 and can be meromorphically continued
toallz e C.

4.2 p-Adic Families

Let I be a normal domain finite over Z, [[W]]. (W is a variable) and f is a normalized
ordinary eigenform with coefficient ring I. In Sect. 8 we are going to define the
“Eisenstein Datum” D which contains the information of f, I, X, etc. Define Ap =
M5 ][I 5 ]]. We are going to define the set of arithmetic points ¢ € SpecAp
and this Ap p-adically parameterizes triples ( fy, ¥, 75) to which we associate the
Klingen Eisenstein series. Later we will also give A the structure of a finite A,-
algebra and construct a Ap-adic nearly ordinary Klingen Eisenstein family, which
we denote by Ep.

Now we consider Ap-adic cusp forms on GU(2,2). Let hp 1= hfrf(K, Ap) be
the Hecke algebra for the space of Ap-coefficient nearly ordinary cuspidal forms
with respect to some level group K. It is generated by Hecke operators at primes
outside ¥ and the prime p.

Definition 9. Let /p be the ideal of hp generated by {T — Ag,,(T)}’s for T
elements in the abstract algebra. Here Ag,, (7') is the Hecke eigenvalue of 7' on
Ep. The structure map Ap — hp/Ip is easily seen to be surjective. Thus there
is an ideal Ep of Ap such that Ap/Ep >~ hp/Ip. This Eq is called the Klingen
Eisenstein ideal.

The motivation to define this ideal will be more clear after we have discussed the
Galois representations.
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5 Galois Representations and Lattice Construction

5.1 Galois Representations

We first recall the following theorem (due to Harris-Taylor, S.W Shin, S. Morel, C.

Skinner et al.) attaching Galois representations to automorphic representations on
GU(n,n).

Theorem 4. Let 7w be an irreducible cuspidal representation of GU(n, n)(Ag) and
let yr be its central character. Let X (1) be the finite set of primes £ such that either
1p or K is ramified. Suppose mo is the regular holomorphic discrete series of weight

k = (kn+1, ..., ks k1, ..., ky) such that
kv > ... > ko ky > kypr +2n,kyy1 > .0 = koy.
Then there is a continuous semisimple representation:
R,(7): Gx — GL,(Q))

such that:

(i) R,(m)¥(1—2n)® cr)l(:"' ~ R, ().
(ii) R, () is unramified outside primes above those in X () U {p} and for such
primes w we have

1
det(1 — R, (r)(frob,)q,*) = L(BC(7),, ® Y, 5 + 3 n)~ L.
(iii) If w is nearly ordinary at p, then:
Eonpg€ " % *

Rp(n)ng0 ~ 0 e *
0 0 &,

and
51,1706’(1 +1—2n—|k| * *
RP(T[)IGg{jO jad 0 *
0 0 &, GO€K2n+l—2n—\K\

Here §; ,, and &; 5, are unramified characters and € is the cyclotomic character,
k|l =ki+...4+ ko, ki =ki+n—iforl <i <nandk; =k; +3n—1i for
n+1<i<2n.
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Returning to the GU(2,2) case, it is formal to patch the Galois representations
attached to cuspidal nearly ordinary forms to a Galois pseudo-character Rp of Gy
with values in 2p. (Pseudo characters are firstly introduced by Wiles (1988). They
are function on Gy satisfying the relations that should be satisfied by the trace of
a representation. However it does not necessarily come from a representation. We
omit the definitions.) We can associate a Galois representation pg,, to the Klingen
Eisenstein family Eq with coefficient ring Ap by a similar recipe. It is essentially
the direct sum of the Galois representation pf associated to the Hida family f with
two Ap-adic characters.
The motivation for the Klingen Eisenstein ideal is:

Rp(modlp) = trpg,, (modEp).

(Recall that hp/Ip >~ Ap/Ep.) This relation follows from the congruences for
the corresponding Hecke eigenvalues. Also, R is generically “more irreducible”
than pg,, in the sense that it can be written as the sum of at most two “generically
irreducible” pseudo-characters while pg,, has three pieces. (This is proven in
Skinner and Urban (2010, 7.3.1) using a result of M. Harris on non-existence of
CAP forms of very regular weights.)

The next thing to do is use the “lattice construction” to get the Galois cohomology
classes from the congruences between irreducible and reducible Galois representa-
tions.

Recall in the last section we have:

Ap/€p = hp/Ip
tracepg,, (mod€p) = Rp(modip).
Our goal is to prove:
(LEQLEK) D&p D charf%(.

Now we are going to prove the second inclusion using the lattice construction. The
first one will be proved at the end of Sect. 9.

5.2 Galois Argument: Lattice Construction

The lattice construction in Skinner and Urban (2010) involves three irreducible
pieces and is complicated. Instead we are going to give the lattice construction which
involves only two pieces (the case in Wiles 1990) and briefly mention the difference
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at the end. We partly follow Skinner (2009). Let us axiomize the situation: let A
be the weight algebra and I a reduced ring which is a finite A-algebra. Let p be a
Galois representation of Gg on I2. Let J and I be nonzero ideals of A and I such
that the structure map induces A/J ~ I/I.Let P be a height one prime of A such
that ordp(J) = ¢t > 0. Then there is a unique height one prime P’ of I containing
(1, P). Since Iis reduced we can talk about its total fractionring K = []; Fy, where
the J;’s are domains finite over I and the F7,’s are the fraction fields of the J;’s.
Suppose:

1. Each representation py, on F Jzi induced from p via projection to Fj, is irreducible.
2. There are A*-valued characters y; and y» of Gg such that:

trp(o) = y1(0) + y2(o)(modl)

for each 0 € Gg.
3. There are [*-valued characters x| and y of Gg, such that

A
/0|G@[, = (Xl X/)
2

and there is a 0y € G, such that x| (0o) # x5(00)(modP’).
4. x1(0) = (o) (mod 1), x2(0) = y5(0)(mod I) for each o € I[Gq, .
5. pis unramified outside p.

We define the dual Selmer group X := H.} (Q, A*(x7'x2))*. Here “ur” means
extensions unramified everywhere and * means Pontryagin dual.

Definition 10. Let char4(X) be the characteristic ideal of X as a A module.
We are going to prove:
Proposition 1. Under the assumptions above, ordp (char, (X)) > ordp (J).

Proof. Suppose t = ordp(J) > 0. We take the oy in assumption (3) and a basis
(XI(OO) ) We write p(0) = (ag bg) €

x2(00) ¢y ds
M,(K) foreach o € K[Gg] with respect to this basis. Then we claim the following.

Letr := x1(00) — x2(00), (sor &€ P)

@) rag,rdy,r’bsc, € Iforall 0,7 € I[Gg| and ra, = ryi(o)(modl), rd, =
rx2(c)(modl), r’b,c, = 0(mod/).

(b) C:={c, : 0 €l[Gg]} is a finite faithful A-module;

(¢) ¢ =0foro € 1,.

(v1, v2) so that p(0p) has the form

(c)is by (3) and (b) follows easily from assumption (1) and Gg being compact. (a) is
by calculation: e.g. set §; := 0y — x2(0p) then ra, = tracep(§,0) = ry1(0)(modl)
by assumption (2).
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Now we deduce the proposition using these claims. We write A p, [p, etc. for the
localizations at P and define M := [p[Gg]vi C V. Then it is easy to check that
M = Tpvi & Cpvy. Define M, := Cpvy. Then (a) implies My := My/IM, C

M := M/IM is a direct summand that is Gq stable. Define M; = Ipv; and
M; = M, /IM, then we have

0—>J\_/Ez—>3\_/f—>3\_/fl—>0.

Now we return to the la_ttice construction without localization at P. We will find a
finite A-module m, € M, such that

(1) myp = My
(ii) There exists a A-map X — m; that is a surjection after localizing at P.

Then ordp (chars (X)) = ordp(char,, (Xp)) = ordp (Fitts, (Ap/chars, (Xp))) >
ordp (FittAsz,p) = ordp (FittAPj\_/tz). But FittAPj\_/tz(mOd J) = FittAP/JAPJ\_/EZ =
Fitty, /1, M, = Fitt;, Ma(modl) = Fitt;, Ma(mod/) = 0, the last equality
follows from the fact that M, is a faithful submodule of Fracl in view of the
generic irreducibility of the Galois representation p. So Fitt,, M, € J and
ordp (chars (X)) > ordp J.

Now let m C M be the I[Gg]-module generated by vy, my := m N J\_/[z, mp =
m/m; C M. Note that myp = M,. Then we have:

0O->m —>m—>m — 0. (*)

* By assumption (5) and (c) above this extension is everywhere unramified.

« M; ~ A/P'A as A-module by definition. So it is easy to see m; ~ A/P’A as
well.

* By (a) the Gg-action on m, and m; are given by y» and y; respectively.

We expect the (*) in the matrix to give the desired extension. More precisely let
[m] € H'(Q,my(x7'x2)) be the class defined by (*). Then we get a canonical
map 6 : Homyu(my, A*) — H'(Q, A*(x7'x2)). Taking the Pontryagin dual
6* . H'(Q, A*(x7' x2))* — myp. We claim that 6* becomes surjective after taking
localization at P. (As in Sect. 2 this is basically because m is generated by v; over

[[Gql)

Proof of the claim Let R = ker(f) and let S C fR be any finite subset, mg :=
Ngeskerg. Then we have:

0 — my/mg — HA* —>1_[A*/(m2/m5) — 0. (**)
pes ¢

Equip each module with the Gg action ;' x» and take the cohomology long exact
sequence. By the definition of 9 the image of [m] in H'(Q, my/ms(x; ' x2)) is in
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the kernel of the map H'(Q, my/ms(x7'x2)) - H'(Q, [Iges A*(x7"x2)) which
is a quotient of [ [, A* (7 x2)€@ which is killed by r = x1(09) — x2(00) & P.
Thus the exact sequence

0— (my/mg)p —» (m/mg)p > myp —>0

is split. If (my/mg)p # O then this contradicts the fact that m is generated by v;
over [[Gg]. Thus m; p = mg p. By the arbitrariness of S we get Rp = 0. This
proves the claim.

Now we compare with the Skinner and Urban’s (2010) case. There we have three
X1
irreducible pieces and the matrix is like | * p/ . We expect the upper * in the

* X2
matrix to give the required extension. However we are not able to distinguish the
contribution of () to H}-(fK, x7'ps) and H}(fK, )= = H}(Q, 7) where
T is the composition of the transfer map V : G(‘é}’ — Gglcb and )(1_1 X2 But by
the Iwasawa main conjecture for Hecke characters proved in Wiles (1990), this
H}, (X, x ' x2)¢=" is controlled by the p-adic L-function for the trivial character,
which is a unit.

6 Doubling Methods

6.1 Siegel Eisenstein Series on GU(n, n)

Let O, be the Siegel parabolic consists of block matrices (X i) Let v be a finite

prime of Q, write K, , for GU(n,n)(Z,). Fix x a character of X'. Let 1,(x) be
the space of smooth and K,,-finite functions f : K,, — C such that f(gk) =

x(det Dy) f (k) forq = (A” g”) € 0, from such f we define

q

f(za _) : Gn(Qv) - C

_1pts
/(2. qk) := y(det Dy)|det 4, D',"* f (k).

Suppose K, is unramified over Q, and y is unramified, then there is a unique vector
f° € I(y) which is invariant under K, , and f°(1) = 1. There is an Archimedean
picture as well (see Skinner and Urban 2010, 11.4.1).
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Now let y = ®, x, be a Hecke character of AJ./X*. Then we define /() as
a restricted product of local 7(j,)’s as above with respect to the above unramified
vectors. For any f € I(y) we define the Siegel Eisenstein series

E(fize)= Y. [&y.
7€0,(D\Gs(@)

This is absolutely convergent if Rez > 0 and has a meromorphic continuation to all
zeC.

6.2 Some Embedding

The Klingen Eisenstein series are difficult to compute, while Siegel Eisenstein series
are much easier. The point of doubling method is to reduce the computation of the
former to the latter. We are going to introduce some important embeddings that are
used in the Pullback formulas. Let (7, ;) be the Hermitian space for U(1, 1) and
(V") another Hermitian space whose metric is (—w;). Elements of V; and V|~ are
denoted (v, v2) and (uy, up) forvi,u; € X.Let V, = V; @& X @ Y be the Hermitian
space for U(2,2) where X @ Y is a 2-dimensional Hermitian space for the metric

1 . . . .
( | ) and elements are written as (x, y) for x, y € X with respect to this basis.

1

Let W = V>, ® V|~ be the Hermitian space for U(3,3). Let R = and

S = These give maps:

V1, X,v2, y,ur,uz) = (vi, X, u2,v2, ¥, uq)
V1, X, u2, v, y,u1) = (Vi — U1, X, up — v, V2, Y, U1).
Now we define the embedding:

V3 G2,l = {(gs g/) € GU(2727) X GU(lv 1)7 H(g) = H(g/)} — GU(Ss 3)



Introduction to Skinner-Urban’s Work on the Iwasawa Main Conjecture for GL, 53

by

(g ,) > SR (g ,) RS.
g g

Let V¥ be the image of V; in V| @ V™ by the diagonal embedding. Let 7; be any
element of U(3,3)(Q) which maps the maximal isotrophic subspace V¢ @ X to
Kvy @ Kuy @ X, then one can check that: 7' Q31 N y3(U2,2) x U(1,1)) =
y3(Q2 x Bjp). An important property of such embedding is:

{(m(g,x)n,g): g € GU(1,1),x € Resx;0Gp,n € Np} C Q3.

6.3 Pullback Formula

Let y be a unitary Hecke character as before and f € I(x). Given a cusp form ¢ on
G, define the pullback section by:

Rtz = [

Sf(z.v3(g, g1h)) x(detg1h)p(g1h)dg,
U(1,1)(A)

where i € GU(1, 1)(A) is any element such that u(h) = p(g). This is absolutely
convergent if Rez > 0. It is easy to see that Fjy does not depend on the choice of /.
Note that this is a Klingen Eisenstein section. Then

Proposition 2. For z in the region of absolute convergence and h as above, we
have:

/ E(f;z.v3(g. g1h)) x(detgih)p(g1, h)dg,
UL)@\U(L,1)(A)

= > Fo(f32,78).
P@\GU2)(Q

Remark 5. The right hand side is nothing but the expression of the Klingen
Eisenstein series.

Proof. This is proven by Shimura (1997). There Shimura proved the following
double coset decomposition in (2.4) and (2.7) in loc. cit.:

U3.3) = 0313(U(2,2) x U(1, 1)) U Q311y3(U(2,2) x U(1. 1))
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and

0373(U(2,2) x U(1,1)) = Ugev.2).ccua,1y @3y3((B. §)),
031173(UQ2,2) x U(1, 1)) = Ugep,\v@2)yes\va,n @3ty (B, 7).

Thus by unfolding the Siegel Eisenstein series we write the integration into two
parts. We claim that the integration for the part involving terms with t; is 0. We first
fix B8 and sum over the y’s, this equals

/ FGrys(Be. gih))e(gih)ds,.
Bi(Q\U(1.,1)(A)

Recall we have noted that 7y3(1, Bi)t;! < Q;. Since ¢ is cuspidal,
fBl(Q)\BI(AQ)q&(bglh)db = 0 for all g;. Thus the integration is 0. This proves
the claim. The proposition then follows from our description for Q3y3(U(2,2) X
U,1)).

7 Constant Terms

Suppose ¢ is of weight « and let z, = "—;3 Let P be the Klingen parabolic and R
any standard Q parabolic of GU(2, 2). We are going to compute the constant terms
E(f,z, g)r of the Klingen Eisenstein series E(f,z, g) along R. We write Ny for
the unipotent radical of P. The constant term along R is given by:

E(f,z,9r = / E(f.z,ng)dn.

Nr(Q\Ngr(A)

A famous computation of Langlands tells us that: if R # P then E(f,z,g)r = 0.
For R = P we first define the intertwining operator:

Apoz. f)(g) = / £ (wng)dn.

Np (&)

This is absolutely convergent for Rez > 0 and is defined for all z € C by
meromorphic continuation. It is a product of local integrals. This intertwines the
representations /(p) and some /(p;) where p; is defined similar to p but replacing
(7, ¥, 7) by (7 x (v o det), 77, 7%). Then E(f.z.8)p = f:(g) + A(p.z. f)(2)-
It turns out that under our choices z = z, and k > 6, A(p,z, f) is absolutely
convergent and the Archimedean component is 0. Thus A(p, z, f) equals 0. Thus

E(f.ze.8)p = fo.(9)



Introduction to Skinner-Urban’s Work on the Iwasawa Main Conjecture for GL, 55

Let us explain how the special L-values that we are interested in show up in the
constant term of the Klingen Eisenstein series. The Klingen section f is realized as
the pullback section of some Siegel Eisenstein series on GU (3, 3). At the unramified
places a computation of Lapid and Rallis (2005) tells us that if the Siegel section is
/) then the pullback section is f) L(7, /7,2 + 1) L(}x(¥/7)", 2z + 1). Here the
first L-factor is the local Euler factor for the base change of the dual 7 twisted by
¥/t and the second is a Dirichlet L-factor. Taking the product over all good primes,
the special L-values we are interested in show up as the constant term of the Klingen
Eisenstein series obtained by pullback.

8 p-Adic Interpolation

Definition 11. An Eisenstein datum is a sextuple D := (A, L f, ¢, £, X') where

* Ais afinite Z,-algebra and I is a normal domain finite over A[[W]].

* fis a Hida family of cuspidal newforms with coefficient ring I.

e 1 is an A-valued finite order character which restricts to the tame part of the
central character of f on Aa.

* & is another A-valued finite order Hecke character of A%..

e XY is afinite set of primes containing all the bad primes.

Recall that we have defined a ring Ap = I[[I'xc]][[I 5 ]]. We use Ap to interpolate
triples ( f, v, t) that are used to construct Klingen Eisenstein series. Recall that we
have defined a weight ring Ay >~ Z,[[I3]] for I3 ~ (1 + pZ,)*. We first give
Aqp a As-algebra structure. We define homomorphisms « : A[[I'x]] — [[[I'x]] and
B : A[[I'«]] = I[[I'x]] (we omit the formulas). Then the A,-algebra structure map
is given by composing o« @ B : A[[I'x x I'x]] = Ap with the map I — ' x I'x
given by:

(t1, b2, ta, ta) > tecac (t3ta, 17 151 X recac(ta, 15 1),

where recy is the reciprocity map in class field theory normalized by the geometric
Frobenius. Let ¥ := o o a)_lwllfj_cl and & := B o ypEWy.

Definition 12. A point ¢ € SpecAp is called arithmetic if ¢|y is arithmetic with
some weight k, > 2 and there are {+,{’ € ppoo such that ¢p(y™) = {4 (1 +
P2 p(y") = ¢ for y* € 1'% and qb(y_/) = ¢’ for )/_/ the topological
generator of I';..

For every such ¢ we define Hecke characters. Let p = vyvy be the decomposition
in X and let

—K,

Y (X) 1= Xoo " Xt (P 0 Y)(X), & = O E.
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Then we can construct a Ap-coefficient formal g-expansion Eg,, that, when
specialize to a Zariski dense set of arithmetic points ¢, is the nearly ordinary Klingen

. . . . . “p
Eisenstein series Ekjingy We constructed using the triple: (fy, ¥yl.|2, 79 =

w¢§qj1|.|%). This is achieved by first constructing a Ap-adic Siegel Eisenstein
series on GU(3,3) and using the pullback formula to construct the Klingen
Eisenstein family on GU(2,2). To do this we need to choose a Siegel section fy
at each arithmetic point ¢ so that

1. f4 depends p-adic analytically on ¢;
2. The pulls back of f4 to (a multiple of) the nearly ordinary Klingen Eisenstein
section.

The hardest part is the computations at the primes dividing p (Skinner and Urban
2010, 11.4.14,15,19). It turns out that certain Siegel-Weil Eisenstein sections work
well. In fact in Skinner and Urban (2010), the section is not given in terms of the
Siegel-Weil section. However it indeed provided the idea of how the section given
in loc. cit. is figured out. Let us briefly explain the idea.

Let @ be the Schwartz function on M(36)(Q,) defined by:

(X, Y) := 1 (X)Pa(Y),

where X and Y are 3 x 3 matrices and define a Siegel-Weil section by:

- —s+3
S = 13 (detg)| detgl,

X / D((0. X)) 17" 17 (det X)| det X |, » 2> X
GL3(Qp)

for x, = (x1,x2). The &, means the Fourier transform of @,. We let @; be a
Schwartz function supported on the set of matrices X such that the X3 and X3,
are in Z’p‘ and the values on it is given by the product of two characters of X3 and
X31. Choosing @, properly and unfolding the formula for the B-th local Fourier
coefficients, we can make sure that it is essentially given by &;()8) (up to some
easier constant depending on ). Thus the first requirement is ensured. This Siegel
Weil section is explicitly given by

-1
Ho= Y ﬁwwc 9)

a€(0,/x)*

where (x) = cond(£9), 7 is our y defining the Siegel Eisenstein section, £ = /<
and fZO’(z) in loc. cit. lemma 11.4.20.

How to interpolate the Klingen Eisenstein series? Hida proved the existence of
a Hecke operator 1 € T?¢(N, y s, A) ® 4 F4 on the space S (N, y ) of ordinary
cusp forms with weight k level N and character x , such that
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<g [ (N _1) >
ly.g= /-

< £ Sl (N ‘1) .

This 17 is not necessarily p-adically integral (Hida 1985). The congruence number
nr is defined (up to a p-adic unit) to be the minimally divisible by p number such
that € s :=ns17isin T?(N, y s, A). The candidate that we choose for the Klingen
Eisenstein series Eg;ing ¢ at the arithmetic point ¢ is the one such that:

e?(l'l)ewl’l)Esieg,¢|U(2,2)xU(1,1) = Ekiingy X f.
Here the superscript means the Hecke operators are applied to the forms considered
as a form on U(1, 1). If we replace f by a Hida family f and suppose the local
Hecke algebra Ty, , (the localization of the Hecke algebra at the maximal ideal m ¢
corresponding to f) is Gorenstein, then we can similarly define 1¢ and n¢, £¢, thus
interpolating everything in p-adic families.

In particular, we get the Klingen-Eisenstein series interpolating Ek;ine 4 Whose
constant terms are divisible by LEK.LIE in light of the discussion at the end of the
last section.

9 Fourier-Jacobi Coefficients

Recall that we have seen that the constant terms of the Klingen Eisenstein family
are divisible by the p-adic L-function. In order to show that the Eisenstein ideal
is contained in the principal ideal (fo), we still need to show that some Fourier
coefficient is co-prime to the p-adic L-function.

9.1 Generalities

We are going to compute the Fourier-Jacobi coefficient of the Siegel Eisenstein
series Eje, as a function on U(1, 1)(A) via the embedding y3 : U(2,2) xU(1,1) —
U(3, 3). The purpose is, by the pullback formula introduced in the previous section,
to express the Fourier coefficients of the Klingen Eisenstein series in terms of the
Petersson inner product with the cusp form we start with. For Z € Hj

Exieg(z) = ZaTe(TI'TZ).
>0
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Write S>(Q) or S>(Q,) for the set of 2 x 2 Hermitian matrices over QQ or Q,. For
a 2 x 2 Hermitian matrix the Sth Fourier-Jacobi coefficient is

> ar(TiT2).
)
k %k

We have an integral representation for the Fourier-Jacobi coefficients:

S0
: 1
Evea(8) = / Eves(| 100 | 9)ea(—TepS)ds.
No(Q\Ng (A) 13

Here e), = ®e, and e,(x,) = e 2"} for v a finite primes and e, (x,) = e2™* for
x € oo. The following lemma gives a way to compute the Fourier-Jacobi coefficients
of Esieg~

Lemma 1. Let f € I3(y), B € S2(Q). Suppose B > 0. Let V be the 2-dimensional
K-space of column vectors. If Re(z) > % Then:

S x
13 ,_
EyiEg,ﬂ(f;Z7 g) = Z Z f(W3 3 lx 0 Otl(l’ V)g)eA(—TrﬁS)dS
YE€EQ1(@Q\G1(Q) xEV S2(A) 15

Proof. 'We omit it here. See Skinner and Urban (2010, 11.3)

The integrand in the lemma is a product of local integrals. We are mainly
interested in evaluating the Fourier Jacobi coefficients at oy (diag(y,’y "), g) for
y € GLy(Ax) and g € U;(Ag).

Definition 13. For each prime v of Q and f € I3(y,), set*12pt
| S x
Flg(fiz,x.8.y) =/ fGows [ 50 |on(diag(y.57"). g))eu(~TepS)dS.
$2(Qv) 15

We are going to identify the Fourier Jacobi coefficients with some forms that we are
more familiar with.
9.2 Backgrounds for Theta Functions

Local Picture Let v be a prime of Q and & € S,(Q,), deth # 0. Then & defines
a two-dimensional Hermitian space V. Let U, be the corresponding unitary group.
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Let A, be a character of K° whose restriction to Q is trivial. One can define the
Weil representation wy, 3 of U, (Q,) x U(1, 1)(Q,) on the space S(V,) of Schwartz
functions on V, (we omit the formulas).

Global Picture Now let &7 € S,(Q),2 > 0 and a Hecke character A = ®A2, of
A% /X such that A| A = 1. Then we define a Weil representation wj, 5 of Uj (Ag) x

U(1,1)(Ag) on S(V ® A) by tensoring the local representations.
Theta Functions Given @ € S(V ® Ag) we define

On(u, g; ) := Z op(u, g)P(x)

x€V

which is an automorphic form on U (Ag) x U;(Ag) and gives the theta correspon-
dence between Uy, and U(1,1).

9.3 Coprime to the p-Adic L-Function

Now let us return to the Fourier Jacobi coefficients. It turns out that by some local
computations, for each v, FJg(f;z, x, g, y) has the form f(g)(wg 1, (¥, g)P,)(0)
where we have chosen a Hecke character A as above, f; € I(x,/A,) and @,
is a Schwartz function on K2, wg s, is defined using the character A,. Thus from
Lemma 1 the Fourier Jacobi coefficient is the product of an Eisenstein series E£;(g)
and a theta series Og(y, g).

Now we prove that the Klingen Eisenstein series is coprime to the p-adic L-
function. Let us take an auxiliary Hida family g of cuspidal eigenforms. Using the
functorial property of the theta correspondence we can find some linear combina-
tions of Eg(f;ze, o1 (diag(y,’y™"), g))’s which “picks up” the g-eigencomponent
of ®g(y,g) (as a function of g). By pairing this with the original ¢ € 7 we
started with, we find certain linear combinations of the Fourier coefficients of the
Klingen Eisenstein family which can be expressed in the form AyB, where By
is the “multiple” of g showing up in ®4(y, g). By choosing g properly B, can
be made a unit in Ap (g is chosen to be a Hida family of theta series from the
quadratic imaginary field X. B, interpolates a square of central critical values of
Hecke L-functions of CM characters. One needs to use a result of Finis (2006) on
the non-vanishing modulo p of anticyclotomic Hecke L-values to conclude By can
be chosen to be a unit). The factor Ay is interpolating < E;(g).g, fs >, essentially
the Rankin Selberg L-values of g with f. By checking the nebentypus we find that
Ajg only involves ]I[[I“gér ]] and is non-zero by the temperedness of f and g.

Now we make the following assumption: N = NN~ where N7 is a product
of primes split in K and N~ is a square-free product of an odd number of primes
inert in X. Furthermore we assume that for each £|N —, pg is ramified at £. Under
this assumption Vatsal (2003) proved if we expand the p-adic L-function as:

Lix =ao+a(y"—D+a(y =1 +......
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fora; € H[[Ff 1], then some a; must be in (]I[[Fjé' 1. This implies (easy exercise)
that Ay, is outside any height one prime P of I[[I'x]] containing fo (since Ag
belongs to ]I[[Fgg' ]I, one may assume P = P+]I[[F£ ]] for some height one prime
Py of I[[I'{]]. By Vatsal’s result, ordp, (L) = 0.)

We are ready to prove the result promised in the previous section: ordp (Ep) >
ordp (Lgy.L7) for any height one prime P (Here £ is the p-adic L-function for
the trivial character, which is co-prime to (fo) by the work of Vatsal. Skinner-
Urban (2010) actually worked in a more general setting by allowing non-trivial
characters). First recall that all constant terms of the Klingen Eisenstein family are
divisible by foﬁ +. By the fundamental exact sequence one can find some family F
of forms on GU(2,2) such that Ep — (£ ) (£1)F := H is a cuspidal family. Now
we prove the desired inequality. Suppose r = ordp (fo) > 1. By construction
there is a Fourier coefficient of the above constructed cuspidal family H outside P.
Denote it as c(f8, x; H) where 8 € $,(Q) and x € GU(2, 2)(Ag). We define a map:

M= ]’l@ — AP/PrAP
by: w(h) = c¢(B, x; hH) /c(B, x; H). This is Ap-linear and surjective. Moreover,
c(B,x;hH) = ¢(B,x; hEp) = Ap(h)c(B,x;Ep) = Ap(h)c(B, x,H)(mod P").

Thus I C kerpu. So we have a surjection w : hpy/Ip —> Ap/P" Ap. But the right
hand side is Ap/Ep. This gives the inequality.

10 Generalizations of the Skinner-Urban Work

We have seen that the key ingredient of this work is a study of the p-adic properties
of the Fourier coefficients of the Klingen Eisenstein series. To generalize this
argument to more general unitary groups we need some non-vanishing modulo p
results for special values of L-functions, which so far is only available for forms
on unitary groups of rank at most 2. We are able to study the Klingen Eisenstein
series for U(1,1) — U(2,2) and U(2,0) — U(3, 1), proving the corresponding
main conjectures for two different Rankin Selberg p-adic L-functions. Here we only
mention the following by product (proved in the Wan (2014)):

Theorem 5. Let F be a totally real field in which p splits completely. Let | be a
Hilbert modular form over F with trivial character and parallel weight 2. Let py
be the p-adic representation of G associated to f. Suppose:

1. f has good ordinary reduction at all primes dividing p;

2. py is absolutely irreducible.

3. If [F=Q] is even and the global sign of f is —1, then the automorphic
representation of f is not principal series in at least one finite place.
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If the central value L(f,1) = 0, then H}.(F, pr)is infinite.

In the case when the sign of L(f,s) is —1 this is an early result of Nekovar (2006)
and Zhang (2001). The cases when this sign is +1 is new. Note that even in the
case when F = Q our result is slightly stronger than the one in Skinner and Urban
(2010). The reason is that by working with general totally real fields we can use
a base change trick to remove some of the technical local conditions (Skinner and
Urban 2010).
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On Extra Zeros of p-Adic L-Functions:
The Crystalline Case

Denis Benois

Nous avons toutefois supposé pour simplifier que les opérateurs
1 —g@et1— p~lo~! sont inversibles laissant les autres cas,
pourtant extrémement intéressants pour plus tard.

Introduction to Chapter III of Perrin-Riou (1995)

1 Introduction
1.1 Extra Zeros

Let M be a pure motive over Q. Assume that the complex L-function L(M,s)
of M extends to a meromorphic function on the whole complex plane C. Fix an
odd prime p. It is expected that one can construct p-adic analogues of L(M,s)
p-adically interpolating algebraic parts of its special values. The above program has
been realised and the corresponding p-adic L-functions constructed in many cases,
but the general theory remains conjectural. Perrin-Riou (1995) formulated precise
conjectures about the existence and arithmetic properties of p-adic L-functions in
the case where the p-adic realisation V' of M is crystalline at p. Let D¢5(1V) denote
the filtered Dieudonné module associated to V' by the theory of Fontaine. Let D be a
subspace of Dq;is(V) of dimension d4 (V) = dimg, V=1 stable under the action of
¢. (As usual, ¢ denotes the complex conjugation.) One says that D is regular if one
can associate to D a p-adic analogue of the six-term exact sequence of Fontaine and
Perrin-Riou (see Sect.4.1.3 and Perrin-Riou (1995) for an exact definition). Fix a
lattice T of V' stable under the action of the Galois group and a lattice N of a regular
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module D. Perrin-Riou conjectured that one can associate to this data a p-adic
L-function L ,(T, N, s) satisfying some explicit interpolation property. Let r denote
the order of vanishing of L(M,s) ats = 0 and let L*(M,0) = limy_os " L(M,s).
Then at s = 0 the interpolation property reads

li

s—0

L,(T,N,s L*(M,0
m% = &V, D)RV,D(Q)V,N)Q-
s Riyt.00(@pr)

Here Ry o0(wpr) (resp. Ry p(wy,y)) is the determinant of the Beilinson (resp. the
p-adic) regulator computed in some compatible bases wy, and wy v and E(V, D) is
an Euler-like factor given by

E(V.D) = det(1 - p~'¢™" | D) det(1 — ¢ | Dess(V)/ D).

If either D¥=r"" # 0 or (Deis(V)/D)?=! # 0 we have &(V, D) = 0 and the order
of vanishing of L,(N,T,s) should be > r. In this case we say that L,(T, N,s)
has an extra zero at s = 0. The same phenomenon occurs in the case where V is
semistable and non-crystalline at p. An archetypical example is provided by elliptic
curves having split multiplicative reduction (Mazur et al. 1986). Assume that 0 is a
critical point for L(M, s) and that H°(Q, V) = H°(Q, V) = 0.! In Benois (2011)
using the theory of (¢, I")-modules we associated to each regular D an invariant
Z(V,D) € Q, generalising both Greenberg’s .Z-invariant (Greenberg 1994) and
Fontaine—Mazur’s .Z-invariant (Mazur 1994). This allows one to formulate a quite
general conjecture about the behavior of p-adic L-functions at extra zeros in the
spirit of Greenberg (1994). To the best of our knowledge this conjecture is actually
proved in the following cases:

1. Kubota—Leopoldt p-adic L-functions (Ferrero and Greenberg 1978, 1979; Gross
and Koblitz 1979). Here the .Z-invariant can be interpreted in terms of Gross’ p-
adic regulator (Greenberg and Stevens 1993; Gross 1981). We also remark that in
Dasgupta et al. (2011) this result was generalized to totally real fields (assuming
the Leopoldt conjecture).

2. Modular forms of even weight (Greenberg and Stevens 1993; Kato 2004; Stevens
2010). Here the Z-invariant coincides with Fontaine-Mazur’s .Z( f). In Mok
(2009), Spiess (to appear) and Rosso (2013) the method of Greenberg and
Stevens (1993) was generalized to study trivial zeros of elliptic curves/modular
forms of weight 2 over totally real fields.

3. Modular forms of odd weight (Benois 2014). The associated p-adic represen-
tation V is either crystalline or potentially crystalline at p and we do need the
theory of (¢, I')-modules to define the .Z-invariant.

4. Symmetric squares of modular forms having either split multiplicative or good
reduction (Rosso 2014). In the split multiplicative and good ordinary reduction

!By Tate’s conjecture this condition should be equivalent to the vanishing of H°(M) and
HO(M*(1)).



On Extra Zeros of p-Adic L-Functions: The Crystalline Case 67

cases the associated p-adic representation V' is ordinary and the .Z-invariant
reduces to Greenberg’s construction (Greenberg 1994). In the supersingular case
again the definition of the .Z-invariant involves (¢, I")-modules. For elliptic
curves having good ordinary reduction another proof, based on factoring the
several-variable Rankin—Selberg p-adic L-function along the diagonal has been
suggested by Dasgupta (work in progress). The fact that a factorization would
lead to the proof of the conjecture appears previously in Citro (2008).

5. Symmetric powers of CM-modular forms (Harron 2013; Harron and Lei to
appear). See also (Harron and Jorza 2013).

1.2 Extra Zero Conjecture

The goal of this paper is to generalise the conjecture from Benois (2011) to the non
critical point case. Assume that V' is crystalline at p. Then a weight argument shows
that £(V, D) can vanish only if wt (M) = 0 or —2. In particular, we expect that the
interpolation factor does not vanish at s = 0 if wt(M) = —1 i.e. that the p-adic
L-function can not have an extra zero at the central point in the good reduction case.
To fix ideas assume that wt (M) < —2 and that M has no subquotients isomorphic
to Q(1). > We denote by H }(V) the Bloch—Kato Selmer group of V. Then D is
regular if and only if the associated p-adic regulator map

rv.p : H}(V) - Dcris(V)/(FiloDcris(V) + D)

is an isomorphism. The semisimplicity of ¢ : Dgis(V) — Dgis(V) (which
conjecturally always holds) allows one to decompose D into a direct sum

1

D:D_IEBD‘/’=P_ .

Under some mild assumptions (see Sects.4.1.2 and 5.1.2 below) we associate to D
an Z-invariant Z(V, D) which is a direct generalization of the main construction
of Benois (2011). The Beilinson-Deligne conjecture predicts that L (M, s) does not
vanish at s = 0 and that L(M *(1), s) has a zero of order r = dimg, H}(V) ats =
0. Let L’;(T, N, 0) denote the first non-zero coefficient in the Taylor expansion of
L,(T, N, s). We propose the following conjecture (see Conjecture 4 of Sect. 5.2.2):

Conjecture 1. Let D be a regular subspace of Dgis(V) and let e =
dimg, (D#=7""). Then

2The last condition is not really essential and can be suppressed.
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(i) The p-adic L-function L, (T, N, s) has a zero of order e at s = 0 and

LYT.N.0) . L(M.0)
Ryplwvy) —Z W D)ENV. D) Rytoo(wm)’

(i) Let DL denote the orthogonal complement to D under the canon-
ical dualityDeris(V) x Deis(V*(1)) —  Qp,. The p-adic L-function
Lp(T*(l),NJ-,s) has a zero of order e + r where r = dimg H}(V) at
s =0and ‘

L%(T*(1), N+, 0) — 2(V.D) e (V). DY) L*(M*(1),0)
RV*(l),DL(a)V*(l),NL) ’ ’ RM*(I),OO(CUM*(I)).

In the both cases

et v, p)y=¢er(v*Q1), DY)
=det(l — p~ o7 | D_)) det(l — p~ o™ | Des (V*(1))).

Remarks. (1) €T (V, D) is obtained from E(V, D) by excluding the zero factors.
It can also be written in the form

1— -1 -1
EX(V,D) = EX(V, 1) detg, (p—w‘p |D_1)
where E,(V,t) = det(1 — ¢t | Deis(V)) is the Euler factor at p and

E (V1) = E,(V,1) (1 — %)_e.

(2) Assume that H ! (V) = 0. Since H! (V*(l)) should also vanish by the weight
argument, our conjecture in this case reduces to Conjecture 2.3.2 from Benois
(2011).

(3) The regularity of D supposes that the localisation H }(V) — H } (@Qp, V) is
injective. Jannsen’s conjecture (made more precise by Bloch and Kato) says
that the p-adic realisation map H !} (M )®Q, —> H! (V) is an isomorphism.
The composition H !} (M ) - H! (Q p, V) of these two maps is essentially the
syntomic regulator Its mJecthlty seems to be a difficult open problem.

4) Let f = Zan (f)g" and g = Zb (f)q" be two different newforms of

n=1

weight 2 and nebentypus 1y and 7, on Fl (N). For any prime [ we denote by «; ;
and o 5 (resp. B;.1 and B;») the roots of the Hecke polynomial X2 —a; ()X +
ns(DI (resp. X* —bi(f)X + ne(1)]). The Rankin—-Selberg L-function L(f ®
g, s) is defined by
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L(f®gs)=[]P(f&gl™)"
i

where

P(f®gX)=0—-a1B11X)A—a;1B12X)1 =281 X) (1 —ay 2812 X).

Let W and W, be the p-adic representations associated to f* and g respectively.
Let Wre = Wy ® W, and Ty, a fixed lattice of Wy,. The complex L-
function L(Wy,,s) associated to Wy, coincides with L(f ® g,s) up to
Euler factors at / | N. The p-adic representation Wy.(2) can be viewed
as the p-adic realisation of a motive M s,(2) of weight —2. We remark that
M ¢ (2) is non-critical and the special value L(Wr4(2),0) = L(Wy,,2) can
be expressed in terms of the regulator map (Beilinson 1984). If p } N, the
restriction of W;.(2) on the decomposition group at p is crystalline with
Hodge-Tate weights (—2, —1, —1, 0). The crystalline module Dcis(Wr,(2)) is
a 4-dimensional vector space generated by eigenvectors dj;, 1 < i, j < 2 such
that p(d;) = a; B p‘zd,-j. Let D;; (1 < i, j < 2)be the 3-dimensional subspace
of Deris(Wr,(2)) generated by d., (r,5) # (i, j) and N;; a fixed lattice of D;.
One expects that if /" and g are not CM, then Dj; is regular. If o, . B, = p for

some (r,s) # (i, ), then D;f:p 1 # 0 and our extra zero conjecture predicts
the behavior of L,(Ts,, Njj, s) at s = 0. As Wy, (2) is non-critical, this gives
an example of extra zero which is not covered by the trivial zero conjecture
from Benois (2011).

1.3 Selmer Complexes and Perrin-Riou’s Theory

In the last part of the paper we show that our extra zero conjecture is compatible
with the Main Conjecture of Iwasawa theory as formulated in Perrin-Riou (1995).
The main technical tool here is the descent theory for Selmer complexes (Nekovar
2006). We hope that the approach to Perrin-Riou’s theory based on the formalism
of Selmer complexes can be of independent interest.

For a profinite group G and a continuous G-module X we denote by C (G, X)
the standard complex of continuous cochains. Let S be a finite set of primes
containing p. Denote by G the Galois group of the maximal algebraic extension of
Q unramified outside S U {oo}. Set RI's(X) = C?(Gs, X) and RI'(Q,, X) =
C?(Gy, X), where G, is the absolute Galois group of Q,. Let I" be the Galois
group of the cyclotomic p-extension Q({,o0)/Q, I = Gal(Q({poe)/Q(£,)) and
A = Gal(Q(¢,)/Q). Let A(I") = Z,[[I']] denote the Iwasawa algebra of I.
Each A(I")-module X decomposes into the direct sum of its isotypical components
X = ®,c AX ™ and we denote by X the component which corresponds to

the trivial character 9. Set A = A(I')™). Let H denote the algebra of power
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series with coefficients in QQ, which converge on the open unit disk. We will
denote again by JH the associated large Iwasawa algebra F(I7) (see Sect.3.2.1).
In this paper we consider only the trivial character component of the module
of p-adic L-functions because it is sufficient for applications to trivial zeros,
but in the general case the construction is exactly the same. We keep notation
and assumptions of Sect.1.2. Assume that the weak Leopoldt conjecture holds
for (V,no) and (V*(1), no). We consider global and local Iwasawa cohomology
RIws(T) = RIS((A(IN)®z,T)") and RI1w(Qy, T) = RI'(Q,. (A(I)®z,T)")
where ¢ is the canonical involution on A(I"). Let D be a regular submodule of
Dis(V). For each non-Archimedean place v we define a local condition at v in the
sense of Nekovar (2006) as follows. If v # p we use the unramified local condition
which is defined by

RIL(Qu N.T) = RI) Q.. T) = [T"‘ ®A LTl A‘}

where 1, is the inertia subgroup at v and f, is the geometric Frobenius. If v = p we
define

RI™(Q,. N.T) = (N ® A)[-1].

The derived version of the large exponential map Expy, ;,, for & > 0 (see Perrin-Riou
1994) gives a morphism

RN (Q). N.T) - RIL(Q,. T) ® K.

Therefore we have a diagram

RE(T) @, K BRG™(Q,,T) @4 H

ves

(@RI}\(NT'O)(Q\HN7T)> @A H .

ves

Let RI"I&‘;Z) (D, V) denote the Selmer complex associated to this data. By definition
it sits in the distinguished triangle

RE (D, V) — (Rﬂiffis’(v) S (EB RO Q. D, V))) ®IH

veS

(GB RO (@, V)) ®H. (1)

veS
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Define
A i(N,T) =
det;;! (ergyfg P (@ R (@Q,, N, T))) ®dety (@ R (Q,, T)) .
veS vES

Our results can be summarized as follows (see Theorems 4, 5 and Corollary 2).
Theorem 1. Assume that £(V, D) # 0. Then

(i) The cohomology R ﬂfrj,[;:)(D’ V) are H-torsion modules for all i.
(i) R (D, V) =0fori # 2.3 and

RN (D, V) 2 (HO(@Q(pee). V(1)) ™ @4 5.

Iw,h

(iii) The complex RI"I&(;I)(D, V') is semisimple in the sense that for each i the
natural map

R (D, V)" - R (D, V)r

is an isomorphism.

This theorem allows us to apply to our Selmer complexes the descent machinery
developed by Nekovar (2006). Assume that Z(V, D) # 0. Let X be the field of
fractions of J(. Then Theorem 1 together with (1) define an injective map

iviwh ¢ Awp(N. T) = K
and the module of p-adic L-functions is defined as

L") (N, T) = iyiwi(Awa(N.T)) C K.

Tw,h

Let y; be a fixed generator of I';. Choose a generator f(y; —1) of the free A-module
LY’OL (N, T') and define a meromorphic p-adic function

w,
Lwn(T,N.s) = f(x(y1)’ = 1),
where y : I' — Zj is the cyclotomic character. For a,b € Qj we will write
a ~p b if a and b coincide up to a p-adic unit.
Theorem 2. Assume that £ (V, D) # 0. Then

(i) The p-adic L-function Ly 5 (T, N, s) has a zero of order e = dimg, (D<ﬂ=p_l)
ats = 0.
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(ii) One has

T,N.0
Liyn( ) ) TV 2V, DY e (7, D) #III(T* (1)) Tam, (T 7
Ry.p(@r.N) #HY(V/T)#HI(V*(1)/T*(1))

where ILI(T* (1)) is the Tate—Shafarevich group of Bloch—Kato (1990) and
Tam o (1) is the product of local Tamagawa numbers of T'.

Remarks. (1) Using the compatibility of Perrin-Riou’s theory with the func-

) If D

3)

“)

)

tional equation we obtain analogous results for the L,(7*(1), N L.5) (see
Sect. 6.2.6).

s (V)91 = DCH'S(V)‘/’ZI’_1 = 0 the phenomenon of extra zeros does
not appear, .Z(V, D) = 1 and Theorem 2 was proved in Perrin-Riou (1995),
Theorem 3.6.5. We remark that even in this case our proof is different. We
compare the leading term of L, ,(T, N,s) with the trivialisation iy, ,
Agp(T) — Q, of the Euler—Poincaré line Agp(7T") (see Fontaine 1992) and
show that in compatible bases one has

Ly, (T, N,0)

Ry~ T ZV.D)EXV.D) iy (1) @)

(see the proof of Theorem 5). Now Theorem 2 follows from the well known
computation of iy,, , (Agp(7T")) in terms of the Tate—Shafarevich group and
Tamagawa numbers (see Fontaine and Perrin-Riou 1994, Chapitre II).

Let £/Q be an elliptic curve having good reduction at p. Consider the p-
adic representation V = Symz(Tp(E )) ® Qp, where T,,(E) is the p-adic Tate
module of E. It is easy to see that D = DCH'S(V)‘FIF1 is one dimensional.
In this case some versions of Theorem 2 were proved in Perrin-Riou (1998)
and Delbourgo (2002) with an ad hoc definition of the .Z-invariant. Remark
that p-adic L-functions attached to the symmetric square of a newform were
constructed by Dabrowski and Delbourgo (1997) and Rosso (2014).

Another approach to Iwasawa theory in the non-ordinary case was developed
by Pottharst (2012, 2013). Pottharst uses the formalism of Selmer complexes
but works with local conditions coming from submodules of the (¢, I")-module
associated to V rather than with the large exponential map. This approach has
many advantages, in particular it allows to develop an interesting theory for
representations which are not necessarily crystalline. Nevertheless it seems that
the large exponential map is crucial for the study of extra zeros at least in the
good reduction case.

The Main conjecture of Iwasawa theory (Colmez 2000; Perrin-Riou 1995) says
that for 27 > 0 the analytic p-adic L-function L,(N, T,s) multiplied by a
simple explicit I"-factor I'y;(s) depending on & can be written in the form
TI'vu(s)L,(N,T,s) = f(x(y1)’ — 1) for an appropriate generator f(y; — 1) of

L;X;’Z (N, T). Therefore the Main conjecture implies Bloch—Kato style formulas
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for special values of L,(N,T,s). We remark that the Bloch—-Kato conjecture
predicts that

L*(M.0) #I(T* (1)) Tam, (T)
Rucolwn) " #HY(V/T)#H(V*(1)/ T*(1))

and therefore Theorem 2 implies the compatibility of our extra zero conjecture
with the Main conjecture. Note that this also follows directly from (2) if we use
the formalism of Fontaine and Perrin-Riou (see Fontaine 1992) to formulate
Bloch—Kato conjectures.

1.4 The Plan of the Paper

The organisation of the paper is as follows. In Sect. 2 we review the theory of (¢, I")-
modules which is the main technical tool in our definition of the .Z-invariant. We
also give the derived version of the computation of Galois cohomology in terms of
(¢, I')-modules. This follows easily from the results of Herr (1998) and Liu (2007)
and the proofs are placed in Appendix. Similar results can be found in Pottharst
(2012,2013). In Sect. 3 we recall preliminaries on the Bloch—Kato exponential map
and review the construction of the large exponential map of Perrin-Riou given by
Berger (2003) using again the basic language of derived categories. The £ -invariant
is constructed in Sect. 4.1. In Sect. 4.2 we relate this construction to the derivative
of the large exponential map. This result plays a key role in the proof of Theorem 2.
The extra zero conjecture is formulated in Sect.5. In Sect. 6 we interpret Perrin-
Riou’s theory in terms of Selmer complexes and prove Theorems 1 and 2.

This paper is a revised and extended version of the preprint Benois (2009).
In Benois (2009), Theorems 1 and 2 above were proved under the additional
assumption that H }(V) = 0. As we pointed out before, in this case our extra-zero
conjecture reduces to the Conjecture 2.3.2 from Benois (2011).

2 Preliminaries

2.1 (¢, I')-Modules

2.1.1 The Robba Ring

The main references for the material of this section are (Berger 2002) and (Colmez
2003). In this section K is a finite unramified extension of Q, with residue field
kg, Ok its ring of integers, and o the absolute Frobenius of K. Let K an algebraic
closure of K, Gy = Gal(K/K) and C the completion of K. Letv, : C —
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R U {oo} denote the p-adic valuation normalized so that v,(p) = 1 and set |x|, =

vy (x)
(%) " Write B(r, 1) for the p-adic annulus B(r,1) = {x € C | r < |x| < 1}.

As usually, u,» denotes the group of p”-th roots of unity. Fix a system of primitive
roots of unity & = ({pn)n=0, {pn € Wy such that E;n = {1 forall n. Set K, =
K(p), Koo = Usey Ku, Hx = Gal(K/Ks), I' = Gal(Ko/K) and denote by
x: I — Z; the cyclotomic character.

Set

Et = 1(21 Oc/pOc = {x=(x0,X1,-..,Xn,...) | x!' =x; Vi e N}.

XH=>xP

Let X, € Oc be a lifting of x,,. Then for all m = 0 the sequence )@Z:_n converges to
XM = lim, e fc,f,:_n € Oc¢ which does not depend on the choice of liftings. The
ring ET equipped with the valuation vg(x) = v, (x©@) is a complete local ring of
characteristic p with residue field k k. Moreover it is integrally closed in its field of
fractions E = Fr(E™).

Let A = W(E) be the ring of Witt vectors with coefficients in E. Denote by
[]: E — W(E) the Teichmiiller lift. Any u = (uo, u1,...) € A can be written in
the form

o

w= ",

n=0

Setw = [¢] — 1, AE) Ok,[[7]] and denote by Ak the p-adic completion of

A+ [1/7]. Let B=A [1/p], Bk = Ak [l/p] and let B denote the completion of
the maximal unramified extension of Bx in B. Set A = BN A, AT = W(E™T),
At = AT N A and Bt = A*[1/p]. All these rings are endowed with natural
actions of the Galois group G and Frobenius ¢.

Set Ax = A% and Bx = Ak [1/p]. We remark that I and ¢ act on Bg by

() = (1 + 7))@ —1, tel,
o) =10+ )’ —1.

For any r > 0 define
Bf" = %x €B| lim (ve(xk) + Lk) = —i—oo} .
k—>+o0 p—1

Set B = BN B, BY = By NB™, Bf = | JB"" AT = AN B and B =

r>0
By

r>0
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It can be shown that forany r = p — 1

B}’r = { flr)= Zaknk | ar € K and f is holomorphic and bounded on B(r, 1)
kez

Define

B;ri’gr’K = gf(n) = Zaknk | ar € K and f is holomorphic on B(r, 1)
kez

SetR(K) = |J Bl «
r=zp—1

that these rings are stable under I and ¢. To simplify notations we will write R =
R(Qp) and RT = R*(Q,). As usual, we set

and RT(K) = R(K) N K[[x]]. It is not difficult to check

e n
t = log(1 = e g
og(1 + ) ;( e
Note that ¢(t) = ptand t(¢t) = y(v)t,t € I'.

2.1.2 (¢, I')-Modules

The main references for the material of this section are (Cherbonnier and Colmez
1998; Colmez 2008; Fontaine 1991). Let A be either B;{ or R(K). A (¢, I'')-module
over A is a finitely generated free A-module D equipped with semilinear actions of
¢ and I" commuting with each other and such that the induced linear map ¢ :
A®yD — Dis an isomorphism. Such a module is said to be étale if it admits a A}-
lattice N stable under ¢ and I" and such that ¢ : A} ®yN — N isanisomorphism.
The functor D > R(K) ®B;< D induces an equivalence between the category of étale

(¢, I')-modules over B} and the category of (¢, I")-modules over R(K) which
are of slope 0 in the sense of Kedlaya’s theory (Kedlaya 2004 and Colmez 2008,
Corollary 1.5). Then Fontaine’s classification of p-adic representations (Fontaine
1991) together with the main result of Cherbonnier and Colmez (1998) lead to the
following statement.

Proposition 1. (i) The functor
D' : V> DI(V) = B g, V) ¥

establishes an equivalence between the category of p-adic representations of
Gk and the category of étale (¢, I')-modules over BTK.
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(ii) The functor Diig(V) = R(K) ®BI< DY (V) gives an equivalence between the

category of p-adic representations of Gk and the category of (¢, I')-modules
over R(K) of slope 0.

Proof. See Colmez (2008), Proposition 1.7.

2.1.3 Cohomology of (¢, I')-Modules

We refer to (Herr 1998, 2001; Liu 2007) for the material discussed in this section.
Fix a generator y of I'. If D is a (¢, I")-module over A, we denote by C, , (D) the
complex

C,, : 0D ->DeD 55D 0

where f(x) = ((p = D x,(y = D) and g(3.2) = (y = )y = (p = D)z Set
H'(D) = H'(Cy, (D)). A short exact sequence of (¢, I")-modules

0—D —D—D'"—0
gives rise to an exact cohomology sequence:
0— H'D)— H'D) - H'D") - H'(D') > --- - H*(D") — 0.

Proposition 2. Let V be a p-adic representation of Gg. Then the complexes
RI(K,V), C,,,(D'(V)) and C,, (Diig(V)) are isomorphic in the derived category
of Qp-vector spaces ‘D(Q,).

Proof. This is a derived version of Herr’s computation of Galois cohomology (Herr
1998). The proof is given in the Appendix (see Proposition 9 and Corollary 3).

2.1.4 Iwasawa Cohomology

Recall that A = Z,[[I1]] denotes the Iwasawa algebra of I. Set A = Gal(K/K)
and A(I') = Z,[A] ®z, A. Lett : A(I') — A(I") denote the involution defined
by «(g) = g7', g € I'.If T is a Z,-adic representation of G, then the induced
module Indg,,/x (T) is isomorphic to (A(I") ®z, T)* and we set

R (K. T) = RI(K. Indg/x(T)).

Write H] (K. T) for the Iwasawa cohomology

w

HL(K,T)= lim H'(K,,T).

COrK”/Kn71
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Recall that there are canonical and functorial isomorphisms

R (K, T) ~ H. (K, T), i >0,

(see Nekovar 2006, Proposition 8.4.22). The interpretation of the Iwasawa coho-
mology in terms of (¢, I')-modules was found by Fontaine (unpublished but see
Cherbonnier and Colmez 1999). We give here the derived version of this result. Let
¥ : B — B be the operator defined by the formula ¥ (x) = %qp‘l (Tre/pm)(x)) -
We see immediately that ¢ o ¢ = id. Moreover ¥ commutes with the action of G
and ¥ (AT) = A%, Consider the complexes

Crug(T) : D(T) 225 D(T),

¢ty - oIy L5 i),

Proposition 3. The complexes RITw (K, T), Crwy(T) and CITV,W(T) are naturally
isomorphic in the derived category D(A(I")) of A(I")-modules.

Proof. See Proposition 11 and Corollary 4.

2.1.5 (¢, I')-Modules of Rank 1

Recall the computation of the cohomology of (¢, I")-modules of rank 1 following

Colmez (2008). As in op. cit., we consider the case K = Q, and put R = Biig.@p

d
and Rt = B:i'g o, The differential operator 0 = (1 + n)d— acts on R and R,
’ s

If§ : Q, — Qj is a continuous character, we write R(8) for the (¢, I")-module
Res defined by p(es) = §(p)es and y(es) = §(x(t)) es. Let x denote the character

induced by the natural inclusion of Q, in L and |x| the character defined by |x| =
—v,(x)
p

Proposition4. Let§ : Q; — Q; be a continuous character. Then:
(i)
Qpt" ifé§=x"meN

otherwise.

H(R(E)) =
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(ii)
dimg, (H'(R(8)))

_ {2 if either §(x) = x™",m = 0 or §(x) = |x|x",m = 1,

1  otherwise.

(iii) Assume that §(x) = x™, m = 0. The classes cl(t™, 0) es and c1(0, t™) es form
a basis of H'(R(x™™)).

(iv) Assume that §(x) = |x|x™, m = 1. Then H'(R(|x|x™)), m = 1 is generated
by cl(a;,) and cl(B;,) where

—1)m-1 11 11
oy = ﬁ ! (;+§,a) es, (I1—@)a=1-yxy)y) (;+§),
_ (=pm!

P = (m—1)!

mwl@hl)e& <1—¢)(1) — (=) )b
T e

Proof. See Colmez (2008), Sects. 2.3-2.5.

2.2 Crystalline Representations

2.2.1 The Rings B.is and Bgr

The main references for the material of this section are (Fontaine 1982, 1994a). Let
6o : AT — Oc be the map given by the formula

o o
Q%me)=2#w.
n=0 n=0

It can be shown that 6 is a surjective ring homomorphism and that ker(6y) is the
p-l

principal ideal generated by @ = ) [€]//?. By linearity, 6 can be extended to a
i=0

map @ : Bt — C. The ring B is defined to be the completion of B* for the

ker(6)-adic topology:

B}, = 1(1111§+ / ker(0)".

n

This is a complete discrete valuation ring with residue field C equipped with a
natural action of Gg. Moreover, there exists a canonical embedding K C BIR.
o0

The series t = (=1)""'z"/n converges in the topology of B;LR and it is easy
n=0
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to see that r generates the maximal ideal of B;;{. The Galois group acts on ¢
by the formula g(t) = y(g)t. Let Br = B;;{[t_l] be the field of fractions of
B;;{. This is a complete discrete valuation field equipped with a Gg-action and
an exhaustive separated decreasing filtration FilBgr = tiB('j"R. As G g-modules,
Fil' Bar /Fil *'Bgr ~ C(i) and BS¥ = K.

Consider the PD-envelope of AT with a respect to the map 6

AP — AT “’_2‘”_3 o"
2073177 g

and denote by AL, its p-adic completion. Let BY,, = A ®z, Q, and Bess =
B;S[t_l]. Then B;s is a subring of Bqr endowed with the induced filtration and
Galois action. Moreover, it is equipped with a continuous Frobenius ¢, extending

themap ¢ : At — AT.Onehas¢(t) = pt.

2.2.2 Crystalline Representations

In this section we review the notion of crystalline representation and its relationship
to the theory of (¢, I")-modules (see Berger 2002, 2004; Fontaine 1994b). Let L be a
finite extension of Q,. Denote by K its maximal unramified subextension. A filtered
Dieudonné module over L is a finite dimensional K-vector space M equipped with
the following structures:

* A o-semilinear bijectivemap ¢ : M — M;

* An exhaustive decreasing filtration (Fil’ M| )icz on the L-vector space M) =
L®x M.
A K-linearmap f : M — M’ is said to be a morphism of filtered modules if

* fp(d) = ¢(f(d)) foralld € M;
« f(FilI'My) C Fil' M foralli € Z.

The category MFY of filtered Dieudonné modules is additive, has kernels and
cokernels but is not abelian. Denote by 1 the vector space K with the natural action
of o and the filtration given by

K, ifi <0,
0, ifi >0.

Fil'l =

Then 1 is a unit object of MF‘E ie M ®1>~1Q M ~ M forany M.

If M is a one dimensional Dieudonné module and d is a basis vector of M,
then ¢(d) = ad for some ¢ € K. Set ty(M) = v,(«) and denote by t5 (M)
the unique filtration jump of M. If M is of an arbitrary finite dimension d, set
tn(M) = ty(AYM) and ty(M) = ty(A?M). A Dieudonné module M is said
to be weakly admissible if 15 (M) = ty(M) and if tg(M') < ty(M') for any
@-submodule M’ C M equipped with the induced filtration. Weakly admissible
modules form a subcategory of MF? which we denote by MF%/ .
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If V is a p-adic representation of G, define Dgr(V) = (Bgr ® V)C:. Then
Dgr(V) is a L-vector space equipped with the decreasing filtration Fil' Dgg (V) =
(Fil'Bar ® V)9. One has dim; Dar(V) < dimg, (V) and V is said to be de Rham
if dim; Dgr (V') = dimg, (V). Analogously one defines De;is (V) = (Beris ® V)or.
Then D,;5(V) is a filtered Dieudonné module over L of dimension dimg D5 (V) <
dimg, (V) and V' is said to be crystalline if the equality holds here. In particular, for
crystalline representations one has Dgr(V) = Dgis(V) @k L. By the theorem of
Colmez—Fontaine (2000), the functor D5 establishes an equivalence between the
category of crystalline representations of G and MF‘f‘f . Its quasi-inverse Vs is
given by V(D) = Fil®(D ®x Bers)?~".

An important result of Berger (2002, Theorem 0.2) says that D.s(V) can be
recovered from the (¢, I')-module Djig(V). The situation is particularly simple if
L/Q, is unramified. In this case set D* (V) = (V ®o, Bt)fx and D;'g(V) =
RT(K) Bt D* (V). Then

+ 1 "
Dcris(V) = (Dng(V) I:;i|)

(see Berger 2004, Proposition 3.4).

3 The Exponential Map

3.1 The Bloch-Kato Exponential Map

3.1.1 Cohomology of Dieudonné Modules

Let L be a finite extension of Q, and K its maximal unramified subextension. Recall
that we denote by MFY the category of filtered Dieudonné modules over L. If M is
an object of MF?, define

H'(L.M) = Exty (1LM), i =0,1.

We remark that H*(L, M) can be computed explicitly as the cohomology of the
complex

co M) - M —Ls (M /FIM,) @ M

where the modules are placed in degrees 0 and 1 and f(d) = (d (mod Fil°M),
(1 — ¢) (d)) (see Fontaine and Perrin-Riou 1994; Nekovar 1993). Note that if M
is weakly admissible then each extension 0 - M — M’ — 1 — 0 is weakly
admissible too and we can write H (L, M) = EXt&F“”-f 1, M).

L
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3.1.2 The Exponential Map

Let Rep,,;.(G1) denote the category of crystalline representations of G, . For any
object V of Rep,,; (G ) define

H; (L’ V) = EXti(ePcris(GL)(Qp (O), V)

An easy computation shows that

HO(L,V) ifi =0,
Hi(L.V) = Sker(H'(L,V) - H'(L,V ® Bsp)) ifi =1,
0 ifi =2,

Let ty (L) = Dgr(V)/Fil’Dgr (V) denote the tangent space of V. The rings Bgr and
B.is are related to each other via the fundamental exact sequence

0 —> Q, —> Bess —> Bag/Fil’Bag @ Beris —> 0
where f(x) = (x (mod Fil’Bg), (1 — ¢) x) (see Bloch and Kato 1990, §4).
Tensoring this sequence with V' and taking cohomology one obtains an exact
sequence
0— H(L,V) —> Dess(V) — tv(L) @ Deris (V) —> H (L, V) — 0.
The last map of this sequence gives rise to the Bloch—Kato exponential map
expyy : tv(L) @ Deis(V) — H'(L, V).

Following (Fontaine 1992) set
RIA(L, V) = C*(Deis(V)) = |:Dcris(V) L>tv(L) @Dms(V)}

From the classification of crystalline representations in terms of Dieudonné modules
it follows that the functor Vs induces natural isomorphisms

i, t RTp(L.V)— H{(LV), i=01

The composite homomorphism

rl
tv(L) @ Deis (V) —> R'TH(L, V) =5 H'Y(L,V)

coincides with the Bloch-Kato exponential map expy,; (Nekovaf 1993, Proposi-
tion 1.21).
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3.1.3 The Map RIy(L,V) - RI(L,V)

Letg : B®* — C* be a morphism of complexes. We denote by Tot®(g) the complex
Tot"(g) = C"~' @ B" with differentials d" : Tot"(g) — Tot""!(g) defined by
the formula d"(c,b) = ((—1)"g"(b) + d"'(c),d"(b)). It is well known that if

! g . .
0 — A®* — B* — C°*—0is an exact sequence of complexes, then f induces

a quasi isomorphism A*® S Tot® (g)- In particular, tensoring the fundamental exact
sequence with V', we obtain an exact sequence of complexes

00— RF(L, V) — CC.(GL7 Ve Bcris) _f)
CC'(GL, Ve (BdR/FﬂOBdR)) ® (V ®Buis)) = 0

which gives a quasi isomorphism RI'(L, V) = Tot*(f). Since RI'y(L,V)
coincides tautologically with the complex

f .
CY(GL,V ®Beis) — CY(Gr, (V ® (Bar/Fil’Bar)) ® (V ® Beis))
we obtain a diagram
RI(L,V) ——Tot*(f)
RIF(L,V)
which defines a morphism RI'f(L,V) — RI'(L,V) in D(Q,) (see Burns
and Flach 1996, Sect.1.2.1). We remark that the induced homomorphisms

R'Ip(L,V) — H'(L,V) (i = 0,1) coincide with the composition of ry, ,
with natural embeddings H ;, (L, V)= H(L,V).

3.1.4 Exponential Map for (¢, I"')-Modules

In this subsection we define an analogue of the exponential map for crystalline
(¢, I')-modules. See Nakamura (2014) for a more general setting. Let K/Q,, be
an unramified extension. If D is a (¢, I")-module over R(K) define

Deris(D) = (D[1/1])" .
It can be shown that D5 (D) is a finite dimensional K-vector space equipped with

a natural decreasing filtration Fil’ Deis(D) and a semilinear action of ¢. One says
that D is crystalline if



On Extra Zeros of p-Adic L-Functions: The Crystalline Case 83
dimg (Deis (D)) = rank(D).

From Berger (2008), Théoréme A it follows that the functor D — D (D) is an
equivalence between the category of crystalline (¢, I")-modules and MF‘;}. Note

that if V' is a p-adic representation of Gg then D¢ (V) = ’Dcris(DJr (V)) and V is

rig

crystalline if and only if D, (V) is.

Let D be a (¢, I")-module. To any cocycle & = (a,b) € Z'(C,,, (D)) one can
associate the extension
0—D—D, —RK)—0
defined by
D, =D @ R(K)e, (p—1e=a, (y—1)e=h.

As usual, this gives rise to an isomorphism H!(D) ~ Ext_lR (R(K),D). We say that
cl(w) is crystalline if dimg (Dyis(Dy)) = dimg (Des(D)) + 1 and define

H} (D) = {cl(a) € H'(D) | cl(a) is crystalline }

(see Benois 2011, Sect.1.4.1). If D is crystalline (or more generally potentially
semistable) one has a natural isomorphism

H' (K, Deris(D)) — H (D).
Set tp = Deris (D) /Fil’ Dy (D) and denote by
expp : tp ® Ders(D) — H' (D)
the composition of this isomorphism with the projection
> ® Deris(D) = H' (K, Deris (D))

and the embedding H } (D) — HY(D).

Assume that K = Q,. To simplify notation we will write D,, for R(|x|x") and
ey, for its canonical basis. Then Ds(D,,) is the one dimensional @Q,-vector space
generated by t™"¢,,. As in Benois (2011), we normalise the basis (cl(a;,), cl(B,))
of H'(D,) putting ey, = (1—1/p) cl(ey) and By = (1—1/p)log(x(y))
cl(Bm).

Proposition 5. (i) H } (D) is the one-dimensional Q,-vector space generated
by .
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(ii) The exponential map

expp, : I, — H D,

*

sends t™"wpy, to —a,.

Proof. This is a reformulation of Benois (2011), Proposition 1.5.8 (ii).

3.2 The Large Exponential Map

3.2.1 Notation

In this section p is an odd prime number, K is a finite unramified extension of Q,
and o the absolute Frobenius acting on K. Recall that K, = K({,») and Koo =
T2, Ky We set I' = Gal(Koo/K), I, = Gal(Koo/K,) and A = Gal(K,/K).
Let A = Zp[[I1]] and A(I") = Z,[A] ®z, A. We will consider the following
operators acting on the ring K[[X]] of formal power series with coefficients in K:

* The ring homomorphism o : K[[X]] — K[[X]] defined by

o (ZaiX’) = Za(ai)Xi.
i=0

i=0

* The ring homomorphism ¢ : K[[X]] — K[[X]] defined by

¢ (Zaixf) =Y ol@)eX),  @(X)=(1+X)" -1
i=0

i=0

d
¢ The differential operator d = (1 + X )ﬁ' One has do ¢ = pp o d.
e The operator  : K[[X]] — K[[X]] defined by

Rl NGRS TS

gr=1

It is easy to see that v is a left inverse to ¢, i.e. that ¢ o ¢ = id.

o0 o0
e An action of I' given by y(ZaiXi) = Zaiy(X)i, y(X) =
i=0 i=0
1+ X)X -1,
We remark that these formulas are compatible with the definitions from
Sects.2.1.1 and 2.1.4. Fix a generator y; € I} and define
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H = {f(yi—1D|f €Qpl[X]] is holomorphic on B(0, 1)},
H() = Z,[A] ®z, K.

322 TheMap £y,

It is well known that Z, [[X]]Y=" is a free A-module generated by (1 + X) and the
operator 3 is bijective on Z,[[X]]¥=°. If V" is a crystalline representation of G ¢ put
D(V) = Deis(V) ®z, Zp[[X]V=". Let £, : D(V),[-1] — RI(K,, V) be
the map defined by

im0 @ @) et — 1), —a(0) ifn =1,
Trk,/x (E‘i,’l(oc)) ifn =0.

An easy computation shows that £, : Deis(V)[~1] — RI'¢(K, V) is given by
the formula

03]

1
vola) = ;(—fﬂ_l(a),—(l?— Da).

In particular, it is homotopic to the map a — —(0, (1 — p~'¢ ') a). Let

ty (Kn) 57 Dcris(V)

g7, DV) > R'T(K,, V) =
o ( ) ~ ( ) Dcris(V)/ VCx

denote the homomorphism induced by &', . Then
Ejp@) = =(0.(1=p~'¢~"a) (mod Dess(V)/VOF).

If Dcris(V)"=1 = 0 the operator 1 — ¢ is invertible on D.(V') and we can write

1— —-1,,—1
Sh0(@ = (52 0.0 (mod D)/ V%) ®
Dcris(V)

Foranyi € Zlet A; : D(V) — -
l (1= p'@)Deris(V)

® Qp(i) be the map
given by

Ai(@(X)) = 0'a(0) ® ¥ (mod (1 — p'9)Dess(V)).
Set A = @jezA;. If a € D(V)A=Y, then by Perrin-Riou (1994), Proposition 2.2.1

there exists F' € Deis(V) ®q, Q,[[X]] which converges on the open unit disk and
such that (1 — ¢) F = «. A short computation shows that
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gy,@) = p7 (0 @ ) " (F)(§p —1),0) (mod Des(V)/ VX)), ifn =1

(see Benois and Berger 2008, Lemme 4.9).

3.2.3 Construction of the Large Exponential Map

As Z,[[X]][1/ p] is a principal ideal domain and J is Z,[[X]] [1/ p]-torsion free,
I is flat. Thus

Clloy (V) 8, F(I) = G, (V) @ g, H(T)
= [i}c(r) ®45, D'(V) L5 () @1, DT(V)} |

By Proposition 3 one has an isomorphism in D(H ("))
RTW(K. V) @Y, H(T) = G, (V) @4, H(D).

The action of H(I") on D'(V)¥=" induces an injection H(I") ®x,, DI(V)V=" —
Djig(V)'/:l. Composing this map with the canonical isomorphism H/ (K, V) ~
DT(V)?=! we obtain a map F((I") ®nq, H (K, V) — Djig(V)¢=l, Forany k € Z
d

setVy =td—k = ZE — k. An easy induction shows that Vy_j o Vy_,0---0V, =
ok,

Fix & = 1 such that Fil"Des(V) = Deis(V) and V(—h)°% = 0. For any
a € D(V)?A=0 define

25, = (-1

lo
)h—l %()/1) Vi1 0 V5 0---Vy(F (1)),

where F' € J(V) is such that (1 — ¢) F = «. It is easy to see that £2},, («) €
Dji'g(V)‘”=l. Berger (2003) shows that 27, (@) € H(I') ®aq, D (V)¥=! and
therefore gives rise to a map '

Expy;, © D(V)*=[-1] - RIW(K, V) ®f, H(I)
Let
Expj, : D(V)*=0 — H(I') @nq, Hi (K. V)
denote the map induced by Expj,, in degree 1. The following theorem is a

reformulation of the construction of the large exponential map given by Berger
(2003).
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Theorem 3. Let
Expy, @ DO =11 — RIOW(K. V) ®F, Q,[Gal.

denote the map induced by Expj, . Then for any n = 0 the following diagram in
D(Q,[G,)) is commutative:

£
Expy

Q(V)ﬁzo[_ I] ———RIu(K,V) ®k©w QG

(h—1)!

RIG(Ky, V) —————RI(K,.V).

In particular, EXp', , coincides with the large exponential map of Perrin-Riou.

Proof. Passing to cohomology in the previous diagram one obtains the diagram

g Ao PP 1
DWV)A= ————— H(I') ®Ag, Hy,(K,V)
E5, Pry

(h—1)! expy g, 1
DdR/K,,(V) EBDcris(V) —H (K,,,V)

which is exactly the definition of the large exponential map. Its commutativity
is proved in Berger (2003), Theorem II.13. Now, the theorem is an immediate
consequence of the following remark. Let D be a free A-module and let fi, f> :
D[—1] — K* be two maps from D[—1] to a complex of A-modules such that the
induced maps H'(f;) and H'(f>) : D — H'(K®) coincide. Then f; and f, are
homotopic.

Remark. The large exponential map was first constructed in Perrin-Riou (1994).
See Colmez (1998) and Benois (2000) for alternative constructions and Perrin-Riou
(2001), Nakamura (2014) and Riedel (2013) for generalisations.

4 The Z-Invariant

4.1 Definition of the £-Invariant

4.1.1 Preliminaries

Let S be a finite set of primes of Q containing p and Gg the Galois group of
the maximal algebraic extension of @ unramified outside S U {oco}. For each
place v we denote by G, the decomposition group at v, by Q)" the maximal
unramified extension of Q, and by I, and f, the inertia subgroup and Frobenius
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automorphism respectively. Let V' be a pseudo-geometric p-adic representation of
Gs. This means that the restriction of V' on the decomposition group at p is a de
Rham representation. Following Greenberg, for any v ¢ {p, co} set

R (Q,.V) = [Vlv oA Vz‘,]

where the terms are placed in degrees 0 and 1 (see Burns and Flach 1996; Fontaine
1992). We remark that there is a natural quasi-isomorphism RI'/(Q,,V) =~
C2(G,/1,, V™). Note that R°I'/(Q,,V) = H°Q,,V) and R'I((Q,,V) =
H } (Qy, V) where

Hp(Q,, V) = ket(H'(Q,, V) — H'(Q), V).

For v = p the complex RI'f(Q,, V') was defined in Sect. 3.1.2. To simplify notation
write Hi(V) = H'(Gs,V) for the continuous Galois cohomology of Gg with
coefficients in V. The Bloch—Kato Selmer group of V is defined as

H}(V) = ker (H}(V) — QB

vES

H'(@Q.V)
HI@Q. )]

We also set

H'(Q,V)

Hj 2 (V) = ker | Hg(V) — QB W

veS—{p}

From the Poitou-Tate exact sequence one obtains the following exact sequence
relating these groups (see for example Perrin-Riou 1995, Lemme 3.3.6)

H'(Q,. V)

0> H! (V)= H. (V) > —2—
f fip} H}l, @,.V)

— Hi(V*(1) .

We also have the following formula relating dimensions of Selmer groups (see
Fontaine and Perrin-Riou 1994, 11, 2.2.2)

dimg, H (V) —dimg, H(V*(1)) — dimg, HJ(V) + dimg, HJ(V*(1)) =
dimg, 1v(Q,) — dimg, H°(R, V).

Setd+ (V) = dimg, (V¢=%1), where ¢ denotes complex conjugation.
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4.1.2 Basic Assumptions

Assume that V' satisfies the following conditions

(C1) H}.(V*(l)) =0.
(C2) Hg(V) = Hg(V*(l)) =0.
(C3) Viscrystalline at p and ¢ : Dgs(V) — Deis(V) is semisimple at 1 and
-1
p.
(C4) Dcris(V)(p:l =0.
(CS)  The localisation map

loc, : @ Hi (V)= H[(Q,.V)
is injective.
These conditions appear naturally in the following situation. Let X be a proper
smooth variety over Q. Let H ;(X ) denote the p-adic étale cohomology of X.

Consider the Galois representations V = H ]’, (X)(m). By Poincaré duality together
with the hard Lefschetz theorem we have

H)(X)* ~ H,(X) (i)

and thus V*(1) >~ V(i + 1 — 2m). The Beilinson conjecture (in the formulation of
Bloch and Kato) predicts that

Hi(V*(1))=0 if ws-=2.

This corresponds to the hope that there are no nontrivial extensions of Q(0) by
motives of weight > 0. If X has a good reduction at p, then V is crystalline (Faltings
1989) and the semisimplicity of ¢ is a well known (and difficult) conjecture.
By a result of Katz and Messing (1974) Dess(V)?=' # 0 can occur only if
i = 2m. Therefore up to eventually replace V by V*(1) the conditions (C1, C3-C4)
conjecturally hold except the weight —1 case i = 2m — 1.

The condition De5(V)?=! = 0 implies that the exponential map 7y (Q,) —
H } (Qp, V) is an isomorphism and we denote by log, its inverse. The composition
of the localisation map loc, with the Bloch-Kato logarithm

v Hy(V) = 1v(Q)

coincides conjecturally with the p-adic (syntomic) regulator. We remark that if
H°(@Q,.V) = 0forall v # p (and therefore H}. (Q,, V) = 0forall v # p) then
loc, is injective for all m # i/2,i/2 + 1 by a result of Jannsen (1989, Lemma 4
and Theorem 3).

If HX(V) # 0, then V contains a trivial subextension Vy = Q p(O)k . For Q,(0)
our theory describes the behavior of the Kubota—Leopoldt p-adic L-function and
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is well known. Therefore we can assume that HS(V) = 0. Applying the same
argument to V' *(1) we can also assume that Hg(V*(l)) = 0.
From our assumptions we obtain an exact sequence

H'(Q,.V)
0= Hp(V) = Hp (V) > H}GTZV) — 0. “)
Moreover
dimg, H (V) = dimg, 1y (Q,) — d4 (V). 5)
dimg, Hj, (V) = d—(V) + dimg, H*(Q,, V*(1)). (6)

4.1.3 Regular Submodules

In the remainder of this section we assume that V' satisfies (C1-C5).
Definition (Perrin-Riou).

(1) A @-submodule D of Deyis(V) is regular if D N Fil’Dyis(V) = 0 and the map
ryv,p : H}(V) - Dcrls(V)/(FﬂODcns(V) + D)

induced by ry is an isomorphism.
(2) Dually, a p-submodule D of Deis(V*(1)) is regular if

D + Fil’Deis (V*(1)) = Deris (V*(1))
and the map
D NFil'Des(V* (1)) = H' (V)*

induced by the dual map r}; : Fil’Desis (V*(1)) — H'(V)* is an isomorphism.

It is easy to see that if D is a regular submodule of Ds(V), then
D™ = Hom(Derig(V)/ D Deris(Q (1))
is a regular submodule of D¢,i5(V*(1)). From (5) we also obtain that
dim D = d(V), dim Dt = d_(V) = d.(V*(1)).

Let D C Dgis(V) be a regular submodule. As in Benois (2011) we use the
semisimplicity of ¢ to decompose D into the direct sum
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1

D:D_IEBD‘/’=P_ .

which gives a four step filtration

{0} C D_; C D C Dys(V).

Let Dy = D and D_, denote the (¢, I")-submodules associated to D and D_; by
Berger’s theory, thus

D = -@cris(D)a D—l = -@cris(D—l)'

Set W = gerDT (V). Thus we have two tautological exact sequences

rig
O—)D—)Djig(V)—>D’—>0,
0—-D_ —-D—>W—0.

Note the following properties of cohomology of these modules:

(a)

(b)

()

The natural maps H'(D_;) — H'!(D) and H'(D) — HI(DIig(V)) =
H'(Q,, V) are injective. This follows from the observation that Zeis (D’ )=l =
0 by (C4). Since H*(D') = Fil’Z.;(D')*=" (Benois 2011, Proposition 1.4.4)
we have H°(D') = 0. The same argument works for .

H }V(D_l) = H'(D_,). In particular the exponential map expp,_, : D_; —
H'(D_,) is an isomorphism. This follows from the computation of dimensions

— —_— |

of H'(D_) and H}. (D_;). Namely, since Dfl_l = DY = {0} the Euler—
Poincaré characteristic formula (Liu 2007) together with Poincaré duality give

dimg, H'(D_;)
= rank(D_;) — dimg, H°(D_) — dimg, H°(D*(x)) = dimg, (D).

On the other hand since
Fil’D_; = D_; NFil’Dess (V) = {0}

one has dimg, H}l, (D—) = dimg, (D—1) by Benois (2011), Corollary 1.4.5.
The exponential map expp, : D — H )1( (D) is an isomorphism. This follows
from Fil’D = {0} and D?=! = {0}.

The regularity of D is equivalent to the decomposition

H}(Q,.V)=H(V)® H{(D). ™
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Since loc,, is injective by (C5), the localisation map H}l,{p}(V) — HY(Q,,V)is
also injective. Let '

H'(Q,. V)

. 1

denote the composition of this map with the canonical projection.

Lemma 1. (i) One has
H[(Q,. V)N H'(D) = H;(D).

(ii) kp is an isomorphism.

Proof. (i) Since H°(D') = 0 we have a commutative diagram with exact rows
and injective colomns

0 —— H}(D) —> H}(Q,.V) — H}(D)

L l

0——=H'(D) —=H"(Q),V) —H'(D).
This gives (i).
(i1) Since H}, D) c H}.(Qp, V') one has ker(kp) C H}v (@Qp, V). One the other

hand (7) shows that kp is injective on H}(V). Thus ker(kp) = {0}. On the
other hand, because dimg, H}, (D) = dimg, (D) we have

H'(Q,.V .
dimg, (%) = d_(V) +dimg, H*(@,, V*(1)).

Comparing this with (5—-6) we obtain that kp is an isomorphism.

4.1.4 The Main Construction
Sete = dimg, (D“’=P_l). The (¢, I")-module W satisfies
Fil'Zeis(W) =0, Deas(W)*=7"" = Dy (W).
(Recall that Zi5(W) = pe=r"" .) The cohomology of such modules was studied

in detail in Benois (2011), Proposition 1.5.9 and Sect. 1.5.10. Namely, H°(W) = 0,
dimg, H (W) = 2e and dimg, (W) = e. There exists a canonical decomposition

H'(W)=H;(W)® H!(W)
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of H'(W) into the direct sum of H},(W) and some canonical space H!(W).
Moreover there exist canonical isomorphisms

ing : Des(W) > Hi(W),  ipe : Ders(W) = H!(W).

These isomorphisms can be described explicitly. By Proposition 1.5.9 of Benois
(2011)

W: éDm,'a
1

=

where D,,, = Z(|x|x™), m; = 1. By Proposition 5 H}v (D,,) is generated by o,
and H!(D,,) is the subspace generated by B (see also Proposition 4). Then

ip.f(x) = xay, ipc(x) = xB,.
Since H(W) = 0 and H?>(D_;) = 0 we have exact sequences

0— H'(D_;) > H'(D) - H' (W) - 0,
0— H{(D_) > H;(D) — H(W) — 0.

Since H ;(D—;) = H'(D) we obtain that

H'D) _H'(W)
Hy®) = H7)’

Let H'(D, V) denote the inverse image of H'(D)/H } (D) by kp. Then kp induces
an isomorphism

_ H'(D)

1
H'(D,V) ~ HID)

By Lemma 1 the localisation map H'(D,V) — H'(W) is well defined and
injective. Hence, we have a diagram

D.

-f
9cris(vv) - H/]’ (W)

Pp.f T TP/). f

H'(D,V) —— H' (W)

Pp.c l l PD.c
ipe

9cris(vv) L) Hcl (W)
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where pp s and pp . are defined as the unique maps making this diagram commute.
From Lemma 1 (ii) it follows that pp . is an isomorphism. The following definition
generalises (in the crystalline case) the main construction of Benois (2011) where
we assumed in addition that H } V)=0.

Definition. The determinant
LV, D) =det(pp.s 0 ppL | Deris(W))

will be called the £ -invariant associated to V and D.

4.2 _ZL-Invariant and the Large Exponential Map

4.2.1 Differentiation of the Large Exponential Map

In this section we interpret .Z(V, D) in terms of the derivative of the large
exponential map. This interpretation is crucial for the proof of the main theorem of
this paper. Recall that H'(Q,, H(I") ®q, V) = H(T') ®ar) H{(Q,, V) injects
into D}, (V). Set
FyH'(Q,, (") ®, V) =D N H'(Q,, H(I") &, V),
F_1H'(Q,. H(I') ®g, V) =D_i N H'(Q,. 7(I') ®q, V).

As in Sect. 3.2 we fix a generator y € I'. The following result is a straightforward
generalisation of Benois (2014), Prop.2.2.2. For the convenience of the reader we
give here the proof which is the same as in op. cit. modulo obvious modifications.

Proposition 6. Let D be a regular subspace of Deis(V). For any a € D=r"" et
a € D(V) be such that a(0) = a. Then

(i) There exists a unique B € FoH'(Q,, H(I") ® V) such that

(v =D B = Expy, ().

(ii) The composite map

Spa 2 D= > FoH'(Q,. H(I) @ V) — H' (W)
Spala) = B (mod H'(D_y))

is given explicitly by the following formula:

-1
Spu(a) = —(h=1)! (1 - %) (log x(y)) " ip.c(a).
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Proof. Since D;s(V)#=! = 0, the operator 1 — ¢ is invertible on Deis(V) and we
have a diagram

DW= — "M g, sy o)

L o lprv
_—

(h—1)'expy
Dcri<(v) ! HI(QP:V)~

1= —-1,,—1
# ® Z,[[X]]*=", then

Ey (@) = 0 and pry, (Expﬁ,’h(a)) = 0. On the other hand, as V% = 0 the
map (J—C(F) ®aq, HIIW(QP, V))F — H'(Q,, V) is injective. Thus there exists a

unique B € H(I') ®4 H\(Q,, T) such that Exp},,(«) = (y — 1) B. Now take
a € D¥=P"" and set

1

where &7, (o) = a(0) (see (3)). If & € D¥=P

1+ XxX)r» — 1)

f=a®€( X

1
where £(g) = — log ( @ )) . An easy computation shows that

oA+ xX)r» — 1 _
E (o) <o

¢r=1

Thus f € D=7 @ Z,[[X]]¥=C. Write « in the forma = (1 —¢) (1 —y) (@ ®
log(X)). Then

log x(y1)

Qmmzemﬂ%fﬂwmynwmmnz -8

where

B = (=) " alog(n)) = (=1)!'ar" 9! (1 +n)‘

i
This implies immediately that § € D. On the other hand py=r' = Deris(W) =
(W[1/t])" and we will write a for the image of a in W [1/¢]. By Benois (2011),
Sect. 1.5.8-1.5.10 one has W =~ EB D,,, where D,, = Z(|x|x™) and we denote by
em the canonical base of D,,. Then w1thout loss of generality we may assume that

@ = t™™ie,, for some i. Let f be denote the image of B in W¥=" and let h/
W‘” ' > H l(W) be the canonical map furnished by Proposition 3. Recall that

hi(B) = cl(c, B) where (1 —y) ¢ = (1 —g¢) B. Then B = (—1)"~'¢"= 3" log ().
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By Lemma 1.5.1 of Cherbonnier and Colmez (1998) there exists a unique by €
B(E;f:o such that (y — 1) by = £(5r). This implies that

(1= p) ("™ 3 boen,) = (1—9) ("™ 3 log(m)em) = (=1)"7'(1—¢) B.

Thus ¢ = (=1)" """ dhbge,, and res(ct™~'dr) = (=1)"'res(t"~'9"bod1)
em; = 0. Next from the congruence B = (h — 1)!t7"e,, (mod Q,[[x]]en,)
it follows that res(,gtmi_ldt) = (h — 1)!ey,. Therefore by Benois (2011),
Corollary 1.5.6 we have

c(e.f) = (h—1)cl(B) = (h— )—L—iy.(a).
log x(y1)

On the other hand

(1+ X)x(y) — 1)

a(O):a®€( X

—a (1 - 1) log(x(y)).
X=0 P

These formulas imply that

-1
§p(@) = (h— 1)! (1 - %) (log (7))~ iwe ().

and the proposition is proved.

4.2.2 Interpretation of the .Z-Invariant
From the definition of H!(D, V') and Lemma 1 we immediately obtain that

H'@pV) H'(D) _H'W)
Hy \(V)+HID_y) ~ H'(D,V)+H'(D-) ~ H'(D,V)’

Thus, the map §p, constructed in Proposition 6 induces a map

i HY(Q,,V)
—

De=r
H;{p}(V) + H'(D_))

which we will denote again by §p ;. On the other hand, we have isomorphisms

D= H(Q,, V) _H; @ V) H'(Q,.V)
expyg,(D—1) ~ H'(D-) ~ Hj (V) + H' (Do)
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Proposition 7. Let Ap : DY=r"" — D¥=P"" denote the homomorphism making

the diagram

D‘P:’f] A 1

D
w\ (h—1)!expy

H'(Q,,V)
H}‘{II}(V)wLH‘ (D_y)

D9=pr"

commute. Then
_ - _ 1\°°¢
det (2| D*=") = (log 1(7) 6(1——) 2. D),
p

Proof. The proposition follows from Proposition 6 and the following elementary
fact. Let U = U; @ U, be the decomposition of a vector space U of dimension 2e
into the direct sum of two subspaces of dimension e. Let X C U be a subspace of
dimension e such that X N U; = {0}. Consider the diagrams

P1

x oy U/x < u
f g
%) Uz
where py and iy are induced by natural projections and inclusions. Then [ = —g.

Applying this remark to U = H'(W), X = H'(D,V), U} = H}(W), U, =
H!(W) and taking determinants we obtain the proposition.

S5 Special Values of p-Adic L-Functions

5.1 The Bloch—Kato Conjecture

5.1.1 The Euler-Poincaré Line

The main references for the material of this section are (Burns and Flach 1996;
Fontaine 1992; Fontaine and Perrin-Riou 1994). Let V be a p-adic pseudo-
geometric representation of Gal(Q/Q). Thus V is a finite-dimensional Q p-vector
space equipped with a continuous action of the Galois group G for a suitable finite
set of places S containing p. Write RIs(V) = C?(Gy, V') and define
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RIs. (V) =cone [RI5(V) > € RI@Q. V)| [-1].

veSU{oo}

Fix a Zp-lattice T of V stable under the action of G and set
As(V) = detg) RIs(V),  As(T) = det; RIs (7).

Then Ag(T) is a Z,-lattice of the one-dimensional Q ,-vector space Ag(}') which
does not depend on the choice of T. Therefore it defines a p-adic norm on Ag(V)
which we denote by || - ||s. Moreover, (As(V), || - ||s) does not depend on the
choice of S. More precisely, if X' is a finite set of places which contains S, then

there exists a natural isomorphism Ag (V) = As(V)suchthat || - ||z = || - |Is-
This allows one to define the Euler—Poincaré line Agp(V') as (As(V), || - ||s) where
S is sufficiently large. Recall that for any finite place v € S we defined

= ity #p

RFf(Qw V) = (pr.1—9)
[Dcris(V) — Q) & Dcris(V)] ifv=p.

Atv = oo we set RI's(R,V) = [V+ — O], where the first term is placed in

degree 0. Thus RI's (R, V) SR (R, V). For any v we have a canonical morphism
loc, : RI'r(Q,, V) — RI'(Q,, V) which can be viewed as a local condition in the
sense of Nekovart (2006). Consider the diagram

RIG(V) —— ’ESGUB{ }RF(QW V)

D RIFQ,.V)

veSU{eo}
and define
RIy (V) =cone [RIs(NEP| @ Ry@.V |- @ RE@,V) |11
veSU{oo} veSU{oo}
Thus, we have a distinguished triangle

RI;(V)>RIsNEP| P RIy@Q.V) |- @ RI@Q.V). ®)

veSU{oo} veSU{oo}
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Set
Ar(V) = det@[{RFf(V) ® dety, 1v(Q,) ® detg, V™.

Itis easy to see that RI"; (V') and A y (V') do not depend on the choice of S. Consider
the distinguished triangle

RI5.(V) > RI(V) > @ RIH@Q.V).
veSU{oo}

The identity map id : Dgis(V) — Deyis (V) induces an isomorphism
detq,RI1(Q,, V) = dety, 1v(Q,). )
For v # p the identity map id : V! — Vv gives a trivialisation
detg, RI' (Q), V) =~ Q,. (10)

Since detg, RI'f (R, V) = detg, VT tautologically, we obtain canonical isomor-
phisms

Ap(V) ~ det@iRFS,C(V) ~ Agp(V). (11)
The cohomology of RI's (V) is as follows:

ROTy (V) = H{(V), R'Tp(V)=H{(V), RTp(V)~Hp(V*(1),

R*Is (V) = coker (Hg(V) - PH* Q. V)) ~ HY(V*(1))*. (12)

vES
These groups sit in the following exact sequence:
HYQ,,V
0—R'T/(V) = HA(V) - @&
L H[ Q. V)

H3(V) > @H*@Q,. V) - R*I(V) - 0.

vES

— R I (V) —

The L-function of V' is defined as the Euler product

L(V.s) = [[EV.(Nv)™)~!
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where

det(1— for | V1), ifv#p

E,(V,t) =
det (1 — ¢t | Deis(V)) if v =p.

5.1.2 Canonical Trivialisations

In this paper we treat motives in the formal sense and assume all conjectures about
the category of mixed motives MM over Q which are necessary to state the Bloch—
Kato conjecture (see Fontaine 1992; Fontaine and Perrin-Riou 1994). Let M be a
pure motive over Q and let Mg and Mgg denote its Betti and de Rham realisations

respectively. Fix an odd prime p and denote by V' = M, the p-adic realisation of
M . Then one has comparison isomorphisms

Mg ®¢ C = Mg ®q C. (13)

Mg ®q Q, = V. (14)
The isomorphism (14) induces a trivialisation
Q47 detg,V ® detg' Mg — Q. (15)

The complex conjugation acts compatibly on My and V' and decomposes the last
isomorphism into % parts which we denote again by .Q](‘f[t’p ) to simplify notation

Q7 detg, VE @ detg! M — Q. (16)

The restriction of V to the decomposition group at p is a de Rham representation
and Dgr (V) =~ Mgr ®q Q,. The comparison isomorphism

V ®Bak = Dar(V) © Bar a7
induces a map

24"+ detg, V ® detg! Dar(V) — Bag.

It is not difficult to see that there exists a finite extension L of @ such that
Im(.Q](‘f’p)) c Lt""(") and we define

ng D detg,V ® det@;DdR(V) - L (18)
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by QU = (=t QUP) We remark that if V is crystalline at p then one can
take L = Q‘;,r (see Perrin-Riou 1995, Appendice C.2).

Assume that the groups H' (M) = Extgv[M (Q(0), M) are well defined and
vanish for i # 0, 1. It should be possible to define a Q-subspace H }-(M ) of

H'(M) consisting of “integral” classes of extensions which is expected to be finite
dimensional. It is convenient to set H ?, (M) = H°(M). The conjectures of Tate and
Jannsen predict that the regulator map induces isomorphisms

Hy (M) ®qQ, ~ Hy(V), i=0,1. (19)

In this paper M will always denote a motive satisfying the following conditions

(M1) M is pure of weight w < —2.
(M2) The p-adic realisation V' of M is crystalline at p.
(M3) M has no subquotients isomorphic to Q(1).

These conditions imply that H'(M) = H(M*(1)) = 0 and H'(M*(1)) = 0
by the weight argument. Furthermore, (19) implies that the representation V' should
satisfy the conditions (C1, C2, C4) of Sect.4.1.2. Also, from (12) it follows that

detg, RI7 (V) = detg) H}(V). (20)
The semisimplicity of ¢ is a well known conjecture which is actually known for
abelian varieties. Finally (C5) should follow from the injectivity of the syntomic

regulator.
The comparison isomorphism (13) induces an injective map

ay : M ®gR — 1ty (R)

and the six-term exact sequence of Fontaine and Perrin-Riou (see Fontaine 1992,
Sect. 6.10) degenerates into an isomorphism (the regulator map)

"Moo @ Hp (M) ®gR 5 coker(auy).
The maps aps and 77 o define a map
Rioo © dety'in (Q) ® detoMy ® detgH (M) — R

Fix bases ws € det@H}v(M), wy,, € detgty (Q) and w;}B S detQM];". Set wy =
(wr, Wy, w;,L,B) and define

Ryoo(oym) = RM,oo(thl ® O)A—;B ® a)f),
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Using (11), (16), (20) and the isomorphisms (19) define
iy p © App(V) = det@itV(Qp) ® detg, V' ®@detg, H{ (V) > Q,  (21)

by X = igy p(x) (a),;ll ® a);}B Qwr).
Consider now the case of the dual motive M *(1). Again one has Agp(V*(1)) =~
Ay (V*(1)) where

Ap(V*(1)) ~ det@ity*(l)(Qp) ® detg, V*()" ® detg, H (V).

The map ay+1y @ M*()f ®g R — ty+1)(R) is surjective and it is related to
o by the canonical duality coker(ay) x ker(ear+(1)) — R (see Fontaine 1992,
Sect. 5.4). The six-term exact sequence degenerates into an isomorphism

F'M*(1),00 - H}(M)* ®q R =~ ker(apm=)).
This allows one to define a map
Ryr(hoo & dety' a1 (Q) ® detgM*(1)§ ® detgH (M) — R.

We fix bases wy, .., € detgly+(1)(Q) and a);,}*(l)B € detgM *(1){ and set

_ +
O (1) = (Drype gy @y g @ )

Rar(y.co(@mr(1y) = Ry (oo (@7, @ 01y, @ @).

1)

Again this data defines a trivialisation
loyeyp © Ap(V(1) — Q. (22)

It is conjectured that the L-functions L(V,s) and L(V*(1),s) are well defined
complex functions, have meromorphic continuation to the whole of C and satisfy
some explicit functional equation (see Fontaine and Perrin-Riou 1994, Chap. III).
One expects that they do not depend on the choice of the prime p and we will denote
them by L(M,s) and L(M*(1),s) respectively. The conjectures about special
values of these functions can be stated as follows.

Conjecture 2 (Beilinson—-Deligne). The L-function L(M,s) does not vanish at
s = 0and

L(V,0)

R0 (@pr)

*

The L-function L(M *(1), s) has a zero of order r = dimg, H}(M) ats = 0. Let
L(M*(1),0) = limy—qs"L(M*(1),s). Then



On Extra Zeros of p-Adic L-Functions: The Crystalline Case 103

L(M*(1),0
M W0.0) o
R+ (1),00 (0pr+(1))

Conjecture 3 (Bloch—-Kato). Let T be a Z,-lattice of V' stable under the action of
Gs. Then

L(M.0)
Riyt.c0(@pr) r
L(M*(1),0

(M*(1),0) 7

Ry (1y.o0(@prxr)) *

in,p(AEP(T)) =

in*msP(AEP(T*(l))) =

5.1.3 Compatibility with Functional Equation

The compatibility of the Bloch—Kato conjecture with the functional equation
follows from the conjecture Cgp(V') of Fontaine and Perrin-Riou about local
Tamagawa numbers (see Fontaine and Perrin-Riou 1994, Chap.III, Sect.4.5.4).
More precisely, define

rroy=[[rym" (23)
i€z
where h; (V) = dimg, (gr;(Dgr(V'))) and

(i—1)! ifi>0,

% ifi <0.

r@) =

The exact sequence
0— tV*(l)(Qp)* — DdR(V) — tv(Qp) -0

allows to consider wyy,, = w, ® a)t;;*m € detg,Dar(V). Choose bases
a);f S dethT+ and w; € dethT_ and set wr = a);f ® w; €
detz, T and a);'*(l) = (wp)* € dethT*(l)Jr. Define p-adic periods
Q;;t’p)(w;,wﬂ‘;B) and Qj(‘f’p)(wr,deR) by a);f = .Q](l;t’p)(a);,wﬂ‘;B)wA‘;B and
wr = Qj(‘f’p)(wr,deR)deR using isomorphisms (15) and (18). Then the
conjecture Cgp(V') implies that
Loy )p(Aep(T*(D) ey QU i p (AEp(T))
Q@ (o + + = 17 V) 2y (ors ova) Q@D (ot ot
M) (@7 (1) Opre (1)) M (07 o)

(24)
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(see Perrin-Riou 1995, Appendice C). We remark that for crystalline representations
Cgp(V) is proved in Benois and Berger (2008).

5.2 p-Adic L-Functions

5.2.1 p-Adic Beilinson Conjecture

We maintain previous notation and conventions. Let M be a motive which satisfies
the conditions (M1-M3) of Sect.5.1.2 and let V' denote the p-adic realisation of
M. We fix bases wy, € detgMy', @, € detgiy(Q) and w; € detgH [ (M).

We also fix alattice T in V stable under the action of Gg and a basis a);' € dety, » Tt.
To simplify notation we will assume that the choices of a);;B and w;f are compatible,

namely that .Q](‘f[t’p ) (a);—' ,a)]];B) = 1. Let D be a regular subspace of Dis(V).
We fix a Z,-lattice N of D and a basis wy € detz,N. By the analogy with the
Archimedean case we can consider the p-adic regulatoras amapryp : H }.(V) —
coker(ay,p) where

ody.p : D — tV(Qp)
is the natural projection. Set wy,y = (wy,,, N, ®s) and denote by Ry p (wy,n) the

determinant of ry, p computed in the bases w s and w;,, ® w;l. Namely, Ry.p(wy.y)
is the image of a)t;dl ® wy @ wy under the induced isomorphism

Ryp : det@itv (Qp) ® detg, D @ detg, H (V) — Q,.
Now, consider the projection
Qy*(1y,pL - D+ = ty+(1)(Qp).
A standard argument from linear algebra shows that oy «(;) p1 is surjective and is
related to ay,p by the canonical duality coker(ay,p) x ker(ay=1),p) — Q. This
defines isomorphisms
det@ity*(l)(Qp) ® detQpDJ‘ ~ detQp (ker(av*(l)’DL)) ~ det@i (coker(ay.p))

and composing this map with the determinant of 7y p we have again a trivialisation

Ry« pr : detylty1)(Q,) ® detg, D+ @ detg, H(V) = Q.

Choose a lattice N+ c D+, fix bases Oy
detz, N L respectively and set wy L = (w1,

and wy 1 of detg,ty+1)(Q,) and
WyL,Wf).

(1)

[ON
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Perrin-Riou conjectured (see Perrin-Riou 1995) that there exists an analytic
p-adic L-function L,(7, N,s) which interpolates special values of the complex
L-function L(M, s). In particular one expects that if p~! is not an eigenvalue of ¢
acting on D then L, (T, N, s) does not vanish at s = 0 and

L,(T,N.0)

where

EV,D) =det(1—p~lo7'| D) det(1—p~lep~" | D1
= det(1 — p~'¢™" | D) det(1 — ¢ | Deris(V)/ D).
Dually it is conjectured that there exists a p-adic L-function L,(T*(1), N Ls)
which interpolates special values of L(M *(1),s). One expects that if 1 is not an

eigenvalue of ¢ acting on the quotient Deis(V*(1))/ D+ then L,(T*(1), N-L.s)
has a zero of order r = dimg H} (M) ats = 0and

L*(T*(1),N+,0 L*(M*(1),0
LNy LOC0D.0
V*(l),DL(a)V*(l),NL) R+ (1),00(0pr)

These properties of p-adic L-functions can be viewed as p-adic analogues of
Beilinson conjectures and we refer the reader to Perrin-Riou (1995), Chap.4 and
Colmez (2000), Sect. 2.8 for more detail. Note that from the definition it is clear
that &(V, D) = &(V*(1), DL). One can also write &(V, D) in the form

1—p-lp!
E(V,D) = E,(V,1)det (#W) .
%

5.2.2 Extra Zero Conjecture

Assume now that D¥=7"' # 0. Since M is crystalline at p, this can occur only if
M is of weight —2. Set

e = dimg, D*=""" = dimg, (D + Do (V*(1))*=")/ D).

Assume that the p-adic realisation V' of M satisfies the conditions (C1-C5) of
Sect.4.1.2. Decompose D into the direct sum D = D_; @ D¢=r"" and define

EY(WV,D) =T (V*(1), D) =det(1 — p~lo™' | D_)) det(1 — p~lop~! | D).
(25)
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We propose the following conjecture about the behavior of p-adic L-functions at
s = 0 (see Conjecture 1 of Introduction).

Conjecture 4. (i) The p-adic L-function L,(T, N,s) has a zero of order e at
s = 0and

L(M,0)

Ly(T.N.0) _ ~Z(V.D)EX(V. D) g
M.00\WM

Ryp(wvy)

(ii) The p-adic L-function L ,(T*(1), N, 5) has a zero of order e + r where r =
dimg H}(M) ats = 0 and

L*(T*(1), N+, 0) _ 2. D) e+ (). DY L*(M*(1),0)
RV*(l),DJ—(wV*(l),NJ—) ’ ’ RM*(I),OO(CUM*(I)).

Remarks. (1) If H } (M) = 0 the p-adic regulator vanishes and we recover the
conjecture formulated in Benois (2011), Sect. 2.3.2.

(2) The regulators Ry o0 (wp) and Ry p (wy ) are well defined up to a sign and in
order to obtain equalities in the formulation of our conjecture one should make
the same choice of signs in the definitions of Ry o (@p) and Ry, p(wy.y). See
Perrin-Riou (1995), Sect. 4.2 for more detail.

(3) Our conjecture is compatible with the expected functional equation for p-adic
L-functions. See Sect. 2.5 of Perrin-Riou (1995) and Sects. 6.2.5-6.2.6 below.

6 The Module of p-Adic L-Functions

6.1 The Selmer Complex

6.1.1 Iwasawa Cohomology

Let I" denote the Galois group of Q({,00)/Q and I, = Gal(Q(£,0)/Q(Epn)). Set
A =Z,[[IN]] and A(I") = Z,[A] ®z, A. For any character n € A put

1 _
e = EZU "(9)g.

g€eA

Then A(I") = @ A(I")™ where A(I")" = Ae, and for any A(I")-module M
neA
one has a canonical decomposition
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M ~ @M(n)’ M = e, (M).
nel

We write 7o for the trivial character of A and identify A with A(I")ey,.
Let V be a p-adic pseudo-geometric representation unramified outside S. Set

d(V) = dim(V) and d+ (V) = dim(V*=*!). Fix a Z,-lattice T of V stable under

the action of Gg. Lett : A(I") — A(I") denote the canonical involution g — g~ .

Recall that the induced module Indg(¢,e0)/@(T") is isomorphic to (A(I") ®z, T)'
(see Nekovar 20006, Sect. 8.1). Define

Hi, s(T) = Hg((A(I') ®z, T)",
H(Q,,T) = H(Q,, (A(I") ®z, T)") for any finite place v.

From Shapiro’s lemma it follows immediately that

His(T) = lim Hy(Q(p). 7). Hy(Qp.T) = lim H' Q). T).

cores cores

Set Hliw,s(V) = Hf@,s(T) ®z, Qp and H (Q,,V) = H[,(Q,T) ®z, Qp.
In Perrin-Riou (1995) Perrin-Riou proved the following results about the structure
of these modules.

(i) Hi, (V) =0and H{(Q,.T) =0ifi # 1,2

(i) If v # p, then for each 7 € A the n-component Hj (Q,,T)™
is a finitely-generated A-torsion module. In particular, H} (Q,,T) =
HY(Q)/Qy, (A(I) ®z, T™)").

(i) If v = p then HZ(Q,,T)™ are finitely-generated A-torsion modules.

Moreover, for eachn € A

ranks (HL(Q,, T)™) = d,  HL(Q,, T ~ HYQ,p(¢pee) , T)™.

Remark that by local duality HZ (Q,, T) =~ H*(Q,({pee), V*(1)/ T*(1)).
(iv) If the weak Leopoldt conjecture holds for the pair (V, 1), i.e. if HZ(Q({,o),
V/T)™ =0, then H, ¢(T)™ is A-torsion and

d_(V), ifn(c)=1

kA (HL Ty =
rank s (Hy, s (T)™) dy(V), if n(c) = —1.

Passing to the projective limit in the Poitou-Tate exact sequence one obtains an
exact sequence
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0 — HQ(poo), V*(1)/T*()" — Hy\, 5(T) -~ EDHL Q.. T)

vES
— H§(Q(Lpoo), V*(1)/T*(1)" — HE, 5(T)
— PHL Q.. T) = HIQ(Cpo). VF*(1)/T*(1)" > 0. (26)

vES

Define

Rl s(T) = CX(Gs, (A(I') ®z, T)"),
RFIW(@W T) = CC.(va(A(F) ®Z,, T)l)s
RI5(Q(Epo0), VE(1)/T*(1)) = C2(Gs,Homg, (A(I"), V*(1)/T*(1))).

Then the sequence (26) is induced by the distinguished triangle

Rl s(T) = @R (Q.. T) — (RIS(QEpee). V(1)/T*(1)))" [-2]

veS

(see Nekovar 2006, Theorem 8.5.6). Finally, we have the usual descent formulas
RIw,s(T) ®Y% Z, ~ RIs(T), RNW(Q,.T)®Y Z, ~RI(Q,,T)

(see Nekovar 2006, Proposition 8.4.22).

(m0)
6.1.2 The Complex R '}(D, V)

For the remainder of this chapter we assume that V' satisfies the conditions (C1-
C5) of Sect.4.1.2 and that the weak Leopoldt conjecture holds for (V,ny) and
(V*(1), no). We remark that these assumptions are not independent. Namely, by
Perrin-Riou (1995), Proposition B.5 (C4) and (C5) imply the weak Leopoldt
conjecture for (V*(1), n9). From the same result it follows that the vanishing of
H }(V*(l)) implies the weak Leopoldt conjecture for (V, no) if in addition we
assume that H°(Q,, V*(1)) = 0.

To simplify notations we write 3 for J(I). Fix a regular subspace D of
Deis(V) and a Z,-lattice N of D. Set D,(N,T)™) = N ®z, Zp[[XV=° ~
N ®z, A, and define

R[‘Igh))((@p, N, T)=D,(N, T)(Uo)[_l]’
RILY (@ D.V) = REP (@) N. T) @, Q.
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Consider Perrin-Riou’s exponential map
ExpS, : RGUV(Q,, N, T) @ H — RIV(Q,. T) &Y K

which will be viewed as a local condition at p. If v # p the inertia group 7, acts
trivially on A. Set

RL(@,. N, T) = [va oa hrhg AL}

where the first term is placed in degree 0. We have a commutative diagram

ORL (Q,,T) @4 3

ves

(@RFIEW(@V,N, T>) oa .
ves

RFIWTS]‘)(T) ®aH

27)
Consider the associated Selmer complex

R (D, V) = cone [(Rﬂfﬁ‘gm@ (@Rﬂfj(”(@v, N, T))) ®4H —

vES

PR (@, T) @4 ﬂ%} [-1].

vES

It is easy to see that it does not depend on the choice of S. Our main result about
this complex is the following theorem.

Theorem 4. Assume that V satisfies the conditions (CI-C5) and that the weak
Leopoldt conjecture holds for (V, no) and (V*(1), no). Let D be a regular subspace
Of Deris (V). Assume that £ (V, D) # 0. Then

(i) R 1"15:170}3 (D, V) are H-torsion modules for all i.

(i) R(D, V) =0fori # 2,3 and

RSI—‘I&(;[)(D, V) ~ (HO(Q(é'poo), V*(l))*)(m) ®A .

(iii) The complex RFI&‘}Z)(D, V) is semisimple in the sense that for each i the
natural map

RIS (D.V) - RLN(D.V)r

is an isomorphism.



110 D. Benois

6.1.3 Proof of Theorem 4

6.1.3.1 We leave the proof of the following lemma as an easy exercise.

Lemma 2. Let A and B be two submodules of a finitely-generated free H-module
M. Assume that the natural maps Ar, — Mp, and B, — M, are both injective.
Then Ar, N B, = {0} implies that AN B = {0}.

6.1.3.2 Since HI?N’S(V) and H) (Q,, V) are zero, we have Rol}i:’"}l)(D, V) = 0.
Next, by definition R'I™ (D, V) = ker(f) where

Iw,h

S Hus™ @ D,NT) P Hy, (@ D™ | @3¢~
veS—{p}

@Hllw(@w T)(ﬂo) QK

vES

is the map induced by (27). If v € S — {p} one has

HI{V,f(@V’ T)(ﬂo) — HIlw(Qw T)(m)) — Hl(@lv]r/Qw (A® TI\,)l)'
Thus

RILD.V) = (Hyy s(T)™ ®430) 0 (Expy,, (D, (D.T)™) ®4 31)

in H. (Q,.T)™ ®, H. Put
A = Exp,,(D—1 @ H) & X "Exp},,(D="" @ H) C HL(Q,, T)™ ®, K,

where we identify X with the operator y; — 1 (see Sect.3.2.1). By Theorem 3 and
Proposition 6 A, injects into H'(Q,, V). Since TH0p is the torsion submodule of
Hy, Q). T)

THep
Since T9% = 0 one has Mp, = H,(Q,,V)r C H'(Q,, V) and we obtain that
Ar, injects into M.

(10)
H. (Q,, T), the H-module M = ( ) ®a His free and 4 — M.

THe
together with the fact that H;\, (Q,, T') are A-torsion forv € S—{p}imply that B <
M. Since the image of H[ (Q,,V)r in H'(Q,, V) is contained in H}v Q,, V),
the image of HI{N,S(V)[‘ in H}(V) is in fact contained in H};{p}(V). From (C5) it

follows that H};{p}(V) injects into H'(Q,, V) and we have

Hl T (n0)
[ Hiys(T) . .
Set B=|—— ® 4 H. The weak Leopoldt conjecture for (V*(1), o)

Hp, s(NP = Hy, s(V)r = Hp oy (V) = HY(Q,. V).
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Thus Br, C Mp,. We shall prove that Rlﬂf,Z‘}l) (D, V) = 0. By Lemma 2 it suffices

to show that A, N B, = {0}. Now we claim that A, N H}{p}(V) = {0}. First
note that by Lemma 1 '

H'(Q,.V)

1
H_ﬁ{p}(V)L) HI(D_I)'

On the other hand, from Theorem 3 it follows that

Exp},(D—1 @ H)r, = expy g, (D-1) C H'(D-)).

H'(Q,.V)
H'(D_y)
HNW). But Z(V,D) # 0if and only if H)(V) N HY(W) = 0 where H) (V)
denotes the inverse image of H'(W) in H }; {p}(V) (see Lemma 1 (ii)). This proves

the claim and implies that R' ;") (D, V) = 0.

Now Proposition 6 implies that the image of A, in coincides with

6.1.3.3 We shall show that Rzl'}f;’,‘}l) (D, V) is H-torsion. By definition, we have an
exact sequence

0 — coker(f) — RXIIN(D. V) — IB,, ¢ (V)™ ®4,, 3 — 0. (28)

where

I}, (V) = ker (HI%V’S(V) - PH:, Q.. V))_

veS

It follows from the weak Leopoldt conjecture that IJ_I%W, s(V)is Ag,-torsion. On the
other hand, as H is a Bézout ring (see Lazard 1962), the formulas

ranks Hpy, (7)™ = d_(V),
rank 4 Hy, (Q,, T)™ = d(V),
ranksaD,(N, T) = d (V)

together with the fact that Rll"lf:f;l) (D,V) = 0 imply that coker( f) is H-torsion.

We have therefore proved that RZI"IW,h (D, V) is H-torsion. Finally, the Poitou—Tate
exact sequence gives that

R LU (D, V) = (HO@(poe), V(1)) ™ @1, 3¢

is also JH-torsion.
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6.1.3.4 Now we prove the semisimplicity of RI"If;’,‘},) (D, V). First write
d—(v
Hy, ()™ ~ Ag T @ Hy, (V).

Since HIIW,S(V)tor C Hl (QP’ V)lor = VHQ,, (HIW S(V)tor)l" =0 by the snake
lemma. Thus dimg, HI{V!S(V)(”‘)) = d_(V). On the other hand dimg, H f{ (V) =

d—(V) + dimg, H %@, V*(1)) by (6) and the dimension argument shows that in
the commutative diagram

0 —— Hj\ sV ——H] ) (V) — H(Q,,V* (1)) —0

| | |

0—— H}\ (Qp. V) —— H'(Q),V) —= HO(Q,, V(1)) —=0
(29)

with obviously exact upper line the bottom line is also exact. This implies
immediately that the natural map

HV@ R H'@p V)
Hy, S(V)"”’ +H'\(Do)  Hy, (V) + HU(D-y)

is an isomorphism.
Consider the exact sequence

0 — (Hyys(T)™ & D,(N, T)™)@H — Hy\, (Q,, T) "™ @I — coker(f) — 0.

Recall that Expj,,, : D — H. (Q,,V)r denotes the homomorphism induced
by the large exponential map. Applymg the snake lemma, and taking into account
that Im(Expy,;, o) = eXPyg, (D_)) = H'(D_)) and ker(Exp, ;) = pe=r—" (see
for example Benois and Berger 2008, Propositions 4.17 and 4.18 or the proof of
Proposition 6) we obtain (by regularity of D)

1

Expj _
coker(f)" = ker (Hﬁv S(V)(”") rad — H'(Q,, V)) = DY=r",

H (@, V) HY(Q,,V)

(V)(”°)+H1(D ) (V)+ H'(D_y) G0
w,S -1 f{p}

coker(f)ry =

Thus, one has a commutative diagram
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coker(f)i —— = po=r"

‘( O

HY(Q,,V)
coker(f)r; Hf (V) +H' (D)’

€19

where horizontal arrows are isomorphisms, the left vertical arrow is the natural
projection and the right vertical row is the map defined in Sect.4.2.2. From
Proposition 7 it follows that coker(f)’! — coker(f)p, is an isomorphism if and
only if Z(V, D) # 0.

On the other hand, the arguments of Perrin-Riou (1995), Sect.3.3.4 show that

IJ.I%W’S(V)F = IIIZIW’S(V)F = 0. We remark that Perrin-Riou assumes that

Dcris(V)"=1 = DCH'S(V)‘/]:f1 = 0, but her proof works in our case without

modifications and we repeat it for the convenience of the reader. Consider the
commutative diagram (where we write III3, (V') instead IJ.IZIW’ s(V) to abbreviate
notation)

0 0

Hy,(V)r >—— §€BYHIL-(Q\:,V)F ——= H{(Q(§=),V* (1)} ——=1I,(V)r

Hi (V) >——> @H}(Q‘,,V)QBH‘(QF,V) —> H}(V*(1))

v#})

HO(Qp,V* (1)) ————> H"(Q,,V* (1))’

The top row of this diagram is obtained by taking coinvariants in the Poitou-Tate
exact sequence. Thus it is exact. The middle row is obtained from the exact sequence

HY(Q,,V*
0= Hy (V=) —~ H'@,. V(N D D %*

veS—{p} f

Hy oy (V)" =0

by taking duals. In particular, in the first and second lines of the diagram the first
arrows are injections. Here we use the condition H }V(V*(l)) = 0. The exactness of
the left and middle columns follows from the diagram (29). The isomorphism from
the right column comes from the exact sequence

0 — H'(ILH(Q(Epee). V(1) = Hg(V* (1) = Hg(Q(Epoe). V(1) >0
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together with the remark that H'(T, Hg(Q(Q,,oo), V*(1))) = 0 because
HY(Q(Lpoo), V()T = HNQ,V*(1)) = 0 by (C2). Now an easy diagram
chase shows that IJ_IZIWq s(V)r = 0. Finally, from dimg, lelw’ S(V)F <
dimg, IH%W’ s(V)r it follows that IJ.I%W, s(V)I" = 0. Therefore, applying the snake
lemma to (28) we obtain a commutative diagram

coker(f)Ti —>R2F(n°)(D,V)rl

Iw.h

| |

coker(f)r; —— Rzl"]\(;'};)(D, V),
(32)

where the horizontal arrows are isomorphisms and the vertical arrows are

natural projections. This proves that RFIg’%) (D, V) is semisimple in degree 2.

The semisimplicity in degree 3 is obvious because by (ii) R31"If;7f;l) (D, V)

R} 1"15,:’,‘;[) (D, V), = 0. This completes the proof of Theorem 4. ]

6.1.4

This following corollary relates the projection map

(o) (n0)
RZF 1Mo (D, V)F] N RZI—vI“:](;l (D, V)I"]

Iw,h

to the map Ap defined in Proposition 7 and therefore to the .#-invariant. This
relation plays the key role in the proof of Theorem 5 below (Theorem 2 of
Introduction).

Corollary 1. (i) One has canonical isomorphisms

1

RZF(UO)(D,V)FI :) D(p=p_ ,

Iw,h
H'(Q,,V)

RZF(UO) D, 1% ~ .
BN D+ D)

Iw,h

(ii) The exponential map induces an isomorphism of D?=r"" onto R? 1"15,:’,‘;[) D, V)n
and the following diagram commutes

D RV

Ap i

_ (h—1)'exp
R0V

where the map Ap is defined in Proposition 7.
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Proof. The corollary follows from diagrams (30), (31), (32) and the definition
of /\D-

6.2 The Module of p-Adic L-Functions

6.2.1 The Canonical Trivialisation

We preserve the notation and conventions of Sect. 5.2. Let D be a regular subspace
of D¢is(V') and assume that .Z(V, D) # 0. We review Perrin-Riou’s definition of
the module of p-adic L-functions using the formalism of Selmer complexes. Set

Awn(D,V) =

dety! (Rﬂiyfg(V) ) (gkﬂiﬁ‘”(@v, D, V)))@detAQp ( RL(Q,, V))

The distinguished triangle

RI(D, V) — (quﬁ(g(V) P (@RFI&”’(QW D, V))) ® H

veS

(@RF(%)(QV, V)) ® H — RI-}(W())(D V)[l]

veS

gives an isomorphism Ay 4 (D, V) ®A@,, H ~ det_lRFIf,:"g) (D, V). Let X denote

the field of fractions of 3. By Theorem 4, all R’ FISZOS) (D, V) are H-torsion and we
have a canonical map

deG/REM(D, V)~ ® detiy" "RIM(D, V) < K.
’ ie{2,3}

The composition of these maps gives a trivialization

iviwn @ Awa(D, V) — K.

6.2.2 Local Conditions

We compare local conditions coming from Perrin-Riou’s theory to those of Bloch—
Kato. Roughly speaking the computations of this section explain the appearance of
the Euler-like factor €T (V, D) in the formula for the special value of Lyy (T, N, s).
They will be used in the proof of Theorem 5.
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Set RI['(Q,, D, V) = D[—1] and define
1—plp™!

S:cone(
l—¢

. RI'(Q,.D.V) — RFf(Qp,V)) 1. (33)

Since detg, RI'(Q,, V) is canonically isomorphic to det@i ty (Qp) by (9), the
distinguished triangle
S —RI'Q,,D,V) =Rl (Q,, V) — S[1]
induces an isomorphism
as : detg,ty(Q,) — detg, D ® detg, S. (34)
Explicitly
S = [D 2] Dcris(V) - Dcris(V) @ ZV(QP)] [_1] =
[D 2] Dcris(V) - DcriS(V) S D] [—1],

where the unique non-trivial map is given by

-1 ,-1

(x.y) > ((1 — o). (ﬁ#x + y) (mod FilODcris(V))) .
Thus
1 _ (p=p_1 2 _ tV(Qp) ~ Dcris(V)
H@) =D . H6) (1=p7'o™)D = Fil'Dess(V) + Dy
(35)
1— p—lw—l

From the semi-simplicity of it follows that the natural projection

H'(S) @ H}(V) — H?(S) is an isomorphism and we have a canonical
trivialisation -
,BS : detQpS ®detQpR1"f(V)
~ det@iHl(S) ® detg, H*(S) ® det@i Hi(V)~Q,. (36)

The composition of s with ag gives an isomorphism

Os : detg,1v(Q,) ® detg, RI' (V) =

id®
detg, D ® detg, S ® detg RI;(V) "= detg, D.  (37)
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Fix bases w,, € detg, ty(Q,), wp € detg, D and wy € detg, H}.(V). Let
Ry p(wy.p) denote the determinant of the regulator map ‘

rv.p  Hp(V) = Deis(V)/ (Fil'Deris (V) + D)

defined in Sect. 4.1.3 with respect to w s and @y, ® wy,'.

Lemma3. (i) Let f : W — W be a semi-simple endomorphism of a finite-
dimensional k-vector space W. The canonical projection ker( f) — coker( f)
is an isomorphism and the tautological exact sequence

0—>ker(f)—>W i) W — coker(f) — 0
induces an isomorphism
det* f : dety (W) — dety (W) ®@dety (ker( f)) ®det; ' (coker(f)) — dety (W).
Furthermore det* f(x) = det(f | coker(f)).

(ii) The map Os sends w;, ® a);1 onto

1= p—lo-! -1 _ _
det* (%w) E,(V,1)"'Ryp(wy.p) wp

Proof. The proof is straightforward and is omitted here.

6.2.3 Definition of the Module of p-Adic L-Functions

In this subsection we interpret Perrin-Riou’s construction of the module of p-adic
L-functions in terms of Nekovar (2006). Fix a Z,-lattice N of D and set

A i(N,T) =
det;;! (Rﬂiyfg(T) ) (@Rﬂiﬁ‘”(@v, N, T))) ®dety (@Rﬂfj‘”(@v, T)) :
veS vES

The module of p-adic L-functions associated to (N, T') is defined as
L) (N, T) = ivaws (Awa(N. T)) C K.

(M0)

1w (V. T') and define a meromorphic p-adic function

Fix a generator f(y; —1) of L

Lywn(T,N,s) = f(x(y1)* = 1).
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Let now V be the p-adic realisation of a pure motive M over Q which satisfies
the conditions (M1-M3) of Sect.5.1.2. As we saw in Sect.5.1.2 one expects that
V satisfies (C1-CS5). We fix bases wy € detQH} (M), wy,, € detgty (Q) and use

the same notation for their images in detg, H}(V) and detg,ty (Q)) respectively.

As in Sect. 5.1.3 choose bases a)j;B € detgMy" and wf € detz, T and define the

p-adic period 21" (w7, wy) € Qp by of = QU (i wp ), using the
comparison isomorphism (13) (see also (14)). Let wy be a generator of detz, N.

Theorem 5. Assume that V satisfies (C1-C5) and that the weak Leopoldt conjec-
ture holds for (V,no) and (V*(1), no). Let D be a regular submodule of D5(V).
Assume that £(V, D) # 0. Then

(i) Liwny(T, N,s) is a meromorphic p-adic function which has a zero at s = 0 of
order e = dimg, (D‘/’=pil).
(ii) Let LY ,(T,N,0) = limyoS “Liws(T,N,s) be the special value of

Iw,h

Liwn(T,N,s)ats = 0. Then

L%, (T, N,0)

Ry.p(wvN)

Ioy.p (Aep(T))

~, (W)Y 2V, D) et (V, D) -2 ,
P ot,
Qz(ut 7 (0);’ wAJ;B)

where iy, , and EY(V, D) are defined by (21) and (25) respectively and
r'th)y=mh-1
6.2.4 Proof of Theorem 5
6.2.4.1 First recall the formalism of Iwasawa descent which will be used in the
proof. The result we need is proved in Burns and Greither (2003). This is a particular

case of Nekovdi’s descent theory (Nekovar 2006). Let C*® be a perfect complex of
H-modules and let Cy = C* ®%; Q,. We have a natural distinguished triangle

c* Lo e
where X = y; — . In each degree this triangle gives a short exact sequence
0— H"(C*), — H"(Cy) — H"T'(C*)'" - 0.
One says that C* is semisimple if the natural map
H"(C*)" - H"(C*) - H"(C*)p, (38)

is an isomorphism in all degrees. If C* is semisimple, there exists a canonical
trivialisation of detg, Cy , namely
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9 @ detg,Cy ~ ®dets " H"(C
tQp 0 ne Qp ( )

~® (detf@_pl) H"(C*)r, ® detl)” H”“(C’)F‘)

nez

~ (D" e D" eI
~ g (detQp H"(C*)r, @ dety " H'(C*) ) ~Q,

where the last map is induced by (38). We now suppose that C* ®4¢ K is acyclic
and write Voo : detgcC*® — X for the associated morphism. Then $(detscC®) =
SH, where f € K. Let r be the unique integer such that X =" f is a unit of the
localization Hy of J with respect to the principal ideal X .

Lemma 4. Assume that C* ® X is acyclic and C* is semisimple. Then

r= Z(—l)"+1 dimg, H"(C*)"

nez

and there exists a commutative diagram

X
dety(C®* —— = H

v

detQpC(; Q,

in which the right vertical arrow is the augmentation map.

Proof. See Burns and Greither (2003), Lemma 8.1. Remark that Burns and Greither
consider complexes over A ®z, Q, but since H is a Bézout ring, all their arguments
work in our case and are omitted here.

6.2.4.2 Now we can prove Theorem 5. By Theorem 4 the complex RFI%Z) (D, V)
is semisimple, its cohomology is H-torsion and the first assertion follows from
Lemma 4 together with Corollary 1.

6.2.4.3 In this subsection we prove (ii). Define

RI(Q,. N, T) = RI(@Q,, N, T) ®Y Z,,
RI(Q, D,V) = RI(@Q, N, T) ®, Q.

We remark that for v = p this definition coincides with the definition given in
Sect. 6.2.2. Applying ®%,Q,, to the map

R(@Q,. N, T) @Y% H — R (@Q,. T) % K
we obtain a morphism

RIf(Q,, D,V) - RI(Q,, V).
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If v # p, then R/ (Q,, D, V) = RI'y(Q,, V) and this morphism coincides with
the natural map RI'7(Q,, V) — RI'(Q,, V). If v = p, then RI'#(Q,,D,V) =
D[—1] and by Theorem 3 it coincides with the composition

. |
I=p— o™ (h_l)!exPV_Qp

D ——— Doy (V) ——— H'(@,. V).
Since RI"s (V) = RIYY (V) ®Y Q,, this implies that

RI(D, V) ®3c Q, = RIL(D, V) (39)

Iw,h

where RI,(D, V) is the Selmer complex associated to the diagram

RI5(V) —— @RI(Q,V)

veS

GRI(Q,,D,V).

ves

We have a distinguished triangle

RI(D.V) = RIs(V)EP (@RF(QV, D, V))

veS

— @RI (@..V) > ROL(D. V1] (40)

veS

Passing to determinants and using the trivialisation (10) of RI"s(Q,, V') forv # p
we obtain isomorphisms

det@l{RrS(V) ®q, (E)SdetQPRF(QV, V)) ® detg, D — det@;RFh(D, V),
Eps : Aep(V) ®g, (det@pD ® det@;V“L) 5 detg RI(D. V), 1)

where Agp(V) is the Euler—Poincaré line defined in Sect. 5.1.1. From (39) it follows
that for any i one has an exact sequence

0—R (D, V), - R (D, V) - R LD V)T 0.
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Now by Theorem 4
R(D. V)1 ifi =1
R'I(D, V) = {RM(D. V) ifi =2 42)
0 if i #1,2.

By Corollary 1 the projection Rzl'}f,:’,‘}l)(D, M — Rzl'}f,:’,‘}l)(D, V) r, is an isomor-
phism which induces a canonical trivialisation

9p : detg! RI(D, V) 5 Q,
of RI(D, V). Applying Lemma 4 to the complex Rﬂf;’f}f (D, V) we obtain a

commutative diagram

X~y wn

det;!RLY (D, V) ——" 54

1 Op.n
detg!R;(D,V) ———~Q,

(43)

where iy, is the canonical trivialisation constructed in Sect.6.2.1. From the
definition of the module of p-adic L-functions

AIW,h(Nv T) ®h Zp :)

det; RI5(T)® (E’sdetszF (Q, T)) ® ( ® }dethRFf Q.. T)) ®detz, N,

veS—{p
and again the canonical trivialisation (10) of RI'f(Q,, V) for v # p induces a map
Awi(N. T) ®Y% Z,, < detg RT}(D, V).
Comparing this map with the definition (41) of £p , one has
AN, T) ®Y Z, = ép iy (Aep(T) ®z, oy ®z, (0])7').
By definition, L1y (7, N,s) is a generator of iyywn(Awn(N, T)). Therefore, the
diagram (43) gives
9p 0 Epn(Aep(T) ®z, oy ®z, (07)7") = log(x(¥))~* Ly 4(T. N.0) Z).

(44)

We will now compute the left hand side of this equality in terms of the canonical
trivialisation of the Euler—Poincaré line. Roughly speaking we should compare
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the trivialisation of the Euler—Poincaré line to the trivialisation ¥ 5. Consider the
commutative diagram

RI;(V) —RI(V)® & RIHQ,V)— & RI(Q,V)
] veSU{eo} veSU{eo}

T T

RIG(D,V) ——RI5(V)® GRI'(Q,,D,V) SR (Q,V)

] ves ves

L—— > SaV[-]

V-]

(45)

where L = cone (RFh(D, V) — RFf(V)) [—1] and S is defined by (33). The
upper and middle rows of (45) coincide with (8) and (40) up to the following
modification: the map loc, : RI#(Q,,V) — RI(Q,, V) is replaced by
I'(h)loc,. Hence S is isomorphic to L in the derived category D”(Q,) and we
have an exact triangle

S — RIL(D.V) — RI'(V) — S[1]. (46)

The cohomology of S is computed in (35). On the other hand, Corollary 1 together
with (42) give

De=1 ifi=1,
R (D, V)5S HY(Q,,V)

IR T
ﬁ{p}( )+ ( —l)

An easy diagram chase shows that the map H'(S) — R'I},(D, V) induced by
(46) coincides with the identity map id : D¢=r"" — D¥=r " and that one has an

exact sequence
0— H(V)— H*(S) > R I(D.V) >0

which can be identified with

Dcris(V) I"(h) expy Hl(@ps V)

10 . 1 1 — 0.
Fil'Do(V) + D, H (V) + H'(D_)

0—> Hi(V)—

Therefore, we have a commutative diagram

detg, S @ detg, RI}(V) —— detg, RI;(D,V)

l ﬁS l 13[*)‘11

Qp ) QP

(47)
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where B was defined in (36), ﬁl*),h is the dual of the trivialisation ¥'p ; and « is the
unique map which makes this diagram commute.

From Proposition 7 and Corollary 1 (ii) giving an explicit description of the
trivialisation R' I7,(D, V') — R2I},(D, V') we obtain immediately that

1\° .
k= (log x(»))° (1 - ;) Z(V.D)idg,. (48)
Passing to determinants in the diagram (45) we obtain a commutative diagram

App(V)® (detQ”tv(QP) @det@;w) @ detg, RI}(V) ————> Q,

las

Agp(V) @ (detg, D ® det@}) V) @detg, RIG(D,V) @ (detg, S ® deta}L) =

l Epnn
duality

det@l])RFh(D, V) ®detg, RI;,(D,V) Q,

(49)

where as is defined by (34) and o : detS ® det™'L - Q » 1s induced by (46). The
upper map can be easily compared with the trivialisation map i, , defined by (21):
it sends Agp(T) ® (wr,, ® (a);-')_l ® wy) onto

) ia)M P (AEP(T))

I (h)d+0) 2k )
2y " f of)

(50)

The tautological isomorphism detg,L =~ detg,RI;(D,V) ® det@;RFf(V)
gives a commutative diagram

detg, RI;,(D,V) @ detg, S @ dety)| L —— detg, S ® detg, RI}(V)
| A
detg, RI;,(D,V) ——————— detg,RI;(D,V)

(51

We can summarize the diagrams (49), (51) and (47) in the following commutative
diagram

Agp(V) ® (det (v (Qy)) @det 'VF) @detRIG (V) Q,

l ag
Ep.p®v duality

App(V) @ (detD @ detS @ detRI}(V)) @ det 'V ———= det 'RI};,(D,V) @ detRI}4(D,V) —= Q,

liwﬁs J{iwa,,

. Eph®K 4 Op.h
Ap(V)® (detD@detpr) det”'RI},(D,V) ——— = Q,.
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The image of Agp(T) ® (@, @ (w;' )~' ® wy) under the upper map is given by
(50). The composition of the left vertical maps is the map 6s defined by (37). By
Lemma 3 6s sends App(T) ® (w1, ® (a);')_1 ® wy) onto

1= -1 ,—-1 -1
det? (# | D) Ey(V. 1) Ryp (@v) Aep(T) @ (@ ® (@),

(52)
Next, (44) and (48) give

O 0 (Epn ® K)(Aep(T) ® wy @ (0F) ™)

= (1—%) LWV, D) 'L}, (T.N,0)Z,. (53)

Putting together (50), (52) and (53) we obtain that

L*

Iw,h

(T,N,0)
Ry p(wyN)

det 1- p_lfp_l |D in,p (AEP(T))
U T @l ) o)

~p~p F(h)d+(v) g(Vs D) Ep(Vv 1)

and the theorem is proved. O

6.2.5 Special Values of L}, , (T, N, s)

Let I:I}(T) denote the image of H}(T) in H}(V) and let wr s be a base of

detz, ﬁ}(T). Let Ry p (wr ) denote the determinant of ry, p computed in the bases
Wy, wy and w7 5.

Corollary 2. Under the assumptions of Theorem 5 one has

Liu (TN 0)

Ry p(wr.N)

#LL(T™* (1)) Tam{, (T)
#HY(V/T)#HL(V*(1)/T*(1))’

~, T()™*Y) 2V, D)eT(V, D)

where III(T*(1)) is the Tate-Shafarevich group of Bloch—-Kato (1990) and
Tamg)M (T) is the product of local Tamagawa numbers of T taken over all primes
and computed with respect to a fixed base wy,, of detgty (Q).

Proof. The computation of the trivialisation of the Euler—Poincaré line (see for
example Fontaine and Perrin-Riou 1994, Chap.II, Théoreme 5.6.3) together with
the definition (21) of i, , give
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#III(T*(1)) Tam, (T)
#HZ(V/T)#HJ(V*(1)/T*(1))

etp)o +  +
M (or,

iy .p(Aep(T)) = o) l0f o1 1]

Since Ryp(wry) = Ryp(wyn)|ws : ory] the corollary follows from
Theorem 5.

6.2.6 The Functional Equation

Recall that we set /;(V) = dimg,(gr;Dar(V)) and m = 3 ih;(V). Since

i€z
V' is crystalline, detg,(V) is a one dimensional crystalline representation and
detz,(T) = To(m) where Tp is an unramified Gg,-module of rank 1 over Z,,.

The module (Ty ® W(F,))*=' e, where e,, = (t7' ® £)®" is a Z,-lattice in
detg, (Deris(V)) = Deris(Vo(m)) which depends only on 7 and which we denote
by Dcris(TO (m))

Let D be the dual regular module. The exact sequence

0— D — Duis(V) — (Dl)* -0
gives an isomorphism

detg, D ® det@iDJ' ~ detg, Deris (V)
and we fix a lattice N+ C D+ such that

dethN &® deti;NJ- >~ Deiis(To(m)).

SetI'vu(s) = [ ( +s)dimFﬂdeR(V). The conjecture 6z, (V') of Perrin-Riou (1994)
j>=h
proved in Benois and Berger (2008) implies that for 2 >> 0

Liyn(T*(1), N+, =s) ~a= () [ G+ 9 DLy (T, N, s)
—h<j<h

(see Perrin-Riou 1995, Théoreme 2.5.2). This can seen as the algebraic counterpart
of the functional equation for p-adic L-functions. An elementary computation (see
Benois and Berger 2008, Lemme 4.7) shows that

rs) [ G+ = r@)r" =40y 4 o(sn),
—h<j<h

where r = dimg, ty(Q,) —d+(V) = dimg, H}(V) and I"'*(V) is defined by

(23). Therefore Ly, 4(T*(1), N1, 5) has a zero of order dimg, H}(V) +eats = 0.
Moreover one has '
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Ly, (T*(1),N+,0)
I(h)d+0*1)

Lywx(T,N,0)
]"(h)d+(V)

~p F*(V)
From the definition of Ry« () p1 (see Sect.5.2.1) one has

H, —
Rv*(l),DJ-(wv*(l),NJ-) = Q](u p)(wT,COMdR) lRV,D(CUV,N)

where .Q](é]’p ) denotes the period map defined by (17) and (18) and wy, = Wy, ®

W 1*(1). Taking into account (24) we obtain that

Ly, (T*(1),N+,0)

RV*(l),Dl(wV,Nl)

Loy p (Aep(T™(1)))

(ét.p),, + + ’
M (wT*(l)’wM*(l)B)

~p Ty W2V, D) e (V*(1), D)
which is the analogue of Theorem 5 for Ly, 4 (T*(1), NL, ).

Appendix

In this Appendix we prove some results about the cohomology of p-adic represen-
tations of local fields.

Let K be a finite extension of Q, and T a p-adic representation of Gg. Fix a
topological generator y of I'. Let D(T) = (T ®g, A)H& be the (¢, I')-module
associated to 7' by Fontaine’s theory (Fontaine 1991). Consider the complex

C,,(D(T)) = [D(T) Lpmenm s D(T)}

where the modules are placed in degrees 0, 1 and 2 and the maps f and g are
given by

J)=Wp-Dx.(y=Dx), g.9d=F-Dy—-(¢p—-Dz
Proposition 8. There are canonical and functorial isomorphisms
K. H'(C,,(D(T))) = H'(K,T)

which can be described explicitly by the following formulas:

(i) Ifi =0, then h° coincides with the natural isomorphism

=ly=1 _ 130 =1\ _ 170
D(T)*=""=! = H(K.T ®z, A*~") = H(K.T).



On Extra Zeros of p-Adic L-Functions: The Crystalline Case 127

(ii) Leta, B € D(T) be such that (y —1)a = (1 — @) B. Then h' sends cl(a, B)
to the class of the cocycle

(g = (g—x + S=1p,
y—1

where x € D(T') @a, A is a solution of the equation (1 — @) x = o.
(iii) Let p € Gk be a lifting of g € I' and let x be a solution of (¢ — 1) x = «.
Then h?* sends a to the class of the 2-cocycle

Pl — 1
)’)_

pa(gi,g2) = P (hi —1) X

where gi = )’)k"hi, ]’l,‘ € Hg.

Proof. The isomorphisms 4’ were constructed in Herr (1998), Theorem 2.1.
Remark that (i) follows directly from this construction (see Herr 1998, p. 573)
and that (ii) is proved in Benois (2000), Proposition 1.3.2 and Cherbonnier and
Colmez (1999), Proposition 1.4.1. The proof of (iii) follows along exactly the
same lines. Namely, it is enough to prove this formula modulo p” for each n. Let
a € D(T)/p"D(T). By Proposition 2.4 of Herr (1998) there exists r > 0 and
y € D(T)/p"D(T) suchthat (¢ — 1) = (y —1)"B. Let

Ny = (D(T)/p"D(T)) ® (&=, (Ax/p"Ax) 1i),

where p(t;) = t;+(y—1)""" () and y(t;) = t; +t;—. Then N, is a (¢, I")-module
and we have a short exact sequence

0O—-D—>N,—-X—>0

where X = Ny/M =~ &!_ Ax/p"Akt;. An easy diagram chase shows that the
connecting homomorphism &), : H'(C,,(D(X))) — H?*(C,,(D(T))) sends
cl(0,7,) to —cl(a). The functor V(D) = (D ®a, A)*=! is a quasi-inverse to D.
Thus one has an exact sequence of Galois modules

0—>T/p"T T, —>V(X)—0

where Ty = V(N,). From the definition of x it follows immediately thatz, —x € T.

- —1._
By (ii), 4'(cl(0,7,)) can be represented by the cocycle c(g) = g_l t, and we fix
y —

. L -1 n n
its lifting ¢ : Gxg — N, putting ¢(g) = g_l (tr — x). As g1¢(g2) — ¢(g182) +
y —

é(g1) = —ua(g1, g2), the connecting map 8+ : H'(K, V(X)) — H*(K,T/p"T)
sends cl(c) to —cl(u,) and (iii) follows from the commutativity of the diagram



128 D. Benois

HY (Cpry(X) — 2 H2(Co(T/p'T))

bk

H'(K,V(X)) _x, H2(K,T/p"T).

Proposition 9. The complexes RI'(K, T) and C,,,(T) are isomorphic in D(Z,).

Proof. The proof is standard (see for example Burns and Flach 1996). The exact
sequence

05T = D(T)®a, A5 D(T) @4, A — 0
gives rise to an exact sequence of complexes
0— C(Gg, T) > CJ(Gk,D(T) @ax A) Lt CX(Gg.,D(T) ®ay A) — 0
Thus RI'(K, T') is quasi-isomorphic to the total complex
K*(T) = Tot* (CC'(GK,D(T) ®ax A) LY C(Gk,D(T) Qa, A)) .
On the other hand

Cyy(T) = Tot® (A'(T) L A’(T)),

-1
where A*(T) = [D(T) RANN D(T)]. Consider the following commutative diagram
of complexes

D(T) D(T)

S

CO(Gi,D(T) @ax A) ——> C(Gi, D(T) @p A) ——> C2(Gi, D(T) @p A) —> -+

in which Bo(x) = x viewed as a constant function on Gg and B;(x) denotes the

map Gx — D(T') ®a, A defined by (8;(x)) (g) =

£~ — x. This diagram induces
a map Tot*(A4° (T) —— A*(T)) — K*(T) and we obtain a diagram

Cy,(T)— K*(T) < RI'(K,T)
where the right map is a quasi-isomorphism. Then for each i one has a map

H'(C,,(T)) — H'(K*(T)) ~ H(K,T)
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and an easy diagram chase shows that it coincides with A’. The proposition is
proved.

Corollary 3. Let V be a p-adic representation of Gg. Then the complexes
RI(K,V), C,,(D(V)) and C,, (DLg(V)) are isomorphic in D(Q)).

Proof. This follows from Theorem 1.1 of Liu (2007) together with Proposition 9.

Recall that Ko,/ K denotes the cyclotomic extension obtained by adjoining
all p"-th roots of unity. Let I = Gal(K/K) and let A(I") = Z,[[I']]
denote the Iwasawa algebra of I'. For any Z,-adic representation 7" of Gg the
induced representation Indg_,/x T is isomorphic to (T ®z, A(I'))" and we set
R (K, T) = C2(Gk ,Indk,./xT). Consider the complex

Cog (T) = [D(T) v D(T)}

in which the first term is placed in degree 1.

Proposition 10. There are canonical and functorial isomorphisms
hiy + H'(Ci.y(T)) - HL (K, T)

which can be described explicitly by the following formulas:

(i) Let o € D(T)V='. Then (p — 1) a € D(T)Y=° and for any n there exists a
unique B, € D(T) such that (y, — 1) By = (¢ — 1) a. The map h],, sends cl(c)
10 (h(C1(B. @))nert € H (Ko, T).

(ii) Ifa € D(T), then 12, (c1(@)) = —(h2(@(@)))nen.

Proof. The proposition follows from Theorem II.1.3 and Remark I1.3.2 of Cher-
bonnier and Colmez (1999) together with Proposition 8.

Proposition 11.  The complexes RI1, (K, T) and Ciy y(T) are isomorphic in the
derived category D(A(I)).

Proof. We repeat the arguments used in the proof of Proposition 9 with some
modifications. For any n = 1 one has an exact sequence

-1
0— Ind, kT — (D(T)®2,Z,[Ga])®a, A “— (D(T)®2,7Z,[G,]' ) ®ax A — 0.
Set D(Indk,/xT) = D(T) ®z, A(I")" and

D(Indk,/x (T))®axA = Um(D(T) ®z, Z,[G,]) ®ay A.

n

As Indg, kT are compact, taking projective limit one obtains an exact sequence

00— IndKOO/KT —> D(Inde/K(T))®AKA (p_—l) D(Inde/K(T))®AKA — 0.
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Thus Ry (K, T') is quasi-isomorphic to
N -1 . N
KI.W(T) = Tot* (CC.(GK,D(IndKOO/KT)@AKA) (p—> C; (GK,D(IndKOO/KT)®AKA)) .

We construct a quasi-isomorphism fo : Cryy(T) — K, (T). Any x € D(T) can
be written in the form x = (1 —¢y¥) x + @y (x) where ¥ (1 — @) x = 0. Then
for each n = 0 the equation (y, — 1) y, = (¢¥ — 1) x has a unique solution y, €

D(T)¥=° (Cherbonnier and Colmez 1999, Proposition 1.5.1). In particular, y, =
1Gul—1

1 — 1 .
Lk —— yn+1 and we have a compatible system of elements Y, = Z )/k ®
k=0

Yn — 1
Y*n) € D(T) ®z, Z,[G,]'. Put Y = (¥,)uz0 € D(Indk,./xT). Then

(ra—=DY, = (y—1)Y (mod D(Indg, /xT)).

Let n, € CCI(GK,D(IndKOO/KT)@AKA) be the map defined by 7n,(g) =

-1
£ (1 ® x). Define
y—1

fi : D(T) — K (T) = CX(Gg,D(Indg_/kT)®a,A)
® C(Gk,D(Indg /k T)®a,A)
by fi(x) = (¥, ny) and
fr : D(T) - CH(Gg,D(ndg . kT)®a,A) C K2 (T)

by f2(z) = —ng. It is easy to check that f, is a morphism of complexes. This
gives a diagram

Ciwy(T) »> K5 (T) < RIW(K, T)

in which the right map is a quasi-isomorphism. Using Proposition 11 it is not
difficult to check that for each i the induced map

H'(Cray (T)) = H' (K3 (T)) ~ H (K., T)

coincides with Al . The proposition is proved.

Corollary 4. The complexes RITw(K,T) and CILJ//(T) are isomorphic in
D(A)).

Proof. One has DT(T)¥=! = D(T)¥=' (Cherbonnier and Colmez 1998, Propo-
sition 3.3.2) and DY(T) /(¥ — 1) = D(T)/(¥ — 1) (Liu 2007, Lemma 3.6). This
shows that the inclusion CIZW (T) = Ciw,y (T) is a quasi-isomorphism.
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Remark. These results can be slightly improved. Namely, set r, = (p — 1) p"~L.
The method used in the proof of Proposition I11.2.1 Cherbonnier and Colmez (1999)
allows to show that ¥ (D™ (T)) c D""»=1(T) for n > 0. Moreover, for any a €
D77 (T) the solutions of the equation ( — 1) x = a are in D™/ (T'). Thus

T T —1 T,
L (T) = [m ') 22 ot ~<T>} C axo0

is a well-defined complex which is quasi-isomorphic to CIZW(T). Further, as
@(AT"/P) = A" we can consider the complex

clm(ry = [Ty L Dty @ DM Ty S D ()], a0

in which f and g are defined by the same formulas as before. Then the inclusion
C(Zj;,” (T') = C,, (T) is a quasi-isomorphism.
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On Special L-Values Attached to Siegel
Modular Forms

Thanasis Bouganis

1 Introduction

Special values of L-functions play a central role in Iwasawa theory since they
are indispensable for the formulation of the Main Conjectures. It is precisely this
information which is encoded in the interpolation properties of the p-adic L-
functions. The first step to construct these p-adic L-functions is to show that the
L-functions under consideration evaluated at “critical” points have particular alge-
braic properties. These properties are usually described by Deligne’s conjectures. In
this article we address this kind of questions for L-functions associated to Siegel
modular forms.

This article grew out of the author’s effort to read carefully the book of Shimura
“Arithmeticity in the Theory of Automorphic Forms” (Shimura 2000) which means
to do also the “exercises” left by Shimura to the reader. One of them is related to
the algebraicity of various special values of Siegel modular forms (see page 239,
Remark 28.13 in (loc. cit.)). As Shimura points out the results left as exercises
should follow by using the various techniques and results obtained in his book and
various papers of him. This is indeed the case since most ideas of this article can
be found in the various works of Shimura, which of course in turn requires some
familiarity with them. In any rate we believe that it is useful to have the results
worked out in this paper documented in the literature, and for this reason we decided
to write this article. In this paper we consider the special values of Siegel modular
forms of integral weight. In Bouganis (in preparation, a), the continuation of this
article, we consider also special L-value attached to half-integral weight Siegel
modular forms.
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Let us point out some results in this article that we believe deserve special
mention. The first is the reciprocity law of the action of the Galois group on half-
integral weight Eisenstein series. For integral weight Eisenstein series one can
find the reciprocity laws in the book of Feit (1986) (if not in the form that it is
needed for our purposes). However to the best of our knowledge the reciprocity for
half integral Eisenstein series has not been worked out for Siegel modular forms.
Another interesting result is the definition of the period £2¢ appearing in Theorem 12.
These kind of periods have been first considered by Sturm (1981) and Harris (1981)
(and later also by Panchishkin), based on an idea of Shimura. We follow the ideas
of Sturm in defining them but using some new results of Shimura we are able to
improve in some cases the bounds on the weight of the Siegel modular forms that
the results are applicable. Also the fact that we use the more precise form of the
Andrianov-Kalinin type identity proved by Shimura, we can obtain slightly finer
results, since we need to remove less Euler factors of the L-function.

This paper is organized as follows. In section two we have a very brief
introduction to Siegel modular forms. Then we move to section three where after
presenting various results of Shimura with respect the theory of theta series and
Eisenstein series for the symplectic group, we prove the various reciprocity laws of
the action of the absolute Galois group on the Fisenstein series. Some of the result
have already appeared in Sturm (1981) and Feit (1986), and we use ideas of these
works. For the case of half integral weight Eisenstein series we prove the reciprocity
inspired by an idea of Shimura. In Sect.4 we introduce the L-functions which are
considered in this paper. All the material of this section is from Shimura’s book.
In Sect.5 we also present the work of Shimura on the generalization of the so-
called Adrianov-Kalinin type identity. However for our purposes we use an integral
expression that it is not in the book Shimura (2000) but in a paper of Shimura (1994).
The use of this integral expression will lead to study slightly different L-functions
than in the ones studied in the book of Shimura (we explain more later on this).
Also in this section all the material is taken from works of Shimura. In Sect. 6 we
define the periods that we will use to obtain the good reciprocity laws. The idea
of defining this periods as values of an L-function goes back to Shimura, and have
been used by Sturm (1981), Harris (1981) and Panchishkin (1991) in the case Siegel
modular forms over the rationals and of even degree. We also note that we obtain
a slightly different results than in these works, partly because we use some newer
results of Shimura that were not available when these works were written. In the
following section we present the various results on the field of rationality of the
various special functions properly normalized and in some cases we provide some
reciprocity results. Finally we finish this work by briefly discussing yet another
method for considering the same questions as in this paper, namely the doubling
method.

One last remark with respect to the notation used in this article. Since we are
using as our main reference the book of Shimura (2000) we decided to keep, the
anyway excellent, notation used by him. In particular if some times we use some
notions not defined in this paper the reader will find the exact same notation also
in the reference. This allows to keep the length of this article reasonable since we
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do not need to introduce all the mathematical notions used here. We finally remark
that our choice to use the notation as in Shimura’s book leads us to write Z (s, f) for
the L-functions attached to a Siegel modular form f instead of the more standard
L(s,f).

2 Siegel Modular Forms

2.1 [Integral Weight Siegel Modular Forms

In this section we introduce the notion of a Siegel modular form (classicaly and
adelically). We follow closely the book of Shimura (2000).

0 -1,
1, O
commutative ring A with an identity the group Sp, (4) := {& € GLy,(A)|'an,a =
Na}- The group Sp,(R) acts on the Siegel upper half space H, := {z € C!|z =

For a positive integer n € N we define the matrix 7, := ( ) and for any

z, Im(z) > 0} by linear fractional transformations, that is for ¢ = (a“ Zo‘) €
Cq Qg

Sp,(R) and z € H, we have a - 7 := (agz + by )(Caz + dy) ! € H,,. Moreover if we
define gy (z) := (@, z) := cqz + d, then we have

u(Ba,z) = w(B,azm)u(a,z), a,p € Sp,(R),z € H,

Let now F be a totally real field of degree d := [F : Q] and write g for its ring
of integers. We write a for the set of Archimedean places of F', h for the finite ones
and we set G := Sp, (F). We write G for the adelic group and we decompose
Gp = GyG, where G, 1= [],e, Gy and Gy, := [ ], Gv- For two fractional ideals
a and b of F such that ab C g, we define the subgroup of G4,

DJa, b] := {x = (ax bx) € Gplay < gy, by < a,,¢c <by,d, <g,,Vveh,
Cx dy

where we use the notation “<” of Shimura, x < b, meaning that the v-component of
X is a matrix with entries in the ideal b,. We will mainly consider groups of the form
D[b™!, be] for a fractional ideal b and an integral ideal ¢. Strong approximation for
G implies that Gy, = GgD[b™!, bc] for any b, c and ¢ € Gy,. We define I'?(b, ¢) :
G N gD[b~', bc]g™". Given a Hecke character ¥ of F with ¥, (a) = 1 for all a
g%, v € hsuch thata — 1 € ¢, we define a character on D[b™!, bc] by ¥ (x)
]_[vlc Yy(det(dy),) and a character which we still denote ¥ on I'? by ¥ (y) :
ACST)N

We now write Z* := [] ¢, Z and H := []
and an element k € Z?* we define

I m

H,. For a function f : H — C

vEa

(flr@) (@) = ju@)* f(az), @ € G, z € K.
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Here we write 7 = (2,),ea With z, € H, and o, € Sp, (R) and define j,(z)7* :=
1, det(ita, (zv)) 7. Let now I" be group of the form I'?, ¢ € Gy, as above and V¥ a
Hecke character. Then we define

Definition 1. A function f : H{ — C is called a Siegel modular form for the
congruence subgroup I" of weight k € Z* and Nebentypus v if

1. f is holomorphic,

2. flky =¥ (y)f forally € I,
3. f is holomorphic at cusps.

The last condition is needed only if F = @Q and n = 1. Then it is the classical
condition of elliptic modular forms being holomorphic at cusps. The above defined
space we will denote it by My (I, ¥). As it is explained in Shimura (2000, page 33)
for an element f € My (I, ¥) and an element ¢ € G we have a Fourier expansion

(fle)@ = Y ca(h)el(h2),

heSy

where Sy is the set of n by n symmetric matrices with entries in F' which are
positive semi-definite at every real place v € a and e} (x) = exp(2mi ) o, tr(xy)).
An element f € M (I,v) is called a cusp form if ¢, (h) # O for some ¢ € G
implies 4, is positive definite for all v € a.

We now turn to the adelic Siegel modular forms. Let D be a group of the form
D[b™!, bc] and ¥ a Hecke character of F.

Definition 2. A function f: G, — C is called adelic Siegel modular form if

1. f(axw) = Y (w)j ¥ ()f(x) fora € G,w € D with w(i) =i,
2. For every p € Gy, there exists f, € My (I'?,{,), where I'? := G N pDp~" and
¥p(v) = ¥ (pyp™") such that f(py) = (f,lxy) () forevery y € Ga.

We write My (D, ¥) for this space. Strong approximation theorem for Sp, gives
Mi(D,¥) = M(I'?,y,) for any g € Gn. We define the space of automorphic
cusp form 8¢ (D, ¥) to be the subspace of My (D, ) that is in bijection with
Sk (I’'?, ) for any g € Gy, in the above bijection. We may also sometimes write
My (b, ¢, ) for My (D, ). Similarly we may write My (b, c,v) for My (I, )
where I' = G N D[b™!,bc],ieq = 1.

2.2 Half-Integral Weight Siegel Modular Forms

Even though we will consider only algebraicity results for integral weight Siegel
modular forms, in many case we will need to use half-integral weight modular
forms. We denote by M, the adelized metaplectic group sitting in the exact sequence
0 — T — My — G, — 0. The last projection we denote by pr. We write C? for
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the theta group defined for example in Shimura (1994, page 536) and I'? = GNCY.
We also define the group 9 = {x € My|pr(x) € PoC?}, where P is the standard
Siegel parabolic subgroup of G. Thanks to a canonical lift we may consider G as a
subgroup of M, and hence also I"? a subgroup of 9. For an element o € 9t and
z € H we write h,(z) for the holomorphic function defined by Shimura. By a half
integral weight k € %Za we mean a tuple (k,),eq so that k, € Z + % forall v € a.
For such a k we define the factor of automorphy

Jo @ = 1o (2) jprio) @

Then the definition of half integral weight modular forms, with congruence
subgroup I' < I'? is the same as in integral case but using the new factor of
automorphy. One may define also adelic automorphic forms, we refer to Shimura
(2000, page 166) for this.

3 Theta and Eisenstein Series

3.1 Theta Series

Following Shimura (see page 270 in Shimura 2000) we set W = F' and we let
8(Wh) denote the space of Schwartz-Bruhat functions on Wj,. Let T be an n by n
symmetric matrix with entries in F such that 7, > 0 for all v € a. For an element
A € 8(Wh) and an element u € Z2 such that 0 < u, < 1 for all v € a we define

0(z.2) = Y AEn)der(€) ea(ir(€782)), z € H.

Eew

It is shown in the appendix of Shimura (2000) that this is an element of M; with
[ := u+ 5a. Moreover it is also shown that if  # 0 then 6(z, A) is actually a cusp
form. We now introduce some extra notation following Shimura (2000, Appendix
A3.18). We set

R=[]@): E.=GLi(g). R*=RW,C Wa.
vh

We let @ be now a Hecke character of F' of conductor f such that w,(—1)" =
(=1)"Xv i Let now r be an element of GL, (F)y and define

0(2) = ) wa(der(€))w* (det(r™"E)g)der(£) €, (Exér),

WNrRr*

where for a Hecke character { we denote by ¥* the corresponding ideal character.
Then Shimura proves the following proposition (Shimura 2000, Proposition A3.19).
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Proposition 1 (Shimura). Let p, be the Hecke character of F corresponding to
the extension F(c'/?)/ F with ¢ = (—1)I"/2det(27); put o' = wp,. Then there exist
a fractional ideal b and an integral ideal ¢, such that the conductor of @’ divides c,
D[b™!, bc] C D[207",20] if n is odd, and

0(y2) = w,(det(ay))j,(2)6(z). y € G N D,
where D = D[b™!, bc]. Moreover, if B € G N diaglq, §]C with g € GL,(F)y, then
JHBT0(B™'2) = o' (det(q)) ™ w](det(dpq))|der(q) [} *x

Y. wu(der(®)w* (der(Er' g g)der(§) € (E ).

EeEWNrR*g~!

In particular, let ¢ and t be fractional ideals of F such that 'g2tg € ¢ for every
g € rgl and 'h(2t)"'h € 47! for every hitg} and write Y for the conductor of p;.
Then we can take

(6.0 = | GTRRbNFNIPY, if n is even;
Tl @ e h NN 4ana?y), ifnis odd.

wherea ="' Ng.

3.2 Eisenstein Series

We follow Shimura (2000, pages 131-132) and define various Eisenstein series of
Siegel type. Let k € %Za be a weight, b a fractional ideal of F, ¢ an integral ideal
in F and a Hecke character y of F with infinity type ya(x) = x%|xa|™", and of
conductor c.

When k is half integral we also assume that D[6™', bc] C D[207',20], where
0 the different ideal of F'. Following the notation of Shimura we now define in the
case of k € 72

D = D[b", bd,
and otherwise

D = {x € Mx|pr(x) € D[6™", bc]}.



On Special L-Values Attached to Siegel Modular Forms 141

Write P = {x € G|cy = 0} for the standard Siegel parabolic. We then define a
function ; on G4 or My by

u(x) =0, if x & PoD,
11(x) = yu(der(dy))™" xe(der(d))™ jED /DI,
if x = pw with p € Py and w € D. Then for a pair (x,s5) € Gx x Cif k € Z? or

in M, x C otherwise, we define the Eisenstein series (for the function € below we
refer to Shimura’s book)

Ex(x.s) = Ex(x.5: 0. D) = > p(ax)e(ax)™.
a€P\G

We will need one more type of Eisenstein series. We define the element { €

Sp(n, F)a by
0 —857'1,
Ca_ls Ch_(Sln 0 )7

where § € F. such that §g = 9. We further fix an element E € My such that
pr(¢) = ¢ and h(¢,z) = 1. Then we define the Eisenstein series

_ Ea(x¢,s5), ke Z?;
<E* , — 8 n >
Al $) =2 x % EA(x¢,s), otherwise.
Finally we define the Eisenstein series

Le@s, ) 1™ Le(4s —2i, x2). k € 72

i=1

M3 L (ds—2i =1, 3%, k €72

i=1

’

Da(x,s) = Ex(x,s) % {

Write § = {x € F'|'’x = x}. Then the g-expansion of E(x,s) is given by
EX (((q) Uf]) ,s) = Zc(h,q,s)ef’;(ha),
q hes

where ¢ € GL,(F)a and 0 € Sa. We now define the Eisenstein series on (z, 5) €
H x Cby

E*(x(i).s) = jEDEX(x,9),

and similarly we define D(z,s) and D*(z,s). When we want to indicate the
dependence on the various input data we will write E(z,s;k, x,¢) for E(z,s) or
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in case we want also to indicate the dependency on b we will write E(z, s;k, y, ),
where I' = G N D[b™!, bc]. We now note the g-expansion

E*(2.5) = ) _det(y)™*c(h.q. )¢ (h).
hesS

where ¢, = ¢1 and g, = y'/?. For the coefficients ¢(, ¢, s) we have the following
propositions of Shimura (2000, Proposition 16.9, 16.10, 17.6), (for notation not
introduced here we refer to (loc. cit.)).

Proposition 2 (Shimura). Suppose that ¢ # g and det(q,) > 0 for every v € a.
Then c(h,q,s) # 0 only if (‘qghq), € 0b~'c¢™"),S, for every v € h. In this case

c(h,q,5) = Cxn(det(—q)) ™ |det(qn [\~ | Dp |2+ TN (be) D2
det(y)**E(y:h:sa+k/2,sa—k/2ai(e;" -'ghq. 25, y).

where C = lande = 0ifk € Z? and C = en[F : Q]/8) and e = 1 if
k & 77 e, € F such that eg = b= ifk € Z? and €, = 1 otherwise; D is
the discriminant of F.The function Z(g:h;a, B) = [],ea § v, hvi oy, By) is given
in Shimura (2000, page 140).

Proposition 3 (Shimura). Consider q and h such that c(h,q,s) # 0. Set r =
rank(h) and let g € GL,(F) such that g~'hg = diag[h’,0]l with i’ € S'. Let py,
be the Hecke character corresponding to F(c'/?)/ F where ¢ = (—=1)I'?det(2h"),
ifr >0, let pp =1ifr =0. Then

al(e; " -'ghq,2s, x) = Ac(s) T Ay(s) l_[fh,q,v (2| P +72)

vEe

where
) — Le@s, ) 13 Lo(as —2i, y2). ifk € Z2;
() =
]_[l[(g_l)/z] Lc(4s —2i +1,x%), otherwise.
A Le@s—n+r/2, xp) [1 72 Le(ds —2n + 7 +2i — 1, 42), ifk € Z2;
n\s) =
1 [T 2 L (ds — 20 + 1 +2i — 2. 42), otherwise.

Here fj, 4., are polynomials with coefficients in Z, independent of y. For the finite
set ¢ see Shimura (2000).

For a number field W we follow Shimura and write Nj (W) for the space of W -
rational nearly holomorphic forms of weight k (see Shimura 2000, pages 103 and
110 for the definition). The theorem below is due to Shimura (2000, Theorem 17.9).
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Theorem 1 (Shimura). Let @ be the Galois closure of F over Q and let k € %Za
withk, > (n + 1)/2 forallv € aand k, — k,, € 27 for every v,V € a. Let u € %Z
withn+1—k, <u<k,and|u— #| + ”T'H — ky, € 2Z for all v € a. Exclude
the cases

I u=m+2)/2, F =Qand y> =1,

2. u=0,c=gand y =1,

3.0<pu<n/2,c=gand y*=1.

Then D(z, 11/2; k, x, ¢) belongs to nﬂN,’{ (@Qup), wherer = (n/2)(k—|pu—(n+
1)/2]a— "%a) except in the case wheren = 1, u =2, F =Q, y = landn > 1,
w=n+3)/2, F =Q y*> = 1. In these two case we have r = n(k — u + 2)/2.
Moreover we have that B = (n/2) Y (kv + @) — [F : Qle where

[(n+ 1)2/4] — . if 20 +n € 2Z and . > A;
[n2/4] , otherwise.

For an element p € 7Z® and a weight ¢ € %Z“ we write A/ for the
differential operators defined by Shimura (2000, page 146). In particular we have
A,fN;(@Qah) C n"'”‘NZiZ(@Qa;,). Moreover for any f € N;(dﬁ(@a;,) and any
o € Gal(®Q,p/P) we have that

(n_”‘PlAé’(f))U _ Jr_"‘plAf;(f") 1)

Let u € %Z and k € %Z“ be as in the theorem above. If & > (n 4+ 1)/2 then
Shimura shows that (Shimura 2000, page 146)

AP D(z, /2 pa, x.¢) = 2, (1/2)(i/2)"P'D(z. 1/ 2: ka. 1. ©). )

where p = (k — pna)/2. Here cfla(11/2) € Q*. If u < (n + 1)/2 then we have

AL D(z, 1/ 2:va, . ¢) = chy(1/2)(i/2)""'D(z. 1/ 2: ka, 1. 0), 3)
where v =n + 1 — u, p = (k — va)/2 and again c/,(u/2) € Q*.
The following lemma is immediate from the above equations,

Lemma 1. Assume there exists A(y), B(x) € Qu and B1, B2 € N such that for all
0 € Gal(Quw/Q)

D(z.p/2: pa x.©)\* _ D(zp/2:pa, x%.c)
P A(x) P A(x%)

s w=(n+1)/2
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and

D(z, ;u/2;va, x,0)\°  D(z,u/2;va, x°,¢
( (z, p/ )()) _ D/ X ),,uf(n+1)/2.

mh B(x) mh B(x")

Then we have for i > (n + 1)/2 that

(D(Zvu/zvks)(vc)) _D(ZsM/zskvx ,C) p:(k_ua)/zeza’

abinlplinlel A(y) ) wBrinlplinlel 4(yo)°
and for u < (n + 1)/2 that

D(z, 1t/2;k, x.©) \* _ Dz p/2k, 1%, ¢)
j{ﬁ2+"|P‘in‘P|B(X) o j{ﬁ2+"|P‘in‘P|B(X‘7)’

v=n+l—u p=(k—va)/2 € 7?,

We will be interested in algebraicity statements of the Eisenstein series of weight
sufficient large it is enough to study the effect of the action of the Galois group of
the full rank coefficients. More precisely we have the following lemma.

Lemma 2. Let f(z) =Y ,cg c(h)el(hz) € Mya(Q®) with k > n/2. Assume that
for an element 6 € Gal(Qu,/Q) we have c(h)® = ac(h) for all h with det(h) # 0
for some a € C. Then c(h)° = ac(h) forall h € S. In particular f° = af.

Proof. We obviously have f° € Mya(Qup). We consider g := af — f° €
Mia(Qgup). We note that the form g has non-zero Fourier coefficients only for 2 € S
with det(h) = 0. But then by Shimura (2000, Proposition 6.16) we have that g = 0.

O

We now want to consider the action of Gal(Q,,/Q) on the Eisenstein series.
We first consider the holomorphic ones. That is, we consider the following two
Eisenstein series

1. D(z,k/2:Ka, 1, ) € TP Mya(Qu) for k > 231,
2. D(z,ju/2;:ka, y.¢) € mPMpa(Qup) fork :=n+1—pand pu < ’”2'1,

where f is determined by Theorem 1. Note here that we take the field of definition
to be Qgp, i.e. the extension @ does not appear. For this we refer to Shimura (2000,
Theorem 17.7).

In the following lemma we collect some properties that we will need concerning

the functions Z(y, h; o, B) = [[,ca EO. hs at, B).

Lemma 3. Leth € S with det(h) # 0 and y € S (R). Then we have for k € %Z
we have

E(y,h,k,()) — 2d(1_("+1)/z)i_d"k(27t)d"kfn(k)_dN(det(h))k_(n+1)/2e"(iyh)

and for n :=n + 1 —k we have
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ik —(dn(— n+1 _
B, h; (1 +1/2, (= k)/2) = i 72U M, (——=) ™ x

—(Bky g
[ [det(y)= €  (iyh)

vea

Proof. The first statement is in Shimura (2000, Equation 17.12). For the second we
have & (v, h; (n+1)/2, 11/2=k/2) = [T,eq € O, s (1+1)/2, 1/ 2~k 2), where
the function £(-) is given in Shimura (2000, page 140). By Shimura (1982, Equa-
tion 4.35K) we have that w27y, hy; (n+1)/2, u/2—k/2) = 27" +D/2e (iy,h,).
We conclude that

n+1

£t (1 1)/2, /2= k/2) = i 0Dt/ ()T
—k
det(y,)" T e, (iy,hy),
where we have used the fact that §_(h,y,) = 1 (the product of the negative

eigenvalues of £, ,). Indeed we have that §_(h,y,) = 6— (yvl/zhv’yé/z). But the last
quantity has the same number of negative eigenvalues as the matrix 4,, but &, > 0.
|

We will need the following Theorem (for a proof see Shimura 1997, Theorem
A6.5).

Theorem 2. Let F be a totally real field, and let W be a Hecke character of F with
k
Va(®) =1 ca (Iz_‘|> , with 0 < k € Z. For any integral ideal ¢ of F put

Pk, y) = g(¥) ' @ui) | Dp| Lk, ),

where d = [F : Q] and g(¥) is a Gauss sum (defined Shimura 1997, page 240).
Then P.(k,y¥) € Q(¥) and for every o € Gal(Q(v)/Q) we have

Pe(k,¥)° = Pe(k, 7).

We also summarize in the following lemma some more properties of Gauss sums.

Lemmad4. Let x and v be two finite order Hecke characters of F and o €
Gal(Qu/Q) we have

L g(x)” = x*(qe)"'g(x") where 0 < q € Z so that e(1/N(§)” = e(q/N(f)) .
where | denotes the conductor of y.
2 ( £ )" — Q)
g(0e) g(x)ey°)
3. If y is a quadratic character then g(x) = i N(§)'/? where m is the number of

Archimedean primes where x, # 1.
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We remark here that if we pick an element ¢ € Z; so that eE’Q] = en(t~'x) for

x € Q/Z then we have that we can pick the ¢ € Z above so that ¢, — 1 € N(§)Z,
for every prime p. Then we also obtain that y*(gq) = x;(¢).

3.3 Eisenstein Series of Integral Weight

We first consider the integral weight case. As we mentioned in the introduction these
results can be found in a slightly different form in the book of Feit (1986). We also
mention that results of this kind have been obtained by Siegel, Harris, and Sturm,
at least in the absolute convergence case. For completeness, and because of some
notation and normalization issues, we partly reproduce these results here.

We start with the following proposition.

Proposition 4. For the Eisenstein series
[n/2]
D(e.k/2:ka, x.0) = Lk, ) [ ] Le(@k =2 ) E(e.k/2ika, 3. 0)

i=1

with k > "42'1 we have that P D(z,k/2;ka, y,¢) € Mia(Qup) and for all o €

Gal(Qu/Q) we have that

(D(z,k/2;ka, e C))a _ D k/2:ka, x%. o) o € Gal(Qu/Q)

7P P(x) B P(x°)

2], .\ (k—2i
B (l-[l[_zllJ(l)(zk 21)d)g()(2[n/2])
[Dp|l/2 |Dp b

where B = kd + Z[n/z](2k —2i)and P(y) := , with

i=1
b(n) = 1/2if [n/2] odd and 1 otherwise.
Proof. We observe that we have that 2k —2i > O foralli = 1...[n/2]. By

k
definition we have that ya(b) = [],c, (%) . By Theorem 2 above we have for

n/2 .
A( ): |DF|1/2L[(k,X)[/] |DF|1/2L5(2k—2l,)(2)
G g(x)(2mi)kd Pl g(x2)(2mi)@k—2i)d

€ Qab

and for all 0 € Gal(Q,,/Q) we have A(y)° = A(x°). Using Lemma 4 we may
define the quantity

n/2 .
By = (2Ll [lif L@k —2i, )\ Dt
M= Tgto@niy L @uiyek=and | gy
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where b(n) = 1/2if [n/2] is odd and 1 otherwise. Then we have B(x)° = B(x?).
By Feit (1986, Theorem 15.1) we have E(z,k/2;ka, x,¢)® = E(z,k/2;ka, x°,¢)
for all 0 € Gal(Q(x)/Q). In particular we conclude that

(D(z,k/Z;ka, X C))U _ D(z.k/2: ka, x°, ) o € Gal(Qu/Q)

7P P(y) 7P P(x°)

2], (2k—2i
. (H,[le(l)ak Zx)d)g(XZ[n/Z])
IDF|1/2 |DF [P0

2 .
where B = kd + Zl[n:/l](Zk —2i)and P(y) :=
Now we turn to the Eisenstein series

(/2]
Dz pt/2ka, .0 = Le(u. ) [ [ Le@u—2i ) EG. 1t/ 2:ka, 2.0),
i=1

and

[n/2]
D*(z /2 ka, g, ¢) = Le(u, 1) [ [ Le@u—2i, XV E*(z, 11/ 2; ka, 1. 0),

i=1

where we take 1 < 2 andk =n + 1 — .
We now prove

Lemma5. Let B € N as in Theorem 1 so that 1 PD(z, u/2;ka, x,¢c) €
Mia(Qup). Then we have that also w =P D* (z, u/2; ka, x, ¢) € Mia(Qu). Moreover
for every o € Gal(Qu,/Q) we have the reciprocity law

7B i—dnk| D p|—nut3n(AD/4 | T g Bj—dnk| D [t D/40

( D*(z,u/2;ka, x,¢) )" D*(z, t/2;ka, x7,¢)
Proof. The first statement ie. that 7 #D*(z,u/2:ka, x.¢c) € Mpa(Qup)
follows from Shimura (2000, Lemma 10.10). Moreover by Lemma 2 it is
enough to establish the action of Gal(Q,,/Q) on the full rank coefficients. By
Proposition 2 and Lemma 3 we have that the h"" Fourier coefficient c(h, y) of
7 P D*(z, u/2: ka, x, ¢) with det(h) # 0 is equal to

l-—dnkz—(dn(p,—k))/Z 1_[ I-v(n —Zi_ 1 _ j/2)—d|DF|—nu+3n(n+l)/4N(bc)—n(n+l)/2X
j=0

Lc(w—n/2, xpn), n even;
M ¢
l_[fh,v (x ()|, |") x { 1 n odd.

vEe
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If n is odd we have

( c(h, p) )" _ c(h, x%)

i —dnk| D |30t D/4 | T j—dnk| D | =nut3n(ib /40

Now we take n = 2m even. The character yp; has infinity type (xpn)a(b) =
1—p+m
[Trea (%) since the character pj, is the non-trivial character of the extension

F(c'?)/F with ¢ := (—=1)"det(2h) and det(h) >> 0 as h is positive definite
for all real embeddings of F. Since 1 — u + m > 0 we have by Shimura (2000,
Theorem 18.12) that L(1 — (1 — u + m), (xpr)?) = L(1 — (1 — . + m), (xpn))°
for all 0 € Gal(Q.,/Q). Hence we conclude also in the case of n even that

( c(h. x) )” _ c(h, x°)

= .0
i —dnk| D o |[nut3n(nt1)/4 i —dnk| D p|—nit3n (it 1)/4

We now prove the following lemma

Lemma 6. Assume that (P D*(z, u/2;ka, x,¢))° =an P D*(z, ;u/2: ka, y°,¢)
foro € Gal(Qup/Q) a € Q). Then

(7 PD(z pu/2:ka, x,0)° = br P D(z, u/2;ka, x°,¢)

where b = y(qg)"a, where 0 < q € Z such that e(1/N(¢))° = e(q/N(c)).

Proof. We use an argument due to Feit (1986) and Sturm (1981, Lemma 5) first
introduced by Shimura in the case of n = 1. We will need the reciprocity law of
the action of the group G4 x Gal(Q/Q) defined by Shimura (2000, Theorem 10.2).
We use the notation of Shimura in this theorem. Let ¢ be an idele of F and as in

(1) [91 ) Forao € Gal(Qg,/Q) we define the element

(1(t),0) € G4 xGal(Q/Q) where t € Zy: corresponds to o by class field theory and
we extend o to an element of the absolute Galois group. Moreover we may consider
also {p € Sp, as an element of G4 x Gal(Q/Q) by taking ({n, 1). Then we have that

Shimura we define i (¢) :=

(1(0.0) G DEET).0 G ) = ((f) 2 ) : 1)

In particular we have

7P D(z, 1) 2: ka, y, )t OEDECHoTHETD)

_ t _
7P Dz /2 ka1, e (0 0 )zxc(z)"n P D)2 ka, 1. )

P
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But then
(w7 D(z. p/2:ka. 1. )" = 77 D(z. p/2:ka, 1.0 =
7P D(z, 1) 2: ka, x, ¢) 10D THEDE DG -

$e@" (77 DGz 2:ka, 1Ol @) Yl ) = xe)"an ™ D,/ 2:ka, 17 ).

“
O

We can now establish the following corollary

Corollary 1. For the Eisenstein series D(z, ju/2; ka, x, D) we have

D(z,ju/2:ka, x,¢) 7 D(z,ju/2:ka, x°,¢)
ﬂﬂg(xn)l‘—dnk|DF|—n;L+3n(n+l)/4 - ﬂﬂg((xn)a)l'—dnklDFI—n;L+3n(n+1)/4’

forall o € Gal(Qu,/Q).
Proof. This follows immediately by combining Lemma 4 ((i) and (ii)), and the last
two lemmas. O

3.4 Eisenstein Series of Half Integral Weight

Now we consider the case of half-integral weight. We will need the theta series
0(z) = ) eqn €alaza/2) € M%a(Q, @), where the quadratic character ¢ of I"% is
defined by %, (z) = ¢(y)j;(2) fory € I’ ?. Note that this is the series 6 defined
in Shimura (2000, page 39, Equation 6.16) by taking in the equation there, using
Shimura’s notation, # = 0 and A the characteristic function of g" C F”. Note in
particular that since we are taking u = 0 we have that ¢ = 6p. In particular
Theorem 6.8 in (loc. cit.) gives the properties of the series 8. We now prove the
following lemma.

Lemma 7. For the theta series 6(z) and for o € Gal(Q/Q) we have that
o
(0130n) liatit =0

Proof. This follows immediately after observing that &, € C? and from Theo-
rem 6.8 (4) in Shimura (2000). Indeed since @ is invariant under I'? = G N C? we
have that 9|%a§h = G%aé‘h_l = 6. Since 0 € M%a((@), we conclude the proof. O

Proposition 5. Let A be equal to k or ju. Let B(A) € N so that

PP D*(z,A/2:ka, x, ¢) € Mia(Qup).
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Let 0 € Gal(Qu/Q) and assume

(PP D* (2, A/2:ka, 1. ¢))” = aW)a PP D* (2, A/2:ka, x°,¢), k =n+1—p,

for some a(L) € @X. Then we have 1 PP D(z, A /2; ka, x,¢) € Mya(Qup) and
(PP D(z,1/2:ka, x,0)) = Br PP D(z,1/2;ka, x°, ¢)

where B = (x¢)c ()" a(R).

Proof. The fact that 7 M D(z, /2 ka, x,¢) € My (Qqp) follows from Shimura
(2000, Lemma 10.10). The rest of the proof was inspired by the proof of The-
orem 10.7 in Shimura (2000). We write D(y,A) for 7 P® D(z,A/2;ka, . ¢).
Let ¥/ = k + % € Z. Then we note that 0D(y,A) € Mya(Qu) and for a
o € Gal(Qu/Q) we have 0D (y,A)° = (6D(yx,A))°. Since 8D (y) is of integral
weight we can apply the reciprocity-laws as before. Writing ¢ € Z corresponding
to o we have

(OD(3,1)° = (6D (x, 1)) (D) GDEE o ™HE D) (D e0o) G D)

;0 (D00 & D)
= (epaine(§ %))

= (@10 (ODGOlkraln) Iy b =
@00 (G0 (01328) (P Dlkatn)” ) leali” =

@) ((013a00) 11t") (DG k)" leali =

(@0)c(1)" 2 (L)ID(x%. A).

For the element ¢, we refer to Shimura (2000, page 132). The last equation follows
from the last Lemma. However the previous equations deserve a comment. Note

that for f1, f> € My, and y & I'* we have that (fi £)lay = $()(fil 1) (f2]27)

since hy (2)* = ¢(¥)Jy ().

So we obtain that 0D(y, 1)’ = (¢x).(t)"afD(x°). Since 6 is not a zero
divisor in the formal ring of the Fourier-expansion (see Shimura 2000, page 74)
we conclude the proof. O

We now establish also in the case of half-integral weight that

Proposition 6. Let B; € N so that 7P D*(z,k/2:ka, x,¢) € Mia(Qup). Let
o € Gal(Qup/Q) Then for n even we have
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n P D*(z.k/2:ka, x.0) " m P D*(z.k/2:ka, x°)
l‘—dnkCIDF|nk/2+3n(n+l)/4 - l‘—dnkCIDFlnk/2+3n(n+l)/4

and for n odd

P D*(z,k/2; ka, x, ) .
i—dnkC |DFI”k/2+3”("+1)/4g()()|DF|1/2(2i)_(k_")db([n/2]) -

7 P D*(z, k/2; ka, x°)
j—dnkC |DF |nk/2+3n(n+1)/4g(XJ)IDFIl/2(2i)—(k—n)db([n/2]) ’

where b(m) = i if m is m is odd and 1 otherwise.
Let now B5 € N so that P> D*(z, j1/2: ka, x. ¢) € Mya(Qup). Then we have

n P D*(z, u/2ka x. 00 \©  wP2D*(z,pu/2:ka, x°, ¢)
l‘—dnkc|DF|—n(n+l—k)+3n(n+l)/4 - l‘—dnkc|DF|—n(n+l—k)+3n(n+l)/4’

wherek =n+1— .

Proof. Arguing as before, it is enough to consider the action of o on the full rank
coefficients. We consider an & with det(h) # 0. Then we have that the 4’" Fourier
coefficient ¢ (h, x) of m=P1D*(z.k/2; ka, x, ¢) is equal to

—d
n—1
2d(nk—|—l—(n—|—l)/2)l~—dnk (l_[ F(k _ ]/2)) N(det(h))k_("+l)/2C|DF|”k/2+3”(”+1)/4><

Jj=0

I —Ak=n/ L (k= n/2 dd ;
—n(n Y nj/z, , hodd;
N(bC) (n+1)/2 fh,v (X(nv)|ﬂv|k+l/2) % { | t( / X:Oh)

bee , n even.

We now note that if n is even we have that k — (n + 1)/2 € Z and hence
N (det(h))k=¢+D/2 ¢ Q. Then we conclude that

( c(h. x) )‘T _ c(h, x°)

j—dnkC IDFInk/2+3n(n+l)/4 - j—dnkC |DF |nk/2+3n(n+1)/4 :

In the case where n is odd we have that

Pk —n/2, xpn)* = Pk —n/2, x° pr), Vo € Gal(Qup/Q),
with

Pe(k —n/2, xpn) = g(xpn) " Qri)" 2 Dp|'2Lo(k —n/2, xpn)
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We have 8en)” _ 80078(en)”

L — > . Moreover we have that
g(x°pn) g(x°)&(on)

- JNQdet(h))’ . .

g(on)” —/—N(Zdet(;,)), if [n/2] even;

glon) | ()" Ll
i) T /NQdeh)

, otherwise.

In particular since det(h) € F+ we have

(\/ N(Zdet(h))_lg(,oh))g _ { 1, if [n/2] even;
VNQder(h))Tg(pr)

For n odd we have that k — (n + 1)/2 is half integral. Hence we conclude that

iry? , otherwise.
(7)

c(h. 1) 7
i—dnkc |DF|nk/2+3n("+l)/4g()()|DF|1/2(2i)_(k_")db([n/2])

c(h, x)
[—AkC | D p |k /24300410 /4g (50 )| D p|1/2(21 ) ~k=mdp([n/2])

where b(i) = i if [n/2] odd and 1 otherwise.
Now we turn to the Eisenstein series D*(z, u/2; ka, x, ¢). The Fourier coefficient
c(h, y) of m=P2D*(z, u/2; ka, y, ¢) for det(h) # 0 is equal to

n—1
i—dnkz—dn(u—k)/ZC IDFI—n(n+l—k)+3n(n+l)/4 l—[ F(n -; 1 _j/z)—dN(bc)—n(n+l)/2X
j=0

B Lc(n/2+1—k, ypn), nodd;
n+l1—k+1/2 ¢
[T (x| ) x { 1 n even.

VEC

Since we are taking k > ”T'H we have that L (n/2 + 1 —k, ypn) € Q. Hence after
observing thatn + 1 — k + 1/2 € Z we conclude that

( c(h, ) )" _ c(h, x%)

j—ankC |DF|—n(n+l—k)+3n(n+l)/4 - [ —dnkC |DF|—n(n+l—k)+3n(n+l)/4

We can now conclude

Proposition 7. Let i € N so that 7P D(z,k/2;ka, x,¢) € Mya(Qup). Let 0 €
Gal(Qu/Q) Then for n even we have

7P D(z,k/2: ka, x,¢) - 7P D(z,k/2; ka, x°)
g(Xd))nl'—dnkC|DF|nk/2+3n(n+l)/4 - g(Xa¢)ni—dnkC|DF|nk/2+3n(n+l)/4
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and for n odd

7P D(z, k/2;ka, x,¢) 7 _
g((x@)")i =4k C | D p|"k /243004 D/4g (y)| Dp|V/2(20)~k=mdb([n/2]) )

7P D(z, k/2;ka, x°)
g((x")°@)i~kC | D p|rk/2+3nntD/Ag (yo) [ D p|1/2(28)~*=mdb([n/2])’

where b(m) = i if m is m is odd and 1 otherwise.
Let now B5 € N so that P> D*(z, j1/2: ka, x. ¢) € Mya(Qup). Then we have

7P D(z, /2 ka, x,¢) 7 _
g(Xd)n)l'—dnkC|DF|—n(n+l—k)+3n(n+l)/4 -

7 P2D(z, /2 ka, 3%, )
g(((xp)")°)i =k C | D p|~n(n+1=k)+3n(m+1)/4’

We now remark that the above proposition and Lemma 1 give a complete
description of the reciprocity laws of the Eisenstein series which we are considering.
We summarize all the above in the following Theorem.

Theorem 3. Let k € %Za with k, > (n 4+ 1)/2 for everyv € a. Let 4 € %Z such
thatn+1—k, <u <k,and|pu—(n+1)/2|+(n+1)/2—k, € 2Z forallv € a.
Then with a B € N as in Theorem 1 we have

7P Dz, 1) 2:k, 1, ¢) € Ni(@Qup),

and for every o € Gal(®Qp/ P) we have

)

(n_ﬁD(z, w/2:k, x, c))a 7P D@/ 2k} 0)
(%) B o(x°)

where w(y) is given as follows:

1. IfkeZ u>m+1)/2:

o(y) = l-nIP\g(X)l-#d+2u[n/2]—[n/2]([n/2]+1)d |DF|—b(n)g(X2[n/2])7

where p := (k_—zﬂa) and b(n) = 0 if [n/2] odd and 1/2 otherwise.
2. IfkeZ n<(n+1)/2:

w(x) = "G )i T | D OIS

—va

wherev :=n+1—pandp := kT
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3 IfkdZandp >+ 1)/2:
a. If nis even

(0()() — l-n\plg(Xn)l-—dnkC|DF|nk/2+3n(n+l)/4’

b. If n is odd
w()=i""Mg(y" ¢)i ~C| D p|"H ATV g () D p| 2 (2i) T H T b([n/2)),

where p .= (k_T’“') and b(m) = i if m is m is odd and 1 otherwise and
4 Ifk d7*and nu < (n +1)/2:
w(X) — in\plg(X¢)ni—dnvC|DF|—n(n+1—v)+3n(n+l)/4’
wherev:=n+1—pand p = %
In particular we have that
7P Dz pn/2:k, 1. 0)
o))

€ Ni(@(x)

where @ (y) is the finite extension of @ obtained by adjoining the values of the
character y.

4 The L-Function Attached to a Siegel Modular Form

We start by discussing the Hecke algebras that we consider in this work. We follow
closely Chapter V in Shimura (2000). As before we fix a fractional ideal b of F and
an integral ideal ¢. We write C for D[b™!, bc] Moreover we define

E= l_[GLn(gv), B={x e GL,(F|x < g}, X=CQC, Q ={diag|[t,r]|r € B}.

v€h

We write R(C, X) for the Hecke algebra corresponding to the pair (C,X) and
for every place v € h we write 23(C,, X,) for the local Hecke algebra at v and
hence R(C, X) = @), R(C,, X,). We now consider the formal Dirichlet series with
coefficients in the global Hecke algebra defined by T = ZC\X /¢ C§C[vp(£)] and
its local version at v € h defined as ¥, = ZCV\%V/CV CEC,[vp(§)]. Here vy () is
defined by det(q)g where ¢ € B suchthat£ € D[b™!, bldiag[g™".¢*]D[b™", b]. We
have that ¥ = [], ¥,. Moreover if we define for an integral g-ideal a the elements
T(a) € R(C,X) and T, (a) € R(C,, X,) forv € h by
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T@@= Y C& T(= Y CEC

E€X,vp ()=a §€X,vp (E)=a

then we have that T = ) T(a)[a]. For an element f € M;(C, V) we have an
action of the Hecke algebra J3(C, ¥) (see Shimura 1997). We denote this action by
fl|C&EC for an element CEC € R(C, ). Assume now that for such an f # 0 we
have f|T(a) = A(a)f with A(a) € C for all integral g-ideals. Then Shimura shows
see (Shimura 2000, page 171) that there exists A,; € C such that

£ ) Al =[]z,

ve€h

where the factors Z, are given by

_JA=NE" DT = (1= NE)" A b (1 = Np)" A D) if vt

Z,
[Ti= (1 =N@"A,;: [pD~, otherwise.

and £ := [, (1 = [pD[T/=, (1—=N(p)* [p]z)_l, where the product is over the
prime g-ideals prime to ¢. For a Hecke character y of F' of conductor § we put

Zs.t 0 =]]2 (*@N@™). )

ve€h

where Z, (x*(q) N(q)™*) is obtained from Z, by substituting y*(p) N(p)~* for [p].
We will need another L-function which we will denote by Z’(s, f, y) and we define
by

2.8 0 =12 (@@ Y ) N@ ™)., (©)

ve€h

where ; a uniformizer of F;. We note here that we may obtain the first from the
second up to a finite number of Euler factors by setting yy ! for y.

5 The Rankin-Selberg Method

We now explain the integral representation of the zeta function introduced above
due to Shimura. Everything in this section is taken from Shimura (2000, paragraph
20 and 22) as well as Shimura (1994).

We write £ for the set of all g-lattices in F|'. We set Lo := g7 and we remark that
for an element L. € £ we can find an element y € GL,(F)y such that L = yL,.
For an element T € S we define

L. :={Lel|l*tlebd!, VlelL).
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Letf € My(C,v¥), T € St and g € GL,(F)n. Following Shimura we define the
following two formal Dirichlet series

D(r.q:f) = ) Ve(det(gx))|det(x)|" " c(x, gx; Dder(x)g], (7
X€EB/E

and

D'(z,q:):= Y Y(det(gx))|det(x) 7" c(x, gx; D)[det(x)g]. ®)

X€EBJ/E

We note that the second is obtained from the first one by setting (v/v¢)(¢)[tg] for
[tg], t € F*in D(t, ¢;f) and multiplying by (/) (det(q)). We define the series

-1

[(1+1)/2] ‘
So=[]{ [T a=-N@***pP
vte i=l1

Then we have see (Shimura 2000, Theorem 20.9).

Theorem 4 (Shimura). Let 0 # f € My (C, V) and such that f|T (a) = A(a)f for
every a. Then for t € S N GL,(F) and L = qLo with q € GL,,(F)y we have

D(z.q: )L [ [ &bl [ [ (oD =

vEb vie

[12 D wM/L)yyc(der(y))ldet(q* Fgle(z, y; f).

v€h L<MeLl,

Assume now that k, > n/2 for some v € a. Then there exists t € Sy NGL,(F) and
r € GL,(F)y such that

0 # Ye(det(r)er(t,r) [ [ 2o = D(x i) - Lo [ [ uB) ™ - (oD

veh vice veb

For the definitions of g, (-) and £, (-) we refer to Shimura (2000). Now given a Hecke
character y of F, 7 € ST and r € GL,(F),, we define a Dirichlet series as follows:

D) (s.£. ) ==Y Y(det(rx)) x*(det(x)g)ce(z. rx)|det(x) 7"~ (9)
B/E

This series is obtained from the series in Eq. 8 by putting y*(tg)|¢g|’ for [tg]. In
particular we have the equation
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25 —
4

D! (5.8 D) Ac ( ”) [T & /v m)lm ) = (10)

ve€b

Z'(s.£, Y)Y/ Ye) (det(r))
Y wM/L)W? /) (det(y)) * (det(r* P)g)lder(r* § e (x, y: D),

L<M€eLl,

where for an integral ideal a we write

Aty = | Le@spevD) T2 La(4s — 20,9752, if n is even;
als) = s
WD L (s =20 + 1,92 42), n is odd.

Given y as above we write f for the conductor of y. We define ¢’ € Z? by

(Y)a(x) = x7" |xal”".

and p € Z? by the conditions 0 < u, < 1forallv € aand u — [k] — ¢’ € 2Z2.

We now define a weight [ and a Hecke character ¢ of F byl = u+ (n/2)a and
V' = y~!p,, where p, is the Hecke character of F corresponding to the extension
F(cz)/F with ¢ := (—1)"/2der(27). Let us write 6, € M;(C’, ') for the theta
series associated to the data (y ', u, 7, 7) in Sect. 2. Write C’ = D[6'"", b'¢/]} and
define ¢ := b + b’. Then we have (see Shimura 1994, page 572),

Theorem 5 (Shimura).

(47) " EEEDD (/DN ()T DT s + (ko + 1) /2) D),

vEa
X (25 +3n/2+ 1:f, y) =

|det(r)| ;zs_n/zdet(.[)+(k+u+nu/2)/2+su «

/ F@0,QE@ S5+ (n+1)/2,k —1,epyp,, I')8(z)"dz,
?

where ® = H/I"" and I'" :== G N D[e”", ¢b], where h = ¢! (bc N b'¢’). here
€ = 1 ifn is even and it is the non-trivial character of F((—1)?)/F otherwise.

In particular using the Eq. 10 we obtain
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Theorem 6 (Shimura).

—-n—1 kv v
Z’(s,f,x)]_[l“n(s oot +“)><

2

vE€a

W/ V) (det(r)) Y w(M/L)(W?/¥)(det(y)) 1"

L<MeLl,
x (det(r* y)g)|det(r*y)|%c(t, y:f) =

)n(n+l)/2

(D;l/zN(e) (4n)nHs/u+M|det(,L,)s’u+)»|det(r)|1+l—sx

[Te(W/ve) ) x* (rg)lm ) (Ac/ Ay)

ve€b

X ((2s —n)/4)vol(®) < f,0,D((2s —n)/4) >/,
where s' = (25 — 3n — 2)/4 and for an integral ideal a of F,

Auls) = Lo (25, 09 ) [T12 La(4s — 2i.92x2). if n is even;
° AV (4s =20 4 1,92, n is odd.

and
D(s) = Ay($)E(z,5:k — 1, €, p. 91, T).

We have normalized the Petersson inner product as follows

t > /q; f(2)0,()D(z, 2s —n)/48(x)*dz.

< f.0,D((2s —n)/4) >p=

vol

In particular there exists (t,r) with c(t,r;f) # 0 such that

z6Ep[]h (S mLbs bt “) Velder(r)e(erif) = (1)

vEa

)n(n+l)/2

DN (o) (@4m)" I w4 der(r) A der(r) [ H 0
F A

[ Te(W/ve) @) (o) m ) (Ac/ Ay)

veb

x (25 — n) [4)vol(D) < f.0,D((2s —n)/4) > .

We note here that vol(®) € 7""+1/2Qx.
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6 Petersson Inner Products and Periods

In this section we define some Archimedean periods that we will use to normalize
the special values of the function Z’(s,f, ). The idea of defining these periods
is due to Sturm (1981) (building on previous work of Shimura), who considered
the case of n even and F = Q. However one should notice also the difference on
the bounds of the weights that we impose. In what it follows we will call a Hecke
operator T (a), relative to the group C = D[b™!, bc], as “good” if a is prime to ¢

Theorem 7. Let f € S (c, V) be an eigenform for all the “good” Hecke operators
of C. Let @ be the Galois closure of F over Q and write ¥ for extension of @
generated by the eigenvalues of f and their complex conjugation . Assume mgy :=
min,(k,) > [3n/2 + 1] + 2. Then there exists a period §2¢ such that for any g €
81 (Q) we have

<fg> ”_ <f",g"/>
2t B Qe

for all o € Gal(Q/®), where 6’ = pop. Moreover 2 depends only on the
eigenvalues of f and we have % e vX,

Remark 1. As we remarked above, a theorem of this form has been firstly proved
by Sturm (1981), when F = Q and n is even. A similar theorem appears also in
the work of Panchishkin (1991). It is also important to notice that in Panchishkin’s
theorem one can take also g not cuspidal. However for this he has to take the weight
big enough in order to be in the range of absolute convergent for the Eisenstein
series (see the Theorems after the proof). Our proof is modelled on that of Sturm
(1981, Theorem 3) and of Shimura (2000, Theorem 28.5). Maybe one should here
remark that one of the differences with the proof here in comparison with the one of
Sturm is that we use the identity (10) and not the Andrianov-Kalinin identity used
by Sturm. Finally since we are using a stronger theorem of Shimura with respect
to the absolute convergence of the function Z(s, f, y) we also obtain better bounds
for the weights. Finally we remark the slightly larger bound on m1( than in Shimura
(2000, Theorem 28.5). The reason for this is the above mentioned problem with the
Eisenstein spectrum (i.e. separate it rationally from the cuspidal part).

Proof. We write {A(a)} for the system of the eigenvalues of f (with respect to the
“good” Hecke operators) and we define V := {h € Sx(c,¥)|h|T(a) = A(a)h}.
Then as in Shimura we define V(&) = V N 8k (c, ¥; ¥). By Garrett (1992) we
have that the space V(¥) is preserved by the operators 7'(a). Moreover the “good”
Hecke operators generate a ring of semi-simple ¥-linear transformations hence we
have V = V(¥) ®y C and 84 (C,¥) = V(¥) & U, with U a vector space over ¥
which is stable under the action of the “good” Hecke operators. Since an eigenform
in U ®y C which is not contained in V must be orthogonal to it we have that the
above decomposition is orthogonal with respect to the Petersson inner product.
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We now pick an integer oy so that 3n/2 + 1 < gy < mg and my — op & 27Z.
Note that this is always possible thanks to our assumption mqy > [3n/2 + 1] + 2.
Then we define u € Z2 by the conditions 0 < u,, < 1 and 0y — k, + w, € 27 for
all v € a. Our choice of oy implies in particular that there exists an v € a so that
Wty # 0. We put ¢/ := p — k. We now pick a quadratic character y of F so that
(Wx)alx) = x;/|xa|_’ " and of conductor f such that c|f. Note that such a character
can be obtained as the non trivial character of the quadratic extension F(+/A) by
picking the sign of A € F properly at v € a and A with non trivial valuation at
all primes that divide ¢. The existence of such a A follows from the approximation
theorem for F. As in Shimura (2000, page 236) we define [ := p + (n/2)a and
v=o09p—(n/2).Thenv > (n+1)/2and 0 < k—[—va € 27Z*. We consider the theta
series 0, with respect to our choices of y and u. By Theorem 6, after evaluating at
s = 0p we obtain

Z'ot 0[]0 (“0 AL “”) W/ V) (det(r))x

Do w(M/LYW? /) (det(y)) x* (det(r* §)g) |der(r* §)|7e(x, y: ) =
L<M€eLl,

)n(n+1)/2

(PN (4m)" ot M der(2) 0 | der(r) [ 7 (A ) Ag) (v/2) %

[ [/ v ) * () Im] ©)vol(@) < f.6,D(v/2,epYx) >r,

veb

where 5§ = (200 — 3n — 2)/4. We now note (see Shimura 2000, page 237) that

oo—n—14+k,+un,
l_[vea Fn ( 2 - .

k=Il—va

n|| [|=nllk[|+de yx

c 2

Vol(®) d Q

where € = n?/4 if n even and (n> — 1)/4 otherwise. We now write § for the
l_[re Fn(607n71+kv+;w)

rational part of —— Sl @) z . We now take 8 € N so that 7 #D(v/2) €

NP (@Qgp) with p = 5= and we set y = n|[~=522 || —n||k|| +de —n]|sju+
Al| — B. We further set

Bt Y. 7.1, 0) := 8(¥/Ye) (det(r)) x
> w(M/LYWE /) (det(p)) x* (det(r* H)g)|det(r* §)| R (x. y: ),

L<M€eL,

and
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C(Xv 1//, T, r) (N(e))n(n+l)/2|d€t(r)|n+l 00 o

[ [ 2@/ ¥ o) x* (@) | ml ) (Ac/ Ag) (v/2).

veb

We then have for every o € Gal(Q/®) that

B(y,v,t,r,£)° = B(x°,v°,t,r,f°) and C(y, ¥, t,r)° = C(}°, ¥, t,r).

We now note the equalities
< [,0,D(v/2,eppy) > =
< fip(0,D(v/2,€p ) >r=< [ Tri(p(0,D(v/2,ep VX)) >r,

where p : fR]’: — 8 is Shimura’s holomorphic projection operators (Shimura 2000,
Proposition 15.6) (note that 6, D(v/2) € Ry since 6, is a cusp form) and Tr}:, :
Sk(I'", ) — Sk (I, ¥) is the usual trace operator attached to the groups I'’ < I'.
Moreover, since Gxn_ﬂ D(v/2) e N,f (®Qgp), we may consider the action of o €
Gal(PQup/P). Then

PO, P D(/2,€p W x))° = p(05 (P D(v/2,€p:Y)))°).

and,

Tri (0, P D(/2.ep9)))" = Trl (67 D(v/2. ep:Yx)°).

where in the last equation the last trace is from the space 8¢ (I"', ¥?) to 8¢ (I"', ¥?).
The equivariant property of the holomorphic projection operator is shown in
Proposition 15.6 of (loc. cit.) and the one of the trace is exactly as in Sturm where
he considers the case of F = @, but the arguments is valid also for general F
since the strong approximation theorem also hold for the group Sp,, (F), the essential
argument in his proof. We make this more formal in the lemma following this proof.

Keeping now the character y fixed we know that for any given f € 'V there exists
(z, r) such that

B(x, v, t,r,f) = 6y (det(r))c(z,r;f) # 0.

We note here that the same pair (z, r) can be used for the form £, as it follows from
the proof of Theorem 20.9 in Shimura (2000). As in Shimura we write & for the set
of pairs (z, r) for which such an f exists. From the observation above the set & is the
same also for the system of eigenvalues A(a)?, for all ¢ € Gal(Q/®). In particular
for such an (7, r)
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0 # ¥ Z' (00, £, )8y (det(r))c(z,r;f) = (12)

_ n(n+1)/2
(DFI/ZN(B)) (4)n|\sou+l|\det(r)sou+l|det(r)|n+l 005

[ [e/(@/¥) ) 1* (@) Im] ) (Ac/ Ag)(v/2) < f,6,8 P D(/2,ep V1) > 1 .

veb

The fact that Z’ (0o, f, x) # 0is in principle (Shimura 2000, Theorem 20.13). Indeed
in page 183 of (loc. cit.) Shimura first proves the non-vanishing of Z'(0y, f, y) for
any character y with u # 0, as it is the case that we consider. Further we note that
this in particular implies also that C(y, ¥, 7,r) # 0 for all (7, r) € &.

We now define an element g. , y € 8¢ (I, U ®Qgp) by

Bory = nh Tr1I:/ (p(ex”_ﬂD(V/l EPTW))) )
and define the space W to be the space generated by g,y for (z,7) € &. We now
consider the case n even or odd separately.

The case of n even: In this case we have that € is the trivial character. We now
claim that there exists an £y € C* such that any f € V and any g,

< f’ gt,r,l// > 7 _ < fd’ gg,/r,lﬁ >
2 N Qp ’

where ¢’ = pop. First we observe that

’

&y =Trh (O DO 2, p)) =TrE (905 P D/2,epT0)”)) =

Trf (O, D(/2,epF20)))

where the last equality follows from the fact that x is a quadratic character. We now
recall that D(v/2, p. ¥ x) = D(z,v/2;k —1, p.x, ") and we have seen that

(n—ﬂD(z,v/Z;k—l,pTW,F))U/ _ 7D v/2:k -1, ptl/f)( F)
P(ocy 1) PV

_ lolgp g yd (L =20 )g@? ) kel
where P(p. ¥ y) = - gl(l’;;ﬁ)/(z)(l) ( |DF‘;J(”)) . with p = =72 We

conclude that

o _ P(er)G/
Ty T —0o’

_G/x))) P(o. vy
P(py )

5 (pO, 7P D/2, 0.7 o
Py
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jnlplyvd (Hl['fll (i)(zu—zi)d)g@z[n/z])

DRLE TDr @ . We now consider the ratio

We set R(V/) 1=

8oV _ 8p)” 8@)” 20"
go. v’ 1) 807D g(y”)8(7)

We recall that p, is the non-trivial character of the quadratic extension F(/c)/F
with ¢ = (—1)"/?det(27). Since we are considering T > 0 we have that

’ /2det(t) ' . .
2(p.)° _ Tty), / if [n/2] even;
g(p?) (_) J/NCIe)” i

T - N e (t) otherwise.

Putting all these together we conclude that

s 80 g g0 RW)”
(AR

e J—— o/ 5 gr,rnﬁ"
g0?) oy ) 8U”) RG”)
For any g, , we have
(4)—n||56u+/\||D;(n+l)/4n_yz/(o_0’ f, X)B(Xv w7 T, f) _
det(t)s(/)”HC()(, v, T,r) <f,8.,>r.

For any (z,r) € & we have seen that C(x, ¥, t,r) # 0. We obtain

(s B(x, v, t,1.1)
_ (sou+A)

ETRpEE T TRy ry = det(t)™"%0 <o
(47'[) 0 DF Z (Go,f, X) (X’ w’ T,r)

< fv gor >r

For any o € Gal(Q/Q) we have then

o
<f, 8.,y >r —
(4)nllssut 2 prrtD Ay 7060 8, x)

(det(t)_(%u-‘rl)w) =

C(x,y.t.r)
(det(z)-Cttiye BUC Y T n )
C(x°,y°,7,r)
(det(t)~Wout2)o gy o

det(z)= 00D (a) et DR Z 0, 87, )
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“an—p | ktut?t .
We remark that sju + A = 20=21=2,, 4 TEET0 _ otk ntly By our choice

(s 1
(det(m)"“0" T )0 (der(x)27)°

— (s - 1
det(r) 0" D det()(2®

of oy we have that ogu + k + € 27Z*. We obtain that

Now we note that since det(t) is totally positive we have

det(7)3® B (%) , otherwise.

(g(pf)f“)_1 i)y _ 1 ifln/2) evem
g(p?")

We have seen that

o - (B0 8D 20" RN
D) o) 80 R T

and hence

o
<f, 8.,y >r —
(@) ~llstut 2l DIt 2y 760, 8, x)

20" 8@ 8" R\ der() )
g(r?) o) 8 RW))  der(x)

< fa’g{z],/r,]// >r
(4)—n||s6u+k||D;(Vl+l)/4nyZ/(o-0’ o, ) ’

or equivalently

< fs gr,r,w >r

(8@)BOORM)) " Bna=Ibies il DL+ 7104, 1. )

<f°.g%,., >r

’ 4 l :
(8@ )8CORM@ ) B@)) 4kt DY Dy 210y, 87, )

where B(n) = i¢ if [n/2] is odd and 1 otherwise. Hence we define

2= (g(W)g(X)R(W))_l B(n)4—n||56u+l||D’I"_("+1)/4NVZ/(O'0, f 0

The case of n odd: We now repeat the considerations above but with the half-
integral weight Eisenstein series.
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( a7 PD(zv/2k — 1, ex¥pe,c) )”/ _
g(ep W xp)inleli—dmw C|D g |v/2+3n0+D/4g(ep, Y x)| D p|V/2(2i) =4 b([n/2])

7 PD(z,v/2;k — 1, (e ¥ p:)°)
g((ex Y p)o gy inlpli=dnv C | D p /2430 D/4g (e x 9 p, ) ) D p|V/2(20) == b([n/2])”

where b(m) = i¢ if m is m is odd and 1 otherwise. We set P (€ x¥ p;) equal to
gepc Y x)"i" = C|Dp | P g (ep ) | DV (20) T b([n)/2])
and as before we have

o _ P (eer)a/
g‘[,l‘,l// T = 50 .

N P(epy x)

We consider the ratio

(gep T 20)"s(epF 1) _
glep ¥ x¢)"glep ¥ x)

g@” \"" (g0 " (2" (207" (@)
g() g(pr) g@’) g(0) g )

Since n + 1 is even and p., x, € are quadratic characters we get that

s\ "+l A\ n+1 N\ nt+1
ge)"’ _ (&)’ _ (&)’ _
g(e) g(p0) g(0)

We set R := i"lli=dwC|Dp|mv/243n@+D/4 p o |V/2(21)=(=mdp([n/2]), and

then we have
— ,\ h+l1 I\ N ,
o (2@ g\ R
ey g’ g(¢) R STV

By the same calculations as in the case of n even, by no noticing that sju+A € Z*
we obtain For any o € Gal(Q/Q) we have then

o
< f, gt,r,w >r _ < fga g‘t,r,d/” >r
gnllsgut 2l pRe Dy 70 (6, 8, ) gnllsgut Al pret Dy 70 (g4 80, x)
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Hence we conclude

a

< fa g‘t,r,d/ >r
1

——n+1l—n _\ ,
(g(w" g(¢)"R) gl Al ROtV Ay 706 8, 1)

<f.8erye >r
l—_n - -1 ’ '
2(9) R) 4nllsgut 2l pretD Sy 7060, 8, )

+

_(7/ n
(g(w )
So for n odd we define

—n+l—n _ -1 /
Q= (g(w) 0) R) 47 e DRy 7! (o0, £, ).

By W we define the space generated by the projection of W on V. By definition
W' = V. Indeed for any element g € V there exists h € W’ such that < g, h > ## 0,
simply by taking the projection of the corresponding g, , to W’. So the C span of
g, with 7,r € & is equal to V. Since g, , have algebraic coefficients we have that
the Q-span is equal to V(Q). We can now establish the theorem for any g € V(Q)
since after writing g = Y ;Ci8cr v € V(Q), where g:;.r;.v is the projection of
g, to'V, we have

<fg> U_ZFG <fvsgfj/,rj,v> _<fg” >
Q¢ A Qo Q2

J

We now take any g € S (I, ¥; Q). We write g = g, + g, with g; € V and
1, € VL. Then we have that

(< f,g>)” _ (< f, g >)‘T _ <t.g7 > _ <, g >

Qf .Qf Qf" N ‘Qf‘T

where the last equality follows from the fact that < f,g >= 0 implies that
< f°, g"/ >= 0. It is enough to show this for g an eigenform for all the good
Hecke operators in an L-packet different from that of f’s. That is, there exists an
ideal a with (a,¢) = 1 so that T(a)f = A¢f and T'(a)g = A,g such that Ay # Ag.
But then we have

Af < .8 >=<T()f’.g" >=

< f°, T(a)g”/ >=< f’,)\g/g"/ >=< t",g”/ > Ag
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and hence we conclude that < f°, g"/ >= 0. Here we have used the facts that the
good Hecke operators are self adjoint with respect to the Petersson inner product,
and that their Hecke eigenvalues are totally real (for both facts see Shimura 2000,
Lemma 23.15).

Finally taking g equal to f we obtain that £ is equal to < f, f > up to a non-zero
element in the Galois closure of the field generated by the Fourier coefficients of f
(note that it also contains the eigenvalues). |

We now give a proof of the equivariant property of the trace that we used in the
proof of the theorem. The proof follows the proof given by Sturm (1981, Lemma 11)
extended to the totally real field situation.

Lemma 8. With notation as in the proof of the above theorem we have for any

f € Sk(rlv w;@ab)
Trll:’(f)g = Tr;’(fg)s o€ Gal(¢@ab/¢)

Proof. Thanks to the strong approximation for Sp, (F) we may work adelically. We
write D and D’ for the corresponding to I" and I'’ adelic groups (i.e. I’ = G N D).
We fix elements {g;} C Dy so that D = |J D'g;. Fort € Z; corresponding to

0|q,, we note that
I, 0 1, 0
i € S A
(Ol_lln)g(()lln) pn( )h

and hence by strong approximation we can find elements u; € D’ with f|u; = f
(i.e. ¥(u;) = 1) and w; € Sp,(F) so that

o0, (L O0Y_,
or'1,)5\on,) ="

We moreover note that w;, = u;, I, Now we claim that since the g;’s

form a set of representatives of the classes of D’ in D, the same holds for

(161 t_(l)l )gi (16’ t? ), and hence also for w; since u; € D’. Indeed since

t € Zg — F; we have that

1, 0 ab I, 0\ a tb
(Ot‘lln)(cd)(Otln)_(t‘lc d)ED[a’b]

if (j 2) € DJa,b], for some fractional ideals a,b with ab C g. In particular

we have that 1(1)g;1(t™") € D. We claim that D = | J, D'1(t)g;1(t™"). Indeed
let d € D. Then :1(t7")di(t) € D and hence there exists d’ € D’ such
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that 1(~")di1(t) = d’g; for some j. Or equivalently d = 1(t)d'g;i1(17") =
1(t)d'1(t71)i(1)g;1(1"), which establishes our claim since 1 (t)d 1 (t")i(t) € D'.

We now consider the elements (1(¢), o), (wi.id),(g;.id) € G+ x Gal(Q/Q).
Then we have

Tl (o = O v fThg)” =

> (W (i) HONEDCTHID) = Ny (g fOD = 3 () f fews.

The proof of the lemma is now completed after observing that ¥ (g;) = ¥ (w;). O
We also mention here the following theorem of Garrett (1992).

Theorem 8 (Garrett). Let k > 2n + 1 and £, g € Sia. Take £ an eigenform for

almost all Hecke operators. Then for all 0 € Aut(C/Q), we have

(< f”,g>)” S N

<fr f>)] = <for fo >

In particular if we take f, g € Ska (Q), and take £ with totally real Fourier coefficients

<fr.g>
then we have that s © Q and

, 0 € Gal(Q/Q).

<fg> ”_<f”,g”>
<ff>) <fo o>

We note that if we combine the above result of Garrett with the following result
of Harris on the Eisenstein spectrum

Theorem 9 (Harris). Letk > 2n+1 and write i, for the orthogonal complement
of Ska in My, (the Eisenstein series). Define iy (Q) 1= Mpa(Q) N Eka. Then we
have

Mia(Q) = Exa(Q) & Ska(Q).

Proof. This follows from the work of Harris (1984). Indeed in general we have that
(see Shimura 2000, Theorems 27.14, and 27.16)

Mka(@) = Ska(@) @ Ska(@)

and £;,(Q) = ’}=08};a(@) where &, the space of Klingen type Eisenstein series
associated to a parabolic group P, stabilizing an isotropic space of dimension r.
Harris has shown that in the case of weight as above (i.e. the absolute convergence
situation) we have that Eza(@) =&,(Q) ®q Q. O

Now this theorem allows us to take g € My, in Theorem 8.



On Special L-Values Attached to Siegel Modular Forms 169

7 Algebraicity Results for Siegel Modular Forms over Totally
Real Fields

In this section we present various results regarding special values of the function
Z'(s,f, x), with £ € 8;(b, ¢, ¥), an eigenform for all Hecke operators. We remind
that we have also considered the function Z(s,f, y). The two coincide when the
Nebentypus of f is trivial. Indeed if we write Z,(x* (,g)|7,|*) for the Euler factor
of Z(s,f, y) at some prime v € h then the corresponding Euler factor of Z'(s, f, y)
isequal to Z,((¥/ve) x* (7,8)|7,|*). We note the equation

Z/(S, fs Xw_l) = Zc(s’f’ X)’

where the sub-index on the right hand side indicates that we have removed the Euler
factors all primes in the support of ¢. In particular if we take the character y trivial
(may not primitive) at the primes dividing ¢ then we have that the two functions are
the same.

We start by stating a result of Shimura (2000, Theorem 28.8). We take an f €
S8k (C; @), where

C={xeD[b e bla,—1=<¢}

We moreover take f of trivial Nebentypus and assume that it is an eigenform for
all Hecke operators away from the primes in the support of ¢. In the notation of
Shimura in Chapter V of his book, we take ¢ = ¢, and not ¢ = g. In particular here
we take the Euler factors Z, trivial for v in the support of ¢. The theorem below is
stated only for k € Z2.

Theorem 10 (Shimura). With notation as above define my :== min{k,|v € a} and
assume mo > (3n/2) + 1. Let y be a character of F such that ya(x) = x.|x,|™
witht € 72 Set i, == 0 if ky —t, € 2Z and p, = 1 ifky — t, & 2Z. Let 09 € Z
such that

1. 2n+1_kv+,uv§0—0§kv_ufv;
2. 00—k, + 1, € 27Z for everyv € aif oy > n,
3. 00— 14+ k,— u, €2Z for everyv € aif oy < n.

We exclude the cases

lL.oo=n+1,F=Qandy*>=1,
2.00=0,c=gand y =1,
3. 0<09<n,c=g, x* = 1 and the conductor of x is g.

Then we have

Z(0o.f, x) e 7" (T k) ey
<f,f>
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where d = [F : Q] and

N Doy —n? —n, 0y > n;
’ noy — n?, otherwise.

We now take f € 8;(C, ¥; Q) with C of the form D[b™!, b¢] (i.e. the standard
setting in this paper). We are interested in special values of Z’'(s, f, y) for a Hecke
character y of F of conductor f.

Theorem 11. Let £ € Si(b,c,v: Q) be an eigenform for all Hecke operators.
Assume that either

1. There exists v,V € a such that k, # k., and my = min{k,|v € a} > [3n/2 +
1]+ 2or
2. k is a parallel weight with k > 2n + 1.

Let y be a character of F such that ya(x) = x}|xa|™ witht € Z*. Definet' € Z*

by (Yx)a(x) = x'|xal". Set g, := 0 ifk, —t/ € 2Z and p, = 1 ifk, —t/ ¢ 2.

Let 0y € Z such that

1.2n+1—k,+pn, <09 <k,— pu, forallv € a,

2. |log—n—3+n+1—k+pue2z

3. Ifniseven, and oo = n/2 +ifori = 0,...n/2,i € Norifnisodd and
oo =n/2—1+i,i =1,...,(n+1)/2, then we assume the Assumption below.

We exclude the cases

l.op=n+1,F=Qand(yy)* =1,

2. 00 = 5, ¢ = g, n is even and there is no (t,r) that satisfy our assumption such
that p; # 1 and xyy = 1,

3.n/2<o09<n c=gand (Yy)? = 1.

Then with notation as in the previous theorem we have

Z'(00.£, ) € a" (ke
<f,f>

Moreover, if we take a number field W so that £,1° € S (W) and @ C W, where
@ is the Galois closure of F in Q, then

Z'(00.1, )
B (D" imw(exp)e < £.£>

e W:= W),

where w(-) is defined by using the Theorem 3 as follows

1. For oy > n and n even then w(-) is as in Theorem 3 (i),
2. For oy > n and n odd then w(-) is as in Theorem 3 (iii) (b),
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3. For oyp < n and n even then w(-) is as in Theorem 3 (i),
4. For oy < n and n odd then w(-) is as in Theorem 3 (iv).

and m = d if [n/2] is odd and O otherwise.

Assumption. Let 6 € F.* so that 6g = b~'d. Write f’ for the conductor of y*. We
assume that we can find 7 € S; N GL,(F) and r € GL,,(F ) so that c(z,r;f) # 0,
Eq. 11 in Theorem 6 holds and

1. Ifniseven and v 4 cf then (9'rtr), is regular and v 4 f,
2. Ifnisodd and v } cf then (6 7r), is regular and v 2§ N b~ 0.

We note that this assumption implies that in Theorem 6 we have that
A (s)/ Ay(s) = 1 (see Shimura 1994, Proposition 8.3).

Proof (of Theorem 11). We first consider the Gamma factors that appear in Theo-
rem 6. We first recall that

n—1 .

T,(s) = 7" D/4 I'(s — L .

s) ]1"[:0 (=)

Hence for [[,c, I (%W) we need the condition that 6y > 2n — k, + L,

for all v € a, which is the lower bound appearing in the theorem. Moreover the

Eisenstein series D(3) of weight k — p — 5 for v = 0y — 3 is nearly holomorphic

ifandonly if n + 1 —(k, —uy —5) < 00— 3 fkv—,uv—%and|v—%|+

”2i —ky, + w, + 5 € 2Z for every v € a. These inequalities give the upper bound in

the (i) condition for oy and (ii). The third condition for oy is imposed so that in the

range where the fraction A.(s)/Ap(s) (a finite product of Euler factors associated

to finite order characters) could have a pole it is equal to 1. Finally the various

exclusion follows from various cases where the Eisenstein series D(%) is not nearly

holomorphic.

We take 8 € N so that ]T_ﬂD(%) € Ni—1(@Qup). Now using Theorem 6 after a

proper choice of (z, r) we have

w? Z' (00, £, Y)Y (det(r))c(z.rif) =

_ n(n+1)/2
o (DFl/z) det(t)sou-l—)uldet(r)ln-l—l (70

[ 1@ /v ) mo)|m ™) (Ac/ Ap) (oo — ) /4) < f,0,(x F D(v/2)) >,

veb

where o € Q%, and y := n||=L=22|| — n||k|| + de — n||sou + A|| — B where we
recall € = n%/4 if n even and (n> — 1)/4 otherwise.
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We now note that 8, € M;(W) and 7 #D(v/2) € N;_,(WQy) where r =
(k—1—-va)/2ifv>m+1)/2andr = (k —[ — (n + 1 — v)a)/2 otherwise.

k .
Moreover we have sju + A = 2L ndly, Iy particular

. For oy > n and n even we have that s(’)u + A €27,
. For 0y > n and n odd we have that sju + A € 27Z,
. For oy < n and n even we have that séu + A e2Z,
. For 0y < n and n odd we have that sju + A & 27Z.

We now note that g(p,) = i"/Nrqdet(t), with m = d if [n/2] is odd and O
otherwise. Now we set P := /Dr"" T4 imw(exy) where o(-) is defined as in
the statement of the theorem. Then by Theorem 3 we conclude that

AW N =

_ (n+1)/2 /
(Dpl/z)n T der(ry P P D(v)2) € Ni—1(W).

~1)2 n(n+1)/2 Lt — 4 . .
We set a = (DF ) det(t)*"**7=# P~!. By Lemma 15.8 in Shimura
(2000) we have that there exists a ¢ € My(W) so that < f,0,aD(v/2) >=<
f.g >.1f k is not a parallel weight, then we have that actually ¢ € Sx(W) since
in this case My = Si. Then by Theorem 7 we have that =22= € W. In the other

<ff>
case, that is of k being a parallel weight we can use Theorem 8 combined with the
Theorem 9 to conclude again j}‘}q,i € W and hence conclude the proof. O

We now obtain also some results with reciprocity laws.

Theorem 12. Letf € 8, (b, ¢, ¥; Q) be an eigenform for all Hecke operators. With
notation as before we take my > [3n/2+ 1]+ 2. Let x be a character of F such that
Aa(X) = X |xa| ™ witht € Z2. Definet’ € 72 by (y)a(x) = X% |xa|”. Set j1, := 0
ifk,—t, €2Z and u, = 1 ifk, —t, & 27Z. Assume that 1 # 0.

Let 0y € 7Z be as in the previous Theorem. Then with 2 € C* as defined in the
previous section in Theorem 7 we have for all o € Gal(Q/®) that

a

Z' (00,1, x)
(X, k) +de /D;(n+1>/4imw(eﬁ)p9f

Z' (00,17, x%)
0¥, k) +deim [ retD/4 o .
A v Ky 1 DF a)(EX 1//. )'D.Qfa

Proof. We first observe that thanks to the assumption that & # 0 we have that
0, € §;. Moreover for o € Gal(Q/®) we have 9)‘(’/ = 0,0, as it follows from the
explicit Fourier expansion of 6,. Moreover arguing as in the theorem above and
using the reciprocity laws for Eisenstein series in Theorem 3 we have that
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7

(n‘ﬂ —DFn(nH)/zdet(T)sguHD(v/z’Gwpt))” B

w(eyy)

7B ,—DFn(n+l)/2det(T)séu+AD(U/z’ €V %)

A , 0 € Gal(Q/ ).

Moreover we have that 8, D(v/2, ey° x° p;) € Ri. By Proposition 15.6 in Shimura
(2000) we have that there exists ¢ = p (GXD(U/Z,EWU X"pf)) € 8 so that <

£,0,D(v/2,e¥yp.) >=< f,q >and q° = p (G;D(U/Z,ew,ot)”) forall o €
Aut (C/®). In particular we have that

/—DFn(n+1)/2det(t)36u+l < f exﬂ_ﬂD(V/Z,GWpt) - o ~
w(eyx)P 2

,—DFn(n+l)/2det(T)séu+k < fo. exnﬂ_ﬂD(v/Z, €V x%p;) >
w(ey? x7)P S ’

from which we conclude the proof of the theorem. O

As we have remarked in the introduction results similar to the ones proved in this
paper have been obtained by Sturm (1981), Harris (1984) and Panchishkin (1991)
in the case of F = Q and n even. We also remark that Sturm has also considered
the case n = 1 and F = Q in Sturm (1980). Our proofs are just generalizations of
theirs building on some new results of Shimura. We close this section by mentioning
that the perhaps strongest result concerning the special values of Siegel modular
forms, at least when F = Q and under some other technical assumptions, is due to
Bocherer and Schmidt (2000). Using the doubling method (see also the next section)
and some holomorphic differential operators of Bocherer they obtained algebraicity
results but assuming only that the weight of the Siegel modular form is larger than
n rather than 37” + 1. It is of course very interesting to extend their results to the
totally real field case, however the generalization of their result seems to be a quite

challenging task. We comment a bit more on this in the next section.

8 Some Remarks on the Doubling Method

In this paper our main tool for the study of the special L-values of Siegel Modular
Forms was the Rankin-Selberg method. However, as we also briefly mentioned
above, there is yet another powerful method for the study of these special values,
namely the so-called doubling method. In this paper we considered mainly the
Rankin-Selberg Method, since this article, already quite long, would have increased
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considerably in size if the doubling method was also to be considered here. So we
have decided to defer the consideration of the doubling method with respect to the
same questions addressed here for a future paper. In this section we wish to very
briefly discuss various aspects that are closely related to the doubling method and
the questions considered in this paper.

It is perhaps fair to say that the doubling method was initiated by Garrett (1984)
and extended further by Bocherer (1983, 1985a,b), Bocherer and Schmidt (2000),
Shimura (1995) and in the automorphic language by Piatetski-Shapiro and Rallis
(1987). Of course the list of contributors here is not meant to be complete.

Concerning the algebraicity results addressed in this paper, it seems that the
two methods (Rankin-Selberg and the Doubling Method) provide in many cases
the same results, but there are indeed case where one method is better than the
other. Indeed, Shimura in his books (Shimura 2000, Theorem 28.8) concludes his
algebraicity results by using both methods (1st method and 2nd method in Shimura’s
notation). However one should at this point remark the following. Shimura writes at
the beginning of his proof of his Theorem 28.8 “There are two ways to prove this:
the first one (i.e. doubling method) applies to the whole critical strip, and the second
one (i.e. Rankin-Selberg Method) only to the right half of the strip”. However this
is so, because Shimura is taking ¢ = ¢ in his book Shimura (2000, page 231) (see
also our discussion just before Theorem 7.1 in this paper). Indeed in this situation
the doubling method seems to be able to tackle critical points also to the left half
of the critical strip, something that the Rankin-Selberg method cannot. However
for ¢ = g this is not the case and this is the situation that we consider here. The
main reason being that the integral expression in Theorem 6 it is available in this
form (in particular this particular Siegel type Eisenstein series for which we know
quite explicitly) only in the case ¢ = g. We also note here that ¢ = ¢ corresponds
to I'1(N)-case and ¢ = g corresponds to (/N )-case in the elliptic modular form
situation.

In this paper we have considered only Siegel modular forms. Of course the same
questions can be addressed for other groups, as for example unitary groups. Actually
Shimura in his book provides similar results (always over an algebraic closure of Q)
for hermitian modular forms, that is modular forms associated to unitary groups. For
hermitian modular forms the two methods are not at all equivalent, and in particular
one cannot use the Rankin-Selberg method to study special L-values for hermitian
forms of unitary groups of the form U(n,m) for n # m (this is part of the case
UB in Shimura’s notation in his book). For example one cannot consider the case of
hermitian modular forms for definite unitary groups. But the doubling method still
does apply. Here we should say that the field of definition for hermitian modular
forms has been worked out by Harris (1997) using the doubling method. However
we would like further to remark here that Harris considers special L-values only in
the strip of absolute convergence. In the UT case (i.e. n = m) we have obtained in
some cases results (Bouganis in preparation, b) using the Rankin-Selberg method
that improves the ones of Harris (i.e. beyond the absolute convergence).

As we explained at the beginning of this article one of the main motivations
of our investigations is the construction of p-adic measures for Siegel modular
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forms. We briefly describe here what is known with respect to this, even though
the reader should keep in mind that we do not wish to give here a complete and
detailed picture of the situation. Historically the first results in this direction were
obtained by Panchishkin (1991) (see also the joint work of Courtieu and Panchishkin
2004), who used the Rankin-Selberg method to construct these measures. However
he considered the case of even degree (or genus), the main reason being that in this
case the Rankin-Selberg method does not involve Eisenstein series of half-integral
weight. Later Bocherer and Schmidt (2000) constructed these p-adic measures
for any degree using the doubling method. One should remark here that there
is a very delicate difference in the way that Bocherer and Schmidt applied the
doubling method and in the way Shimura developed it in his work (Shimura 1995).
Very briefly the main difference seems to be in the decomposition that is proved
in Proposition 2.1 of Bocherer and Schmidt (2000) as well as the use of the
holomorphic operators of Bocherer (opposite to the non-holomorphic ones in the
work of Shimura). Of course one should add here that the work (Bocherer and
Schmidt 2000) is restricted to Siegel modular forms over the rationals, opposite
to the work of Shimura who applies to any totally real field. We simply say here
that in an ongoing project we extend the work of Panchishkin (i.e. p-adic measures
using the Rankin-Selberg method) in two directions. We consider also odd genus
and to the totally real field case. Note, as we already said, that both the work of
Panchishkin and of Bocherer and Schmidt are over the rationals. It seems to be a big
challenge to obtain the analogue of Proposition 2.1 of Bocherer and Schmidt (2000)
in the totally real case in the situation of strict class number bigger than one, and
in particular extend the work of Bocherer and Schmidt to totally real fields. We are
currently working on this. At this point it is worth mentioning that in this article we
considered scalar valued Siegel modular forms. Many of the above questions can
be stated also for the vector valued ones. For a first step in this direction the reader
can see Ichikawa (2012). Finally we close this article by mention that of course it
is very interesting to construct p-adic measures for hermitian modular forms. The
doubling method has been already used in that context, as for example in Harris et al.
(2005, 2006) and Skinner and Urban (2014). In Bouganis (in preparation, b) we are
considering the Rankin-Selberg method for constructing these p-adic measures.
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Modular Symbols in Iwasawa Theory

Takako Fukaya, Kazuya Kato, and Romyar Sharifi

1 Introduction

1.1. The starting point of this paper is the fascinatingly simple and explicit map
vl —={1—-Cy. 1 =0y}

that relates the worlds of geometry/topology and arithmetic (Busuioc 2008; Sharifi
2011). Here,

e [« : v]is aManin symbol in the relative homology group H; (X (N ), {cusps}, Z),
e {1—-2¢y,1—2Cy}is a Steinberg symbol in the algebraic K-group K»(Z[{y, ﬁ]),

for N > 1, where u,v € Z/ N Z are nonzero numbers with (u,v) = (1), and {y is a
primitive N th root of unity.

1.2. The above map connects two different worlds in the following manner:
geometric theory of GL, = arithmetic theory of GL;

over the field Q. Here, if we consider the geometry of the modular curve X;(N)
on the left, then we consider the arithmetic of the cyclotomic field Q(¢y) on the
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right. This connection is conjectured to be a correspondence if we work modulo the
Eisenstein ideal that is defined in 2.1.6:

geometric theory of GL, modulo the Eisenstein ideal <= arithmetic theory of GL; .

More generally, we are dreaming that there is a strong relationship

geometric theory of GL; modulo the Eisenstein ideal <= arithmetic theory of GL,;—

over global fields. Our goals are to survey what is known and to explain this dream.

1.3. The connection with the Eisenstein ideal for GL, over Q appears as follows.
The homology group we consider has the action of a Hecke algebra which contains
an Eisenstein ideal, and the map of 1.1 factors through the quotient of the homology
by this ideal (Fukaya and Kato Preprint). The truth of this is deep and mysterious; it
is the idea of specializing at the cusp at co. This is the key to the connection between
GL2 and GLl.

1.4. We note that there exist two technical issues with our simple presentation of
the “map” in 1.1. We left out those Manin symbols in which one of u or v is 0,
which are needed to generate the relative homology group. Also, the map is only
well-defined as stated if we first invert 2 and then project to the fixed part under
complex conjugation (see Sect. 2.1).

1.5. Let us consider the case that N is a power of an odd prime p and work only
with p-parts. Consider the quotient

P, = H(X1(p").Zp)" /1, HI(X1(p"), Zp) "

of the fixed part of homology under complex conjugation by the action of the
Eisenstein ideal /, in the cuspidal Hecke algebra of weight 2 and level p”. By the
well-known relationship between K, and HézI of Z[¢pr, %], the map of 1.1 yields a
well-defined map

wy: Pr - Hézl(Z[é‘p’v %]’ Zp(z))+

that sends the image of [u : v] in P, to the cup product (1 —5,) U (1 —£},).

1.6. Let us connect this with Iwasawa theory for GL,. As we increase r, the maps
@, are compatible. The group HZ(Z[{,r, %] Z,(2))* isrelated to the p-part A, of
the class group of Q({,r) in the sense that its reduction modulo p” is isomorphic to
the Tate twist of A, /p"A,". So, if we let P = 1}11, P, and X = 1}11, A,, then we
obtain a map

w: P — X~ (1)
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that relates geometry of the tower of curves X|(p”) modulo the Eisenstein ideal to
Iwasawa theory over the union of cyclotomic fields Q(¢,-). It is a map of Iwasawa
modules under the action of inverses of diamond operators on the left and of Galois
elements on the right.

1.7. In (Sharifi 2011), the map @ is conjectured to be an isomorphism. If this
conjecture is true, we can understand the arithmetic object X~ by using the
geometric object P. The Iwasawa main conjecture states that the characteristic ideal
of X~ is the equivariant p-adic L-function. On the other hand, the characteristic
ideal of P under the inverse diamond action can be computed to be a multiple
of the Tate twist £ of this L-function. If the characteristic ideals of X ~(1) and P
are equal, then the main conjecture follows as a consequence of the analytic class
number formula. Therefore, the conjecture that @ is an isomorphism is an explicit
refinement of the Iwasawa main conjecture.

1.8. In their proof of Iwasawa main conjecture (Mazur and Wiles 1984), Mazur
and Wiles, expanding upon the work of Ribet (1976), considered the relationship
between the geometric theory of GL, and the arithmetic theory of GL,. Using
roughly their methods, we can define a map

T:X (1) — P.

More precisely, 7" is constructed out of the Galois action on the projective limit of
the reduction of étale homology groups H lé‘(X 1(p") /g Zp) modulo the Eisenstein
ideal. The expectation in (Sharifi 2011) is that the maps @w: P — X (1) and
T:X~(1) — P are inverse to each other. The best evidence we have for this is
the equality €'Y o w = &’ after multiplication by the derivative & of &, which is
proven in (Fukaya and Kato Preprint). If the p-adic L-function £ has no multiple
zeros, this yields the conjecture up to p-torsion in P.

1.9. An analogous result for the rational function field I, (¢) over a finite field can
be proven by following the analogy between IF,(¢) and Q. In both cases, the key
point of the proof is that (1 — %, 1 — {}) and its analogue for F,(¢) are values at
the infinity cusp of the “zeta elements,” which is to say Beilinson elements and their
analogues for F,(f), which live in K of the modular curve X; (/) and its Drinfeld
analogue for F, (7).

1.10. For both Q and F(¢), the philosophy is that §’Y o @ is the reduction modulo
the Eisenstein ideal / of a map involving zeta elements. Roughly speaking, the proof
consists firstly of the demonstration of the existence of a commutative diagram

S
mod IJ,

P2

z

reg
— K —

00 mod I

<R
@

&
—
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Here, § is the space of modular symbols, the map z takes modular symbols to zeta
elements in the K,-group K of a modular curve, & is a space of p-adic cusp forms,
reg is the p-adic regulator map, and Y is either X (1) or its analogue for IF, (¢). The
vertical arrows denoted by “mod /” are obtained by reduction modulo the Eisenstein
ideal I (see Sect.2.7 for details), and oo is given by specialization at a cusp at
infinity. Secondly, it entails a computation of the regulator map on zeta elements
that tells us that the composition 8 - K — & — P coincides with & times the
projection § — P.

1.11. In this survey paper, we explain the key ideas and concepts of our work,
putting aside many of the technical details that must arise in a careful treatment.
While we do our best to strike a balance, the reader should be aware that some of
the statements we make require minor modifications in order that they hold.

The structure of the paper is as follows. In Sect. 2, we describe the original case
of the conjectures and outline the proof of the above result. In Sect. 3, we discuss
and outline the proof of the analogue for I, (¢). In Sect. 4, we describe what might
be expected for GL,.

2 The Case of GL; over Q

Fix an odd prime number p and an integer N > 1 which is not divisible by p. Let
r > 1, which will vary. Let @ be the algebraic closure of Q in C, and let us fix an
embedding of @ in @p.

Recall that we want to understand the picture:

w
geometric theory of GL; modulo the Eisenstein ideal ——— arithmetic theory of GL;.
T

In Sects. 2.1-2.3, we study the map . In Sects. 2.4 and 2.5, we study the map 7.
In Sects. 2.6 and 2.7, we state the conjecture and the main result on it.

2.1 From Modular Symbols to Cup Products

We construct the map @, that relates modular symbols in the homology of X (Np")
to cup products in the cohomology of the maximal unramified outside Np extension

of Q(¢wpr)-

2.1.1. We introduce homology groups 8, and M, of modular curves.

Let H denote the complex upper half-plane and I'j(Np”) the usual congruence
subgroup of matrices in SL,(Z) that are upper-triangular and unipotent modulo Np”.
We consider the complex points Y, (Np”) = [ (Np")\H of the open modular curve
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over C. It is traditional to use {cusps} to denote the cusps I'; (Np")\P'(Q), but let
us instead set C, = {cusps}. We let

Xi(Np") = Yi(Np") U C, = I(Np")\H*,

be the closed modular curve, where H* = H U P!(Q) is the extended upper half-
plane.

The usual modular symbols lie in the first homology group of the space X (Np")
relative to the cusps. However, H,(X,(Np"), C,, Z) is not exactly the natural object
for our study. Rather, we are interested in its quotient by the action of complex
conjugation, the plus quotient." We consider the plus quotients of homology and
homology relative to the cusps:

8 = Hi(Xi(Np"),Z)+ and M, = H{(X(Np"),C,,Z)+,

where ( )+ denotes the plus quotient.

2.1.2. We introduce Manin symbols [u : v], € M,.
Let u,v € Z/Np"Z be such that (u,v) = (1). For such u and v, we can find
y = (%) € SLy(Z) with u = ¢ mod Np” and v = d mod Np". Define

¢
[u:v]rz%—,%—,} ;
bNp aNp' ) .

where {& — B}, for a, 8 € P'(Q) denotes the class in M, of the hyperbolic
geodesic on H* from « to 8. Then [u : v], is independent of the choice of y.

By the work of Manin (1972), we have that the group M, of modular symbols is
explicitly presented as an abelian group by generators [u : v], and relations

[u:v),=[-u:vl,==v:ul, and [u:v], =[u:u+v], +[u+v:v.

2.1.3. We define an intermediate relative homology group M? used in constructing
.

We do not use all modular symbols to connect with GL;. Rather, we use those
modular symbols with boundaries in cusps that do not lie over the cusp at 0 in
Xo(Np") = To(Np")\H*. Let us denote the set of cusps of X;(Np") that do not lie
over the O-cusp of Xo(Np") by C?. The intermediate space

M) = Hi(Xi(Np"), €, Z)+

I'This is still not quite the right object unless we invert 2. In Sect.4, we take the point of view
that the right object is the relative homology of the quotient of the space X (Np") by the action of
complex conjugation.
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is the largest space on which we may define @, and have it factor through the
Eisenstein quotient (see 2.1.7). We have 8§, C M(,’ cM,.

Our intermediate space also has a simple presentation: it is generated by the
[u : v] for nonzero u,v € Z/Np"Z with (u,v) = (1), together with the relations
of 2.1.2, again for nonzero u and v, and excluding the last relation when u + v = 0.

2.1.4. We define the map w,, which gives our first connection between GL, and
GL;.

We start with the primitive Np”th root of unity {y,y = e?™/N’" It generates the
cyclotomic field E, = Q({y,r) and its integer ring Z[{y,r]. Inside E,, we have the
maximal totally real subfield F, = Q({y,)" and its integer ring O, = Z[¢yyr] 7.

Fora,b € Z[{nyr, Nip]x, we let {a, b}, denote the norm of the Steinberg symbol

of a and b to KZ(O,[NLP]). There is a well-defined homomorphism
@ M) @ Z[5] = KO [) ®ZI5], (vl = {1 =8 L= Ehr b

for u,v # 0. Using the Steinberg relation {x,1 — x}, = 0in K, for x,1 —x €
ZlCnyr NLp]X’ one may easily check that the {1 — §1’f,p,, 1-— é‘x,p,}, satisfy the same
relations as the [u : v], (see Busuioc 2008; Sharifi 2011 for instance). It is necessary
to invert 2 for these relations to hold.

2.1.5. We interpret w, on p-completions in terms of cup products in Galois
cohomology.
For a commutative ring R in which p is invertible, the Kummer exact sequence

0= 7Z/p"Z(1) = Gp 5 G — 0

on Spec(R)¢ induces the connecting map R* — HJ (R, Z/p"Z(1)). We have also
the Chern class map K>(R) — HZ(R,Z/p"Z(2)). The value of this map on a
product (i.e., Steinberg symbol) in K,(R) of a pair of elements of R* is equal to the
cup product of the images in H} (R, Z/ p"Z(1)) of the two elements.

We may apply this discussion with R equal to Z[{y,r, NLP] or Or[Nip], in which
cases the Chern class map K»>(R) ® Z, — Hézt(R, Z,(2)) is an isomorphism (Tate
1976). Moreover, the diagram

K (Z[Cnprs Nip}>+ ® Ly —— HZ(Z[npr, NLpLZp(z))J"

NJ{? 001’\?

K2 (6, ]5;)) © Ly ———— HZ (O, [5;1,2,(2))

commutes, where N is induced by the norm and cor is induced by corestriction.
The map cor is an isomorphism as Or[Nip] has p-cohomological dimension 2. Let



Modular Symbols in Iwasawa Theory 183

1=t I’f,p,, 1 — &y, )r denote the corestriction of the cup product of the elements
1-gt and 1 -}, of

iy . o) ® Ty > HY@eny, 1512, (D).

By definition of the symbols, the Chern class map in the lower row of the diagram
satisfies

{1— Q}\‘,pr, 11— §X,pr}, — (11— ;‘K,pr, 1—- é‘,(,pr)r.
We will study the homomorphism to Galois cohomology
o MR Z, — H;(o,[NLP],Zp(z)), V] > (1= 1= G )i

which is identified with our original @, on p-completions.

2.1.6. We define Hecke algebras T, and Tr and their Eisensteig ideals /, and J,.

The Hecke operators T'(n) for n > 1 generate a subalgebra T, of Endz, (M, ®
Z,), the modular Hecke algebra. We will be interested in this section only in its
action on M(r). We also have a cuspidal Hecke algebra T, of Endz, (S, ® Z,) and
a canonical surjection T, — T,. These Hecke algebras contain diamond operators
(d) for d € Z, which we take to be 0 if (d, Np) # 1.

The Hecke algebra T, contains the Eisenstein ideal J, generated by the T'(n) —
ZdIn d{d) forn > 1. It is also generated by T'({) — 1 — £(€) for primes £. The
image I, of J, in T, is an Eisenstein ideal with the same generators.

2.1.7. We connect our study of w, with the Eisenstein ideal.

The third author conjectured (Sharifi 2011) (on §,, see also (Busuioc 2008) for
N = 1), and the first two authors proved (Fukaya and Kato Preprint, Theorem 5.2.3)
that w, is “Eisenstein.” By this, we mean that w, factors through the quotient of
M ®Z » by the Eisenstein ideal, that is, through a map

MZ/3 M) ® Zy — Ha(0: (551, Z(2)).

We can show that this follows from the fact that w, is the specialization of a map in
the GL,-setting: see Sect. 2.3.

2.1.8. LetG, = (Z/Np"Z)*/{£1},and set A, = Z,[G,]. The algebra A, appears
in two different contexts in our story:

(1) On the GL;-side, A, is a Z,-algebra of diamond operators in T, (or 'fFr): we
define a Z,-linear injection t,: A, <> T, that sends the group element in A,
corresponding to a € (Z/Np"Z)*/{—1) to the inverse {(a)~' of the diamond
operator for a (i.e., for any lift of a to an integer).

(2) On the GL;-side, A, is the Z,-group ring of Gal(F,/Q): we have an isomor-
phism
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(Z/Np"Z)* = Gal(E,/Q),  ar>o0q,
where 0, ({nyr) = é‘;{,p,. This gives rise to an isomorphism G, —> Gal(F, /Q)
that is the map on group elements defining A, = Z,[Gal(F,/Q)].
These actions are compatible with @, in the sense that for any x € M?®Z, and
a € (Z/Np"Z)*, we have
wr((a>_l-x) = 0, @, (X).
This is easily seen: taking x = [u : v], for some nonzero u and v, we have

(@) Mu:v], =[au:av], and o,(1— Snprs L= Cnpr)r = (1= 8 1= C30 )

So, to say that @, is Eisenstein is to say that @, (T ({)x) = (1 + Za[l)wr (x) for
primes £ } Np and @, (T ({)x) = @, (x) for £ | Np.

2.2 Passing Up the Modular and Cyclotomic Towers:
The Map w

We pass up the modular tower on the GL,-side and the cyclotomic tower on the
GL,-side to define the map w = l(in w,.
r

2.2.1. LetG = l(in G,. Then the completed group ring

A =12,[G] =lim A,

r

is the Iwasawa algebra for G. As with A,, let us emphasize its dual nature:

1) SetT = l(iLnr T, and T = l(il_nr T,. The projective limit of the injections ¢,
defines a map t: A < T of profinite Z,-modules that takes ¢ € G to the
projective system of inverses (a)~! of diamond operators corresponding to a.

(2) Set K = U,>1 F,, the maximal totally real subfield of L = U,>E,. Then
our identifications A, = Z,[Gal(F,/Q)] for r > 1 induce an isomorphism
A = Z,[Gal(K /Q)] of completed group rings in the projective limit.

2.2.2. We have the following projective limits of spaces of modular symbols:

8 =1im (S, ®Z,) and M = l(iI_n(M(r) ® Zp).

r r

LetJ C Tand I C T be the Eisenstein ideals, defined by the same set of generators
as I, but now viewed as compatible sequences of operators in the Hecke algebras.
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Our maps @, are compatible with change of r and induce in the projective limit
amap

oM’ — @Hé%(o,[Nip],Z,,(z))

r

that factors through M°/IM° by the result of (Fukaya and Kato Preprint). This map
w is a homomorphism of A-modules, the actions arising from part (1) of 2.2.1 on
the left and part (2) of 2.2.1 on the right.

2.2.3. We recall the unramified Iwasawa module X, study its difference from
Galois cohomology, and consider a related A-module Y.

Let X be the projective limit of the p-parts A, of the ideal class groups of the
fields E,. Class field theory allows us to identify X with the Galois group of the
maximal unramified abelian pro- p extension of L.

For R as in 2.1.5, the Kummer exact sequence induces

Pic(R) = H4(R.G,,) — HZ(R.Z/p"Z(1)).
Taking a projective limit of such maps for the rings R = O, [NLP], we obtain

X =lim4, — l(iLnHé(O,[Nlp], Z,(1)).
r r

In general, this map is neither injective nor surjective. Its kernel and cokernel can
be explicitly described as contributions of classes of primes and Brauer groups at
places dividing Np, respectively. We will deal with a part of cohomology on which
this subtle difference disappears.

The Iwasawa algebra Z,[Gal(L/Q)] acts on X, but this action does not in
general factor through A. We want to consider the (—1)-eigenspace X~ of X under
complex conjugation. To do so, we take the Tate twist ¥ = X (1), or equivalently,
the fixed part X(1)™. Then o_; acts trivially on Y, so Y is a A-module. The map
from X to cohomology induces a A-module homomorphism

Y — lim HZ(O, [5;]. Z,(2)).
P
Together with z, this will allow us to relate § with Y.

2.2.4. We have two objects of study:

* The geometric object P = 8/18 for GL,,
¢ The Iwasawa-theoretic object Y = X~ (1) for GL;.

We can relate these on 6-parts for suitable even characters 0 of (Z/NpZ)*.
—x
For a primitive, even character 6:(Z/NpZ)* — Q, , we may consider the
quotient Ag = A®z,,(z/npz)<)Zp|0] of A, where Z,[0] is the Z ,-algebra generated
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by the values of 8. For a A-module M, we then let My = M ®4 Ay denote its
0-part.
We need a technical assumption to insure that the maps

Py — MY/3oMY and Y, — l(iI_anl(Or[NLp],Zp(Z))g

r

are isomorphisms. Together with primitivity, the assumption is as follows:

* o7 @/ pzy< # Lor 0o~ z/nz<(p) # 1,

where w: (Z/NpZ)* — Zj denotes the Teichmiiller character (i.e., projection to
(Z/pZ)* C Zy). For such a 6, our @ induces a map on ¢-parts w:8y — Y} that
will factor through Py.

2.3 Zeta Elements: w Is “Eisenstein”

We sketch the proof that @ factors through the quotient of M by the Eisenstein
ideal J.

2.3.1. Let Y;(Np”") be the moduli space of pairs (E, ¢) where E is an elliptic curve
and e is a point of order Np" on E, and let Y(Np") be the moduli space of elliptic
curves endowed with a full Np”-level structure. We view these moduli spaces as
schemes over Z[Nip] For any nonzero (a, 8) € —~7?/Z?, there is a Siegel unit

Np'
gap € O(Y(Np"))*.? It has the g-expansion

[N}

—18

o0
1_ay i —a —2mi r —
gap=qu 2T [ —g" M) [T —q" ™) € O:[5511a "M Tla "1

0 n=1

n

If « = 0, then we may view go g as an element of O(Y;(Np"))™. The crucial point
is that the specialization of a Siegel unit of the form 8o,z at the oco-cusp is the
cyclotomic Np-unit 1 — ¢ K/p“ Specifically, this specialization is given by projecting
its g-expansion to O, [Nip][[ql/ NP"]* and then evaluating at ¢ = 0 (Fukaya and Kato
Preprint, Section 5.1).

2.3.2. 'We have a homomorphism

G MO = HZONN). Z,) 2 ([ v]) = g0, U g0y

2Actually, gq g is a root of a unit, but the difficulties this causes are resolvable by passing to the
projective limit and descending, so we ignore this for simplicity of presentation. We will be very
careless about denominators in several places, omitting them where they occur for simplicity of
the discussion that follows.



Modular Symbols in Iwasawa Theory 187

of T,-modules that takes a Manin symbol to a Beilinson element given by a cup
product of two Siegel units (Fukaya and Kato Preprint, Proposition 3.3.15). Related
elements were studied in (Kato 2004).

2.3.3. There is again a specialization-at-co map
0o, Hy(Yi(Np"), Z,(2)) = Hg(0,[5;], Z,(2))

tha't takes 8o.5tr U 8o. 5 to (1 — é‘;\‘/pr,. 1 — &y )r- So, cup products of cyclotomic
units are specializations at cusps of Beilinson elements. We have

w, = 00, ozr:M(r) — Hézt((’),[NLp],ZpQ)).

It can be shown that specialization at oo is Eisenstein. Hence so is @, (Fukaya and
Kato Preprint, Sections 5.1-5.2).

2.3.4. By passing the projective limit over r, we see that @ is Eisenstein. The
identity w = oo o z is the commutativity of the left-hand square in the diagram
of 1.10.

2.4 Ordinary Homology Groups of Modular Curves

Homology groups of the modular curves are useful for us in two different ways.
They contain modular symbols, allowing us to define @w. They also have Galois
actions, allowing us to define 7", which is our next goal. We use two different
groups derived from homology, 8 as above and T defined below, to construct the
two maps. For the modular symbols, we require only the plus part of homology. On
the other hand, to have Galois actions, we cannot restrict to plus parts. Instead, we
take ordinary parts to control the growth of homology groups in the modular tower
and to specify the form of the local Galois action at p. The fact that we use different
groups should be kept in mind in the GL;-setting, in which we will not consider 7.

2.4.1. We introduce Hida’s ordinary p-adic cuspidal and modular Hecke algebras
h and $.

Recall our cuspidal Hecke algebra T from 2.2.1, which acts A-linearly on 8. The
action of T'(p) breaks it into a direct product of two rings: an ordinary part in which
the image of T'(p) is invertible and another part in which 7'(p) is topologically
nilpotent. The ordinary cuspidal p-adic Hecke algebra h = T° of Hida (1986) is
this ordinary part. This is a A-subalgebra that is projective of finite A-rank. We may
speak of Hecke operators T'(n) € b by taking the images of the T'(n) € T.

The Hecke algebra b is remarkable in that it simply encapsulates information
about the ordinary Hecke algebras of all weights > 2 and all levels dividing some
Np". For instance, its quotient for the action of the kernel of G — G, is the Hecke
algebra b, = T, This highly regular behavior is the subject of Hida theory.



188 T. Fukaya et al.

We also have the ordinary modular Hecke algebra §) = 'fF"rd, of which b is
a quotient. In general, if M is a T-module (resp., T-module), then we use M ord
to denote its ordinary part, the maximal summand on which 7'(p) acts invertibly,
which is an $)-module (resp., h-module).

2.4.2. We introduce the ordinary homology groups T and T. These have commut-
ing actions of Hecke algebras and the absolute Galois group Gg = Gal(Q/Q). The
study of these actions on J will allow us to define the map 7" in Sect. 2.5.

The Hecke operators 7' (n) with n > 1 act on the homology of X;(Np")(C) and
the homology relative to the cusps and are compatible with projective limits. We
consider the ordinary parts J and T of the projective limits

T r ord T 1 r ord
J = lim H\(X1(Np"), Z)) CT—@Hl(Xl(NP ). Cr. Zp)".

r T

We are primarily interested in J. The T-action on T factors through h. As an
h-module, 7 is finitely generated and torsion-free, and T is projective of finite rank
over A. If we denote by Q(A) the total quotient ring of A, then Q(A) ®4 T is a
free Q(A) ® 4 h-module of rank 2.

The absolute Galois group Gg = Gal(Q/Q) acts on the homology of X;(Np")
by its duality with cohomology and the identification of Betti cohomology with
étale cohomology of the scheme X, (Np") ;5 over Q. This describes the first of the
two isomorphisms

H\ (X1 (Np"). Zp) = Hom(Hg (X1(Np") g Zp). Zp).
Hi(X1(Np"), C,. Zp) = Hom(H} . (Y1(Np") /3. Zp). Zp).

where in the second, the duality of the relative cohomology group is with the
compactly supported cohomology of the open modular curve. This Galois action
commutes with the action of the Hecke operators, so passes to ordinary parts, and it
is compatible in the towers. Therefore, )[Gg] acts compatibly on T and T.

2.4.3. We introduce the Eisenstein ideals / and J of the ordinary Hecke algebras.

Let us reuse the notation 7, allowing it to denote the Eisenstein ideal of §, which
is the image of the Eisenstein ideal 7 of T in j. We remark that, since T(p) —1 € [
and 1 is a unit, the quotient map T/I — /1 is an isomorphism. We will also reuse
the notation J for the Eisenstein ideal of §), the image of J C T.

2.4.4. In the GL,-setting over Q, there are two places which play important roles:
the place at p and the real place. We study the actions of the corresponding local
Galois groups.

We first study the local action at p: here we have an interesting quotient Tyo.
The fact that T is ordinary for 7'(p) tells us about the action of Gg, , which is to say
that it is ordinary in the sense of p-adic Hodge theory. More specifically to our case,
we have an exact sequence
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0— Tsuo > T —> Tquo > 0

of h[Gg,]-modules, with Tg, and Tqu, defined as follows. First, Ty is the largest
submodule of T such that GQp acts on Jg,(—1) by inverse diamond operators, and
Tquo 18 the quotient. Put more simply, Jquo is the maximal unramified, h-torsion-free
quotient of 7.

At the real place, we have T+, which is isomorphic to 8o Tt fits in an exact
sequence

0Tt > T-57/9t >0

of h[Gr]-modules, and both Q(A) ® 4 T+ and Q(A) ® 4 T/T+ are free of rank 1
over Q(A) ®4 b.

The compositions T* — T — Tguo and Ty, — T — T/T T relate the two exact
sequences. We study these maps on Eisenstein components in 2.5.5. The interplay
between the reductions modulo 7 of the two exact sequences allows us to construct
the map 7.

2.4.5. We discuss A-adic cusp forms and modular forms and their ordinary parts
G and M.

Let S»(Np")z denote the space of cusp forms of weight 2 and level Np” with
integer coefficients. For aring R, we then set Su(Np' )r = S2(Np")z®R. If €: G, —
R* is a homomorphism, then we may speak of S,(Np”, €), those cusp forms in
S2(Np") r with nebentypus €.

Any finite order character e: G — @,,X induces a ring homomorphism A — @p.
We let &: AJg] — Q,[g] be the induced map on coefficients. An element f € A[q]
is said to be a A-adic cusp form of weight 2 and level Np*™ if for every €, one has
€(f) € Sa(Np', e)@p with r > 0 such that € factors through G, (Ohta 1995; Wiles
1988). We denote the set of such A-adic cusp forms by S 4.

The Hecke operators T'(n) for n > 1 act on S, via the usual formal action of
Hecke operators on g-expansions. We define & to be the ordinary part Sj’{d of §4.3
The ordinary A-adic cusp forms and the ordinary Hecke algebra are dual in the usual
sense. That is, we have a perfect pairing of A-modules,

hx&—A, (T f) = a(Tf),

where a;(g) denotes the g-coefficient in the g-expansion of g € Sj. As a
consequence, Q(A) ® 4 G is free of rank 1 over Q(A) ®4 b.

Similarly, we have a space 91 of ordinary A-adic modular forms with g-
expansions that are integral outside of the constant term, which sits inside Q(A) +

3There is one potentially confusing aspect: the action of A <> hon & C A[g] is not given
by multiplication of the coefficients of g-expansions by the element of A. It is instead this
multiplication after first applying the inversion map A — A™ on A that takes group elements
to their inverses.
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A[q]. There is a perfect pairing £ x 9T — A that restricts to the pairing for cusp
forms.

2.4.6. As we shall explain in a more canonical fashion in 2.7.6, there is an
isomorphism T, = & of h-modules given by Ohta’s A-adic Eichler-Shimura
isomorphism (Ohta 1995, 2000). Moreover, Ohta showed that Ty, =~ b via a
A-duality with Tqye.

2.5 Refining the Method of Ribet and Mazur-Wiles:
The Map Y

We define the map 7" of (Sharifi 2011) and consider the relationship with the work
of Mazur and Wiles (1984). Our description is heavily influenced by the approaches
of Wiles (1988) and Ohta (2000).

We suppose that p > 5 and p 4 @(N).* We will work mostly in the §-part
(as in 2.2.4) for a fixed primitive, even character 6: (Z/NpZ)* — @,,X such that
the condition 8w ™! |(z/,zy< # 1 or w1 z/nzy<(p) # 1 of 2.2.4 holds. We also
suppose that 6 # w? in the case that N = 1.

2.5.1. We briefly outline the construction of 7: Yy — Py that will appear in this
section.

We analyze the h[Ggl-action on Ty/I4Tp, showing that it fits in an exact
sequence

0—> Py — Ty/19Tyg — Qg — 0

of h[Gg]-modules. Any such exact sequence provides a cocycle Ggo —
Homy (Qg, Pp) that defines its extension class in Galois cohomology. Our exact
sequence has three key properties: the G -action on Ty /[T is unramified, the G -
actions on Py and Qg are trivial, and the hy/Ig-module Qy is free of rank 1 with
a canonical generator. We may therefore modify our cocycle as follows. First, we
compose it with evaluation at the generator of Qg to obtain a map Gg — Pjy. Since
G, acts trivially on Py and Qg, this map restricts to a homomorphism G, — Py.
Since the G -action on Ty /1yTy is unramified, this homomorphism in turn factors
through a homomorphism X — Py. After a twist, it further factors through Yy and
provides the desired map 7": Yy — Py, which we can show to be of A-modules.
We first explain that hg/ I is the quotient of Ag by a p-adic L-function &. This
will provide the connection between the map 7" and the Iwasawa main conjecture.

2.5.2. We define the p-adic L-function &y.

41t should actually be possible to allow either or both of p = 3 and p | ¢(N) in what follows.
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Note that any homomorphism G — Q " factors through some G, and so induces
an even Dirichlet character. Note also that G, = (Z/NpZ)*/{—1) and G = G| x
(14 pZy).

The p-adic L-function &y is the unique element of Ay that interpolates Dirichlet
L-values at —1 in the sense that for each character ¢: G — @ * such that €lg, =0,
the ring homomorphism Ag — @p induced by € sends £ to the value L(e™!, —1) €
@ of the Dirichlet L-function.

We can also describe &y in terms of Kubota-Leopoldt p-adic L-functions. We
make the identification Ag = Z,[0][T] with T = [u] — 1, where [u] is the group
element of u € 1 + pZ, with p-adic logarithm (1 — p~')~'. We then have the
following equality of functions of s € Z,:

Egu' — 1) = L,(0?07 ', s —1).

2.5.3. We construct a canonical isomorphism bhg/Ig => Ag/(&p).
Consider the ordinary A-adic Eisenstein series

& = 50" + Z( Z d[d])qn € My,

n=1 d|n
(d,Np)=1

where [d] is the image in Ay—1 of the group element in G for d, and A — A* is
the involution defined in the footnote of 2.4.5.> By duality with the Hecke algebra,
it provides a surjective homomorphism )9 — Ag, the kernel of which is Jg by
definition.

Let Mg denote the component of an $)-module M for the unique maximal ideal
m containing the Eisenstein ideal Jg. By our choice of 6, the Eisenstein series £y is
not congruent modulo m to any other Eisenstein series (Ohta 2003, Lemma 1.4.9).
It follows from this that the injection of & in 91 induces an exact sequence

0 — Ggis — MEis — Ag — 0,

where the latter map takes a modular form to the (involution of the) constant term
in its g-expansion. Our map 7g: hg/lg — Ag/(Ep) may then be constructed from
the reduction of €9 modulo &y. That is, & is a cusp form modulo (§5) € Ay by the
exact sequence, and this cusp form provides the surjective map mp by duality with
the Hecke algebra fj. Once we know that 7y is an isomorphism, it is inverse to the
map induced by t, where ¢y is the O-part of the map ¢ defined in 2.2.1.

We explain the idea behind the injectivity of p. We have an evident surjection
Ay — by/ Iy given by the fact that every Hecke operator 7'(n) is identified modulo
Iy with an element of Ag. So, hy/ Iy is some quotient of Ag. The A-adic forms

3The reader may wish to ignore the involutions in order to focus on the idea of the argument.
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in My have integral constant coefficients, which can be seen by the method of
(Emerton 1999, Proposition 1). Given this, the existence of my is equivalent to the
fact £ modulo (&p) is a A-adic cusp form. As the constant coefficient of €y equals
&) times a unit, no surjective homomorphism to a larger quotient of Ay can exist.b
Thus, g is an isomorphism.

2.5.4. We define Qp and construct a canonical surjection Ty/I9Tg — Qg of
h[Gg]-modules.

For a module M over a A-algebra &, let M ¥ denote the 1[Gg]-module that is M
as an h-module and on which 0 € Gg acts through multiplication by the inverse
of the image of o in G. We then define Qy = (hy/Ig)*(1). Consider the Jacobian
variety J, of the curve X|(Np"). Let J,1or C J; (Q) be its torsion subgroup, and take
the contravariant (i.e., dual) action of T, on J, . Consider the class «, € J,(C)
of the divisor (0) — (c0), where 0 and oo are viewed as cusps on X;(Np")(C). It is
torsion by the theorem of Drinfeld (1973) and Manin (1972). Moreover, «, is easily
seen to be annihilated by 7.

Let B, be the image of o, in the 8-part of J,[p*°] = J.or @ Z. The T, g-span
B, g of B, is a quotient of b, 9/ 1, ¢ by definition. Moreover, B,y is isomorphic to
A,0/(&r9) by a computation of divisors of Siegel units that says in particular that
the 6-part of the divisor of g, . is &.¢ times (0) — (c0), up to a unit (see Mazur

and Wiles 1984, Section 4.2).” Here, £, denotes the image of & in A, 4. The Go-
action on B, ¢ factors through Gal(F, /Q), and we have 0, 8,9 = (a) ' B¢ for any
a € (Z/Np Z)*.

Poincaré duality allows us to identify the first étale homology group of
X1(Np") g with the Tate twist of the first étale cohomology group. Taking this
together with the canonical pairing of cohomology and the torsion in J,, we obtain
a Galois-equivariant, perfect pairing

() HP (X (Np') g, Zp) X I (9] = Qp/Zp(1)

with respect to which the Hecke operators are self-adjoint. Let ( , ) denote the
induced pairing on -parts. Define a map ¢ by

$: H Xi(ND') g Zp)o — Ars ® Qp/Zp(1), x> Y [alr @ (x, (a) Bro)s,

a€G,

where [a], € A, denotes the group element for a.® Let £, 4 be the image of & in
Arg. As &E.0Br9 = 0, the image of the map ¢ is contained in the group (A,¢ ®
Q,/Z,(1))[£, 6] of &, g-torsion, and ¢ factors through the quotient T,.4/ 1,67, 4.

% Another, more usual, way to approach injectivity is to use Iy + £pbg in place of I, until one
recovers the equality of these ideals through a proof of the main conjecture, as in 2.5.7 below.

7In the projective limit, this gives another way of defining the isomorphism bg /Iy —> Ag/(£s).
8To make sense of this, note that the tensor product in the sum is taken over Z, [6].
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Consider the composition

Tr0/L6Tr6 > (Arg ® Qp/Zy())Ers] = (Arg/Ere) (1) =5 (0r0/Ir6)(1),

where the second map is given by x > &, ¢X for any lifting X of x to Q,[G]s(1).
It is surjective by our description of B,g and the perfectness of ( , )g. As seen
from the Galois action on B, g, it is moreover an h,[Gg]-module homomorphism
Tro/1r0Tr0 — (bro/l ,,g)u(l). The maps are compatible with r, and their projective
limit is the desired surjective h[Gg]-module homomorphism Ty /14Ty — Qg.

2.5.5. We explain how the surjection of 2.5.4 fits in an exact sequence
0— Pg—Tp/1sTg— Qo — 0

of h[Gg]-modules that is canonically locally split over G, .

We use the fact that the Eisenstein part ‘J’;s —  Tquois Of the canonical
map of 2.4.4 is an isomorphism, or equivalently, that Tgpgis — TEis/ ‘J’g‘is is an
isomorphism. To see this, one uses an h-module splitting of the local exact sequence
for Ty (see Ohta 2000) and the method of Kurihara (1993) and Harder and Pink
(1992). We refer the reader to (Fukaya and Kato Preprint, Section 6.3) for the
argument.

Let us explain the use of this fact: by definition, complex conjugation acts on Qg
by multiplication by —1. Thus, Qy is a quotient of Ty/ ‘J’; . By our isomorphism
on Eisenstein components, it is a quotient of Tgpg/l9Tsup.9, Which by 2.4.6 is
isomorphic to hy/Iy as an h-module. This forces the quotient map to be an
injection, so we have Qp = Tqbo/loTeube. But now, this tells us that Qg is an
H[Gq,]-submodule of Ty/IyTy. In other words, the surjection Tg/ 19Ty — Qg is
canonically locally split on Gg,. We then have necessarily that the kernel of the
latter surjection is Tquo,6/16Tquo,s = Ps. This yields the exact sequence.

It is perhaps worth observing that this sequence is also identified with the
reduction modulo /4 of the exact sequence of hH[{Gr]-modules

0—TF — Ty — Tp/TF —0.

Finally, the determinant of the Gg-action on 7Ty is known (e.g., from the determi-
nants of modular Galois representations) and agrees with the Gg-action on Qg, so
the Gg-action on Py is trivial.

2.5.6. We have that Py and Qg have trivial actions of G;. Hence, we have a
homomorphism

G — Homy(Qy, Ps), o (x> 0X —X),

where X is a lifting of x to Ty/lgTy. By 2.5.5, this homomorphism factors
through the unramified quotient X of G. Thus, we have a homomorphism X —
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Homy(Qp, Pg) that is compatible with the action of Gal(L/Q). This gives a
homomorphism of Gal(K /Q)-modules

X~ (1) — Homy(Q4(—1), Pg) = Homy((he/Is)*, Ps) = P,

where Pg is Py on which 0, € Gal(L/Q) acts as multiplication by (a)~'. In other
words, we have a Ag-module homomorphism

T:Yg =X (1)g = Py,

with the Galois action of G on the left and inverse diamond action of G on the right.

2.5.7. We describe the heart of the Mazur-Wiles proof of the Iwasawa main
conjecture.
The Iwasawa main conjecture is the equality of ideals

chary, (Yg) = (&).

By the analytic class number formula, this conjecture is reduced to char,, (Ys) <

(&o).

Let £ be the h[{Gg]-submodule of Ty generated by Ty . It follows as in 2.5.5
that we have an equality £, = Tgbm D L$ of Eisenstein components. Moreover,
P; = LY /I4L7" is Gg-stable in £/ L. In other words, we have an exact sequence
of h[Gg]-modules

O—)Pé—)L/IQL—)QQ—)O.

In the same way as 7", we may define 7/: Yy — P, which is now surjective by
construction.

The Iwasawa main conjecture can be deduced from this surjectivity of 7. More
precisely, we use the following facts:

(1) The map Y": Yy — P, is surjective.
(2) We havethat P; = £ /1L with £ afinitely generated, faithful hy-module.
(3) The kernel of the canonical surjection Ag — b/ Iy is contained in (&5).°

From (1), we obtain
char s, (Yy) C chary, (Pp).
From (2) and (3), we can deduce that

chary, (Py) C chara, (Ag/(50)) = (§0).

9 Actually, we know that the kernel coincides with (£5), but this weaker statement is enough.
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Hence chary, (Yy) C (&g).

2.5.8. The conjecture stated in the following section implies that 7" is surjective.
This tells us that the inexplicit lattice £ required for the Mazur-Wiles proof in 2.5.7
is precisely the canonical lattice Ty. In this sense, it suggests a refinement of the
method of Ribet and Mazur-Wiles.

2.6 The Conjecture: w and Y Are Inverse Maps

We state the conjecture of the third author (Sharifi 2011) and the result of the first
two authors (Fukaya and Kato Preprint).

2.6.1. In2.2.4 and 2.5.6, we defined A-module homomorphisms
w:Py—> X" (1)g and T:X (1)g > Py.

We have the conjecture of the third author. See (Sharifi 2011, Conjecture 4.12),
where the conjecture is given up to a canonical unit; this stronger version was a
stated hope of the third author.

Conjecture. The maps w and 7" are inverse to each other.

This conjecture provides an explicit description of X (1) in terms of modular
symbols. In this sense, it may be viewed as a refinement of the main conjecture.

2.6.2. We state the result (Fukaya and Kato Preprint, Theorem 7.2.3(1)) of the first
two authors. Let §;, € Ag denote the derivative of the p-adic L-function &g in the
s-variable (see 2.5.2).

Theorem. We have §,T o w = &, modulo p-torsion in Py.

If & has no multiple roots, the theorem implies the conjecture up to p-torsion
in Pg. In fact, it leads to proofs of the conjecture under various hypotheses: see
(Fukaya and Kato Preprint, Section 7.2).

2.6.3. McCallum and the third author conjectured that the image of the cup product

HI(ZB-N.D” NLPL Zp(l)) ®Zp HI(ZB-N,D” NLPL Zp(l)) i’ H;(Z[Q-Np” NLPL Z],(Z))

projects onto Hézt(Z[CNpr, Nip], Z, (2))3’ (McCallum and Sharifi 2003 for N = 1),
which implies that w is surjective. This generation conjecture follows if we know
that @ o7 = 1. In particular, it holds if & has no multiple roots, and it also holds if
Py ®z, Q) is generated by one element over Ay ®z, Q, (Fukaya and Kato Preprint,
Theorem 7.2.8).
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2.7 The Proofthat &'Y ow = &’

We explain some of the important aspects of the proof of the main theorem, referring
to the relevant sections of (Fukaya and Kato Preprint) for details.

2.7.1. We consider a refinement of the diagram in 1.10 in which we divide the
right-hand square of that diagram into two squares:

8o —— lim H2(Yi(Np"),Zp(2))o — = » HY(Z[35]. To(1) —— &

J mod / l‘x‘ J J mod /
@ So r

Py Yy Yo Py.

Here, the maps z and oo are the projective limits of the 6-components of the maps
zr and oo,. The commutativity of the left square of the diagram in 2.7.1 is seen in
Sect. 2.3. The discussion of the rest of this diagram, and the fact that the bottom row
is also multiplication by £, compose the rest of this subsection.

It is remarkable that £, appears here in two very different contexts. The & that
appears in the diagram and contributes to £,7 o @ is related to cup product with
the logarithm of the cyclotomic character. The other & is the constant term modulo
&y of a A-adic modular form that appears in a computation of the regulators of zeta
elements.

2.7.2. The map HS arises from the Hochschild-Serre spectral sequences
H(ZI5:), Hy (Y (NP 3. Z,(2)) = E'H = H (N(Np'), Z,(2)).

as the projective limit over r of maps E? — Ezl’l, followed by projection to the
ordinary 0-part. We remark that

H(Zl5;1. To(1) C HY(Z[55], Ta(1)),

and the image of HS is actually contained in the larger group, hence the dotted arrow.
However, elements of 8y are carried to the smaller group under HS oz (Fukaya and
Kato Preprint, Proposition 3.3.14), so we can still make sense of the diagram.

2.7.3. The third vertical arrow in the diagram of 2.7.1 is a composition of maps as
follows:

U (1—p~ 1 log(k)

HYZ[E). To (1) = HA@LE ] Qo(1) ——52% H2@[L). 06(1) 5 Y

The first map is induced by the surjection Ty — Q. The map k: Gg — Z; is the
p-adic cyclotomic character, and log is the p-adic logarithm. The second map is the
cup product, where we regard log(k) = log ok as an element of Hélt(Z[%], ZLp).
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For the third map, note that Qg = (Ag/&)*(1) by 2.5.3 and 2.5.4. As the
p-cohomological dimension of Z[Nip] is 2, the group Hézl(Z[Nlp], (Ag/E0)P(2)) is
isomorphic to the quotient of

HE(ZI55), A5(2)0 = Tim HZ(0, 351, 2,(2)0 = Yo

T

by the Gal(K /Q)-action of &. Here, the first isomorphism is by Shapiro’s lemma,
and the second is from 2.2.4. By the main conjecture and the fact that Yy has no
finite A-submodules, Yy is &y-torsion, so Yy /EgYy = Yy. Putting this all together,
we have the map.

2.7.4. We define a functor D on pro-p Gg,-modules.
Let T = Liilx T, for a projective system of finite abelian p-groups 7). For any

abelian group M, set T ® M = l(iLnl(Tk ® M). Let W denote the Witt vectors of

[F,, and suppose that the T, are endowed with compatible actions of ~[Gg,] for a
pro-p ring 1. We may then consider the 2-module D(T) that is the fixed part

D(T) = (T @ W)S2

for the diagonal action of Gg, on T®W. If the Gq,-actions on the T, are
unamified, then D(7T") and T are isomorphic #-modules. If 7" has trivial G@p-action,

then D(T) x T®WS» =T & Z, = T, and this isomorphism is canonical. See
(Fukaya and Kato Preprint, Section 1.7).

2.7.5. We define p-adic regulator maps for unramified, pro-p Gg,-modules.

Let T be as in 2.7.4, and suppose that the action of G, on T is unramified. Let
E = Q(W) be the maximal unramified extension of Q,. The p-adic regulator map
(Fukaya and Kato Preprint, Section 4.2)

regr: HA(Q,, T(1)) — D(T)
for T is the h-module homomorphism defined as the composition
HLQ,. T(1) 2 HAE, TQ)™=" % (T & E)™=' - D(T).

Here, the first map is inflation, the second is Kummer theory, and the final map is
induced by

EX > W(F,) x»—)p‘llog( X’ )
P Fr,(x)/’

where the p-adic logarithm log is defined to take p to 0.
Note that if Gq, acts trivially on T, then reg; is induced by the map (1 —
p~ ) log: Q; — Z, in a similar fashion.
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2.7.6. We define the p-adic regulator map reg in the diagram of 2.7.1.

Note that Ty, has by definition an unramified G@p-action. We have a refine-
ment (Fukaya and Kato Preprint, Section 1.7) of Ohta’s A-adic Eichler-Shimura
isomorphism (Ohta 1995). That is, there is a canonical isomorphism of h-modules
D(Tquo) = &, and in particular Tquo and & are noncanonically isomorphic. The
map reg is then defined as the composition

rego o ~
reg: Helt(Z[NLpL TO(I)) - Héll(va Tquo,@(l)) —q> D({Iquoﬂ) — 68-

2.7.7. We explain the right-hand vertical map “mod /” in the diagram of 2.7.1.

The GQP-action on Tquo/ITquo is trivial, so the canonical isomorphism
D(Tquo) = G provides an isomorphism Tquo/ 1 Tquo —> &/1&. In particular, we
obtain “mod I as the composition of projection followed by a string of canonical
isomorphisms:

Gy > 6y/1pSy = Tquo,g/lg‘fquo,@ = Tg—/lg‘f(j = 8o/ 1pSg = Py.

2.7.8. The commutativity of the two right-hand squares in the diagram of 2.7.1 are
nontrivial cohomological exercises. We mention only which calculations must in the
end be performed.

(1) The commutativity of the middle square is reduced to that (see Fukaya and Kato
Preprint, Section 9.4) of

LI, (A0 /E0)4(2)) 22080, 12 71 L) (80/80)7(2)

I | |

HE(Z[5],A4(2)) H3(Z[ 551,44 (2)),

the vertical arrows occurring in the long exact sequence in the Z[Nip]-
cohomology of

0— Ab2) - AL2) = (Ag/E0)'(2) — 0.

Thus, the & that appears in the diagram is found in Galois cohomology.
(2) The commutativity of the right-hand square is reduced to verifying that the map

Yo = Hi(ZIg;), Qo (1) < HZ(ZI55). To/16Ts (1)) = H&(Q,, Po(1)) = Py

given by lifting and then projecting is well-defined and agrees with 7" (Fukaya
and Kato Preprint, Section 9.5). Here, the first isomorphism was discussed
in 2.7.3 and the last is the invariant map of local class field theory, recalling
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from 2.5.5 that Py has trivial Galois action. This description is closer to the
construction of 7" that will appear for I, (¢) in Sect. 3.

2.7.9. It remains to prove that the composition 8g/1pSy — Sy/19Sy — Py,
where the first arrow is the composition of the upper horizontal arrows modulo /y
in the diagram of 2.7.1, coincides with multiplication by &, on Pg. This is deduced
in (Fukaya and Kato Preprint, Sections 4.3 and 8.1) from the computation of the
p-adic regulators of zeta elements given in (Fukaya 2003; Ochiai 2006). This is a
very delicate analysis: we explain only the rough idea of how &; appears at its end.

The map Py — Py is shown to be given (modulo &g) by multiplication by the
constant term at ¢ = 1 of a p-adic L-function in a variable ¢ that takes values in
M. This p-adic L-function is a product of two A-adic Eisenstein series which vary
with 7. The constant term in the g-expansion of this product is itself a product of two
zeta functions §,(¢)&g (s + ¢ — 1), where £, () is the p-adic Riemann zeta function
and s is the variable for Ag C bhy. Note that {,(¢) has a simple pole at = 1 with
residue 1. To evaluate §,(¢)&o (s +¢ — 1) modulo &4 (s) at ¢ = 1, we can first subtract
$p(t)&a(s) from the product and then take the resulting limit

. Eo(s +1—1)—&(s)
m
t—1 t—1

=& (s).

In this manner, the map is shown to be multiplication by &.

3 The Case of GL; over F,(¢)

We now consider the field F = IF,(¢) for some prime power ¢. In this section, we
provide F-analogues of the constructions, conjecture, and theorem of Sect.2. We
require the following objects:

* Thering O = F,[t],

 The completion Fo, = F((t™')) of F at the place oo,

¢ The valuation ring O = F, [t7'] of Fuo, which does not contain O,
* A prime number p different from the characteristic of I,

* A non-constant polynomial N € O.

Let us also fix an embedding F <> Fo, of separable closures. To avoid technical
complications, we assume in this section that p does not divide (¢ + 1)[(O/N O)*|.

The organization of this section follows closely that of Sect. 2. We hope to make
clear that most constructions are remarkably similar to the case of @, though we also
highlight differences. We work with congruence subgroups of GL,(0), rather than
of SL,(7Z). Modular symbols, used to construct @, are now found in the homology
8 of the compactification of the quotient of the Bruhat-Tits tree by a congruence
subgroup. This 8 is a quotient of an étale homology group T of the Drinfeld modular
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curve, used in constructing 7". As most constructions are so similar, we provide less
detail than in Sect. 2. We intend for full details to appear in a forthcoming paper.

3.1 From Modular Symbols to Cup Products: The Map w

3.1.1. We introduce homology groups & and M of the Bruhat-Tits tree.

Consider the Bruhat-Tits tree B for PGL,(Fs). Its vertices are homothety
classes of Ogo-lattices £ of rank 2 in Fozo, or equivalently, elements of
PGL;(Foo)/ PGL3(Owo). This tree is (¢ + 1)-valent, and two lattices L C L’
connected by an edge if [{’ : L] = ¢.'° The oriented edges then correspond to
elements of PGLy(Fx)/Jo0, Where Jo is the Iwahori subgroup of matrices in
PGL,(0O«) that are upper-triangular modulo the maximal ideal of O. The group
PGL,(F) acts on the left on B in the evident manner.

Let I (N) be the congurence subgroup of GL,(O) given by

[(N) = {(‘C‘ z) € GL,(0) ) (c,d) = (0,1) mod N\ .

We may complete the Bruhat-Tits tree to a space B* by adding in the (rational)
ends, which correspond to elements of P! (F). We define

UN)=Ty(N)\B and U(N)=T(N)\B*

The elements of I7(N) \P'(F) are the ends of U(N). Our homology groups, or
spaces of modular symbols, are then

8§ =H(U(N),Z,) CM = H(U(N), {ends},Z,).

3.1.2. We introduce Manin-Teitelbaum symbols [u : v] € M.

Modular symbols in M were defined by Teitelbaum (1992) analogously to the
case of Q. In particular, given o, 8 € P!'(F), we have a modular symbol that is the
class {&¢ — B} of any non-backtracking path in the Bruhat-Tits tree that connects
the two corresponding ends of B.

Analogues of Manin symbols are defined as before. That is, for u,v € O/NO
with (u,v) = (1), we choose y = (¢%) € GL(0) with u = ¢ mod N and v =
d mod N, and then

[u:v] = {i ¢ } .

% E—
bN aN

10Note that ¢ appears in this sentence as the order of the residue field of Oo.
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These symbols generate H and yield a presentation with identical relations to those
of 2.1.2.

3.1.3. We introduce the intermediate space M° on which we define .
Let M denote the Z p-submodule of M generated by the Manin symbols [u : V]
with u, v # 0. As in the case of GL, over Q, we have § ¢ M" C M.

3.1.4. We introduce cyclotomic N -units )k[% in abelian extensions Fy C Ey
of F,(¢). The reader may find a powerful analogy with objects in the theory of
cyclotomic fields over Q.

We consider the cyclotomic N-units A« for u € O — (N). These are the roots
of the Carlitz polynomials (Carlitz 1938) for divisors of N, or are equivalently the
N -torsion points of the Carlitz module. As k% depends only on ¥ modulo N, we
abuse notation and consider it for nonzero u € O/N O. We can visualize A% in the

completion Coo of Foo by

w=ee()=x I1 (-5):

acO—{0}

where exp is the Carlitz exponential and & € Cq is transcendental over F.

Let Ey = F(A L ), which is an abelian extension of F' of conductor N co con-
taining no constant field extension of F. There is an isomorphism Gal(Ey/F) =
(O/NO)* such that a € (O/NO)* is the image of an element 0, € Gal(Ey/F)
that satisfies g, (Aﬁ) = Aﬁ. Let Fy be the largest subfield of Ey in which oo
splits completely over F, which we might call the ray class field of modulus N.
Under the above isomorphism, Gal(Ey / Fy) is identified with ]F;< In fact, we have
oc(Ag) =chy force € IE‘;(. These facts are found in the work of Hayes (1974).

Let Oy denote the integral closure of O in Fy. Since p (¢ — 1) by assumption,
the image of A« in the p-completion of the N -units of Ey is fixed by the action of
IE‘;‘. This allows us to view A« as an element of Hl(Oy [ﬁ], Z,(1)). For nonzero
u,v € O/N O, we may consider the cup product

Ay Udy € HA(ON[H].Z,(2)).

3.1.5. We define the map w. Here, we work directly with étale cohomology, rather
than K,.
There is a homomorphism

w: M’ - HZ(On[%].Zp(2). [u:v]> Az ULy,

In the current setting, we can no longer quickly verify from the presentation of M°
that = is well-defined. Rather, we see this as a consequence of the argument that @
is “Eisenstein” in Sect. 3.3.

3.1.6. We introduce the cuspidal Hecke algebra f and its Eisenstein ideal /.
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Let n denote a nonzero ideal of O. Through the action of GL,(F) on B, we
have a Hecke operator 7(n) acting on 8 as the correspondence associated to
I(N) (59) I(N), where n = (n). Let b be the subring of Endz,(8) generated
over Z, by the Hecke operators T (n).

We also have diamond operators (a) in § for nonzero ideals a of O prime to (N).
This (a) depends only on the reduction modulo N of the monic generator of a.

The Eisenstein ideal / is the ideal of ) generated by 7'(n) — Za\n M(0)(d) for
all nonzero ideals n of O, taking (9) = 0if 0 + (N) # (1). Here, Mt(n) = [O : n] is
the absolute norm of n.

Similarly, we have the Eisenstein ideal J of the Hecke algebra § C Endz, (M).

3.1.7. To say that = is “Eisenstein” is to say that @ factors through a map
w: M°/IM® — HE(On[+]. Z,(2)).

We explain this result in Sect. 3.3.
3.18. LetG = (O/NO)*/FY, and set A = Z,[G].

(1) We have a ring homomorphism ¢: A — h which sends the group element [a] in
Z,|G] fora € G to the inverse (a) ™! of the diamond operator corresponding to
a.

(2) We have the isomorphism Gal(Fy/F) = G of class field theory (see 3.1.4).

Modules over ) and Z,[Gal(Fy/F)] become A-modules through these identifica-
tions.

3.2 Working with Fixed Level

We explain why we work with fixed level in Sect. 3, and we define our two objects
of study.

3.2.1. We do not pass up a tower for the following reason on the GL,-side. By
assumption on p, the field F, has no nontrivial pth roots of unity. Since Fy/F
contains no constant field extension, Fy also contains no nontrivial pth roots of
unity. So, even if we “increase” N, we are unable to employ the Iwasawa-theoretic
trick of passing Tate twists through projective limits of Galois cohomology groups.
In particular, since we deal with cohomology with Z,(2)-coefficients, we do not
work with class groups.

3.2.2. 'We again have two objects of study:

¢ The geometric object P = §/18 for GL,,
* The arithmetic object Y = HZ(Oy,Z,(2)) for GL;.
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Given a character 6: G — @p “ weset Ag = 7Z »[0] and view it as a quotient
of A through 6. For a A-module M, we let My = M ® 4 Ay denote the O-part of
M . If 6 is primitive, then our assumption that p does not divide |G| implies that the
canonical maps

Py — My/IeMy  and Yy — Ha(On[+].Zp(2))e

are isomorphisms.

3.3 Zeta Elements: w Is “Eisenstein”

We explain that @ factors through the quotient of M? by the Eisenstein ideal J.

3.3.1. We define Siegel units on Drinfeld modular curves.

Let Y(N) denote the Drinfeld modular curve that is the moduli scheme for
pairs consisting of a rank 2 Drinfeld module over an O [%]-scheme and a full
N -level structure (or, basis of the N -torsion) on it. Over Y (/N ), we have a universal
Drinfeld module, equipped with a full N-level structure, which locally looks like
(N7'0/0)* x Y(N). On the universal Drinfeld module is a certain theta function
©. Given an element of (§, ) € (N7'0/0)?, we may pull ® back to a unit on
the Drinfeld modular curve using the second coordinate of the level structure. This
unit g g € OF, is the analogue of a Siegel unit."’

Let Y1 (N) be the moduli scheme for pairs consisting of a rank 2 Drinfeld module
overan O [%]-scheme and a point of order N on it. If we take o« = 0, then the Siegel
unit go g may again be viewed as an element of O;,(l )

3.3.2. If we take a K-theoretic product of two Siegel-type units, we obtain the
Beilinson-type elements considered by Kondo and Yasuda (2012). See also the work
of Kondo (2002) and Pal (2010). Much as in the case of Q, we have a map

M = HZ(N(N).Z,(2).  [u:v]> gyn Ugy o
N N

of $-modules. We can specialize this at the cusp corresponding to co € P!(F) to
obtain A« U A . This specialization map oo is Eisenstein. Hence, we see that

w =o00ozM’ - Hy(On[+].Z,(2))

is well-defined and Eisenstein.

U Actually, gq4 as we have described it is not well-defined until we take its g> — 1 power. The
assumption that p } (g2 — 1) is used to avoid this issue when we work with étale cohomology.
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3.4 Homology of Drinfeld Modular Curves

In this subsection, we study the étale homology groups of Drinfeld modular curves.
Unlike in Sect. 2.4, we do not take ordinary parts. That is, the Galois representations
found in the homology of Drinfeld modular curves are already “special at co,”
the required analogue of “ordinary at p.” Moreover, the resulting unramfied-at-
oo quotient may in the present setting be identified with the space 8 of cuspidal
symbols, which is the analogue of the plus quotient of homology of 2.2.2. In other
words, the place oo of IF, (¢) plays both the roles that p and the real place do in the
GL;,-setting over Q.

The statements in this subsection are consequences of the work of Drinfeld
(1974).

3.4.1. We first introduce the étale homology group 7.

Over F, the Drinfeld modular curve Y;(N),r has a smooth compactification
X1(N)/F. Over C (or F), it is given by adding in the set of cusps [(N)\P!(F)
of the Drinfeld upper half-plane. We define our étale homology group

T = H{'(X\(N) 7. Zp)

as the Z,-dual of Hy(X\(N) 7, Z,).
The Hecke algebra generated by the 7'(n) in Endgz,(7) is in fact equal to b. The
module Q, ®z, T over the total quotient ring Q, ®z, b of b is free of rank 2.

3.4.2. We study the action of Gf_, on 7.
We have an exact sequence

0= T => T = Tquo > 0

of h[G . ]-modules, with Ty, and Ty, defined as follows. First, Ty is the largest
submodule of T such that Gr_, acts on Ty(—1) trivially, and Ty, is the quotient.
Then Ty, is equal to the maximal unramified, h-torsion-free quotient of T In this
way, the place oo plays the role that the place at p does in 2.4.4. In fact, GF_, acts
trivially on Tqy,, and both Q, ®z ) Tsub and Q, ®z, Tquo are free of rank 1 over
Qp ®Zp b.

The above short exact sequence is split as a sequence of h-modules: Ty, is the
isomorphic image of the h-submodule of T on which a choice of Frobenius element
acts trivially. This will be used in constructing 7" below.

3.4.3. Since U(N) is essentially the graph of the special fiber of a model of X (N)
over O, we have a surjective homomorphism

T — 8= H|(T(N).Z,).
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Via this map, § is identified with the quotient Tg,, of T with trivial G r,-action. In
this way, Jquo is also analogous to the plus quotient of homology in 2.2.2. That is,
the place oo also plays the role that the real place does over Q.

3.4.4. Let G be the space of those Z,-valued, special-at-oo cuspidal automorphic
forms

¢:PGLy(F)\ PGLa(AF) /(K f X Joo) = Zp,

where A = A‘; x Fy is the adele ring, K ; is the closure of the image of f'l (N)in

PGLZ(A‘};) (see 4.1.3), and J is the Iwahori subgroup of PGL,(Fs). For ¢ to be
special at co means that its right Q ,[GL»(Fo)]-span is a direct sum of copies of the
“special representation.” (The latter is the quotient of the locally constant functions
PY(Fy) — Q » by the constant functions.)

The property of being special at oo tells us the local behavior at the prime oo
of the 2-dimensional QQ,-Galois representation attached to the cusp form. This is a
replacement for the condition of ordinarity at p: it is what tells us the Gr,_-action
on T used in 3.4.2.

3.4.5. We explain how the groups § and G may be identified.

The identification passes through the harmonic cocycles on U(N). These are
the functions on the oriented edges of U(N) that change sign if we switch its
orientation of an edge and which sum to zero on the edges leading into a vertex
(i.e., are harmonic). The cuspidal harmonic cocycles are those supported on finitely
many edges. The space of Z,-valued cuspidal harmonic cocycles may be directly
identified with 8. It also provides a combinatorial description of &. To see this,
one starts with the observation that the double coset space on which forms in &
are defined is none other than the set of oriented edges of U(N). The property of
being special at oo gives the harmonic condition, and the two notions of cuspidality
coincide. Thus, the spaces & and 8 that appear in the diagram of 1.10 are canonically
identified in the case of I, (¢).

3.5 TheMap?Y

We define the map 7": Yy — Py on O-parts for a fixed primitive character 6: G —
- X

Q, -

3.5.1. We briefly outline the construction of 7: Yy — Py that will appear in this
section.

As in 2.5.1, we analyze the h[G r]-action on Ty/ 15Ty, showing that it fits in an
exact sequence

0— Py —> Tg/19Tg — Q9 —> 0
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of h[G r]-modules. Similarly to the setting of GL, over Q, the G g-actions on Py
and Qg are understood, and Qg is free of rank 1 over hy/Iy with a canonical
generator. However, the domain of our map 7 is not a Galois group, so our approach
to constructing 7" is different. We employ compactly supported cohomology, which
is dual to Galois cohomology by Poitou-Tate duality. Instead of directly using the
cocycle attached to the exact sequence, we construct 7" in 3.5.7 from a connecting
homomorphism 9 on compactly supported étale cohomology that appears as the
second map in a composition of Ay-module homomorphisms

T:Yy S HZ (O[], Qo(1) > H2 (O[], Pa(1)) = Py

The isomorphisms are seen using the hy[Gr]-module structure of Qy and the
triviality of the G p-action on Py, respectively.

3.5.2. We define the L-function for 6 by

L@O.s) =[]0 —0@F) "' 0@~

ptN

where the product is taken over the prime ideals p of O not dividing N, and Fry,
denotes an arithmetic Frobenius at p. We then take £ € Ay to be the nonzero value
L(6,-1).

3.5.3. We have an isomorphism by /Iy —> Ag/(£p). We indicate one construction
of the map.

Consider the Jacobian variety J of X;(/N) and the class & € J(C) of the divisor
(0)—(00), where 0 and oo are cusps on the Drinfeld modular curve. Gekeler showed
that « has finite order (Gekeler 2000), and it is annihilated by /. The hg-module
generated by the 6-part of « is Ag/(§p) by a computation of the divisors of Siegel
units, providing the desired map.

3.5.4. Wedefine Qy = (hg/I)"(1), where ( ) indicates a G r-action under which
any element that maps to @ € G acts by multiplication by 6~!(a). Much as in 2.5.4,
pairing with the 6-part of o gives rise to a canonical surjection of hg[G r]-modules

3.5.5. The exact sequence
0—> Py — Ty/19Tyg — Qg — 0

of h[Gr]-modules is constructed as in 3.5.1. Here, we observe that Qy has a
nontrivial action of the Frobenius element chosen in 3.4.2, so Qg is a quotient
of Tguw. As before, Tgyp is Zp-dual to Tqy, and thereby isomorphic to b, so we

have an isomorphism Tgyp 0/ 19 Tsub.0 = Qyp that provides a G -splitting of the
exact sequence. The known Gg-action on Qg and the known determinant of the
G p-action on Ty tell us that G acts trivially on Py.



Modular Symbols in Iwasawa Theory 207

3.5.6. The analogue of the Iwasawa main conjecture over Fy is the equality

1Yol = [Ag : (§9)]
of orders. This equality is a consequence of Grothendieck trace formula, so we do
not require the method of Mazur-Wiles to prove it.

3.5.7. We define our map 7.
Let H. (O [%], M) denote the i th compactly supported étale cohomology group

ét,c

of a compact Z,[Gr]-module M that is unramified outside N oco. These groups fit
in a long exact sequence

s Hi

et,c

Ol§1. M) — HL(O[%]. M)~ €D Hi(Fo.M)— HLEO[§]. M) — -+ .

ét,c
v|N oo

The exact sequence in 3.5.1 yields a connecting homomorphism
H (Ol%). Qo (1) — Hg (O[], Po(1)) = Po,

the latter identification as Py has trivial Gg-action, and we can prove that the
canonical map

H2 (O[L], 06 (1)) — H2(O[%], Qa(1))

is an isomorphism. Hence, the above homomorphism is identified with
Hézt((f)[%], Qo(1)) = Pp.Our 7 is defined as the following composition:

T:Yy = HA(On[4].Z,(2)s
= HZ(O[4). 45(2)
H; (O[] (As/80)"(2))
= HA(O[4]. Qo (1)) — Py.

The isomorphism in the first line is by 3.2.2, the isomorphism in the second line
is by Shapiro’s lemma, the isomorphism in the third line follows from the fact that
& kills Yy by 3.5.6, and the isomorphism in the fourth line is by definition of Qg
in 3.5.4.

3.6 The Conjecture: w and Y Are Inverse Maps

We state the conjecture and our main result in the case of GL, and GL; over I, (¢).
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3.6.1. We state the conjecture.

Conjecture. The maps w: Pg — Yy and 1: Yy — Py are inverse to each other.
3.6.2. We state the theorem.

Theorem. We have that §,T o w = &, where

, d -
& = ﬁL(Q ' $)|=—1 € Ag.

3.6.3. We can prove the order of Py is divisible by the order of Ay/(&p) and hence
by the order of Yy. Thus, in the case that £ is a unitin Ay, our conjecture is implied
by the above theorem.

3.7 The Proofthat §'Y ow = &’

The method of the proof of our Theorem 3.6.2 is parallel to the proof in the Q-case.
We give only its bare outline.

3.7.1. Asin 2.7.1, we consider a refinement of the diagram in 1.10 in which we
divide the right-hand square of that diagram into two squares:

8o —— HA(MI(N). Z(2))o = + Hy(Ox[3),Ta (1)) — S

J{ mod 7 J{W J{ J{ mod /
@ %o

Py Yo Yo Py.

The commutativity of the leftmost square of the diagram was discussed in Sect. 3.3.
We discuss the maps in the other two squares of the diagram below.

3.7.2. The map HS in the diagram arises in a Hochschild-Serre spectral sequence.
An analogue of the discussion of 2.7.2 applies.

3.7.3. Letk be the canonical generator of H/(F,,Z,). The third vertical arrow in
the diagram is the composition

HL(O[F]. To (1) — HYO[E], Q6 (1)) =5 HZ(O[]. Qo (1)) =5 Y,

where the last isomorphism is given in 3.5.7.

3.7.4. The map reg in the diagram is the 9-part of the p-adic regulator map

H1(Fao.8(1) =5 H2(Fs.8(1)) = 8 = &,

where the second map is the invariant map of local class field theory.
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3.7.5. Since § and G are canonically identified, both “mod /” maps in the diagram
are just reduction modulo /g.

3.7.6. The proofs of the commutativity of the other two squares are once again
nontrivial, though slightly different, exercises in étale and Galois cohomology.

3.7.7. It remains to prove that the composition 89 — Sy — Py, where the first
arrow is the composition of the upper horizontal rows, coincides with &, times the
reduction modulo 7y map 8y — Py. By the computation of Kondo and Yasuda
(2012) of the values of a regulator map on the analogues of Beilinson elements, this
is reduced to a comparison of their regulator map with the above p-adic regulator
map.

4 What Happens for GL;?

In this section, we discuss three settings for the study of generalizations of the
conjectures in Sects.2 and 3 for GL; over a field F, for a fixed integer d > 1.
The fields F and, thereby, the cases we consider here are:

(i) The rational numbers,
(i) Animaginary quadratic field,
(iii) A function field in one variable over a finite field.

We have results only in the cases (i) and (iii) for d = 2 discussed above, but we wish
to speculate and pose questions in a more general setting. Rather than formulating
precise conjectures, we aim for the more modest goals of pointing in their direction
and inspiring the reader to investigate further.

4.1 The Space of Modular Symbols

4.1.1. By an infinite place, we mean the unique Archimedean place in cases (i) and
(i1) and a fixed place oo in case (iii). The remaining places are called finite places.
We have the following objects:

e The subring O of F of elements that are integral at all finite places,
e The completion F, of F at a place v,

¢ The valuation ring O,, of F, at a non-Archimedean place v,

¢ The adele ring Ar of F and the adele ring A‘}; of finite places,

« The subring O] =[] 0, of AL

v finite
In the discussion below, we will use the notation ( )*> when defining an object in
the GL;-setting and then omit the notation in many instances in which d is clear.



210 T. Fukaya et al.

4.1.2. We define a topological space D, by using the standard maximal compact
subgroup of PGL, (Fs): in the respective cases, it is

(i) PGL;(R)/ POy (R), so that SLy(R)/ SO4(R) = Dy,
(ii) PGL,(C)/PUy, so that SL;(C)/SU; = Dy,
(iii) The Bruhat-Tits building associated to PGL; (F).

For example, in case (i) the space D, is the complex upper half-plane H. In case
(ii), the space D; is the three-dimensional hyperbolic upper-half space Hj. Note
that in case (iii), the Bruhat-Tits building has the set PGL,;(Foo)/ PGL;(Ooo) of
homothety classes of Ox-lattices of rank d in F;’o as its O-simplices.

4.1.3. Let N be a nonzero ideal of O. Let K l(d)(N ) be the open compact subgroup
of GLy (Og) given by

KNy =g € GLIO)) | (ga1.- - 8ad1.844) = (0.....0. 1) mod N} .

Let
U“(N) = GLy(F) \(GL4(A})/ K" (N) x Dy).

The space UV (N) is the relative Picard group Pic(O, N), viewed as a discrete
space. For d > 2, the space U?)(N) is homeomorphic to the disjoint union of
| Pic(O)| copies of fl(d)(N) \ Dy, where

Ny = GLy(0) N KP(N).

4.1.4. Consider cases (i) and (ii). Let € € GL;(0O) be a diagonal matrix with entries
ai,a,...,aqg such that the product aja, - - - a4 generates the roots of unity urp =
O*in F. Let

'y = r'“(N)nSLs(0).

Then I1(N) \ Dy is identified with the quotient of I'1(N) \ D4 by the action of the
operator

class(g) > class(ege™!)

for g € SL;(R) in case (i) and for g € SL;(C) in case (ii).

4.1.5. In case (i), the space U®(N) is identified with the quotient of Y;(N)(C) =
I'(N)\H by the action of complex conjugation on Y;(N)(C). In fact, the
description in 4.1.4 shows that it arises from the quotient of H by the action
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. y X
H9x+ly=class(\/— )
0 1/y¥

() ) o () oo

which coincides with the action of complex conjugation on Y;(N)(C).

4.1.6. The space 8'Y)(N) of (cuspidal) modular symbols for GL; is defined as
$)(N) = image(Hy—1(U(N). Z) - H™ (U(N). Z)).

where HBM denotes Borel-Moore homology. Recall that if U(N) is a compact-
ification of U(N), then H*M(U(N),Z) is canonically isomorphic to the relative
homology group H; (U(N),U(N)\U(N),Z). The space S(N) may be the homol-
ogy group H;_(U(N), Z) for some good choice of compactification.

4.1.7. In case (i), we have by 4.1.5 a canonical map
Hi(Xy(N).Z)y — 8P (N) = Hi(U(N).Z).

where U (N) is the quotient of X;(N) by the action of complex conjugation. This
map is a surjection with 2-torsion kernel.

4.1.8. For a nonzero ideal n of O, let T'(n) denote the Hecke operator on 8(Y)(N)
corresponding to the sum of K fd) (N)-double cosets of elements of M;(Oy) N

GLy (A';) with determinant generating nO, in the v-component. (For d = 1, we
make the convention that 7(n) = 0 if n and N are not coprime.) These operators
satisfy T'(ab) = T (a)T (b) for coprime a and b.

Let T()(N) denote the commutative subring of Endz(8¥)(N)) generated by the
T (n) with n a nonzero ideal of O.

4.1.9. For d = 1, the group 8(N) of modular symbols is Hy(U(N),Z) =
Z[Pic(O, N)]. The Hecke algebra T(N) is the ring Z[Pic(O, N)], with T'(n) for
n coprime to N equal to the group element for n. Under these identifications, T(N)
acts by left multiplication on 8(N).

4.1.10. The modular symbol {0 — oo} in Sect. 2.1 is generalized to the following
element of H fi”l (U(N), Z). It is the class of the image in the identity component of
U(N) of the following standard subset of D, with a suitable orientation:

(i-ii) The set of classes of diagonal matrices in GL; (F) with positive real entries,
(iii) The union of all (d — 1)-simplices with O-vertices in the set of classes in Dy
of diagonal matrices in GLy (Fso)-

The modular symbols {& — B} for a, B € P!(Q) are generalized to the classes in
HEM(U(N),Z) of the images in U(N) of the translations by GL4 (F) of the above
standard subset of D.
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4.2 Questions for the General Case

We suspect that our results in Sects. 2 and 3 are special cases of a relationship
Modular symbols for GL; modulo the Eisenstein ideal <= Iwasawa theory for GL,;—;

that holds for d > 2. In this subsection, we describe what we expect to be true.
4.2.1. We lay out some basic objects, starting with:

e A prime number p # char F,

* A nonzero ideal N of O that is coprime to p,

¢ A commutative pro-p ring R and its total ring of quotients Q (R),

e A profinite R-module 7 with a continuous R-linear action of G that is
unramified at every finite place not dividing Np,

Recalling from 4.1.8 the Hecke algebra T(¥)(N) and modular symbols §(¢)(N), we
define

Tg = 1(@ (RQTD(Np")) and 8y = lim (R ® SD(Np"Y).

T r

We shall often use the fact that (p) = O in case (iii). For instance, in this case
Np" = N, so we have quite simply that Ty = RQ T (N) and Sx = RS (N).

We also let T (Np”)’ be the subring of T@)(Np") generated by the T'(n) with
n coprime to (p). Note that T (Np") = T@(N) in case (iii) and TV (Np")’ =
TM(Np”) in all cases.

4.2.2. We place some conditions on the pair (R, T):

(1) The Q(R)-module V = Q(R) ®g T is free of rank d — 1.

(2) For every prime ideal p of O that does not divide Np, the characteristic
polynomial P,(u) = detg(r)(1 — Fr;lu | V) of an arithmetic Frobenius Fr,
lies in RJu].

For a prime ideal p of O that does not divide Np, we define a(p") forn > 0 by

oo

Pyw)™' = a(p")u" € R[u].

n=0
We then suppose:

(3) There exists a ring homomorphism

¢r:lim (Z, ® T"V(Np")) — R

r
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that sends 7' (p*) to a(p¥) for all prime ideals p of O not dividing Np and all
k>1.

We extend a to a function on all nonzero ideals n of O by setting a(n) = ¢r (T (n))
if nis coprime to p and a(n) = 0 otherwise. In the case d = 2, our definition forces
a(n) = 0 for any n not coprime to Np, while in general, these values of a may not
be uniquely determined by T, so ¢ should be considered as part of the data.

4.2.3. We define the Eisenstein ideal I7 of Ty to be the ideal of the GL;-Hecke
algebra Ty generated by the elements

T(m)— Y a@N©)

?ln

for the nonzero ideals n of O. Note that /7 depends only on V and the choice of ¢,
rather than T itself. In case (i), the ideal /7 is generated by the coefficients of the
formal expression

Z Tn)n™ —¢(s) Z a(n)n_(“'_l).
n=1

n=1
(n,p)=1

4.2.4. For any compact R[Gr]-module M that is unramified outside of S U {oo}
for some finite set S of finite places of F' including those dividing p, we denote more
simply by Hézt((‘)[%], M) the R-module Hézt((’)[%], J«M), where j:Spec(O)\ S <
Spec(O[%]) is the inclusion morphism. It is independent of the choice of S. We will

also use a similar notation with O replaced by its integral closure in a finite extension
of F.

4.2.5. Our two objects of study are the R-modules:

e The geometric object P = Sg/Ir8g on the GL,;-side,

¢ The arithmetic object Y = Hézt(O[%], T(d)) on the GL,;_;-side.
We ask a vague question.

Question. Under what conditions does there exist a canonical isomorphism
w: P = Y of R-modules?

We remark that there certainly must be some conditions, as different lattices 7" in
V may have Y that are nonisomorphic. In what follows, we introduce three settings
for further study.

4.2.6. We fix some notation for abelian extensions of F' and their Galois groups.

For r > 0, let H, be the ray class field of F of modulus (p"), and let O, be the
integral closure of O in H,. Let I, = Pic(0O, (p")), which is canonically isomorphic
to Gal(H, / F) by class field theory. Let I" = l(il_nr I,.
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* Incase (i), we have that H, = Q(i,r)", O, = Z[¢,]*, and I = Z5 /{—1).

e In case (ii), the field H, is generated over F by the j-invariant j(E) and
x-coordinates of the p”-torsion points of an elliptic curve E over F(j(E)) with
CM by O. There is an exact sequence

0—(Z, ® O)/ur — I' = Pic(0) — 0.

Note that I"/ [, = Z?,, where [ is the torsion subgroup of I".
¢ In case (iii), we have that H, = H,, O, = Oy, and I' = I, = Pic(0O).

Let [a] € Z,[I"] be the group element corresponding to a € I". We may also
speak of [a] for a an ideal of O coprime to p by taking the sequence of classes of
a in the groups I',. We use ( ) below to denote the (additional) G p-action on a
module over a Z,[I"]-algebra under which an element that restricts to a € I" acts
by multiplication by [a] ™.

4.2.7. We describe setting (Ay) ford > 2.

Let Ro be the valuation ring of a finite extension Ko of Q,. Let Ty be a free
Ro-module of rank d — 1 endowed with a continuous R-linear action of Gr. We
assume that the Gr-action on 7 is unramified at all finite places not dividing Np.
We suppose that condition (3) of 4.2.2 is satisfied for (Ro, 7p), and we use ag(n) to
denote a(n) of 4.2.2 for this pair.

Let R = Ro[I'] and T = R* ®g, To. Then the pair (R, T) satisfies conditions
(1) and (2) of 4.2.2, and we suppose that it satisfies (3). It follows directly that
a(n) = [n]7! ® ap(n) for any nonzero ideal n of O that is coprime to Np. By
definition of 7', we also have an R-module isomorphism

Y = HZ(0[;). T(d)) = lim HZ(0:[3]. To(d)).

T

In that the Gp-stable Ry-lattice Tp has not been chosen with any special
properties inside V) = Ko ®g, 7o, we consider an additional condition.

(4) The Gp-representation ko ®g, Ty is irreducible over the residue field k¢ of K.

It follows from (4) that the isomorphism class of Tj as an Ry[G r]-module depends
only on the Ky-representation V;, of Gr. That is, all Gp-stable Ry-lattices in 1}
have the same isomorphism class. Hence, the isomorphism class of the R-module
Y depends only on V4,

Finally, to avoid known exceptions in case (i), we consider a primitivity
condition.

(5) The map ¢r, does not factor through I(Ln z,® TE=D(Mp")') for any ideal
M of O properly containing N.

4.2.8. We may now ask our question for setting (A,;) under conditions (1)—(5).

Question. Does there exist a canonical isomorphism w: P = Y of R-modules?
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We are also interested in what happens if conditions (4) and (5) are removed. For
instance, we wonder if (5) might be removed for good choices of N, p, and d, or
if (4) might be removed in the presence of a good, canonical lattice 7. In any case,
we can ask the following question.

Question. If we do not suppose conditions (4) and (5), does there still exist a
canonical isomorphism wg,:Q, ®z, P = Q, ®z, ¥?

4.2.9. The p-adic Galois representations Vj attached to the following objects of
modulus or level Np” for some r > 0 all have (Ry, Tp) and (R, T') satisfying (1)—

3):

e Incase (i) for d = 2, an even Dirichlet character,

* In case (i) for d = 3, a holomorphic cupsidal eigenform,

e Incase (ii) for d = 2, an algebraic Hecke character on A%,

¢ In case (iii) for d > 2, a cuspidal eigenform of GL,_; that is special at co.

The examples for d = 2 obviously satisfy (4), and in the remaining cases, (4) may
be assumed. By taking each of the objects to be primitive, we may assume (5).

4.2.10. We explain how the setting (A,) for F = Q and FF,(¢) was studied in
Sects. 2 and 3.

Let 0 be a primitive character of Pic(O, Np), and impose all the assumptions on
p. N, and 0 of Sects.2 and 3. Take Ry = Z,[0], and let Ty = Z,[6] with G acting
through 6!, Let A = Pic(O, (p)), which we may view as a subgroup of I". For the
objects Py and Yy of Sect. 2 in case (i) and of Sect. 3 in case (iii), we claim that

Py =17, ®7z,(4] P and Yy =27, ®z,[4] Y,

with P and Y as in 4.2.5. This claim is immediate for IF,(¢) as A is trivial, and it is
not hard to see for Y in case (i). However, the claim for P is not evident in case (i),
SO we prove it.

Proof of the claim. Note that R = Z,[0][I'] and T = Z,[6][I"]*, and note that

Tr = Tg) of this section is T[A][I"], where T is as in 2.2.1. The claim for P
follows if we can show that the map 7'(n) + T'(n) on Hecke operators induces an
isomorphism

To/lo = Zp ®z,14) (Tr/I7),

where [ is the Eisenstein ideal of 2.2.1.

For a prime £ not dividing Np, the action of FI‘ZI on V is multiplication by
6(£)[€]~", from which it follows that a(¢¥) = 0(£)*[¢]~F if £ } Np. On the other
hand, condition (3) forces a(£¥) = 0 for all k > 1 for primes £ dividing Np.
The algebra T contains diamond operators (@) for a € I'. This follows from the
identity (£) = £~1(T(£)> — T (¢?)) for £  Np, which also allows us to compute that
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(€) = 6(€)[£]~" mod I7. Thus, I is generated by T'(£)—1—£(£) and (£)—6 (£)[£] !
for primes £ + Np and T'(¢) — 1 for primes £ | Np.

Noting that the image in Tg/I7 of every group element is also the image of an
element of T[0], we now see that the map 7' (n) + T (n) induces an isomorphism
(T/1)[0] = Tr/Ir of Z[A]-modules, where a € A acts by 6(a){a)™" on the left
and 6(a){(a)~! = [a] mod Ir on the right. The induced map on A-coinvariants is
the desired isomorphism. O

4.2.11. Insetting (Az), we have considered Galois cohomology groups of families
of (d — 1)-dimensional Galois representations in the variables given by Iwasawa
theory. In case (i) of (A), for instance, V is a family of Galois representations in the
cyclotomic variable. Of course, there are other families of Galois representations,
such as Hida families, and we would like to consider them. Therefore, we
introduce two additional settings (B3) and (C;) of study. We do not exclude any
representations that are new at N from our families. Perhaps we should, but we
prefer a simpler presentation.

4.2.12. We describe setting (B3), in which we work in case (i) for d = 3.

Let h and T be as in Sect. 2.4, and consider the pair (h°, T°(—1)), where o denotes
the new-at-N part. Condition (1) holds for this pair (see 2.4.2). As a consequence
of Poincaré duality, the ordinary étale homology group T may be identified with
the Tate twist of the ordinary étale cohomology group as h[Gr]-modules. The
characteristic polynomials of Fr, and T'({) € b agree on the cohomology T(—1)
for any prime £ # p. Thus, condition (2) is satisfied as well, and the map ¢go 1)
may be taken to be the identity map on Hecke operators.

Similarly to setting (A,), we consider R = h°[I'] and T = h[I']* ®, T°(—1).
The conditions (1)—(3) are again satisfied for (R, T'), and we see that we have ¢r as
in (3) such that a(n) = T (n)[n]~! for n prime to p. The Eisenstein ideal I7 of Tg
is then generated by

1®T(m)— > mT(m)m™' ®1 € lim b7 Q T (Np")

min
(m.p)=1

for all n > 1. Note also that we have an R-module isomorphism

Y = Hy(ZI[5). T() = lim Hy(Z[Eyr, 517, T°(2).
r
4.2.13. We describe setting (C,), in which we work in case (iii) for d > 2.
Let us denote by Y, l(d_l) (N) the Drinfeld modular variety of dimension d — 2 for
IE'fd_l)(N) over F. We define T by
. — d— o — d— o
T = image(H (V""" (N) 7. 2,)° — HE2Y " (N) 5. 2,)°).

c,ét
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where o denotes the new part (in an appropriate sense). We then let R be the Z,-
submodule of Endz,, (T) generated by the Hecke operators 7'(n) for nonzero ideals
nof 0.

We imagine but, for d > 4, are not certain that conditions (1)—(3) hold in this
case and that we have ¢ such that a(n) = T'(n) for all n. In any case, we may
define the Eisenstein ideal /7 of Ty to be generated by

1®T(n)— Zm(a)T(a) ®1eR®TYDN),

on

for the nonzero ideals n of O. This Eisenstein ideal is all that we need to consider
our question.

4.2.14. Our question for (B3) and (Cy) is the same as it was for (Ay;), so we can
ask it for all:

Question. s there a canonical isomorphism @w: P = Y of R-modules in any of
the settings (Ay), (B3), or (C;)?

This question, which has been formulated rather carelessly, is still not fine
enough to be a conjecture. We have more questions than answers: for instance,
are the hypotheses that we have made sufficient, and to what extent are they
necessary? What happens for the prime p = 2?7 We do not wish to exclude it
from consideration. We have made many subtle choices that influence the story
in profound yet inapparent ways: e.g., of congruence subgroups, Hecke algebras,
Eisenstein ideals, and étale cohomology groups. Have we made the right choices for
a correspondence? We are glad if the reader is inspired to answer these questions.

4.2.15. We end with our hope that it is possible to explicitly define the maps @
that are the desired isomorphisms in the settings (Ay), (B3), and (Cy).

The groups S(N) often have explicit presentations very similar to those of
Sect. 2.1. These are found in the work of Cremona (1984), Ash (1980), Kondo and
Yasuda (2012), and others. So, explicit definitions of @ and affirmative answers to
our questions would give explicit presentations of the arithmetic object Y.

The map @ should take a modular symbol to a cup product of d special units. As
explained above, this has been done in cases (i) and (iii) for d = 2. Beyond these,
the settings in which we hope to do this are:

* (A)in case (ii), using cup products of two elliptic units,
* (B3) using cup products of three Siegel units,
* (Cy) using cup products of d of the Siegel units in (Kondo and Yasuda 2012).

Goncharov has made closely related investigations into the first two of these settings
(Goncharov 2008).

Acknowledgements The work of the first two authors (resp., third author) was supported in part
by the National Science Foundation under Grant Nos. DMS-1001729 (resp., DMS-0901526).
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Weber’s Class Number One Problem

Takashi Fukuda, Keiichi Komatsu, and Takayuki Morisawa

1 Weber’s Class Number One Problem

Two hundred years ago, Gauss made the following conjecture.

Conjecture 1. There are infinitely many real quadratic fields with class number
one.

This conjecture is still open not only for quadratic fields but also for algebraic
number fields with arbitrary finite degree over Q.

Conjecture 2. There are infinitely many algebraic number fields with class number
one.

To study this problem, we focus our attention on the cyclotomic Z ,-extension of the
rational number field Q.

Let p be a prime number. We denote by B(p°°) and B(p") the cyclotomic Z,-
extension of Q and its n-th layer, respectively. Then, for example, we know that
B(2") = Q(cos(27/2"*?)) and B(3") = Q(cos(27/3"*!)). We denote by h(p")
the class number of B(p"). Now, we consider the following problem.
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Problem 1 (Weber’s Class Number Problem). Is the class number /(p") equal
to one for any positive integer n?

Weber proved that 2(2') = h(2?) = h(2®) = 1. Later, it was shown that
h(2*) = 1 by Bauer (1969), Cohn (1960) and Masley (1978) and h(2°) = 1
by van der Linden (1982). In Masley (1978) and van der Linden (1982), we
know that 2(3') = h(3%) = h(3%) = h(5') = h(7') = 1. Linden also showed that
h(2%) = h(3*) = h(5?) = h(11') = h(13") = 1 under the generalized Riemann
hypothesis.

However, it is very hard to compute the whole class number. So we focus on the
£-indivisibility of h(p").

Problem 2. Is the class number /(p") coprime to a prime number ¢ for any
non-negative integer n?

In the case £ = p, it was shown that p does not divide #(p") by Weber (1886)
(p = 2) and Iwasawa (1956) (in general). Thus, we study the non- p-part of h(p").
In this case, that is, £ # p, there is Washington’s result (Washington 1978) which
says that the £-part of 4(p") is bounded as n tends to co. However, we can not get
any information on indivisibility from it. On the £-indivisibility, there is an approach
of Horie (2002, 2005a,b, 2007) and Horie-Horie (2008; 2009a; 2009b; 2010) which
tries to attack #(p") by using the cyclotomic units. The following theorem is a part
of their results.

Theorem 1 (Horie, Horie-Horie).

(1) Let p = 2. If a prime number { satisfies £ #% +1 (mod 8), then h(2") is
coprime to £ for any non-negative integer n.

(2) Let p be a prime number with 3 < p < 23. If a prime number { is a primitive
root modulo p?, then h(p") is coprime to £ for any non-negative integer n.

Although these results were very striking and very effective, there were many
small prime numbers p and £ for which we did not know whether £ divides h(p")
or not. For example, it was not known whether £ divides #(2") for £ = 7, 17, 23,
31, .... In order to consider the £-indivisibility of (p") for such prime numbers p
and ¢, we showed the following theorem.

Theorem 2. (1) Let p = 2, £ an odd prime number and 2° the exact power of 2
dividing £ — 1 or £*> — 1 according as £ = 1 (mod 4) or not. Put

m@2,0) = 2s + Blogz(z - 1)J —2,

where | x| is the greatest integer not exceeding a real number x. If £ does not
divide h(2"?9), then h(2") is coprime to £ for any non-negative integer n.

(2) Let p = 3, { a prime number different from 3 and 3° the exact power of 3
dividing > — 1. Put
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1 1
mG.0 =25+ | Slogs(C =1+ 5| 1.

If £ does not divide h(3"39), then h(3") is coprime to £ for any non-negative
integer n.

We prove the above theorem by using the method of Sinnott and Washington
(see Washington 1997, section 16) and the Iwasawa main conjecture proved by
Mazur-Wiles (1984). Theorem 2, together with numerical calculations based on
Fukuda and Komatsu (2009) and Morisawa (2009), allows us to obtain the following
theorem.

Theorem 3 (see Fukuda and Komatsu 2009, 2010, 2011 and Morisawa 2009,
2012). If L is a prime number with £ < 10°, then h(2") and h(3") are coprime to {
for any non-negative integer n.

We also know the following theorem.

Theorem 4 (see Morisawa 2012, Morisawa and Okazaki 2013, and Okazaki
preprint). Let p and { be different prime numbers. We denote by f the inertia
degree at € in Q(u2p) over Q, where [y, is the group of all m-th roots of unity. Let
p° be the exact power of p dividing £/ — 1 andc = (p — 1) p*~". We put

(A e, ifp=2
¢ 1/f
Bpos. /)= (¥VZe) T irp=3

() )" o5

where A is the constant defined by A = 0.80785---. Then h(p") is coprime to £ for
any non-negative integer n, if £ > B(p, s, ).

By combining Theorems 3 and 4, we get the following corollary.

Corollary 1. (1) If £ is a prime number with £ % £1 (mod 32), then h(2") is
coprime to £ for any non-negative integer n.

) If L is a prime number with £ # £1 (mod 27), then h(3") is coprime to £ for
any non-negative integer n.

2 Composites of Z ,-Extensions of Q

In Ehis section, we consider the class number of the intermediate field in
theZ-extension of Q.

We denote by B(co) the composite of B(p) for all prime numbers p. Then the
Galois group of B(oco) over Q is isomorphic to Z as a topological group. For any
positive integer N € N, we denote by B(V) and /() the unique subfield of B(c0)
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with degree N over Q and its class number, respectively. On this extension, Coates
(2012) conjectured the following.

Conjecture 3. There exists anumber Cq not depending on N, such thati(N) < Cq
forall N e N.

In this direction, Coates-Liang-Mihailescu verified that A(N) = 1 for1 < N <
28 (see Coates 2012). .

Originally, we wanted to attack the above conjecture. However, the Z-extension
is too large to study. Therefore we restrict to the case of Z 5 -extensions.

Let X be a non-empty finite set of prime numbers. Put Zy = [] rex Lp and

Ny = Hp”ﬂ n, €Zs
peEXY

Then the family {B(N) | N € Ny} is the family of all intermediate fields of Zx-
extension of Q with finite degree over Q. We consider the following problem.

Problem 3. Let ¥ be a non-empty finite set of prime numbers and ¢ a prime
number. Is the class number i (N) coprime to £ for all N € Ny or not?

Let 25 = Q(uny | N € Ny) and denote by £25(£) the decomposition field of a
prime number £ in £25x over Q. For an intermediate field F of 25 with finite degree
over Q, we denote by cond(F') the conductor of F and put d = ¢(cond(F)) and
f =d[F : Q]”! where ¢ is the Euler function and [F : Q] is the degree of F over
Q. We also put

D(X,F) ={{ :prime number ¢ ¥ | 25x({) = F}

and
d 1/f
Bx.F)y=||]]2r] -a
peEXY

Then, on the £-indivisibility, we have the following theorem.

Theorem 5 (see Morisawa 2013). If a prime number £ € D(X, F) satisfies { >
B(X, F), then h(N) is coprime to £ for all N € Ny.

The above theorem says that the class numbers are coprime to £ if £ is sufficiently
large in comparison with the conductor of its decomposition field in 2.

Example 1. Put ¥ = {3,5} and F = Q(~/—15). Then we have cond(F) = 15,
d = 8and f = 4. We obtain

B({3,5}, Q(~/—15)) = 51,013.2075 - .
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For example, £ = 51197, 51,203, 51,287, 51,347 and 51,383 are prime numbers and
their decomposition field is Q(+/—15). Therefore, Theorem 5 implies that /(3"5™)
is coprime to £ for all n and m.

On the other hand, there are small prime divisors of #(N). The following prime
divisors are all we know.

Theorem 6. (1) We have 31 | h(2 - 31), 1,546,463 | h(2 - 1,546(,)463), 73 |
h(3-73), 18,433 | h(2% - 18,433), 114,689 | h(2'° - 114,689), 73 | h(3 - 73),
487 | h(3* - 487), 238,627 | h(3*-238,627) and 2,251 | h(5% - 2,251).

(2) We have 107 | h(2 - 53).

The case (1) is a consequence of Proposition 2 in Inatomi (1986) and the case (2)
was found by using Theorem 2 in Aoki and Fukuda (2006).

Acknowledgements The authors thank the organizers of Iwasawa 2012 for giving us the
opportunity to talk. The authors also thank the referee for reading this paper carefully and offering
several invaluable suggestions.
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On p-Adic Artin L-Functions II

Ralph Greenberg

1 Introduction

Let p be a prime. Iwasawa’s famous conjecture relating Kubota-Leopoldt p-adic
L-functions to the structure of certain Galois groups has been proven by Mazur and
Wiles in Mazur and Wiles (1984). Wiles later proved a far-reaching generalization
involving p-adic L-functions for Hecke characters of finite order for a totally real
number field in Wiles (1990). As we discussed in Greenberg (1983), an analogue
of Iwasawa’s conjecture for p-adic Artin L-functions can then be deduced. The
formulation again involves certain Galois groups. However, one can reformulate
this result in terms of Selmer groups for the Artin representations. There are several
advantages to such a reformulation. First of all, it fits perfectly into the much broader
framework described in Greenberg (1989) which relates the p-adic L-function for
a motive to the corresponding Selmer group. The crucial assumption in Greenberg
(1989) that the motive be ordinary at p (or at least potentially ordinary) is satisfied
by an Artin motive and all of its Tate twists.

A second advantage of a reformulation involving Selmer groups is that the issue
of how to define the p-invariant becomes resolved in a natural and transparent way.
Thirdly, the arguments in Greenberg (1983) can be simplified. In particular, there is
no need for singling out the class of Artin representations which are called type S in
Greenberg (1983). The purpose of this paper is to explain these advantages.

Suppose that F' is a totally real number field. Consider an Artin representation

p: Gr — Aute (V)
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where G is the absolute Galois group of F' and V is a finite dimensional vector
space over a finite extension & of Q,. We will assume that p is totally even. This
means that p factors through A = Gal(K/F), where K is a finite extension of F
which is also totally real. Let O be the ring of integers of €. Let T be an O-lattice in
V which is G g-invariant. Furthermore, let D = V/ T, a discrete O-module.

Let Foo denote the cyclotomic Z,-extension of F'. The Selmer group associated
to D over F is defined by

Selp (Fao) = ker(Hl(Foo,D) —T1 HI(FOO,,,,D)) .
ntp

Here n runs over all the primes of F except for the finitely many primes lying
over p. The Archimedean primes are included in the product, although this is only
important when p = 2. One defines the field Fu, ;, to be the union of the n-adic
completions of the finite extensions of F contained in Fi.

To relate the above definition to the way Selmer groups are defined in Greenberg
(1989), note that if p is a totally even Artin representation of Gy over C, then the
Artin L-function L(s, p) does not have a critical value at s = 1 in the sense of
Deligne. However, its value at s = 1 — n is critical in that sense when n is even and
positive. One can write

where p(n) is the n-th Tate twist. The underlying representation space for p(n) over
EisV(n) =V ® x}, where xr : Gr — Z;‘ is the p-power cyclotomic character.
In the notation of Greenberg (1989), we have F™V(n) = V(n) when n > 1. (This
is so for all the primes above p.) Let T(n) = T ® x" and D(n) = V(n)/ T (n).
The corresponding Selmer group Selp()(Foo), as it is defined in Greenberg (1989),
is just as above, but with D(n) replacing D. Let d = [F(u,) : F], whereq = p
when p is odd and ¢ = 4 when p = 2. If we take n = 0 (mod d), then D(n) = D
for the action of G, . Thus, the two Selmer groups are then the same, although the
action of Gal(F/ F') on those groups is somewhat different. (See Remark 6.)

Since Selp(Foo) is a discrete O-module and 'y = Gal(F/F) acts naturally
and continuously on it, we can regard Selp (Fwo) as a discrete Ao, r)-module, where
Ao,ry = O[[I'F]]. It is not difficult to show that the Pontryagin dual X p(Fu) of
Selp(Fo) is a finitely generated, torsion Ao r)-module. (See Proposition 1) We
denote the characteristic ideal of that Ao r)-module by /. It is a principal ideal in
the ring Ao, F). As the notation suggests, this ideal depends only on p, and not on
the choice of the Galois-invariant O-lattice T', as we show in Proposition 2.

Another discrete Ao ry-module to be considered is H°(Foo, D). Its Pontryagin
dual Yp (Fs) is clearly a finitely-generated O-module and hence a torsion Ao, r)-
module. Let J, denote the characteristic ideal of Yp (Fwo). This ideal is nontrivial if
and only if p has at least one irreducible constituent which factors through I'r.
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The p-adic L-function associated to p will be denoted by L,(s,p). It is
characterized by a certain interpolation property. In case p is 1-dimensional, these
functions have been constructed by Deligne and Ribet (1980), by Cassou-Nogues
(1979), and by Barsky (1977-1978). (See also Ribet (1979).) One can then define
L, (s, p) if p has arbitrary dimension by using a classical theorem of Brauer from
group theory.

One can associate to L , (s, p) a certain element 6, in the fraction field of Ao r).
For an odd prime p, the Main Conjecture is the assertion that the fractional ideals
Ao,F)0, and IpJp_1 are the same. This is proved in Sect.4 as a consequence of
theorems of Wiles proved in Wiles (1990). For p = 2, there is an extra power of 2
in the formulation, but this case appears to still be open.

2 Basic Results Concerning the Selmer Group

We will prove several useful propositions. We continue to make the same
assumptions as in the introduction. In particular, F' is a totally real number field
and p is a totally even Artin representation of G defined over a field &, a finite
extension of Q,. The ring of integers in € is denoted by O. Let m be the maximal
ideal of O.

We will use the traditional terminology for modules over a topological ring A.
If S is a discrete A-module, and X is its Pontryagin dual, then we say that S is
a cofinitely-generated A-module if X is finitely-generated. If X is a torsion A-
module, we say that S is cotorsion.

Suppose that V, T, and D = V//T are as in the introduction. Let d = dimg (V).
As an O-module, we have D = (£/0)?. The Selmer group Selp (Fyo) is a discrete
A(O,F)-module.

Proposition 1. The Ao ry-module Sp(Fs) is cofinitely-generated and cotorsion.

Proof. Suppose that p factor through Gal(K/F), where K is a totally real, finite
Galois extension of F. Let A = Gal(Koo/ Fxo) and let M, be the maximal abelian
pro- p extension of K, which is unramified at the primes of K, not lying over p
(including the Archimedean primes). One can consider X (K«) = Gal(Mso/Ko)
as a module over Az, k) = Z,[[I'k]]. A well-known theorem of Iwasawa asserts
that X (Koo) is finitely-generated and torsion as a Az, k)-module. The fact that it is
torsion is equivalent to the fact that the so-called weak Leopoldt conjecture is valid
for Koo/ K.

We have H'(Ko, D) = D. Also, H'(A, D) is finite. Hence the restriction map

H'(Fs,D) — H'(Koo. D)* (D)

has finite kernel. We can identify I'y with Gal(Foo/K N Foo), a subgroup of ['r.
The map (1) is then I'g-equivariant. Now H (Koo, D) = Hom(Gal(K% /K ), D),
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where K¢ is the maximal abelian extension of K. Since the inertia subgroups of
Gal(K% /K o) for all primes n + p generate Gal(K% /My, it is clear that the
image of Selp (Fs) under the map (1) is contained in Hom(X(K), D), which is
a cofinitely-generated, cotorsion Az, k)-module according to Iwasawa’s theorem.
Since (1) has finite kernel, it follows that Selp(Fo) is cofinitely-generated and
cotorsion as a Az, x)-module, and therefore as a Ao r)-module. O

Remark 1. With the notation of the above proof, the cokernel of the map (1) is also
finite. This follows from the fact that H2(A, D) is finite. Assume that the order
of im(p) is not divisible by p. We can then assume that p } |A|. In particular,
K N Foo = F. Hence the map I'x — [F is an isomorphism. We then have
Gal(Kwo/ F) = A x I'r. Furthermore, (1) is an isomorphism. The induced map

Selp (Fso) —> Homy(X(Koso), D) )

is also easily verified to be an isomorphism. In addition to assuming p } |A|, assume
that p is absolutely irreducible. Let e,, be the idempotent for p in O[A]. Then

Homy(X(Kso). D) = Homgpa)(X(Koo) ®,, 0, D)

=~ Homgjy (er(Koo) ®y, O, D) .

Thus, the A(o,r)-modules Xp(Fo) and e, X (Koo) ®z, O are closely related. In
fact, the characteristic ideal of the second module is / ,;”.

Remark 2. Suppose that X is any Ao r)-module and that I is the character-
istic ideal of X. Let m be a generator of m, the maximal ideal of O. The
p-invariant of X will be denoted by wr(X). It is the integer u characterized by
I C 7*Awor), I € 7" A©.r). A conjecture of Iwasawa (at least for odd
primes p) asserts that the p-invariant of the Ao x)-module X should vanish.
This should be true even for p = 2. If this is so, then the proof of Proposition 1
would show that i r (X p(Feo)) also vanishes.

It will be useful to have an alternative definition of Selp (F). Let X' be a finite
set of primes of F' containing the Archimedean primes, the primes lying over p, and
the ramified primes for p. For each v € X, define

3, (Foo, D) = lim P H'(Fuv.D)

n vy

where, for each n, v runs over the primes of F), lying over v. The maps defining the
direct limit are induced by the local restriction maps. If v is a finite prime, then

H}(Foo, D) = @D H'(Foo, D)

vy
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where v runs over the finite set of primes of Fy, lying over v. The p-cohomological
dimension of Gr, is 1, and so H*(Fuo,,, D[rr]) = 0. It follows that H ! (Feo.,, D)
is O-divisible. Now assume that v } p. Then, according to proposition 2 in
Greenberg (1989), the O-corank of H 1(Foo,v, D) is finite. It therefore follows that
the Pontryagin dual of ! (Foo, D) is a torsion-free O-module of finite rank. Hence
it is a free O-module. It is also a Ao, r)-module. Since its O-rank is finite, it must
be a torsion Ao, ry-module whose jt-invariant vanishes.

If p is odd and v is an Archimedean prime, then J—C&,(Foo, D) = 0. However, if
p = 2, then fJ-Ci (Foo, D) is nontrivial. More precisely, since all the F,,’s are totally
real, and p is totally even (so that G,  acts trivially on D), we have

H'(F,,.D) = H'(R, D) = D[2] = (9/20)¢

if v is Archimedean. One sees that f]-fi (Fso, D) is a direct limit of modules
isomorphic to (0/20)[Gal(F,/F)]?. The Pontryagin dual of H!(Fu, D) is
isomorphic to (A(o,p)/ZA(o,F))d as a Ao,r)-module. It is a torsion Ao r)-
module, but its y-invariant is positive and is determined by d = dimg (V).
One can similarly define H?(Fx, D) as a direct limit by replacing the H!’s by
H?’s. However, for any finite prime v, the p-cohomological dimension of G Foos
1 and so H?(Fs, D) vanishes. This is also true if v|oo because H?(R, D) = 0.
The following definition is equivalent to the one given in the introduction:

SelD(Foo):ker<H1(F;/Foo,D)—> I1 :}Q(FOO,D)). 3)
vEX vip

To verify the equivalence, we first point out that if v is a non-Archimedean prime of
Fandv } p,andif v is a prime of F lying over v, then Fu , is the unramified Z ,-
extension of F,. It follows that the restriction map H'(Foo,,, D) — H'(F", D) is
injective. Here F!"" is the maximal unramified extension of F, and contains Fi .
Therefore, requiring a cocycle class to be trivial in H'(Fs,,, D) is equivalent to
requiring it to be trivial in H!(F"'", D).

Suppose now that ¢ is a 1-cocycle for G, with values in D. Note that we have
H'(Fx, D) = Hom(GF,, D). Also, G, is generated topologically by the inertia
subgroups [, of G for all primes 7 of Fy lying over some v ¢ X. Thus, the class
[¢] in H'(Foo, D) has a trivial restriction to all those 7,’s if and only if [¢] is in

ker(H'(Fo, D) - H'(Fsg, D)) = im(H'(Fs/Fo, D) - H'(Fs, D)) .

Thus, the cocycle classes in H Y(Fs / F, D) can be identified under the inflation
map with the cocyle classes in H'(Fs,, D) which are unramified at all primes of
Fo not lying over primes in Y. The equivalence of (3) and the earlier definition
follows.

It will also be useful to point out that the global-to-local map in (3) is surjective.
This follows from proposition 2.1 in Greenberg and Vatsal (2000). It is only proved
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there for F = Q and odd p, but the argument works if F is totally real and for
any p. One assumption is that Selp (F) is Ao, p-cotorsion, which is satisfied by
Proposition 1 above. The other assumption is that H(F, D*) is finite. Here D* =
Hom(T, 1 p00) and the finiteness is clear since Fu is totally real and H (R, jpoo)
is finite (and even trivial if p is odd).

Let 7’ be another G g-invariant O-lattice in V. Let D’ = V/T'. We consider
Xp(Foo) and X p/(Foo) as Ao, r)-modules.

Proposition 2. The Ao ry-modules X p(Foo) and X p/(Foo) have the same char-
acteristic ideal.

Proof. As above, let = be a generator of the maximal ideal of O. Scaling by a
power of 7, we may assume that 7 C T’'. We then have a G-equivariant map
¢ : D — D’ with finite kernel. Such a map ¢ is called a G p-isogeny. It is surjective.
Let @ = ker(p). Then ® C DJ[r'] for some ¢ > 0. There is also a G p-isogeny
¥ : D" — D such that ¥ o ¢ is the map D — D given by multiplication by n’.

The map ¢ induces a map from Selp (Foo) to Selp/(Fso) Whose kernel is killed
by n’. Similarly, ¥ induces such a map from Selp/(Fx) to Selp(Foo) and the
compositum is multiplication by 7’. It follows that the characteristic ideals I and I’
of Xp(Fx) and X p/(Foo), respectively, are related as follows: I’ = 7 I for some
s € Z. Thus, the proposition is equivalent to showing that the p-invariants for the
two modules are equal, and so s = 0.

Assume first that p is odd. In the definition (3), H! (Fs, D) = 0 when v|oo and
H!(Feo, D) has finite O-corank when v € X, v 4 p. Thus, the p-invariants for the
Pontryagin duals of Selp(Fa) and H'(Fx/F, D) are equal. The same statement
is true for Selp/(Fy) and H!'(Fx/F, D’). And so it suffices to prove that the
Pontryagin duals of H'(Fs/F, D) and H'(Fx/F, D') have the same p-invariants.
This is sufficient even for p = 2. This follows because the map (3) and the
corresponding global-to-local map for D’ are both surjective. Furthermore, for any
Archimedean prime v, the -invariants of 3! (Fso, D) and K (Fos, D’) are equal.

Using the notation in the proof of Proposition 1, we have an exact sequence

H'(Fs/Foo,D") —> H'(Fz/Foo, P)
— H'(Fs/Fo, D) — H'(Fs/Fs, D')
—> H*(Fz/Foo,®) —> H*(Fz/Fo, D) .
Now the p-invariant of H O9(Fyx /Foo, D’)  certainly vanishes. Also,
H?*(Fx/Fs, D) = 0. One can verify this for odd p by using propositions 3 and 4
in Greenberg (1989). For H?(Fx/F, D) is A(o,F)-cotorsion by Proposition 3, and

Ao, F)-cofree by Proposition 4. For p = 2, H*(Fx / F, D) is still A(e,r)-cotorsion.
The analogue of Proposition 4 is that

ker(H*(Fz/Foo. D) = [ [ #2(Foo. D))

v|oo
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is A(o,F)-cofree, and hence must vanish. However, since ﬂff(Foo, D) vanishes, it
follows that H2(R, D) = 0. Consequently, we indeed have H*(Fx/Fs, D) = 0.

To complete the proof, we must show that H'(Fyx / Foo, @) and H?(Fx/ Feo, )
have the same p-invariants as Ao, r)-modules. In the statement of the proposition,
we can reduce to the case where @ is killed by 7. Let A(o.r) = Ao.r)/TA©.F).
It then suffices to show that

(HI(FZ/FOO, QD)) = corank/i(oﬂ

corank (Hz(F;/Foo,qﬁ)) .

A©.F)
Here @ is a representation space for G over O/(m) and is totally even. The
Euler-Poincaré characteristic over F, which is the alternating sum of the A (O,F)-
coranks of Hi(Fg/Foo, @) for 0 < i < 2, turns out to be 0. The above equality
follows.

The above assertion about the Euler-Poincaré characteristic for the Gal(Fx / Foo)-
module @ is a consequence of the fact that if F,, denotes the n-th layer in
the Z,-extension Fu/F, then the Euler-Poincaré characteristic for the finite
Gal(Fy/F,)-module @ is equal to 1. (See Neukirch et al. 2000, (8.6.14), page
427.) Considering @ as a vector space over f = O/(x), this means that the
alternating sum of the §-dimensions of H'(Fs/F,,®) for0 <i < 2is equal to 0.
For the argument relating this fact to the above assertion about the /I(o, F)-coranks,
we refer the reader to the proof of Proposition 4.1.1 in Greenberg (2011). The
argument there is for a Galois module E[p] ® « (which is also a f-vector space),
but applies to any such finite Galois module @, the only difference being the values
of the Euler-Poincaré characteristics over the F,,’s as n varies. O

Remark 3. As mentioned in Remark 2, ,u(X D (Foo)) should always vanish. The
above proof would then show that X p(Fs) and X p/(Fs) are pseudo-isomorphic
as A(o,r)-modules. This is also true if M(X D (Foo)) = 1. In contrast, for non-Artin
motives, the p-invariant of the Pontryagin dual of a Selmer group can be nonzero
and can change under isogeny. This phenomenon was first pointed out by Mazur in
Mazur (1972). The exact change in the p-invariant under an isogeny is studied in
Schneider (1987) and Perrin-Riou (1989). In fact, Proposition 2 is just a special case
of the main theorem in Perrin-Riou (1989) when p is an odd prime.

Remark4. If ¢ : D — D’ is a Gp-isogeny and ker(¢)) = D[m’] for some ¢t > 0,
then D =~ D’ as G-modules. This follows because the maximal ideal m of O is a
principal ideal. Any other G r-isogeny will be called nontrivial. Such G r-isogenies
@ exist if and only if 7/xT is reducible as a Gr-representation space over the
residue field O/ (). Now, if p is irreducible over € and im(p) has order prime to p,
then it is well-known that 7/x T is also irreducible. In contrast, if im(p) has order
divisible by p, then T/ T may be reducible even if p is irreducible.

Proposition 3. Suppose that p, and p, are totally even Artin representations
of Gr. Let p = p1 ® po. Then I, = I, 1, and J, = Jp, Jp,.
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Proof. We assume that € is a field of definition for pi, p;, and p. Let V; and V;
be the underlying representations spaces for p; and p, over €, and let V = V| &
V5. Let T1 and T, be Galois invariant O-lattices in V; and V5. Let T = T & T>.
Then D = D; & D,. With this choice of O-lattices, it is clear that Selp (Fo) =
Selp, (Foo) @ Selp, (Foo). The first equality in the proposition follows. We also have
H%(Fy, D) = H(Fs, D) ® H°(Fx. D>), giving the second equality. O

Suppose that F’ is a totally real, finite extension of F and that p’ is a totally
even Artin representation of G /. Thus, p’ factors through Gal(K’/ F’), where K’
is totally real. We can then define p = Indgi ,(p'). Then p is an Artin representation
of G and factors through Gal(K/ F), where K is the Galois closure of K’ over F.
Note that K is totally real, and hence p is also totally even. Furthermore, there is an
injective homomorphism I'r» — I'r. Therefore, we can regard Ao, f/y as a subring
of Ao F). One sees easily that Ao r) is a finite integral extension of A r/) and
that the degree is [I'F : I'r/] = [F’ N Fs : F]. The characteristic ideals I and J
are essentially unchanged by induction. To be precise, we have

Proposition 4. With the above notation, we have 1, = IyAw ) and J, =
Jp/A(o'F).

To simplify notation in the following proof, we will write Indg, (') in place of
Indg: (p"). We will also write ps and p., for the restrictions of p and p’ to Foo and
F/, respectively.

Proof. We consider separately the two cases where F' N Fy, = F and
F’ C Fs. That will suffice because if E = F’' N Fy, then E5oc = Fs and
Indj; (Ind, (o)) = p.

Suppose first that F' N Fo, = F. In this case, we can identify 'z with I'r and
hence Ao rr) with Ao, F). For brevity, let G = Gr,G' = G, and N = Gr,
a normal supgroup of G. Then N N G’ = G, . Now suppose that K is a finite,
totally real Galois extension of F which contains F’ and such that p’ factors through
Gal(K/F’). Then p factors through Gal(K / F). Furthermore, since NG’ = G, we
have [G : G’] =[N : N N G'], and it follows that

ply =1Indg, ("), = Indy e (0In) -

Consequently, poo = Indiz (P)-

Choose the Galois invariant O-lattices for p and p’ so that Ind%,(D’) = D. Here
we can replace G and G’ by N and N N G'. Then H(Fs, D) =~ H°(F/,D’), and
the isomorphism is equivariant for the action of I'r = I's. It follows that J, = J,».

Note that Koo = K Foo contains F. . Let Mo, be defined exactly as in the proof
of Proposition 1. Then, for the reason given in that proof, we have injective maps

Selp(Feo) — H'(Moo/Foo, D), Selp/(Fl) — H' (Meo/FL, D). (4)

The cokernels of these maps are finite. The proof is the same for both maps, and
so we just discuss the first map. If n is any non-Archimedean prime of My, not
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dividing p, let A, denote the corresponding inertia subgroup of Gal(Mo/ Foo).
Note that the image of the first map in (4) consists of 1-cocycle classes which have
a trivial restriction to H'(A,, D) for all those 7’s. It is enough to consider the 4,’s
for n|v, where v is a prime of F, v 4 p, and v is ramified in K/ Fso. Otherwise,
A, is itself trivial. Only finitely many such primes v exist. It suffices to just consider
one 1 for each v.

Since Moo/ Koo is unramified at any n t p, it follows that 4, is isomorphic to
the corresponding inertia subgroup of Gal(K~/ Fo) and hence is finite. Therefore,
the finiteness of the above cokernel follows from the fact that if A is any finite
subgroup of Gal(My/ Fso), then H'(A, D) is finite.

Let U = Gpup,,. Then we can identify Indg{/UU (p') with p, viewed as a
representation of G/U = Gal(Ms,/ F), and also of the subgroup Gal(Mso/ Foo)-
According to Shapiro’s Lemma, we then have a canonical isomorphism

H'(Moo/ Foo, D) —> H'(Moo/Fl,. D') (5)

The map is I'r-equivariant and so the isomorphism is as discrete Ao, r)-modules.
Their Pontryagin duals are isomorphic as Ao r)-modules. It follows that the
Pontryagin duals of Selp (Fxo) and Selps (F.,) are pseudo-isomorphic and therefore
that I, = I/, as stated. We remark in passing that, with a little more care, one can
verify that (5) actually defines an isomorphism of Selp (Foo) to Selp/ (FL).

Suppose now that F' C Fe. Then F)) = Fo and '/ is a subgroup of I'r
of finite index ¢. We use the previous notation, but now we have N C G’ C G.
Thus, peo and p., are the restrictions of p and p’ to N, respectively. In this case,
Poo 18 a direct sum of representations obtained from p/, by composing with certain
automorphisms of N. The automorphism are just the restriction of certain inner
automorphisms of G, namely the inner automorphisms defined by some set of coset
representatives gi,. .., g; for G’ in G. We take g to be the identity. Denote these
representations of G’ by pf. ..., p,. (They are not necessarily distinct.) Define the
corresponding discrete G’-modules D1, ..., D] obtained from D’ by composing
with the above specified automorphisms of N. We have D| = D’. For each i,
1 < i < t, conjugating by g; also defines an isomorphism of H'(N, D’) to
H l(N, D{). Since I'r is commutative, this isomorphism is ['rs-equivariant. Also,
the isomorphism induces an isomorphism of Selp/(F) to Sel D;(Foo). Thus, the
SelDl_/(Foo)’s are all isomorphic to Selp/ (Fo) as Ao, r7)-modules.

As a Gr,,-module, D = @;<;<,D;. Furthermore, D] = g;(D’). Thus,

Selp(Foo) = @ Selp/(Foo)
1<i<t !

as I'rs-modules and the action of I'F permutes the summands in the corresponding
way. The same thing is true for the Pontryagin duals. It follows that

Xp(Foo) = Xp/(Foo) ®ny 4y A0.F)

and therefore I, = Iy Ao r) as stated. O
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Propositions 3 and 4 show that it is enough to consider /; and J; where t
is a totally even, absolutely irreducible Artin representation of Gg. For if p is a
totally even Artin representation over F, then Indg (p) is a direct sum of absolutely
irreducible Artin representations which must also be totally even. The field € must
be chosen to be sufficiently large. Both p and all of the absolutely irreducible
constituents of Indg (p) must be realizable over €. The next remark shows that the
choice of € is otherwise not too significant.

Remark 5. Suppose that £ and € are finite extensions of Q,, with rings of integers
O’ and O, respectively. Assume that &’ € €. Let I’ = Z,. Let A’ = O'[[I"]] and
A = O[[I']], and let £ and £ be their fraction fields. Thus, A is the integral closure
of A’ in L. Since A’ is integrally closed in £’, one has A’ = A N L. It follows that
if 1’ is a principal ideal in A’, and I = I’A, then one can recover I’ from I by
I'=InA.

In particular, suppose that p’ is a totally even Artin representation of
Gp over &, and D’ is the corresponding discrete Galois module. Extending
scalars to &, one obtains an Artin representation p over £, and one can take
D = D’ ®¢ O as the corresponding discrete Galois module. One sees easily that
Selp(Fso) = Selp/(Fs) ®o O. The characteristic ideals are related by
I, = IyAw©rF). Hence Iy = I, N Ao ). Similar statements hold for the
ideals J,y and J,,.

Our final result in this section concerns the effect of twisting the Galois
representation p. Suppose that £ is a 1-dimensional Artin representation of Gr
which factors through I'r. We must choose € sufficiently large so that & has values
in €. Thus, £ : I'r — O is a continuous homomorphism. We denote the twist p ® &
simply by p&. The corresponding discrete G p-moduleis D®E = D®pO(£), where
O(&) is the free O-module of rank 1 on which G acts by £. We use a similar notation
below for other discrete and compact O-modules. For brevity, we denote D ® £ by
Dg¢. Of course, as O-modules and Gr_,-modules, we can identify D¢ and D. The
actions of I'r on the corresponding Galois cohomology groups are related by

H'(Fs/Fso,D¢) = H'(Fx/Foo,D)® £

and therefore we have the following [ r-equivariant isomorphism of discrete O-
modules:

Selp, (Foo) 2 Selp(Foo) ® £ . )

Both of these O-modules are Ao, ry-modules and the isomorphism is a A, F)-
module isomorphism.

It follows from (6) that Xp,(Feo) = Xp(Foo) ® £' as A(o.r)-modules.
Furthermore, noting that

H(Fs/F,D¢) = H(Fs/Fso, D) ® £ ,
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it follows that YDE (Foo) = Yp(Foo) @67 as A(o,r)-modules. These isomorphisms
give a simple relationship between /,,, and 7, and between J,, and J,, as we now
discuss.

In general, suppose that I is a commutative pro-p group. Let Ao = O[[I']]. We
have the natural inclusion map ¢ : I' — A*.Let§ : I'r — O be a continuous
homomorphism. Since 0* C A, we obtain a continuous homomorphism & :
I' — AJ. This is the map y +— £(y)y forall y € I'. We can then extend &¢ to a
continuous O-algebra homomorphism twg : A9 — Ap. This is an automorphism
of Aw. The inverse map is twg—1.

Now suppose that I = Z, and that§ : I — O™ is a continuous homomorphism.
Let X be a finitely-generated, torsion Ag-module. For any A € Ay, X[A] denotes
{x € X | Ax = 0}. The characteristic ideal /yx is determined by the invariants @ (X)
and ranko (X [9’]), where 6 varies over the irreducible elements in Ao and ¢ > 1.
We write X;—1 for X ® g1 Tt is easily seen that u(X) = pu(Xe—1). We regard X
and X, g1 as the same O-modules, but with different O-linear actions of I". If y € I,
and x € X = X;-1, we denote the first action by y - x and the second by y --x. Thus,
y --x = £(y)"'y - x. That is, we have (€(y)y)--x = y-x forally € I, x € X.
It follows that fwe(0) - -x = 6 - x forall # € Ap and x € X. In particular, for any
irreducible element 6 € Ay and ¢t > 1, we have

Xei[rwe (01)] = X[6] .

Consequently, we have the following result.

Proposition 5. Let § be a character of finite order of I'r. Then I,¢ = twe(1,,) and
Jpg = l‘Wg(Jp).

Remark 6. In the introduction, we mentioned the Selmer group Selp)(Foo)
associated to the Tate twist D(n) when n > 2 and n = 0 (mod d), where
d = [F(u2p) : F]. Note that y. = « factors through I'r for any such n. The
above discussion shows how the actions of I'r on Selp (Fo) and Sel p(y) (Foo) differ.
In fact, if 6 generates the characteristic ideal of Xp(Foo), then tw,s (6) generates
the characteristic ideal of X p(;)(Foo)-

3 The Definition of p-Adic Artin L-Functions

If F is totally real and p : Gr — GL,4(C) is a totally even Artin representation,
then the corresponding Artin L-function L(z, p) is a meromorphic function on C.
We will let L*(z, p) denote the function given by the same Euler product as L(z, p),
but with the Euler factors for the primes of F' lying above p omitted. A theorem of
Siegel implies that L(1—n, p) € Q(y) forall integersn > 1. Here v is the character
of p and Q() is the field generated by its values. Furthermore, L(1 — n, p) # 0
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when n is even. For our purpose, we will consider the values L*(1 —n, p). They are
also algebraic numbers and are nonzero for even n > 2.

The above L-values behave well under conjugacy in the following sense. If
g € Gal(Q/Q), then ' = g o ¥ is the character of another totally even Artin
representation p’ of Gp. We then have L(1 — n,p’) = g(L(1 — n,p)) for all
n > 1. The Euler factors for primes above p behave similarly, and so we have the
same conjugacy properties for the values L*(1 — n, p). Therefore, if we arbitrarily
choose embeddings of Q into C and into Q p» then the complex algebraic numbers
L*(1—n, p) and the values of 1 can all be regarded as elements of Q »- The character
¥ is then the character of an Artin representation p : Gp — GL4 (61,). Of course,
Y determines p up to equivalence. The values L*(1 — n, p) are also determined by
the Q p-valued character ¥, and do not depend on the choice of embeddings. In fact,
if ¥ has values in a finite extension € of Q,, then the values L*(1 —n, p) forn > 1
are also in &, and are nonzero when 7 is even.

These L-values also behave well under induction. Suppose that F’ is a finite,
totally real extension of F. Suppose that p = Indg/(,o’ ), where p’ is a totally even
Artin representation of G g-. We have L(z, p) = L(z, p’). The same identity is also
true even if we delete the Euler factors for primes above p. Thus,

L*(l —-n, p) = L*(l —-n, p/)

foralln > 1.
The p-adic L-function L ,(s, p) satisfies the following interpolation property:

Lp(l —-n, p) = L*(l —-n, p)

foralln = 0 (mod [F(u,) : F])if pisodd,oralln = 0 (mod 2) if p = 2. Itis
a meromorphic function defined on a certain disc D in ﬁp. The existence of such a
function was proved by Deligne and Ribet when p is of dimension 1. In this case, it
is holomorphic on D, except possibly at s = 1.

Suppose now that p factors through A = Gal(K/ F), where K is a finite, totally
real, Galois extension of F. The existence of L ,(s, p) then follows if p is induced
from a 1-dimensional representation p’ of a subgroup A’ of A. Then p is a so-called
monomial representation. If A’ = Gal(K/F’), then p = Ind%,(p’) and we have
L,(s,p) = L,(s,p"). Thus, L, (s, p) is again holomorphic on D, except possibly at
s = 1.

In general, a theorem of Brauer states that there exist monomial representations
Pls---sPs O1,...,0; of A, wheres,t > 0, such that

p® (@ o)) = & p; )

and so we can define L (s, p) as the quotient [ [{_, L , (s, ,o,-)/ ]_["‘j:l L,(s,0;). The
above interpolation property is indeed satisfied by this function.
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Let ' = T = Gal(Qx/Q). There is a canonical isomorphism
k . I' - 1+ qZ,, where ¢ = p forodd pandgq = 4 for p = 2. It is
defined as the composite map

Gal(Q(1p=)/Q) > Z% — 1+ qZ,

which indeed factors through I". Here y is the p-power cyclotomic character. The
second map is just the projection map for the decomposition Z;‘ =Wx(1+4qZ,),
where W is the group of roots of unity in Q,. For any s € Z,, one can define
k* : I' — 1+ gZ,, which is a continuous group homomorphism. It extends to
a continuous O-algebra homomorphism Ao gy — O which we also denote by
k. Furthermore, for any F, the restriction map I'r — I defines an injective
homomorphism Ao, ry — A(o,q). We identify Ao, F) with its image and define
k' to be the restriction of «* to that subring.

Let £(o,r) denote the fraction field of Ao ). Suppose that 6 € Lo ). Write
0 = aB!, where o, B € A(o.r) and B # 0. The Weierstrass preparation theorem
implies that k3. (8) # 0 for all but finitely many s € Z,. Thus, excluding a finite set
of values of s, one can make the definition 3. (6) = &% ()% (8)~". Furthermore,
one has the following property:
If 0, 6, € L(o,r) and k3 (01) = «5.(82) for infinitely many s € Z,, then 0 = 6,.
One verifies this by writing 6 = a1 87!, 6, = auB5 !, and applying the Weierstrass
preparation theorem to o1 82 — &2 By

One can associate to L, (s, p) a nonzero element 8, of Lo r). It is characterized
as follows:

L,(1—=s5,p) = «p(6,) for all but finitely many s € Z,,. (8)

for all but finitely many s € Z,. If p is 1-dimensional, then Deligne and Ribet’s
construction of L,(1 — s, p) proves the existence of such a 6,. Furthermore, they
show that

J,0, € 2 U A gy,

where J, is the ideal in Ao r) defined in the introduction. Note that J, = Ao r)
unless p factors through I'r. If p is monomial, one can use Proposition 4 to prove
that 6, exists. Then 6, has the integrality property

Jp@p C Z[FiQ]deg(P)A(o’F) 9)

since if p is induced from a 1-dimensional Artin representation p’ of G s, where F’
is a finite extension of F, then [F’ : Q] = [F : Q] deg(p).

If p has arbitrary dimension, then the existence of 8, satisfying (8) follows
from (7). One assumes at first that € is large enough so that all of the monomial
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representations p; and o are realizable over €. The 6,,’s and 6,,’s are nonzero
elements in the fraction fields of various subrings of A(g r). One can then define

s t
0, = Hepi/ []6¢ (10)

With this definition, we can only say that ¢, is an element in the fraction field
of A(o' F)-

The behavior of the values L*(1 — n, p) under conjugacy implies a similar
behavior for the elements 6,. To be precise, suppose that y € Gq,. Let 0" = y(0).
Let o' = y o p. Note that y induces a continuous isomorphism from Ao r) to
A(o,ry. This isomorphism extends to an isomorphism of the fraction fields, which
we also denote by y. We then have 6, = y(6,).

Concerning the choice of O, the above conjugacy property and a straightforward
Galois theory argument show that one can even take O to be the extension of Z,
generated by the values of the character of p. In the next section, we will see that
the integrality property (9) still holds when p is odd.

The above remarks give us the following properties of the 6,’s which are parallel
to the assertions in Propositions 3 and 4.

Proposition 6. With the same notation as in Proposition 3, we have 0, = 0,,0,,.
Proposition 7. With the same notation as in Proposition 4, we have 6, = 0.

We will also need the analogue of Proposition 5. It relies on another property of
the p-adic L-functions constructed by Deligne and Ribet. The interpolation property
for 0, stated before can be expressed as follows:

kp(p) = L*(1—n,p) = L*(1, pxf)

forall n > 2 satisfyingn = 0 (mod p—1)if pisodd (orn = 0 (mod 2) if p = 2).
The underlying € representation space for p«’ is the Tate twist V' (n). However, if &
is a character of I of finite order, and O contains the values of &, then Deligne and
Ribet also show that

KhE©,) = L*(1—n.p§) = L*(Lpkky) = L*(L pk}é).

Furthermore, one has «%.(6,¢) = L*(1, pé«’.). Thus, we have «}£(6,) = k- (0p¢)
for the above values of .

Suppose that ¢ : ['r — O is any continuous homomorphism. Let £ be as above.
Then both ¢ and p& : I'r — O extend to continuous O-algebra homomorphisms
¢ and @& from Ao ) to O. We also have the continuous O-algebra homomorphism
potwe : Awo,ry — O. Such O-algebra homomorphisms are determined uniquely
by their restrictions to I'r. Note that

(potwe)(y) = oEW)y) = (9&)(y).
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Therefore, we also have (¢ o twg)(0) = (p£)(0) for all § € Ao r). Applying this
to @ =k, wheren > 2andn =0 (mod p —1) (orn =2 (mod 2) if p = 2), we
obtain

K (twe(6,)) = (KF o twe)(6,) = K (0p)

for all such n and therefore it follows that twg (8,) = 0,¢.

Proposition 8. If £ is a 1-dimension Artin representations of G which factors
through I'r, then 0, = twe(6,).

4 Relationship of Selmer Groups to p-Adic L-Functions

We can state the relationship quite succinctly in terms of the notation of the
preceding sections. We refer to this statement as the Iwasawa Main Conjecture for
p. As before, we assume that p is realizable over a finite extension £ of Q, with
ring of integers O. Let m(p) = [F : Q]dim(p), which is just the degree of the
representation Indg (p).

IMC(p). Supposethat F is a totally real number field and that p is a totally even
Artin representation of Gp. Then I, = Jp9p2_m(p).

Note that /, is an ideal in Ao, F) by definition, but the assertion that J, p9p2_”’(p) is
an ideal in that ring, and not just a “fractional ideal”, is not at all clear from the
definitions.

It is interesting to note that when p = 2, one can omit the extra power of 2
appearing in the formulation of IMC(p) by merely omitting the local conditions
at the Archimedean primes in the definition of the Selmer group. That is, one can
define a larger Selmer group

Selfy(Foo) = ker(H'(Foo, D) — [] H'(Fooy. D)) .
ntp.00

It turns out that the characteristic ideal of the Pontryagin dual of the quotient
group Sel’,(Fuo)/Selp(Foo) is precisely 2™ Ao p). One sees this by using
the surjectivity of the map (3) together with the structure of H!(F, D) for
Archimedean v as described in Sect.2. If Ij denotes the characteristic ideal of
the Pontryagin dual of Sel#D (Fso), then IMC(p) is equivalent to the assertion that
1 ,f = J,0,.

We also consider a weaker form of IMC(p). It amounts to the above equality up
to multiplication by a power of a uniformizing parameter 7 of O. We will denote
the ring Ao, r)[ 2] by Al - Itis a subring of the fraction field Lo, ) of A(o,F).

IMC(p)*. We have IPATO,F) = JprAZ"O’F).
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The main purpose of this section is to point out that the results proved by Wiles
in Wiles (1990) are sufficient to prove IMC(p) for all p > 3. Let

A(p) = Ip_ljp@pz_m(p)

which is a principal fractional ideal of Ao r),i.e., anonzero free Ao, r)-submodule
of the fraction field £ o, r). Such fractional ideals form a group.

If / is a nonzero principal ideal of Ao, ), and 0 is a generator of /, then we will
refer to ;u(Ao,r)/ 1) as the p-invariant associated to /, or to 6. We denote it by p, .
For a principal fractional ideal I = I11; !, we define the associated ji-invariant by
M; = @y, — K- A simple direct argument, or the fact that Ao, r) is a UFD, shows
that ut, is well-defined.

Suppose that p = p; @ p,, where p; and p, are totally even Artin representations
of Gr. It is clear that m(p) = m(p1) + m(pz). It therefore follows from
Propositions 3 and 6 that

A(p) = A(p)A(p2) - (11)

Suppose that F’ is a finite, totally real extension of F, that p’ is a totally even
Artin representation of G/, and that p = Indg,(p’). It is clear that m(p) = m(p’),
and so Propositions 4 and 7 imply that

A(p) = A(p') . (12)

The conjecture IMC(p) asserts that A(p) = A(o,r). The conjecture IMC(p)*
asserts that A(p) is generated by a power of m. Suppose that p factors through
A = Gal(K/F), where K is totally real. It is clear from (11) and (12) that if one
proves IMC(p’) (respectively, IMC(p')*) for all 1-dimensional representation p’
of all subgroups A’ of A, then IMC(p) (respectively, IMC(p)*) follows.

Now suppose that § is a 1-dimensional Artin representation which factors
through I'r. Obviously, m(p&) = m(p). It therefore follows from Propositions 5
and 8 that

A(p§) = twe(A(p)) (13)

When p is an odd prime, Wiles proves IMC(p)* for a certain class of totally
even, 1-dimensional Artin representations p over any totally real number field F,
namely the representations which factor through Gal(K/F) where K N Fo = F.
(These are the representations of type S.) This result is Theorem 1.3 in Wiles
(1990). Therefore, A(p) is generated by a power of 7 for all those p’s. However,
one sees easily that if p is 1-dimensional, but not of type S, then there exists a
1-dimensional Artin representation & factoring through I'r such that p§ is of type
S. Since twg () = m, it follows that if A(p&) = (x'), then A(p) = (x"). Therefore,
IMC(p)* is established when p is an odd prime, F is any totally real number field,
and p is any 1-dimensional, even Artin representation. It then follows from (11) and
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(12) that IMC(p)* holds for an arbitrary totally even Artin representation of G g
when p is odd. For p = 2, Wiles does prove partial results, but not enough to prove
IMC(p)*

Now consider IMC(p). Wiles proves this assertion when p is odd and p is
1-dimensional and has order prime to p. It follows from Theorem 1.3 and 1.4
in Wiles (1990). The above remarks and the lemma below allow one to establish
IMC(p) for all p.

An alternative way to deal with the p-invariants when p is 1-dimensional, but
of order divisible by p, is described in Coates and Kim (2011), pages 9 and 10. It
is in terms of Galois groups instead of Selmer groups. We should also add that
theorem 1.4 in Wiles (1990) involves odd 1-dimensional representations instead
of even. However, the equivalence of that theorem with what we need here is a
consequence of the so-called “Reflection Principle”. It is also a consequence of
theorem 2 in Greenberg (1989).

Lemma 1. Suppose that G is a finite group and that \ is the character of a
representation of G over Gp. Assume that the values of Y are in Q}'". Then, there
exists subgroups H; of G and a I-dimensional character V; of each H;, where
1 <i <t forsomet > 1, such that

Lomy =Y"i_ miInd§ (¥i), wherem,m,....m; €Z, m>1
2. Each y; has order prime to p

Proof. Brauer’s theorem asserts that ¥ = Y '_, a,-Indg_ (¢i), where the a;’s
are integers, the S;’s are subgroups of G, and, for each i, ¢; is a 1-dimensional
character of S;. If 0 € GQ?)nr, then o fixes the values of ¥ and one also has

v o= Z;Zl niIndgi (0 o @:). The extension of Q)" generated by the values of
all the ¢;’s is finite. If m is its degree, then, by taking the trace, one obtains

my = Z biIndgi (%)

i=1

where 7; is the sum of the conjugates of ¢; over Q’;’“’ and the b;’s are integers. Since
induction is transitive, it is enough to prove the lemma for each of the characters t;
of S;. The values of t; are in Q;’”.

Let S be a subgroup of G and let ¢ be a 1-dimensional character of S. Then
@ = aff, where « has order prime to p and B has p-power order. Let p* be the
order of 8. We can assume that & > 1. The values of « are in Q’;’“’. Let 7, and 7
denote the sums of the conjugates of ¢ and of 8 over Q*'", respectively. Note that
Ty = QTH.

Let T = ker(B). Thus, B factors through S/ T, which is cyclic of order p*.
The conjugates of 8 over Q;’” are the characters of S/ T of order p*. Let T| be
the subgroup of S such that 7 C 773 € S and 7,/ T is cyclic of order p. Let €,
and €, denote the trivial characters of 7" and 71, respectively. Then Ind? (e;) is

the sum of all the irreducible characters of S/7T and Indf1 (€7,) is the sum of the
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irreducible characters factoring through S/7;. Hence the difference is zg. Thus,
8 = Ind? (e;) — Ind% (€7,)- It follows that

7, = Indj (o) — Ind3, (et ).

where o, and «,, denote the restrictions of  to 7" and to T7, respectively. Their
orders are prime to p. O

Assume now that p is odd and that p is an arbitrary totally real Artinrepresentation
over F'. We assume that p is realizable over a finite extension £ of Q,. Assume
further that € is Galois over Q,. Since IMC(p)* is established, it suffices to just
consider the p-invariants to prove IMC(p). Now if p and p’ are conjugate over Q,,
under the action of Gal(€/Q)), then one sees easily that /, and /s are conjugate
under the natural action of Gal(£/Q,) on Ao . In particular, the p-invariants
associated to those ideals are equal. The i-invariants associated to J, and J, are 0.
In addition, 6, and 6, are conjugate too, and so the p-invariants associated to those
elements of £ (o, r) are equal. It follows that the p-invariants associated to A(p) and
A(p') are equal.

Let p = @, 0, where o runs over the conjugates of p over Q. Then the character
of p has values in Q,, and hence in Q’;’“’. Furthermore, the above remarks show
that it suffices to prove that the p-invariant for A(p) vanishes. The p-invariant for
A(p) will then also vanish. Lemma 1, the behavior of A(-) under induction and
direct sums, and Theorem 1.4 in Wiles (1990) imply that the p-invariant for A(p)
is indeed zero.

Thus, we have proved the following result based on Wiles (1990).

Proposition 9. Suppose that p is an odd prime. If F is any totally real number field
and p is any totally even Artin representation of G defined over a finite extension

of Qp, then IMC(p) is true.
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Iwasawa p-Invariants of p-Adic Hecke
L -Functions

Ming-Lun Hsieh

1 Introduction

1.1 p-Adic Hecke L-Function for CM Fields

This aim of this paper is to report recent results on the vanishing of p-invariants
of p-adic Hecke L-functions for CM fields built upon fundamental works of Hida
(2010). The significance of these results stems from their applications to Iwasawa
main conjectures for CM fields and CM elliptic curves over totally real fields.
We begin with some notation to introduce p-adic L-functions. Let p > 2 be an
odd rational prime. Let F be a totally real field of degree d over Q and K be a
totally imaginary quadratic extension of F. Let Dr be the absolute discriminant
of F. Fix two embeddings t:Q — C and (,:Q — C, once and for all.
Let ¢ denote the complex conjugation on C which induces the unique non-trivial
element of Gal(K/F). Let K be the composite of all Z,-extensions of K. Then
K is Galois over F, and the complex conjugation acts on Gal(K /K) by the usual
conjugation. Put

G":={o € Gal(K/K) | coc =0} .

Denote by K the fixed subfield of G in K. Then the Galois group Gal(K o/ K) is
afree Z ,-module of rank d by class field theory. We call K, the anticyclotomic Zi-
extension of K. On the other hand, let Qo be the cyclotomic Z ,-extension of Q, and
denote by K := K Qoo the cyclotomic Z ,-extension of K. Let Koo = KL K be
the composite of K}, and K. If Leopoldt conjecture holds for F, then Koo = K.
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Let W be the ring of integers of a finite extension of the p-adic completion of the
maximal unramified extension of Q. Define

Ao = W[Gal(KS/K)]| (o =0.+.—).

Then A = W][[Gal(Ks/K)]] is an Iwasawa algebra over W of (d + 1)-
variables. Fix a set of the generators {)/(_i)}i=1,., , (resp. y4) of Gal(K,/K)
(resp. Gal(KJ,/K)). The restriction maps Gal(Kso/K) — Gal(Koio/K) induce
the isomorphism

A=A QuwA_=W|[Ty,S1,--,S4]]

with the cyclotomic variable 74+ = y4+ — 1 and the anticyclotomic variables

Si=yO -1
We assume the following ordinary hypothesis:

Every prime of F above p splits in K. (ord)

Let 3 be a p-adic CM type of K. In other words, ¥ is a set of p-adic places of
K such that X and its complex conjugation Z¢ are disjoint and X |_| Zc¢ is the set
of all places of K above p. The existence of a p-adic CM type ¥ is assured by the
ordinary assumption (ord). Let X, be the CM type corresponding to X, i.e. X is
the set of embeddings o : K < Q such that ¢ » © 0 induces a p-adic palace in Z.
Let y be a Hecke character of K of infinity type kX with k > 1. Suppose that
x takes value in W. According to Katz (1978) and Hida and Tilouine (1993), there
exists a unique element L, » € W[[Gal(Koo/K)]] characterized by the following
interpolation property: for every finite order characters v : Gal(Koo/K) — 4 poo of
conductor ]_[fm » PBrE,

w . l—[ ex(yv) - w

V(Lx,E) = Ok «/D_F

ey

Pex,

where (i) eqz(xv) is the p-adic multiplier defined by

(A= x@NA - v'(P) ifnp =0,

ep(yv) =
¥ T(xpvp) if neg > 0.

Here vy is the character of v restricted on the completion K{é via Artin reciprocity
law, and t(yspvsp) is the Gauss sum of yq vy (Lang 1994, p.286) (i) £2 € C* is
the complex CM period of K (Katz 1978, (5.1.45)). We call L, 5 the (primitive)
p-adic Hecke L-function attached to the character y. Define the cyclotomic and
anticyclotomic p-adic L-functions attached to y by

+ . - .
L/\,E = L)(,E|51=...=5d=0 € A+, L)(,E = L)(,ElT+=0 e A_.
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1.2 The p-Invariants

We are interested in the p-invariants of these p-adic L-functions. Recall that the
J-invariant p,(L)'(’Z) is defined by

p(L} 5) = max {r €Qx | Lis € p’A.} )

Hida (2010) invented a method to compute the p-invariants of L, s and L’ y at
least when p is unramified in F. For example, it is proved in Burungale and Hsieh
(2013) and Hida (2011) that

Theorem 1. If p t Dp, then u(L,x) = 0.

In other words, L, s # 0(modmy A), where my is the maximal ideal of W.
However, the determination of the p-invariant of the cyclotomic p-adic L-function
L;—,z unfortunately seems out of reach with the current techniques.

We describe the result for anticyclotomic p-adic L-functions after introducing
some notation. Let € be the prime-to-p conductor of y and let €~ be the product
of non-split prime divisors of €. For each prime divisor q|¢€~, we define the local
invariant (,(yq) > 0 by

pp(xq) := inf ord,(xq(x)—1),
X€EKq

where ord,, : C; — Qs the p-adic valuation normalized so that ord,(p) = 1. Put

(0 =Y ip(xa)-

qle—

We say y is self-dual if x|sx = tk/F|-|a,, Where T/F is the quadratic character
associated to K/ F. It is known that the complex L-function L(s, y) of a self-dual
character satisfy the function equation L(s, y) = N*W(y)L(—s, x), where N is a
positive integer and W(y) € {£1} is called the global root number of y. It follows
from the functional equation that L’ 5, = 0 if W(x) = —1. On the other hand, we
say y is residually self-dual if y(a)Nr/q(a) = tg/r(a) (mod my) for all prime-to-
p€ideals a of OF. The following theorems are proved in Hida (2010) if €~ = (1)
and Hsieh (2013) for the general case.

Theorem 2. Suppose that p + Dp. Let x be a self-dual Hecke character such that
the global root number W(y) = 1. Then we have

(L3 5) = mp(x)
Theorem 3. Suppose that p ¥ D and that y is not residually self-dual. Then

p(L,s) =0 <= up(x) =0.
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Remark 1. When F = Q, Theorem 2 was also proved by Finis (2006) by a
different approach.

If y is self-dual with the root number W(y) = —1, then L 5 has at least a simple
zero at the cyclotomic variable 7 = 0 by the functional equation of L-functions
for CM fields. Thus the anticyclotomic p-adic L-function L] 5 vanishes. In this
case, we can consider the cyclotomic derivative

Let iy be the relative class number of K/F. A. Burungale (2014) uses Hida’s
method and some inputs from Hsieh (2013) to prove the following result.

Theorem 4. If p t hi - Dr and y is self-dual with W(x) = —1, then
(LX) = 1y + min 0.1, 0x0)}

where

log, Nk/o(q)

a4 p)) o)

Wy (xq) := ord,(
and log,, : Z; — Z, is the p-adic logarithm, which is zero on the roots of unity
and defined by the usual power series on 1 + pZ,.

In particular, if p,(x) = 0, then ;L(Lg({)i—) =0.

1.3 p-Adic L-Functions and Selmer Groups
Jor CM Elliptic Curves

The p-adic L-functions for CM fields allow us to construct p-adic L-functions for
CM elliptic curves over F. Let E be an elliptic curve defined over F'. Suppose that
E admits complex multiplication by the ring of integers of an imaginary quadratic
field Q(v/—D) with the absolute discriminant D > 0 and that E has good ordinary
reduction at all places above p. In particular, this implies that p = pp is split in
Q(+/=D). Let K be the CM field F(+/—D). Let I, be the set of primes of K
above p. Then X, is a p-adic CM type of K. For each P € X, let ks be the
residue field and N(PB) = #(kq). Let o be the p-adic unit root of the Hecke
polynomial X? — ap(E)X + N(B), where ap(E) = 1 + N(PB) — #(E (kp)). By
the theory of complex multiplication, we can associate a Hecke character y g of K
to the CM elliptic curve E,r so that )(El is self-dual, and the Hecke L-function
L(s, xr) of yg is equal to the Hasse-Weil L-function L(s, E,r) of E,;r. We define

Ley=L,iy €A
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to be the p-adic Hecke L-function attached to )(El. The p-adic L-function for
E /K is defined by

L,(E/Ko) := (LEy)*.

It follows from (1) that for every finite order character v : Gal(Koo/K) — U poo,
we have

L(1,E/x ®V) [0% : OF]2
V(Lp(E/Koo)) = == 23— [ ew(Evy?- ==
E Pes, F

where Q2 = ]_[UEZ §2go is a product of the periods £2g- of a Néron differential
form of E? over Opo (,) and es(E,v) = e (x5'v).

Iwasawa main conjecture for E/Ks asserts that the p-adic L-function
L,(E/Kw) is given by the characteristic power series of the p-Selmer group
of E /K. We recall that for each algebraic extension L of F, the p-Selmer group
Sel(E /L) of E over L is defined by

Sel(E/L) = ker Hl(L,E[p°°])—>l_[H1(LV,E) ,

where v runs over all places of L. We denote by X ,(E/L) the Pontryagin dual of
Sel(E/L). If L is a Z,-extension of K, then the Iwasawa algebra Z ,[[Gal(L/K)]]
is a formal power series ring of r variables, and X ,(E/L) is a finitely generated
Z,[[Gal(L/K)]]-module. Let

Cp(E/L) € Z,[[Gal(L/ K)]]

be the characteristic power series of the module X ,(E/L) over Z,[[Gal(L/K)]].
Recall that the characteristic power series of a finitely generated Z,[[Gal(L/K)]]-
module M is a generator of the intersection of all principal ideals containing the
Fitting ideal of M. Now we can state Iwasawa main conjecture for £/ Ko, as
follows:

Conjecture 1. Suppose that p is unramified in F. Then the principal ideal
C,(E/Kw)A is generated by L(E/Koo).!

Define the cyclotomic and anticyclotomic p-adic L-functions by L}"p =
L:g‘,xp €AyandLy, = L;EI,E]; € A_. Similarly, define L(E/KZE) = (Lf’p)z,
and we can formula the main conjectures for these p-adic L-functions in the

Note that the p-adic L-function L,(E/Koo) only belongs to A instead of Z,[[Gal(Koo/K)]].
In addition, p is assumed to be unramified in F, since it is not clear to the author that the Katz
p-adic L-function L ,(E/Kxo) is the right one for the main conjecture if p is ramified in F.
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same way. When F' = Q, there is a completely different construction of Lg , by
Yager (1982), combined with which the main conjectures has been settled down
by Rubin (1991).

We discuss the connection between the main conjectures for CM elliptic curves
and the p-invariants of p-adic L-functions.

Theorem 5. Suppose that p ¥ Dp. We have

]' H(LE,p) = 07
2. If the root number W(E/F) = +1, then (L, ;) = 0.

Proof. Part (1) is an immediate consequence of Theorem 1. To see part (2),
we note that W(E/F) = W( )(El) and yf takes value in the imaginary quadratic

field Q(v'—D). Therefore, x ql0,~ takes value in the group of the roots of unity
in Q(v/—D) for every finite place q of K. In particular, this implies u,(xz,q) = 0
for every q|€~ whenever p + 2D, so i, (xg) = 0, and (2) follows from Theorem 2.

O

Remark 2. When F = Q, the p-invariants of L, along the Z,-extension
unramified outside p were proved by Gillard (1987) and Schneps (1987). In
particular, these results also imply u(Lg ) = 0.

If the root number W(E/F) = —1, then Lk, has at least a simple zero at the
cyclotomic variable 7 = 0, and Sel(E/K)) is expected to have corank two over
A_. In this case, we consider the derivative

.~ ._ OLEy
LE,p = 8T+ |T+=0€A_.
We have seen (,(xg) = 0, so the following is an immediate consequence of

Theorem 4.

Theorem 6. If p Dy - h and W(E/F) = —1, then u(L'y;") = 0.

Theorem 6 implies that Lg?ﬁ_ is non-zero and hence L , does have a simple zero

at T4 = 0. When F = Q, the non-vanishing of Lg’){,_ was proved in Agboola and
Howard (2006) by an algebraic method.
The vanishing of j-invariants of the anticyclotomic p-adic L-functions L P and

Lg ?ﬁ_ plays a crucial role in the Eisenstein ideal approach to a one-sided divisibility
towards Iwasawa main conjecture for CM fields. It has the following application to
the cyclotomic main conjecture for CM elliptic curves over totally real fields (Hsieh
2014, Thm. 1).

Theorem 7. Suppose that p + 3D - hg. Then

L,(E/K}) divides C,(E/KY) in Ay.
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We explain very briefly how the vanishing of p-invariants enters into the proof of
the above theorem. In Hsieh (2014), we study the main conjecture by the Eisenstein
congruence method for the quasi-split unitary group U(2, 1) of degree three over
F. The general philosophy is that some p-adic L-functions can be realized as the
constant term of a particular p-adic family of Eisenstein series, and the congruence
between cusp forms and this special Eisenstein series modulo its constat term
yields elements in the Selmer groups corresponding to p-adic L-functions. In our
setting, we construct a A-adic Eisenstein series on U(2, 1), whose constant term
is a product of Lg, and a Deligne-Ribet p-adic L-function L pg, which should
contribute to two distinct Selmer groups respectively. However, it turns out that
our method does not allow us to distinguish their contributions to individual Selmer
group unless we know the common zeros of Lg , and L pg are at most simple zeros.
Now if W(E/F) = +1, pL(LE!p) = 0 implies Lgp and Lpr have no common

zetos, while if W(E/F) = —1, u(L});") = 0 implies that Lp, and Lpg have at
most one simple zero! Therefore, we can complete the argument to show one-sided
divisibility L ,(E/Ke)|Cp(E/Ks), from which Theorem 7 follows by Iwasawa
descent for CM elliptic curves due to Perrin-Riou.

In the remainder of this article, we will first review Sinnott’s proof of Ferrero-
Washington theorem, and in Sect. 3 we explain Hida’ method of proving the part 2
of Theorem 5 with emphasis on the automorphic side of the proof. In Sect. 4, we
discuss the proof of Theorem 6 and the generalization of Hida’s ideas to a class of
p-adic Rankin-Selberg L-functions.

2 Ferrero-Washington Theorem

While the focus of the research reported here is about the p-invariants of p-adic
Hecke L-functions for CM fields, it is instructive to first review the case of p-adic
L-functions for Dirichlet characters. Let y : (Z/NZ)* — C* be an odd Dirichlet
character of conductor N and let ¢ > 1 be an integer prime to p. Let O be a finite
extension of Z, containing values of y and let mo be the maximal ideal of O. Let
L, be the Kubota-Leopoldt p-adic L-function associated to y and ¢. Namely, L,
is a O-valued p-adic measure on 1 4 pZ, such that for all odd positive integers k,

/ x*dL,(x) = (1 — yo ™ (c)c* T L(—k, yoo™). (1)
1+pZ,

Recall that the p-invariant p(¢) of a Zp-valued p-adic measure ¢ on a p-adic
compact group H is defined to be

u(p) = ch{pen ord,(¢(U)).

The vanishing of the p-invariant of L, was proved by Ferrero and Washington.
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Theorem 8 (Ferrero and Washington 1979). u(L,) = 0.

Sinnott (1984) gave a beautiful new proof of Ferrero-Washington theorem, which is
the origin of Hida’s method. Consider the torus G,,/0 = Spec O[t, '] over O and
its formal completion @m/o = Spf O[[t — 1]] at the maximal ideal m := (p,t — 1).
Eacha € Z;‘ induces an automorphism on G so by sending # > . Let F = F P
The first ingredient in Sinnott’s proof is the following linear independence result on
rational functions on G, /r.

Proposition 1 (Prop. 3.1, Sinnott 1984). Letay,...,a, € Z;‘ such that a,-ajf1 =4
ZZ(p)‘ If fi,..., fn € F(¢t) are non-constant functions, then fi(t“),..., fu(t) €
F((t — 1)) are linearly independent over F.

We can associate a formal function G, (¢) € O[[t —1]] on @m/o to L, defined by

G,(t) == /Hﬂ 1*dL ,(x) :Z(/Hﬂ (z)dLX(x)) -1y

n>0

Thus, G,(¢) is the usual power series attached to the measure on Z, obtained by the
extension of L, by zero outside 1 + pZ,. Then it is well known that

(L) =0 <> G,(t)(modmg) # 0 € F[[t — 1]].

The second ingredient is the expression of G, (¢) in terms of a linear combination of

a rational functions on G,, acted by Z;f. To be precise, let A = 1, be the torsion
subgroup of Z’p‘ and let A¥2 := AN pr) = {£1}. Let D be a set of representative
of A/AY = p, i/ {1} in w,—;. Then we have

Proposition 2. Denote by O[t,1™"|(wm) the localization of O[t,1™'] at m.

(i) There exist a set {F,;},cp of rational functions in Wt, t_l](m) indexed by D
such that

Gy(t) =) x(@ ") F,(t): )

a€D

(ii) F,(t) (mod my) is not a constant function for some a € D.

In view of Proposition 1, this proposition implies that G, (¢) (mod mgp) # 0, and
hence u(L,) = 0.

Equation (2) indeed is a consequence of the following classical formula of
Dirichlet L-values:

ek (Zi\;l X(a)ta

- ) =1 = L(=k, 7), 3)
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where 0 = t— is the invariant differential operator on G,,. To illustrate this, we
sketch a proof of Proposition 2 for the special case y = o' with an odd integer
0<i<p—2wherew : (Z/pZ)* — u,— is the Teichmiiller character. For each
a e Z;, define a rational function

r

t
Ja(t) = =7’ 0<r<p,r=a"(modmp)

and put

Fy(t) = 2£,(t) = 2¢ - foult®) € Oft, 1 (m)-

Then it is straightforward to verify that

0D 1@ YF D=1 = (1 = o ()H Y L(=k, xo™).

a€D

Hence, (2) follows from the interpolation formula (1), and the non-constancy of
F,(t) (mod my) is clear from the definition.

3 Hida’s Theorem on the p-Invariants of Anticyclotomic
p-Adic Hecke L-Functions

In this section, we briefly review the method developed by Hida (2010) to compute
the pi-invariant of the anticylotomic p-adic Hecke L-function L’ v attached to a
Hecke character y. This method is a far-reaching generalization of Sinnott’s proof
of Ferrero-Washington theorem. We assume

p > 2 is unramified in F. (unr)

For simplicity, we further assume that 1, () = 0 and p does not divide the relative
class number hy of K/F.Let O = O and O, = Of ®z Z,. Fix a basis
{&1,...,&4} of O over Z (d = [F : Q]). The starting point is that, regarding the
p-adic L-function L} s, as a p-adic measuredL’ 5 on Gal(K,/Koo) = 1+ pO,,

we can associate to L 5, a power series G, € WIS, ..., S4]] given by
Go= [ rapwm= ¥ ( Lk )dL;.zmsf“ S5
1+p0, (p.kg)€ Zd 1+p0,

(S1 =15 =1, , Sy =157,
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d
X m;
(kl""’kd) ::H(ki)forx:mlgl—i—..._lr_mdi_-d'

i=1
Then we have
w(Lys) =0 <= G, (modmy) # 0 € F[[Sy,---, S4]l.

To show G, (modmy) # 0, Hida constructs a family of p-adic Hilbert
Eisenstein series {&;},p indexed by a suitable finite subset D of transcendental
automorphisms of the deformation space of an ordinary abelian variety A;r with
CM by Ok such that G, is a linear combination of the ¢-expansions of {E]},cp
at the CM point A,r. Proving a deep result on the linear independence of p-adic
modular forms modulo p (an analogue of Proposition 1), Hida reduces the problem
to showing the non-vanishing of individual p-adic Eisenstein series &£;, which in
turns is equivalent to the non-vanishing modulo p of some Fourier coefficients
of £ by the g-expansion principle for p-adic modular forms due to Ribet. If x
is only ramified at primes split in K (this implies K/ F must be unramified and
W(y) = +1 if y is self-dual), Hida computes the Fourier coefficients of £, from
which he is able to easily deduce the non-vanishing of G . In the general case, the
computation of the Fourier coefficients of £; is rather complicated. To resolve this
difficulty, it seems theory of automorphic representation must be brought into play.
In Hsieh (2013), we introduce a new set of p-adic Eisenstein series {&,},cp, Which
arises from toric forms, eigenforms of Hecke operators coming from K*. It turns
out that the connection of these Eisenstein series to p-adic L-functions is through
the toric period integral of Eisenstein series, and the non-vanishing modulo p of
their Fourier coefficients are intimately related to epsilon dichotomy of the local
theta correspondence for (U(1), U(1)) in Harris et al. (1996).

3.1 Linear Independence for p-Adic Modular Forms
Modulo p

Let N > 4 be a prime-to- p integer and let ¢ be a prime-to- p integral ideal of O. Let
L. = ¢* & O be an O-module, where ¢* = {5 € F | Trrjq(€c) C Z} is the dual
ideal of ¢. Let

M(c, N) — Spec W

the moduli scheme of c-polarized abelian varieties with real multiplication by
Ofr with full N-level structure. Denote by A the universal abelian scheme
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over M(c, N). The Igusa scheme I(c, N) is the moduli scheme over Mi(c, N)
classifying monomorphisms 7, : ¢* ®z oo meny — A[p>] of O-group
schemes. Hence, each functorial point in /(c, N') can be written as the isomorphism
class of a quintuple (4, 7,), where A = [(4,A,¢,ny)] € M(c, N) is the datum
consisting of an abelian scheme A, a c-polarization A of A, a ring homomorphism
t: O — EndA and a full N-level structure ny : L, ®z Z/NZ ~ A[N], and
Np o ¢ ® ppoo = A[p™]. Put I,, = I(c, N)Xgpec w Spec W/ p™ W for a positive
integer m and let I = li_n)lm I,, be the formal completion. Let

V(e,N) = lim H(I;, O1,)

m

be the space of p-adic modular forms, consisting of global sections of the formal
scheme 1.

We introduce the f-expansion of p-adic modular forms around a CM point
over IF. Fix a p-ordinary CM point x = [A] € (¢, N)(W), where A,y is an
abelian scheme with ordinary reduction together with the complex multiplication
t : Ox — EndA. The reduction x¢ := X®F lie in the ordinary locus 9(c, N )™ (F).
The p-adic CM-type X induces a decomposition Ox ®z Z, = 0, ® 0,, a
(ip(a), ix(a)), so we can choose a level structure 7,x : ppoe ® ¢* — A[p™] at
p for the CM point x such that 1, x(ip(a)x) = t(a)n,x(x) for all a € Ok. This
gives rise to a W-point (X, 1,x) € I(c, N)(W). Consider S’xo the local deformation
space of xo. Namely, §XO is a functor on the category of local Artinian rings with
residue field F and S’XO(R) is the set of the isomorphism classes [A] over R with
A Q®rF ~ A, By the theory of Serre-Tate coordinate (Katz 1981, Theorem2.1),
there is a canonical isomorphism

§x0 ~ HOIn(TpAo ®0[, TpA07 Gm)s ey

where T, Ao is the Tate module of the étale p-divisible group Ao[p*°](F).
Let T = Hom(O Gm /w) be the algebralc torus over W with the character group

X*(T) = 0. Let T = Hom(O,, Gom /w) be the associated formal torus. Denote by
t € X*(T) the character 1 € O. Then

O = SptW[0,] = WIS, . Sall (S =15 = 1),

The units group a € O} acts on Oj by t > 19 (so S; = (1 + S;)* —1). The
level structure 7,0 at p of Ap induces an isomorphism 7, Ao[p e ~ 0,.By (1),
it induces an isomorphism @, : S,C0 ~T:= Hom(O,, Gm) and we obtain

Pxp* - O§y ~ Of = W[[Sl,--- ,Sd]]
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(Hida 2010, Corollary 2.5). For f € V(c, N), we define
@) = ¢y (flg, ) € Op = W[[S1,---Sall.

The formal power series f(¢) will be called the ¢-expansion around x¢ of f.
Define the subgroup O%% of O by

od — {ip(a/ﬁ) la e Olﬁm}.

Hida proved the following deep theorem on the linear independence of modular
forms modulo p.

Theorem9 (Corollary 3.21, Hida 2010). Let ay,---,a, € 0;‘ such that

¢ 0alg Let fi,..., fm € V(c, N) Qw F be non-constant functions. Then
f1 (t“l ), . fm (t%m) are linearly independent over IF

This theorem is an analogue of Proposition 1 in the setting of rational functions
on the deformation space of ordinary CM abelan varieties. We are not able to
talk about Hida’s difficult proof here, but only mention that two of the key
ingredients: (i) a rigidity result of Ching-Li Chai on formal p-divisible groups
(Chai 2008, Theorem 4.3), which implies that every closed irreducible closed
subvariety Z containing zo = (xo,...,Xo) in the product of ordinary locus
M(c, N )°rd xM(e, N )°r is Tate linear at zo provided that Z is stable by the
diagonal Hecke action of a finite index subgroup T of O K.(p) (see Hida 2010,
Proposition 3.11 for the precise statement); (ii) the use of Zarhin’s theorem on the
Tate conjecture (Zarhin 1975) in the proof of Hida (2010, Corollary 3.16).

3.2 Period Integrals and Fourier Coefficients of Toric Forms

In this subsection, we explain how to combine Theorem 9 with some inputs from
representation theory to show the vanishing of u(L;Z) if up,(x) = 0.Letld, be the

torsion subgroup of O and let Z/l;lg =U,N O;Ig. Define a subgroup 7 C AX by
T = {a €A% |ajae KOOOK}

Let Cl_ := I:“XKX\IeX/(’j}é be the relative class group and let C/*¢ be the
subgroup of C/_ generated by the image of 7 in C/_. It is easy to see that C ¢
is in fact generated by primes ramified over F. In particular, #C/¥2 is a power
of 2. Since we assume p { hy, the geometrically normalized reciprocity law

reck 1 KX — Gal(K“"/ K) induces an isomorphism

rec, : 1+ p0, = (Ox ®Z,)* — Gal(K/K), a > reck((a,1))|kzg.-
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We define (-),, : KX > 1+ PO, by (a), = rec;l(recK(a)|Kgo). Let Dy (resp. D)
be a set of representatives of Z/{p/L{;lg inU, (resp. Cl1_/CI™¢ in K(PX). Set

D := DyxD;.

We rephrase the main result in Hsieh (2013) as follows.

Theorem 10. (i)  There exists a set of p-adic modular forms {€,.q}, 4)ep SUch
that

G() =Y x(@Eualt").

(u,a)€D

(ii)  If x is not residually self-dual or y is self-dual with the root number
W(y) = 4+ 1, then &, , (mod my) is not a constant function for some (u, a).

We have the following simple observation.
Lemma 1. The map D — 0;‘/0;1g, (u,a) — u(a), is injective.

Combining these with Theorem 9, we conclude that u(L;Z) =0if W(y) = +1.

We give a few words about how the proof of Theorem 10 (i) is related to the toric
period integral of Eisenstein series. Fix an embedding K < M, (F) which opti-
mally embeds Ok to M>(OFp). An automorphic form f : GL,(F)\ GL,(Ar) - C
is called a toric form of character y if

f(gt) = x(t)f(g) forallt € T. 2)

In Hsieh (2013, §4), we construct some special weight one toric holomorphic
Eisenstein series Eﬁ’(’u . GLy(F)\GLy(Afr) — C for each u € Dy. These

Eisenstein series E;u are shown to be defined over W by g-expansion principle.

LetE,, := IE?’(’MHa] for a € D, where |[a] means the Hecke translation by a. We
define the p-adic modular form &, , to be the p-adic avatar of E, ,. Put

E=Y"E!, : 0= Y x@&.a ")

u€Dy (u,a)€D

For k € Zso[X], let 8¢ be the Dwork-Katz p-adic differential operator on
p-adic modular forms (Katz 1978, Cor. (2.6.25)) and let §{ be the Mass-Shimura
differential operator on modular forms of weight one (Hida and Tilouine 1993,
(1.21)). Roughly speaking, by the interpolation property of p-adic L-functions,
it is not difficult to see that

0°Gy()li=1 ~ L(0, yve),
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where v, is some anticyclotomic Hecke character of infinity type (1 — ¢), and
the symbol ~ means an equality up to periods and modified Euler factors at p and
I'-factors. The toric property (2) of these Eisenstein series allows us to write

OGO~ [ BEO

F K

Thus, the proof of Theorem 10 boils down to the period integral formula:
/ STE@)ve(t)dt ~ L(0, yv),
AFKX\A¥

which is proved in Hsieh (2013, Prop. 4.8).

To show Theorem 10 (ii), we must prove the non-vanishing modulo p of some
Fourier coefficient of {E,q},,ep- The Fourier coefficients A(y) of Eisenstein
series are parameterized by additive characters v = [[y, : F\Ar — C*, and
it is a standard fact that A(y) = [], A(¥,) can be decomposed into a product
of the local Whittaker integrals A(4,), which can be determined explicitly by a
straightforward computation at all places v of F unless v is non-splitin K and y, is
ramified, which we refer to as bad places. Take § € K with ¢(§) = —4§. The local
Whittaker integrals A(i/,) at places those are inert or ramified in K and divides the
conductor of y are certain partial Gauss sum defined by

AW, = /F (6 )Y (x)dx.

When y is not residually self-dual, it is rather easy to show there are many A(y)
non-vanishing modulo p when f,(y) = 0. The case x is residually self-dual is
subtle. For simplicity, we will assume that y is self-dual with the root number
W(x) = +1. The general case can be treated with obvious modification. To see
the role of the root number assumption, we introduce the local root number

W) = €. 0 ¥) - 2 (-9) € (1},

_1
where y = x,|-|x’ and €(s, x, ¥,) is the e-factor (Tate 1979). It is known that

v

W(yx,) = +1 except for finitely many non-split places and that
W =W

In light of epsilon dichotomy of local theta correspondence for unitary groups, the
non-vanishing of these A(y,) is connected with the sign of W(y,). For example,
using results in (Harris et al. 1996, §8), we show that

W(Xv) =-1= A(WV) =0
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(Hsieh 2013, Lemma 6.1). Therefore, we find A(y,) = 0 for some non-split prime
vif W(y) = —1. On the other had, if W(x) = +1, we show by a patching argument
(Hsieh 2013, Theorem. 6.5) that the non-vanishing modulo p of A(v) for some .

4 Generalizations

4.1 The Cyclotomic Derivative of L 5

We consider the case where y is self-dual with the root number W(y) = —1 and

#p(x) = 0. Burungale (2014) shows the vanishing of the p-invariant of L;l){ the
anticyclotomic projection of the cyclotomic derivative of L, . The main point is
that we can actually families of p-adic Eisenstein series {4 (75)}, 4)ep OVer the
cyclotomic variable 7 such that the 7-expansion

G (T)(0) := Y x(@Eua(TH) (" Wr)

(u,a)€D

is the power series associated to the full p-adic L-function L ;, and the cyclotomic
derivative

_ agu,a (T-l-)

(1).= (ula) (.= .
2 @& ) (€l = =

(u,a)€D

I74=0)

gives rise to the power series of L;l)):_ We can show the non-vanishing modulo p

of 5,51(3_ in a similar way as in the case W(y) = +1. Applying Theorem 9, we get
w(Lyx) =0.

4.2 Anticyclotomic p-Adic Rankin-Selberg L-Functions

We can also apply Hida’s theorem to compute p-invariants of a class of anticyclo-
tomic p-adic L-functions of Rankin-Selberg convolution of Hilbert modular forms
and theta series. Let 1 = ®’'m, be an irreducible unitary cuspidal automorphic
representation of GL,(A r) with central character w and let g the base change to
GL,(Ak). Suppose that 7, is a discrete series or limit of discrete series for each
Archimedean place v. Let x be a Hecke character of A with

-1
X|A; =w .
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Define a finite subset S (7, y) of all places of F by
N 1
S(m, x) := {placesvof F | € (m,, xv) 1= 6(5,711(‘, ® xv)rwy(—1) = -1

We impose the following local root number condition:
#(S(, ) = 0. (ST)

This condition holds for example when every prime divisor of the conductor of &
is split in K. Then under a technical assumption on the conductor of m, in Hsieh
(2012) we construct an anticyclotomic p-adic L-functions L,(x, x) € A— which
interpolates the algebraic part of the Rankin-Selberg central values L(%, K ® XV)
for anticyclotomic Hecke characters v of p-power conductor. The construction is
similar to that of Lg p, but this time we have to replace p-adic toric Eisenstein
series by p-adic toric cusp forms {]—'(,,,a)} (wa)eD" The corresponding toric period
integral is computed by an explicit version of Waldspurger formula (Waldspurger
1985), and as a consequence, we obtain an expression of the power series attached
to L, (m, x) in terms of linear combination of F{, 4) exactly as in Theorem 10. Using
Hida’s theorem again, we can compute the p-invariant of L, (7, x) by an explicit
calculation of Fourier coefficients of F, ). We remark that the local root number
hypothesis (ST) is fundamental in this method since the failure of (ST) makes the
toric period integral always vanish by a theorem of Saito-Tunnell. The details can
be found in Hsieh (2012).

Remark 3. Suppose that S(r, y) contains all Archimedean places and #(S (7, x))
is even (so (ST) does not hold). One can still construct the anticyclotomic p-adic
L-function L,(w, y) € A_ that interpolates the algebraic part of the central
L-values L(%, g ® yv) (See Bertolini and Darmon 1996; Chida and Hsieh 2012 for
the elliptic case). By the work of Vatsal (2003), which depends on entirely different
ideas from Hida’s method, and its generalization (Chida and Hsieh 2013), the
p-invariant of L, (7, y) can be proved to vanish in many cases.

Acknowledgements The author would like to thank the referee for many suggestions on the
improvement of the manuscript.
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The p-Adic Height Pairing on Abelian Varieties
at Non-ordinary Primes

Shinichi Kobayashi

1 Introduction

The theory of the p-adic valued height pairing on abelian varieties was developed
in the 1980s by Néron, Zarhin, Schneider, Mazur-Tate, etc. Compared with the real
valued Néron-Tate height pairing, one important aspect in the p-adic valued case is
that the pairing depends on several choices and in this sense there is no canonical
p-adic height pairing. (One reason of this phenomenon is that there exist non-trivial
compact subgroups in @, but not in R.) Let A be an abelian variety over a number
field F. Firstly, the p-adic pairing depends on a choice of the p-adic logarithm on
the idele class group A% /F>, which determines a Z,-extension of F. Secondly,
it depends on a choice of a splitting as QQ,-vector spaces of the Hodge filtration
of the de Rham cohomology of A over the completion F, of F at each v|p. This
information is used to define the p-adic valued local height pairing at v| p. When A
has ordinary reduction at v| p, we have a natural choice of the splitting at v obtained
by the unit root subspace, and we may say there is a canonical p-adic local height
pairing at v for a fixed Z,-extension. Therefore the choice of the splitting is often
made implicitly in the ordinary case but one has to pay special attention for it in the
non-ordinary case.

The canonical p-adic local height pairing at ordinary primes has a characteriza-
tion by some integral property along the direction of the Z ,-extension determined by
the fixed p-adic logarithm, which is used crucially in the proof of the p-adic Gross-
Zagier formula in Perrin-Riou (1987). This important integral property is shown
by the construction of the p-adic height by using the universal norm subgroup. It
is known that the universal norm subgroup does not have sufficient information at
non-ordinary primes and this makes it impossible to construct the p-adic height via
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the universal norm subgroup and prevents us from investigating integral properties
of the p-adic height at non-ordinary primes. However, in Perrin-Riou (1990)
and Kobayashi (2013), we constructed the p-adic height on elliptic curves at
supersingular primes by using certain norm systems instead of the universal norm
subgroup. This enables us to control integral properties of the p-adic height and
we could prove the p-adic Gross-Zagier formula for elliptic curves at supersingular
primes in Kobayashi (2013).

The aim of this paper is to generalize the norm construction of the p-adic height
on elliptic curves in Perrin-Riou (1990) and Kobayashi (2013) to abelian varieties,
and as an application we prove the p-adic Gross-Zagier formula for newforms with
general coefficients (not necessarily in Q) of weight 2 for IH(N) at good non-
ordinary primes.

2 Norm Subgroup of Formal Groups

In this section, we review the universal norm subgroup and its variant in the non-
ordinary case by recalling a brief history and their roles in Iwasawa theory.

Let C, be the p-adic completion of the algebraic closure of Q, and let K be
a finite extension of Q, in C,. We consider a ramified Z,-extension K, of K in
C,, (e.g. the cyclotomic Z,-extension) with the Galois group I" = Z,. Let K, be
the n-th layer in K, namely, the unique extension of K in K, of degree p". We
denote the integer ring of K, (resp. C,) by Ok, (resp. Oc,). For an abelian variety
A over K, the universal norm subgroup of A(K) is defined by

NA(K) := ﬂ Nk, x A(Ky)

where N, /k is the norm from A(K,) to A(K). The importance of the universal
norm subgroup in Iwasawa theory is already observed by Mazur (1972), and in fact,
the behavior of this local object determines the (conjectural) Z ,[[I"]]-corank of the
global Selmer group over the Z,-extension (if A and the Z ,-extension are defined
over a global number field). Schneider (1987) showed that if A has good reduction,
then

rankz, A(K)/NA(K) = (dim A —r)[K : Q,]

where r is the p-rank of the reduction of A. In particular, NA(K) is of finite index
in A(K) if and only if A has ordinary reduction. This fact is crucial for the norm
construction of the p-adic height pairing by Schneider.

Now we slightly change the viewpoint. Instead of considering the universal norm
subgroup, we consider the group of norm compatible systems

o
l(i£1 A(Ky) == A{(Pu)n € 1_[ A(Ky) | Trg, /K, Prt1 = Py}

n n=0
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Here we used the additive notation Trg, /k, for the norm instead of N, /k,-
The Iwasawa algebra A = Z,[[I']] acts naturally on 1(i£1n A(K,) and by the result
of Schneider, 1}11,, A(K,) is a finitely generated A-module of free rank r[K : Q,].
In particular, l(igln E(K,) = 0 for an elliptic curve E with good supersingular
reduction.

Nasybullin and Perrin-Riou showed that there is a variant of norm compatible
systems which has sufficient information also in the supersingular case. Now we
assume K = Q, and K is the cyclotomic Z,-extension. We fix a system of p-
power roots of unity ({,), such that { 5 w+1 = Cpn and £, is a primitive p-th root
of unity. We denote the maximal ideal of Z,[{ .+1] by m, and the maximal ideal
of Z,[[T]] by mr. Let A be the torsion part of Gal(Q({,)/Q) and let x be the
cyclotomic character which canonically identifies I" with 1 + 2pZ,. The group
Gal(Q(¢po0)/Q) acts naturally on Z,[[T]] by y- T = (T + 10 —1. Let L, be the
p-Euler factor polynomial X?> —a,X + p witha, = 1+ p —fE(F,). Perrin-Riou
(1990) showed that there are sufficiently many “L ,-norm systems”

l(inE(Kn) = {(Pn)n € l_[ E(Kn) I TrK,,Jrz/K,, Pn+2_apTrK,,+1/K,, Pn+l+an = 0}’

Ly n

which also has a non-trivial subgroup

{(Pn € [ [ ECKn) | Tk, ok p1 Pata — @p Pagr + Py = O} (1)

These norm systems play important roles in the Iwasawa theory at supersingular
primes, for example, see Perrin-Riou (1990) and Kobayashi (2003). (Actually, the
Russian mathematician Nasybullin had already noticed the importance of such norm
systems more than 10 years before Perrin-Riou and obtained the growth formula
of the Tate-Shafarevich group at supersingular primes. See Nasybullin (1977).)
We recall that the norm compatible system for the formal multiplicative group
G, can be obtained as follows. For x € G,,(F ST1)A, there is a canonical lift

A

% e Gy (Z,[[T])? of x fixed by the Coleman norm operator. Then £(¢ ot — 1)

for n gives a norm compatible system. Let E be the formal group of E. Perrin-Riou
showed that for x € E(Fp[[T]])A, there is also a canonical lift X € E(Z,,[[T]])A
which satisfies “an L ,-relation” for a certain norm operator ¥ related to the
Dieudonné module of £. Then %(¢,n+1 — 1) gives an L ,-norm system. We denote
by Z; the image of E(F,[[T])? in E(Z,[[T]])? by the lift. Then Z is a A-
module of rank 2 and we also have a A-submodule Z L; C Z  of rank 1 related to
the norm relation in (1). Perrin-Riou (1990) gave a new construction of the p-adic
height pairing on E by using these modules. (Z, . plays a role of the splitting of
the Hodge filtration.) For the calculation of the p-adic height of Heegner points, we
need to characterize Z; and Z , purely in terms of norm systems. In other words,
we want to know which L ,-norm systems can be obtained from Z . This is also
a question proposed by Perrin-Riou before Lemme 4.8 of Perrin-Riou (1990). It is
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easy to see that the question is equivalent to the problem of the interpolation of
L ,-norm systems by power series, and the answer is given as a generalization of the
theory of Coleman power series for E in Kobayashi (2013).

The main theorem of the theory of Coleman power series Coleman (1979) says
that any norm compatible system of G,, can be interpolated by a power series, but
in our case, there is a rather artificial element in th E(K,) which cannot be

obtained by elements in Z ; (cf. Kobayashi 2013, Remark 3.7). Therefore we need

to define a good class of norrn systems in l(lnL E(K,), called admissible norm
systems. !

Definition 1. An L ,-norm compatible system (P,), € l(iLnL E (my,) is called
P

admissible if the p-th power Frobenius map on E (Ok,/p) sends P, mod p to
P,—y mod p for all n > 1. In other words, by the reduction mod p, the system
(Py), defines a point in E(R) with Fontaine’s

R:={(x)n €[ [(Oc,/p) | x0y = xa}-

Then the Coleman power series theory can be generalized as follows.

Theorem 1 (Kobayashi 2013). Let (P,), be an L,-norm compatible system.
Then there exists a power series f € E(mr)? such that

S —1) = P,
if and only if (Py), is admissible. Furthermore, such f satisfies

(> —a,¥ + p)log; f =0 2)

where log  is the formal logarithm ofE and r is the Q,-linear trace operator for
the Frobenius lift ¢ characterized by ¢(T) = (T + 1)? — 1. Conversely, a power
series in wmr satisfying the relation (2) gives an admissible L ,-norm compatible
system. In other words, the A-module Z 3 is isomorphic to the module of admissible
L ,-norm compatible systems.

In Kobayashi (2013), this theorem is proved in a similar way as in Washington’s
book (Washington 1997, Theorem 13.38), but it is much easier to use the theory of
norm fields by Fontaine-Wintenberger as in the classical case. Kazuto Ota (2014)
also pointed out that Theorem 1 can be easily generalized to higher dimensional
formal groups of arbitrary finite height over absolutely unramified local rings by
using the result of Knospe (1995). We recall the result of Knospe-Ota.

First we specify the setting and fix some notation. Let K be the fractional field
of the ring of Witt vectors W = W (k) of the finite field k of ¢ = p" elements. We
denote the Frobenius of W by o. We fix a uniformizer = € Z, and a Frobenius lift
¢ € W][T]] such that
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o(T)==T moddeg2, ¢(T)=T? mod pW]|T]],

and consider the associated Lubin-Tate formal group F, of height 1 over Z,. We
fix a system of w-power torsion points (w,), such that [7]®@,+, = @, where [r]
is the multiplication by 7 of F; and 7 is a non-zero mw-torsion point. Let Ko, be
the field obtained from K by adjoining all w-power torsion points of F, and K,
the field of 7" -torsion points over K. (So now K is not a Z,-extension but a Z7 -
extension. However, the whole story does not essentially change.) We denote the
maximal ideal of the integer ring Ok, by m, and the maximal ideal of W[[T]] by
mr. Let ¥ be the unique o' -semilinear map on W [[T']] satisfying

Yop=p eoy(/)T)= )Y [f(T&r )

7] =0

where the sum runs through all r-torsion points and @ 7, is the addition of F.

Now we consider a d -dimensional formal group G = Spf W{[[Xi, ..., X4]] over
W of finite height /. For simplicity, we use the multi-index notation and write
the variables (X;); simply by X. (We always use the letter 7 as a one-variable
parameter.) We let

Px = {f(X) € K[[X1] | df € 2y xyyw- F(0) € pW}

and Py = Px/(pW][[X]]). Similarly, we define one-variable P and Pr. Let
F be the Frobenius on Py, namely, the o-semilinear ring morphism defined by
X + XP,and let V be the Verschiebung on Py defined as the o~!-semilinear map
Y anX" = >, po~'(a,,)X". The action of ¢ and ¥ are extended on Py and
they are lifts of F and V on Py.

In our setting, the Dieudonné module Mg of the special fiber of G may be defined
explicitly as follows. For a closed form w € .QA;V[[X” Jws We define the primitive
function F,, of w by the unique power series in Py such that d F,, = w and F,,(0) =
0. We put

ZNG) = {w € Qypyyw | do =0, Fu(X®gY)—F,(X)—F,(Y) € pW[[X]]}.
B,(G) = {df € Ly w | /(X) € pWIIX]]}.
Here @g is the addition of G. We also consider the space of invariant differentials
Lg :={w € 2yxyw | Fo(X &g Y) = F,(X) + F,(Y)}.

Then we define the Dieudonné module Mg by

Mg = Z}(G)/B}(9).
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which depends only on the special fiber G. The action of ¢ and v induces the
Frobenius F and the Verschiebung V on Mg, and Mg is a free W-module of rank /.
The Hodge filtration of Mg is given by

Mg (<1,
Fil' Mg = {VLg i=1
0}y (@ >1).

(We use the classical normalization of the Dieudonné module as in Fontaine
(1977) and Perrin-Riou (1990). The reader may consult Katz (1979) for various
normalizations, especially §5.5. Our module is D,(G/ W(k)) there. The map p~' F
defines the isomorphism from Mg ® Q) to the “usual” one by Grothendieck and
Mazur-Messing (Katz 1979, (5.5.7)).) Let L be a finite extension of Q,. A splitting
of the Hodge filtration of Mg | := Mg ®z, L is an L-vector subspace N C Mg 1
such that Mg ; = N + Fil' Mg and N N Fil' Mg ; = {0}.

We fix a basis wj,...,wg of Lg and denote their primitive functions by
£y, ...,24. Then the formal logarithm {¢ is given by

lg:G — G¥, X = (0L(X),....La(X)).

We consider a monic polynomial Q(t) = Y .'_jant" € Z,[t] satisfying two
conditions:

e O(V)w; =0foralli =1,...,d in Mg.
* All roots have p-adic absolute values strictly greater than |p|, = 1/p.

For example, the characteristic polynomial det(¢"1 — V" | Mg ® K ) as a K-vector
space satisfies these conditions. If G is the basechange of a formal group G, defined
over Z, and w;’s are invariant differentials of Gy over Z,, we may take a smaller
polynomial det(t/ —V | Mg, ® Q,) as Q(V).

Definition 2. An element (P,), € [[72, G" D (m,) is called a Q-norm system if
it satisfies

+m—1 +m—2 —1
tr/t-‘,-m/ng(gn " )(Pn-‘rm)+am—ltr/1+m—1/n£(gn " )(Pn+/n—l)+"'+a0£(gn )(P/1)=0

—n

where we put G™ := G, 4™ := €3 " and tr, 1 n/n := trx, .k, is the usual trace
of fields. We denote the set of Q-norm systems by LiLnQ G™=1(m,,). Furthermore, if

the p-th power Frobenius map G™(Oc,/p) — G"V(Oc,/ p) sends P4 mod p
to P, mod p for all n, the system is called admissible.! We also say (P,), € Q, ®

'The definition of the admissibility is different from that of Kobayashi (2013), but they are
equivalent by Theorem 2.
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[1°2, 6"V (m,) is admissible if (mP,), € [[o2, G V(m,) is admissible for
sOme Non-zero integer 1.

An important example of an admissible norm system is a system of Heegner
points of higher order over ring class fields of an imaginary quadratic field with
a split prime p (so locally over p it defines a system in a height one Lubin-Tate
tower).

We say that a system (P,), € Q, ® [[o2; G" D (m,) is interpolated by an
element f € G(my) if

[ (@) = P,

foralln > 1.

Theorem 2 (Knospe 1995; Ota 2014). Let (P,), € Q, ® [[°2,G™(m,) be a
Q-norm system. Then (Py), is interpolated by f € G(mr) if and only if (Py), is
admissible. Such f satisfies Q(¥)(£g o f) = 0. Conversely, a power series in m,
satisfying this relation gives an admissible Q -norm system.

For p > 2, the theorem holds without ®Q,,.
As in the classical case, the proof of Theorem 2 is obtained by combining the
injectivity of 1(111Q Gn=D(0g,) — 1(111Q G"=D(Ok,/p) and the following two

isomorphisms. One is the isomorphism by the theory of norm fields G(k[[T]]) =
l(il_n G"=D(Ok,/p) where the transition map is the p-th power Frobenius. The
othgr is an isomorphism obtained by the Perrin-Riou lift (Perrin-Riou 1990, §4.1;
Kobayashi 2013, §3.2) between G(k[[T]]) and Zg, the Z,[[I"]]-submodule of
G(mr) consisting of elements f such that Q(¥)({g o f) = 0. We briefly recall
the Perrin-Riou lift. By Fontaine-Honda, we have a canonical isomorphism of Z ,-
modules

G(k[[T]]) = Homwrv|(Mg, Pr). 3

Perrin-Riou (1990, §4.1) (see also Ota (2014) for our Lubin-Tate case) constructed
the canonical lifting

HomW[FqV](Mgsz) —> Homw(Mg,'PT), X — X (4)
characterized by

V(p(X(m)) —X(Fm)) =0

for all m € Mg, or in other words, ¥ (X(m)) = X(Vm) for all m. She also showed
that this condition is equivalent to

Py /p)(E(m) =0
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for all m € Mg where P is the characteristic polynomial
P(t) =dety (I —tF"|Mg) € Z,|t].

By Theorem 2, the morphism

GKXD ®Q, > Q, ® [[G" (), x> (0= 2" V(@) (@)) (5)

n=1

is an isomorphism onto the set of admissible Q-norm systems. Here we identify
G Y (m,) ® Q, with its tangent space Homy (Lgw—n, K;,). Since the Perrin-Riou
lift does not depend on Q, the set of admissible Q-norm systems is independent of
the choice of Q. Therefore, we call the set of admissible Q-norm systems just the
set of admissible norm systems for G.

Following Perrin-Riou, we consider the morphism of Z,-modules

8g + G(k[[X])) — Homy (MW, W([T])Y=°)
defined by

x > p~H(p(E(m)) — X(Fm)).

Here MV = M ®, W is the twist of M by o. We write §g simply by § if there is
no fear of confusion. We put u = 7/ p. Then the kernel and the cokernel of §g are
given by

Ker g = Homy (MW, W)V =" logz (T)
via (3) and (4), and
Coker 8g = [Homy (MD, W)/(V — u)Homy (M D, W)](1). (6)

Here by definition, x € Homy (MM, W)= if and only if o~ 'x(V"'(m)) =
ux(m) for all m € MW, or equivalently, x(Fm) = mox(m) for all m. The
isomorphism (6) for the cokernel is given by looking at the first derivative, and
the last symbol (1) in (6) is the twist by the Lubin-Tate character «, for /. Since
WI[T]]Y=° is a free W[[Gal(K/K)]]-module of rank 1 by the natural action of
Gal(K~/K) via k,, we have the following.

Proposition 1. Suppose that Ker g = Coker 6g = 0 (e.g. G is biconnected), then
G(k[[X]]) has a W -module structure and it is a free W [[Gal(K o/ K)]]-module of

rank h. Hence so does the module of admissible Q -norm systems of G.
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So far, we saw the theory of the universal norm subgroup and its variant only for
formal groups. Here we add a few comments on the case of Galois representations.
The concept of the universal norm subgroup is generalized in terms of Bloch-Kato’s
local Selmer groups, and investigated in Perrin-Riou (2000) mainly for crystalline
representations and Berger (2005) for de Rham representations. A generalization of
Q-norm compatible systems for crystalline representations is obtained from discus-
sions in §2.3 and §2.4 of Perrin-Riou (1994) (especially from Proposition 2.4.2),
which is the key of the construction of Perrin-Riou’s big exponential map. Then the
Perrin-Riou map is generalized for de Rham representations by Colmez (1998) and
for de Rham (¢, I")-modules by Nakamura (2014).

3 Norm Construction of the p-Adic Height Pairings
on Abelian Varieties at Non-ordinary Primes

The p-adic height pairing on abelian varieties is constructed by P. Schneider (1982)
at ordinary primes by using the universal norm subgroup. Zarhin (1990) gave a
different construction including the non-ordinary case. His observation is that the p-
adic height pairing is constructed depending on a choice of a splitting of the Hodge
filtration of the p-adic de Rham cohomology as Q,-vector spaces (not as K-vector
spaces). In the good ordinary case, if we take the splitting obtained by the unit root
subspace of the Dieudonné module, the resulting height pairing coincides with the
pairing by Schneider. In this section, we use G(k[[T]]) or equivalently, admissible
norm systems to construct the p-adic height pairing at non-ordinary primes instead
of the universal norm subgroup. We define a certain class of Q,-vector subspaces
of the Dieudonné module, called adequate. We associate an adequate subspace
to a Z,[[I']]-submodule of G(k[[T]]) that plays a similar role with the splitting
of the Hodge filtration in Zarhin’s construction, and our height pairing depends
on the choice of the adequate subspace. We show a correspondence between
adequate subspaces and splittings of the Hodge filtration, and compare our height
with Zarhin’s. The correspondence is essentially given as the p-adic interpolation
(smoothing) factor appeared in the Perrin-Riou map and this also suggests that the
norm construction is more suitable for investigating integral properties.

3.1 Submodules Corresponding to Splittings
of the Hodge Filtration

In this subsection, we construct a class of Z,[[I"]]-submodules of G(k[[T]]) that
corresponds to splittings of the Hodge filtration as QQ,-vector spaces. As pointed out
in Nekovar (1993, §2.9), we require only the splitting as @ ,-vector spaces but not
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as K-vector spaces. Our correspondence between Z , [[1"]]-submodules of G (k[[T']])
and splittings of the Hodge filtrations does not respect the structure of W-modules.

We follow the setting and notations in Sect.2 if not otherwise specified. We
denote by t the usual trace K — Q, and we also use the same symbol for maps
induced by t by abuse of notation. For example, it induces canonical isomorphisms
of Z,-modules

t: Homy (M, WIIT]]Y=") = Homg, (Mg, Z,[[T]]="),
t: HomW(Mél), K) =~ Homg, (Mg, Q,).
Let L be a finite extension of Q, in C,,. We often abbreviate X ®7, L by X, for
a Zp,-module X.
Definition 3. For an L-vector subspace N C Mg 1, we define Zg y (k[[T]]) as the
inverse image by t o §g in G(k[[T']])r of Homy (Mg /N, Zp[[T]]fZO), namely,

Zon (KT = {x € GKITNz | to (9F(w) — #(Fw)) =0 forallw € N}.

Remark 1. If N isa K ® L-submodule of Mg ;, the above condition is equivalent
to pX(w) = X(Fw) forallw € N since the pairing K xK — Q,, (x, y) = t(xy)is
non-degenerate. Therefore this definition coincides with that in Perrin-Riou (1990)
and Kobayashi (2013).

By the morphism (5), the module Zg y (k[[T]]) corresponds to a A-submodule
of rank [K : Q,]dim; (Mg /N) of admissible norm systems for G. It seems not
easy to describe Zg y (k[[T]]) purely in terms of norm relations for a general N but
at the end of this subsection we give such descriptions for special types of N, which
is sufficient for our application.

The map

Zp[[T]]‘/’=0 = Zp, frtripf(o)
induces an isomorphism
Hom, (M), Z, ([T =° =~ Hom, (Mg, L
omy (Mg ;. Zp[[T]l; ") /y—1) = Homp (Mg 1, L).

Here, for simplicity, we write X /(y—1)X as X1y fora Z,[[I"]]-module X . Com-
bined with t o g, this induces a map dg : G(k[[T']])1/—1) = Hom; (Mg 1. L),

® > pTtotnpl(pi() = X(Fw))(@)] = p~'to X((F — Hw)(0). (1)

Here we used the following easy lemma.

Lemma 1. Ler f(T) be an element of Pr. Then
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1p(fg)(w'n) = trn+1/n(f(wn+l))

forn > 1and
V(f7)(0) = trio( f (1)) + f(0).

Proposition 2. The morphism Sg is an isomorphism. In particular, the restriction
of 8g induces an isomorphism

Sg.n(=38y): Zgn(K[[T]))(y—1) = Homy (Mg /N, L). (8

Proof. The proof follows from the description of the kernel and the cokernel of §g.

Corollary 1. The morphism
GkTL/y—1) — Homy (Mg, K), x> (0 = 2(0)(0))

is an isomorphism.

Proof. This follows from Proposition 2 and (7). Note that F' — 1 is invertible since
G is connected. See also Claim 2 in p.256 of Knospe (1995).

Fori > 1, we consider the composition

Zgi: GK(T) ®Q, — Q@ LmG" P (m,) — G (m) ® Q,
0

with (5). We also put Xg := Try0Xg,. We omit the index G in Xg; and Xg if
there is no fear of confusion. We sometimes identify an element of G(k[[T]]) ® Q,
with the admissible norm system by (5), and then Xg; is just the projection map
(Pn)n = Pi and Eg is (Pn)n = Trl/()Pl.

Proposition 3. The morphism Xg; is surjective. If p > 2, it is surjective without
the tensor Q.

Proof. First consider the case p > 2. Suppose that P; € GV (m,) is given. Then
P; := P; mod p € G~V (Ok,/p) can be extended to a family

(Po)a € lim G“V(Ok,/p) = G(KITI).

XH=>xP

Hence by Perrin-Riou’s lift, we have an admissible norm system (Q,), such that
Q; = P, mod p. By Nakayama’s lemma, we have the conclusion. The case p = 2
is similar. (Note that in general the Perrin-Riou lift (hence X;) is well-defined only
after the tensor Q, when p = 2. cf. Kobayashi (2013, Proposition 3.1).)

By the logarithm map, G(W) ® Q, is naturally identified with Homyy (Fil! Mél) ,
K) = HomW(VL(l), K). Then X is regarded as the morphism of L-vector spaces
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GI[TI) — Homy (VLY K)1,  x +—> (Vo > try o (@) (1))
This map is extended as
¢ GIT), — Homy (M, K),  x v (0 > p~ltry o (Fw)(w@)).

Proposition 4. Suppose that the eigenvalues of V on Mg as Q,-vector spaces are
different from 1. Then X° is surjective. In particular, X' is also surjective.

Proof. By Lemma 1, we have
totr X (w)(w1) =toX((V — 1)w)(0). 9

Since V' — 1 is invertible on Mg by our assumption, the assertion follows from
Corollary 1.

The map ¥ (= Xg) induces an L-linear map X'y (= Xg n) : Zgn(K[[T]]) —
G(pW) L, which factors through

In(=Zgn): Zgn KT /G-1) — G(pW)L.
Similarly, ¥'* induces the morphism
T4+ ZonKITN) — Homy (Mg, K).
and
¢ Zgn (K[T) -1y — Homy (M, K)y.

Suppose that the Verschiebung V' on Mg as a Q,-linear map does not have 1 as
an eigenvalue. Then by Propositions 2 and 4, we have

I

toX¢: Gk[[T1))/p-1 = Homz, (Mg,Q,)

and hence the Q,-linear isomorphism
®=(toE0bz)V: Mg —— Mg

where V is the dual as QQ,-vector spaces.
By (7) and (9), we have the following.

Proposition 5. The Q,-linear map @ is given by

Mg — Mg, o +— (p—F)(F-1)""o.
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Note that @ is the interpolation factor of Perrin-Riou’s theory. (cf. Perrin-Riou
(1995) and Colmez (1998, Théorem 3 and Remarque 5 (iii)). It looks slightly
different because of our classical normalization of Dieudonné modules.) The map
@ is extended on Mg ; linearly.

Corollary 2. Assume that 1 is not an eigenvalue of V on Mg ® Q, as a Q ,-vector
space. Let N be an L[F]-submodule of Mg ;. Then ®(N) = N.

We determine Q,-vector subspaces that are the image by @ of complementary
subspaces to the Hodge filtration of Mg ;.

Definition 4. We say an L-vector subspace N C Mg 1 is adequate if it satisfies
the following two conditions.

1. dim; (Mg /N) =[K : Qp]dimG.
2. XYy is surjective.

Since dim;, Zg y (k[[T]])/(y—1y = dimp (Mg, /N) by Proposition 2, the ade-
quateness is equivalent to requiring that

to Xy : Zgn(k[[T)/-1) — Homy (Fil' Mg, L)

is an isomorphism of L-vector spaces. Therefore if N is adequate, f];l and X
induce an L-linear map

Homy (Fil' M) . L) = Zg x (k[[T1)) j—1) = G j—1) = Homp. (Mg 1., L),

which is the splitting of the Hodge filtration by @~ (N). Conversely, a splitting of
the Hodge filtration defines an adequate subspace by reversing the argument. Hence
we have

Proposition 6. Assume that 1 is not an eigenvalue of V on Mg ® Q, as a Q,-
vector space. Then @ defines a one-to-one correspondence between splittings of
Hodge filtrations as L-vector spaces and adequate L-vector subspaces of Mg 1.

This correspondence does not respect the canonical splitting by Wintenberger
(1984) (cf. Kobayashi 2013, Remark 4.7) but it respects splittings as L[F]-modules
by Corollary 2.

Now we study admissible norm systems coming from a particular type of N.
Let e be an idempotent of End(G/ W) ® L. Let q be an L-vector subspace of the
polynomial ring L[¢] and consider an L-vector subspace N of Mg ; satisfying

eN =qeFil'Mg; :=={f(V)o | f €q, w € eFil' Mg }. (10)

For a polynomial f(¢) = axt* + ax—1t*7' + -+ + ag € L|t], we define a map

S [T6" " m) — [T K2 (Pn — (@

n=1 n=1
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where
+k—1 +k—2 —1
qn :zaktrn+k/n Z(gn )(Pn+k) +ak71trn+k71/n Z(gn )(Pn+k71) + - +a0€(gn )(Pn)'

By definition, the kernel of f(tr) is the set of f-norm systems.

Proposition 7. Suppose that an L-vector subspace N C Mg 1 satisfies (10) and
let (Py), e L® ]_[:ozl g<"—1>(m,,) be an admissible norm system. Then (eP,), is an
admissible norm system in the image of Zg n (k[[T]]) by (5) if and only if (ePy), is
in the kernel of

prof(): L[] " "m) — L[] (Ki/Ku1)®

n=1 n=2

forall f € q, namely,
eqn = ax Warin LT T €Puri) + -+ ag bty (eP)) € K2

Here pr is the natural projection.

Proof. Since (P,), is an admissible norm system, it is the image of x € G(k[[T]])
by (5). By definition we have ex € Zg v (k[[T]]) if and only if

(@o ¥ —p)f)ex(w)(T) = eX((T) = X(Fn)(T) =0

where = ef(V)Vw € eN forany f € qand Vo € VLg = Fil' Mg. (Note
thatex = Xoeand Yy o X = X oV, and eN is a K-vector space by (10).) If this
holds, then tr,;,—1eq, = pegq, forn > 2 by Lemma 1. In particular, eq, € K?f’l.
Conversely, if (eP,), is in the kernel of pr o f(tr), then

(poy —p)f(Wex(@)(T)lr=m, =0

for Vo € Fil' Mg and n > 2. Hence

(poy —p)f(Y)ex(w)(T) = clogz, T

for some constant ¢. By applying ¥, we have ¢ = 0.

Now we assume that eN = qeFil' Mg ; is an F-invariant subspace of Mg ;.
Let Q € L[t] be such that Q(V)Fil' Mg ; = {0} and all roots of Q have p-adic
absolute values strictly greater than |p|, = 1/p. Then eN is written in the form
eN = f eFil' Mg ; with f|0Q.

Proposition8. Let N be a L-vector subspace of Mg such that eN =
feFil'Mg; and eN is F-invariant. Let (P,), be an admissible norm system
for G(k[[T1)L. Then (ePy), is an admissible norm system for Zg n (k[[T]]) if and
only if (ePy), is an f-norm system.
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Proof. Suppose that (P,), is the image of x € G(k[[T]])r by (5). We take an
element g of the ideal (f) C Z,[t]. Thene gFil' Mg C eN by our assumption,
and as in the proof of Proposition 7, we suppose that

(poy —plg(¥)ex(w)(T) =0

for w € Lg. By putting T = w, forn > 0, we have g(y)ex(w)(w,) € K,fB_dl for
n > 2 and

g(y)ex(w)(w) = g(¥)ex(w)(0)

by Lemma 1. Then by taking g = " f (m =0, ...,n), we have

fW)ex (o) () = f(¥)ex(w)(0).

Hence we have eq, € K® and it is constant for varying n. However, eq, is an
H -norm system for the polynomial H = Q/ f with H(p) # 0. Thus eq, = 0. The
converse is proven similarly as in the proof of Proposition 7.

Example 1. Let E be the formal group of an elliptic curve over Q, with good
supersingular reduction. First welet N = L p®Q,. Then N = (V —a p)Fill M £,
and by Proposition 7, an admissible norm system (Py), comes from Zz \ (k[[T]])

if and only if
Truti/n Pt —ap Py € E(m,—y) (11)

for n > 2. Then combined with Tr, 1/,—1 Py+1 — a,Tr,/p—1 P, + pPy—1 = 0, we
have Tr,, 1/, Pyy1—a, P, + P,—1 = 0. Conversely, this relation implies (11). Next
we suppose N = (V — a)FillMEA’L = L(F — B)w; where a, B are the roots of
1> —a,t + p=0and L = Q,(e). Then N is the a-eigenspace of the Frobenius.
Hence Proposition 8 implies that an admissible norm system (P,), comes from
Z p y(K[[T1]]) if and only if Try41/y Pu+1 = aP, foralln > 1.

3.2 The Zarhin-Nekovdr Construction of p-Adic
Height Pairings

In this subsection, we recall Zarhin’s construction of the p-adic height pairing on
abelian varieties, which is generalized to Galois representations by Nekovaf.

Let F be a finite extension of Q in a fixed algebraic closure @ We fix an
embedding ¢, : Q<= C p- We assume that F is unramified over p. Let L be a
finite extension of Q, (coefficient field) as before. Let log,, be the p-adic logarithm
on Zy such that log, p = 0. We define the cyclotomic logarithm £ £, on F* at a
non-Archimedean place v by
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—log, [x|, = v(x)log,N(v) if v{p

'EF,V(X) = .
—log, Nr,q,(x) if v|p
where N(v) is the number of elements of the residue field of F' at v and we normalize
as v(ir) = 1 for a uniformizer 7 at v of F'. We also denote £, by ¢, if there is no
fear of confusion. We define the global cyclotomic logarithm £y by £ 1= )" {F,.
Then {r(x) = 0 forx € F*.

Let A be an abelian variety over F and A" the dual abelian variety of A. For a
finite place v of F, let Dy(A)(F,) be the group of divisors algebraically equivalent
to 0 defined over F, and Z(A4)°(F,) the group of zero cycles of degree 0 defined
over F,. We denote by

(Do(A)(F,) x Zo(A)°(F,))e

the subgroup of Dy(A)(F,) x Zy(A)°(F,) consisting of pairs with disjoint support.
Let N be an L-vector subspace of the Dieudonné module M4 ® L complemen-
tary to the Hodge filtration. We recall the local p-adic height pairing

( ’ )P,V,N : (DO(A)(FV) X ZO(A)O(FV))e — L

associated to N with the logarithm £, : F,* — Q,,.

First we recall the theta group. (See Moret-Bailly 1981; Mumford 1970.) Let
A/OF, be the Néron model of 4/ F, and A° the identity component. Let A" be
the Néron model of AV. Then the rational equivalence class D of D € Dy(A)(F,)
defines a point in AV (F,) = AY(Of,) = Extlfppf (A°, G,,). Hence we have an
exact sequence

1 G X A 1 (12)

as abelian fppf-sheaves on OF, (actually, it is exact as Zariski sheaves), and X5 is
represented by a smooth separated commutative group scheme over OFp, .
Over Spec F,, this exact sequence is isomorphic to

1 G Xp A 1 (13)

where Xp is given by Spec(Sym O (—D)) \ {the zero section}, the line bundle
associated to O4(D) minus the zero section with group law from the primitivity
(algebraically equivalent to zero). Hence attached to D, there is a section sp : A \
|D| — Xp which is canonical up to a translation by an element of G,,. Note that
the isomorphism class of the extension (13) corresponds to the rational equivalence
class of D. However, here, we choose the particular choice of the extension in the
isomorphism class with the section sp associated to the divisor D. We identify
X5 ® F, with Xp.
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Suppose that A has good reduction at all places over p. We now define a
morphism £, that makes the following diagram commutative.

00— 05 &L —— 25(0R)OL — (0L —0

| |

0——> F*®L — Xp(F,)QL —— A(F,)QL ——0

L =—— L.

(The rows are exact but vertical sequences are not.) When v } p, the logarithm ¢,
is unramified at v, namely, ¢, is trivial on Ojév. Then ¢, is uniquely extended to £p ,
so that the restriction to X (OF,) is trivial. Now assume that v | p. Let M 4 be the
Dieudonné module of the special fiber of .4 at v. We take an L-vector subspace N
of Moy suchthat My, = N @ FillMA,L as L-vector spaces, which defines a
splitting as L-vector spaces of the exact sequence

0—— Fil'My;, —— My — My /Fil'M,; ——0.

Since M 7' = {0}, the exact sequence

0 ML Mo, 1L Mg,, L 0.

Gm,

splits as F'-modules by using the subspace M}é:i ®q, Fy = Mg,, L. Weput Np :=
N & (M}é;i ® F,). Then we obtain an L-linear map

Fil'Mx,. — Mx,.0/Np = Mar/N =Fil'My,.
The pullback by this map defines a splitting as L-linear vector spaces

spyn ¢ A(F)®L = Homy (Fil' M4 1, L) —> Homy (Fil'Mx, 1, L)
= Xp(F,)®L.
Here for Y = A or Xp, we identify
Homp, e (Fil' My, . F, ® L) = Hom (Fil' My, 1, L)
by the trace map t : F, — Q,. We extend the logarithm £, to £p, on Xp (Fv)®Z[,L

so that it is trivial on the image of sp, v .
The local p-adic height pairing at a finite place v is defined as

(D, a)pyn =Ly (l_[ SD(Pi)m)
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for a zero cycle a = Y . n;(P;) € Zo(A)°(F,) prime to D fixed by Gal(F,/F,).
Here we are writing the group law of X'p multiplicatively. There is an ambiguity of
a constant multiple for sp but the pairing is well-defined since ) ; n; = 0.

Proposition 9. The local p-adic height pairing
( s )p,v,N . (DO(A)(FV) X ZO(A)O(FV))e — L

has the following properties.

1. {, )pvn is bilinear (whenever this makes sense).
2. If D = (h) is principal, then

((h). a)pyn = m]f[ h(P;)")

forazero cycle a =Y n;(P;) € Zo(A)’(F,) prime to D fixed by Gal(F,/F,).
3. For any finite morphism ¢ : A — A, we have

(d)*D, a)p,v,N = (Ds P 0'>p,v,N-

4. For any divisor D € Dy(A)(F,) and any point xo € A(F,) \ |D|, the morphism
on A(F,) \ |D|

x = (D, (x) = (x0)) pwN

is continuous for the v-adic topology on A(F,) and the p-adic topology on L.
If v is prime to p, the pairing is characterized by the above properties.
The global p-adic height pairing can be defined as the sum of local p-adic height

pairings

AY(F)x A(F) —> L. (a.b) > > (a".b)pun.

Here &’ is a divisor that represents a and b’ is a zero cycle > _ n;[b;] of degree zero
with " n;b; = b, and we choose a’ and b’ so that they have no point in common.
The value ) (a’,b'),, n is independent of the choice a’ and ’.

3.3 Norm Construction of p-Adic Height Pairings

In this subsection, we give a norm construction of the p-adic local height pairing
associated to an adequate L-vector subspace N° of M ; , for the formal group A at
v| p. Then we show that the pairing coincides with that of Zarhin-Nekovar associated
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to the splitting of the Hodge filtration by ¢! (@~ (N°)) where ¢ : M4 ; — My,
is the natural map induced by the formal completion. Note that if A is ordinary at
v, N° must be zero by the adequateness, and the splitting coincides with that by the
unit root subspace.

We use the same notation as in the previous subsection. We assume that v| p and
put K = F, and W = Op, for simplicity. Let A be the formal group of A over W.
The formal completion induces an exact sequence of Dieudonné modules

c

0 My My

M, 0.

where Mj{”L‘ is the unit root subspace of M 4 ; of the Frobenius F. (cf. Katz 1979,
Corollary 5.7.7, 5.7.8). Let N° be an adequate L-vector subspace of M 4 ;. In the
following we define a splitting

st A(R)®L —> Xp(F)RL.

2%

Then the p-adic (local) height pairing is constructed just as Zarhin-Nekovai’s except

that we use the local section s}, o instead of sp, .

We consider L-linear maps
Zanet Zane kT -1 = A(pW)L, (14)
iong Zay s kT -1 —> Xp(pW)L. (15)

Here we put N3 := N° @ (M Y=! ® K). Note that X ; , . is an isomorphism since
Xp.L AN

N° is adequate. On the other hand, by Proposition 2, we have isomorphisms

84 wo t Z4 o k[T =1y = Homy (M 4, /N°, L), (16)

Sxyng t Zapns kLTI -1y = Hom (Mg, /N5, L). (17)

Since My , = M; & (MY=! ® K) as L-vector spaces, isomorphisms (16)
D, Xp,L
and (17) induce an isomorphism

Z jno kAT -1y = Z g, wg RUTD -1)- (18)
Hence combined with (14) and (15), we have the desired section

s, A(FR)®L —> Xp(F)SL.
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By construction, it is straightforward to see that s}y'vs coincides with sp y for

N=c (@ (N°) =" (N) & MY}

where we regard as M4, = Mj“‘i ® M 4, by the splitting as F-modules. In

particular, s}V does not depend on the choice of the Lubin-Tate extension of Q,,.

Now we describe sV in terms of admissible norm systems. Let N° be an

adequate L-vector subspace of M ;,. For xo € A(W) ® L, we can take an

admissible norm system (x,), € L ® [, fl("_l)(m,,) interpolated by an element
of Z 4 yo (k[[T]]) with Tri/0 X1 = xo by (14) (here we used the adequateness).

Lemma 2. There exists an admissible norm system (3,)n>1€L®[ [ 7=, )E'l()n_l) (my,)
that is a lift of (xn)n for the exact sequence

0 — Gp(m,) — Z" Y (my), —= "D (m,), — 0.

If (x,)y is a Q-norm system, then we can take (X,), so that it is also a Q-norm
system.

Proof. We take x € Z 3 No(k[[T]]) interpolating (x,),. By (18), we can take a lift
X eZy, NS (K[[T]]) of x. Then X, := X, N3 (X) gives a desired system. Let
R e Z,[t] be a monic polynomial such that R(V)M + = {0} and all roots of R have
p-adic absolute values strictly greater than |p|, = 1/p. Moreover, since A is the
formal group of an abelian variety, we may choose R so that R(1) # 0. Then by the
definition of N5, we have R(Y)X(w)(T) = c(w) logz (T') for some constant ¢(w)
forallw € M . Hence (X,)n is an R-norm system. Suppose that (x,) is a Q-norm
system for Q € Z,[t]. Then we may assume Q is a divisor of R and put R = PQ.
We let y, = Q(tr)(X,). Then (y,), is a P-norm system of G, but it must be also
a norm compatible because it is obtained by the Perrin-Riou lift. However, since
P(1) # 0, this system must be trivial.

It is straightforward to see that the local section s}",0 can be given by

A(W)L —> XA‘D(W)Ls X Trl/ofcl.
Here we take an admissible Q-norm system (x,), with Q(1) # 0 and Try0 = x,

then (X,) is an admissible Q-norm lift of (x,),.
We may also define a section

AW), — Xp(W)1/(Kerl, ® L),  x — Tripk

for any admissible lift (X,). The well-definedness is checked as follows. If (¥,),
is another admissible lift of (x,), then y, — x,, defines an admissible norm system
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of Gm, which must be norm compatible. Hence Try/o(¥; — X1) is a universal norm
in G, (W), and therefore contained in Ker Z ® L.

4 An Application for the p-Adic Gross-Zagier Formula

In this section we generalize the p-adic Gross-Zagier formula in Kobayashi (2013)
to newforms for I'H(N) of weight 2 with arbitrary Fourier coefficients (not
necessarily in Q). Most parts of the proof in Kobayashi (2013) also work in this case
(or have been already proven in Kobayashi (2013)). The missing part is the theory
of the p-adic height pairing on abelian varieties at non-ordinary primes developed
in this paper.
Let f = >0 a,(f)q" be a normalized eigen newform for I3 (N) of weight 2.
Let p be a prime number such that (p, N) = 1 and we fix a complex embedding
: Q = C and a p-adic embedding ¢ » :Q — C,. We fix real and purely
imaginary periods .Qf (e.g. Shimura periods) and a system of p-power roots of
unity (¢,n), that is a generator of Z,(1). Let & be a root of 12 —a,(f)t + p = 0
in C,, such that |p/a|, < 1 where a,(f) is regarded as an element of C,, by i
and ¢,. It is known that there is a one-variable p-adic analytic distribution d s, of
order < 1 satisfying that

10 LA 7. D)
/ o) = D=

for a non-trivial Dirichlet character y of conductor p” with the Gauss sum (), and

_ L(fD
25 dﬂf’a_(l a) eF

(cf. Amice and V€lu 1975; Mazur et al. 1986; Visik 1976.) Here the L-values on the
right hand side are algebraic and regarded as in C,, by (oo and ¢,,. Then the p-adic
L-function .Z, ( f, «, s) is defined as an analytic function of s on Z, by

Zy(fa)i= [ (07 dugato)

p

where () is the natural projection Z; — 1 + 2pZ,.

Let J# be an imaginary quadratic field with discriminant dx = —§ such that
(dk, Np) = 1. Let ¢ be the quadratic character attached to 2" /Q. We define the
p-adic L-function of f over # by

Q27278
Ly(f1H a.s5) = Zp(fa. )L, (f @e e(p)a, s)Q—f
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where [ ® £ := Y 2, e(n)a,q" is the twist of f by & and

.Qf IZ/ wr NG
Xo(N)(©)

for wy = Y a,q"dq/q = 2mif(r)dt with ¢ = exp(2wit). If all rational
primes dividing N split in %, then .Z,(f/# ,a,1) = 0 since L(f/% 1) =
L(f,1)L(f ® &,1) = 0 by looking at the sign of the functional equation.

Let Xo(N) be the modular curve over Q for IH(N) and let J = Jo(N) be its
Jacobian variety. There is an idempotent e s in Endg J ® Q ¢ such that

er(I'(Xo(N), 2x,xy0) ® Q) = Qroy.

Here Q is the field ()] (Q({a,(f)}1)), and we let @, be defined over Qs by too.
Let L be the p-adic closure of ¢ ,(Q r)(«) in C,. Let M be the Dieudonné module
attached to the special fiber of J at p. By the Albanese map Xo(N) — Jo(N),
X > [x] — [o0], the space of invariant holomorphic forms can be regarded as

Ly = T'(Xo(N), 2x,v)/0) ®2 Qp C My @z, Q,

and Fil'M; ® Qp = VL. Then the Frobenius F acts on the space e (M ; ® L) and
the characteristic polynomial is > — a »(f)t + p.Let N, be a subspace of M; ® L
complementary to the Hodge filtration such that e s N, is the a-eigensubspace of F
of e s (M; ® L). Then we consider the p-adic height pairing on Jo(N )(.%") attached
to Ny, ®q # (with the cyclotomic logarithm £ )

(o Vpora s JoN)H) X Jo(NN(A) — L

where we identify Jo(N) with its dual Jo(N)" by the principal polarization.

Let 57 be the Hilbert class field of JZ". We assume that all rational prime numbers
dividing N split in JZ". Then there exists a Heegner point 7,2 € Xo(N)(5¢) that
represents a cyclic isogeny C/O_y — C/.4#~! of order N where (N) = A4 .A4*
in O_ . (There exist several choices of Heegner points but we fix one since the p-
adic height does not depend on the choice.) We also put 7,2 € Jo(N)(5%) by the
negative of the Albanese map (see Remark 4.2 in Kobayashi (2013) for the sign
convention) and put 2z r := e Tt/ v 2w € Jo(N)(Z) @ Q.

Then the p-adic Gross-Zagier formula for f is stated as follows.

Theorem 3. Suppose that p splits in & . Then

Ly 1t o = (1= 1) (12— ey )
T ,0,8) [s=1 = u ( &) ( 8(p)a) LH L ZH ) o

where u = $0%, /2.
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The formula is proven in Perrin-Riou (1987) for an ordinary p and in Kobayashi
(2013) for a supersingular p for f with rational coefficients. If the p-adic height is
a non-trivial function, we can also show the same formula for an inert prime p by a
simple trick. (See the proof of Theorem 5.8 in Kobayashi (2013).) The strategy of
the proof is as follows. We construct two p-adic modular forms F' and G related to
the p-adic height of the Heegner point and the derivative of the p-adic L-function
respectively. We compare their Fourier coefficients by independent calculations and
show that “the f-part” of F and G coincide, which gives the p-adic Gross-Zagier
formula.

As in the complex case, the p-adic modular form F is defined as

o0
F = Z Z(Z%s Tnzlp) ptaq™
o€Gal(H ) A ) m=1

For G, we first construct the p-adic measure @ on Z; with values in the space
of p-adic modular forms by the p-adic convolution of the Eisenstein and theta
measure. Then put

G(s) ::/Z (x)*"ldo

X
P

and G = (d/ds)G(s)|s=1. “The f-part” of G(s) is expected to be related to
the p-adic L-function .Z,(f/ %, a,s). In fact, if p is ordinary, this is done by
using Hida’s ordinary projection which is considered as an analogue of Sturm’s
holomorphic projection and also enables us to take the f-part of G(s) p-adically
(essentially the Petersson inner product with f). In the non-ordinary case, the
convergence condition arising from taking the f-part is not admissible and the
direct analogue to the ordinary case does not work. (In fact, £, (f/J", a,s) is in
some sense a critical slope p-adic L-function since it cannot be characterized by the
interpolation property because the corresponding power series has denominators
of the logarithmic order.) In Kobayashi (2013), to overcome this difficulty, we
introduced a (naive) two variable p-adic Eisenstein measure @@ on Z; X Z; whose
restriction to the diagonal direction coincides with @ (both variables are in the
cyclotomic directions and “the f-part” of the integral of the function (x)*~!(y)/~!
with respect to @ corresponds to the product Z,(f,a,5)Z,(f ® &,&(p)a,1)).
This two-variable measure is constructed by using products of Eisenstein series
(essentially, Kato’s zeta element in the space of modular forms (Kato 2004)). Then
the convergence condition related to taking the f-part of ®® on the vertical and
horizontal directions is good enough and we can approximate the diagonal direction
by using these directions to relate G(s) to £, (f/% ", a, s). Calculations concerning
G are written in Kobayashi (2013) for modular forms of weight 2 for IH(N) with
general coefficients.

For the calculation of Fourier coefficients of F, we use the decomposition of
the global height into the local heights. The local height at v } p is described
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geometrically as the intersection number on the integral model of Xy(/N). Hence
the calculation is reduced to the classical case (Gross and Zagier 1986). For the
local height at v | p, we show that it is essentially equal to zero. (We show that the
“ f-part” vanishes. 2). The proof in Kobayashi (2013) also works in our case if we
use the theory of the p-adic height developed in this paper. So we do not recall the
details, but we just recall the setting to apply to our theory.

We now assume that p is non-ordinary, that is, ¢,(a,(f)) is not a p-adic unit.
Hence there is no unit root part in ey (M; ®z, L). Since we are interested in the
f-part, we may assume that (1 — e;)N, is of the form (M ® L) & N’ with
F-stable N'. Then N, is F-stable and adequate by Corollary 2 and Proposition 6.
We can also use the norm construction of the p-adic height pairing for N, = @ (N,).

Let J be the formal group of the proper smooth model of Jo(N) over Z,. Then
by the Albanese map we can embed

F(Xo(N), 2x,30) ® Qp =L; ®Q, C M; ®Q,

and Fil' M; ® Q, = VL; ® Q,. We also have ey (M; ®2z, L) = e;(M; ®z, L).

Let 7%, be the ring class field for the order Z + p”" O . Let K be the completion
of 7 = J4 at a place w over p and let K, be the completion of %, at the place
over w. (The place w is not necessary the place compatible with ¢,.) Since p splits
in JZ, the extension K, /Q, is abelian and Koo = U, K, is a Z,-extension over K
obtained by a Lubin-Tate formal group over Z, of height 1. We denote the integer
ring of K by W and the residue field by k. By Proposition 5.1 of Kobayashi (2013),
there is an admissible norm system (c,), € e/(L ® [o2, J (m,,)) obtained from
Heegner points such that

Trn+l/n5'n+l - ap(f)cn +ci—1=0
forn > 2 in f(mn)L with Tric; = zw.> As in Example 1, this system

is interpolated by an element of Zyo(k[[T]]) C f(k[[T]])L with a W ®z, L-
submodule N® C M, ® L suchthates N® =e;(L; ® W ® L). Now we put

Cna = Tryt1/nCpt1 — pCn @ ale j(mn)L-
Then by Proposition 8, the system (c, o) is an admissible norm system satisfying

Trn+l/ncn+l,ol = QCp

2 Since the local height is defined on divisors and not on divisor classes, we have to give an
appropriate meaning of “the f-part”.

3Tn Kobayashi (2013), we took ¢, so that Tr; /0C1 = aZyp. So ¢, in this paper differs by o from
that in Kobayashi (2013).



The p-Adic Height Pairing on Abelian Varieties at Non-ordinary Primes 289

forn > 1 and interpolated by an element of Zy, g, k(kK[[T]]). Note thate s Ny, ®q,
K is givenas (V —a)ey (Fil' M;®W ®L). By Lemma 2, we can take an admissible
lift (Ch o) € L ® ]_[,fil fg’_l)(mn) satisfying Tt 41/nCp+1,0 = &Cno. Then we have

~ —_ +1 ~
Sllj)o,rvi-r,lzvo (zor) = Tr1/0 Clg = " Tr,,/o Cna

for any n with n = 1 mod v. Then the proof in Kobayashi (2013) works in our
setting.
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Iwasawa Modules Arising from Deformation
Spaces of p-Divisible Formal Group Laws

Jan Kohlhaase

1 Introduction

Let p be a prime number, and let k be an algebraically closed field of characteristic
p.Let W = W(k) denote the ring of Witt vectors with coefficients in k, and let K
denote the quotient field of W. We fix a p-divisible commutative formal group law
G of height & over k and denote by R := R‘éef the universal deformation ring of
G representing isomorphism classes of deformations of G to complete noetherian
local W -algebras with residue class field k. Denote by G the universal deformation
of G to R and by Lie(G) the Lie algebra of G. For any integer m, the m-th tensor
power Lie(G)®™ of Lie(G) can be viewed as the space of global sections of a vector
bundle on the universal deformation space Spf(R) which is equivariant for a natural
action of the automorphism group I" := Aut(G) of G.

If G is of dimension one, then the formal scheme Spf(R) is known as the moduli
space of Lubin-Tate. It plays a crucial role in Harris’ and Taylor’s construction of
the local Langlands correspondence for GL;,(Q,). Moreover, the I”-representations
Lie(G)®™ and their cohomology figure prominently in stable homotopy theory (cf.
the introduction to Devinatz and Hopkins (1995)). Still assuming G to be one
dimensional, a detailed study of the I'-representation R was given in Kohlhaase
(2013). For h = 2 it led to the computation of the continuous I"-cohomology of
R, relying on the foundational work of Devinatz, Gross, Hopkins and Yu. The only
prior analysis of p-adic representations stemming from equivariant vector bundles
on deformation spaces of p-divisible formal groups concern the p-adic symmetric
spaces of Drinfeld. These were studied extensively by Morita, Orlik, Schneider and
Teitelbaum (cf. Orlik 2008; Schneider and Teitelbaum 2002 and our remarks at the
end of Sect. 2).
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The aim of the present article is to generalize and strengthen some of the
results of Gross and Hopkins (1994) and of the author in Kohlhaase (2013). To
this end, Sect. 1 and the first part of Sect.2 give a survey of the theory of p-
divisible commutative formal group laws. This includes the classification results
of Dieudonné, Lazard and Manin, as well as the deformation theoretic results of
Cartier, Lubin, Tate and Umemura. It follows from the work of Dieudonné and
Manin that the group I is a compact Lie group over Q,, (cf. Corollary 1).

In the second part of Sect. 2, we prove that the action of I" on Lie(G)®™ extends
to the Iwasawa algebra A := W][I'] of I' over W. This gives Lie(G)®" the
structure of a pseudocompact module over A (cf. Corollary 2 and Theorem 5). In
Sect. 3, we pass to the global rigid analytic sections (Lie(G)®™)"¢ of our vector
bundles and show that the action of I" extends to a continuous action of the locally
analytic distribution algebra D(I") of I" over K. As a consequence, the action of
I" on the strong continuous K -linear dual of (Lie(G)®™)"e is locally analytic in the
sense of Schneider and Teitelbaum (cf. Theorems 6 and 7).

We note that the continuity and the differentiability of the action of I" on R"
were first proven by Gross and Hopkins if G is of dimension one (cf. Gross and
Hopkins 1994, Propositions 19.2 and 24.2). Using the structure theory of the algebra
D(I'), we arrive at a more precise result for arbitrary m and G, avoiding the use of
the period morphism. Our approach essentially relies on a basic lifting lemma for
endomorphisms of G which is also at the heart of the strategy followed by Gross
and Hopkins (cf. Lemma 1 and Proposition 1).

A major question that we have to leave open concerns the coadmissibility of
the D(I")-modules (Lie(G)®")"2 in the sense of Schneider and Teitelbaum (2003),
section 6. Taking sections over suitable affinoid subdomains of Spf(R)", it is
related to the finiteness properties of the resulting Banach spaces as modules over
certain Banach completions of A ®y K. In Sect. 4, we assume G to be of dimension
one and consider the restriction of (Lie(G)®™)"€ to an affinoid subdomain of
Spf(R)"¢ over which the period morphism of Gross and Hopkins is an open
immersion. By spelling out the action of the Lie algebra of I", we show that one
naturally obtains a continuous module over a complete divided power enveloping
algebra U;p (§) constructed by Kostant (cf. Theorem 8). Here g is a Chevalley order
in the split form of the Lie algebra of I". If # = 2 and m > —1 then in fact
(Lie(G)®™)"e gives rise to a cyclic module over ng (8) (cf. Theorem 9). This result
might indicate that (Lie(G)®™)"¢ does not give rise to a coherent sheaf for the
Fréchet-Stein structure of D(I") considered in Schneider and Teitelbaum (2003),
section 5 (cf. Remark 3).

Gross and Hopkins (1994) consider formal modules of dimension one and finite
height over the valuation ring o of an arbitrary non-Archimedean local field. The
case of p-divisible formal groups corresponds to the case 0 = Z,. However, neither
the deformation theory nor the theory of the period morphism have been worked out
in detail for formal o-modules of dimension strictly greater than one. This is why
we restrict to one dimensional formal groups in Sect.4 and to p-divisible formal
groups throughout.
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Conventions and notation. If S is a commutative unital ring, if r is a positive
integer, and if X = (Xj,..., X,) is a family of indeterminates, then we denote by
S[X] = S[Xi, ..., X,] the ring of formal power series in the variables X1, ..., X,
over S. We write f = f(X) = f(Xi,...,X,) for an element f € S[X]. If
n = (ny,...,n,) € N is an r-tuple of non-negative integers then we set |n| :=
ny+...+n, and X" := X;“ -+ X/ If i and j are elements of a set then we
denote by §;; the Kronecker symbol with value 1 € S'ifi = j and 0 € Sifi # j.
If h is a Lie algebra over S then we denote by U(h) the universal enveloping algebra
of h over S. Throughout the article, p will denote a fixed prime number.

2 Formal Group Laws

Let R be a commutative unital ring, and let d be a positive integer. A d -dimensional
commutative formal group law (subsequently abbreviated to formal group) is a d-
tuple G = (Gy,...,Gy) of formal power series in 2d variables G; € R[X,Y] =
R[X,,.... X4, Y1,...,Y,], satisfying

(F1) Gi(X.0) = X;,

(¥2) Gi(X.Y) = G; (¥, X), and

(F3) Gi(G(X.Y),Z) = Gi(X,G(Y. Z))
forall 1 < i < d. It follows from the formal implicit function theorem (cf.
Hazewinkel 1978, A.4.7) that for a given d -dimensional commutative formal group

G there exists a unique d-tuple (¢ € R[X]? of formal power series with trivial
constant terms such that

Gi(X,1g(X)) =0 forall 1<i<d

(cf. also Zink 1984, Korollar 1.5). Thus, if S is a commutative R-algebra, and if
I is an ideal of S such that S is /-adically complete, then the set /¢ becomes a
commutative group with unit element (0, ..., 0) via

Xx+¢y:=G(x,y) and —x:=i6(x).

Example 1. Let R = Z and d = 1. The formal group Ga(X, Y) =X +7Yis
called the one dimensional additive formal group. We have (g (X) = —X. The

formal group @m(X, Y) =0+ X)1+7Y)—1is called the one dimensional
multiplicative formal group. We have (¢ | (X) =2, (=Xx)".

Let G and H be formal groups over R of dimensions d and e, respectively.

A homomorphism from G to H is an e-tuple ¢ = (¢y,..., @) of power series
@i € R[X] = R[X\,...,X4] in d-variables over R with trivial constant terms,
satisfying

9(G(X.Y)) = H(p(X), p(Y)).
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Ifo : G — G and ¢y : G’ — G” are homomorphisms of formal groups then
we define i o ¢ through (¢ o ¢)(X) := ¥ (¢(X)). This is a homomorphism from
G to G”. We let End(G) denote the set of endomorphisms of a d-dimensional
commutative formal group G over R, i.e. of homomorphisms from G to G. It is
a ring with unit ¢ = X = (Xy,..., Xy), in which addition and multiplication
are defined by (¢ +¢ ¥)(X) = G(p(X), (X)), (—¢)(X) := t6(¢(X)) and
¥ - @ = ¥ o ¢. In particular, End(G) is a Z-module. Given m € Z, we denote by
[m]g € R[X]“ the corresponding endomorphism of G. We denote by Aut(G) the
automorphism group of G, i.e. the group of units of the ring End(G).

Denoting by (X) the ideal of R[X] generated by X1, ..., Xy, the free R-module

Lie(G) := Homg((X)/(X)?, R)

of rank d = dim(G) is called the Lie algebra of G (or its tangent space at 1¢). It
is an R-Lie algebra for the trivial Lie bracket. Non-commutative Lie algebras occur
only for non-commutative formal groups (cf. Zink 1984, Kapitel 1.7). An R-basis of
Lie(G) is given by the linear forms (aixi)liiid sending f +(X)? to %(0) Here ;—)2
denotes the formal derivative of the power series f with respect to the variable X;.

Any homomorphism ¢ : G — H of formal groups as above gives rise to an
R-linear ring homomorphism ¢* : R[Y:,...,Y.] — R[Xi,..., X,], determined
by ¢*(Yi) = ¢; forall 1 <i < e.lItis called the comorphism of ¢. It maps (Y) to
(X), hence (Y)? to (X)?, and therefore induces an R-linear map

Lie(p) : Lie(G) — Lie(H)

via Lie(p)(8)(h + (Y)?) := 8(¢*(h) + (X)?). In the R-bases (aix,-)i (resp.
(a;f/j) ;) of Lie(G) (resp. Lie(H)), the map Lie(p) is given by the Jacobian matrix

gT‘p;(O))i,j € R* of p.If ¢ : G — G’ and ¥ : G’ — G” are homomorphisms
of formal groups, then (Y o ¢)* = ¢* o ¥* and Lie(y o ¢) = Lie(y) o Lie(gp). If
H = G then one can use (F1) to show that the map (¢ — Lie(p)) : End(G) —
Endg(Lie(G)) is a homomorphism of rings. In particular, Lie(G) becomes a module
over End(G) and we have Lie([m]g) = m - idpi¢(g) for any integer m.

If p is a prime number and if R is a complete noetherian local ring of residue
characteristic p, then a homomorphism ¢ : G — H of formal groups is called
an isogeny if the comorphism ¢* makes R[X] a finite free module over R[Y] (cf.
Tate 1967, section 2.2). Of course, this can only happen if d = e. A formal group
G over a complete noetherian local ring R with residue characteristic p is called
p-divisible, if the homomorphism [p]g : G — G is an isogeny. In this case the rank
of R[X] overitself via [p]7; is a power of p, say p" (cf. Tate 1967, section 2.2; this
result can also be deduced from Zink 1984, Satz 5.3). The integer 7 =: ht(G) is
called the height of the p-divisible formal group G.

If R = k is a perfect field of characteristic p, the necessary tools to effectively
study the category of p-divisible commutative formal groups over k were first
developed by Demazure (1986, Chapter III). His methods were later generalized
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by Cartier in order to describe commutative formal groups over arbitrary rings
(cf. Lazard 1975, Chapters III & IV, or Zink 1984, Chapters III & IV).

Sticking to the case of a perfect field k of characteristic p, we denote by W :=
W (k) the ring of Witt vectors over k. Let 0 = (x + x?”) denote the Frobenius
automorphism of k, as well as its unique lift to a ring automorphism of W. Recall
that a o~ !-crystal over k is a pair (M, V), consisting of a finitely generated free
W-module M and amap V : M — M which is o !-linear, i.e. which is additive
and satisfies

V(am) = o ' (a)V(m) forall ae W, me M.

We shall be interested in those o ~!-crystals (M, V) which satisfy the following two
extra conditions (here D stands for Dieudonné):

(D1) pM S V(M)
(D2) V mod p is a nilpotent endomorphism of M/pM.

For the following fundamental result cf. Zink (1984), page 109.

Theorem 1 (Dieudonné). If k is a perfect field of characteristic p then the
category of p-divisible commutative formal groups over k is equivalent to the
category of o~ '-crystals over k, satisfying (DI) and (D2). a

Let W[F, V] be the non-commutative ring generated by two elements F' and V
over W subject to the relations

VE=FV =p, Va=0 ")V and Fa=o(a)F forall aeW.

The equivalence of Theorem 1 associates with a p-divisible commutative formal
group G its (covariant) Cartier-Dieudonné module M¢. This is a V-adically
separated and complete module over W[V, F] such that the action of V is injective.
Since G is p-divisible, also the action of F is injective, and the underlying W -
module of Mg is finitely generated and free. In particular, the pair (Mg, V) is
a 0_1-crystal over k, satisfying pMg = VFMg < VMg, i.e. condition (D1).
Condition (D2) follows from the V-adic completeness of M. We also note that
V and F give rise to a short exact sequence

0 —— Mg/FMg —L= Mg /pMg —= Mg /VMg — 0,

of k-vector spaces in which dimg(M¢/pMs) = ht(G) and dimg(Mg/VMg) =
dim(G).

Conversely, if (M, V') is ao ™ -crystal over k satisfying (D1), then V' is injective.
In fact, (D1) implies that V' becomes surjective (and hence bijective) over the
quotient field K of W. Setting F := V! p, the W-module M becomes a module
over W[F, V] which is V-adically separated and complete if condition (D2) is
satisfied.

1
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Recall that a o~ !-isocrystal over k is a pair (N, f) consisting of a finite
dimensional K-vector space N and a o~ !-linear bijection f : N — N.If (M, V)
is a 0~ !-crystal over k which satisfies (D1) then (M ®yw K,V ® idg) is a 07!-
isocrystal over k. The o~ !-isocrystal which in this way is associated with the
Cartier-Dieudonné module of a p-disivible commutative formal group G over k,
classifies G up to isogeny (cf. Zink 1984, Satz 5.26 and the remarks on page 110;
alternatively, consult Demazure 1986, Chapter IV.1).

Given integers r and s with r > 0, consider the o0~ -isocrystal over k given by
(K[t]/("— p*),to0). Here K[t] denotes the usual commutative polynomial ring in
the variable ¢ over K on which o acts coefficientwise. If k is algebraically closed,
we have the following fundamental classification result of Dieudonné and Manin
(cf. Zink 1984, Satz 6.29; Demazure 1986, Chapter 1V.4; Lazard 1975, Proposition
VI1.7.42).

1

Theorem 2 (Dieudonné-Manin). If k is an algebraically closed field of charac-
teristic p then the category of o~ '-isocrystals over k is semisimple. The simple
objects are given by the o~ '-isocrystals (K[t]/(t" — p*),t o 0), where r and s are
relatively prime integers with r > 0. a

To a pair (r, s) of integers as in Theorem 2 corresponds a particular p-divisible
commutative formal group G, over k inside the isogeny class determined by the
o~ l-isocrystal (K[t]/(t" — p*),t o 0). According to Lazard (1975), Proposition
VI1.7.42, the endomorphism ring of G, is isomorphic to the maximal order of the
central division algebra of invariant & + Z € QQ/Z and dimension r? over Q p-

Corollary 1. If G is a p-divisible commutative formal group over an algebraically
closed field k of characteristic p then the endomorphism ring End(G) of G is an
order in a finite dimensional semisimple Q ,-algebra. Endowing End(G) with the p-
adic topology and the automorphism group Aut(G) of G with the induced topology,
Aut(G) is a compact Lie group over Q,,.

Proof. That End(G) is a p-adically separated and torsion free Z,-module can
easily be proved directly, using that G is p-divisible. It also follows from the fact
that the Cartier-Dieudonné module of G is free over W. According to Theorem 2
and the subsequent remarks there are central division algebras Dy, ..., D, over Q,
and natural numbers m,, ..., m, such that

End(G) ®z, Qp ~Mat(m; x my, D) x ... x Mat(m, x m,, D,)

as Qp-algebras. Since End(G) is p-adically separated, it is bounded in End(G) ®z,
Qp. Thus, it is a lattice in a finite dimensional Q,-vector space and must be
finitely generated over Z,. This proves the first assertion. Endowing End(G) with
the p-adic topology, it becomes a topological Z,-algebra and Aut(G) becomes a
compact topological group for the subspace topology. By the above arguments, it
is isomorphic to an open subgroup of []'_, GL,,, (D;), hence naturally carries the
structure of a Lie group over Q,.
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3 Deformation Problems and Iwasawa Modules

We continue to denote by k a fixed algebraically closed field of characteristic p. We
also fix a p-divisible commutative formal group G of dimension d over k. Denote
by W = W(k) the ring of Witt vectors of k and by C the category of complete
noetherian commutative local W -algebras with residue class field k. Let R be an
object of Cx and let m be the maximal ideal of R. A deformation of G to R is
a pair (G’, pg’), where G’ is commutative formal group over R and pgr : G —
G’ modm is an isomorphism of formal groups over k. Two deformations (G’, pg’)
and (G”, pg~) of G to R are said to be isomorphic if there is an isomorphism f :
G’ — G” of formal groups over R such that the diagram

G'modm
Pg'

G fmodm

G"modm

is commutative. Let Def; denote the functor from Ci to the category Sets of
sets which associates with an object R of C; the set of isomorphism classes of
deformations of G to R.If dim(G) = 1, then the following theorem was first proved
by Lubin and Tate (1966, Theorem 3.1), building on the work of Lazard. It was
later generalized by Cartier und Umemura, independently (cf. Cartier 1968,1969;
Umemura 1977).

Theorem 3. The functor Defg : Cr — Sets is representable, i.e. there is an object
R&¥' of Cr and a deformation G of G to RE" with the following universal property.
For any object R of C. and any deformation (G', pg’) of G to R there is a unique
W -linear local ring homomorphism ¢ : RdGef — R and a unique isomorphism
[¢] : 0«(G, pg) =~ (G', pc’) of deformations of G to R.' If h = ht(G) and d =
dim(G) denote the height and the dimension of G, respectively, then the W -algebra
R‘éef is non-canonically isomorphic to the power series ring Wui, ..., un—aya] in

(h — d)d variables over W. |

It follows from the universal property of the deformation (G, pg) that the
automorphism group Aut(G) of G acts on the universal deformation ring R%*
by W-linear local ring automorphisms. Indeed, given y € Aut(G), there is a
unique W-linear local ring endomorphism y of R&! and a unique isomorphism

[¥] : ¥«(G,ps) =~ (G, pg o y) of deformations of G to R¥!. It follows from

"Here ¢+ (G, pg) = (¢+(G), pg), where ¢4G is obtained by applying ¢ to the coefficients of G.
Since ¢ induces an isomorphism between the residue class fields of RdGef and R, we may identify
G modm R and ¢, G mod m.



298 J. Kohlhaase

the uniqueness that the resulting map Aut(G) — End(R&") factors through a
homomorphism

Aut(G) —> Aut(RE")

of groups. It is this type of representation that we are concerned with in this article.
To ease notation we shall denote by

R:= R¥

the universal deformation ring of our fixed p-divisible commutative formal group
G over k. Let m denote the maximal ideal of R. For any non-negative integer n we
denote by G,, := G modm" ™! the reduction of the universal deformation G modulo
the ideal m"*! of R. We have G ~ Gy via pg.

Lemmal. If n is a non-negative integer then the ring homomorphism
End(G, +1) — End(G,), induced by reduction modulo wm" ™!, is injective.

Proof. The formal group G,y is p-divisible because the comorphism [p](*[‘;nJrl is
finite and free. Indeed, it is so after reduction modulo m, and one can use Bourbaki
(2006), I11.2.1 Proposition 14 and II1.5.3 Théoreme 1, to conclude. Since the ideal
m" T (R/m"*2) of R/m" 2 is nilpotent, the claim follows from the rigidity theorem
in Zink (1984), Satz 5.30.

The preceding lemma allows us to regard all endomorphism rings End(G,) as
subrings of End(Gy). The main technical result of this section is the following
assertion.

Proposition 1. For any non-negative integer n the subring End(G,) of End(Gy)
contains p" End(Gy).

Proof. We proceed by induction on n, the case n = 0 being trivial. Let n > 1
and assume the assertion to be true for n — 1. Set R, = R/m"*! Let ¢ €
p"'End(Gy) € End(G,—;) and choose a family ¢§ € R,[X]? of power series
with trivial constant terms such that ¢ mod m” R,, = ¢. The d-tuple of power series
[Plg, o @ is then a lift of pp. We claim that it is an endomorphism of G,,.

Note first that [p]g, o ¢ depends only on ¢ and not on the choice of a lift ¢.
Indeed, if ¢’ is a second lift of ¢ with trivial constant terms, set ¥ = ¢’ — @.
Setting y := (§ + ¥) —¢, @, we have @' = ¢ +¢, x. Further, the power series
x satisfies ymodm” = ¢ —g,_, ¢ = 0, hence has coefficients in m"R,,. Since
pm” C m"tland (m")” € m"*! for any integer m > 2, we have [p]g, o y = 0
and hence

[plc, o @ = [plc, (@ +c, x) = ([Plc, ©P) +¢, ([Pls, © x) = [Pls, © @.

as desired.
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If n € R,[X] is a family of power series with trivial constant terms, set 8, :=
85,(X,Y) :=n(X +g, Y)—c, 1(X)—g, n(Y). Since ¢ reduces to an endomorphism
of G,—1, the power series §; has coefficients in m”. As above, this implies [p]g, ©
85 = 0 and thus

81le, 08 = ([Plg, o ®)(X +¢, ¥) —c, ([Plc, © §)(X) —¢, ([Plg, © §)(Y)
= [plg, (85) = 0.

As a consequence, [p]g, © ¢ € End(G,), and thus pp € End(G,). Since ¢ was
arbitrary, we obtain the desired inclusion p” End(Gg) € End(G,).

According to Corollary 1, the group Aut(G) is a profinite topological group. A
basis of open neighborhoods of its identity is given by the subgroups 1 + p" End(G)
with n > 1. If m denotes the maximal ideal of the local ring R, the W -algebra
R is a topological ring for the m-adic topology. We are now ready to prove
the following result, a particular case of which was treated in Kohlhaase (2013),
Proposition 3.1. The argument is borrowed from the proof of Gross and Hopkins
(1994), Lemma 19.3. Let us put

I':=TIy:=Aut(G) and I, :=1+4 p"End(G) for n>1.

Theorem 4. The action of ' on R = R%ef is continuous in the sense that the map
(v, ) = v(f)) : I’ x R = R is a continuous map of topological spaces. Here
I" X R carries the product topology. If n is a non-negative integer then the induced
action of Ty on R /m" 1 is trivial.

Proof.  As in the proof of Kohlhaase (2013), Proposition 3.1, it suffices to prove the
second statement. Let y € I, and consider the deformation (G, pg o y) of G to
R, = R/m"*! Denote by pr, : R — R, the natural projection and let y, denote
the unique ring homomorphism y, : R — R,, for which there exists an isomorphism
of deformations [y,] : (¥u)«(G, pg) >~ (G,, pg © y) (cf. Theorem 3). Note that also
the ring homomorphism pr, o y : R — R, admits an isomorphism of deformations
(pr, © ¥)«(G, pg) =~ (G, pg o y), namely the reduction of [y] modulo m"*!. By
uniqueness, we must have y, = pr, oy and [y,] = [y] mod m"T!,

Since the map (0 = pg o 0 o pg; 1) is a ring isomorphism End(G) — End(Gy),
Proposition 1 shows that pg o y o p@l € Aut(G,) and therefore defines an
isomorphism of deformations (pr,)«(G, pz) = (Gun,pc) =~ (G, pc o y). By
uniqueness again, we must have y, = pr, o y = pr,. This implies that y acts
trivially on R, and that [y] mod m"*! = pg oy o pg'.

If H is a profinite topological group then we denote by

A(H):=W[H]:= lim (W/p"W)[H/N]
nzl,(N_Sl(,H
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the Iwasawa algebra (or completed group ring) of H over W. The above projective
limit runs over all positive integers n and over all open normal subgroups N of
H.If n and n’ are positive integers with n’ < n, and if N and N’ are two open
normal subgroups of H with N € N’, then the transition map (W/p"W)[H/N]| —
(W/p" W)[H/N'] is the natural homomorphism of group rings induced by the
surjective homomorphism H/N — H/N' of groups and the surjective ring
homomorphism W/ p"W — W/ W, Endowing each ring (W/ p"W)[H/N] with
the discrete topology, A(H) is a topological ring for the projective limit topology.
It is a pseudocompact ring in the terminology of Brumer (1966), page 442, because
each of the rings (W/p"W)[H/N] is Artinian. Recall that a complete Hausdorff
topological A(H)-module M is called pseudocompact, if it admits a basis (M;);es
of open neighborhoods of zero such that each M; is a A(H)- submodule of M for
which the A(H)-module M/ M; has finite length. For brevity, we will set

A = A(Aut(G)).

Corollary 2. The action of Aut(G) on R = RE' extends to an action of A and
gives R the structure of a pseudocompact A-module.

Proof. Since R is m-adically separated and complete, we may consider the natural
isomorphism

R~ lim R/m"*!,
H

n>0

According to Theorem 4, the action of the group ring W[Aut(G)] on R/m"*!
factors through (W/p"™'W)[Aut(G)/(1 + p" End(G))] where 1 + p" End(G) is
an open normal subgroup of Aut(G). Thus, R/m"*! can be viewed as a A-module
via the natural ring homomorphism A — (W/p"T'W)[Aut(G)/(1 + p" End(G))].
The transition maps in the above projective limit are then A-equivariant. This proves
the first assertion.

As for the second assertion, the ideals m"*! of R are open and A-stable, being
the kernels of the A-equivariant projections R — R/m"*!. They form a basis of
open neighborhoods of zero of R, and the quotients R /m”*! are even of finite length
over W C A.

Let Lie(G) denote the Lie algebra of the universal deformation G of G. This is
a free module of rank d = dim(G) over R. Given y € Aut(G), we extend the
ring automorphism y : R — R to an automorphism y : R[X] — R[X] by setting
y(X;) = X; forall 1 <i < d.Itinducesa homomorphismy : Lie(G) — Lie(y«G)
of additive groups. We define y : Lie(G) — Lie(G) as the composite of the two
additive maps

Lie([y])
—_—

Lie(G) — = Lie(1.G) Lie(G),
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with [y] : y«G — G as above. Given a second element y’ € Aut(G), we define y’ :
Lie(y«G) — Lie(y.(y«G)) as before. Further, y.[y] : yi(y«G) — y.G denotes
the homomorphism obtained by applying ' € Aut(R) to the coefficients of [y] €
R[X]¢. One readily checks that the diagram

Lie(r.G) =", 1ie(@)

.

Lie(1.(1.6)) = Lie(1G)

is commutative. Further, the uniqueness assertion in Theorem 3 implies that [y’y] =
[y'] o yL[y]. Therefore,

(y'y)™ = Lie([y'y]) o (y'y) = Lie([y']) o Lie(yy[y]) o y" o ¥
= Lie([y'D) o (¥ oLie([y]) o (¥') ) oy oy =7 0o7.

As a consequence, we obtain an action of Aut(G) on the additive group Lie(G)
which is semilinear for the action on R in the sense that

7(f-8) =y(f)-y(©6) forall f € R,5 € Lie(G).

To ease notation, we will again write y(§) for 7 (§).

Given a positive integer m we denote by Lie(G)®™ the m-fold tensor product of
Lie(G) over R with itself. This is a free R-module of rank d” with a semilinear
action of Aut(G) defined by

Y61 ®- @) :=y(61) @+ ® Y(Im)-

We also set Lie(G)®° := R and Lie(G)®” := Homg(Lie(G)® ™ R) if m is a
negative integer. In the latter case Lie(G)®" is a free R-module of rank d ™™ with a
semilinear action of Aut(G) defined through

Y(@)(E ® - ®8—m) =Yy ' (61) ® - ® ¥ (5-m)))-

For any integer m we endow the R-module Lie(G)®™ with the m-adic topology for
which it is Hausdorff and complete. By the semilinearity of the Aut(G)-action, the
R-submodules m” Lie(G)®™ are Aut(G)-stable for any non-negative integer 7.

As an easy consequence of Proposition 1 and Theorem 4, we obtain the following
result.

Theorem 5. Let m and n be integers with n > 0. The action of Aut(G) on
Lie(G)®™ is continuous in the sense that the structure map Aut(G) x Lie(G)®" —
Lie(G)®™ of the action is continuous. Here the left hand side carries the
product topology. The induced action of 1 + p*"T'End(G) on the quotient
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Lie(G)®" /m" ! Lie(G)®™ is trivial. In particular, the action of Aut(G) on
Lie(G)®™ extends to an action of A and gives Lie(G)®™ the structure of a
pseudocompact A-module.

Proof. As in the proof of Theorem 4 and Corollary 2, it suffices to show that the
action of 1 + p?**!End(G) on Lie(G)®" /m"*! Lie(G)®™ is trivial. By definition
of the action and Theorem 4 we may assume m = 1. Setting G, = G mod m"*!,
as before, we have Lie(G)/m"*! Lie(G) = Lie(G,). Since 2n + 1 > n, Theorem 4
and its proof show that the map y mod m"*! : Lie(G,) — Lie(G,) is given by
Lie(pg o y o pg') where pg o y o pg' is contained in 1 + p?"*!'End(Go) € 1 +
p" T End(G,) (cf. Proposition 1). Therefore, it suffices to show that the natural
action of 1 + p"T!'End(G,) C End(G,) on Lie(G,) is trivial. However, if ¢ €
End(G,) and if § € Lie(G,), then

Lie(1 4+ p" ') (6) = § + p"t! Lie(p)(§) = 8,

because p" ! e m" T,

Before we continue, let us point out an important variant of the deformation
problem considered above. It concerns the moduli problems considered by Rapoport
and Zink (1996).

Let G be a fixed p-divisible group over the algebraically closed field k of
characteristic p, i.e. an fppf-group scheme over Spec(k) for which multiplication
by p is an epimorphism. Denoting by Nil, the category of W-schemes on which
p is locally nilpotent, let Mg : Nil, — Sets denote the set valued functor
which associates to an object S of Nil, the set of isomorphism classes of pairs
(G, pg’), where G’ is a p-divisible group over S and pg’ : G5 — G’§ is a quasi-
isogeny (cf. Rapoport and Zink 1996, Definition 2.8). Here S denotes the closed
subscheme of S defined by the sheaf of ideals pOgs. According to Rapoport and
Zink (1996), Theorem 2.16, the functor Mg is represented by a formal scheme
which is locally formally of finite type over Spf(W). If G is a p-divisible one
dimensional commutative formal group law as in Sect. 1, then M is the disjoint
union of open subschemes M., n € Z, which are non-canonically isomorphic to
Spf(R&") (cf. Rapoport and Zink 1996, Proposition 3.79). The reason is that any
quasi-isogeny of height zero between one dimensional p-divisible formal group
laws over k is an isomorphism.

One can generalize the moduli problem even further by considering deformations
of p-divisible groups with additional structures such as polarizations or actions by
maximal orders in finite dimensional semisimple Q,-algebras (cf. Rapoport and
Zink 1996, Definition 3.21). The corresponding deformation functors are again
representable, as was proven by Rapoport and Zink (1996, Theorem 3.25). An
important example was studied by Drinfeld (cf. Rapoport and Zink 1996, 3.58). The
generic fiber of the representing formal scheme is known as Drinfeld’s upper half
space over K. Instead of continuous representations of Aut(G) as in Theorem 4,
it gives rise to an important class of p-adic locally analytic representations
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in the sense of Schneider and Teitelbaum. This particular class of representations
was studied extensively by Morita, Orlik, Schneider and Teitelbaum (cf. Orlik 2008;
Schneider and Teitelbaum 2002). It found aritheoremetic applications to the de
Rham cohomology of varieties which are p-adically uniformized by Drinfeld’s
upper half space (cf. Kohlhaase and Schraen 2012). In the next section we shall
see that the deformation spaces we consider here give rise to locally analytic
representations, as well.

4 Rigidification and Local Analyticity

We keep the notation of the previous section and denote by k an algebraically closed
field of characteristic p and by G a fixed commutative p-divisible formal group over
k.Let h and d denote the height and the dimension of G, respectively. We denote by
W the ring of Witt vectors of k and by K the quotient field of W. We let R = R‘éef
denote the universal deformation ring of G (cf. Theorem 3).

According to Theorem 3, the rigidification Spf(R)" of the formal scheme
Spf(R) in the sense of Berthelot (cf. de Jong 1995, section 7) is isomorphic to the

h — d)d-dimensional rigid analytic open unit polydisc ﬁ(h_d) 4 over K. We let
( g ytic op poly K
R := O(Spf(R)")

denote the ring of global rigid analytic functions on Spf(R)"¢. Any isomorphism
R >~ W{u] of local W -algebras extends to an isomorphism

R ~ { Z cqut” | cq € K and ali_l)noo lca|r!® = 0forall 0 < r < 1}

aeNh—d)d le]

of K-algebras, where | - | denotes the p-adic absolute value on K. This allows us
to view R"2 as a topological K-Fréchet algebra whose topology is defined by the
family of norms || - ||¢, given by

1D cou®||e == sup{lca| p~ "/}
o
o

for any positive integer £. Letting R?g denote the completion of R" with respect to

the norm || - ||¢, the K-algebra R?g can be identified with the ring of rigid analytic
functions on the affinoid subdomain

BV .= {x € Spf(R)™ | u; (x)| < p~"/* forall 1 <i < (h—d)d}

of Spf(R)"2. Further, R"& ~ lim, R® is the topological projective limit of the K-
Banach algebras R?g. In fact, by a cofinality argument and Bosch et al. (1984),
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6.1.3 Theorem 1, R" is the topological projective limit of the system of affinoid
K-algebras corresponding to any nested admissible open affinoid covering of
Spf(R)"e.

By functoriality, the automorphism group I" = Aut(G) of G acts on Spf(R)"¢
by automorphisms of rigid analytic K-varieties. This gives rise to an action of I"
on R" by K-linear ring automorphisms. By the above cofinality argument, any
of these automorphisms is continuous. The goal of this section is to show that the
induced action on the strong topological K -linear dual of R" is locally analytic in
the sense of Schneider and Teitelbaum (2002, page 451).

Fix an algebraic closure K¢ of K. According to de Jong (1995), Lemma 7.19,
the maximal ideals of the ring Rx := R ®w K are in bijection with the points of
Spf(R)"e. It follows from Bosch et al. (1984), 7.1.1 Proposition 1, that the latter are
in bijection with the Gal(K *¢| K)-orbits of

BU—D4 (kag) .= {x e (KU)W | |x;| < 1forall 1 <i < (h—d)d}.

A point x representing one of these orbits corresponds to the kernel of the surjective
K-linear ring homomorphism Rx — K(x) := K(x1,...,X(—a)a) S K¢, sending

J @) o f(x).
The following result constitutes the technical heart of this section. It is a
straightforward generalization of Gross and Hopkins (1994), Lemma 19.3.

Proposition 2. Let n and £ be integers withn > 0 and £ > 1. If y € I, and if
feR®then|ly(f)— flle < p™* I fle-

Proof. First assume f = u; forsome 1 <i < (h—d)d.If
BY™ ! (K¥) = {x € (K*)#7 | |x;| < p~/ forall 1 <i < (h—d)d},
then ||g||¢ = sup{lg(x)| | x € Byl_d)d (K%2)} for any g € R"e. Thus, we need to

see thatif x € szh_d)d (K¥®) andif y := x-y = y(u)(x), then |x;—y;| < p~*+V/¢,
Denoting by W the valuation ring of K2, consider the commutative diagram

\

Wa]g

14

R R

of homomorphisms of W -algebras, in which the left and right oblique arrow is given
by evaluation at y and x, respectively. Choosing z € W32 with |z| = p~!/*, we have
X; € ZWalE for any j. Further, p € W2 because £ > 1. As a consequence, the
right oblique arrow maps mg to W@, Note that y(u;) € mg, so that we obtain
yi =uj(x-y) = y(u;)(x) € zW"€, as well. Therefore, also the left oblique arrow
maps mg to zZW 2, Now consider the induced diagram
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R/my! R/

>~

Walg/(zn+l)_

According to Theorem 4, the upper horizontal arrow is the identity. It follows that
xi—y; € "HIWA e |x; —y;| < p~ "t/ as required. In particular, y stabilizes

IB%Eh_d) d (K®2) and therefore is an isometry for the norm || - ||, on R".
To prove the proposition, the continuity of y allows us to assume f = u® for
some @ € N—D4 The assertion is trivial for |a| = 0. If |&| > 0 choose an

index i with o; > 0. Define § through 8; := «; if j # i and B; := o; — 1. If
x € B (K¥) andif y = x - y, then

ly®)(x) —u®(x)] = [y* — x| = [y;y# — x;xP|

IA

max{|yi|ly* = xP|, [y = x| 1P ).

Here |y;|[y# — xP| < p="|ly@P) —uPlle < p=@+VE WPl = p=/*||u®]]¢ by
the induction hypothesis. Further, |y; — x; ||x#| < p=0+D/Ep=IBl/E = p=n/t) |||,
as seen above. Thus, we obtain |y (u®)(x) — u®(x)| < p~"/*||u®||, for all x €
IB%Eh_d) d (K®2). This proves the proposition.

A topological group is a Lie group over QQ, if and only if it contains an open
subgroup which is a uniform pro-p group (cf. Dixon et al. 2003, Definition 4.1
and Theorem 8.32). For the compact p-adic Lie group I” = Aut(G) we have the
following more precise result. We let

e:=1 if p>2 and e¢:=2 if p=2.

Lemma 2. For any non-negative integer n we have I'LPH = Iyyn. The open
subgroup .4y, of I' is a uniform pro-p group.

Proof. As for the first assertion, the proofs of Dixon et al. (2003), Lemma 5.1
and Theorem 5.2, can be copied word by word on replacing My (Z,) by End(G)
and GL,(Z,) by Aut(G). Further, Iy, is a powerful pro-p group by Dixon et al.
(2003), Theorem 3.6 (i) and the remark after Definition 3.1. That it is uniform
follows from Dixon et al. (2003), Theorem 3.6 (ii), and the first assertion.

Fix an integer n > ¢. By Lemma 2 and Dixon et al. (2003), Theorem 3.6,
the group I3,/I,41 is a finite dimensional F,-vector space. Choosing elements
Y1,...,¥r € I, whose images modulo I3, form an [F ,-basis of I3,/ I},41, (Dixon
et al. 2003), Theorem 4.9, shows that (y1, ..., y,) is an ordered basis of I, in the
sense that the map Z/, — I, sending A to yf '...y* is a homeomorphism.

Set b; == y; — 1 € A(I}) and b% := b‘f‘ ---b% for any ¢ € N". By Dixon
et al. (2003), Theorem 7.20, any element 6 € A([,) admits a unique expansion of
the form
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A= Z d,b® withd, € W forall o € N,

aeN"

For any £ > 1 this allows us to define the K-norm || - ||¢ on the algebra A(I},)k :=
A(l,) ®w K through

I Zdaba”l := sup{|dy|p =1},

Remark 1. A more accurate notation would be the symbol || - ||§") for the above
norm on A([},)k. It does generally not coincide with the restriction of || - ||2m) to

Ak € A(l,)k if n = m. However, there is an explicit rescaling relation
between the families of norms (|| - ||f{”))g and (|| - ||§{m))g on A(I})k (cf. Schmidt
2008, Proposition 6.2). Since we will never work with two different groups I, and
I, at once, we decided to ease notation and use the somewhat ambiguous symbol

I~ fe-

By Schmidt (2008), Proposition 2.1 and Schneider and Teitelbaum (2003),
Proposition 4.2, the norm ||- || on A([},)k is submultiplicative whenever £ > 1. As
a consequence, the completion

M= (T de€ K.l ™ =0

of A(I,)k with respect to || - ||¢ is a K-Banach algebra. The natural inclusions
A ke+1 = A(Iy) k¢ endow the projective limit

D(Fn) = LizilA(Fn)K,é

with the structure of a K-Fréchet algebra. As is explained in Schneider and
Teitelbaum (2003), section 4, a theorem of Amice allows us to identify it with the
algebra of K-valued locally analytic distributions on I,. Similarly, we denote by
D(I") the algebra of K-valued locally analytic distributions on I" (cf. Schneider
and Teitelbaum 2002, section 2).

Theorem 6. For any integer { > 1 the action of I', on R"® extends to R?g and

makes R?g a topological Banach module over the K -Banach algebra A(I,) g 4. The
action of I' on R"® extends to a jointly continuous action of the K -Fréchet algebra
D(I"). The action of I' on the strong continuous K-linear dual (Rrig);J of R is
locally analytic in the sense of Schneider and Teitelbaum (2002), page 451.

Proof. First, we prove by induction on || that |[p* f||¢ < [||b%||¢||f]|¢ for any
f € R". This is clear if || = 0. Otherwise, let i be the minimal index with o;; > 0
and define B through 8; = «; if j # i and B; := «; — 1. In this case, Proposition 2
and the induction hypothesis imply
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6% £1le = (i — DBP flle < p~/116P f 1]
< p B £l1e = 1161l £ 1o,

as required. This immediately gives ||A - f|l¢ < ||Allel| fle for all A € A(I,)k
and f € Rg. Thus, the multiplication map A(I,)x X Rx — R is continuous, if
A(l;)k and Rk are endowed with the respective || - ||¢-topologies, and if the left
hand side carries the product topology. Since R is dense in R?g, we obtain a map
ATk % R?g — R?g by passing to completions. By continuity, it gives R?g the
structure of a topological Banach module over A(I%)k ¢.

Passing to the projective limit, we obtain a continuous map D(I7,) x R"¢ — R"ig,
giving R" the structure of a jointly continuous module over D(I7.). Since D(I") is
topologically isomorphic to the locally convex direct sum @,r,er;/r,yD(I%) (cf.
Schneider and Teitelbaum 2002, page 447 bottom), R"™ is a jointly continuous
module over D(I").

It follows from Schneider (2002), Proposition 19.9 and the arguments proving the
claim on page 98, that the K -Fréchet space R"¢ is nuclear. Therefore, Schneider and
Teitelbaum (2002), Corollary 3.4, implies that the locally convex K-vector space
(Rrig);) is of compact type and that the action of I" obtained by dualizing is locally
analytic.

Using Theorem 5, the preceding result can be generalized as follows. Fixing an
integer m, the free R-module Lie(G)®™ gives rise to a locally free coherent sheaf
on Spf(R). For any positive integer £ we denote by (Lie((Gf)‘X’”’)zig the sections of
its rigidification over the affinoid subdomain ]Bﬁh_d)d of Spf(R)"2. This is a free

R?g-module for which the natural R?g -linear map
RJ® @ Lie(G)®" — (Lie(G)®")}¢

is bijective (cf. de Jong 1995, 7.1.11). We denote by (Lie(G)®")"2 the space of
global sections of the rigidification of Lie(G)®™ over Spf(R)"2. This is a free R"-
module for which the natural R"¢-linear maps

R™ ® Lie(G)®" — (Lie(6)®")™ — lim(Lie(G)®");* (1)
L

are bijective. Further, (Lie(G)®™)"¢ ~ (Lie(G)"¢)®™, where the latter tensor
products and dualities are with respect to R"®,

By functoriality, the group I" = Aut(G) acts on (Lie(G)®™)"2 in such a way
that the left map in (1) becomes I"-equivariant for the diagonal action on the left.
In particular, it is semilinear for the action of I" on R"2. We endow (Lie(G)®")"e
and (Lie(G)®™),® with the natural topologies of finitely generated modules over
R and R;®, respectively. This makes them a nuclear K-Fréchet space and a K-
Banach space, respectively. The right map in (1) is then a topological isomorphism
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for the projective limit topology on the right. With the same cofinality argument
as for R" one can show that any element of I" acts on (Lie(G)®™)"¢ through a
continuous K -linear automorphism.

Theorem 7. Let m be an integer. For any integer £ > 1 the action of I, on
(Lie(G)®™)e extends to (Lie((G})@’m)zlg and makes (Lie((G})@’m)zlg a topological
Banach module over the K-Banach algebra A(Ie—1)ky¢. The action of I' on
(Lie(G)®™)is extends to a jointly continuous action of the K-Fréchet algebra
D(I"). The action of I on the strong continuous K -linear dual [(Lie((Gx)®m)rig]27
of (Lie(G)®™)"8 is locally analytic.

Proof. Set M]" := (Lie(G)@””)?g. Any R-basis (81, ...,8s) of Lie(G)®" can be

viewed as an R?g-basis of M;". Writing M[" = @®;_, R?g&-, the topology of M}" is
defined by the norm

1Y fiille = supt[| fille} if  fio.... fv € R}

i=1

We choose an ordered basis (yy,...,¥,) of I3.—; and let b; := y; — 1 be as
before. By induction on || we will first prove the fundamental estimate ||%5||, <
[16%]1¢18]|¢ for alla € N” and § € (Lie(G)®™)". As in the proof of Theorem 6 this

is reduced to the case |a| = 1,1i.e. b* = y; — 1 for some 1 < i < r. Further, we
may assume § = f§; forsome f € R%and1 < j <.
There are elements 7, ..., r; € R such that y;(6;) = Zi=1 r,8,. According to

Theorem 5 we have (y; — 1)(§;) € m*Lie(G)®", i.e.r; — 1 € m® and r, € m® for
v # j. We claim that ||r||, < p~¢/* for any integer ¢ > 0 and any element r € m°.
Indeed, this is clear for ¢ = 0. For general c, the ideal m¢ of R is generated by all
elements of the form p®uf witha € N, B € N~ and g 4 |B| = c. Since £ > 1
we have |p?| = p~@ < p~%/!, and the claim follows from the multiplicativity of
the norm || - ||¢ on R. Now

(i = D(F8)Ne < max{]|(vi — D) - viGPIle 1 - (i = DG}
= max{[| Y (i = D(OrSulle- 1L el 187 =Y rbulle.

where ||(v; =1 (/)-rulle < [|(ri=D(lle < p@~V/¢]| £ || by Proposition 2. Here
p V< p=/f = ||y — 1. Moreover, |[r; — 1|[e < p=/“ and ||r,|[e < p~*/*
if v # j by the above claim. This finishes the proof of the fundamental estimate.

As an immediate consequence, we obtain that ||A - §||¢ < ||A]|¢]|S]|¢ for any
A € A(I»—1)k and any § € Lie(G)®" ®w K. The proof proceeds now as in
Theorem 6.

According to Schneider and Teitelbaum (2003), Theorem 4.10, the projective
system (A(I%.—1)k.¢)¢ of K-Banach algebras endow their projective limit D (I%5.—1)
with the structure of a K-Fréchet-Stein algebra. In the terminology of Schneider
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and Teitelbaum (2003), section 8, the family ((Lie(G)®™),®); is a sheaf over
(D(Ie—1). (]| - |]¢)e) with global sections (Lie(G)®™)"¢ for any integer m. One
of the main open questions in this setting is whether this sheaf is coherent,
i.e. whether the A(I%—i)k¢-modules (Lie(G)®™),® are finitely generated and
whether the natural maps

A(Dae—1) Kt @ A(Dse—1) k041 (Lie(G)@)m)Zg_l — (Lie(G)®m)?g

are always bijective. This would amount to the admissibility of the locally analytic
I" -representation [(Lie(G) ®"’)rig]§) in the sense of Schneider and Teitelbaum (2003),
section 6. Nothing in this direction is known. In the next section, however, we will
have a closer look at the case dim(G) = 1 and £ = 1. We will see that in order to
obtain finitely generated objects, one might be forced to introduce yet another type
of Banach algebras.

S Non-commutative Divided Power Envelopes

In this final section we assume that our fixed p-divisible formal group G over the
algebraically closed field k of characteristic p is of dimension one. If /i denotes the
height of G then the endomorphism ring of G is isomorphic to the maximal order
op of the central Q,-division algebra D of invariant % + Z (cf. Gross and Hopkins
1994, Proposition 13.10). In the following we will identify End(G) and op (resp.
Aut(G) and 07,). We will also exclude the trivial case # = 1. We continue to denote
by R = R%ef the universal deformation ring of G (cf. Theorem 3).

Consider the period morphism @ : Spf(R)"¢ — P}}(_l of Gross and Hopkins,
where P}}(_l denotes the rigid analytic projective space of dimension 7 — 1 over
K (cf. Gross and Hopkins 1994, section 23). In projective coordinates @ can be
defined by @(x) = [go(x) : ... : @u—1(x)] where @p,...,gn—1 € R" are
certain global rigid analytic functions on Spf(R)"¢ without any common zero. The
power series expansions of the functions ¢; in suitable coordinates uy, ..., up—
can be written down explicitly by means of a closed formula of Yu (cf. Kohlhaase
2013, Proposition 1.5 and Remark 1.6). According to Gross and Hopkins (1994),
Lemma 23.14, the function ¢, does not have any zeroes on IBE}I’_I C Spf(R)"¢, hence
is a unit in R?g. We set

L % rig .
wii=—€R" for 1<i<h-1
%o

By Gross and Hopkins (1994), Lemma 23.14, any element / € R|® admits a unique
expansion of the form f = Y -1 doW® with dy € K and limy| o0 |de| p 71 =
0. Further, @ restricts to an isomorphism @ : B!~! — @®(B"™!) (cf. Gross and
Hopkins 1994, Corollary 23.15).
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Denote by Q,: the unramified extension of degree & of Q, and by Z, its
valuation ring. It was shown by Devinatz, Gross and Hopkins, that there exists an
explicit closed embedding o7, <> GL;(Q ) of Lie groups over Q, such that & is
o07,-equivariant (cf. Kohlhaase 2013, Proposition 1.3 and Remark 1.4). Here o7, acts
on Spf(R)"¢ through the identification 0}, >~ Aut(G), and it acts by fractional linear
transformations on ]P/}{l via the embedding 07, <> GL;(Q ).

The morphism @ is constructed in such a way that 45*(9]1)/;;1 (1) = Lie(G)"s. It
follows from general properties of the inverse image functor that @*O]Ph 1(m) =

(Lle(G) ®myrie for any integer m. Restricting to IB%h !, we obtain an o D-equwarlant

and R}®-linear isomorphism (L16:((G;)®’")rlg ~ Rrlg @t of free R|*-modules of
rank one.

We denote by 0 the Lie algebra of the Lie group o7, over Q. It is isomorphic
to the Lie algebra associated with the associative Q,-algebra D. According to
Schneider and Teitelbaum (2002), page 450, the universal enveloping algebra
Uk(0) := U(d ®q, K) of 0 over K embeds into the locally analytic distribution
algebra D(I%.—1). Together with the natural map D(I2.—1) — A(l2e—1)k.1,
Theorem 7 allows us to view

= (Lie(G)®")}®

as a module over Ug (0) >~ U(g®QPh K) =: Uk(g), where g := 0®q, Q,» = g, as
Lie algebras over Q ,». Explicitly, the action of an element ¢ € g on M{" is given by

d
¥6) = L (PO @)l

Here exp:g - >GL,(Q,) is the usual exponential map which is defined locally
around zero in g. Further, a sufficiently small open subgroup of GL;(Q ) acts on
M]" through the isomorphism M|" =~ (’)P;}(fl (m)(@(B~1)). Writing an element
r € gasamatrix ¥ = (drs)o<rs<h—1 With coefficients a,; € Qph, fix indices
0 <i,j < h—1 and denote by r;; the matrix with entry 1 at the place (i, j)
and zero everywhere else. In the following we will formally put wy := 1.

Lemma 3. Leti, j and m be integers with0 <i,j <h—1.1If f € R;ig then
Wiy, if j #0.
v (feo) = (mf—Zz zaw)%, ifi=j=0,
wimf — i wedlyer, ifi > j = 0.
Proof. 1f i = j and if 7 is sufficiently close to zero in Q. then exp(7y;;) is

the diagonal matrix with entry exp(¢) at the place (i,i) and 1 everywhere else
on the diagonal. Recall that GL,(Q,:) acts by fractional linear transformations
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on the projective coordinates ¢y, ..., @p— of P}I’(_l. Thus, exp(l;,,)(wz) wy if
£ #£0 #0,exp(ty;)(w;) = exp(t)w; if i # 0, and exp(¢xo0)(w¢) = ——~wy for all
1<l<h-1.

If i # j then exp(tx;;) = 1 + t1;; in GLy(Q,n). Thus, exp(tri;)(we) = wy if
L #j#0, exp(t;,-j)(wj) =w; +itw;if j # 0, and exp(tr;0)(we) = we/(1 +1tw;)
forall 1 <€ <h—1. Writing f = f(wy,...,w,—1) we have

CXP(I )

exp(trij)(fog) = f(exp(trij)(wi), ..., exp(trij) (wWh—1)) - exp(trij) (o)™

Here exp(trij) (o) = @o if j # 0, exp(txo0)(¢0) = exp()go and exp(ixio)(po) =
@o +te; if 1 <i < h—1.Ttis now an exercise in elementary calculus to derive the
desired formulae.

Note that (Lie(G)®™)"¢ is a D(I.—)-stable K-subspace of M|" and hence is
g-stable. If m = 0 then Lemma 3 shows that in order to describe the g-action in the
coordinates uy, . .., up—1, one essentially has to compute the functional matrix

ou;
= (8w, Vi<i,j<h—1-

Proposition 3. The matrix A := (gf’ M(pi)1<,~ j<h—1 over R"i¢ js invertible

over the localization R(p0 We have F = (pOA L, which is a matrix with entries in
@oR"8. Moreover, we have Z/—l ®; awl S quR”gfor anyindex1 <i <h—1.

Proof. Let B := (au o<i,j<h—1 with Bu() := ¢;. We have B € GL;,(R") by a
result of Gross and Hopkms (1994, Corollary 21.17). Setting

1 0 .--0 dpo ... 90

%o Ay Jup—1
=1 @O 0
N = . ) , we have NB =
: " : A
—¢n-1 0 %o 0
This already shows that A is invertible over Rgf. Denoting by co,...,cp—1 the

columns of B~! = (cij)ij € GL, (Rﬁg), we obtain

@, * *
0
-1 —1 =1, _ p—la—1 _
(@O Z;)(pjc]s(po clv---quO Ch—l)_B N - : A_l
J= :
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By the chain rain rule we have

h—1

3w, aw; 3u4 5 09 o . Oug
i BWJ Zauz 3w Z% (—900— l)_

sothat F = (pOA !, As seen above, the right hand side has entries in ¢y R"¢. Further,

we have Z e = ijl @90 = —@icio € 3 RE for any index 1 <i <
J

h—1.

Together with Lemma 3, Proposition 3 shows that x(x;) € R" for any ¢ € g and
any 1 <i < h — 1, as was clear a priori. For & = 2, Lemma 3 and Proposition 3
reprove Gross and Hopkins (1994), formula (25.14).

Coming back to the g-module M{" for general m, consider the subalgebra s[;, of
g over Q. Let t denote the Cartan subalgebra of diagonal matrices in sl;, and

let {e1,...,ep—1} C t* denote the basis of the root system of (sl,t) given by
ei(diag(to, ..., th—1)) := t, 1 —1t;. Welet A| € t* denote the fundamental dominant
weight deﬁned by Ay := "~Y(h —i)e;. We have

= h—1

A (diag(to, ..., th—1)) = Z(h —i)(ti1— 1) = —((h — Dty — Zt )=1

l—l i=1

for any element diag(t, ..., t—1) € t C sl;.

Proposition 4. For any integer m > 0, the subspace W := Zlalsm K -w*@g of
M" is g-stable. The action of sl, on W is irreducible. More precisely, W is the
irreducible sly,-representation of highest weight m - A,.

Proof. It follows from Lemma 3 that W is stable under any element r;; with j # 0
ori =j =0.If1 <i <h—1andif n is a non-negative integer then

B0 el = [[Jon — el — O] - w*wey,
£=0

as follows from Lemma 3 by induction. Therefore, rjo(W* (') = 0if |a| = m. If
|| < m then r;o(w*) has degree || + 1 < m. This proves that W is g-stable.

The above formula also shows that W is generated by ¢;' as an sl;-representa-
tion. If ff' € W is non-zero, then Lemma 3 shows that (zg; - - ;gé’h 1))( fop) is
a non-zero scalar multiple of ¢g' for a suitable multi-index «. Therefore, the sl;-
representation W is irreducible.

Finally, if y = diag(fo, ..., #—1) € ttheng(w* (') = (to(m —|a|) + Z?;} a;t;) -
w%@g' by Lemma 3. Here,
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h—1 h—1 h—1 i
fom —laf) + Y ety = tom + Y _ai(ti 1) = (m-A =Y i Y e)(®).

i=1 i=1 i=l1 (=1

This shows that m - A, is the highest weight of the sl;-representation W.

Remark 2. The statement of Proposition 4 can be deduced from a stronger result
of Gross and Hopkins. Namely, if m = 1 then Lie(G)" contains an h-dimensional
algebraic representation of o7, (cf. Gross and Hopkins 1994, Proposition 23.2).
Under the restriction map Lie(G)"e — Lle(G)ng the derived representation of
g =0 ®q, Q, maps isomorphically to the g-representation W above.

We will now see that the action of g on M{" naturally extends to a certain divided
power completion of the universal enveloping algebra Uk (g). Note that if i, j, r and
s are indices between 0 and 4 — 1, then y;; -ty = 6;,¥is in g = gl,. Therefore,

0, if j #randi #s,

Tis if j =randi #s,
[xijvxrs] = (Sjrxis _Sisxrj = L .

—Lrjs if j #randi =s,

i —tj, ifj=randi =s.
Setting ;l’j = ploi=dy t;;, one readily checks that the same relations hold on
replacing r;; by ; and r,5 by 1., everywhere. It follows that the elements g/ ; spana
free Z ,n-Lie subalgebra of g that we denote by g. Since ad(;;j)2 =0ifi # j, and
since (e;41—¢;)([x}; . ¥;]) = 2ifi < j, it follows from Bourbaki (2006), VIIL.12.7
Théoréme 2 (iii), that the W -lattice g of g is the base extension from Z to W of a
Chevalley order of g in the sense of Bourbaki (2006), VIII.12.7 Définition 2.

ForO0<i <h—1andn > 0 we set

L i@ =)@ —n+ 1)
( ) = n,( € Uk(g).

n

We let U denote the W -subalgebra of Uk (g) generated by the elements (;;j)" /n!

fori # j and n > 0, as well as by the elements (I,ii) for0<i<h—1andn > 0.
It follows from Bourbaki (2006), VIII.7.12 Théoréme 3, that I/ is a free W -module
and that a W -basis of U{ is given by the elements

4j h—1 nij
%_ﬂw>ﬂ@>ﬂﬁ)
LV

i<j i>j

with £ = (£;),n = (n;;) € N"=D/2and m = (m;) € N". Here the products
of the ;ﬁj fori < j and i > j have to be taken in a fixed but arbitrary ordering
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of the factors. For split semisimple Lie algebras these constructions and statements
are due to KostantA(cf. Kostant 1966, Theorem 1, where U/ is denoted by B).
We denote by U the p-adic completion of the ring ¢/ and set

UP@) :=U ®w K.

According to the above freeness result, any element of U;p(ﬁ) can be written
uniquely in the form Z(,m,n demnbemn with coefficients dy,, € K satisfying

dimn — 0 as |£| + |m| + |n| — oo. Therefore, U;p(ﬁ) is a K-algebra containing
Uk(g). We view it as a K-Banach algebra with unit ball U and call it the complete
divided power enveloping algebra of .

Theorem 8. For any integer m the action of g on (Lie(G)®™)\® extends to a
continuous action of 0}?(3).

Proof. The ring of continuous K -linear endomorphisms of M{" = (Lie(G)®™)|* is
a K-Banach algebra for the operator norm. Since the latter is submultiplicative, the
set of endomorphisms with operator norm less than or equal to one is a p-adically
separated and complete W -algebra. Therefore, it suffices to prove that any element

of the form (;gj)"/n!,i # j,or (I"ii), 0 <i < h — 1, has operator norm less than or
equal to one on M{" whenevern > 0. If o € N=1and 0 < i, j < h—1then

o w g ifi =j #0,
(m — |a])"weg, ifi =j =0,
() wew " wieg ifi # j #0,
nt(" ey wewrgm,ifi £ j =0,

r; (wWep) = 2

as follows from Lemma 3 by induction. Here the generalized binomial coefficients
are defined by

n n!

(x) o x(x=1)---(x—n+1) <7

for any integer x. Now [|(}_, daw®)@{'||1 = supy{|da | p~lel}. Bearing in mind our
convention wy = 1, we obtain the claim for (;ﬁj Y /nlifi # j.f0<i<h-1

then we obtain
U\ oo COweeg.ifi £0,
(ﬂ)(w (pO)_{(m—a)wa m ifi=0
(pO ’ : = .

n

This completes the proof.
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Theorem 9. Let m be an integer and set ¢ = wrlnaX{_l’m}H(p(’)". The U(g)-

submodule U(g) - ¢ of (Lie((G:)®’")Eig is dense. If h = 2 and m > —1 then
~dp 0 . m i
UL (9) - ¢ = (Lie(G)®™)[=.
Proof. Equation (2) shows that xomlaX{_l’m}H;‘f(‘) ¥y * € is a non-zero scalar
multiple of w*¢g’. Thus, K[w] - ¢’ C Uk(g) - ¢, proving the first assertion.

If » = 2 and m > —1 let us be more precise. Setting m’ := max{—1,m} + 1,
w = wj and ¢ := p},, we have 1" - ¢ = (—1)"n!p_"w”+’"/<p(’)" foranyn > 0
because (1) = (=) If f = Y psodnw" € R® then d, p" — 0 in K. Therefore,

A= )0 dytmr(—p)"E; converges in U;p(ﬁ) and we have fo' —A-c =

nt
an;()l d,w"@g'. The latter is contained in K[w] - ¢j' C Uk(g) - ¢, as seen above.

Remark 3. By aresult of Lazard, the image of Uk (g) >~ Ukx(d) in A([2.—1)k.1 1S
dense (cf. Lazard 1965, Chapitre IV, Théoreme 3.2.5). We state without proof that
the completion of Uk (g) for the norm || - ||; embeds continuously into U;p(ﬁ).

/ \n n
However, a formal series like ), ., p”% = Y20 does not converge

in A(I2¢—1)k.1- Therefore, one might have doubts whether M is still finitely
generated over A(12.—1)k.1-
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The Structure of Selmer Groups of Elliptic
Curves and Modular Symbols

Masato Kurihara

1 Introduction

1.1 Structure Theorem of Selmer Groups

Let E be an elliptic curve over Q. Iwasawa theory, especially the main conjecture
gives a formula on the order of the Tate Shafarevich group by using the p-adic
L-function (cf. Schneider 1983). In this paper, as a sequel of Kurihara (2003b, 2012,
2014), we show that we can derive more information than the order, on the structure
of the Selmer group and the Tate Shafarevich group from analytic quantities, in the
setting of our paper, from modular symbols.

In this paper, we consider a prime number p such that

(i) p is a good ordinary prime > 2 for E,

(ii) The action of G on the Tate module 7T),(E) is surjective where Ggq is the
absolute Galois group of Q,

(iii) The (algebraic) p-invariant of (E, Qeo/Q) is zero where Qoo/Q is the
cyclotomic Z ,-extension, namely the Selmer group Sel(E/Qwo, E[p*°]) (for
the definition, see below) is a cofinitely generated Z,-module,

(iv) p does not divide the Tamagawa factor Tam(E) = [[4.a(E(Qe) 1 E%(Qp)),
and p does not divide #£ (F,) (namely not anomalous).

We note that the property (iii) is a conjecture of Greenberg since we are
assuming (ii).
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For a positive integer N > 0, we denote by E[p"] the Galois module of
p" -torsion points, and E[p>®] = (Jy., E[p"]. For an algebraic extension F/Q,
Sel(E/F, E[p™]) is the classical Selmer group defined by

Sel(E/F, E[p"]) = Ker(H'(F, E[p")) — [ [ H'(F., E[p"))/ E(F)®Z/ p"),

so Sel(E/ F, E[p"]) sits in an exact sequence
0— E(F)®Z/p" —> Sel(E/F.,E[p"]) — HII(E/F)[p"] — 0

where III(E/F) is the Tate Shafarevich group over F. We define Sel(E/F,
E[p™]) = limSel(E/F, E[p"]).

Let P™) be the set of prime numbers £ such that £ is a good reduction prime for

E and £ = 1 (mod p"). For each ¢, we fix a generator 7, of (Z/{Z)* and define
lo; a
logg, (@) € Z/(t — 1) by n, """’ = a (mod £).

Let f(z) = Ya,e* " be the modular form corresponding to E. For a positive
integer m and the cyclotomic field Q(,,), we denote by o, € Gal(Q(u,)/Q) the
element such that 0,({) = ¢ for any { € w,,. We consider the modular element
Zam=l,(a,m)=l[%]0“ € C[Gal(Q(um)/Q)] of Mazur and Tate (1987) where [;-] =

2ni . ;lo/ ™ f(z)dz is the usual modular symbol. We only consider the real part

5 — Re([7])
O = Y —ot % € QGalQ(1y)/Q)] (1)
E
(a,m)=1
where .Qg' =/ ER) WE is the Néron period. Suppose that m is a squarefree product

of primes in PY). Since we are assuming the Go-module E[p] of p-torsion points is
irreducible, we know Oqu,,) € Z,[Gal(Q(i)/Q)] (cf. Stevens 1989). We consider
the coefficient of Oq(,,) of “T]y,, (04, — 1), more explicitly we define

< — Re([;;])
bn=Y_  —2=(]logs, (@) ez/p" 2)
a=1 QE Lm
(a,m)=1
where logg, (a) means the image of logg, (a) under the canonical homomorphism
Z/(t—1) — Z/p".Letord, : Z/p" — {0,1,...,N — 1,00} be the p-adic
valuation normalized as ord,(p) = 1 and ord,(0) = co. We note that ord, (,,)
does not depend on the choices of 7, for £|m. We define §; = 6 = Re([0])/ Qg’ =

L(E, 1)/,
For a squarefree product m of primes, we define €(m) to be the number of prime
divisors of m, namely e(m) = r if m = £;-...-£,. Let NV) be the set of squarefree

products of primes in PY). We suppose 1 is in N¥). For each integer i > 0, we
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define the ideal @;(Q)™% of Z/p" to be the ideal generated by all §,, such that
e(m) < i forall m € NV,

O Q)N = ({5, | e(m) < i andm € NV}) c Z/p". 3)

We define n; y € {0,1,...,N — 1,00} by ©;(Q)NV9 = p"in(Z/p") (we define
nin = ooif ©;(Q)™ = 0).

Theorem 1 (Kurihara 2014, Theorem B, Theorem 10.8 and (53)). We assume
that the main conjecture for (E, Qoo /Q) (see (9)) and the p-adic height pairing is
non-degenerate.

(1) n; n does not depend on N when N is sufficiently large (for example, when
N > 2ord,(no) where ng is the leading term of the p-adic L-function, see
§10.7 in Kurihara (2014)). We put n; = n; n for N > 0. In other words, we
define n; by

lim®; (QW = p"Z, C Z,.

We denote this ideal of Z, by ©; Q9.
(2) Consider the Pontrjagin dual Sel(E /Q, E[p®°])V of the Selmer group. Suppose
that
rankz, Sel(E/Q. E[p™])Y = r(€ Zx¢). and dimg, Sel(E/Q. E[p])” = a.
Then we have
Q) =...=60,.1(Q)Y = 0and 6,(Q)" # 0.
For anyi > r, n; is an even number, and
P =#Sel(E/Q, E[p™] Y )iors

ng =0, and

nyp—n

r+2 Mr427"r 44
)% e@/p T e

Sel(E/Q. E[p™])¥ ~ Z&" & (Z/p

®(Z/p T )P

hold.

In particular, knowing @; (Q)® for alli > 0 completely determines the structure
of Sel(E/Q, E[p™])" as a Z,-module. Namely, the modular symbols determine
the structure of the Selmer group under our assumptions.
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1.2 Main Results

We define
PV = (e eP™ | HOF, E[pN]) ~ 2/ p"}.

This is an infinite set by Chebotarev density theorem since we are assuming (ii) (see
Kurihara 2014, §5.8). We define N(IN) to be the set of squarefree products of primes
in T(IN). Again, we suppose 1 € NgN) . We propose the following conjecture.

Conjecture 1. Thereism € N(IN) such that §,, is a unit in Z/p", namely
ordp(gm) = 0.

Numerically, it is easy to compute 8m» SO it is easy to check this conjecture.

Theorem 2 (Kurihara 2014, Theorem 10.8). If we assume the main conjecture
and the non-degeneracy of the p-adic height pairing, Conjecture 1 holds true.

In fact, we obtain Conjecture 1, considering the case i = s in Theorem 10.8 in
Kurihara (2014) (see also Theorem 1 fori = a).

From now on, we do not assume the main conjecture (9) nor the non-degeneracy
of the p-adic height pairing.

We define the Selmer group Sel(Z[1/m], E[p"]) by

Sel(Z[1/m]. E[p"]) = Ker(H "' (Q., E[p"])

— [[H'Q. EIP"D/EQ) ® 2/ p™).
vfm

If all bad primes and p divide m, we know Sel(Z[1/m], E[p"]) is equal to the
étale cohomology group H/ (SpecZ[1/m], E[p"]), which explains the notation
“Sel(Z[1/m], E[pN])”. (We use Sel(Z[1/m], E[p"]) form € NﬁN) in this paper,
but E[p"] is not an étale sheaf on Spec Z[1/m] for such m.)

Let A be the A-invariant of Sel(E/Quo, E[p™°])¥. We put n; = min{n € Z |
p"—1>A}andd, =ny + Nn forn € Zs,. We define

‘:P(qun) _ {E c j)(lN) IE =1 (mod pdn)} (4)

(then ?gN’") - ?gN) (Qqy)) holds, see the end of Sect.3.1 for this fact, and see

Sect. 3.1 for the definition of the set fP(lN) (Qpx1)). We denote by N(IN’") the set of
. . (N,n)

squarefree products of primes in P},
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In this paper, for any finite abelian p-extension K /Q in which all bad primes of
E are unramified, we prove in Sect. 4 the following theorem for Z/ p" [Gal(K /Q)]-
modules Sel(E/K, E[p"]) and Sel(Og[1/m], E[p"]) (see Corollary 2 and
Theorem 9). We simply state it in the case K = Q below. An essential ingredient in
this paper is the Kolyvagin system of Gauss sum type. We construct Kolyvagin sys-
tems k,, ¢ € Sel(Z[1/m{], E[pN]) for (m, £) satisfying £ € T(IN’G('"Z)H) and mfl €
NYV’E(M)H) (see Sect. 3.4 and Proposition 2) by the method in Kurihara (2014). (We
can construct these elements, using the half of the main conjecture proved by Kato
(2004).) The essential difference between our Kolyvagin systems «,, ¢ of Gauss sum
type and Kolyvagin systems in Mazur and Rubin (2004) is that our «,, ¢ is related
to L-values. In particular, «,, ¢ satisfies a remarkable property ¢y («,,.0) = —Smete
(see Proposition 2 (4)) though we do not explain the notation here.

Theorem 3. Assume that ord, (Sm) = 0 for some m € NﬁN) .

(1) The canonical homomorphism

sm 2 Sel(E/Q, E[p"])) — P EQ) @ Z/p" ~ P EQn) @ Z/p"

Lm £lm

~ (Z/p")*™

is injective.

(2) Assume further thatm € N(IN’G(m) D and that m is admissible (for the definition
of the notion “admissible”, see the paragraph before Proposition 1). Then
Sel(Z[1/m), E[p"]) is a free Z] p" -module of rank €(m), and {kw ooy is a
basis of Sel(Z[1/m], E[p"]).

(3) We define a matrix A as in (27) in Theorem 9, using Km g Then A is a relation
matrix of the Pontrjagin dual Sel(E/Q, E[p"])V of the Selmer group; namely
if fa i (Z/pN)<™ — (Z/p")™ is the homomorphism corresponding to
the above matrix A, then we have

Coker(fa) =~ Sel(E/Q, E[p"])V.

It is worth noting that we get nontrivial (moreover, linearly independent)
elements in the Selmer groups.

The ideals ®;(Q)® in Theorem 1 are not suitable for numerical computations
because we have to compute infinitely many &,,. On the other hand, we can easily
find m with ord, (8,,) = 0 numerically. Since s,, is injective, we can get information
of the Selmer group from the image of s,,, which is an advantage of Theorem 3 and
the next Theorem 4 (see also the comment in the end of Example 5 in Sect.5.3).

We next consider the case N = 1, so Sel(E/Q, E[p]). Now we regard Sm
as an element of F, for m € Ngl). We say m is §-minimal if §,, # 0 and
84 = 0 for all divisors d of m with 1 < d < m. Our next conjecture claims
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that the structure(the dimension) of Sel(£/Q, E[p]) is determined by a §-minimal
m, therefore can be easily computed numerically.

Conjecture 2. If m € Nﬁl) is §-minimal, the canonical homomorphism

sw: Sel(E/Q.E[p]) — @D EQ) ®Z/p =~ P EF) ®Z/p = (Z/p")*™

Lm £lm
is bijective. In particular, dimg, Sel(E/Q, E[p]) = e(m).

Ifm e N(ll) is §-minimal, the above homomorphism s,, : Sel(E/Q, E[p]) —
(Z/ pN )™ is injective by Theorem 3 (1), so we know

dimg, Sel(E/Q, E[p]) < e(m).

Therefore, the problem is in showing the other inequality.
We note that the analogue of the above conjecture for ideal class groups does
not hold (see Sect. 5.4). But we hope that Conjecture 2 holds for the Selmer groups

of elliptic curves. We construct in Sect.5 a modified version /c)’fl’j’z’z of Kolyvagin
systems of Gauss sum type for any (m, £) with m{ € NﬁN) . (The Kolyvagin system
Km. in Sect. 3 is defined for (m,£) with m{ € N(IN’G(M) D but Kfn’qu “ is defined

for more general (m, £), namely for (m, {) with m{ € NﬁN) .) Using the modified

q,q’,z

Kolyvagin system «, " ™,

we prove the following.

Theorem 4. (1) Ife(m) =0, 1, then Conjecture 2 is true.
(2) Ifthereis £ € P which is §-minimal (so €(£) = 1), then

Sel(E/Q. E[p™]) > Q,/Z,.

Moreover, if there is £ € 33(11) which is §-minimal and which satisfies { =
1 (mod p"~¥2) where ) is the analytic A-invariant of (E,Qoo/Q), then
the main conjecture (9) for Sel(E/Qoo, E[p®°]) holds true. In this case,
Sel(E/Qoo. E[p™])Y is generated by one element as a Z,[[Gal(Qoo/Q)]]-
module.

3) Ife(m) = 2 and m is admissible, then Conjecture 2 is true.

(4) Suppose that e(m) = 3 and m = £1{,{3. Assume that m is admissible and the
natural maps sg; : Sel(E/Q, E[p]) — E(F¢,) ® Z/ p are surjective both for
i = landi = 2. Then Conjecture 2 is true.

In this way, we can determine the Selmer groups by finite numbers of computa-
tions in several cases. We give several numerical examples in Sect. 5.2.

Remark 1. Concerning the Fitting ideals and the annihilator ideals of some Selmer
groups, we prove the following in this paper. Let K/Q be a finite abelian p-
extension in which all bad primes of E are unramified. We take a finite set S
of good reduction primes, which contains all ramifying primes in K/Q except p.
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Let m be the product of primes in S. We prove that the initial Fitting ideal of the
Rk = Z,[Gal(K/Q)]-module Sel(Ok[1/m], E[p*])" is principal, and

Ek.s € Fitto g, (Sel(Ok[1/m]. E[p™]))

where £k s is an element of Rgx which is explicitly constructed from modular
symbols (see (17)). If the main conjecture (9) for (E, Qxo/Q) holds, the equality
Fitto g (Sel(Ok[1/m], E[p®°])¥) = &k.s Rk holds (see Remark 2). We prove the
Iwasawa theoretical version in Theorem 6.

Let 9k be the image of the p-adic L-function, which is also explicitly con-
structed from modular symbols. We show in Theorem 7

Uk € Anng, (Sel(Ok[1/m], E[p*])Y).
Concerning the higher Fitting ideals (cf. Sect. 2.4), we show

gm € Fitte(m),Z/pN (Sel(E/Q, E[PN])V)

where Fitt; g(M) is the i-th Fitting ideal of an R-module M. We prove a slightly
generalized version for K which is in the cyclotomic Z,-extension Qs of Q (see
Theorem 8 and Corollary 1).

I would like to thank John Coates heartily for his helpful advice and for
discussion with him, especially for the discussion in March 2013, which played
an essential role in my producing this paper. I also thank heartily Kazuya Kato for
his constant interest in the results of this paper. I also thank Kazuo Matsuno and
Christian Wuthrich very much for their helping me to compute modular symbols.

2 Selmer Groups and p-Adic L-Functions

2.1 Modular Symbols and p-Adic L-Functions

Let E be an elliptic curve over Q, and f(z) = Xa,e? ™ the modular form
corresponding to E. In this section, we assume that p is a prime number satisfying
(i), (i), (iii) in Sect.1.1. We define Pyp0a = {£ | £ is a good reduction prime
for £} \ {p}. For any finite abelian extension K/Q, we denote by K /K the
cyclotomic Z,-extension. For a real abelian field K of conductor m, we define 0k
to be the image of éQ(um ) in Q[Gal(K/Q)] where éQ(um) is defined in (1).

We write

Rk = Z,[Gal(K/Q)] and Ax_, = Z,[[Gal(Koo/Q)]l.
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For any positive integer n, we simply write Rq(.,) = R, in this subsection.
For any positive integers d, ¢ such that d | ¢, we define the norm map v, 4 :

Ri = Z,[GalQ(1a)/Q)] — R. = Z,[Gal(Q(1)/Q)] by o — Y. where
for 0 € Gal(Q(uy)/Q), T runs over all elements of Gal(Q(u.)/Q) such that the
restriction of 7 to Q(ug) is 0. Let m be a squarefree product of primes in Pgp04, and
n a positive integer. By our assumption (i), we know 6qu,,,n) € Rumpr (cf. Stevens

1989). Letx € Z’p‘ be the unit root of x> — apx + p = 0 and put

—nsn -1 A
ﬂQ(Mmp”) =« n(eQ(Mmp”) -« van,mP”71 (HQ(Mmpn—l))) € RmPn

as usual. Then {Jq(u,,,) }n>1 1s a projective system (cf. Mazur and Tate 1987, the
equation (4) on page 717) and we obtain an element Jq(u,,,00) € AQ(u,,,00)» Which
is the p-adic L-function of Mazur and Swinnerton-Dyer.

We also use the notation A, pc0 = A, ,0) for simplicity. Suppose that a prime
£ does not divide mp, and ¢ m : Amepoo —> Appoo is the natural restriction map.
Then we know

Cmt.n Qo)) = (@6 = 0 = 07 )PQ(u, 000 )

(cf. Mazur and Tate 1987, the equation (1) on page 717).
We will construct a slightly modified element SQ(Mm[,oo) in Appeo. We put

PIZ/ (x) = x2—aix+4£.Letmbea squarefree product of P,,4. For any divisor d of
m and a prime divisor £ of m/d, oy € Gal(Q(ap=)/Q) = lim Gal(Q(ap)/Q)

is defined as the projective limit of o, € Gal(Q(uap)/Q). We consider P/(0¢) €
Agpoe. Note that

—oy ' = (=o' Pl(0r) = (ae —oe =07 ) /(L= 1) € Agpes. ©)

We put g, = (]'[M%(—U[l))ﬁdepoo) € Agpeo and

EQUinpoo) = D Vmd (@dm) € Ampoo
d|m

where v, 4 @ Agpoo —> Ay;peo is the norm map defined similarly as above. (This
modification §q(u,,,o0) is done by the same spirit as Greither (2004) in which the
Deligne-Ribet p-adic L-functions are treated.) Suppose that £ € P4, is prime to
m. Then by the definition of EQ(MWOO) and (5) and (6), we have

Cmt.m(EQuniyo0)) = Cmtm (D Vmtd @ame) + Y Ve ae(@atme))
d|m dm

= (=1 vma(=0;"am) + Y vma(car.a(@aeme)

d|m d|m
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= (=1 vna(=0;"@am) + Y vmal(a — o0 — o7 Yotam)

dlm d|m

= (=07 " P{(00)) Y vm.a(@am)

d|m
= (=07 ' P{(00))EQ(u,pp00)- 7)

We denote by P, € Rou,) the image of Pq(u,,,) under the natural map
AQuyo0) — Rau,)- We have

-1
o o ~
BQuun = (1 — ;’7)(1 - %)QQ(MW- ®)

Since we are assuming a, # 1 (mod p), we also have ¢ # 1 (mod p), so

(771
(1-— %”)(1 — —£-) is a unitin Rq(n) where Q(m) is the maximal p-subextension of

Qin Q(im).

2.2 Selmer Groups

For any algebraic extension F/Q, we denote by Oy the integral closure of Z in F.
For a positive integer m > 0, we define a Selmer group Sel(Or[1/m], E[p*]) by

Sel(OF[1/m), E[p™]) = Ker(H ' (F, E[p*™])

— [T#'(F. Ep™D/E(F) ® Qp/Z,)
v fm

where v runs over all primes of ' which are prime to m. Similarly, for a positive
integer N, we define Sel(Or[1/m], E[p"]) by

Sel(Or[1/m), E[p"]) = Ker(H'(F, E[p"])

— [ H'F. ED"D/EE) @ 2/pY).
v fm

In the case m = 1, we denote them by Sel(Of, E[p*]), Sel(Or, E[p"]),
which are classical Selmer groups. We also use the notation Sel(E/F, E[p*)),
Sel(E/F, E[p"]) for them, namely

Sel(E/F, E[p™]) = Sel(OF, E[p™]). Sel(E/F,E[p"]) = Sel(OF, E[p"]).
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For a finite abelian extension K/Q, we denote by K /K the cyclotomic
Z,-extension, and put Ag,, = Z,[[Gal(Kx/Q)]]. The Pontrjagin dual
Sel(Ok.,, E[p°])Y is a torsion Ak -module (Kato 2004, Theorem 17.4).

When the conductor of K is m, we define g, € Ak, to be the image of
VQ(u,p00)> and also €k, € Ak, to be the image of £q(y,,,)- The Iwasawa main
conjecture for (E, Quo/Q) is the equality between the characteristic ideal of the
Selmer group and the ideal generated by the p-adic L-function;

char(Sel(Oq.. E[p™°])") = 9Qu0 AQuo- ©)

Since we are assuming the Galois action on the Tate module is surjective, we know
Qe € char(Sel(Oq.,, E[p*])¥) by Kato (2004, Theorem 17.4). Skinner and
Urban (2014) proved the equality (9) under mild conditions. Namely, under our
assumptions (i), (ii), they proved the main conjecture (9) if there is a bad prime £
which is ramified in Q(E[p]) (Skinner and Urban 2014, Theorem 3.33).

More generally, let ¥ be an even Dirichlet character and K be the abelian field
corresponding to the kernel of 1/, namely K is the field such that ¥ induces a faithful
character of Gal(K/Q). We assume K N Qo = Q. In this paper, for any finite
abelian p-group G, any Z,[G]-module M and any character ¥ : G —> 6:, we
define the y-quotient My by M ®z,6] Oy where Oy = Z,[Image y] which is
regarded as a Z,[G]-module by ox = ¥ (0)x forany 0 € G and x € Oy. We
consider (Sel(Ox,., E[p*°])")y, which is a Ay-module where Ay = (Ag.. )y =
Oy [[Gal(K o/ K)]]. We denote the image of ¢ in Ay by ¥ (k.. ). Then the main
conjecture states

char((Sel(O . E[p™])")y) = ¥ (Pkoe) Ay (10)

We also note that ¥ (k.. ) Ay = ¥ (k.. )Ay. By Kato (2004), we know ¥ (k. ),
V(Exo) € char(Sel(Ok . E[p™])Y)y).

Let S C Pgooa be a finite set of good primes, and K/Q be a finite abelian
extension. We denote by Sy, (K) the subset of S which consists of all ramifying
primes in K inside S. Recall that P/(x) = x% —ayx + £. We define

Ekoos =k || (07" P{(00)).

LES\Sram (K)

So ék..s = &k, if S contains only ramifying primes in K. Suppose that S
contains all ramifying primes in K and F is a subfield of K. We denote by
CKoo/Foo - AKeo —> AF,, the natural restriction map. Using (7) and the above
definition of £k s, we have

CKoo/Foo (§Koo.8) = §Fp0.s- (11)
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For any positive integer m whose prime divisors are in Py, We have an exact
sequence

0 —> Sel(Ok.,, E[p™]) —> Sel(Ok_ [1/m], E[p™])

— P H'(Keos. E[p™)) — 0

vlm

because E(Keo,) ® Qp/Z, = 0 (for the surjectivity of the third map, see
Greenberg Lemma 4.6 in 1999). For a prime v of K, let Koo ynr/ Koo, be
the maximal unramified extension, and I, = Gal(Keo ./ Koor). Suppose v
divides m. Since v is a good reduction prime, we have H!'(Koo,, E[p™]) =
Homcon (Gko s E[pP°DT = E[p™®](—1)"v where (1) is the Tate twist. By
the Weil pairing, the Pontrjagin dual of E[p®°](—1) is the Tate module 7, (E).
Therefore, taking the Pontrjagin dual of the above exact sequence, we have an exact
sequence

0 — P T,(E)r, — Sel(Ok,[1/m]. E[p™])Y —> Sel(Ok.,. E[p*])Y —> 0.
vim
| (12)
Note that T, (E), is free over Z, because I, is profinite of order prime to p.

Let K/Q be a finite abelian p-extension in which all bad primes of E are
unramified. Suppose that S is a finite subset of P,y such that S contains all
ramifying primes in K/Q except p. Let m be a squarefree product of all primes
inS.

Theorem 5 (Greenberg). Sel(Ok_ [1/m], E[p®])Y is of projective dimension <
1 as a Ak, -module.

This is proved by Greenberg in 2011, Theorem 1 (the condition (iv) in Sect. 1.1
in this paper is not needed here, see also Proposition 3.3.1 in Greenberg (2011)).
For more general p-adic representations, this is proved in Kurihara (2014, Proposi-
tion 2.18). We will give a sketch of the proof because some results in the proof will
be used later.

Since we can take some finite abelian extension K'/Q such that Ko =
Kl and K' N Qw = Q, we may assume that K N Qs = Q and p is
unramified in K. Since we are assuming that E[p] is an irreducible Ggo-module,
we know that Sel(Ok.. E[p*>°])Y has no nontrivial finite Z,[[Gal(Ks/K)]]-
submodule by Greenberg (1999, Propositions 4.14, 4.15). We also assumed that
the p-invariant of Sel(Oq,,, E[p®°])" is zero, which implies the vanishing of the
p-invariant of Sel(Ok__, E[p®])Y by Hachimori and Matsuno (1999). Therefore,
Sel(Ok,.. E[p*°])Y is a free Z,-module of finite rank. By the exact sequence (12),
Sel(Ok,. [1/m], E[p™])Y is also a free Z,-module of finite rank.

Put G = Gal(K/Q). By the definition of the Selmer group and our
assumption that all primes dividing m are good reduction primes, we have
Sel(Ok [1/m], E[p>®])¢ = Sel(Oq.[1/m], E[p*°]). Since we assumed that
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the p-invariant is zero, Sel(Oq.[1/m], E[p®°]) is divisible. This shows that
the corestriction map Sel(Og_[1/m], E[p™°]) —> Sel(Oq,[1/m], E[p™]) is
surjective. Therefore, H(G, Sel(Ok [1/m], E[p*])) = 0.

Next we will show that H'(G, Sel(Ok__ [1/m], E[p*])) = 0. Let N be the
conductor of E and put m" = mpNg. We know Sel(Ok_,[1/m’], E[p*°]) is equal
to the étale cohomology group H ) (Spec Ok [1/m’], E[p>]). We have an exact
sequence

0 —> Sel(Ok_[1/m], E[p*°]) —> Sel(Ok_,[1/m’], E[p™])

— P H}(Kooy) — 0 (13)

4
v| -

where H2(Koo,) = H' (Koo, E[p™])/(E(Kso,) ® Q,/Z,), and the surjectivity
of the third map follows from Greenberg Lemma 4.6 in Greenberg (1999). Let
E[p>=]° be the kernel of E[p>°] = E(Q)[p>®] — E(Fp)[p"o] and E[p*>]., =
E[p®]/E[p*]°. For a prime v of K, above p, we denote by K, the maximal
unramified extension of Koy, and put I, = Gal(Keo ynr/ Kooy). We know the
isomorphism H2(Koo,) —> H'(Kooynrs E[p®]er)’" by Greenberg (1989, §2).
If v is a prime of Ky not above p, we know H2(Koo,) = H'(Keoy, E[p™)).
Therefore, we get an isomorphism

(P H? (Koo:))® = EP H;(Qoo)

vl%/ u\%
where v (resp. u) runs over all primes of K (resp. Qoo) above m’/m = pNg. Thus,
Sel(Ok_ [1/m'], E[p>®])¢ — @vli H?2(Kw.,)C is surjective. On the other hand,
we have H2 (Spec Ok [1/m’], E[p™]) = 0 (see Greenberg 1989, Propositions 3,

4). This implies that
H'(G, H,,(Spec Ok [1/m'], E[p™])) = H'(G.Sel(Ok[1/m'], E[p™])) = 0.
Taking the cohomology of the exact sequence (13), we get

H'(G,Sel(Ok.[1/m], E[p*])) = 0. (14)

Therefore, Sel(Ok [1/m], E[p®°]) is cohomologically trivial as a G-module by
Serre (1968, Chap.IX, Théoréme 8). This implies that Sel(Ok_ [1/m], E[p*])¥
is also cohomologically trivial. Since Sel(Ok_,[1/m], E[p®°])¥ has no nontrivial
finite submodule, the projective dimension of Sel(Og_ [1/m], E[p*°])¥ asa Ak, -
module is < 1 see for example, Popescu (2009, Proposition 2.3).



The Structure of Selmer Groups of Elliptic Curves and Modular Symbols 329

Theorem 6. Let K/Q be a finite abelian p-extension in which all bad primes of E
are unramified. We take a finite set S of good reduction primes which contains all
ramifying primes in K /Q except p. Let m be the product of primes in S. Then

(1) &k.,.s is in the initial Fitting ideal Fitto a,__ (Sel(Ok,[1/m], E[p>°])").
(2) We have

Fitto A, (Sel(Okoo[1/m], E[p™])) = €Koo.5 Ak

if and only if the main conjecture (9) for (E, Qoo/Q) holds.

Proof. As we explained in the proof of Theorem 5, we may assume that
K N Qx = Q. We recall that Sel(Ok_[1/m], E[p™])" is a free Z,-module
of finite rank under our assumptions.

(1) Lety : Gal(K/Q) — 6: be a character of Gal(K /Q), not necessarily faithful.
We study the Fitting ideal of the y-quotient (Sel(Ok..[1/m], E[p*°])Y)y =
Sel(Ok . [1/m], E[p*™°])Y ®z,(Gaik/q) Oy. We denote by F the subfield of K
corresponding to the kernel of . We regard i as a faithful character of Gal(F/Q).
Since Sel(Ok_ [1/m], E[p>®])S3K/F) = Sel(OF_[1/m], E[p™]), we have

(Sel(Okoo[1/m]. E[p™]))y = (Sel(Or [1/m]. E[p=]))y

where the right hand side is defined to be Sel(Or,,[1/m], E[p*°])Y ®z,Gai(F/q)]
Oy.

We put Ay = (Afy)y. The group homomorphism ¥ induces the ring
homomorphism Ar,, —> Ay which we also denote by . The composition
with ¢k /Fee @ Ak —> AF. and the above ring homomorphism ¥ is also
denoted by ¥ : Agx,, —> Ay. Note that F//Q is a cyclic extension of degree
a power of p. We denote by F’ the subfield of F such that [F : F'] = p.
We put No = Ngauwr/r)y = Xsecar/rno. If we put [F : Q] = p°
and take a generator y of Gal(F/Q), Ny = Eip;()l)/f’ﬁl" is a cyclotomic
polynomial and Oy = Z,[u,c] =~ Z,[Gal(F/Q)]/No. For any Z,[Gal(F/Q)]-
module M, we define MY = Ker(Ny : M —> M). Then the Pontrjagin
dual of MV is (MV)Y = (MY)/Ny = (MVY)y. By the same method as

the proof of (14), we have H!(Gal(F/F’),Sel(Ofr,[1/m], E[p*®])) = 0.
Therefore, 0 — 1 : Sel(Of[1/m], E[p®]) —> Sel(Of,[l/m], E[p*])¥
is surjective where o = yl’(_l is a generator of Gal(F/F'). Therefore,

taking the dual, we know that there is an injective homomorphism from
(Sel(Op [1/m], E[p™])Y)y to Sel(Of,[1/m], E[p*])¥ which is a free Z,-
module. Therefore, (Sel(Of.[1/m], E[p*™])")y contains no nontrivial finite
Ay -submodule. This shows that

Fitto 4, ((Sel(Or., [1/m], E[p™])")y) = char((Sel(Or,[1/m]. E[p*])")y).
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Consider the ¥ -quotient of the exact sequence (12);

EP T,(E)r)y — (Sel(Or, [1/m]. E[p=)Y)y

vim

—> (Sel(OF,, E[p™®])Y)y —> 0

where v runs over all primes of Fs, above m. Since EXtIZp[Gal( F /Q)](Ow, Sel(OF.,»

E[p™)])) = I:IO(Gal(F/Q), Sel(Orf,,, E[p®))) is finite, the first map of the above
exact sequence has finite kernel.
Suppose that £ is a prime divisor of m. If £ is unramified in F, we have

Fitto. 4, (€D To(E)r)y) = P{(o1) Ay
v|e

where P/(x) = x> —ax + . If £ is ramified in F, ¥ (€) = 0 and (B, T,(E)r,)y
is finite. Therefore, we have

char(@D T,(E)r)y) = []  Ple)Ay.

vim £ES\Spam (F)

Using the above exact sequence and Kato’s theorem v (§f.,) € char((Sel(Op,,,
E[p*™]")y), we have

char((Sel(Or.,[1/m). E[p®)")y) D ¥ (Er ) [[  Pllo)Ay.

£ES\Spam (F)
Since &r, ([Tres\s,(r) Pi(00) = &Fo.s modulo unit and cx/r (koo.s) =
€Fo0.s by (11), we obtain
¥ (Ekec.5) € Fitlo (40 )y (Sel(Okoo [1/m], E[pZ]D¥)y) (15)

for any character ¢ of Gal(K/Q). Since the u-invariant of Sel(Og [1/m],
E[p®])Y is zero as we explained above, (15) implies

£xoo.s € Fitt a,__ (Sel(Ok  [1/m], E[p™])Y)
(see Lemma 4.1 in Kurihara 2003a, for example).

(2) We use the same notation ¥, F, etc. as above. At first, we assume (9). Then
the algebraic A-invariant of Sel(E/Feo, E[p®])Y equals the analytic A-invariant
by Hachimori and Matsuno (1999) and Matsuno (2000), so the main conjecture
char((Sel(Or.,, E[p*°])Y)y) = ¥ (£r)Ay also holds. Therefore, we have
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char((Sel(Or, [1/m]. E[p®)V)y) = ¥ (Er ) [  Ple)Ay
LES\Sram (F)

=Y (Er.s)Ay = V(ke.s) Ay

and

Fitto,(Axo0)y (Sel(Ok oo [1/m] E[P®D)y) = ¥ (Ekoo.s Akos) Ay

It follows from Kurihara (2003a, Corollary 4.2) that

Fitto, 5, (Sel(Okoo[1/m]. E[p™])) = ékeo.5 Ak oo -

On the other hand, if we assume the above equality, taking the Gal(K/Q)-
invariant part of Sel(Ok_ [1/m], E[p*]), we get

Fitto o, (Sel(Oqu.[1/m]. E[p™])Y) = £Qo0.5 AQuo.5

which implies (9).

2.3 An Analogue of Stickelberger’s Theorem

Let K/Q be a finite abelian p-extension. When the conductor of K is m, we define
9k € Ry = Z,[Gal(K/Q)] to be the image of Pq(s,,,00) € AQ(u,,c0)- Therefore,

-1 <
if m is prime to p, ¥ is the image of ¥q(,,) = (1 — 2)(1 — Uf’T)HQ(Mm) by (8). If
m = m’p" for some~m’ which is prime to p and~f0r some n > 2, ¥ is the image
Of Q11 ) = & (01 ) = & Vit it pr=1 (0Q(11,1 1))
For any positive integer n, we denote by Q(n) the maximal p-subextension of Q

in Q(in).

Theorem 7. For any finite abelian p-extension K in which all bad primes of E are
unramified, Ok annihilates Sel(Ok, E[p®])Y, namely we have

Ok Sel(Ok. E[p™])¥ = 0.

Proof. We may assume K = Q(mp") for some squarefree product m of primes
in Pgpoq and for some n € Zso. By Theorem 6 (1), taking S to be the set of all
prime divisors of m, we have £k, € Fitto 1, (Sel(Ok[1/m], E[p™])"), which
implies £k, Sel(Ok,.. E[p*®])Y = 0. Let éx € Rx = Z,[Gal(K/Q)] be the
image of £x__. Since the natural map Sel(Ok, E[p*°]) — Sel(Ok.,, E[p*°]) is
injective, we have &g Sel(Og, E[p®°])Y = 0.
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By the definitions of §g(u,,,00)> EQnpr)> PQempr), We can write

Ex = §Qunpr) = DQempr) + Z AdVm.a (DQeapm) (16)
d|m,d#m

for some Ay € R(mpr) Where vy, g @ Rapy —> RQ(mpr) is the norm map defined
similarly as in Sect.2.1. We will prove this theorem by induction on m. Since
d < m, we have Yqupr) € Anngy ., (Sel(Oqupr), E[p™])") by the hypothesis
of the induction. This implies that v,, 4 (Jq4,)) annihilates Sel(Oqmpn), E[p*°])Y.
Since £k is in Anng, (Sel(Ok, E[p*>])Y), the above equation implies that ¥k is in
Anng, (Sel(Ok, E[p™])Y).

Remark 2. Let K, S, m be as in Theorem 6. Under our assumptions, the control
theorem works completely;

Sel(Ok[1/m], E[p®™]) —> Sel(O..[1/m], E[p™])Cti(Kee/K)

Therefore, Theorem 6 (1) implies that Fitty g, (Sel(Ok[1/m], E[p®])") is principal
and

Ek.s € Fitto g, (Sel(Ok[1/m]. E[p™])") A7)

where £k s is the image of £k s in Rk.
Theorem 6 (2) implies that if we assume the main conjecture (9), we have

Fitto,RK(Sel(OK[l/m], E[poo])v) = gK,SRK . (18)

2.4 Higher Fitting ldeals

For a commutative ring R and a finitely presented R-module M with n generators,
let A be an n x m relation matrix of M. For an integer i > 0, Fitt; g (M) is defined
to be the ideal of R generated by all (n — i) x (n — i) minors of A (cf. Northcott
1976; this ideal Fitt; (M) does not depend on the choice of a relation matrix A4).

Suppose that K/Q is a finite extension such that K is in the cyclotomic Z,-
extension Qu of Q, and that m is a squarefree product of primes in PY). We define
K(m)by K(m) = Q(m)K.

We put G, = Gal(Q(¥)/Q) and G,, = Gal(Q(m)/Q) = ]_[[‘m G¢. We have
Gal(K(m)/K) = G,. We put ny = ord,(£ — 1). Suppose that m = £ -...-£,.
We take a generator 7y, of Gy, and put S; = 15, — 1 € Rg(n). We write n; for ny,.
We identify R k() with

Ri[Sm] = Rx[S1, ..., S, 1/ (L 4+ S)”" —1,..., (14 8)7" —1).
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We consider Ug(n) € Rx(n) and write

Vkm) = Z aflm) irS{i R it

i1,.ir>0

where aff.)..,i, € Rg.Putng = min{ny,...,n,}. Fors € Z-, we define ¢ to be the

maximal positive integer ¢ such that

T7H (1 +T)" —1) € p°Z,[T) + T*T'Z,[T].

For example, ¢; = ng,...,cp—2 = ng, Cp—1 = no — 1,... ,Cp2o1 = Ng — 2. If
i,...,0p <, a,(:") s mod p% is well-defined (it does not depend on the choice of
a(m) )

[seensyp 7"

Theorem 8. Let K be an intermediate field of the cyclotomic L ,-extension Qoo /Q
with [K : Q] < oo. Let cg be the integer defined above for s € L~ and m. Assume
thatiy,...,i, <sandiy+ ...+ i, <i.Then we have

a\” . € Fitt; g /pes (Sel(E/ K., E[p©])Y).

Form = {;-...-£,, we denote (—1)" times the coefficient of S -...- S, in Vg m)
by &,,. If €; splits completely in K foralli = 1,...,r, we can write

Okom = O [ [A—70) = (1) 8uS1-...- S, (mod pV.SP.....S7) (19)

i=1
(see Kurihara 2014, §21). Taking s = 1 and i = r in Theorem 8, we get
Corollary 1. Let K/Q be a finite extension such that K C Qeo. We have

8 € Fitt v(Sel(E/K,E[p™])Y)

Rk /p
wherem = £y -...-4,.

Proof of Theorem 8. We may assume K = Q(p") for some n > 0, so
K(m) = Q(mp"). First of all, we consider the image £x(n) € Rim) Of Exm)oo-
Since Sel(E/K(m), E[p*>°]) —> Sel(E/K(m)oo, E[p®]) is injective, Eg(y) is in
Fitto,ry,, (Sel(E/K(m), E[p>])¥) by Theorem 6 (1). We write

ko= o Si-.... Sk
sy >0
where oz,(m), € Rg. Assume that iy,...,i, < sandi; + ...+ i, <i.Then by

Lemma 4.2'irn Kurihara (2014) we have

o™ . € Fitly gy pes (SEl(E/ K, E[p“])Y).

ek
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On the other hand, since K(m) = Q(mp") for some n > 0, we have

Ekom =Pk + Y Advma Do)
d|m,d#m

for some Ay € Ri(m) by (16). This implies that the images of () and ¥ k() under
the canonical homomorphism

RK(m) = RK[Sl,...,Sr]/I — RK[[Sl,,Sr]]/J

coincide where 7 = ((1 + S —1,...,(1 + S)?" — 1) and J = (S7'(1 +
SO =1, ST+ S)PT =1, 88T L, S8, Therefore, ozi(m) =q™

Tseees Iy I1yeeey iy
mod p% for iy,...,i, <s.It follows that af:’f_)__,ir € Fitt; gy /pes (Sel(E/ K, E[p“])Y).
This completes the proof of Theorem 8.

3 Review of Kolyvagin Systems of Gauss Sum Type
for Elliptic Curves

In this section, we recall the results in Kurihara (2014) on Euler systems and
Kolyvagin systems of Gauss sum type in the case of elliptic curves. From this section
we assume all the assumptions (i), (ii), (iii), (iv) in Sect. 1.1.

3.1 Some Definitions

Recall that in Sect.2 we defined Pgp0q by Pyoos = {£ | £ is a good reduction prime
for E }\ {p}, and PN by

PN = (€ € Pypoq | £ = 1 (mod pV)}

for a positive integer N > 0. If £ is in P44, the absolute Galois group Gy, acts on
the group E[p"] of p" -torsion points, so we consider H' (F,, E[p"]). We define

PN = (0. e PN | HO(F,, E[p"]) contains an element of order p"},
@Y™ = { e P | H'(¥,, E[p"]) = E[p"]}. and
PV = (e PV | HOFLEN) = Z/p").
So (P(()N) D (PHM), (P(()N) D fP(lN), and ()™M N fP(lN) = @. Suppose that £ is in

T(IN) . Then, since £ = 1 (mod p"), we have an exact sequence 0 — Z/p" —
E[pN] — Z/p" —> 0 of Gg,-modules where Gy, acts on Z/p" trivially. So
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the action of the Frobenius Frob, at £ on E[p"] can be written as ((1) i) for a

suitable basis of E[p"]. Therefore, H'(F,, E[p"]) is also isomorphic to Z/ p" for
(N)
Led).
Lett € E[p"] be an element of order p". We define

PN — (e e PN |1 e HOFy, E[pV])},

PN — (e PV | HOFy, E[pN]) = 2/ pV )15

So, (P(()N) =, (P((ﬁ) and (P(IN) =, ?(11,\;,‘/) where 7 runs over all elements of order
p". Since we assumed that the Galois action on the Tate module is surjective, both
(P)™ and P} are infinite by Chebotarev density theorem (Kurihara 2014, §5.8).

We define K, to be the set of number fields K such that K /Q is a finite abelian
p-extension in which all bad primes of E are unramified. Suppose that K is in K.
We define

(PHM(K) = (£ € (P))™ | £ splits completely in K},
T(IN)(K) ={le T(IN) | £ splits completely in K}.

Again by Chebotarev density theorem, both (P5)™)(K) and fP(lN) (K) are infinite
(see Kurihara 2014, §5.8).

Suppose £ € Pyp0q. For a prime v above £, we know H'(K,, E[p"])/(E(K,) ®
Z/p") = H(k(v), E[p"](—1)) where k(v) is the residue field of v. We put

HH(K) = EP H (e (v). E[p"](-1)). (20)

vle

If € is in (P))M(K) (resp. PV (K)), H2(K) is a free Rx/p" -module of rank 2
(resp. rank 1) where Rx = Z,[Gal(K /Q)] as before.

From now on, for a prime £ € ?E)N) , we fix a prime {g of an algebraic closure
Q above £. For any algebraic number field F, we denote the prime of F below 66
by £F, so when we consider finite extensions Fy/k, F>/k such that Fy C F,, the
primes £r,, £, satisfy £p,|€p, .

We take a primitive p"-th root of unity {,» such that ({pn),>1 € Z,(1) = l(inu P
and fix it.

In the following, for each £ in fPéN)(K), we take 1, € H(Fy, E[p"]) and fix it.
We define

ek = (e @y ",0,...,0) € HG(K) 21)
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where the right hand side is the element whose £ x-component is #; ® C?N(_l) and
other components are zero.

Suppose that K is in K,). Let Koo/ K be the cyclotomic Z,-extension, and K,
be the n-th layer. Since Sel(Ok.. E[p*°])¥ is a finitely generated Z,-module, the
corestriction map Sel(Ok,,, E[p"]) — Sel(Ok, E[p"]) is the zero map if m is
sufficiently large. We take the minimal m > O satisfying this property, and put
Ky = K. We define inductively K|, by Kj,) = (K[,—17);1) where we applied the
above definition to K[, j instead of K.

We can compute how large K[y is. Let A be the A-invariant of Sel( Ok, E[p*°])V.
We take a € Zso such that pt! — p¢ > A Suppose that K = K},
(m-th layer of K[ /K’) for some K’ such that p is unramified in K’. The
corestriction map Sel(OK‘:+l, E[p]) —> Sel(Ok;, E[p]) is the zero map.

Therefore, Sel(OK;JrN, E[p"]) — Sel(Ok;, E[p"]) is the zero map. Put
a’ = max(a — m,0). Then Sel(OKa,+N,E[pN]) — Sel(Ok,,, E[p"]) is the
zero map. Therefore, we have Kjj) C K/ n. Also we know K, C Koy

Let n,, d, be the numbers defined just before (4) in Sect. 1.2. Then we can show
thatif £ € ?(IN) satisfies £ = 1 (mod p%), £ is in T(IN)(Q[,,]) by the same method as
above.

3.2 Euler Systems of Gauss Sum Type for Elliptic Curves

For the Euler systems of Gauss sums, see Kolyvagin (1990) and Rubin (1991),
and for Euler systems of Gauss sum type, see Kurihara (2012, 2014). We use the
following lemma which is the global duality theorem (see Theorem 2.3.4 in Mazur
and Rubin 2004).

Lemma 1. Suppose that m is a product of primes in Pgooq. We have an exact
sequence

0 —> Sel(Ok, E[p"]) —> Sel(O[1/m], E[p"])

— P HI(K) —> Sel(Ok. E[p"])".
Lm

We remark that we can take m such that the last map is surjective in our case
(see Lemma 3 below).

Let K be a number field in X(,) and £ € fPéN) (Kpy)- We apply the above lemma
to K|jj and obtain an exact sequence

il w,
Sel(OK[l][l/e]v E[pN]) _() :H’%(K[l]) _é) Sel(OK[l]v E[pN])v
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Consider l?K[l]tg,Km € 9{%(1([1]). By Theorem 7 we know Wz(l?Kmfz,Km)
Okywe(teky) = 0. Therefore, there is an element g € Sel(Ok,[1/4], E[p")
such that d;(g) = 191([1]14,1{[1]~ We define

gy = Corgy,/x(g) € Sel(Ok[1/). E[p"]). (22)

This element géi) does not depend on the choice of g € Sel(Ok,[1/€], E[pM))

(Kurihara 2014, §6.10). We write g, instead of géi) when no confusion arises.

Remark 3. To define g;, we used in Kurihara (2014) the p-adic L-function 0k,
whose Euler factor at £ is 1 — %0~ by %0[ 2. The element fx__ can be constructed
from 9k_, by the same method as when we constructed £k in Sect.2.1. In the
above definition (22), we used ¥ (namely ¥k, ) instead of Ok .

3.3 Kolyvagin Derivatives of Gauss Sum Type

Let £ be a prime in P,4,4. We define d; as a natural homomorphism

3 : H'(K. E[p"]) — H}(K) = @ H ((v). E[p" (1))
v[e

where we used H'(K,, E[p"])/(E(K,) ® Z/p") = H(k(v), E[p"](=1)).

Next, we assume £ € T(IN) (K). We denote by Q({) the maximal p-subextension
of Qg inside Q(u¢). Put Gy = Gal(Q¢(¥)/Q¢). By Kummer theory, G, is
isomorphic to 7 where ny = ord,(¢ — 1). We denote by 7, the corresponding
element of Gy to {,n that is the primitive p"¢-th root of unity we fixed.

We consider the natural homomorphism H'(Qq, E[p™]) — H'(Q¢({), E[p"])
and denote the kernel by H!(Qg, E[p"]). Let Q,, be the maximal unramified
extension of Qy. We identify H'(F,, E[p"]) with H'(Gal(Q¢..,/Q¢). E[p"]).
and regard it as a subgroup of H'(Q¢, E[p"]). Then both H'(F,, E[p"]) and
H}(Qq, E[p"]) are isomorphic to Z/ p", and we have decomposition

H'(Qe. E[p"]) = H'(F¢, E[p"]) & H,(Qu, E[p"])

as an abelian group. We also note that H'(F,, E[p"]) coincides with the image
of the Kummer map and is isomorphic to E(Q¢) ® Z/p". We consider the
homomorphism

¢’ H'(Qu. E[p"]) — H'(F¢, E[p"]) (23)

which is obtained from the above decomposition.

Note that H'(F¢, E[p"]) = E[p"]/(Frob; —1) where Froby is the Frobenius
at £. Since £ is in fP(lN), Frob; ' —1 : E[p"]/(Frob, —1) —> E[p"]frobe=!
HO(Fy, E[p"]) is an isomorphism. We define ¢” : H'(Q E[p"])

!
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—1
Frob, " —1

H(Fy, E[p"]) as the composition of ¢’ and H'(F, E[p"]) —
HOY(F,, E[p"]). We define

¢o: H'(K, E[p"]) — H}(K)(1)

as the composition of the natural homomorphism H'(K,E[p"]) —
@VIZHI(KV,E[pN]) and ¢” for K,. Using the primitive p"-th root of unity
¢,v we fixed, we regard ¢b¢ as a homomorphism

¢ H'(K, E[p"]) — H{(K).

For a prime { € fP(lN)(K), we put §¢ = Gal(Q({)/Q). We identify G, with
Gal(Q¢(£)/Qy). Recall that we defined ny by p™ = [Q(£) : Q], and we took a
generator 7, of G, above. We define

p"l—l p"l—l

Ny = Z ‘L'é € Z[SG¢], D, = Z l"Cé € Z[5¢]
i =0

i=0

as usual.

We define NgN) (K) to be the set of squarefree products of primes in fP(lN)(K ).
We suppose 1 € N(IN)(K). For m € N(IN)(K), we put G, = Gal(Q(m)/Q),
Nn = HyuNe¢ € Z[S,), and D,, = My, D¢ € Z[G,,]. Assume that £ is
in (P)™ (K(m);;) and consider gft(ém) € Sel(Okum[1/4], E[p"]). We can
check that Dmgft(lm) is in Sel(Ok(m[1/mL], E[pN])9". Using the fact that
Sel(Ok[1/mt], E[pN]) = Sel(Ok(m[1/mL], E[pN])%" is bijective by Lemma 2
below (cf. also Kurihara 2014, Lemma 7.6), we define

Ko = Ky (, € Sel(Ok[1/ml), E[p"]) (24)

to be the unique element whose image in Sel(Ok(m)[1/mL], E[p"]) is Dy, géfé(m)).

The following lemma will be also used in the next section.
Lemma 2. Suppose that K, L € Xy and K C L. For any m € Zs,,
the restriction map Sel(Og[1/m], E[p"]) = Sel(OL[1/m], E[pN])S3E/K) g
bijective.

Proof. Let Ng be the conductor of E, m" = mpNg, and m” the product of primes
which divide pNg and which do not divide m. Put G = Gal(L/K). We have a
commutative diagram of exact sequences

0 —> Sel(Ok[1/m], E[p"]) —> Sel(Ok[1/ml. E[p"]) — D, HE,

o] o o3

0 —> Sel(O.[1/m], E[p"])® — Sel(O.[1/m'], E[p")¢ — (B,,»» H},,)°

vm”

wim



The Structure of Selmer Groups of Elliptic Curves and Modular Symbols 339

where H12(,v = H'(K,,E[p"])/(E(K,) ® Z/p") and Hf’w = H'(L,.E[p"])/
(E(Ly) ® Z/p"). Since Sel(O.[1/m'], E[p"]) = H,,(Spec O[1/m], E[p"])
and H°(L, E[p"]) = 0, a is bijective. Suppose that v divides m" and w is above v.
When v divides Ng, since v is unramified in L and p is prime to Tam(E), H 12(", —
H} , is injective (Greenberg 1999, §3). When v is above p, Hg , — H}  is
injective because a, # 1 (mod p) (Greenberg 1999, §3). Hence a3 is injective.
Therefore, «; is bijective.

In Kurihara (2012), if m has a factorization m = ¥£; - ... - £, such that
Civi € PV(K@ - ... ) foralli = 1,....,r — 1, we called m well-ordered.
But the word “well-ordered” might cause confusion, so we call m admissible in this
paper if m satisfies the above condition. Note that we do not impose the condition
{1 < ... < £, in the above definition, and that m is admissible if there is one
factorization as above. We sometimes call the set of prime divisors of m admissible
if m is admissible.

Suppose that m = £; - ... {,. We define §,, € Rx/p" by

Ik =8 [ [ =) (mod p¥, (ze, = 1*,.... (z, = 1)) (25)

i=1

(see Kurihara 2014, (21)).
We simply write «,, ¢ for K’(fZJ . We have the following Proposition (Kurihara
2014, Propositions 7.7, 7.15 and Lemma 7.9).

Proposition 1. Suppose that m is in N\*)(K), and € € (P) ™) (K (m)p)). We take
no sufficiently large such that every prime of K,, dividing m is inert in Koo/ K,,.
We further assume that £ € (?6)(N)(K,,O+N). Then

(0) s € Sel(Ok[1/md]. E[pM)).

(1) 0y (kme) = @r (k= ¢) for any prime divisor r of m.

(2) 3¢(kme) = Smle k-

(3) Assume further that m is admissible. Then ¢, (kn¢) = 0 for any prime divisor
r of m.

3.4 Construction of Kolyvagin Systems of Gauss Sum Type

In the previous subsection we constructed «,, ¢ for m € N(IN)(K ) and a prime
£ € (PN (K) satisfying some properties. In this subsection we construct ¢
forf e T(IN) (K) satisfying some properties (see Proposition 2). The property (4) in
Proposition 2 is a beautiful property of our Kolyvagin systems of Gauss sum type,
which is unique for Kolyvagin systems of Gauss sum type.
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For a squarefree product m of primes, we define €(m) to be the number of prime
divisors of m, namely e(m) = rifm =4, -...-¢,.

For any prime number £, we write IJ-C%(K) = @VIZ HY(K,,E[p"])/(E(K,) ®
Z/p"), and consider the natural map

wk : @D HI(K) —> Sel(Ok. E[p"])"
4

which is obtained by taking the dual of Sel(Ok, E[p"]) — @, E(K,) ® Z/p".
We also consider the natural map

ok : H'(K. E[p"])) — P H(K).
12

We use the following lemma which was proved in Kurihara (2014, Proposi-
tion 5.14 and Lemma 7.4 (2)).

Lemma 3. Suppose that K € X,y and r\,...,rg are s distinct primes in T(IN)(K).
Assume that for each i = 1,...,s, 0; € f]-Cfi (K) is given, and also x €
Sel(Ok, E[pN])Y is given. Let K'/K be an extension such that K' € X ,). Then
there are infinitely many £ € ?E)N)(K) such that wg (ty x) = x. We take such a
prime € and fix it. Then there are infinitely many ' € (Py)™)(K') which satisfy the
following properties:
i) wg(te x) = wg(tex) = x.
(ii) There is an element z € Sel(Ok[1/€L'], E[p"]) such that 0k (z) = ty x — te.x
and ¢,,(z) = o; foreachi = 1,...,s.

Assume that m¢ is in N\ (Kicgury). By Lemma 3 we can take £/ € (P})™)
satisfying the following properties:

() € € (PP (Kieoney(m))Kng+n) Where ng is as in Proposition 1.
(i) WK[s(nzlg]Iftl/vng(m()]) = WKemo) (tK'K[e(mé])])'
(i) Let ¢ " : H'(Kewmoy E[pV]) —> H2(Kjepney) be the map ¢, for
Kic(mey- There is an element b’ in Sel(Ok,,,[1/¢¢']. E[p"]) such that

/ —
BK[e(mz)] (b )= tf’.,K[e(mz)] - t[vK[e(ml)]

and ¢ "' (b') = 0 for all r dividing m.

We have already defined «,  in the previous subsection. We put b =
Corkyy/k (b') and define

Kmt = Kmyy — Smb. (26)

Then this element does not depend on the choice of £’ and b’ (see Kurihara
2014, §7.10). In Kurihara (2014), we took 5" which does not necessarily satisfy
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¢,K €9 (p") = 0 in the definition of «,, ¢. But we adopted the above definition here
because it is simpler and there is no loss of generality.

The next proposition was proved in Kurihara (2014, Propositions 7.13, 7.15,
7.16).

Proposition 2. Suppose that m{ is in N(IN) (Kie(mey)- Then

(0) s € Sel(Ok[1/m]. E[pM)).

(1) 3y (km,e) = vk ¢) for any prime divisor r of m.

(2) 3¢(kme) = Smle k-

(3) Assume further that m is admissible. Then ¢, (kn¢) = 0 for any prime divisor
r of m.

(4) Assume further that m{ is admissible, and m{ is in N(IN)(K[G(m[)+1]). Then we
have

¢((Km,l) = _(Smlitl,K-

4 Relations of Selmer Groups

In this section, we prove a generalized version of Theorem 3.

4.1 Injectivity Theorem

Suppose that K is in K, and that m is in NgN) (K). For a prime divisor r of m, we
denote by

wy 1 H2(K) —> Sel(Ok, E[p"])Y

the homomorphism which is the dual of Sel(Ok., E[p"]) —> @v‘r E(K,)®Z/p".
Recall that H2(K) is a free Rx/p" -module of rank 1, generated by ¢, k.

Proposition 3. We assume that 8, is a unit of Rg/p" for some m € NgN)(K).
Then the natural homomorphism @, |, w, : @r‘m H2(K) —> Sel(Ok, E[pN])Y is
surjective.

Remark 4. 'We note that §,, is numerically computable, in principle.

Proof (Proof of Proposition 3). Let x be an arbitrary element in Sel(Ox, E[p"])V.
Let w, : H2(K) —> Sel(Ok, E[p"])¥ be the natural homomorphism for each
r | m. We will prove that x is in the submodule generated by all w, (¢, g) for
r | m. Using Lemma 3, we can take a prime £ € ()™ (K(m))Kpy+n) such
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that wy(z¢ k) = x and £ is prime to m. We consider the Kolyvagin derivative «, ¢
which was defined in (24). Consider the exact sequence

Sel(Ok[1/me). E[p"]) > @ 3G (K) 5 sel(0k. E[p"])"
Ume

(see Lemma 1) where 0 = (®0¢)¢/me and Wi ((ze)e/jme) = D gr e Wer (2. For
each r | m we define A, € Rg/p" by 9, (kms¢) = Artrx € H2(K). The above
exact sequence and Proposition 1 (2) imply that

Bux + ) Aew (tr.k) = 0

rlm
in Sel(Og, E[p"])V. Since we assumed that §,, is a unit, x is in the submodule
generated by all w, (¢, x)’s. This completes the proof of Proposition 3.
For a prime £ € fP(lN)(K), we define

H (K)=EP EKm) & 2/p".
v[e

Since k(v) = Fy, E(k(v)) ® Z/p" is isomorphic to Z/p" and f]-f}’f(K) is a free
Ry /p" -module of rank 1.

Corollary 2. Supposethatm = £y -... -4, isin N(IN)(K). We assume that 6,, is a
unit of R/ p". Then the natural homomorphism

sm : Sel(Ok, E[p"]) — @D 7, ,(K)

i=1
is injective.

Proof. This is obtained by taking the dual of the statement in Proposition 3.

4.2 Relation Matrices

Theorem 9. Suppose thatm = £y -...- L, isin NgN)(K[aH]). We assume that m
is admissible and that 8,, is a unit of Rx / p". Then

(1) Sel(Ok[1/m], E[p")) is a free R/ p" -module of rank a.
2) {K%,gi Y<i<a is a basis of Sel(Ok[1/m], E[pM]).
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(3) The matrix

S bo (ki) - B (Kpm )

bor(kpm ) S s B g,)
A= . . (27

be, Ky o)) be,(Kom ) o S
is a relation matrix of Sel(E /K, E[p"])V.

In particular, if @ = 2, the above matrix is A = ( b, ¢u (glz)). This is
b0, (8e,)  dey

described in Remark 10.6 in Kurihara (2012) in the case of ideal class groups.
Proof (Proof of Theorem 9). (1) By Proposition 3, €B;_, f]-Cz_ (K) — Sel(Og,
E[p"])V is surjective. Therefore, by Lemma 1 we have an exact sequence

0 —> Sel(Ox. E[p"]) — Sel(Ox[1/m], E[p"]) — ED 3 (K)

i=1

—> Sel(Ok, E[p"])¥ —> 0. (28)

It follows that # Sel(Ok [1/m], E[p"]) = #@[_, 3 (K) = #(Rx/p")“.
Let mg, be the maximal ideal of Rg. By Lemma 2, Sel(Z[1/m], E[p"]) =
Sel(Ok[1/m], E[pN])%¥K/Q is bijective. Since H°(Q, E[p*°]) = 0, the ker-
nel of the multiplication by p on Sel(Z[1/m], E[p"]) is Sel(Z[1/m], E[p]).
Therefore, we have an isomorphism Sel(Ok[1/m], E[p"])Y ®gr, Rx/mg, =
Sel(Z[1/m], E[p])". From the exact sequence

0 —> Sel(Z, E[p]) — Sel(Z[1/m]. E[p]) — €D 7} (Q)

i=1

— Sel(Z, E[p])Y — 0,

and 57 (Q) = H°(F,, E[p]) ~ F,, we know that Sel(Z[1/m], E[p]) is gen-
erated by a elements. Therefore, by Nakayama’s lemma, Sel(Ok[1/m], E[p™])¥
is generated by a elements. Since #Sel(Ox[l1/m], E[p¥])Y = #(Rx/p")*,
Sel(Ok[1/m], E[p"])Y is a free Rg/p"-module of rank a. This shows that
Sel(Ok[1/m], E[p"]) is also a free Rg/p"™-module of rank a because Rg/p"
is a Gorenstein ring.

(2) We identify @}_, f]-f%l_ (K) with (Rg/p™)“, using a basis {#;, k}1<i<q. Con-

sider ¢, : Sel(Ox[1/m], E[p"]) — f]-Cfl_ (K) and the direct sum of ¢, , which
we denote by @;
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® = @_ ¢y, : Sel(Ok[1/m]. E[p"]) — EP HZ (K) =~ (Rx/p" )"

i=1

Recall that k z ¢, is an element of Sel(Ok[1/m], E [p™]) (Proposition 2 (0)). By
Proposition 2 (3), (4), we have

d)(K%,Z,') = _Smei

for each i where {e;}1<; <4 is the standard basis of the free module (Rx/p™ ).
Since we are assuming that §,, is a unit, @ is surjective. Since both the target
and the source are free modules of the same rank, @ is bijective. This implies
Theorem 9 (2).

Using the exact sequence (28) and the isomorphism @, we have an exact
sequence

dop—! r
(Ra/pM)* — @D 3 (Ki) — Sel(Ok. E[p"])Y — 0.

1<i<a

We take a basis {—8,ei}i<i<a Of (R,/p"Y)¢ and a basis {te, k}i1<i<a Of

Di<i<a f]-f%l_ (K,). Then the (i, j)-component of the matrix corresponding to

do @ is dg, (km ). If i = j, this is §n by Proposition 2 (2). If i # j, we
J i

have 9, (Kﬁgj) = ¢y, (Kﬁjj) by Proposition 2 (1). This completes the proof

of Theorem 9.

Remark 5. Suppose that £ is in fP(lN)(K). We define

@, : H'(K.E[p"]) — % ,(K)

as the composition of the natural map H'(K, E[p"]) — @VIZ H'(K,, E[p"])
and ¢’ : H'(K,, E[p"]) — H'(k(v), E[p"]) = E(k(v)) ® Z/p" in (23). For
m € N(IN)(K), we define

&, - H'(K. E[p"]) — P H} ,(K)
Lm

as the direct sum of @, for £ | m. By definition, the restriction of @, to 8§ =
Sel(E/K, E[p™]) coincides with the canonical map s,,;

(@515 = sm : Sel(E/K. E[p"]) — @D H} ,(K) . (29)

Llm
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Since U-Cz Y (K) and 9—(%(1( ) are Pontrjagin dual each other, we can take the dual
basis ;" of J—C},f(K) as an Rg/p" -module from the basis 7, x of 37 (K). Under
the assumptions of Theorem 9, using the basis {7/ ;}i<i<a Of b, ﬂ{é’f (K),
{te, k}1<i<a Of @?:1 f]-Cfl_ (K) and the isomorphism @, , we have an exact sequence
B KL (K) > @, 33 (K) — Sel(E/K. E[p¥])Y —> 0. Then the

matrix corresponding to f is an organizing matrix in the sense of Mazur and Rubin
(2005) (cf. Kurihara 2014, §10).

5 Modified Kolyvagin Systems and Numerical Examples

5.1 Modified Kolyvagin Systems of Gauss Sum Type

In Sect.3.4 we constructed Kolyvagin systems «,, ; for (m,£) such that m{ <
NﬁN)(K[e(m().H]). But the condition £ € T(IN)(K[e(mng]) is too strict, and it is not
suitable for numerical computation. In this subsection, we define a modified version
of Kolyvagin systems of Gauss sum type for (m, £) such that m{ € NgN) (K).

Suppose that K is in X,). For each £ € PV (K), we fix t, € HO(F¢, E[p"])
of order pN, and consider #; x € IH%(K), whose £ g-component is #; ® Qf,\f_l) and
other components are zero. Using #; ¢, we regard d; and ¢y as homomorphisms
¢ H'(K, E[p"]) — Rk/p" and ¢¢ : H'(K, E[p"]) — Rx/p".

We will define an element Kfn’qu/’z in Sel(Ok[1/m¢t], E[p"]) for (m, £) such that
ml € N(K) (and for some primes ¢, ¢’ and some z in Sel(Og[1/qq'], E[p"])).
Consider (m,£) such that £ is a prime and m{ € N;(K). We take ny suf-
ficiently large such that every prime of K,, dividing m{ is inert in Koo/ Kjy,-
Then by Proposition 1 (1), for any ¢ € (P)M(K(mO)mKug+n)s kmeg €
Sel(Ok[1/mlq), E[p"]) satisfies

ar (Kml,q) = ¢,~ (K#J{)
for all r dividing m{. By Lemma 3, we can take ¢, ¢’ € (P) ™ (K(m&)1 Kno+n)
satisfying

. WK(Zq’K) = WK(Z‘q/’K), and
o thereis z € H}(OK[I/qq’], E[p™]) such that 9k (z) = t5x — ty k. Pe(z) = 1
and ¢, (z) = 0 for any r dividing m.

For any m € N (K), let §,, be the element defined in (25). We define

9.9z
Kme = Kmtg—Kmtq — Smez - (30)

By Proposition 1 (2), we have Kfn’qu/’z € Sel(Ok[1/mf], E[p"]).
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Proposition 4. (0) qu “is in Sel(Ok[1/m{], E[ .
(1) The element Kq q * satisfies 0, (K"fqu ) = ¢, (/c )for any prime divisor r of m.

(2) We further assume that m{ is admissible in the sense of the paragraph before

949"z

Proposition 1. Then we have ¢, (k,°,™) = 0 for any prime divisor r of m.

(3) Under the same assumptions as (2) d¢ (Kq A ) = —8,u¢ holds.

Proof. (1) Using the definition of qu “ and Proposition 1 (1), we have
a,(xmﬁ,b, ) = 0r (Kimtg—Kme,g) = ¢>,(/c,%z —Kmt, ,). Next, we use the definition
of K%%’Z and ¢,(z) = 0 to get ¢,~(K%’ — Kt s = & (qu ‘4 szz) =
o, (Klé?é ). These computations imply (1).

(2) We have ¢, (ke q) = ¢r (Km( ¢/) = 0 by Proposition 1 (3). This together with

¢r(z) = 0 implies ¢, (K,% ) = brKimeg — Kmtq — Smez) = 0.
(3) We again use Proposition 1 (3) to get ¢¢(Kmeg) = ¢e(kmey) = 0. Since

¢¢(z) = 1, we have ¢((qu %) = ¢u(kmeg — Kmtg — Smez) = —Sme. This
completes the proof of Proposuion 4.

5.2 Proof of Theorem 4

In this subsection we take K = Q. For m € N¥) = NWW)(Q), we consider §,, €
Z/p", which is defined from dq(n) by (25). We define §,, € Z/p" by

B = 8 [ [(ze, = 1) (mod p™, (xe, = 1)°,....(w,, = 1)>) (31

i=1

where m = £ -...-4{,. By (8), éQ(m) = udq(m) for some unit u € Ra(m). This
together with (25) and (31) implies that

ord, (8,,) = ord, (8). (32)

We take a generator n¢ € (Z/£Z)* such that the image of 0, € Gal(Q(u¢)/Q) =~
(Z/£)* in Gal(Q(¥)/Q) ~ (Z/£)* ®Z, is T, which is the generator we took. Then,
using (31) and (1), we can easily check that Eq. (2) in Sect. 1.1 holds.

In the rest of this subsection, we take N = 1. We simply write P, for (P(ll), SO

Pr={ € Pgooa | £ =1 (mod p) and E(F¢) = Z/p}.
The set of squarefree products of primes in P; is denoted by Nj.

We first prove the following lemma which is related to the functional equation of
an elliptic curve.
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Lemma 4. Let € be the root number of E. Suppose that m € N is §-minimal
(for the definition of §-minimalness, see the paragraph before Conjecture 2). Then
we have € = (—1)<t™.

Proof. By the functional equation (1.6.2) in Mazur and Tate (1987) and the above
definition of §,,, we have e(—1)<""§,, = §,, (mod p). This implies the conclusion.

For each £ € P, we fix a generator #; € IH%(Q) = HYF,, E[p](-1)) ~
Z/p = F,, and regard ¢ as a map ¢, : H'(Q, E[p]) —> F,. Note that the
restriction of ¢, to Sel(E/Q, E[p]) is the zero map if and only if the natural map
s¢ :Sel(E/Q, E[p]) — E(F¢) ® Z/p ~ F,, is the zero map.

(I) Proof of Theorem 4 (1), (2).

Suppose that €(m) = 0, namely m = 1. Then §; = O mod p = L(E, 1)/.9;5F
mod p. If §; # 0, Sel(E/Q, E[p]) = 0 and s, is trivially bijective. Suppose next
€(m) = 1,som = £ € P,. It is sufficient to prove the next two propositions.

Proposition 5. Assume that £ € Py is §-minimal. Then Sel(E/Q, E[p]) is 1-
dimensional over ¥ ,, and s¢ : Sel(E/Z, E[p]) — F, is bijective. Moreover, the
Selmer group Sel(E /Q, E[p®])Y with respect to the p-power torsion points E[p®]
is a free L ,-module of rank 1, namely Sel(E /Q, E[p*™])Y ~ Z,.

Proof. 'We first assume Sel(E/Q, E[p]) = 0 and will obtain the contradiction. We
consider x|} = k¢4 — k¢4 — 8¢z, which was defined in (30). By Proposition 1 (1),

we know d; (K;{:Z/’Z) = ¢¢(g4 — g¢’)- Consider the exact sequence (see Lemma 1)

0 —> Sel(E/Q. E[p]) —> Sel(Z[1/r], E[p]) — H}(Q)

for any r € Py where Sel(Z[1/r], E[p]) — H?(Q) =~ F,, is nothing but 9,. Since
we assumed Sel(E/Q, E[p]) = 0, Sel(Z[1/r], E[p]) —> H?*(Q) ~ F, is injective
for any r € P1. So 9,(g,) = §i = 0 implies that g, = 0. By the same method,

we have g, = 0. Therefore, ag(Kf”Z/’z) = ¢¢(gy — &) = 0, which implies that

Kf”g “ e Sel(E/Q, E[p)).
But Proposition 4 (3) tells us that ¢4(Kf’g “y = =8 # 0. Therefore,

Kf”g/’z # 0, which contradicts our assumption Sel(E/Q, E[p]) = 0. Thus we
get Sel(E/Q, E[p]) # 0.

On the other hand, by Corollary 2 we know that s¢ : Sel(E/Q, E[p]) — F, is
injective, therefore bijective.

By Lemma 4, the root number € is —1. This shows that Sel(E/Q, E[p*°])¥
has positive Z,-rank by the parity conjecture proved by Nekovaf (2001, 2006).
Therefore, we finally have Sel(E/Q, E[p*])Y =~ Z,, which completes the proof
of Proposition 5.

If we assume a slightly stronger condition on ¢, we also obtain the main
conjecture. Let A’ = 19" be the analytic A-invariant of the p-adic L-function ¥q, .
Weputny =min{n € Z | p" —1 > 1},
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Proposition 6. Suppose that there is { € P, such that
=1 (mod p"~*+?) and 8¢ # 0.

Then the main conjecture for (E,Qoo/Q) is true and Sel(E/Qeo, E[p*°])Y is
generated by one element as a Aq,,-module.

’
Proof. We use our Euler system géK) in Sect. 3.2 instead of K;{:Z “ which was used

in the proof of Proposition 5. Let A be the algebraic A-invariant, namely the rank
of Sel(E/Qoo, E[p™])Y. Then A < A" and ¢, € char(Sel(Oq,,, E[p™])") by
Kato’s theorem.

Put K = Q,,, and f = p"~. Consider the group ring Rx/p = F,[Gal(K/Q)].
We identify a generator y of Gal(K/Q) with 1 + t, and identify Rg/p with
F,[[t]]/(t/). The norm Nga(k/q) = E,:’:Oly" is t/~! by this identification, so our
assumption A’ < f — 1 implies that the corestriction map Sel(E/K, E[p]) —
Sel(E/Q. E[p]) is the zero map because A < A’. Therefore, we have Qi C
K. Since pv*! — pw > pw — 1 > A > ], the corestriction map
Sel(E/Qu,,+1, E[p]) —> Sel(E/Qu,,, E[p]) = Sel(E/K, E[p]) is also the zero
map. This shows that Q) C Qu,,+1-

Our assumption £ = 1 (mod p"+*2) implies that £ splits completely in Q,, NESE
so we have £ € P1(Qp) = P1(K[j). Therefore, we can define

g™ e Sel(0x[1/4]. E[p])

in Sect. 3.2. Since £ € P{(Qyy), we also have
$e(gY) = =52 = =5

by Proposition 2 (4). It follows from our assumption §; # O that géQ) # 0.

Since CorK/Q(g,gK)) = géQ) and the natural map i : Sel(Z[1/{], E[p]) —>
Sel(Ok|[1/£], E[p]) is injective, we get

. K g K
i(gi?Y) = Noaxjogy =t/ gl #0.

Consider 9; : Sel(Og[1/4],E[p]) —> Rx/p. By definition, we have
8g(géK)) = ut" for some unit u of Rg/p. This shows that (tf_ygéK)) =0,
which implies that t/ " ¢\ € Sel(E/K, E[p]). The fact t/~'g®) = 0 implies

(K)
14

the submodule generated by +/ -V g, is isomorphic to Rg/ (p,t*/) as an Rg-

module. Namely, we have

Sel(E/K, E[p]) D (/¥ gi™y ~ R /(p, ).
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This implies that A = A/, and Sel(E/K, E[p]) ~ Rx/(p.t"). Therefore, we
have Sel(E/Qoo, E[p])Y =~ Aqu/(P,¥q.,). This together with Kato’s theorem
we mentioned implies that Sel(E/Qoo, E[p™])Y =~ Agy/(P0u)-

(IT) Proof of Theorem 4 (3).

Suppose that m = £,£, € N and m is §-minimal. As in the proof of Proposition 5,
we assume Sel(E/Q, E[p]) = 0 and will get the contradiction. We consider « %

defined in (30). Consider the exact sequence (see Lemma 1)

0 —> Sel(E/Q, Elp]) — Sel(Zl1/t129¢') Elp) —> ) 32(Q).
ve{ly l.q.q9"}

By the same method as the proof of Proposition 5, g, = g, = 0. Therefore,
0, (ke,g — ke, q) = ¢0,(84 — 847) = 0 by Proposition 1 (1). We have d,(k¢, 4) =
8¢, =0, 04(ke,.q) = 0,0y (k¢, 4) = 0, 0y (K¢, 4r) = 8¢, = 0. Therefore, 0(k¢, 4 —
ke, 4) = 0. This together with Sel(E/Q, E[p]) = 0 shows that k¢, 4 — k¢, o+ = 0.
Therefore, using Proposition 1 (1), we have

’
alz (Kzlq(;) = alz (Km,q - Km,q/) = ¢y, (Kll,q - Klfl,q/) =0.

7
By the same method as the above proof of «¢, , — k¢, o+ = 0, we get K;I'gz “=0.

This implies that dy, (Kzl’f]éz’z) = ¢, (/ci],’zz/’z) = 0 by Proposition 4 (1). It follows that
a(/c”'*z) = 0, which implies K1 e Sel(E/Q, E[p]). But this is a contradiction

[OR2) L1.6
because we assumed Sel(E£/Q, E[p]) = 0 and

b, (k(%)5) = =6 # 0

by Proposition 4 (3). Thus, we get Sel(E/Q, E[p]) # 0.

Now the root number is 1 by Lemma 4, therefore, by the parity conjecture proved
by Nekovdi (2001, 2006), we obtain dimg, Sel(E/Q, E[p]) > 2. On the other
hand, by Corollary 2 we know that s,, : Sel(E/Q, E[p]) —> (F,)®? is injective.
Therefore, the injectivity of s, implies the bijectivity of s,,. This completes the
proof of Theorem 4 (3).

We give a simple corollary.

Corollary 3. Suppose that there is m € N such that m is §-minimal and €(m) =
2. We further assume that the analytic A-invariant ' is 2. Then the main conjecture

for (E,Qoeo/Q) holds.

Proof. Putt = y—1andidentify Aq.,/p with F,[[t]]. Let A be the relation matrix
of § = Sel(E/Qoo, E[p™])V. Since S/(p,t) = Sel(E/Q, E[p])Y ~F, & F,,
divides det A mod p. Therefore, the algebraic A-invariant is also 2. This implies the
main conjecture because det A divides ¥q,, in Ag,, (Kato 2004).
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(IIT) Proof of Theorem 4 (4).

Lemma 5. Suppose that £, £y, {, are distinct primes in P, satisfying 6y = 8¢¢, =
8ee, = 0. Assume also that s : Sel(E/Q, E[p]) —> F, is bijective, and that {{,,
UL, are both admissible. We take q, q' such that they satisfy the conditions when we

’
4.4’z
defined k", Then we have

(D Sel(E/Q E[P]) = Sel(Z[1/4], E[p)),
) qu * =0, ngq( =0, and

() K845 € Sel(E/Q. Elp).

Proof. (1) Since sy is bijective, taking the dual, we get the bijectivity of
H2(Q) — Sel(E/Q, E[p])¥ = Sel(Z, E[p])". By the exact sequence

0—> Sel(Z, E[p]) — Sel(Z[1/£], E[p]) i>.’J‘C%(Q) — Sel(Z, E[p])Y —0

in Lemma 1, we get Sel(E/Q, E[p]) = Sel(Z, E[p]) = Sel(Z[1/4], E[p]).

(2) We first note that the bijectivity of s, : Sel(E/Q, E[p]) — F, implies the
bijectivity of ¢¢ : Sel(E/Q, E[p]) —> F,. Since d,(k¢y) = 8¢ = 0, k¢4 €
Sel(Z[1/£], E[p]) = Sel(E/Q, E[p]) where we used the property (1) which
we have just proved. Proposition 1 (3) implies ¢¢(k¢4) = 0, which implies
k¢q = 0 by the bijectivity of ¢¢. By the same method, we have k;, = 0.
Therefore, we have

94"z

1,6

K =Kpqg—Kog —82=0.

Therefore, Proposition 4 (1) implies d¢, (KZI'?( ) = ¢y, (Kq e “) = 0. This implies

o qg “ € Sel(Z[1/£]. E[p]) = Sel(E/Q, E[p]). Using Proposition 4 (3), we
have

¢Z(K(l ¢ )= _SMI =0,

which implies Kzl’f]l/ “ = 0 by the bijectivity of ¢. The same proof works for

q.49"z
Klzl .

(3) It follows from Proposition 4 (1) and Lemma 5 (2) that 9, (KZIZ;ZZ =
¢0, (k7 7) = 0 for each i = 1, 2. This implies KZ’Z/’ZK e Sel(Z[1/£], E[p)).

4142 i
Using Sel(Z[l/Z] E[p]) = Sel(E/Q, E[p]) which we proved in (1), we get
the conclusion. This completes the proof of Lemma 5.

We next prove Theorem 4 (4). Assume that m = £,£,£3 € Ny, m is §-minimal,
m is admissible, and s¢; : Sel(E£/Q, E[p]) — F, is surjective foreach i = 1, 2.

We assume dimg, Sel(E/Q, E[p]) = 1 and will get the contradiction. By
this assumption, s, : Sel(E/Q. E[p]) — F, for each i = 1, 2 is bijective.
This implies that ¢y, : Sel(£/Q, E[p]) — F, foreach i = 1, 2 is also
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bijective. By Lemma 5 (3) we get KZZZ;ZI € Sel(E/Q, E[p]), taking ¢, q’ satisfying

the conditions when we defined this element. By Proposition 4 (3), we have

b, (K147 ) = =8, # 0, which implies k14 # 0. But by Proposition 4 (2),
94"z

we have ¢y, (KMMI) = 0. This contradicts the bijectivity of ¢¢,. Therefore, we
obtain dimg, Sel(E/Q, E[p]) > 1.

By Lemma 4 and our assumption that m is §-minimal, we know that the root
number € is —1. This shows that dimg, Sel(E/Q, E[p]) > 3 by the parity conjecture
proved by Nekovai (2001, 2006). On the other hand, Corollary 2 implies that
dimg, Sel(E/Q, E[p]) < 3 and s, : Sel(E/Q, E[p]) —> F$* is injective.
Therefore, the above map s,, is bijective. This completes the proof of Theorem 4 (4).

5.3 Numerical Examples

In this section, we give several numerical examples.

Let E = Xo(11)) be the quadratic twist of Xo(11) by d, namely dy? = x> —
4x? — 160x — 1264. We take p = 3. Thenif d = 1 (mod p), p is a good ordinary
prime which is not anomalous (namely a,(= a3) for E satisfies a, # 1 (mod p)),
and p = 3 does not divide Tam(E), and the Galois representation on 73(E) is
surjective. In the following examples, we checked u’ = 0 where p’ is the analytic
p-invariant. Then this implies that the algebraic u-invariant is also zero (Kato 2004,
Theorem 17.4 (3)) under our assumptions. In the computations of §,, below, we have
to fix a generator of Gal(Q(£)/Q) =~ (Z/¢Z)™ for a prime £. We always take the
least primitive root 1, of (Z/£Z)*. We compute §,, using the formula in (2).

1. d = 13. We take N = 1. Since 37 = 20 # 0 (mod 3), we know that
Fitt; r,(Sel(E/Q, E[3])¥) = F5 by Theorem 8, so Sel(E/Q, E[3]) is generated
by one element.

The root number is € = (%) = —1,s0 L(E,1) = 0. We compute P; =
{7,31,73,...}. Therefore, 8, # 0 (mod 3) implies Sel(£/Q, E[3]) ~ F5 and

Sel(E/Q, E[3™))" ~ Z4

by Proposition 5. Also, it is easily computed that A’ = 1 in this case. This implies
that Sel(E/Qoo, E[3%°])Y =~ Z3, so the main conjecture also holds.

We can find a point P = (7045/36,—574201/216) of infinite order on the
minimal Weierstrass model y24y = x3—x?>—1746x—502950of E = X (11)!3.
Therefore, we know III(E/Q)[3%°] = 0. We can easily check that E(F7) is
cyclic of order 6, and that the image of the point P in E(F7)/3 E(F5) is non-zero.
So we also checked numerically that s7 : Sel(E/Q, E[3]) — E(F7)/3E(F7) is
bijective as Proposition 5 claims.
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2. d = 40. We know € = (%) = —1. We take N = 1. We can compute P; =
{7,67,73,.. .}, and §; = —40 % 0 (mod 3). This implies that Sel(E/Q, E[3]) ~
F3 and Sel(E/Q, E[3°°])Y ~ Zj; by Proposition 5.

In this case, we know A’ = 7. T}lerefore, ny, = 2. We can check 5347 € P
(where 5347 = 1 (mod 3°)) and 85347 = —412820 # 0 (mod 3). Therefore,
the main conjecture holds by Proposition 6. In this case, we can check that the
p-adic L-function 9q_, is divisible by (1 + t)* — 1, so we have

rankz, Sel(E/Qy, E[3*°])Y =3

where Q) is the first layer of Qoo /Q.

In the following, for a prime £ € P, we take a generator 7, of Gal(Q({)/Q) =~
(2/€Z)* and put S = 7, — 1. We write dqqu) = Eal@)S" where afz) € Z,. Note
that g@ = aﬁé).

3.d = 157. We know € = () = 1 and L(E,1)/Q} = 45. We take N = 1.
We compute ai’” = —14065/2 # 0 (mod 3). Since 37 = 1 (mod 3%), ¢, =
2—1 = landa$"” is in Fitty g, (Sel(E/Q, E[3])¥) by Theorem 8, which implies
that Fitt g, (Sel(E£/Q, E[3])) = Fs. Therefore, Sel(£/Q, E[3]) is generated by
at most two elements.

We compute P; = {7,~67, 73,127, ...}. Since 127 = 1 (mod 7), 7 x 127 is
admissible. We compute §7x127 = 83165 #£ 0 (mod 3). Therefore, 7 x 127 is
S-minimal. It follows from Theorem 4 (3) that Sel(E/Q, E[3]) >~ F; & F3. In
this example, we can check A’ = 2, so Corollary 3 together with the above
computation implies the main conjecture. Since L(E, 1)/ {21'5" = 45 # 0,
rank £(Q) = 0 by Kato, which implies Sel(E/Q, E[3*°]) = LII(E/Q)[3%].
Since 45 € Fitty z, (Sel(E/Q, E[3*])¥), we have #I1I(E/Q)[3*°] < 9, and

I(E/Q)[3®] ~ Z/3Z & Z/31Z.

4. d = 265. In this case, € = (%) = land L(E,1) = 0. Wetake N = 1. As

in Example (3), we compute aéw = 16985 # 0 (mod 3), which implies that

Sel(E/Q, E[3]) is generated by at most two elements as above. We compute
P = {7,13,31,67,103,109,127,...}. For an admissible pair {7,127}, we
have §7x127 = —138880 # 0 (mod 3). Therefore, 7 x 127 is §-minimal and
Sel(E/Q, E[3]) ~ F3 & F; by Theorem 4 (3). Since A’ = 2 in this case, by
Corollary 3 we know that the main conjecture holds.

Since L(E,1) = 0, we know rankSel(E/Q, E[3*°])¥ > 0 by the main
conjecture. This implies that

Sel(E/Q, E[3™))Y ~ Z3 & Zs.



The Structure of Selmer Groups of Elliptic Curves and Modular Symbols 353

Now E has a minimal Weierstrass model y? 4+ y = x3 — x? — 725658x —
430708782. We can find rational points P = (2403,108146) and Q =
(5901, —448036) on this curve. We can also easily check that E(F7) is cyclic
group of order 6 and E(F3;) is cyclic of order 39. The image of P in
E(¥7)/3E(F7) ~ Z/3Z is 0O (the identity element), and the image of Q in
E(¥7)/3E(F7) ~ Z/3Z is of order 3. On the other hand, the images of P and
Q in E(F3;)/3E(F51) >~ Z/3Z do not vanish and coincide. This shows that P
and Q are linearly independent over Z3. Therefore,

rank E(Q) = 2 and III(E/Q)[3°°] = 0.

In the above argument we considered the images of £(Q) in E(F;)/3E(F7)
and E(F31)/3E(F31). What we explained above implies that the natural map
s7x31 - E(Q)/3E(Q) — E(F7)/3E(F7) ® E(F31)/3E(F3) is bijective. In this
example, 67x3;1 = —15290 £ 0 (mod 3), so Conjecture 2 holds form = 7 x 31.

5.d = 853. We know ¢ = % = —1. Take N = 1 at first. For
¢ = 271, we have a{”’"” = 900852395/2 # 0 (mod 3), which implies
that dimg, Sel(E/Q, E[3]) < 3. We compute P, = {7,13,67,6103,

109,...,463,...}. We can find a rational point P = (1194979057/51984,
40988136480065/11852352) on the minimal Weierstrass equation y> + y =
x3 — x? — 7518626x — 14370149745 of E = Xo(11)®>¥. We know that
E(F;) is cyclic of order 6, and E(F;3) is cyclic of order 18. Both of the
images of P in E(F;)/3E(F7) and E(F,3)/3E(F3) are of order 3. Therefore,
s¢ : Sel(E/Q, E[3]) — E(F;)/3E(Fy) is surjective for each £ = 7, 13. Since
13 = —1 € (F5)% 463 = 1 € (Fy)® and 463 = 8 € (F3)°, {7,13,463} is
admissible. We can compute S7X13X463 = —8676400 # 0 (mod 3), and can check
that m = 7 x 13 x 463 is §-minimal. By Theorem 4 (4), we have

Sel(E/Q, E[3]) ~ F; ® F; ® Fs. (33)

We have a rational point P of infinite order, so the rank of E(Q) is > 1. Take
N = 3 and consider £ = 271. Since 8271 = a§271) = 35325 = 9(mod 27), 9isin
Fitt, 7/ ,37(Sel(E/Q, E[3%])V) by Corollary 1. This implies that rank E(Q) = 1
and #111(E/Q)[3*°] < 9. This together with (33) implies that

II(E/Q)[3*°] ~ Z/3Z & Z/3Z. (34)

Note that if we used only Theorem 1 and these computations, we could not
get (33) nor (34) because we could not determine @;(Q)® by finite numbers of
computations. We need Theorem 4 to obtain (33) and (34).

6. For positive integers d which are conductors of even Dirichlet characters (so d =
4m ord = 4m + 1 for some m) satisfying 1 < d < 1,000, d = 1 (mod 3), and
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d # 0 (mod 11), we computed Sel(£/Q, E[3]). Then dim Sel(E/Q, E[3]) =
0, 1,2, 3, and the case of dimension = 3 occurs only for d = 853 in Example (5).

7. We also considered negative twists. Take d = —2963. In this case, we know
L(E.1) # 0and L(E,1)/2; = 81. We know from the main conjecture that
the order of the 3-component of I1I(E/Q) is 81, but the main conjecture does
not tell the structure of this group. Take N = 1 and £ = 19. Then we compute
al'” = 2753/2 # 0 (mod 3) (we have doug) = —432S + (2753/2)S2 mod
(9. §%)). Since ¢; = 1, this shows that a'” is in Fitt, g, (Sel(E/Q, E[3])") by
Theorem 8. Therefore, we have Fitt, g, (Sel(E/Q, E[3])) = F3, which implies
that Sel(E£/Q, E[3]) ~ (F3)®2. This denies the possibility of ILT(E/Q)[3%°] ~
(Z,/32)®*, and we have

I(E/Q)[3%] ~ Z/9Z & Z/9Z.

8. Let E be the curve y? + xy + y = x> + x> — 15x + 16 which is 563A1 in
Cremona’s book (Cremona 1992). We take p = 3. Since a; = —1, Tam(E) = 1,
1 = 0 and the Galois representation on 73(E) is surjective, all the conditions we
assumed are satisfied. We know ¢ = 1 and L(E,1) = 0. Take N = 1. We
compute P; = {13, 61,103,109, 127,139, .. .}. For admissible pairs {13,103},
{13, 109}, we compute 813x103 = —6,819 =0 (mod 3) and 813x109 = —242 ¢ 0
(mod 3). From the latter, we know that

Staxi00 : Sel(E/Q, E[3]) —> (F3)®>

is bijective by Theorem 4 (3). Since A’ = 2, the main conjecture also holds by
Corollary 3. We know L(E, 1) = 0, so Sel(E/Q, E[3*]) ~ (Z3)®?.
Numerically, we can find rational points P = (2,—-2) and O = (—4,7)
on this elliptic curve. We can check that E(F3) is cyclic of order 12, E(Fi3)
is cyclic of order 84, and E (Fj¢9) is cyclic of order 102. The points P and Q
have the same image and do not vanish in E(F,3)/3E (F3), but the image of P
in E(Fyg9)/3E(F1g9) is zero, and the image of Q in E(F1o9)/3E (Fig9) is non-
zero. This shows that P and Q are linearly independent over Zs3, and s13x109 iS
certainly bijective. Since all the elements in Sel(E/Q, E[3°°]) come from the
points, we have III(E/Q)[3*®] = 0. On the other hand, the image of P in
E(Fy03)/3E(F93) coincides with the image of @, so s13x103 is not bijective.
This is an example for which §13x103 = 0 (mod 3) and s3x103 is not bijective.

9. Let E be the elliptic curve y> + xy + y = x* + x> — 10x + 6 which has
conductor 18097. We take p = 3. We know a3 = —1, Tam(E) = 1, u = 0 and
the Galois representation on 73 (E) is surjective, so all the conditions we assumed
are satisfied. In this case, ¢ = —1 and L(E,1) = 0. Take N = 1. We compute
Py :~{7, 19,31,43,79,...,601,...}. We know {7,43,601} is admissible. We
have §7x43x601 = —2424748 # 0 (mod 3), and 7 x 43 x 601 is §-minimal.
We thank K. Matsuno heartily for his computing this value for us. The group
E(F5) is cyclic of order 9 and E(F43) is cyclic of order 42. The point (0, 2)
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is on this elliptic curve, and has non-zero image both in E(F;)/3E(F;) and
E(F43)/3E(F43). So both s7 and 543 are surjective, and we can apply Theorem 4
(4) to get

S7xa3xeor : Sel(E/Q, E[3]) —> (F3)®3

is bijective.

Numerically, we can find three rational points P = (0,2), 0 = (2,-1),
R = (3,2) on this elliptic curve, and easily check that the restriction of
$7x43x601 to the subgroup generated by P, Q, R in Sel(E/Q, E[3]) is surjective.
Therefore, we have checked numerically that s7x43x601 is bijective. This also
implies that rank £(Q) = 3 since E(Q)wrs = 0. Therefore, all the elements
of Sel(E/Q, E[3*°]) come from the rational points, and we have ILI(E/Q)
[3*°] = 0.

5.4 A Remark on Ideal Class Groups

We consider the classical Stickelberger element

m

Bl = 20 G = Doy € QIGAIQUu Q)]

a=1
(a,m)=1

(cf. (1)). Let K = Q(+/—d) be an imaginary quadratic field with conductor d, and
x be the corresponding quadratic character. Let m be a squarefree product whose
prime divisors £ split in K and satisfy £ = 1 (mod p). Using the above classical
Stickelberger element, we define 851’ x by

md
~ a
bk == 2 ——x@(]]log, (@)
a=1 £lm
(a,md)=1

(cf. (2)). We denote by Clg the class group of K, and define the notion “8155 -
minimalness” analogously. We consider the analogue of Conjecture 2 for g;ff X
and dimg,(Clg/p). Namely, we ask whether dimg,(Clg/p) = €(m) for a 81‘?-
minimal 7. Then the analogue does not hold. For example, take K = Q(~/—23)
and p = 3. We know Clx =~ Z/3Z. Put {; = 151 and ¢, = 211. We
compute 85’ = =270 = 0 (mod 3), §}', = —1272 = 0 (mod 3), and
Széiz,K = —415012 = 2 (mod 3). This means that ¢ - £, is §%'-minimal. But,
of course, we know dimg,(Clg/p) = 1 <2 = €({; - {y).
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P-Adic Integration on Ray Class Groups
and Non-ordinary p-Adic L-Functions

David Loeffler

1 Introduction

P-adic L-functions attached to various classes of automorphic forms over number
fields are an important object of study in Iwasawa theory. In most cases, these p-adic
L-functions are constructed by interpolating the algebraic parts of critical values
of classical (complex-analytic) L-functions of twists of the automorphic form by
finite-order Hecke characters of the number field.

When the underlying automorphic form is ordinary at p, or when the number
field is Q, this p-adic interpolation is very well-understood. However, the case of
non-ordinary automorphic forms for number fields K # Q has received compara-
tively little study. This paper grew out of the author’s attempts to understand the
work of Kim (2011), who considered the L-functions of weight 2 elliptic modular
forms over imaginary quadratic fields.

In this paper, we develop a systematic theory of finite-order distributions and
p-adic interpolation on ray class groups of number fields. Developing such a theory
is a somewhat delicate issue, and appears to have been the subject of several
mistakes in the literature to date; we hope this paper will go some way towards
resolving the confusion. We then apply this theory to the study of p-adic L-
functions for automorphic representations of GL, over a general number field,
extending the work of Shai Haran (1987) in the ordinary case. Largely for simplicity
we assume the automorphic representations have trivial central character and lowest
cohomological infinity-type (as in the case of representations attached to modular
elliptic curves over K).
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Applying our theory to the case of K imaginary quadratic with p splitin K, we
obtain proofs of two conjectures. Firstly, we prove a special case of a conjecture
advanced of the author and Zerbes (Loeffler and Zerbes 2011), confirming the
existence of two “extra” p-adic L-functions whose existence was predicted on the
basis of general conjectures on Euler systems. Secondly, we consider the case when
the Hecke eigenvalues at both primes above p are O (the “most supersingular” case);
in this case Kim has predicted a decomposition of the L-functions analogous to the
“signed L-functions” of Pollack (2003) for modular forms. Using the additional
information arising from our two extra L-functions, we prove Kim’s conjecture,
constructing four bounded L-functions depending on a choice of sign at each of the
two primes above p.

2 Integration on p-Adic Groups

In this section, we shall recall and slightly generalize some results concerning the
space of locally analytic distributions on an abelian p-adic analytic group (the dual
space of locally analytic functions); in particular, we are interested in when it is
possible to uniquely interpolate a linear functional on locally constant functions by
a locally analytic distribution satisfying some growth property.

In this section we fix a prime p and a coefficient field E, which will be a
complete discretely-valued subfield of C,, endowed with the valuation v, such that

vp(p) =1

2.1 One-Variable Theory

We first recall the well-known theory of finite-order functions and distributions on
the group Z,,.

For r € Ry, we define the space of order r functions C"(Z,, E) as the space
of functions Z, — E admitting a local Taylor expansion of degree |r| at every
point with error term o(z"), cf. Colmez (2010, §1.5). We write D"(Z,, E), the space
of order r distributions, for the dual of C"(Z,, E) (the space of linear functionals
C’(Z,, E) — E which are continuous with respect to the Banach space topology
of C"(Z,, E); see op. cit. for the definition of this topology).

We may regard the space C'*(Z,, E) of locally analytic E-valued functions
on Z, as a dense subspace of C"(Z,, E) for any r, so dually all of the spaces
D" (Z,, E) may be regarded as subspaces of the E-algebra D'(Z,, E) of locally
analytic distributions, the dual of C'*(Z,, E). It is well known that D'*(Z,, E)
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can be interpreted as the algebra of functions on a rigid-analytic space over E
(isomorphic to the open unit disc), whose points parametrize continuous characters
of Z,.

It is clear that the above definitions extend naturally if Z, is replaced by any
abelian p-adic analytic group of dimension 1, since any such group has a finite-
index open subgroup H isomorphic to Z,; we say a function, distribution, etc. has
a given property if its pullback under the map Z, =~ a - H C G has it for every
aeG/H.

We define a locally constant distribution to be a linear functional on the space
LC(G, E) of locally constant functions on Z,. This is clearly equivalent to the data
of a finitely-additive E-valued function on open subsets of G, i.e. a “distribution”
in the sense' of some textbooks such as Washington (1997).

Definition 1. Let G be an abelian p-adic analytic group of dimension 1, and let
be an E-valued locally constant distribution on G. We say p has growth bounded
by r if there exists C € R such that

algg vp i (lagpme) = C —rm

for all m > 0, where H is some choice of subgroup of G isomorphic to Z,.

Remark 1. The definition is independent of the choice of H, although the constant
C may not be so.

Theorem 1 (Amice-Vélu, Vishik). Let G be an abelian p-adic Lie group of
dimension 1.

(i) If w € D" (G, E), then the restriction of j to LC(G, E) has growth bounded
byr.

(ii) Conversely, if r < 1 and p is a locally constant distribution on G with growth
bounded by r, there exists a unique element i € D" (G, E) whose restriction

to LC(G, E) is .
Proof. This is a special case of Colmez (2010, Theoreme I1.3.2).
Remark 2. 1In the case r > 1, one can check that any locally constant distribution
1 with growth bounded by r can be extended to an element i € D" (G, E), but this

is only uniquely defined modulo £, D" ! (G, E), where { is the order 1 distribution
whose action on C! functionsis f +— f(0).

'To avoid confusion we shall not use the term “distribution” alone in this paper, but rather in
company with an adjectival phrase, such as “locally analytic”, and generally an “X distribution”
shall mean “a continuous linear functional on the space of X functions” (with respect to some
topology to be understood from the context).
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2.2 The Case of Several Variables

We now consider the case of functions of several variables. First we consider the
group G = Z‘;], for some integer d > 1. Let r be a fixed real number; for simplicity,
we shall assume that r < 1.

Definition 2. Letd > 1 andlet f : G — E be any continuous function. For
m > 0 define the quantity &, (f) by

em(f) = vp [f(x +y) = f(x)].

inf
x€G,yep"G
We say f has orderr if &,,(f) —rm — oo as m — oo.

The space C"(G, E) of functions with this property is evidently an E-Banach
space with the valuation

ver(f) = inf (ggg vp(£(0). inf (en(f) — rm>) |

Remark 3. For d = 1 this reduces to the definition of the valuation denoted by v(.,
in Colmez (2010); in op. cit. the notation v¢- is used for another slightly different
valuation on C"(Z,, E), which is not equal to v, but induces the same topology.

If we define, for any f € C"(G, E), a sequence of functions ( f;n)m>0 by

pm —1 pm —1

S = Z Z SU - Ja) i)+ G

J1=0 Ja=0

then it is clear from the definition of the valuation v¢r that we have f,, — f(x) in
the topology of C" (G, E), so in particular the space LC(G, E) of locally constant
E -valued functions on G is dense in C"(G, E).

We define a space D" (G, E) as the dual of C"(G, E), as before.

As in the case d = 1 all of these constructions are clearly local on G and
thus extend” to abelian groups having an open subgroup isomorphic to Z"’f. Since
any abelian p-adic analytic group has this property for some d > 0, we obtain
well-defined spaces C’ (G, E) and dually D" (G, E) for any such group G.

Remark 4. This includes the case where G is finite, so d = O0; in this case
we clearly have C"(G,E) = C%“(G,E) = Maps(G,E) and D" (G, E) =
D%(G, E) = E[G] for any r > 0.

‘
2A little care is required here since for k > 1 pullback along the inclusion Z, AN Z,is a
continuous map C"(Z,, E) — C"(Z,, E) but not an isometry if r # 0. So for a general G the
space C"(G, E) has a canonical topology, but not a canonical valuation inducing this topology.
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We now consider the problem of interpolating locally constant distributions by
order r distributions.

Definition 3. Let p be a locally constant distribution on G. We say that u has
growth bounded by r if there is a constant C and an open subgroup H of G
isomorphic to Z4 such that

inf logpmp) = C —
anelepH( a+p H) = rm

forallm > 0.
The natural analogue of the theorem of Amice—Vélu—Vishik is the following.

Theorem 2. Let G be an abelian p-adic analytic group, r € [0, 1), and u a locally
constant distribution on G with growth bounded by r. Then there is a unique element
it € D"(G, E) whose restriction to LC(Z,, E) is jt.

Proof. The proof of this result in the general case is very similar to the case d = 1,
so we shall give only a brief sketch. Clearly one may assume G = H = Zi. One
first shows that the space of locally constant functions on Z”’f has a “wavelet basis”
consisting of the indicator functions of the sets

S, ..vig) = (i + p'VZy) x - x (ig + p'iZ,)

foriy,...,ig = 0, where £(n) is as defined in Colmez (2010, §1.3). One then checks
that the functions

Cliy.ninyr = M T 15

..... id)

form a Banach basis of C ’(Z"’f, E), so a linear functional on locally constant

functions taking bounded values on the e, ., extends uniquely to the whole
of C’(Z‘;, E).

Remark 5. The case when G = Oy, for some finite extension L/Q,, has been
studied independently by De Ieso (2012), who shows the following more general
result: a locally polynomial distribution of degree k which has growth of order r
in a sense generalizing Definition 3 admits a unique extension to an element of
D' (G, E) if (and only if) r < k 4 1. This reduces to the theorem above for k = 0.

2.3 Groups with a Quasi-factorization

The constructions we have used for C" and D" seem to be essentially the only
sensible approaches to defining such spaces which are functorial with respect to
arbitrary automorphisms of G. However, if one assumes a little more structure on
the group G then there are other possibilities, which allow a greater range of locally
constant distributions to be p-adically interpolated.
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Definition 4. Let G be an abelian p-adic analytic group, and let § be the Lie
algebra of G. A quasi-factorization of G is a decomposition § = P H; of G as
a direct sum of subspaces.

If (H;) is a quasi-factorization of G, we can clearly choose (non-uniquely)
closed subgroups H; € G such that J; is the Lie algebra of H; and [] H; is an
open subgroup of G. We shall say that (H;) are subgroups compatible with the
quasi-factorization (3; ).

Definition 5. Let G be an abelian p-adic analytic group with a quasi-factorization
H = (Hy,...,H,), and let (Hi,..., H,) be subgroups compatible with J. Let
f : G — E be continuous. Define

emng(F) = If v [0+ 0) = S

yep™ H~1><~~~><p’"z~’ Hg

We say f has order (ry,...,rg), where r; € [0, 1), if we have

Emy...mg (f) — (rimy ++++ +rgmg) — 00 (1)
as (my,...,mg) — oo (with respect to the filter of cofinite subsets of N¢, i.e. for
any N there are finitely many g-tuples (m, ..., m,) such that the above expression

is<N)

We define C1++"¢)(G, E) to be the space of functions of order (ri,...,r,),
equipped with the valuation given by

which makes it into an E-Banach space. We write D¢ (G, E) for its dual. It is
clear that as topological vector spaces these do not depend on the choice of the (H;).

Remark 6. One can check that if G = H; x --- x H,, then C ’g)(G,E) is
isomorphic to the completed tensor product

Q) C'(H;. E).

I<i<g

The spaces C1+"¢)(G, E) are clearly invariant under automorphisms of G
preserving the quasi-factorization .

Definition 6. Let G be an abelian p-adic analytic group with a quasi-factorization
H=(,...,3,), and let (H;, ..., H,) be subgroups compatible with J(. Let  be
a locally constant distribution on G.

We say u has growth bounded by (11, . . ., ry) if the following condition holds: there
is a constant C such that for all my, ..., m, € Z>,, we have
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dnf vy (Lot (o oy s) Z € = (rimi 4 -+ rgmy).

It is clear that whether or not u has growth bounded by (r;) does not depend on
the choice of (H;), although the constant C will so depend.

Theorem 3. Suppose [ is a locally constant distribution with growth bounded by
(r1,...,1rg), wherer; € [0,1). Then there is a unique extension of y to an element

I=i=g

gives an explicit Banach space basis of C ""s)(G, E), and the result is now clear.

Remark 7. The special case of Theorem 3 where G = Zi, with its natural
quasi-factorization, is studied in §7.1 of Kim (2011), which was the inspiration for
many of the results of this paper.

3 Distributions on Ray Class Groups

We now consider the application of the above machinery to global settings. We give
a fairly general formulation, in the hope that this theory will be useful in contexts
other than those we consider in the sections below; sadly, this comes at the cost of
somewhat cumbersome notation.

Let K be a number field. As usual, we define a “modulus” of K to be a finite

formal product ]_[N vi* where each v; is either a finite prime of K or a real place

i=1Vi
of K, and n; € Z>¢, with n; < 1 if v; is infinite. We define a “pseudo-modulus” to
be a similar formal product but with some of the n; at finite places allowed to be oo.
If § is a pseudo-modulus, then the ray class group of K modulo § is defined, and
we denote this group by G;.

Let § be a pseudo-modulus of K, and let X' be the finite set of primes p of K
such that p=° | §.

Let F be a finite extension of either Q or of Q, for some prime p, and V a

finite-dimensional F-vector space.

Definition 7. A growth parameter is a family § = (8;),ex of non-zero elements of
OF indexed by the primes in X.

Definition 8. A ray class distribution modulo § with growth parameter § and values
in V to be the data of, for each modulus § dividing §, an element

®; € F[G{] ®F V,
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such that:

1. We have Norm? @y = @5 for all pairs of moduli (f, f') with f | f' and f’ | §.
2. There exists an Op-lattice A C V such that for every f | §, we have @ €

Or[Gf] ®o, 8" A, where §; = [],cx 5,0,

We shall see in subsequent sections that systems of elements of this kind appear
in several contexts as steps in the construction of p-adic L-functions attached to
automorphic forms.

Since the natural maps Gz — Gj for § | § are surjective, and Gy is equal to the
inverse limit of the finite groups Gy over moduli § | §, condition (1) implies that
we may interpret a ray class distribution as a locally constant distribution on Gg
with values in V. Condition (2) can then be interpreted as a growth condition on this
locally constant distribution. Our goal is to investigate how this interacts with the
growth conditions studied in Sect. 2 above.

If the coefficient field F is a number field, then choosing a prime g of F allows
us to interpret V' -valued ray class distributions as V;-valued ray class distributions,
where V; = F; ®F V. So we shall assume henceforth that F = E is a finite
extension of Q,, for some rational prime p, as in Sect. 2.

Letus write § = g- ]_[PE 5 p°°, for some modulus g coprime to ¥'. Then we have
an exact sequence

0—>Eg—>HO,X<YP—>Gg—>Gg—>O
peXY

where €, is the closure of the image in [lhes Ok, of the group of units of Ok
congruent3 to 1 modulo g. Since Gy is finite, we see that if X is a subset of the
primes above p, then Gy is a p-adic analytic group; and if

f=]]»"

peEX

for some integers n,, the kernel of the natural surjection Gz — Gy, is the image H;
of the subgroup

Up= [ +p" 0k < [] 9%,

peEX peEX

The subgroups H; for § | X°° form a basis of neighbourhoods of 1 in Gg, so we
may regard a ray class distribution as a locally constant distribution on G satisfying

3We adopt the usual convention in class field theory that if g is divisible by a real infinite place v,
“congruent to 1 modulo v’ means that the image of the unit concerned under the corresponding
real embedding of K should be positive.
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a boundedness condition relative to the subgroups H;. Our task is to investigate how
this interacts with the boundedness conditions considered in Sect. 2 above.

3.1 Ciriteria for Distributions of Order r

The following theorem gives a sufficient condition for a ray class distribution to
define a finite-order distribution on the group G5 in the sense of Sect.2.2, when ¥
is a subset of the of primes above p (so that Gz is a p-adic analytic group). We
continue to assume that the coefficient field E is a finite extension of Q,, and (as
before) we write v, for the valuation on E such that v,(p) = 1. We shall assume
for simplicity that the coefficient space V is simply E; the general case follows
immediately from this.

Theorem 4. Let ® be a ray class distribution modulo §. Suppose ® has growth
parameter (0p)pex, and define

r= Z epvp (o),

peEX

where ey, is the absolute ramification index of the prime p. Then Og, viewed as a locally
constant distribution on Gg, has growth bounded by r in the sense of Definition 3.
In particular, if r < 1, there is a unique element ® € D" (Gg, E) extending ©.

Proof. Letp € X'. We can choose some integer ¢ > 0 such that the p-adic logarithm
converges on Upx = (1 + p"0p)* € Oy forall k > ¢, and identifies U, x with the

additive group pk(‘)p. In particular, Uy . is isomorphic to Z[,,K" Q0 ], and form > 0 we
have

Upp,c ~ pmpfop — PH—G"’"OP ~ Up.c—l—epm-

Now let py,...,p, be the primes in X and choose a constant ¢; for each. Then the
subgroup U = Uy, ¢, X - X Uy, ., is an open subgroup of (Ox ® Z,)* = H Op;s
and U =~ Z[,,K:Q]. By increasing the ¢; if necessary, we may assume that the image of U
in G is torsion-free and hence isomorphic to Z},; for some i < [K : Q].

Let H be the image of U. Then the image of U”" is H”", clearly; so a
locally constant distribution on G has order r if and only if there is C such that
vp(1,.pm) = C —rm (this is just Definition 3, but with the group law on G written
multiplicatively).
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However, we have

g g
m itep;
ur = 1_[ Upi,ci—{-epim = 1_[(1 + P,c eplmopi)x'

i=l1 i=l1

Thus Gg/H?P" is the ray class group of modulus

g
citep;
fm =g- 1_[ pi eP,ln,
i=1
where g is (as above) the modulus such that § = g - [[_, p°. So, if O is a ray class
distribution with growth parameter (& ),< 5, then we know that the valuation of & (X)
where X is any coset of H”" is bounded below by

g g
C - va(api)-ordpi (fn) =C'—m Zem"p(“m) =C' —rm

i=l1 i=l1

for some constants C, C’, where r is as defined in the statement of the theorem. So a ray
class distribution with growth parameter (o), e s defines a locally constant distribution
on the p-adic analytic group Gg whose growth is bounded by r, as required.

Note that this argument does not depend on the dimension of Gz (which is useful,
since this dimension depends on whether Leopoldt’s conjecture holds for K). This
result is essentially the best possible (at least using the present methods) when there
is a unique prime of K above p, or when K is totally real and Leopoldt’s conjecture
holds (as we show in the next section). However, for other fields K finer statements
are possible using the theory of quasi-factorizations developed in Sect. 2.3, as we
shall see below.

3.2 A Converse Result for Totally Real Fields

Let us now suppose K is totally real. We also suppose that Leopoldt’s conjecture
holds for K, so the image of € in nplp O, has rank n — 1. We shall take § = p™°g
for some modulus g coprime to p, so X' = ¥, is the set of all primes dividing p.
Leopoldt’s conjecture implies that Gy 4 is a p-adic analytic group of dimension 1;
thus, in particular, the notions of finite-order functions and distributions on G 004
are just the standard ones.

We shall prove the following theorem:

Theorem 5. Let o = (ap)pes, be elements of E, and let h € Ryq. Then the
implication
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Every ray class distribution modulo p°°g of growth parameter « is a locally constant
distribution on G ,o00 g with growth bounded by h

is true if and only if the inequality

Z epvplay) <h

pex,

holds.

We retain the notation of the proof of Theorem 4, so py,...,p, are the primes
above p, and for each i, ¢; is a constant such that for all £ > ¢; the logarithm map
identifies Uy, x with the additive group (p;)", and the image of U = Uy, , X... Uy, ¢,
in G is torsion-free and hence isomorphic to Z ,.

Enlarging the ¢; further if necessary, we may assume that there is an integer w
independent of i such that for each i the image of p;’ under the trace map Trg,_/q,
is p¥Z,. Letd; = [K,, : Q,].

Proposition 1. For each i there exists a basis b1, ... ,bq; of pi' as a Z,-module
such that

Tr,. /q,(bij) = p”

foreach j.
Proof. Elementary linear algebra.

Proposition 2. The isomorphism
U=7Z,
(wheren = [K : Q] = Zf':l d;) given by the bases b;y,...,big for1 < i < g
identifies the closure of € N U with the submodule
d
A={(x1.....xq) €Z4: Y x; =0}
j=l1

Proof. With respect to the basis by,...,b, s of p;’, the trace map is given by

(x1,...,xg,) = p” Zj X, S0 our isomorphism
U log ¢ = Zn
pi p

i=l1

identifies A with the elements of U whose norm down to Q is 1. However, since U is
torsion-free, any u € U N € satisfies Normg (1) = 1, so A contains the closure of
& N U, which we write as A’.



368 D. Loeffler

By Leopoldt’s conjecture (which we are assuming), A’ has Z,-rank (n — 1), the
same as A; so the quotient % is finite. However, we obviously have

U A
Z’;Z,,EBZ;

and % =U(p>,p} .. .pg’) is torsion-free, so we must have A = A’

Proposition 3. Let H be the image of U in Gpooq, and let H, = H 7" as above.
Supposem > 1. Then if r\, . .., r, are integers such that the image in G of Uy, ,, X+ X
Uy, r, is contained in Hy,, we must have r; > ¢; + e;m forall i.

Proof. If the image of Uy, ,; X -+ % Upg’,g is contained in H,,, then the same must also
be true with (r,...,r,) replaced by (r{,...,r;) where r/ = sup(r;, ¢;). So we may
assume without loss of generality that r; > ¢; for all i. Now the result is clear from the
above description of the image of the global units.

This result clearly implies Theorem 5.

Remark 8. Curiously, the results above seem to conflict with some statements asserted
without proof in Panchishkin (1994) (and quoted by some other subsequent works). The
group studied in op. cit. corresponds in our notation to Gy 00, wWhere g is the product
of the infinite places, and K is assumed totally real. (Thus G4,0c corresponds via class
field theory to the Galois group of the maximal abelian extension of K unramified
outside p and the infinite places; it is denoted by Gal, in op. cit.)

In Definition 4.2 of op. cit., a locally constant distribution p on G4 ,eo is defined to
be 1-admissible if

sup |1t (latm)| = 0 (Iml;l) :

Paragraph 4.3 of op. cit. then claims that a 1-admissible measure extends uniquely to
an element of D'*(Gg o0, E) which, regarded as a rigid-analytic function on the space
X, parametrizing characters of G, has growth o(log(1 4 X)).

This is consistent with Theorems 4 and 5 above if there is only one prime above p.
However, if there are multiple primes above p, it is not so clear how |m| is to be defined
for general ideals m | p°° of K, and the uniqueness assertion of Conjecture 6.2 of
op. cit. (which is asserted to be a consequence of the theory of #-admissible measures)
contradicts Theorem 5 of the present paper.

3.3 Imaginary Quadratic Fields

Let K be an imaginary quadratic field. If p is inert or ramified in K then there is only
one prime p of K above p, and hence there is no canonical direct sum decomposition
of Lie G yoo = K. On the other hand, we can find one when p splits:



Integration on ray class groups 369

Proposition 4. If K is imaginary quadratic and p = pp is split, then the images of
Lie O , and Lie (‘)2ﬁ in Lie(G poo) form a quasi-factorization.

Proposition 5. Let i be a ray class distribution modulo p®°g with growth parameter
(ap, ap). Then pu has growth bounded by (v,(ay), v, (ap)) in the sense of Definition 6.

Proof. Clear by construction.
Combining the above with Theorem 3 we have the following:

Theorem 6. Let K be an imaginary quadratic field in which p = pp is split, and let
® be a ray class distribution modulo p®°g with values in V and growth parameter
(ap,ap). Letr = vy(ap) and s = vy(ag). If r,s < 1, then there is a unique distribution

O e D" Gy, E)Qp V

such that the restriction of © to LC(Gpo, E)®E V is ©. If we have r + s < 1, then 6
lies in D" 15(G o, E) @ V and agrees with the element constructed in Theorem 4.

3.4 Fields of Higher Degree

When K is a non-totally-real extension of degree >2, one can sometimes find
interesting quasi-factorizations of G, by considering subsets of the primes above
p. If we identify G, with the Galois group of the maximal abelian extension
K(p®°)/K unramified outside p, we seek to write K(p°°) as a compositum of
smaller extensions, each ramified at as few primes as possible. We give a few
examples of the behaviour that occurs when p is totally split.

Example 1 (Mixed signature cubic fields). Suppose K is a non-totally-real cubic field,
and p is totally split in K, say p = pipop3. Then G oo has dimension 2 (since
Leopoldt’s conjecture is trivially true in this case), and the images of the groups (‘),X(’Pi
in G oo give three pairwise-disjoint one-dimensional subspaces of Lie G o<, 50 any two
of these form a quasi-factorization. One therefore obtains three quasi-factorizations of
G poo.

pOne checks that with respect to the quasi-factorization given by p; and p,, a ray
class distribution of parameter (cy, , op,, ¢p;) has growth bounded by (, s) if and only
if v, (ap,) + vp(ap,) < randv,(ay,) + v,(ap,) < s. For instance, if all o; are equal
and their common valuation / is < %, then can construct a locally analytic distribution
(indeed three of them), while Theorem 4 would only apply if & < é For the cases

% <h< %, it is not immediately obvious whether the interpolations provided by the
three quasi-factorizations are equal or not, but we shall see in the next section that this

is indeed the case.

Example 2 (Quartic fields). Suppose K is a totally imaginary quartic field, and p is
totally split in K. As in the previous example, O has rank 1 and thus Leopoldt’s
conjecture is automatic, so G oo has rank 3. We can obtain a quasi-factorization of
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G poo by considering the images of the Lie algebras of O K.p; for 1 =i =< 3; then (much
as in the previous case) we find that the condition for a ray class distribution to have
growth bounded by (7, s, t) is that

vplar) +vp(ay) <,
vplan) +vp(as) <,

vp(as) +vp(ay) <t

A slightly more intricate class of quasi-factorizations can be obtained as follows. We
can choose a basis for Lie O;_pi for each i such that the Lie algebra of the subgroup
Ex corresponds to the subspace A of Q‘;, spanned by (1,1, 1,1). Then choosing a
quasi-factorization amounts to choosing a basis of the 3-dimensional space of linear
functionals on Q‘It which vanish on A. One such basis is given by the functionals
mapping (X1, X2, X3,X4) 10 {X1 — X4,X2 — X4,X3 — X4}, and this gives the quasi-
factorization we have already seen. However, we can also consider the functionals
{x1—x2, x5 —Xx3, Xx3—Xx4}. One checks then that the condition for a ray class distribution
to have growth bounded by (r, s, ) is

VP(O“) + Vp(a2) =r,
vp(az) +vp(a3) <,

vp(as) +vp(ay) <t.

One can generalize the last example to a much wider range of number fields
under suitable assumptions on the position of Lie &k inside Lie(Z, ® Ok)™ (which
amounts to assuming a strong form of Leopoldt’s conjecture, such as that formulated
in Calegari and Mazur (2009)).

3.5 A Representation-Theoretic Perspective

For simplicity let us suppose that K has class number 1 and g = (1), so G :=
Gpoo = U/Z where U = ]_[;’.3:l O;)_ and A = O%. Pick real numbers ry,. .., r, with
ri € [0,1) Nv,(EX).

We consider the inclusion

where we give U the obvious quasi-factorization. We have, of course, LC(U, E )4 =
LC(U/A,E) = LC(G,E). The following proposition is immediate from the
definitions:



Integration on ray class groups 371

Proposition 6. Let 11 be an element of D"'-+"¢)(U, E). Then the restriction of [ to

LC(U, E)? is a ray class distribution of parameter (a1, . . . ,0tg), where the a; are any
elements with v, (a;) = r;.
Conversely, any ray class distribution of parameter (a1, ..., o) defines a linear

functional on LC(U, E)* which is continuous with respect to the subspace topology
given by the inclusion into C "9 (U, E).

invariants may be smaller than the invariants of the completion.

Example 3. Consider the case where U is Zi with its natural quasi-factorization, and
A is the subgroup {(x, y) : x + y = 0}. Then a continuous function f : U — E is A-
invariant if and only if there is a function i € C%(Z,, E) such that f(x,y) = h(x+y).
So the coefficients in the Mahler-Amice expansion f(x,y) = >, , Gmn (nxl) (l}l ) are
given by a,, , = b4, Where h(x) = ano b, (;‘) Since the functions

plritom -+t XY
m n

are a Banach basis of C""2)(U, E), we see that f is in this space if and only if
T vy () = 1i£0m) = ro€(n) = o0,

The supremum of r£(m) + ryf(n) over pairs (m,n) withm +n = k is (r; +
r)l(k) + O(1) as k — o0, so this is equivalent to

lim v, (by) — (r1 + r2)l(k) = oo,
k—o00

which is precisely the condition that & is C” where r = r; + r,. Moreover, this gives
a Banach space isomorphism between C’(Z,, E) and C"1"2(U, E)* preserving the
subspaces of locally constant functions, so if r; 4+ r, > 1 we see that LC(U, E )A is not
dense in C1"2) (U, E)A.

Remark 9. In Sect. 3.4, we gave criteria for locally constant functions on U/A to be
dense in a Banach space whose topology is coarser than that of C(1"s)(U, E)A.
This in particular implies that such functions are dense in C"s)(U, E)2 in these
cases, and hence that the multiple possible choices of auxilliary quasi-factorizations
considered in the examples above do all give the same distribution on G when they

apply.
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4 Construction of p-Adic L-Functions

We now give the motivating example of a ray class distribution: the distribution
constructed from the Mazur-Tate elements of an automorphic representation of
GL, /K.

4.1 Mazur-Tate Elements

Let K be a number field, and /T an automorphic representation of GL, / K. We make
the following simplifying assumptions:

1. I is cohomological in trivial weight, i.e. the (g, Koo )-cohomology of IT does not
vanish, where K is a maximal compact connected subgroup of GL,(K ® R);
2. The central character of 7 is trivial.

Conditions (1) and (2) are satisfied, for instance, if /T is the base-change to K of
the automorphic representation of GL, /Q attached to a modular form of weight 2
and trivial nebentypus. It follows from (1) and (2) that there exists a finite extension
F/Q inside C such that the GL,(A%°)-representation /71°° can be defined over F,
and in particular the Hecke eigenvalues a(/1) for each prime [ of K are in Of.

Theorem 7 (Haran). Under the above assumptions, there exists a finitely-generated
Op-submodule A of C, and for each ideal § of K coprime to the conductor of Il an
element

O5(M) € Z[Gj] ®z A,
where Gj is the ray class group modulo §, such that the following relations hold:
(i) (Special values) If w is a primitive ray class character of conductor §, then

Li(M,w,1)
w(@) - [fI72 - ()

w (05(IT)) =

where Li(I1,w,s) denotes the L-function of IT twisted by w, without the Euler
factors at oo or at primes dividing |, and t(w) is the Gauss sum (normalized so
that |t(w)| = 1);

(ii) (Norm relation) For | a prime not dividing the conductor of I1, we have

(a(IT) —or—o") O5(IT)  if L4,

Norm;[@f[(n) =
a[(H)@f(H) — @f/[(H) lf[ | f

where oy denotes the class of Lin Gy.
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Proof. See Haran (1987). (Note that in the main text of op. cit. it is assumed that K is
totally imaginary, but this assumption can easily be removed, as noted in section 7.)

Remark 10. 1In fact one can obtain essentially the same result under far weaker
assumptions: it suffices to suppose that I7 is cuspidal, cohomological (of any weight),
and critical. However, the necessary generalizations of Shai Haran’s arguments are
time-consuming, so we shall not consider this more general setting here. For the case
when K is totally real, but [T has arbitrary critical weight and central character, see
Dimitrov (2013).

We refer to the elements @;(17) € Z[Gj] @z A as Mazur—Tate elements, since
they are closely analogous to the group ring elements considered in Mazur and Tate
(1987). The coefficient module A is in fact rather small, as the following result (an
analogue of the Manin—Drinfeld theorem) shows:

Proposition 7. The O-submodule A € C may be taken to have rank 1.

Proof. 'We know that Ay is finitely-generated, so it suffices to show that F' @, Ap
is 1-dimensional.

To prove this, we must delve a little into the details of Shai Haran’s construction.
The elements ®;(IT) for varying IT are all obtained from a “universal Mazur—Tate
element” in the module Z[G;] ® H®M(Y, Z), where Y is a locally symmetric space for
GL,(Ak) and HEM is Borel-Moore homology (the homological analogue of compactly
supported cohomology). Here r = r; + r,, where r; and r, are the numbers of real
and complex places of K. The element ®;(IT) is obtained by integrating the universal
Mazur-Tate element against a class in Hp’ar(Y , C) arising from IT. However, it follows
from the results of Harder (1987) that there is a unique Hecke-invariant section of the
projection map

H!(Y,C) — H,(Y.C),
and the IT-isotypical component of H/(Y,C) is 1-dimensional and descends to
H! (Y, F). Thus, after renormalizing by a single (probably transcendental) complex
constant depending on 1, the Mazur—Tate elements for IT can be obtained as values of
the perfect pairing

HEM(Y,F)x H!(Y,F) — F,

so we deduce that F' ® 9, A has dimension 1 as claimed.

4.2 Stabilization

We now introduce “X'-stabilized” versions of the @;(IT), again following Haran
(1987) closely. Let § be a pseudo-modulus of K, and X' the set of primes p such
that p>° | §, as before. We assume that none of the primes p € X divide the
conductor of I7.
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Definition 9. An X -refinement of IT is the data of, foreach p € X', aroot o, € F of
the polynomial

P,(IT) = X* — ay(I1)X + Ng/o(p) € F[X]

(the local L-factor of IT at p).

We write 8, for the complementary root to «,. By enlarging F if necessary, we
may assume that the «, and §, all lie in F.

We introduce a formal operator R, on the @;(1T1)’s by R, - ©;(IT) = Oy, (IT)
whenever p | §. Then it is easy to see that the R, for different p | § commute with
each other, so we can define

OF () =o' [ [T —o;'Ry) | ©5(),
peXr

whenever f is divisible by all p € X, where «; stands for the product
o5 1= l_[ Otp_v'j(f).
peEX

Then one checks that we have
i - 6
Normfp ((*)f)“;J (17)) = ()fE(H)
for any p such thatp | f and p € X'. We can therefore extend the definition of @fx 1)
uniquely to all f | Foo in such a way that this formula still holds.
Corollary 1. Let § be a pseudo-modulus of K and write § = gFco, Where § =

]_[pez p°° and g is coprime to X. Then the elements

{O7(IT) : | Foo)

defined above form a ray class distribution modulo §, with values in F ® o, A and
growth parameter (ctp)pe 5.

4.3 Consequences for p-Adic L-Functions

We now summarize the results on p-adic L-functions that can be obtained by
applying our theory to the ray class distributions constructed in Sect. 4.2. As before,
let F be a number field, and E be the completion of F at some choice of prime
above p; and let v, denote the p-adic valuation on E normalized so thatv,(p) = 1.

Theorem 8. Let K be an arbitrary number field and X a subset of the primes of K
above p, and let § be the pseudo-modulus g - ]_[pex P, where g is a modulus coprime



Integration on ray class groups 375

to X. Let Il be an automorphic representation of GL, /K with Hecke eigenvalues in
F, satisfying the hypotheses (1) and (2) of Sect. 4.1, and unramified at the primes in X.
Let o = (ap)pes be a X-refinement of I1 defined over F. If we have

h = Z epvplap) < 1,

peXr

then there is a unique distribution L, ,(IT) € D"(G3, E) ®0, Ap such that for all
finite-order characters @ of Gz whose conductor is divisible by g, we have

Lyo@) = [ [Teo ™ || J] (- om0 —o;'om™)
pex pPEZ ptf
Li(IT,0,1)
() - Jfl - (4m) K

@)

where § is the conductor of ®.

Proof. This is immediate from Theorem 7 and Corollary 1 except for the formula for
L, o(IT)(w) when f is not divisible by all primes in X'; the latter follows via a short
explicit calculation from part (ii) of Theorem 7.

If K is imaginary quadratic and p is split, we obtain a slightly finer statement
using the quasi-factorization above:

Theorem 9. Let K be an imaginary quadratic field in which p = pp splits, and let IT
be an automorphic representation satisfying the hypotheses (1) and (2) of Sect. 4.1 with
Hecke eigenvalues in F, and unramified at p and p. Let o = (o, i) be a p-refinement
of I1 defined over F.

If we have

r=vy(ay) <1 and s=vy(ap) <1,

then there is a unique distribution L ,4(IT) € D")(G o, E) ® 0, Ap satisfying the
interpolating property (2).

Note that every IT will admit at least one p-refinement satisfying the hypotheses
of Theorem 9, and indeed if /T is non-ordinary at p and p then all four p-refinements
do so; but at most two of the four p-refinements, and in many cases none at all, will
satisfy the hypotheses of Theorem 8.

Remark 11. Applying Theorem 9 to the base-change of a classical modular form, we
obtain Conjecture 6.13 of our earlier paper (Loeffler and Zerbes 2011) for all weight 2
modular forms whose central character is trivial.

Remark 12. Examples of ray class distributions appear to arise in more or less
any context where p-adic interpolation of L-values of non-ordinary automorphic
representations over general number fields is considered. For instance, the works of
Ash—Ginzburg (1994) on p-adic L-functions for GL,, over a number field, and of
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Januszewski on Rankin—-Selberg convolutions on GL, x GL,_; over a number field
(Januszewski 2011), can both be viewed as giving rise to a ray class distribution
(with some parameter depending on the Hecke eigenvalues of the automorphic
representations involved). Thus the theory developed in this paper allows these works
to be extended to non-ordinary automorphic representations of (sufficiently small)
non-zero slope.

5 Thea, = 0 Case

We now concentrate on a special case of Theorem 9, where K is imaginary
quadratic with p split and a,(IT) = az(IT) = 0 (as in the case of the automorphic
representation attached to a modular elliptic curve with good supersingular reduc-
tion at the primes above p, assuming p > 5). Then the two Hecke polynomials at
p and p are the same, and we write {«, B} for their common set of roots, which are
both square roots of —p and in particular have normalized p-adic valuation % Thus
Theorem 9 furnishes four p-adic L-functions.

Remark 13. None of these four L-functions can be obtained using Theorem 8.
Moreover, the restriction of any of the four to a “cyclotomic line” in the space of
characters of G, (i.e. a coset of the subgroup of characters factoring through the norm
map) is a distribution of order 1, and thus not determined uniquely by its interpolating
property. Thus, paradoxically, it is easier to interpolate L-values at a larger set of twists
than a smaller one.

‘We know that the module A7 in which our Mazur—Tate elements are valued has
rank 1 over Or. We may thus choose an O-basis 27 of O ® o, Apy. Let us write

Lp,(a,a) (H)

€ DU/2VD(G yoo  E
o (Gpee. E)

Moo =

and similarly for p, g, g o, g

Proposition 8. The distributions

Pt + = Hao + o p + Upa + Hpp
M4 — = Koo — Ma,p T Upa — UBB
H— 4+ = Lo + Map — HBa — UB.B
He— = Uoa — Pap — Mpa + UB.B
all lie in D(1/2:1/2) (G p, E), and have the property that if w is a finite-order character

of conductor p"*p"?, with both ny,, ny > 0, then L+ o vanishes at ® unless ¥ = (—1)"»
and o = (—1)"v.

Proof. Clear from the interpolating property of the u’s.
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Thus each of the distributions p« o, for %, 0 € {4, —}, vanishes at three-quarters
of the finite-order characters of the p-adic Lie group G poo.

We now interpret this statement in terms of divisibility by half-logarithms. Let
log;" be Pollack’s half-logarithm on O};p =~ Z; (cf. Pollack 2003) which is a
distribution of order 1/2 with the property that log;" () vanishes at all characters
x of Z of conductor p" with n an odd integer (and no others). Similarly, let log,”
be the half-logarithm which vanishes at characters of conductor p” with n positive
and even. We define log;F and log," as distributions on Gy by pushforward, and

similarly log%t.
Proposition 9. For x,0 € {+,—}, the distribution [i« o is divisible in D'4(G poo) by
logy; logp.

Proof. We begin by introducing distributions

M+a = Haa + Hpa
Htp = Hap + Hpp
H—a = Moo — LB
H—p = Mo — Hpp-

We claim that ;4 o and @4 g are divisible by log;', and pu—4 and u— g by log, .
We prove only the first of these four statements, since the proofs of the other three
are virtually identical. If y is any finite-order character such that n,(y) (the power
of p dividing the conductor of y) is positive and odd, then p4 o, vanishes at y by
construction.

Since w4 o is in D/2V2(G ye0, E), it follows that it must vanish at any character
of G whose pullback to O,X(’P is of finite order with odd p-power conductor. Hence (4 4
is divisible by log;," in D(l/z'l/z)(Gpoo, E) (and the quotient clearly has order (0, 1/2)).

We now apply the same argument in the other variable, to show that (ty + = g0 +
Ma,p 1s divisible by log;' , etc. This shows that ;v is divisible by both log;," and log;' .
These two distributions are coprime (if we regard them as rigid-analytic functions on the
character space of G o0, the intersection of their zero loci is a subvariety of codimension
2) so we are done.

Corollary 2. There exist four bounded measures
Lt L Lot L7 € Ap(Gpeo)

such that

LoD _ 1 40+ 100t loo—
o =1 (Lp log," logg +L ;" log," logg

—F 100— TooT L7 loo— loo=
+L, " log, log5 +L, " log, logﬁ)

and similarly for the other three unbounded L-functions.
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Remark 14. 1f I is the base-change to K of a weight 2 modular form, then p4 , and
ip,p coincide with the distributions constructed in Kim (2011), up to minor differences
in the local interpolation factors. Hence the above corollary proves the conjecture
formulated in op. cit. However, it does not appear to be possible to construct the signed
distributions L;ﬁ'*"' etc. solely from py o and pg g; it seems to be necessary to use jiqg
and pg, as well, and these last two are apparently not amenable to construction via
Rankin—Selberg convolution techniques as in op. cit.
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On Equivariant Characteristic Ideals
of Real Classes

Thong Nguyen Quang Do

1 Introduction

Fix an odd prime p and a Galois extension F/k of totally real number fields,
with group G = Gal(F/k). Let Foo = U F, the cyclotomic Z,-extension of
n>0

F, T = Gal(Fx/F), Goo = Gal(Feo/k), A = Z,[[']], A = Z,[[Go]]. Take
Sy = 8, U Ram(F/k), S = Soc U Sy, where Sy (resp. S,) is the set of
Archimedean primes (resp. primes above p) of k and Ram(F/k) is the set of
places of k which ramify in F/k. By abuse of language, we also denote by S the
set of primes above S in any extension of k. Let Gg(F,) be the Galois group over
F, of the maximal algebraic S-ramified (i.e. unramified outside S) extension of
F,. Since p is odd and S contains S, U Se, it is known that cd,(Gs(F;)) <
2 (see e.g. Neukirch et al. 2008, Propos 8.3.18). Furthermore, the continuous
cohomology groups H.(F,,Z,(m)) := H'(Gs(F,),Z,(m)), m € Z, coincide
with the étale cohomology groups H/ (OF,[1/S],Z,(m)). We are interested in the
A-modules H}  ¢(Foo.Zp(m)) := l(iLan(Fn,Z,,(m)) (H} () for short if there

cores

is no ambiguity on §), to which can be attached invariants containing important
arithmetical information.

For instance, if G is abelian and the p-invariant associated to F,/F vanishes,
it can be shown that, for any m = 0 (mod 2), the initial A — Fitting ideal of
H} (Feo,Z,(m)) is given by the formula:

Fity(H},,(Foo, Zy(m))) = twy(IGos. Os) (1)
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where 1w, denotes the automorphism of the total ring of fractions Q A induced by
the mth-Iwasawa twist 0 > /c;"yc o1, Keye 18 the cyclotomic character, IGo is
the augmentation ideal of Z,[[G]] and 85 € Q A is the Deligne-Ribet pseudo-
measure associated with G, (Nguyen Quang Do 2005, thms 3.1.2, 3.3.3). Note
that for m < 0, we implicitly assume the validity of the mth-twist of Leopoldt’s
conjecture; see Proposition 4 below.

The identity (1) was shown by using the (abelian) Equivariant Main Conjecture
(EMC for short) of Iwasawa theory in the formulation of Ritter and Weiss (2002,
theorem 11). Here “equivariant” means that the Galois action of G is taken into
account. One salient feature of formula (1) is that it allows a proof by descent
of the p-part of the Coates-Sinnott conjecture, as well as a weak form of the p-
part of Brumer’s conjecture (Nguyen Quang Do 2005, thms 4.3, 5.2). On the same
subject, let us report the approach of Burns and Greither (2003b, theorems 3.1, 5.1
and corollary 2) using the Iwasawa theory of complexes initiated by Kato and
subsequently extended by Nekovar (2006). See also Greither and Popescu (2013).

After the recent proof of the non commutative EMC (under the hypothesis that
u = 0, see Kakde 2013; Ritter and Weiss 2011), no doubt that the above results
could be extended to the case where G is non abelian (this has been done recently by
Nickel 2013). But in this article, we are mainly interested in the odd twists, m = 1
(mod 2), which are not a priori covered by the EMC. Since there are so many “main
conjectures” floating around, a short explanation is in order. Let us come back to the
classical Main Conjecture, or Wiles’ theorem (WMC for short, see Wiles 1990) and
take G = (1) for simplicity. The Galois group X, over F, of the maximal abelian
(p)-ramified pro-p-extension of Fu, is a A-torsion module because F' is totally
real, and the A-characteristic series of X is precisely related by the WMC to the
Deligne-Ribet pseudo-measure attached to the maximal pro- p-quotient of ng (F)
(where § = SooUS),). If we allow — just for this discussion — the base field F' to be a
CM-field, then (tor s Xoo) ™ = XZ by the weak Leopoldt conjecture, and it is related
by Spiegelung (reflection theorems) to the “minus part” X _ of the Galois group over
Fo of the maximal abelian unramified pro- p-extension of Fi, so that we know the
A-characteristic series of X in terms of L ,-functions. However our intended study
of odd twists actually concerns the “plus part” X, at least because if ¢, € F, then
X! .(m —1) is contained in H?, (Foo, Z,(m)) (see Proposition 4 below), where X/,
is obtained from X, by adding the condition that all (p)-primes (hence all finite
primes, because at a non (p)-prime, the local cyclotomic Z,-extension coincides
with the local maximal non ramified pro- p-extension) must be totally split. A related
problem is Greenberg’s celebrated conjecture — a “reasonable” generalization of
Vandiver’s — which asserts the finiteness of X, (or equivalently of X_F). Not much
is known on the plus parts. Let us recall some results in the case where k = Q, F
is totally real and G is abelian:

e Itis well known that the WMC is equivalent to the so-called “Gras type” equality
(because it implies the Gras conjecture):

chary Xoo = char (U oo /C oo) 2)
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where U s (resp. C) denotes the inverse limit (w.r.t. norms) of the p-
completions U, (resp. C,) of the groups of units (resp. circular units) along
the cyclotomic tower of F. But the right hand side A-characteristic series is
not known. Besides, this Gras type equality comes from the multiplicativity of
char 4 (.) in the exact sequence of class-field theory relative to inertia:

0 —>Uoo/€oo — uoo/a,o — Xoo = Xoo — 0,

where Ue, is the semi-local analogue of U . But when passing from A to A, no
straightforward equivariant generalization (of A-characteristic series of modules
and their multiplicativity) is known.

* Galois annihilators of X/ have been explicitly computed in Nguyen Quang Do
and Nicolas (2011) and Solomon (2010), as well as Fitting ideals in the semi-
simple case in Nguyen Quang Do and Nicolas (2011).

In this context, the main result of this paper will be an explicit equivariant
generalization of the Gras type equality (2) for all odd twists (see Theorem 2 below).
The proof will proceed in essentially two stages:

e Use a “limit theorem” in the style of Burns and Greither (2003a, thm 6.1; this
is also an EMC, but we don’t call it so for fear of overload), but expressed in
the framework of the Iwasawa theory of perfect torsion complexes as in Witte
(20006), to relate the A-determinant of H}W(Foo,Zp(m)), m odd, to that of a
suitable quotient of H}, (Foo, Z,(m))

* Use an axiomatization of a method originally introduced by Kraft and Schoof
for real quadratic fields (Kraft and Schoof 1995) to compute explicitly the latter
determinant (which will actually be an A-initial Fitting ideal).

Summary of Iwasawa theoretic notations

F a number field

Foo = U,>0 Fn the cyclotomic Z ,-extension of F

I, = Gal(F,/F), I' = Gal(Fso/ F), A = Z,[[I"]]

If moreover F/Q is Galois

Gy = Gal(F,/Q), Goo = Gal(Foo/Q), A = Zp[[Goo]]

A, (resp. A})) = the p-group of ideal classes (resp. (p)-classes) of F,
Xoo (resp. X)) = 1i<1_n A, (resp. A])) w.r.t. norms

Xoo = the Galois group over F, of the maximal abelian pro-p-extension of
Foo which is unramified outside p

U, = the p-completion of the group of units of F,

Uy = li(I_n U, w.r.t. norms

If moreover F/Q is abelian:
C, = the p-completion of the group of circular units of F,

Co = lim C,, w.r.t. norms
<«
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2 Generators and Relations, and Fitting Ideals

We study in this section an axiomatic method for describing certain (initial) Fitting
ideals by generators and relations. It was first introduced by Kraft and Schoof
(1995) for quadratic real fields, and subsequently applied by Solomon (2010) to
the cyclotomic field Q(¢,)*.

2.1 General Case

Since the process is purely algebraic, we can relax here the assumptions on k and F
imposed in the introduction. So F/k will just be a Galois extension with group G,
and the usual Galois picture will be:

Note that A = A[H] is equal to A[G] if and only if koo N F = k. Put R, =
Zp|Gnl, Rua = Z/ p* [Gyl-

Hypothesis: We are given a projective (w.r.t. norms) system of R,-modules V,
which are Z,-free of finite type, as well as a projective subsystem W, C V, such
that each W, is R,-free of rank 1. In other words, there is a norm coherent system
n = (M), Ny € V,, such that W,, = R,,.n, for all n > 0. Without any originality, a
pair (V,, Wy)u>0 as above will be called admissible.

At the time being, we don’t worry about the existence of such systems (W,,, V,)),,.
Arithmetical examples will be given later in Sects. 2 and 3.

Goal: denoting by B, the quotient V,,/ W,,, describe the module ¢ B, (where z(.)
means Z,-torsion) by generators and relations.

In the sequel, for two left modules X, Y, the Galois action on Hom(X, Y') will
always be defined by ° f(x) = o(f(0c~'x)). The Pontryagin dual of X will be
denoted by X*.

Proposition 1. Foranyn > 0,

(t B))* ~ R,/D,, where D, = {Z fo " 'g).0; f € Hom (Vy,,Z,)} .

g€l
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Proof. We follow essentially the argument of Kraft and Schoof (1995, thm 2.4).
For any a > 0, the snake lemma applied to the p“-th power map yields an exact
sequence:

0 — B,[p“] = W,/p* = Vu/p* = B,/p* =0

(the injectivity on the left is due to the fact that V), is Z ,-free).
Applying the functor Homg, (., R, ), we get another exact sequence of R, ,-
modules:

— Homg, (Vn, RM)—> Homg, (Wn RM)—> Homg, (Bn [P°], RM)—>

But R,, is a Gorenstein ring, which means that R* is a free R, ,-module

n.a

of rank 1, hence, for any finite R, ,-module M, the canonical isomorphism
Homg, (M, R;’a);M* gives rise to an R, 4-isomorphism Homg, (M, Rn,a);M*,
f = Yo f, where ¢ is a chosen R, ,-generator R, , — Q,/Z,. It follows that
the functor Homp, ( , RM) is exact and we have

— HomRn (Vn, Rn,a)—> HomR,, (VV,,, Rn,a)_) B:/pa -0

Taking lim, we derive an exact sequence:
pa

— Homg, (V,,, Rn)ﬂ>H0mR,1 (Wa.Ry) — (tB,)* — 0.

But W, = R,.n,, hence an element f € Homg, (W,, R,) is determined by the

value f(n,), i.e. Homg, (W,, Rn);Rn, f + f(n.), and the above exact sequence
becomes: Homg, (V,,, R,) — R, — (¢B,)* — 0.
In other words, (¢B,)* ~ R,/{f(n.); f € Homg, (V,, R,)}. The canonical

isomorphism Homgz, (M, Zp);HomR,1 (M,R,), f +— F such that F(m) =
Z f(o™'m).o, ¥ m € M, gives the desired result.
g€l

Corollary 1. Anng, ((tB,)*)= Fitg, ((tB,)*)= D,

Proof. The Proposition 1 shows at the same time that (¢B,)* is R,-cyclic, hence
its R,-annihilator and R,-Fitting ideal coincide, and that Fitg, ((¢B,)*)= D,.

Definition 1. In the sequel, we shall denote by D(F) (or Do for short) the
projective limit 1i(1_n D,, w.r.t. norms (the detailed transition maps can be found e.g.

in Solomon 2010, proposition 1). Of course Do, depends on the admissible pair
(Vu, W)nso. Corollary 1 shows that AnnA(li(I_n (tB,)*) = FitA(li(I_n (tB,)*) = Do.
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2.2 A Kummerian Description

Let E = F(¢p) and A = Gal(E/F). Fix a norm coherent system { = (gpn)n>0 of
generators of the groups 1 ,» of p"-th roots of unity. Attach to Eo./ E the following
objects: U, (resp. U,) = group of units (resp. (p)-units) of E,

U,=U,®Z,.

X, = Galois group over E, of the maximal abelian (p)-ramified pro- p-extension of
E,. At the level of E,,, we have the Kummer pairing:

1 n 4\P!
HY(Gs(En), pn)xXn/ p" = ppn, (x,p) > (xf’”)

Let (.,.), Hom(%n, Z/p”)x%n/p" — Z/p" be the pairing defined by
(xpi”)p o C;’E’p I Take VE to be U,/tors, or U; /tors, or more generally a free
Zp-module such that V,F/p" < Hom (Gg(Ey), ). In this subsection, we
relax the condition of Galois freeness on W,E, which we assume only to be cyclic:
WE = Z[J,]. Ny, where J, = Gal(E,/ k).

Define

Dy(E)=1{)_ flo " m).0: f € (Va/p")*}

o€J,

=4 (o7 . p)ao s p € X0/ p"}
o€J,

={D_ (Mm.0.p)n k5t (0)o: p € Xn/p"}
o€J,

(the second equality comes from the Kummer pairing just recalled; the third from
a functorial property of this pairing). Recall that

Dy(E):={)_ f(0~"'n).0; f € Hom(V,F . Z,)} .

o€J,
Proposition 2. With the pair (V.E, WE), > chosen as above

D(Es) := lim Dy (E) = lim D, (E)

is cyclic as a Z,[[Gal( Ex/Q)]]-module.
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Proof. Since Hom (V,F,Z,) ~ (VF ® Q,/Z,)", the equality lim D,(E) =

lim D, (E) is straightforward. Notice next that in the sum Z (s 0. p)n k)

cyc (U)G,

o€J,
the value of the pairing (n,, 0. p), does not depend on p, only on the image of p

in the cyclic group Gal(En (n,fT ) / E,,). Choosing a generator t, of this group, we

see that the sum above is a multiple of Z (s 0. Tp)n k)

oye(0)o. By considering

o€J,
the extension of Eo, obtained by adjoining all p”-th roots of all the 7,5 and their
conjugates under the action of Gal(E~/Q), we get the desired cyclicity result.

This proposition will be applied in Sect. 4.4.2 to cut out D(E ) by characters of
Gal(E/F).

As usually happens, the “new” object Do, appears afterwards to be not so new.
Some previous occurrences must be recorded:

* Fork = Qand E = Q(¢,) and for a special choice of 1, D, plays an important
role in Thara’s theory of universal power series for Jacobi sums (see Ihara et al.
1987). In Nguyen Quang Do and Nicolas (2011, § 4.1), D is interpreted as a
certain module of “ p-adic Gauss sums”, and both Nguyen Quang Do and Nicolas
(2011) and Solomon (2010) show that (D )* is the A-initial Fitting ideal of X c;j ,
where the sign (. )* means inverting Galois action.

* Inexactly the same setting, D, appears on the Galois side of Sharifi’s conjecture
on the two-variable L ,-function of Mazur-Kitagawa (Sharifi 2011, propos. 6.2).
Note that a weak form of this conjecture has been recently proved for all fields
Q(¢,») by Fukaya and Kato (2012).

* For k totally real and E/ k abelian, containing ¢,, and for a special choice of 7,
(Doo)* is shown in Nguyen Quang Do and Nicolas (2011) and Solomon (2010) to
annihilate X c;j . Moreover, in the semi-simple case (p)|G|), thms 3.4.2 and 5.3.2
of Nguyen Quang Do and Nicolas (2011) assert that for any odd character i of
G, the y-part ((Deo)*)? is isomorphic to the Fitting ideal of (X.)?", where
V* = wy ! denotes the “mirror” of ¥, w being the Teichmiiller character.

* For k/Q abelian and F = k({,), Do appears prominently in the explicit reci-
procity law of Coleman, generalized by Perrin-Riou (Flach 2011, § 1.3; Perrin-
Riou 1994, thm 4.3.2). Let us just recall the starting point in Perrin-Riou (1994):
denoting EIB HYE,,,Z,(m)) by H},(E,.Z,(m)) and lim H!,(E,,Z,(m)) by

vlp

H IIW’S ¢(Eco, Z,(m)), Perrin-Riou constructs a “cup-product” at the infinite level
H}W’SZ(EOO,ZP(I)) X H}W’SZ(EOO,Zp)i(OE ® Zp)[[Goo]] such that, writing
m, for the natural projection (O ® Z,)[[Gool] — Z,[G,], mi(x Uy) =

Z (67X, Uy,). o (recall that the cup-product at finite levels does not commute
oeGy,
with corestriction).
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3 Semi-simple Example

In this section, to illustrate the “Gras type” approach via the WMC, we intend
to study a (particular) semi-simple case, which the reader can skip if pressed
for time. The following hypotheses will be assumed: Let F/Q be a totally real
abelian extension of conductor f, such that p does not divide the order of G =
Gal(F/Q). Let Ur (resp. U) be the group of units (resp. (p)-units) of F. The
group Cyc(F) of F is the subgroup of F* generated by —1 and all the elements
Noy/rnae) (1 —8%). (a, f) = 1. The group Cr (resp. Cp) of circular units
(resp. circular (p)-units) in Sinnott’s sense is defined as Cr = Up N Cyc(F) (resp.
Cy. = U} N Cyc(F)). Write U,, C,, etc. for Ur,, Cr,, etc. and (.) for the p-
completion. We take V,, = U; (which is Z,-free of rank [F, : Q]) and look for
candidates for the W/s. Since pf|G|, any (p)-place of F is totally ramified in Feo.
Let us denote by s the number of (p)-places of F (hence also of F,). We keep the
Galois notations of the beginning of Sect. 1.

Lemma 1. Foranyn > 1, the Z,[(G,]-module 5; is free (necessarily of rank 1) if
and only if s = 1.

Proof. Let us first consider only the A-module structure. The cohomology groups
Hi (F,,,E;) are computed in general in Nguyen Quang Do and Lescop (2006). In
our situation, E; is I',-cohomologically trivial if and only if s = 1 (Nguyen Quang
Do and Lescop 2006, propos. 2.8). Since I, is a p-group, Z,[I,] is a local algebra,
and for a Z,[I,]-module without torsion, cohomological triviality is equivalent to
Z,[I,]-projectivity, hence to Z,[I},]-freeness here. To pass from I, to G,, just

res .

notice that H'(G,,C.,)* ~H!(I},,C,) because pf|A|, hence s = 1 if and only
if 5; is Z,[Gy]-projective (of Z,-rank equal to |G,|). By decomposing E; into y-

parts, E; = @ (5;)1, we see that s = 1 if and only if each (6;)’( is free over the
XEG

local algebra Z, [ x][I7,], if and only if E; is Z,[G,]-free (necessarily of rank 1).

Summarizing, if s = 1, one can take V,, = U;, W, = E; in order to apply
Proposition | to /B, = B, = U, /C,,. Note that in the semi-simple case with s = 1,
U; /E; ~U,/C, forany n > 1 (Nguyen Quang Do and Lescop 2006, lemma 2.7)
and also X/ ~ X in the notations of the introduction (Nguyen Quang Do and
Lescop 2006, lemma 1.5). Recall that X« (resp. X7) is the unramified (resp. totally
split at all finite places) Iwasawa module above Fo,. We can now determine the A-
Fitting ideal of X in our particular case:

Proposition 3. Let F/Q be a totally real abelian extension, such that pf|G| and
s = 1. Then D(Fso)* = Fity(Xoo), where (.)* means inverting the Galois action.
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This is a particular case (s = 1) of thm 5.3.2 of Nguyen Quang Do and Nicolas
(2011). Typical examples are F = Q(¢,)", or F = Q(+/d), d a square free

positive integer such that ( ) # 1.

Proof. Since B, = U,/C, is finite, Proposition 1 shows that CD(FOO) = Doo =
Fity, (ly_n(B )) It remains to describe hm(B ). Denote U o lg_n U,, Coo =

11(1_11 C,, Yoo = UOO/COO, Xgo = the maximal finite submodule of X . Withs = 1,

we have the following codescent exact sequences (Nguyen Quang Do and Lescop
2006, proposition 4.7):

0 — (Yoo)r, — B, — (X2)'" — 0.

Taking duals and lim we get an exact sequence of A-modules:

0 — (XO)* — lim(B;) — @(Yo) —> 0, where a(.) denotes the
Iwasawa adjoint (with additional action by G). In particular, (X2)* = (lim BX)°.
Let us take Fitting ideals in this exact sequence. A well known lemma (generally
attributed to Cornacchia; see e.g. Nguyen Quang Do and Nicolas 2011, lemma 3.4.2)
states that for any torsion A[y]-module M, Fit ,j(M) = Fit o1,y (M°). char s (M)

where charap,(.) denotes the characteristic ideal. In the semi-simple situation,
we can put the y-parts together to get: thA(hmB ) = Fita(X2). chara(e(Yso))

(with an obvious definition of chara(.) here). Let (M)* be the module M with
inverted Galois action. It is classically known that o(M) is pseudo-isomorphic to
M*, and that Fity(M*) = Fita(M*") since the p-Sylow subgroups of the G/’s
are cyclic (Mazur and Wiles 1984, appendix). Hence Do, = FitA(li(I_n BY) =

FitA(X V. chary (Yoo)®. As chary(Yeo) = chary(Xoo) in the “Gras type” formu-
lation of the WMC, we get: (Doo)® = Fitpa(X2). chara(Xoo) = Fita(Xoo)-

Remarks. 1. In spite of the presence of the algebra A, Proposition 3 is not a
genuine equivariant result. In particular, the definition of the characteristic ideal
chara(.) cannot be generalized to the non semi-simple case.

2. The ideal D(Fs ) can easily be made explicit in kummerian terms using Sect. 2.2.
It suffices to start from the base field £ = F({,) and then use (co) descent from
E to F, or from E to Fo, which works smoothly because p does not divide
[E : F].

3. Itis well known that U/oo =H Ilw’ S, (Foo, Zp(1)) in full generality. In the situation
of Proposition 3, we have also Xoo = X/, = lew,s,, (Foo, Zp(1)) (for details, see

Proposition 4 below). We can also consider the modules H S) (Foo, Zp(m)), m
odd, as in the introduction and describe explicitly their A- Flttmg ideals by taking
Tate twists above E,, and then doing (co)descent as in 2) (for details, Sect. 4.4.2
below).
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4 Equivariant Study of the Non Semi-simple Case

In this case, as we noticed before, two major difficulties are encountered right from
the start: the notion of characteristic ideals of torsion modules (with appropriate
multiplicative properties) is no longer available; neither is the “Gras type” formu-
lation of the WMC. The solution to both problems will come from the equivariant
Iwasawa theory of complexes. Among many existing formulations, that of M. Witte
(2006) seems the best suited to our purpose. Let us recall the minimal amount of
definitions and results that we need, referring to Witte (2006) for further details or
greater generality.

4.1 Perfect Torsion Complexes and Characteristic Ideals

(see Witte 2006, §1) Let R be a commutative noetherian ring and Q(R) its total

ring of fractions. A complex C' of R-modules is called a forsion complex if

O(R)® C' is acyclic; perfect if C* is quasi-isomorphic to a bounded complex
R

of projective R-modules. To a perfect complex C* one can attach its Knudsen-

Mumford determinant, denoted detr C'. If moreover C' is torsion, the natural

isomorphism Q(R) >~ Q(R)® detg C" allows to see detg C' as an invertible
R

fractional ideal of R. Recall that these invertible fractional ideals form a group J(R),
which is isomorphic to Q (R)*/R* if the ring R is semi-local.

Definition 2. The characteristic ideal of a perfect torsion complex C° is
charg(C’) = (detg C')~' € J(R).

Examples. If R is a noetherian and normal domain and M is a torsion module
which is perfect (considered as a complex concentrated in degree 0), i.e. of finite
projective dimension, then charg(M) coincides with the “content” of M in the
sense of Bourbaki. If R = A = Z,[[T]], then char (M) is the usual characteristic
ideal. This justifies the name of equivariant characteristic ideal for chary (M).

Many functorial properties of charg(.) are gathered in Witte (2006, proposi-
tion 1.5). We are particularly interested in the following:

If C' is a perfect torsion complex of R-modules such that the cohomology
modules of C" are themselves perfect, then charg(C*) = l_[(charR H"CHY",

nez

4.2 Iwasawa Cohomology Complexes

For the rest of the paper, unless otherwise specified, F/Q will be an abelian
number field (not necessarily totally real). With the notations and conventions of the
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beginning of Sect. 1, let us extract from Witte (2006, § 3 ) some perfect complexes
and cohomology modules for our use (the situation in Witte (2006) is more general):

The Iwasawa complex of Z,(m) relative to S is the cochain complex of
continuous étale cohomology RI7,,(Feo,Z,(m)) as constructed by U. Jannsen.
This is a perfect A-complex whose cohomology modules are H}, (Foo, Z,(m)) =
H}, s(Foo, Zy(m)) = lim HL(F,,Z,(m)) fori = 1,2, zero otherwise.

cores

Let us gather in an overall proposition many known properties of these cohomol-
ogy groups. Our main reference will be Kolster et al. (1996, sections 1 and 2) (in
which § = S, but the proofs remain valid for any finite set S containing S,). Let
us fix again some notations:

E =F(p), Eso = F({pee), I'" = Gal(Ex/ F)

ry (resp. r) = number of real (resp. complex) places of F'

Us(E) =Us(E)® Z, = the p-adic completion of the S-units of £

Us(Ex) = liinUS (E,) w.rt. norms, X'(Ex) = the totally split Iwasawa

module above E .

Proposition4. (i) For any m € Z, rankz, HY(F,Z,(m)) = dp + 8, where
dy = 11+ ry (resp. r2) if m is odd (resp. even), and 8, = rankz,
(X'(Eso)(m = D)'™).

(ii) For any m € Z, m # 0, toerHLé(F, Z,(m)) = HXNF,Q,/Z,(m)). In
particular, if m is odd and F totally real, H;(F, Z,(m)) is Zp-free.

(iii)y Forany m € Z, m # 1, there is a natural codescent exact sequence:

0 = (Us(Eso)(m — 1)/ A-tors) ... — H§(F,Z,(m))/Zy-tors
— X'(Eso)im =1 =0

(iv) For any m € Z, m # 1, the Poitou-Tate sequence for HS2 can be written
as: 0 — X'(Eco)(m — \)px — H2(F,Z,(m)) — & H*(F,,Z,(m)) ~
VGSf

eg H(F,,Q,/Z, (1 —m))* - H)(F,Q,/Z,(1 —m))* — 0
Ve f

Form =1, the leftmost term must be replaced by As(F), the p-part of the
S r-class group of F.

Remarks. Tt is conjectured that X'(Eoo)(m — 1) is finite (i.e. §,, = 0) for all
m € Z (see e.g. Kolster et al. 1996, p. 637). These are the so-called mth-twists of
Leopoldt’s conjecture. The case m = 0 (resp. 1) corresponds to Leopoldt’s (resp.
Gross’) conjecture. For m > 2, §,, = 0 because Kj,,—» OF is finite. Recall that we
implicitly suppose that 6,, = 0 for all m € Z.

At the infinite level, we have the following
Lemma 2. The A-modules H! (Feo,Z,(m)), i = 1,2, are perfect.

Proof. Let Qo be the cyclotomic Z ,-extension of Q and A = Z,[[Gal(Qoo/Q)]].
Since A is a regular noetherian ring, every A-noetherian module is perfect.
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For the cohomology modules over A, we just have to use the following quasi-
isomorphism established e.g. by Fukaya and Kato (2006) and Nekovar (2006)
etc.: the natural ring homomorphism A — A induces a quasi-isomorphism
A®R Ip(Qoo. Zp(m)) — R I'1(Foo. Zp(m)).

4.3 The Limit Theorem

As we explained in the introduction, the “limit theorem” of Burns and Greither
(2003a, thm 6.1) is actually an EMC, expressed in the language of the Iwasawa
theory of complexes, which encapsulates equivariant generalizations of both the
WMC (for the minus part of Xoo) and its formulation “a la Gras” (for the plus part).
It is ultimately derived from the WMC, but only after some hard work. We recall
here its presentation by M. Witte (only for the characters kY ; the characters in Witte
(2006) are more general). Our main reference will be Witte (2006, sections 6 and 7).
The “limit theorem” will relate a “zeta-element” and a “special cyclotomic element”
constructed as follows:

Let f = N p?, p| N, the conductor of F. Introduce Loo = Q({npoo) D Foo.
At the nth-levels, define the Stickelberg elements:

Stick, = Z (fc;n — %)( l_[ Frgbz"l(a))e Q,[Gal(L,/Q)]

O<a< fp"

£ prime
(a.fp)=1 P

and at the infinite level: Stickeo = li(I_n Stick, € QO (Z pl[Gal(Loo/ @)]]).

Denote by pr,. the projectors onto the (4-1)-eigenspaces of complex conjugation
and define the zeta-element LS(FOO,KCI};’”) as the image by the natural map
0Z,[[(Gal(Loo/Q))]] — QA = QZ,[[Go]] of the element Tw,,—(pry —

pr_Stickso), where T'wy is the Tate twist induced by o - «¢;.(0).0.

Example (Witte 2006, proposition 6.3). Let Foo = Qoo and S = S, and write w for
the Teichmiiller character. Then the image by the natural map Q Z,[[I"]] = Q, of
L5 (Qoo, KCI};’”) is L,(1—m, ™. rec"), where rec: Gal(Q(¢y)/Q) — (Z/NZ)* is
the isomorphism induced by Frob[l — £, and L ,(.) is the Kubota-Leopoldt p-adic
L-function.

™) as the image by

Define now the special cyclotomic element §(Foo, Ky,

the composite map H}, (Loo,Zy(1)) = Us(Loo) e H}, (Loo, Zy(m)) =
Us(Loo)(m — 1) 25 H) (Foo. Zy(m)) of the element pr, (1 — Eypr)n=0). The
element n(Fw, k7)) allows to modify the Iwasawa complex Rl (Foo, Zp(m))
to get a perfect torsion complex. Precisely, there exists a unique morphism
An(Foo, kgy)[—1] = RITw(Feo,Zp(m)) in the derived category which induces
the natural inclusion on cohomology, hence a unique (up to quasi-isomorphism)



On Equivariant Characteristic Ideals of Real Classes 391

complex denoted by RI7,/n(Fx
distinguished triangle

™ ) which takes place in the following

’ C}C

AU(FOO,KC}C [—1] = R Iw(Feo, Zp(m)) - RFIW/”(FOOsKgc :

Lemma 3 (Witte 2006, lemma 7.2).

() RT1w/n(Feo, kpy,) is a perfect torsion complex of A-modules
(ii) If Fso is totally real and m is odd, then An(Foo, k™) is a free A-module of
rank 1.

cyc

We can now state the “limit theorem” (Burns and Greither 2003a, theorem 6.1; Witte
2006, theorem 7.4).

Theorem 1. For an abelian number field F/Q, with S = SocUS,U Ram(F/Q),
foranym € Z:

(i) At any prime P of codimension 1 of A, containing p, the localized complex
(R I/ (Foo,k Cyc)) is acyclic (“vanishing of the p-invariant”).

(i) Ls(Feo, KCI};’") generates the A-characteristic ideal of R I'1,,/ 1 (Foo, K, C}C)

To stress the difference between the (equivariant) limit theorem above and results
obtained character by character (such as in Huber and Kings 2003), let us cite the
following comparison lemma (Witte 2006, lemma 7.6):

Lemma 4. Suppose for simplification that F is linearly disjoint from Qs and p* }

f.Letg : 2 = 0,[[Gx]] > 2 = I 0,[[Gal(Qoo/Q)]] be the normalisation
XEG

of 2 in Q §2, where O, is the ring obtained from Z, by adding all the values of all

the characters of G. Then

charg(L s R T1w/N(Foo. 0,(m)) = Ls(Foo. k, Keye )Q

4.4 The Determinant of H} (Foo, Z,(m))

From now on, Fy is totally real and m € Z is odd. The mth - twisted Leopoldt
conjectures for the totally real field F are known to hold for all odd m # 1: for
m > 1, see Proposition 4(i); for m < 0, see (Schneider 1979, § 5), Corollary 5. To
state and prove our main result, we shall proceed in several steps.

Because the cohomology A-modules H} (.) are perfect (Lemma 2), it follows
from Theorem 1(ii) and the last property cited in section 4-1 that

chary (H},(Foo, p(m))/Aﬂ(Foo,KLyc )~ chary, H},(Foo, Z,(m))
(LS(FOCM Lyc )
=(1),
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so that it remains only to determine the first equivariant characteristic series,
appealing to the algebraic results of Sect. 1.

44.1

The point is to choose the admissible pair (V,, W,),>0 attached to F/F. Fix
an odd integer m # 1 and for any n > 0, write nfj"’ for the image of
0(Foo. k!",) by the natural map H}, (Foo.Z,(m)) — H&(F,.Z,(m)). Then 1"
is Z,[G,]-free: this comes from Lemma 3(ii) and the codescent exact sequence of
Proposition 4(i); for a direct argument, see Beliaeva and Belliard (2012, thm. 3.4).
Note that highly non trivial ingredients are needed for both proofs: Bloch-Kato’s
reciprocity law for the first, twisted Leopoldt’s conjecture for the second. We shall
take V, = HI(F,,Z,(m)) and W, = Z,[G,]. ™. Adding a superscript (.)™ to
the notations of Sect. I, let D" (Fy) = Fity (li(l_n B), which we must relate to the

desired A-determinant.

Remark. The reason for choosing a twist m # 1 is that codescent on S-units

(corresponding to i1 = 1) is notoriously not smooth, especially in case of p-
decomposition. We shall reintegrate m = 1 in Theorem 2 by using a “twisting
trick”.

Since the p-Sylow subgroups of the G,’s are no longer necessarily cyclic, the
argument on Fitting ideals used in the semi-simple case (Proposition 3) no longer
works. We must consequently change the definition of V, = Hi(F,,Z,(m)),
replacing it by V] = image of (HIIW(FOO, Z,(m)) — H;(Fn,Zp(m))). We don’t
change W, = Z,[G,]. nff") and we define B, = V//W,. By Proposition 4(iii),
lil_nVn/ = li(l_n Vi, = H}W(Foo,Zp(m)), hence li(l_nB,g = li(I_an = By =

HIIW(FOO,Zp(m))/An(Foo,Kg,C), whereas lim B};* = oc(li(l_n B)) = a(Bx), a(.)

denoting the Iwasawa adjoint, with additional action by H = Gal(Feo/ ko). Note
that this adjoint module is naturally isomorphic to Ext}&(Boo, A) (see e.g. Nguyen
Quang Do 2005, § 3) over A. Over A, we know that a(Bwo) and (Bso)* are pseudo-
isomorphic, hence the existence of an exact sequence (non canonical) of A-modules
0 = a(Bx) = (Bso)* — @ — 0, where @ is a finite abelian p-group. Since H
acts on the first two terms, it also acts on the third, i.e. the above sequence is indeed
exact over A.

4.4.2

Since lim V| = lim V,,, the same reasoning exactly as in Proposition 1 shows that
<« <«

Fity (lim B,*) = Fity (2(Bso)) = D" (Fao) (the same D" (F,,) as before). In
<«
particular, this Fitting ideal is principal according to Proposition 1 and an obvious
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descent from Eoo = Foo(itpoe) to Foo. It remains to compare the two principal
ideals I = Fity(a(Bs)) and J = chary(Boo)* by using localization:

Lemma 5. (Burns and Greither 2003a, lemma 6.1) Let R be a Cohen-Macaulay
ring of dimension 2 and let I, J be two invertible fractional ideals of R. Then I = J
if and only if Iy = Jop for all height one prime ideals P of R.

Cutting out if necessary by the characters of the non- p-part of H, we can suppose
that our ring A is as in Lemma 5 and proceed to localization:

— At a height one prime P not containing p, As is a discrete valuation ring in
which p is invertible. It follows that Fit (.) and det (.)~! coincide over A, and
@9 = (0), hence Ip = Jop.

— At the unique height one prime P of A containing p, the vanishing of the u-
invariant (Theorem 1(i)) means that (Boo)fp vanishes, hence also «(B)p.

We have thus shown that char (Beo)* = Fity(a(Boo)) = D (Fx). We can now
state and prove our main result:

Theorem 2. Let F/Q be a totally real abelian number field, E = F({,), A =
Zy[[Gal(Feo /Q)]], B = Z,[[Gal(Eoc/Q)]]. Then, for any odd m € Z, we have:

1. charg(H?, (Eoo, Zp(m)) = DW(Ex)f(m—1) = twy_1DV(Es), where
W—1 is the Iwasawa twist induced by o +— Ké_”y:l (o)o™ 1.

2. chary(H}, (Foo, Z,(m)) = (em—1DWV(Exo))*, where e,_; is the idempotent of
A associated to the power "~ of a generator ® ofAA.

Proof. For any odd m # 1, we have just seen that
chary (H},,(Foo. Zy(m))* = D) (Foo) = vD™ (Eco) .

where v denotes the norm map of A. But D" (Ey,) = DW(Ey)(m — 1), so that
UD(’”)(EOO) = em_lD(l)(Eoo), because A is of order prime to p. Besides, denoting
by m the natural projection B — A, we know that L« R I'1(Eco, Z,(m))
is naturally quasi-isomorphic to R I'1,,(Feo, Zp,(m)) (Witte 2006, propos.3.6
(ii)). Hence, by definition of the determinant, chary(H?, (Foo,Z,(m))) =
v (charg H} (Eco,Z,(m))) =  en—i(charg H} (Eoo,Z,(1))). Since the
idempotent e,,—; depends only on the residue class of (m — 1) mod (p — 1), we can
conclude that charg HIZW(EOO, Z,(1)) = Q(I)(Eoo)# and charBHIZw(Eoo, Z,(m)) =
DD(Ex)*(m — 1) = twy_1 DY (Es) for all odd m € Z.

Note that in the semi-simple case, Theorem 2 above contains thm. 5.3.2 of Nguyen
Quang Do and Nicolas (2011).
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4.5 The Fitting Ideal of H} (Foo, Z,(m))

The next natural step would be to perform (co)descent on Theorem 2. Because
cd, Gs(F) < 2, the map HIZW(FOO, ZLp(m))ppr — HSZ(Fn, Z,(m)) is an isomor-
phism, but the latter module needs no longer be perfect (or, equivalently, cohomo-
logically trivial) over Z,[G,]. Actually, in the exact sequence of Proposition 4(iv),
our knowledge of the cohomology of the codescent module X' (Eoo)(m — 1) pn is
... less than perfect. A way to turn the difficulty would be to replace determinants
by Fitting ideals, which are compatible with codescent. But for this we need
an equivariant analogue of Cornacchia’s lemma which was used in the proof of
Proposition 3. To this end, we would like to add a technical condition which the
reader would rightly find too brutal if it were imposed ex abrupto without any
explanation. Hence the following preliminaries:

4.5.1

Let us recall briefly the setting of Cornacchia’s lemma: for a noetherian A-module
M, denote by M its maximal finite submodule and write M = M/M?°. Since the
global projective dimension of A is equal to 2, pds M < 1 because M° = (0)
(Auslander-Buchsbaum), hence Fit,(M) = Fit,(M°).Fity(M). If moreover M
is A-torsion, Fit,(M) = chary(M) = char,(M). The difficulty when passing
from A to A is that the Auslander-Buchbaum result is no longer available. We shall
use instead a weak substitute due to Greither. Recall that A = A[H], where H =
Gal(Foo/ koo)-

Lemma 6 (Greither 2000, propos.2.4). If an A-noetherian torsion module N
is cohomologically trivial over H and has no non-trivial finite submodule, then
pda(N) =< 1.

In the sequel, we shall work over Eoo = F({po0), fix anoddm € Z, m # 1, and
consider the module M := H?, (Eoo, Z,(m)). According to Proposition 4 and after
taking 1(21 with respect to corestriction maps, we have an exact sequence:

0= X'(Ex)im—1) > M — W,(Ex) — 0,
where W,,(Ex) is defined tautologically and will be given an explicit description

below. This shows in particular that M 0 = X'(Ex)’(m — 1). We want to get hold
of M = M/M?°. Applying the snake lemma to the commutative diagram:

T
E.)(m—1)

0——x( e M —— Wy (E) —>0

0—X'(
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we get an exact sequence 0 — E(T(Eo_o/)(m —1) > M - Wy(Ex) — O.
We intend to apply Greither’s lemma to the rightmost module W,,(Es), which

is the inverse limit of the kernels W,,(E,) = Ker( &) HZ(En,v,Zp(m)) ~
VES

@ H%E,,,Q,/Z,(1 — m)* — H%E,Q,/Z,(1 — m))*). The limit
ve f

of the semi-local modules is @ HIZW(EOO,V,Z,,(m)), which is perfect (for the
VESy

same reason as in Lemma 2), hence H-cohomologically trivial. As for the limit
of the global H°(.)*’s, note that the transition maps reduce to p“-power maps
between twisted roots of unity; since H'(H, liin) = 1i(1_n H'(H,.) and H is finite,
we readily get the H -cohomological triviality of the limit.

Summarizing, Lemma 6 applies and W,,(E~) has projective dimension <
1. Going down to Fs, we get an exact sequence 0 — em_l)f/(Eoo) —
H} (Foo,Zp(m)) — Wy(Feo) — 0, with pdyW,(Feo) < 1. Since m is odd,
the leftmost module lives in the “plus” part. Let Eé’g " be the subfield of E cut
out by the character »”~! (notations of Theorem 2).

Assume Greenberg’s conjecture for Ec(fo" D /E"™=D  which is equivalent to the
vanishing of e,,,—; X' (Es) and yields an exact sequence:

0 — en1X'(Exc)’ = H} (Foo, Zp(m)) — Wy(Foo) = H}, (Foo, Zp(m)) — 0

3)
Since pda Wu(Fs) < 1, the Fitting ideal behaves multiplicatively and we
have: Fity lew(Foo,Zp(m)) = FitA(em_lX’(Eoo)O).FitA Wu(Fs). More-

over, Fity W,(Fso) = chary Wy(Fs) = chary H}, (Feo,Zp(m)) =
chary, H Izw(Foo,Z,,(m)) (the last equality is obtained by the already used
localization argument). Finally:

Theorem 3. For any odd m € Z, m # 1, assume Greenberg’s conjecture for
EL™Y/EM=D Then:

1. At infinite level,
Fity H}, (Fso, Z,(m)) = Fitp(em—1 X' (Eco)®). (em—1 DV(Eso))* .
2. At any finite level n > 0,
Fitz, (6,) H3(Fy. Zy(m)) = Fitz,(6,] (em—1 X' (Eoo)) ppr. (em—1 Du(E))* .
Remark. The perfectness of the two last terms in the exact sequence (3) implies
that of the first term, hence the existence of char (e,,—1 X'(Ex)?). But the usual

localization argument shows that this ideal is (1), and we recover a particular case
of Theorem 2(ii).
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4.5.2

Recall that the module D, (E) was defined in Sect.2.2 and its quotient mod p”
was described explicitly in kummerian terms. The interest of Theorem 3(ii)
lies in its comparison with already known results on refinements (for m
odd) of the Coates-Sinnott conjecture on Galois annihilators of the modules
HSZ(F,,, Zp(m)) = Kom—2(OF,[1/S], Z,(m)) (by Quillen-Lichtenbaum’s con-
jecture, now a theorem — more precisely a consequence of the so called
Milnor-Bloch-Kato conjecture, proved by Voevodsky and others; see e.g. Weibel
(2009) and the references therein). Note that for m odd, the usual formulation of
Coates-Sinnott gives no information other than “zero kills everybody”. A refined
conjecture was formulated by Snaith (2006) (resp. Nickel 2011) in terms of leading
terms (rather than values) of Artin L-functions at negative integers for abelian (resp.
general) Galois extensions of number fields, and shown to be a consequence of the
equivariant Tamagawa number conjecture (ETNC) for the Tate motives attached to
these extensions. Let us return to the situation of the introduction, where F/k is an
abelian extension with group G, k is totally real and F is CM. We need to recall
quickly the construction of a “canonical fractional ideal” by Snaith and Nickel. We
follow the presentation of Nickel (2011), adapting it to our situation:

— For the algebraic part, fix m > 2 and let H,_,(F) = & (ZJri)’”_lZ, with
Soo

action of complex conjugation (diagonally on Se, and on (27ri)"~!). The Borel
regulator pj—,;,; : Kom—1(Of) — J—Cf’_m (F) ® Q yields the existence of a Q[G]-
isomorphism ¢1—,, : Hi_,(F)T ® Q:) Kom—1(Of) ® Q. This allows, by
applying the Quillen-Lichtenbaum conjecture (now a theorem), to construct a G-
equivariant embedding (we fix m and drop the index) ¢ : Hi—(F)T ® Z, —
HY(F,Z,(m)) (note that this Hl(.) does not depend on S D §,, by the
localization exact sequence in étale cohomology, see Soulé 1979, III 3). The
algebraic part of the canonical ideal will be Fitz,,(6)((coker ¢)*).

— For the analytic part, consider the ring R(G) of virtual characters of G with
values in Q and let L be a finite Galois extension of Q such that each
representation of G can be realized over L; let also V, be an L[G]-module with
character y. We can form regulator maps:

Ry, : R(G)— C*

—m

x> det(prom-$ion | Homg (V. 3, (F) & C)

\2
(where X denotes the contragredient character).

Define then a function Aglim D R(G) = C*, x = Ry _,,(0)/L5(1 —m, x),
where Lg (s, x) is the S-truncated Artin L-function and L (1 —m, y) is the leading
term of this function at (1 — m). Gross’ higher analogue of Stark’s conjecture states
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that Aglim x°) = Aglw (x)? for all 0 € Aut (C). Assuming this conjecture and
choosing an identification C ~ C,,, we can now define the ““p-adic canonical ideal”
(we drop the index in ¢1—p,).

Definition 3. £5_,,(p) = (Fitz, (q)(coker §)*. (A3)"))".

NB: this is actually an “intermediate” ideal in the construction of Snaith-Nickel, but
it is all we need.

Theorem 4 (Snaith 2006 and Nickel 2011). Suppose that Gross’ conjecture, and
also the ETNC for the pair (Q(1 — m)F,Z[%][G]), m > 2, hold for the abelian
extension F [k, where k is totally real and F is CM. Then Fitz, ) H2(F,Z,(m)) =

&, (p).
Proof. See Nickel (2011), end of the proof of thm 4.1, as well as remark, p. 14.
Remarks and forecasting:

1. For even m > 2, further calculations show that Theorem 4 contains the p-part of
the usual Coates-Sinnott conjecture.

2. If k = Q, Gross’ conjecture and the ETNC hold true, and Theorem 4 becomes
unconditional. Its comparison with Theorem 3 could give an analytic meaning to
the parasite modules (e,,—1 X' (Eoo)?) pn. “Numerical” information could also
be obtained by computing the orders of the groups K5, »(OF,,Z,(m)). For
example, in the semi-simple case, where I, intervenes in place of G, this order
was computed by Martin (2011) in terms of values of L ,-functions at positive
integers.

3. Instead of leading terms of Artin L-functions, one could also appeal to deriva-
tives as in Burns et al. (2012). A natural (but resting only on thin air) query
would be: is there any conceptual link with Theorem 2, knowing that D, (E)
can be interpreted as a module of ““p-adic Gauss sums” (Nguyen Quang Do and
Nicolas 2011, § 4.1)?

4. A natural expectation would be the extension of Theorem 2 to the relative abelian
case (k # Q). But then a serious obstacle is the absence of special elements
(at least non conjecturally). Partial progress has been made by Nicolas (2013),
starting from the idea of replacing special elements by L ,-functions over k; this
is a natural idea since, when k = (Q, special elements and L ,-functions are
“equivalent” by Coleman’s theory.

5. Finally, one would of course wish to deal with the non abelian case, in view of the
non commutative EMC recently proved by Kakde (2013) and Ritter and Weiss
(2011). But a non commutative analogue of the “limit theorem” is missing.
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Nearly Overconvergent Modular Forms

Eric Urban

1 Introduction

The purpose of this paper is to define and give the basic properties of nearly
overconvergent (elliptic) modular forms. Nearly holomorphic forms were
introduced by G. Shimura in the 1970s for proving algebraicity results for special
values of L-functions (Shimura 1976). He defined the notion of algebraicity of those
by evaluating them at CM-points. After introducing a sheaf-theoretic definition, it
is also possible to give an algebraic and even integral structure on the space of
nearly holomorphic forms, allowing to study congruences between them. This
naturally leads to the notion of nearly overconvergent forms. For that matter, we
can think that nearly overconvergent forms are to overconvergent forms what nearly
holomorphic forms are to classical holomorphic modular forms. The notion of
nearly overconvergent forms came to the author when working on his joint project
with C. Skinner (see Urban (2013) for an account of this work in preparation
(Skinner and Urban in preparation)) and appears as a natural way to study certain
p-adic families of nearly holomorphic forms and its application to Bloch-Kato
type conjectures. In the aforementioned work where the case of unitary groups' is
considered, the notion is not absolutely necessary but it is clearly in the background
of our construction and keeping it in mind makes the strategy more transparent.

An important feature of nearly overconvergent forms is that its space is equipped
with an action of the Atkin operator U, and that this action is completely continuous.
This allows to have a spectral decomposition and to study p-adic families of
nearly overconvergent forms. Another remarkable fact which is not really surprising

'Tt will be clear to the reader that it could be generalized to any Shimura variety of PEL type.
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but useful is that this space embeds naturally in the space of p-adic forms. In
particular, this allows us to define the p-adic g-expansion of these forms. All the
tools and differential operators that are used in the classical theory are also available
here thanks to the sheaf theoretic definition and the Gauss-Manin connection.
In particular, we can define the Maass-Shimura differential operator for families
and the overconvergent projection which is a generalization in this context of the
holomorphic projection of Shimura. Our theory is easily generalisable to general
Shimura varieties of PEL type. To make this notion more appealing, I decided to
include an illustration (which is not considered in Skinner and Urban in preparation)
of its potential application to the construction of p-adic L-functions in the non-
ordinary case. In the works of Hida (1985, 1988) on the construction of 3-variable
Rankin-Selberg p-adic L-functions attached to ordinary families, the fact that the
ordinary idempotent is the p-adic equivalent notion of the holomorphic projector
makes it play a crucial role in the construction of Hida’s p-adic measure. Here the
spectral theory of the U ,-operator on the space of nearly overconvergent forms and
the overconvergent projection play that important role.

We now review quickly the content of the different sections. In the Sect. 2, we
recall the notion of nearly holomorphic forms and give its sheaf-theoretic definition.
This allows to give an algebraic and integral version for nearly holomorphic forms
and define their polynomial g-expansions as well as an arithmetic version of
the classical differential operators of this theory. We also check that Shimura’s
rationality of nearly holomorphic forms is equivalent to ours. In Sect.3, we
introduce the space of nearly overconvergent forms and we prove it embeds in the
space of p-adic forms. We also study the spectral theory of U, on them and give a
g-expansion principle. Then we define the differential operators in families and the
overconvergent projection. In the last section we apply the tools introduced before
to make the construction of the Rankin-Selberg p-adic L-functions on the product
of two eigencurve of tame level 1. When restricted to the ordinary locus, this p-adic
L-function is nothing else but the 3-variable p-adic L-function of Hida.

After the basic material of this work was obtained, I learned from M. Harris
that he had also given a sheaf theoretic definition® using the theory of jets which
is valid for general Shimura varieties of Shimura’s nearly holomorphic forms in
Harris (1985, 1986) and the fact his definition is equivalent to Shimura’s has been
verified by his former student Mark Nappari in his Thesis (Nappari 1992). It should
be easy to see that our description is equivalent to his in the PEL case. However,
Harris did not study nor introduce the nearly overconvergent version. I would
like also to mention that some authors have introduced an ad hoc definition of
nearly overconvergent forms as polynomials in E, with overconvergent forms as
coefficients. However this definition cannot be generalized to other groups and is not
convenient for the spectral theory of the U ,-operator (or the slope decomposition).
Finally we recently learned from V. Rotger that H. Darmon and V. Rotger have
independently introduced a definition similar to ours in Darmon and Rotger (to

2His definition follows a suggestion of P. Deligne.
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appear) using the work Coleman et al. (1995). The reader will see that our work
is independent of loc. cit. and recover the result of Coleman et al. (1995) has a
by-product and can therefore be generalized to any Shimura variety of PEL type.

This text grew out from the handwritten lecture notes of a graduate course the
author gave at Columbia University during the Spring 2012. After, the work Skinner
and Urban (in preparation) was presented at various conferences’ including the
Iwasawa 2012 conference held in Heidelberg, several colleagues suggested him to
write up an account in the GL(2)-case of this notion of nearly overconvergent forms.
This text and in particular the application to the p-adic Rankin-Selberg L-function
would not have existed without their suggestions.

Notations. Throughout this paper p is a fixed prime. Let Q and 6], be, respec-
tively, algebraic closures of Q and Q, and let C be the field of complex numbers.
We fix embeddings too : Q <> C and ¢ P Q— 6],. Throughout we implicitly view
Q as a subfield of C and Gp via the embeddings 1, and ¢,. We fix an identification
6], =~ C compatible with the embeddings ¢, and (. For any rigid analytic space
X over a p-adic number field, we denote respectively by A(X), A*(X), A°(%)
and F(X) the rings of analytic function, of bounded analytic function, of analytic
functions bounded by 1 and of meromorphic functions on X.

2 Nearly Holomorphic Modular Forms

2.1 Classical Definition

In this paragraph, for the purpose to set notations we recall* some classical
definitions and operations on modular forms.
2.1.1 Definition

We recall that the subgroup of 2 x 2 matrices of positive determinant GL, (R)™ acts
on on the Poincaré upper half plane

h={r=x+iyeC|y>0}

3The first half of this note was also presented in my lecture given at H. Hida’s 60th birthday
conference.

“Those facts are mainly due to Shimura
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by the usual formula

at+b
ct+d

YT = fory =(%%) e GL,(R)  andr €

Let f be a complex valued function defined on . For any integer k > O and y €
GL>(R)t, we set

[ley(@) i= det()*(cv + )7 f(y.0)

Let r > 0 be another integer. We say that f is a nearly holomorphic modular form
of weight k and order < r for an arithmetic group I" C SL,(R) if f satisfies the
following properties:

(a) fisC*>onb,

(®) fley = fforally e I',
(c) There are holomorphic functions fy, ..., f. on b such that

£ = folo) + %fl(r) - %fr(r)

(d) f has a finite limit at the cusps.

If f is a C* function on b, we set following Shimura’s €. f the function of h
defined by

(e.1)() = 82y 2 1) 1)
T

It is easy to check that the condition (c) can be replaced by the condition
) et f=0

Moreover if f is nearly holomorphic of weight k and order < r, then €. f is nearly
holomorphic of weight k —2 and order < r — 1. We denote by N (I', C) the space of
nearly holomorphic form of weight k, order < r and level I". For r = 0, this is the
space of holomorphic modular form of weight k and level I" and we will sometimes
use the standard notation My (I, C) instead of Ng (r,C).

2.1.2 The Maass-Shimura Differential Operator

We recall the differential operator 6 on the space of nearly holomorphic forms of
weight k defined by

T R T
St = 2i” B‘L'(y f)_ZiJr(Br+2iyf)
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An easy computation shows that 8. f is of weight k + 2 and its degree of near
holomorphy is increased by one. For a positive integer s, let &; be the differential
operator defined by

8y = Ok25—2 0"+ 08

The following easy lemma is due to Shimura and is proved by induction on r. We
will generalize it to nearly overconvergent forms in the next section.

Lemma l. Let f € N (I, C). Assume that k > 2r. Then there exist go, ..., &r
with g; € My_y; (I', C) such that

S =80+ 8k—81 4+ + 80 &

It is easy to check, the forms g;’s are unique. When the hypothesis of this lemma
are satisfied, Shimura defines the holomorphic projection H(f) of f as the
holomorphic form defined by

H) = go

Remark 1. The conclusion of this lemma is wrong if the assumption k > 2r is not
satisfied. The most important example is given by the Eisenstein series E, of weight
2 and level 1.

2.2 Sheaf Theoretic Definition

2.2.1 Sheaves of Differential Forms

LetY = Yr := N\Hand X = Xr := I'\(h U P'(Q)) be respectively the
open modular curve and complete modular curve of level I". Let € be the universal
elliptic curve over Y and let p : & — X be its Kuga-Sato compactification over
X . We consider the sheaf of invariant relative differential forms with logarithmic
poles along d€ = &\ & which is a normal crossing divisor of &.

® = pxf2} /X(zog(aé))
Itis a locally free sheaf of rank one in the holomorphic topos of X. We also consider

Hig = R'pas2} /X(zog(aé))

the sheaf of relative degree one de Rham cohomology of € over X with logarithmic
poles along 0&. The Hodge filtration induces the exact sequence

0—w—>Hp— oY -0 (2)
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and in the C *°-topos, this exact sequence splits to give the Hodge decomposition:

Hyp=0do

2.2.2 Complex Uniformization

More concretely, let 7w be the projection h — Y and 7*€ be the pull back of £ by
7. We have

7*& = (Cxh)/Z?
where the action of Z? on C x b is defines by (z,7).(a,b) = (z + a + bz, ) for
(z,7) € C x hand (a,b) € Z2. The fiber &, of 7*& at T € h can be identified with
C/L, with L, = Z + tZ C C. We have
7w = Oydz
with Oy the sheaf of holomorphic function on fj. Note also that

& =TI\Cxh/2?

with the action of I" on C x h/Z? given by y.(z.7) = ((ct + d)'z,y.1). We
therefore have

y*dz = (ct +d) 'dz
From this relation and the condition at the cusps, it is easy and well known to see that
H(Xr,0®) = Mi(I©)

Let Ci° the sheaf of C° functions on h. Then the Hodge decomposition of T*Hp
reads

T Hyr ® CF° = C°dz @ C°dz
On the other hand, by the Riemann-Hilbert correspondence, we have
7*Hlp = 7*R'p+Z ® Oy = Hom(R p+Z, Oy) = Opa & Oy B

where «, B is the basis of horizontal sections inducing on H;(€,,Z) = L, the linear
forms a(a + bt) = a and B(a + bt) = b so that we have

dz=a+tfanddZ=a + 7T
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From the action of I" on the differential form dz, it is then easy to see that
- (dz) _ ((cr+a’)_1 0 ) (dz)
B —c (ct+d) B
We define the holomorphic sheaf of X:

3 = 0® " @ Sym' (3l)
Then we have the following proposition.
Proposition 1. The Hodge decomposition induces a canonical isomorphism

H°(Xr,9G) = N(I.C)

Proof. Letn € H(Xp,H:). Then n*n(t) = Y _, fl(r)dz@H B® where the

f1’s are holomorphic functions on . Since we have 8 = Zzy 5~(dz — d7), we deduce:

o= 5 S (o
=0

The projection of 7*7 on the (k, 0)-component of H°(b, m*H}) is therefore given
by f(r)dz®" with

Si(0)

f(@) = Z @iy
It is clearly a nearly holomorphic form. It is useful to remark that the projection
on the (k,0)-component is injective.’ Conversely, if f(r) = Y /_, % is

a nearly holomorphic form of weight k and order < r, using the injectivity
of the projection onto the (k,0)-component, it is straightforward to see that

Yo fi (1)dz®"" B®' is invariant by I" and defines an element of H°(X -, H})
projecting onto f (t)dz®k via the Hodge decomposition. O

The quotient by the first step of the de Rham filtration of H]_induces by Poincaré
duality the following canonical exact sequence

0—>0® >3 - H L >0 3)

The map H; — .’}C,r;lz induces the morphism € of (1).

SWe will see a similar fact in the p-adic case. See Proposition 6.



408 E. Urban
2.3 Rational and Integral Structures

2.3.1 Rational and Integral Nearly Holomorphic Forms

Let N be a positive integer and let us assume I” = [(N) with N > 3. Then
Xr = X{(N) is defined over Z[%] as well as w, IJ-CfllR and ;. Recall that Y =
Y1 (N) classifies the isomorphism classes of pairs (£, ay),s where E/g is an elliptic
scheme over an Z[%]-sehemes S and ay is a I1(N)-level structure for E (i.e. an
injection of group scheme: py /s < E[N],s). Moreover the generalized universal
elliptic curve is defined over X;(N) and we can define the sheaves w, H}, and H;
over X;(N) /214 38 in the previous paragraph. The exact sequence (3) is also defined

over Q. For any Z[ﬁ]-algebra A, we define My (N, A) and N} (N, A) respectively

as the global section of a)ﬁk and Hj /4. This gives integral and rational definitions
of the space of nearly holomorphic modular forms.

2.3.2 Nearly Holomorphic Forms as Functors

It follows from the exact sequence (2) that Jl, is locally free over Y1 (N)zqi/n]. A
similar result would hold for general Shimura varieties of PEL type. In that case the
torsion-freeness result from the basic properties of relative de Rham cohomology
(for example see Katz 1970). We may therefore consider J the B-torsor over
(Y1(N))z4r of isomorphisms vy : J—C}iR v = Oy @ Oy inducing an isomorphism
Yl wu = Oy @ {0} such that the isomorphism (H}z/@),u = Oy induced by
Yy is dual to %1] for all Zariski open subset U C Y.

For any ring R, we denote by R[X], the R-module of polynomial in X of degree
< r.Let B the Borel subgroup of SL, of upper triangular matrices. Then we consider
the representation pj of B(R) on R[X], defined by

pp((4 2 ).P(X) =d"P(@*X +ba™")

0a"!

Then over Y1 (N), for any Z[%]-algebra, we have
T x5 A[X], (k) = 3 4

This can be checked easily for principal rings and this implies the isomorphism
above since the formation of both left and right hand sides commute to base change.

Concretely, we can see it the following way. For an elliptic scheme E, g
we consider a basis (v, ') of H1(E/R) such that @ is a basis of wg/R =
HY(E, QE/R) and (w,®')sr = 1. Then f € N[ (N, A) can be seen as a functorial
rule assigning to any A-algebra R and a quadruplet (E, oy, w, ®’),r a polynomial

f(E,ay,0,0)(X) =) bX'eRIX],
=0
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defined such that the pull-back of f to H.u(E/R) is Yi_,bio® ™ ® '®'. For
anya € R*,b € R, we have

f(E,ay,aw,a” '’ + bo)(X) =a ¥ f(E,ay,w,®)(a*X —ab)

The condition that f is finite at the cusps is expressed in terms of g-expansion as
usual. It will be defined in the next paragraph.

Proposition 2. Let f € Ni.(N, A) and €. f € N;_}(N, A) the image of f by the
projection (3). Then for any quadruplet (E, oy, w, ") /g, we have

d
(e./)E,ay,0,0)(X) = ﬁf(E,OéN,w,w/)(X)
Proof. For any ring R, we have the exact sequence:
0 — R[X]o(k) — R[X], (k) — R[X],—1(k —2)

where the right hand side map is given by P(X) + P’(X). It is clearly B(R)-
equivariant. By taking the contracted product of this exact sequence with T, we
obtain the exact sequence of sheaves (3) which implies our claim. Notice that the
map of sheaves inducing € is surjective only if r! is invertible in A. O
2.3.3 Polynomial ¢-Expansions

We consider Tate(q) the Tate curve over Z[%]((q)) with its canonical invariant

differential form w.,, and canonical I1(N) level structure ayq,. We have the
Gauss-Manin connection:

1 1
V : Hp(Tate(q) /215 1((9))) — Hip (Tate(@)/ZI (@) © Lyi1 0 i,

and let
d
Ucan ‘= A% (q d_)(a)mﬂ)
q

Then (Wean, Ucan) form a basis of Hl(Tate(q) /Z[%]((q))) and u.qy, is horizontal;
moreover (Wean, Uean)dr = 1 (see for instance the appendix 2 of Katz 1972). For any
Z[%]-algebra Aand f € Nj(N, A), we consider

f(q.X) = f(Tate(q)a((q))» Qcans Dcan- tean) (X) € Al[q]][X], .

We call it the polynomial g-expansion of the nearly holomorphic form f.

Remark 2. We can think of the variable X as %.
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2.3.4 The Nearly Holomorphic Form E;

It is well-known that the Eisenstein series of weight 2 and level 1 is a nearly
holomorphic form of order 1. Its given by

(o]

1 1
Es(7) = ~22 + Sy + Zonlq”

n=1

where o, is the sum of the positive divisor of n and ¢ = e,

We can define E; as a functorial rule. Let R be a ring with é € R and E be an
elliptic curve over R. Recall (see for instance Katz 1972, Appendix 1) that any basis
® € wg g defines a Weierstrass equation for E:

Y2 =4X3— g X — g3

such that w = dTX and n = XdTX form a R-basis of H),(E/R). Moreover if we

replace by Aw, 7 is replaced by A~!7. Therefore  ® n € wg/r ® HJz(E/R) is
independent of the choice of w. It therefore defines a section of ) over Ygy- I

(w, ') is a basis of H p(E/R) such that (w,®'),zx = 1 then we can put
Ey(E,0,0") = (0.0 )ar + X (@, 0)ar

where (-, -)4r stands for the Poincaré pairing on H (E/R).
Its polynomial g-expansion is given by

) ; P
Ex(q,X) = Ex(Tate(q), @cans Uean)(X) = 1(2q) + X
because v .y, = _%wcan + Nean and {@can> Nean)ar = 1 and where P(q) is defined

in Katz (1972) by

o0
P(q) =1-24) o,q"

n=1

Since the g-expansion of E, is finite at q =0, E, defines a section of f]-fé over X.
From the g-expansion, it is easy to see that £, = —2FE,. We clearly have e.E, = 1
(i.e. is the constant modular form of weight O taking the value 1).

Remark 3. We can see easily that multiplying by E, is useful to get a splitting
of 9—(}(:

k k—2
0—>0® -3 —>w® -0
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In particular, that shows that nearly holomorphic forms are polynomial in E, with
holomorphic forms as coefficients. As mentioned in the introduction, this provides
a way to give an ad hoc definition of nearly overconvergent forms.

2.4 Differential Operators

Recall that the Gauss-Manin connection

V. f]-CfllR — .’H[l,R ® QXI(N)/Z[ﬁ](log(Cusp))

induces the Kodaira-Spence isomorphism w® =~ 2x.nyz L 1(log(Cusp)) and a
connection

2
Vo Sym* (3C) — Symb () ® QXI(N)/Z[ﬁ](log(Cusp)) = Symk (HLe) ® 0®

The Hodge filtration of Sym* (3(},) is given by Fil® D> --- D Filk > Filk*! =
{0} with

Fil"™" = 3} = w® ® Sym’ (H!p) for 0 <r <k

Since V satisfies Griffith transversality, when k > r > 0, it sends Fil*™" into
Fill"' @ 2y, vz L 1(log(Cusp)). We therefore get the sheaf theoretic version

of the Maass-Shimura operator®:

Ok - 5—(};—>J-C};ilz for 0<r<k

We still denote 8 the corresponding operator
8c : NL(N. 4) > N TN, 4)

The following proposition gives the effect of §; on the polynomial g-expansion.

Proposition 3. Let f € N (N, A). Then the polynomial g-expansion of 8 f is
given by:

6 /)a. X) = X*D(XT* f(g. X))

SWe leave it as an exercise to check that this operator corresponds to the classical Maass-Shimura
operator via the isomorphism of Proposition 1.
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. . . . Y )
where D is the differential operator on A[[q]][X] given by D = q55 — X5 In
other words, if f(q,X) =Y i_, fi(@) X", we have

B f)(g. X) = Zq f(q)X’Jr(k—l)f(q)X’Jrl

Proof. The pull-back of f to ¢*JH; with ¢ : Spec(A((q))) — Xi(N)4
corresponds to (Tate(q), 0N can) /4((q)) 1S given by

¢ f = Zf(q)wm ®ub,

i=0

Since V induces % ~ w2, V(g j—q)(a)wn) = Ueqn and V(g diq)(uw,,) = 0, we have:

d k—i ,- k—i—1 i+1
Vi )67 ) = Z @0 @S, k=) fi@el T ©ul)

This implies our claim by the definition of the polynomial g-expansion. O

Remark 4. 'We can rewrite the formula for 6 in the following way:
ok =D + kX

Using the relation [D, X] = —X?2, we easily show by induction that
r
. r r'k+r) . :
8 = ——X/D"/ 4
‘ ,Z:O(j)r(kw—j) @
Notice in particular that for s < r and & holomorphic, we have

s 0§V — r r Ftk+r)@{+1) i—s ir_'
(€x42r Sk)h_;(j)F(k+r—j)F(j+1—s)'X] (qdq) Th (5)

2.5 Hecke Operators

Let R;(N) be the abstract Hecke algebra attached the pair (I1(N), A1(N)) by
Shimura (1971, chapt. 3). This algebra is generated over Z by the operators 7, for
n running in the set of natural integers. If £ is a prime dividing N, the operator T
is sometimes called U,. These operators act on the space of nearly holomorphic
forms by the usual standard formulas and preserve the weight and degree of
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nearly holomorphy. Moreover the Hecke operators respect the rationality. After an
appropriate normalization, it can be seen that integrality is preserved as well.

For any ring A C C, we then denote by hj (N, A) C Endc(Nj(N,C)) the
subalgebra generated over A by the image of the T},’s. If Z[%] C A C B, then the
above remark shows that we have

hy(N,A) ®4 B = h (N, B)
An easy computation shows that, for each integer n and f € N (N, C) we have:

Ok- N2 = n.8c(f 1k T)
e(flkTy) =n.(e.)k-2T,

Remark 5. From these formulae, we see that if f is a holomorphic eigenform of
weight k. Then §; f* is a nearly holomorphic eigenform of weight k + 2r. Moreover
the system of Hecke eigenvalues of 8 f is different than the one of any holomorphic
Hecke eigenform of weight k + 2r if r > 0.

2.6 Rationality and CM-Points

2.6.1 Evaluation at CM-Points

We review quickly the rationality notion introduced by Shimura. For K C Q
an imaginary quadratic field and 7 € h N X, the elliptic curve E; has complex
multiplication by X and is therefore defined over K C Q the maximal abelian
extension of X by the theory of Complex Multiplication. We then denote by w,
an invariant Kihler differential of E, defined over K¢ and we denote by £2; the
corresponding CM period defined by

w; = 2.dz

Then (w,, @) forms a basis of Hx(E./X"). Let E be a number field and f €
NL(N, E). Let an, the I'I(N)-level structure of £ induced by %Z/Z c C/L,.
Then the polynomial f(E.,ay+,®;,®:)(X) belongs to EX[X]. Since we have
@, = 2.d7, we deduce that f(E, an.r,wr,w;)(0) is the left hand side of (6) and
that we therefore have
/(@)
Qk

T

€ EX“ (6)

According to Shimura, a nearly holomorphic form is defined as rational if and only
if it satisfies (6) for any imaginary quadratic field X and almost all t € h N XK. It can
be easily seen his definition is equivalent to our sheaf theoretic definition.
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Proposition4. Let f € N (N,C) and E be a number field such that for any
imaginary quadratic field X C Q and almost all T € h N K, we have

f(@)
0k

T

€ EX*,

then, f € NL(N, EQ®).

Proof. We just give a sketch under the assumption k& > 2r since the general case
can be deduced after multiplying f by E». Thanks to a Galois descent argument, we
may assume E contains the eigenvalues of all Hecke operators acting on N; (N, C).
By Lemma 1, we can decompose f as

f=f+8ai+-+8 0/

with f; holomorphic of weight k —2i. Now we remark that if 7" is a Hecke operator
defined over E, then f|,T satisfies (6). This follows easily from the definition of
the action of Hecke operators using isogenies. Moreover from Remark 5, the system
of Hecke eigenvalues of nearly holomorphic forms 8/ and 8"k’ are distinct for any
two holomorphic forms 4 and i’ when i # i’; we deduce that § f; satisfy (6).
We may assume therefore f = §;_, g for an holomorphic form g of weight
k — 2r. In fact using a similar argument, we may even assume g is an eigenform.
Then g = A.go with gy defined over E. Since §;_, go is defined over E, we
deduce from Sect.2.6.1 that §;_, go satisfies (6) and therefore A € EX and
S ENL(N E K4b). Since this can be done for any X the result follows. O

3 Nearly Overconvergent Forms

In this section, we introduce our definition of nearly overconvergent modular forms
and show they are p-adic modular forms of a special type. We use the spectral theory
of the Atkin U,-operator on them and we define p-adic families of such forms. We
study also the effect of differential operators on them and define an analogue of the
holomorphic projection. These tools are useful to study certain p-adic families of
modular forms and also to study p-adic L-functions.

3.1 Katz p-Adic Modular Forms

3.1.1 Definition

We fix p a prime. Let X,;, be the generic fiber in the sense of rigid geometry of
the formal completion of Xz, along its special fiber. Let A € H ox /Fps w®p_l) be
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the Hasse invariant and let A be a lifting of A7 to characteristic O for ¢ sufficiently
large. For p € pQ N [p~/7+1 1], we write X = for the rigid affinoid subspace of
X,;¢ defined as the set of x € X;, satisfying |/I’1 (x)], = p?. For p = 1 we get the
ordinary locus of X,;, and we denote it Xq. The space of p-adic modular forms of
weight k is defined as

Mkp—adic(N) = HO(Xordv a)®k)

The space of overconvergent forms of weight k is the subspace of p-adic forms
which are defined on some strict neighborhood of X4 so:

M(N) = lim HO(X =", 0®")

p<l

3.1.2 Frobenius and @

Let ¢ © Xoa — Xow the lifting of Frobenius induced on Yoq by (E,ay) +—
(E®),a\") where E® := E/E[p]° and ' is the composition of ay and the
Frobenius isogeny £ — E¢. We get a ¢*-linear morphism obtained as the
composite

P :]{LIZR - ‘P*j{glzk = j{clzk(gw/xord) - j{cllR

This morphism stabilizes the Hodge filtration of 3}, and we know by Dwork that
there is a unique @-stable splitting, called the unit root splitting:

:]{LIZR/Xord = O/ Xon @ u/Xord

such that @ is invertible on U and U is a free sheaf of rank 1 generated by its sub-
sheaf of horizontal sections for the Gauss-Manin connection. This unit root splitting
induces a splitting of H} /x,,, and therefore of a canonical projection

k
J-C/’;/Xord - w%}ord (7)

We now recall the definition of the Theta operator on the space of p-adic modular
forms of weight k. At the level of sheaves, ® is defined as the composite of the
following maps of sheaves over the ordinary locus:

®k Sk 1 Qk+2
w/Xm-d - g-(:k+2/Xord - w/Xord

where he second arrow is the one given by (7) for r = 1. This defines

o : le_adic(N) N Mkp;éldic(N)
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It follows from Propositions 3 and 6 below that on the level of g-expansion, we have:
d
O =g 1(9)
q

for all f € M/ ~“i(N)). The following proposition will be useful in the next
paragraph.

Proposition 5. For any p < 1 and any Zariski open V. C X=P, the unit root
splitting on Vg := U N X4 does not extend to a splitting of the Hodge filtration
ofﬂ{}lR over any finite cover of V.

Proof. 'We show it by contradiction. Let us assume that this splitting extends to
some finite cover S of V' for some p < 1.

HIR(€)S) = weys ® UE/S).

Let Sora = S Xy, V. Since UW(E/S) ® Os,, is stable by @ so is U(E/S). Since
V' is a strict neighborhood of V4, we can find a finite extension L of Q, and x €
S(L)\Sora(L). Then, we will obtain a splitting H}x(E/L) = we, ;1 & UW(Ex/L)
with @, inducing a semi-linear invertible endomorphism of U(E,/L). Let k; be
the residue field of L. By the results of Berthelot and Ogus (1978, chapt.7),
the pair (Hg(E/L), ®y) is isomorphic to (H/,, (Exo/W (kL)) ® L, F* ® idy)
where Hcl,.ys (Ex.0/ W(kr)) stands for the crystalline cohomology of the special fiber
Ex.0/k, of &, over the ring of Witt vectors of k; and where @, = F* ® id; where
F* is the “crystalline” Frobenius induced by the Frobenius isogeny &€, o — Sf(p 3 in
characteristic p. Since it has a splitting of the form H!, ((€,0/0L) = Fil' @ U
with F* inversible on U, €, has to be ordinary which is a contradiction since

X ¢ Sord (L) o

3.2 Nearly Overconvergent Forms as p-Adic Modular Forms

3.2.1 Definition of Nearly Overconvergent Forms

For each p, H(X =", X} ) is naturally a Q,-Banach space for the Supremum norm
| -], andif p’ < p < 1, the map HO(XZF',H}) < HO(XZ°,H}) is completely
continuous. We define the space of nearly overconvergent forms of weight & and
order < r by

N (N) == lim NP (N)

p<l

with N]:p (N) := H(x=r, J}). We can define the operators §; and € on nearly
overconvergent forms since they are defined at the level of sheaves. Moreover we
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can define the polynomial g-expansion of a nearly overconvergent form and it is
straightforward to check that the action of §; and € on this g-expansion is the same
as for nearly holomorphic forms.

Remark 6. For any nearly overconvergent form f of weight k and order at most r,
we can easily show that there exist overconvergent forms gy, . .., g- such that

f =g+ B+ +g.E}

where fori = 0,...,r, g; is of weight k — 2i. This could be used as an ad hoc
definition of nearly overconvergent forms but it would be uneasy to show this space
is stable by the action of Hecke operators and that it has a slope decomposition as
we will see in the next sections. Moreover, this definition would not be suited for
generalization to higher rank reductive groups.

3.2.2 Embedding Into the Space of p-Adic Modular Forms

We now want to consider nearly overconvergent modular forms as p-adic modular
forms. Using (7), we get a map

HOXZP, HI) — HO(Xorg. H}) > HO(Xorg, %) (8)

We have the following

Proposition 6. The maps (8) induces a canonical injection
NIF(N) < MP%(N) ©)
fitting in the commutative diagram:

N}:J (N) C M]fffadi(' (N)

Q[[ql][X]r —— Q,ll4]]

where the bottom map is induced by evaluating X = 0.

Proof. The fact that the diagram commutes follows from the fact that u.,, belongs
to the fiber of the unit root sheaf U at the Z ,((g))-point defining Tate(q). Indeed, it
is explained in the appendix 2 of Katz (1972) that u,,, is fixed by Frobenius. We are
left with proving the injectivity. We consider f in the kernel of this map. Let U C
XZ" N Y,ig be an irreducible affinoid. It is the generic fiber in the sense of Raynaud
of an affine formal scheme Spf(R) with R a p-adically complete domain. Let &,z
the universal elliptic curve over R. Let us choose a basis (w, ') of 31,(€/R) as in
the previous section and such that (o, ®'),r = 1. Let h € R be a lifting of the Hasse

invariant of € xg Spec(R/pR) and let S := R[1/h] where the hat here stands for
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p-adic completion. Then €/S has ordinary reduction and the unit root splitting over
S defines a basis (o, u) of H1,(€/S). We must have

u=0o+Ao

with A € S. But U is a strict neighborhood of Uy,q = U N Xyq which is the
generic fiber of Spf(S), we know by the previous proposition that A is not algebraic
over R. Let Q(X) = f(/r.an.w,0')(X) € R[X],. We want to show that
Q(X) = 0. By assumption, we know that Q(1) = f(£/s,an,w, 0 + Aw)(0) =
f(&s,an,w,u)(0) = 0. Since A is not algebraic over R, this is possible only if
Q(X) = 0. Since this can be done for any pair (w, ®’) we conclude that f =0. O

If f is a nearly overconvergent form, the p-adic g-expansion of f is by definition
the g-expansion of the image of f in the space of p-adic forms. The following
corollary can be thought of as a polynomial q-expansion principle for the degree of
near overconvergence.

Corollary 1. Let f € N,Z’T(N). If f(q,X) is of degree r then there is no g €
N;;_I’T(N) having the same p-adic q-expansions.

Proof. We prove this by contradiction. Let us assume that such a g exists. Let
h = f — g. Since f(gq,X) is of degree r and g € N]Z_I’T(N), h(g, X) is still

of degree r and therefore % is non-zero. However, by assumption h(g,0) = 0.
This implies that 7 = 0 by the diagram of the previous proposition, which is a
contradiction. O

3.2.3 E;, © and Overconvergence

In the following two corollaries, we recover the main results of Coleman et al.
(1995) using the polynomial g-expansion principle. It can be easily generalized to
modular forms for other Shimura varieties.

Corollary 2. The p-adic modular form E; is not overconvergent.

Proof. By the Corollary 1, this is immediate since the polynomial g expansion of
E; is of degree 1. O

Corollary 3. If f is overconvergent of weight k and k # 0, then ©.f is not
overconvergent.

Proof. 1t follows from Propositions 3 and 6, that ®. f is the image of the nearly
overconvergent form 8x. f in the space of p-adic modular forms by the map (9).
Moreover

$1./)(g. X) = qj—qf L kXf()

It is therefore of degree 1 since k # 0 and the result follows from Corollary 1. O
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3.2.4 The Overconvergent Projection

We give a p-adic version of the holomorphic projector.

Lemma 2. Let [ be a nearly overconvergent form of weight k and order < r such
that k > 2r. Then for eachi = 0,--- , r, there exists a unique overconvergent form
gi of weight k — 2i such that

f= Z&(—Zi'gi
i=1

Proof. This is special case of the proof of Proposition 9 below. O
We define the overconvergent projection Hf( f) of f by:

H(f) = go

It is an overconvergent version of the holomorphic projection since if f is
holomorphic, then we clearly have:

H(f) = H(S)
which means that 7(7( /') is holomorphic.

Remark 7. Let f € N;"(N,Q,) and g € NJ''(N, Q,) such that k + [ > 25 + 2r.
Then the following holds H'(f8"g) = (—1)"H' (g8 f). One can also show that
when a Hecke equivariant p-adic Petersson inner product is defined then § and € are
very close to be adjoint operators. This implies a formula of the type ( f, ) p—adic =
(f.HH(g)) p—adic When fis overconvergent. We hope to come back to this in a future

paper.
3.2.5 Action of the Atkin-Hecke Operator U,

If p > p~1/P*1 it follows from the theory of the canonical subgroup (Katz-Lubin)
that we can extend canonically ¢ on X4 into

¢ Xz Xz,

Let £/ X =" be the generalized universal elliptic curve over X =" and let @) / X =P
be its pullback by ¢. We have degree p isogeny

g% ew

over X=F and we denote V, : £® — & the dual isogeny. On the level of sheaves,
the operator U, is defined as the composition of the following maps.
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v o) 1d®~-Tr j
j‘flrc/xz/) — g‘fk’ ¢ /Xzp = :H:]rc/szl’ Qp* O/sz — g‘f/r(/szp — 9‘(:/2/)(20

where j is induced by the completely continuous inclusion O y=,»r — Ox=» defined
by the restriction of analytic function on X=*" to X= and T'r is induced by the
trace of the degree p map ¢* : Oy=,» — Ox=,. Since j is completely continuous,
U, induces a completely continuous endomorphism of N;”(N, Q,). The following
proposition is easy to prove.

Proposition 7. Let f € N;’T(N, Q)). Let us write its polynomial q-expansion as:

o0

f@.X) = a(n, f)(X)q"

n=0

Then we have:

(i) (f1Up)g. X) = 3 Zgamp. [)(pX)q"
(ii) 5(f|Up) = P‘(Gf)|Up
(iii) Gk Uy = p&i(f1Up)
Proof. (i) follows from a standard computation and (ii) and (iii) follow from (i) and

the effect of & and € on the polynomial g-expansion explained in Sect. 2. O
Let N,fc’p (N, Q,) be the p-adic completion of

NEP(N.Qp) = [ NP (V. Q).

r>0

Then we have:

Corollary 4. The action of U, on N]fo’p (N, Qp) is completely continuous.

Proof. Tt follows easily from the lemma below for the sequence M; = N};’p (N) and
the relation (ii) of the previous proposition. O

Lemma 3. Let M; be an increasing sequence of Banach modules over a p-adic
Banach algebra A. Let u be an endomorphism on M = | J; M; such that

(i) uinduces a completely continuous endomorphism on each of the M;’s.
(ii) Let o; be the norm of the operator on the Hausdorff quotient of M;/M;_,
induced by u. Then the sequence o; converges to 0.

Then u induces a completely continuous operator on the p-adic completion of M.
Proof. This is an easy exercise which is left to the reader. O

Remark 8. 'We can give a sheaf theoretic definition of N]fo’p . Let A be the ring of
analytic functions defined over Q, on the closed unit disc. It is isomorphic to the
power series in X with Q ,-coefficient converging to 0. We denote it Ay if one equips
it with the representation of the standard Iwahori subgroup of SL,(Z,) defined by:
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b+dX
a+cX

((45) . HX) = @@+ eX) f( )

If we restrict this representation to the Borel subgroup we get a representation that
contains Z,[X], (k) for all r. In fact, it is the p-adic completion of Z,[X](k) =
U, Z,[X], (k). It is not difficult to see, one can define a sheaf of Banach spaces
on X=* (in the sense of Andreatta et al. to appear) by considering the contracted
product

j‘f]?o =T XB .Ak
Then, we easily see that

NP = HO(XZP, H°)

3.2.6 Slopes of Nearly Overconvergent Forms

Let f € N]:T (N, 61,) which is an eigenform for U, for the eigenvalue . If A # 0,
we say f is of finite slope « = v,(4). The following proposition compares the
slope and the degree of near overconvergence and extends the classicity result of
Coleman to nearly overconvergent forms.

Proposition 8. Ler f € N]fo’T (N, 6],), then the following properties hold

(i) If f is of slope «, then its degree of overconvergence r satisfies r < «,
(it) If f is of degree r and slope « < k — 1 — r, then f is a classical nearly
holomorphic form.

Proof. The part (i) is easy. If r is the degree of near overconvergence of f, then
g = €. f is anon trivial overconvergent form and by Proposition 7 its slope is o« —r-.
Since a slope has to be non-negative, (i) follows. The part (ii) is a straightforward
generalization of the result for r = 0 which is a theorem of Coleman (1996). We
may assume that r is the exact degree of near overconvergence. By the point (i), we
therefore have o > r. From the assumption, we deduce k — 1 — r > r. Therefore
k > 2r and we may apply Lemma 2:

f= Z 811—2;‘ 8i

with g; overconvergent of weight k — 2i for each i. By uniqueness of the g;’s, we
see easily that the 6;»; g; are eigenforms for U, with the same eigenvalue as f. So
foreachi, g; isof slope —i < k—1—r—i < (k—2i)—1. Therefore it is classical
by the theorem of Coleman. This implies f is classical nearly holomorphic. O
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3.3 Families of Nearly Overconvergent Forms

3.3.1 Weight Space

Let X be the rigid analytic space over Q, such that for any p-adic field L C
Gp X(L) = Homc(m,(Z;, L™). Any integer k € Z can be seen as the point
[k] € X(Q,) defined as [k](x) = xk for all x € Z7. Recall we have the
decomposition Z, = A x 1 4+ qZ, where A C Z; is the subgroup of roots of
unity contained in Z; andg = pif poddand g = 4 if p = 2. We can decompose
X as a disjoint union

le_IBw

yel

where A is the set of characters of A and By is identified to the open unit disc of
center 1 in Gp. If k € X(L) then it correspond to u, € By (L) if k|4 = ¥ and
k(14 ¢q) = u.

3.3.2 Families
Let 4 C X be an affinoid subdomain. It is known from the works of Coleman-
Mazur (1998) and Pilloni (to appear), that there exist pg € [0, 1) N pQ such that for

all p > py, there exists an orthonomalizable Banach space Mg over A(Ll) such that
forall x € il(ap), we have

M ® Q, = H' (X, w,)

We consider the sheaf” 25, over 4 x X Z* associated to the A (Ll x X =#)-module fo
and we put

Hy = 24 @ H
For any weight k € Z such that [k] € 4(Q,), we recover H)_ by the pull-back
([k] x idx=,)* Iy = H; (10)
For general weight k € (L), we define the sheaf H = w. ® H{ where w, is

the invertible sheaf defined in Pilloni (to appear, §3). We define the space of nearly
overconvergent forms of weight k by

Non : : : : : o
"In Pilloni (to appear), this sheaf is constructed in a purely geometric way and the existence of M,
is deduced from it.
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N?(N, L) := HY (X, 3 1)
and the space of {(-families of nearly overconvergent forms:
N (N) := HO(X =P, 35)

We also define N,C’T(N ) and N;‘f (N) the spaces we obtain by taking the inductive
limit over p. The space N:‘lp (N) is a Banach module over A(L() and for any weight
k € 3(L), we have

N{P(N) ® L = NI(N, L)

This follows easily from (10) and the fact that X =* is an affinoid.

As in the previous section, one can define an action of U, on these spaces and
show it is completely continuous. For any integer r, any affinoid 4{ C X and p > py,
we may consider the Fredholm determinant

Pl(X) = Pk, X) := det(1 — X.U,|N;) € AG)[[X]]

because one can show as in Pilloni (to appear) that N:‘lp (N) is A(Ll)-projective.
A standard argument shows this Fredholm determinant is independent of p. For
U = {k}, we just write P/ (X).If r = 0, we omit r from the notation.

For any integer m, we consider the map [m] : X — X defined by x — «.[m]
and we denote U[m], the image of [ by this map. We easily see from its algebraic
definition, that the operator € can be defined in families and induces a short exact
sequence:

0— Mf — N — Ny f =0
From Proposition 7 and the above exact sequence one easily sees by induction on
r that

Pk, X) = l_[ Py (k. [-2i]. p' . X)
i=0

Let us define Nio’p (N) as the p-adic completion of Ng_*(N) := U Ny (N). Then
r>0

it follows from Lemma 3 again that U, acts completely continuously on it with the

Fredholm determinant given by the converging product

o0
PPk, X) = l_[ Py(ai)(k.[2i], p' X)
i=0
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Definition 1. Let ${ C X be an affinoid subdomain and Q(X) € A(U)[X] be a
polynomial of degree d such that Q(0) = 1. The pair (Q,4l) is said admissible
for nearly overconvergent forms (reps. for overconvergent forms) if there is a
factorization

PE(X) = Q(X)R(X) (resp. Pu(X) = Q(X)R(X))

with P and Q relatively prime and Q*(0) € A()* with Q*(X) := X?Q(1/X).

If (Q, 1) is admissible for nearly overconvergent forms, it results from Coleman-
Riesz-Serre theory (Coleman 1997) that there is a unique U ,-stable decomposition

Ng? =Nou ® 894

such that N s is projective of finite rank over A(() with

(i) det(1— U, X[Noy) = P(X)
(i) Q*(U,) is invertible on 8¢ g

It is worth noticing also that the projector eg ¢ of N;o’p onto Np ¢ can be
expressed as S(U),) for some entire power series S(X) € XA(L)X . If we have two
admissible pairs (Q, 1) and (Q’, '), we write (Q, ) < (Q’, W) if & C L and if Q
divides the image Q| (X) of Q’(X) by the canonical map A(L')[X] — ALH[X].
When this happens, we easily see from the properties of the Riesz decomposition
that

eps1 0 (egrsr @asry Lawy) = egu (11)

We have dropped p from the notation in Ng g since this space is clearly

independent of p by a standard argument. We define N{f as the inductive limit
of the No ¢ over the Q’s. Since Ny g is of finite rank and U ,-stable it is easy to
see that there exists r such that

NQ,L[ C :N;’J

Remark 9. If ag g is the maximal® valuation taken by the values of the analytic
function Q*(0) € A(4l) on &, then one can easily see that r < g g by the point (i)
of Proposition 8.

3.3.3 Families of g-Expansions and Polynomial ¢-Expansions

By evaluating at the Tate object we have defined in Sect.2, we can define
the polynomial g-expansion of an element F € N:‘lp (N) that we write

8This maximum is < 0o since Q*(0) € A(L)*.
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F(q,X) € AGD[X]:[q]]- The evaluation F,(q,X) at k of F(gq,X) is the
polynomial g-expansion of the nearly overconvergent form of weight k obtained by
specializing F at k. We also denote F,(q) = Fi(q, 0) the p-adic g-expansion of the
specialization of F at x. In what follow, we show that when the slope is bounded a
family of g-expansion of nearly overconvergent forms is equivalent to a family of
nearly overconvergent forms.

Let F(g) € AWD[[g]] and X C 11(6],) a Zariski dense subset of points. We
say that F(q) is a X-family of g-expansions of nearly overconvergent form of
type (Q,4) if for all but finitely many « € X the evaluation F,(q) of F(q) at
is the p-adic g-expansion of a nearly overconvergent form of weight « and type
QO (ie. is annihilated by Q7 (U,)). Let Ng.u be the A(Ll)-module of families
of g-expansion of nearly overconvergent forms of type (Q,4l). Similarly, we can
define Ng:ﬁ”l C A(W[X][lg]] the subspace of polynomial g-expansion satisfying a
smiler property for specialization at points in X' with an obvious map:

X, pol >
NQLL = Nju

given by the evaluation X at 0. Then we have:

Lemma 4. The g-expansion map and polynomial expansion maps induce the
isomorphisms

3, pol
NQ,u = NQ'E{O = Né’u.

Proof. From Proposition 6, it suffices to show that the g-expansion map induces:
NQ,L[ = Ngu

The argument to prove this is well-known but we don’t know a reference for it. We
therefore sketch it below. Notice first that for any ko € £4(Q,) the evaluation map
at ko induces an injective map:

NG @ Q, = Q,ll4l] (12)

Indeed if F € Ng,u is such that Fi,,(¢) = O then if w,, € A(Ll) is a generator of
the ideal of the elements of A(4l) vanishing at ko, we have F(q) = w,,.G(g) for
some G € A(U)[[q]]. Clearly for any k € X'\{xo}, we have G, (q) = ﬁFK (q) is
the g-expansion of a nearly over convergent for of weight « and type Q. Therefore
G e Ng,u and our first claim is proved. Now let x € X. We have the following
commutative diagram:

A &
Nt ®xQp —Ng @ Q,

(Ul l(2>

NS — -, [l
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Since (2) and (4) are injectives and (1) is an isomorphism, we deduce (3) is injective.
Now since the image of (2) is included in the image of (4) and (1) is surjective,
we deduce that (3) is an isomorphism of finite vector spaces. Since Ng,u is torsion

free over A(41) such that Ng,u R 61, has bounded dimension when « runs in X,
a standard argument shows that Ng.u is of finite type over A(l) (see for instance

Wiles 1988, §1.2). Notice that the injectivity of (3) below is true for all ¥ and
therefore we deduce that the map

Nos = Nj (13)

is injective with a torsion cokernel of finite type. We want now to prove the
surjectivity. Let F(q) € Ng,u and let I C A(U) be the ideal of element a such
that a.F(q) is in the image of (13) and let ar be a generator of Ir. Let G € No g
whose image is ar.F(q). For any ko such that ar(kg) = 0, we get that G, = 0.
By the isomorphism (1), G is therefore divisible by w,, and thus ”: € Ir which
contradicts the fact that a g is a generator of /. Therefore ar does not vanish on
and F is in the image of (13). This proves the surjectivity we have claimed. O

More generally, for any Q,-Banach space M, we can define Ngqu(M ) the
subspace of elements F € A(U)®M [[g]] such that for almost all k € X, the
evaluation Fy at k of F'(q) is the g-expansion of an element of Np, (M) = Nop, «®

N pol

M . Similarly, one defines N (M). Then it is easy to deduce the following:

Corollary 5. We have the tsomorphlsms:

Nou®M = NI (M) = NG (M).

Proof. Left to the reader. O

3.3.4 Maass-Shimura Operator and Overconvergent Projection
in p-Adic Families

The formula for the action of the Maass-Shimura operators on the g-expansion
suggests it behaves well in families. We explain this here using the lemma (13).
This could be avoided but it would take more time than we want to devote to this
here. We explain this in a remark below.

We defined the analytic function Log(k) on X by the formula:

logp(k(1 +q)")

Logt) = Foe (T +a))

where log, is the p-adic logarithm defined by the usual Taylor expansion
logp(x) = =302, (1—’1_)()" for all x € C, such that [x — 1|, < p~' and ¢ is
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an integer greater than 1/v,(k(1 + g)). Of course, from the definition we have
Log([k]) = k. Moreover Log is clearly an analytic function on X.
If Fg,X) =Y o2 oan(X, F)q" € A)[X][[q]], we define

8F(q,X):=D.F(q,X)+ Log(k)XF(q,X)

where

If F(q,X) € Ng:ﬁd for a Zariski-dense set of classical weight X, it is clear that

5.F(q.X) € Ng’ﬁ”l with £ = Z[2] and O (k, X) = O(k.[2], pX). We therefore
thanks to Lemma 4 deduce we have a map

- ahorfs tr+11fs
SN — Num

Remark also, it is straightforward to see that the effect of the operator € on the
polynomial g-expansion of families is the partial differentiation with respect to X:

(e.F)(g.X) = %F(q,X) VF e N"

Remark 10. Like in Remark 8, we can give a sheaf theoretic definition of N;o’p .
For simplicity, let us assume that all the p-adic characters in il are analytic on Z,.
Let Ay := A(U)®A. Elements in Ay, can be seen as rigid analytic functions on
U x Z,. Itis equipped with the representation of the standard Iwahori subgroup of
SL>(Z,) defined by:

b+dX

(£5) N X) =rla+eX)

)

Again as in Remark 8, one can define but now using the technics of Pilloni (to
appear) a sheaf of Banach spaces on X=° x il

HE = TP Ay = oy ® HP
and show that we have:
NP = HOXZP x 8 HE)

Since Ay is a representation of the Lie algebra of s/,, it would be possible to define
a connection using the BGG formalism like in the algebraic case (see for instance
Tilouine 2011, §3.2)

HE — I}Cgffz]
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One would then obtain the Maass-Shimura operator in family without the finite
slope condition:

5 NE® > Rpee
It is then easy to verify that §(Ny,) C Nfl’[r;l. We leave the details of this
construction for another occasion or to the interested reader.

Finally, we want to mention that Robert Harron and Liang Xiao (2013) have also
given a geometric construction of this operator in family using a splitting of the
Hodge filtration and showing the definition is independent of the chosen splitting.
The above sketched construction can be done without such a choice but it probably
boils down to a similar argument.

Now we have the following proposition.

Proposition 9. Let L C X be an open affinoid subdomain and F € Nglﬁ’fs, then
foreachi € {0,...,r} there exists

1 +.0.fs
r . Ll_z
[T, (Log(k) — j) "%

i €

such that
F=Gy+6.G +---+38.G,

Moreover, this decomposition is unique.
If sb = {k} such that Log(x) & {2,3,...2r}, the result holds as well.

Proof. Tt is sufficient to prove this when il is open since we can obtain the
general result after specialization. We prove this by induction on r. Notice that
for G € N;Ff;r], we have by (4)

€.8".G =rl.[[(Loglk)—r —i).G

i=1

since the left hand and right hand sides coincide after evaluation at classical weights
bigger than 2r. We put

1
G, = ; _F
MU e, (Log() —r —i) "

then G, € mﬂ\f;&f;r] and F — §".G, is by construction of degree of
nearly overconvergent less or equal to r — 1. We conclude by induction. O

Then we define

HI(F) := G,
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This is the overconvergent (or holomorphic) projection in family since it clearly
coincides with the holomorphic projection for nearly holomorphic forms of weight
k > 2r.

Lemma 5. For any nearly overconvergent family of finite slope F € Nglﬁ’fs, and
Heke operator T, we have

HU(T.F) = TH(F).
In particular, for any admissible pair (Q, ) and we have

eo (M (F)) = 3T (eg.u(F)).

Proof. It follows easily from the relation 8/ (7 (n).F) = n/ T(n).8/ (F) and the
uniqueness of the G;’s in the decomposition of Proposition 4. O

4 Application to Rankin-Selberg p-Adic L-Functions

Let € be the eigencurve of level 1 constructed by Coleman and Mazur (1998). In this
section, we give the main lines of a construction of a p-adic L-function on € x € x X.
The general case of arbitrary tame level can be done exactly the same way. The
restriction of our p-adic L-function to the ordinary part of the eigencurve, gives
Hida’s p-adic L-function constructed in Hida (1988, 1993). Our method follows
closely Hida’s construction for ordinary families of eigenforms. We are able to treat
the general case using the framework of nearly overconvergent forms. We will omit
the details of computation that are similar to Hida’s construction and will focus on
how we get rid of the ordinary assumptions. We don’t pretend to any originality
here. We just want to give an illustration of the theory of nearly overconvergent
forms to the construction of p-adic L-functions in the non-ordinary case.

4.1 Review on Rankin-Selberg L-Function for Elliptic
Modular Forms

We recall the definition and integral representations of the Rankin-Selberg
L-function of two elliptic modular forms and its critical values. Let f and g
be two elliptic normalized newforms of weights k and / with k > / and nebentypus
¥ and £ respectively of level M. We denote their Fourier expansion by:

f@ =) aq" and gz) = Y bug"
n=1

n=1
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Shimura is probably the first one to study in Shimura (1976) the algebraicities of
the critical values of

Du(s. f.8) == LYk +1—25=2)(>_aybun™)

n=1
More precisely he proved that for every integer m € {0, ...,k —/ — 1}, then

Dl +m. fg

Here ( f, f)n is the Petersson inner product of f with itself. Recall it is defined by
the formula

(fe)u = / f(0)g(x)y*2dxdy
R\

When 0 < 2m < k — I, the essential ingredient in the proof of Shimura was to
establish a formula of the type

Dyl +m, f.8) = ([ 88 1—amE)m = (. H (@82 ED)m

where E is a suitable holomorphic Eisenstein series of weight k — [ — 2m.

When f and g vary in Hida families and m is also allowed to vary p-adically,
Hida has constructed a 3-variable p-adic L-function interpolating a suitable
p-normalization these numbers. We now recall the precise formula that is used

to interpolate these special values in Hida (1988). We first need some standard
0 —1
M 0

we denote by A° the form defined by h°(7) = h(—7) for v € b. For any Dirichlet
character y of level M and any integer j > 2 such that y(—1) = (—=1)/, we denote
by E;(x) the Eisenstein series of level M, nebentypus y and weight j whose
g-expansion is given by

notations. For any integer M, we put 7y = ( ) and for any modular form £,

En@ = 2L 0 LSS y@yai g

2
n=1 dln
(d.M)=1

Proposition 10 (Hida 1988, Thm 6.6 ). Let L be an integer such that [ and g
are of level Lp?, then we have

DLp(l+mv f;g) = t'ﬂl+2m+1(fp|ktLpﬂvj{(g|ltLPﬂS;(n—[—Zm(Ek—l—zm,Lp(wg)>Lpﬂ
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with

L 2k+l+2m(Lpﬂ)%—m—lil—k
ml( +m—1)!

andm € Zwith0 <m < (k—1)/2.

4.2 The p-Adic Petersson Inner Product

For simplicity, we assume the tame level is 1. Fix and admissible pair (R, 0)
for overconvergent forms and let Mg o3 the corresponding associated space of U-
families of overconvergent forms. Let Tr o5 the Hecke algebra acting on Mg 5. A
standard argument using the g-expansion principle shows that the pairing

Mrg Qawy Try — A(Y)
given by
(T, f)=a(l, fIT)

is a perfect duality. Since the level’ is 1, we also know that Tgg is reduced.
Therefore, the trace map induces a non-degenerate pairing on Tp s with ideal
discriminant 0z 95 C A(*U) whose set of zeros is the set of weight where the map
€04 — lis ramified. In particular, we have a canonical isomorphism:

Mpy @ F(U) = Try ® F(U) (14)

4.2.1
From this, we deduce a Hecke-equivariant pairing
(= )rw : Mry ®a0) OMry —> F(D)

Let now J be a Galois extension of F () the field of fraction of A(20). We assume
that for each irreducible component C of Eg g3, F contains the function field F(C)
of C. For each irreducible component C, we define the corresponding idempotent
le € TRy ® F and we write Fe for the element defined by

When the level is not 1, one uses the theory of primitive forms which described the maximal
semi-simple direct factor of Tg o5 ® F (V)
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Fe:=Y) e(Tq" € Flql]

n=1

where A is the character of the Hecke algebra defined by 7.1 ®idy = 1e®Ae(T).
If we denote by (—, —)g the scalar extension of (—, —)g to F then the Hecke
invariance of the inner product implies that

a(l, 1(3.G) = (Fe, G)?

is the coefficient of Fe when one writes G as a linear decomposition of the eigen
families Fe’s.

Remark 11. This construction can be easily extended to the space Ny o5 for any
admissible psi (R, ) for nearly overconvergent forms.

4.3 The Nearly Overconvergent Eisenstein Family
We consider the Eisenstein family E(g) € A%(X)[[g]] such that for each weight
Kk € X(Q,), its evaluation at « is given by

oo

E(k,q) = Za(n,E,K)q" = Z Z(d)K,d_lq",

n=1 n=1 d|n
(n.p)=1

where forany m € Z, (m), € A(X) stands for the analytic function of X defined by
K+ k(m)

In particular, when ¥k = [k].y with ¢ a ramified finite order character of Z*, then
E(x,q) is the g-expansion of

EP()(1) = Ec(¥) (@) — Ec(¥)(po).
We define the nearly overconvergent Eisenstein family @.E € A%(X x X)[[¢]] by

o

O.E(k.K') := Z (n)ca(n. E.k")q"

n=1
(n.p)=1

Lemma 6. Ifx = [r] and k' = [k]{, the evaluation at (k,«") of ©.E is
O.E(k, k") = 0" EP (¥)(q).

It is the p-adic g-expansion of the nearly holomorphic Eisenstein series 5 E ,ip ) ().
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Proof. The first part is obvious and the second part follows from the formula (4)
and the canonical diagram of Proposition 6. O

4.4 Construction of the Rankin-Selberg L-Function
onExExXX

4.4.1 Some Preparation

Let (Q, L) be an admissible pair for overconvergent forms of tame level 1 and let
T 51 be the corresponding Hecke algebra over A(1). By definition it is the ring of
analytic function on the affinoid subdomain € g sitting over the affinoid subdomain
Z oy associated to (Q, Y1) of the spectral curve of the U ,-operator. Recall that

Zosy = Max(AH[X]/Q* (X)) C Zy, C Al <yl

rig

where Zy, is the spectral curve attache to U, (i.e. the set of points («, k) € Al g XU
such that P(a) = 0) and

Tos = A(€ps) withEp gy =€ ®zy, Zos
The universal family of overconvergent modular eigenforms of type (Q,4l) is
given by
o0
Gou =Y T(n)q" € Toullgl]
n=1

Tautologically, for any point x € E¢ g of weight k, € 4, the evaluation Gg 5(x)
at x of Ggpg is the overconvergent normalized eigenform f, of weight
associated to x.

Let

Ghy=Gou.0.E € Tpy® A (X x X)[q]] = A’ (Eg.u x X x X)[[q]]
The Fourier coefficients of this Fourier expansions are analytic functions on

€ou x X x X. Let now (R,*U) be an admissible pair for nearly overconvergent
forms of tame level 1. Then we consider

GE k(@) € AT x Eg.u x D[]l

defined by

G uru(€.y.V)(q) = eru.G§ y(y.v.ck; v (q)
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and where eg oy = S(U,) for some S € X.A(U)[[X]] is the projector of N&f’f“'
onto Ng o3.

Proposition 11. With the notation above Gg,u, raw(q) is the g-expansion of
an element of GS’M’R’QJ € Nry ®q, Ab(ﬁQ,u x X). Moreover if we have
A0 < (0, ) and (R, D) < (R'Y), then GE is the image of GE, ., ., o/
O0M.RT 8¢ 0l U r 5o

by the natural map

Nraw ®q, A’ (Egraw x X) > Npa ®q, A" (Eg.u x X)

Proof. By Corollary 5, with (Q,$) replaced by (R,¥) and with M =
AP(Eg .y x X), it is sufficient to show that the specialization at a Zariski dense
set of arithmetic points of ([k], x,[r]) € U x Ep gy x X is the g-expansion of a
nearly holomorphic form of weight k£ annihilated by RE;](U »). It is sufficient to
choose the triplet ([k], x, [r]) such that k, = [I] with [ € Zs», r > 0 such that
k —1 —2r > 0 since such triplets form a Zariski dense set of U x €g ¢ x X.
The evaluation at such a triplet is easily seen to be the p-adic g-expansion of
eRri(gx.O".Er_j—5 ). By definition of ey it follows that this form belongs to
Nr k- The second part of the proposition is a trivial consequence of (11). O

4.4.2 A 3-Variable p-Adic Meromorphic Function

Let Zroyy C AL ¢ X U the affinoid of the spectral curve Z 82 attached to Pg’.
This affinoid is a priori not contained in the spectral curve attached to U, but the

eigencurve is still sitting over it since Zy, C Z 82 We can therefore consider
Erw = EN Xzg2 Zrw

and the €g o’s form an admissible covering of €y when the (R, ) vary.
Let C C Eg .y be an irreducible component. Then we set

De.gs = a(l,1e.H(Gf g py)) € F(C) ® F(Egu x X)

Remark 12. If He C A(C) is a denominator of l¢, then the poles of De g g
come from the zeros of He and the poles of the overconvergent projector.
Therefore we have:

2rr. g

H(g. l_[ (LOg(K) — i).De,Q,u S A(G X EQ,L[ X %) (15)
i=2
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We denote by D w05 the unique element of

Frux&ouxX®) = [] F(@®F(EguxX)

CCERry
irreducible

restricting to De g s on € x €p g x X for each irreducible component C of Eg o5. It
can be constructed as the image of ' (Gg,u,Rm) inTry@F()QF(EouxX) =
F(Erw x Eg gy x X) by the map (14) tensored by F(Ep 4 x X)

We have the following result:
Lemma 7. There exist a meromorphic function D on & x € x X whose restriction
to F(Ers x €9y x X) gives Dg 3 0 41 for any quadruplet (R,*5, O, ).
Proof. If we have pairs (R, D), (Q, ), (R, '), (Q’, ) with (R,) < (R, Y’)
and (Q,4) < (Q’,4') then we have by (11) er |y © ey = ersy and
eo’slsi 0 ep s = ep y. Since the overconvergent projection is Hecke equivariant,
we deduce that

erw Qe u.(Dr a0 svloxs) = Drasost

and that the Dg 5,0 1(’s glue to define a memormorphic function D € F (& x & x X).

4.4.3 The Interpolation Property

For x € 8(6],), we denote 6, the corresponding character of the Hecke algebra. If
x is attached to a classical form, we denote by f, the eigenform attached to x. By
definition,

Lot (fe(@) =) 0:(Th)q"
n=1

We denote by k, its weight, ¥, its nebentypus and p™= its minimal level with m,
a positive integer. We will always assume k, > 2 and that p™~ is the conductor of
¥, We consider the complex number W( f;) defined by

hy = fxplfp”’x = W(fo) fx

It is a complex number of norm 1 called the root number of f;.
If € is smooth at x, then there is only one irreducible component containing it
and if € is the irreducible component of an affinoid € o containing x, then

He(ky) # 0 (16)

In that case, we can define the specialization 1, € Tg,_, of l¢ at ky and it satisfies:



436 E. Urban
T,1c = 0.(T,).1, Vn

In general, Tg, ., is not semi-simple so 1, is not necessarily the (generalized)
0.-eigenspace projector. But if the projection map & — X is étale at x then it is.
We know it is the case when x is non-critical; recall that x is said non-critical if

vp(0x(Up)) < ky — 1.

If all the slopes of R, are strictly less that k, — 1 (something that we can assume
after shrinking € 1), the image of 1¢ into the Hecke algebra acting on the space
of forms Mg, «, is the projector 14, attached to the new form f,. Moreover we can
show by the same computations as Hida (1985, sect. 4) that

(fxplfp” s g)p”

a(l’ 1 xg) = a(p’ f:Y)mX_n.p(n_m'r)(kx/z_l)
f (th fx)p”lx

A7)
for any g € Mg, ., of level p” withn > m,.
Forany v € %(Gp), we write k, := log(v). We say v is arithmetic if k, € Z and

we denote ¥/, the finite order character such that v = [k, ].v,.
We have the following theorem.

Theorem 1. Let L be a finite extension ofﬁp and (x,y) € € x E(L) and any
arithmetic v = [r].\), such that k, k, are arithmetic and satisfy the following
(i) ke —k, >r >0,
(ii) x is classical and non-critical,
(iii) y is classical,
(iv) The level of f} equals the level of [},
(v) ¥\ and , are ramified.

Then we have

D(x, y,v) = (=D W(LIW(f)a(p, feymm pr A= EAmeE) (g

Dp” (fxs fyphpvaky +r)
(2l'7r)kx+ky+2r+lnl—kx (sz fx)p”’X

xI'(ky +r)l(ky +1)

Proof. This computation follows closely those of Hida (1993). We treat the case

ky—ky, >2r > 0.Thecase ky —k, > r > (k. —k,)/2 can be treated similarly (see

for instance Hida 1993) and is obtained using the functional equation for the nearly

holomorphic Eisenstein series. We also assume ,, is trivial to lighten the notations.
By our hypothesis, we can choose a quadruplet (R, U, O, 1) such that

(@) (x,y) € Ery x Egu(l)
(b) The eigenvalues of R7 (X) € L[X] are of valuation smaller than k, — 1
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Then, D(x,y,[r]) = Drw.oulx,y,[r]). By the condition (b), we know that
TR, «. = Trg ®x, L is semi-simple and therefore the map Er oy — U is étale
at x. In particular, Eg g is smooth at x and x belongs to only one irreducible
component C of €g o5. By construction, we have:

Dreou(x.y. [r]) = a(l,1x 0 H'(eg, 1, (Gou(V)OE(r].kxk; ' [27]71)))
a(1, 14, (3 ryy s (585 =2 By —2))))

=a(l,1y, 0er, . (H'(g))

with g = f,6, . o E ]if ) k. —2r (Wx¥;"). Since g is nearly holomorphic of order
< r and weight k, > 2r, we have Hf(g) = H(g) is holomorphic. Since H(g) is
an holomorphic form of level p” withn = Max(m,,m,), we have

Droou(x,y.[r]) =a(l, 1y, oer, x,H(g)) (19)
(n—mx)(l%—l) (fxplrp"’j{(g»p"
(hx,fx)pmx

P
=g -1 el gy

(hm fx)p’”X

=a(p, f)"™".p

=a(p. f)"".p
As in Hida (1993), we now transform f, a little:

k k kl(n—m ) n—m
fy = (-1) yfylfp"lfp" = (=1)".p2 7 -fy|fp’”y [p y]lfp"
ky _
= (DW= T L T e

By replacing this in the expression above we get for (19):

a(p, S (DR W)Y p T ()
(Lo SN ™ e B o, ey D)
(hm fx)p”’—r
N ky
a(p. f)™ (=D W(fE). pr bt =m T

Dy (fes SNP" ™) Ky +7)
rkyF2r+1nketky +2r jky—ks (hx, fx)p

(kx +ky+r+Dirl.

M x

Now using the fact that for p dividing M, we have:

Dy (f.glp"].8) = a(p. /)" P~ Du(f.8.5))
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we deduce that (19) is equal to

x ky
a(p. Lo (1P W) e Em )

Dp” (f:w fypl[pn—my]’ky + r)

— D!
(ky+r 1).1‘..n_ky+2r+12kx+ky+2rl'ky—kx (e f)

P
and the specialization formula stated in the theorem follows. O

Remark 13. (a) This result is still true if x is classical and critical if it is not
f-critical. The condition (iv) and (v) are not necessary and could be removed at
the expanse to modify the formula by adding some Euler factors at p.

(b) From the construction, we see that this meromorphic function has possible
poles along certain hypersurfaces of € x € x X corresponding to intersections
of the irreducible components of the first variable and also along certain
hypersurfaces created by the overconvergent projection. This happens when
the overconvergent form f; is at the same time the specialization of a family
of overconvergent forms and a family of positive order nearly overconvergent
forms. It is easy to see that implies x is @-critical. In the next section, we
review the definition of a 6-critical point and compute the residue of D when
the weight map at this point is étale.

4.4.4 Residue at an étale 6 -Critical Point

Let x; € E(L) of classical weight k; > 2 and slope k; — 1. We say that x is
O-critical if there exist xo of weight kg = 2 — k; such that f,, = pki—1 fx,- Here
we denote f, the ordinary form of weight kg = 2 — k; attached to xy. We then
write x; = 6(xp). We have the following result.

Theorem 2. Let xy and xi as above. Assume that k : & — X is étale at
x1 = 0(xo) or equivalently that € is smooth at xo. Then the order of the pole of
D(x,y,v) at x| is at most one and

[T55 (Log(viey) — j)(Log(v) — /)
(ki — 1)!

Res|i=x (D(x,y,v)) = D(xo, y, V[1 — k1))

(2D
forall (y,v) e ExX

Proof. The fact that & £ % is étale at X1 is equivalent to € smooth at x¢ is
well-known and follows from R. Coleman’s work.

We choose (Ro, Up) such that xo € Eg,m,(L). Consider the pair (R, ;) with
Ri(k, X) = Ro(k[2 — 2ky], pkl_lX) and U, = Yy[2k; — 2].
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Fori = 0, 1, let C; be the (unique) irreducible component of € g, w3, containing x;
and let consider F; = Feg, the corresponding Coleman family. Let G = Gglsmh 01l
for some admissible pair (Q, Ll).

Let ¥ be an extension of F(U) as in Sect.4.2.1. Then by definition of
D = D¢, o and of the overconvergent projection, we have

G=DF +D§'Fp+H (22)

with some D’ € F ® A’y x X) and H € Ng, o, ® A°(Eg ¢ x X) such that
(H,F;)y = 0fori = 0,1 where (—, —)5 is the p-adic Petersson inner product
defined in Sect. 4.2.1. Notice that by our hypothesis, Fi(x;) = f, = 857" Fy(xo).
Since G is regular at [k;] and F, and §¥'~'F, are the only families of nearly
overconvergent forms of finite slope specializing to fy,, this implies that D + D’ is
regular at x;. Therefore in particular the order of the pole of D at x; is the same as
the order of the pole of D’ at x| and

R€S|X=X1(D(X, Vs V)) = _Res|x=x1 (D/()C, Vs V)) (23)

From (22), we have

ki—2
171G lkx y.v) = [ @~ Logle) + ))D'(x.y.v).Fo+7'H - (24)
j=0
Since the eigencurve is smooth at x, this implies that ]_[];‘;02(2 — Log(kyx) + j)D’
is regular at x = x| and therefore the pole of D’ at x; is at most simple. Moreover,
we get
l _ (_l)kl k1—1
Res|y=x,(D'(x,y,v)) = m.a(l, le,.€ G([k1], y,v)) (25)
1 — 1)
Now we want to evaluate €/'='G(k, y,v). For any classical triplet (k,y,v) =
([k]. y.[r]) withk —k, > 2r > 0 and ¥ = V¥, {,,, we deduce from the evaluation
of (5) at X = 0 that

TG (x, y,v)(q) =" ep s, [1O" . Ex—i,—2r (V) (q)
= ery0, €' 1O By —2r (¥)(q)
= €Ry0y [y€" T O Ex i, —2r (V) (q)

_ I'(k—ky—r)r! —k
= I’(k—ky—r—kl}-i-l)(r—kl-‘rl)!eR(>~Q30fy@r Bk, —2r (V) ()

We deduce that
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k1—1

171Gk, y,v) = [ Loglery v™) = j)(Log(v) — j + 1)
j=1
X Gllg()q‘ﬂo,Q,U.(K[z - 2k1]7 v, U[l — kl])

since the left and right hand sides of the above have the same evaluations on a
Zariski dense set of point of X x ¢ ¢ x X. Evaluating at k = [k;] gives:

ki—2
171G (k] y.v) = [ - Log(viy)) (Log(v) — j)
j=0
X G o002 =Kl y. o[l — ki) (26)
Since
(l(l, 1@()G]€0,m0,Q,L[([2 - kl]v Vs V)) = D(Xo, Vs V)
for (y,v) € €p y x X, the formula (21) follows from (23), (25) and (26). O

Remark 14. This residue formula has a flavor similar to the work of Bellaiche
(2012) in which it is proved that the standard p-adic L-function attached to a
0-critical point is divisible by a similar product of p-adic Log’s.

Remark 15. 1t is also possible to define a two variable Rankin-Selberg p-adic
L-function interpolating the critical values D,(fy, fy,kx — 1) by replacing
©.E(k, k") by E”(k) in our construction where for k = [k].¥, and k € Zs,
we have

gy = FEZE) S OS araer

2
n=1 dln
(n.p)=1

Since E (k) has a pole at k = [0], this two-variable p-adic L-function would have
a pole along the hypersurface defined by «, = «,. It should be easy to compute the
corresponding residue and obtain a formula similar to the one of Hida’s Theorem 3
Hida (1993, p. 228).
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Noncommutative L-Functions for Varieties
over Finite Fields

Malte Witte

1 Introduction

Let F be an £-adic sheaf on a separated scheme X of finite type over a finite field F
of characteristic different from £. The L-function of F is defined as the product over
all closed points x of X of the characteristic polynomials of the geometric Frobenius
automorphism §¢ at a geometric point £ over x acting on the stalk F:

L(F.T) = [ [ det(id — §e 7%~ )",

The Grothendieck trace formula relates the L-function to the action of the
geometric Frobenius §p on the £-adic cohomology groups with proper support over
the base change

X=X XSpec F SpecF

of X to the algebraic closure F of IF:
L(F.T) = [ detid — FeT: HL(X, 5) V"""

i€Z

It was used by Grothendieck to establish the rationality and the functional equation
of the zeta function of X, both of which are parts of the Weil conjectures.

The Grothendieck trace formula may also be viewed as an equality between two
elements of the first K-group of the power series ring Z;[[T]]. Since the ring Z;[[T']]
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is a semilocal commutative ring, K;(Z,[[T]]) may be identified with the group of
units Z¢[[T]]* via the map induced by the determinant. For each closed point x
of X, the Z[[T]]-automorphism id — F:7 on Z[[T]] ®z, F¢ defines a class in
K1 (Z¢[[T]]). The product of all these classes converges in the profinite topology
induced on K (Z¢[[T]]) by the isomorphism

Ki(Z[[T]]) = Tim Ko (Z[[T]1/ (€7, T").

n

The image of the limit under the determinant map agrees with the inverse of the
L-function of F. On the other hand, the Z[[T']]-automorphisms

Zi([T] ®z, H.(X, 5) 50 2, (7)) @2, HL(X. 5)

also give rise to elements in the group K;(Z¢[[T']]). The Grothendieck trace formula
may thus be translated into an equality between the alternating product of those
elements and the class corresponding to the L-function.

In this article, we will show that in the above reformulation of the Grothendieck
trace formula, one may replace Z, by any adic Z,-algebra, i.e. a compact, semilocal
Z¢-algebra A whose Jacobson radical is finitely generated. These rings play an
important role in noncommutative Iwasawa theory.

A central step in this reformation is the development of a convenient framework,
in which one can put the K-theoretic machinery to use. This was accomplished
in Witte (2008), using the notion of Waldhausen categories. For any adic ring A,
we introduced in loc. cit. a Waldhausen category of perfect complexes of adic
sheaves of A-modules on X. Furthermore, we presented an explicit construction
of a Waldhausen exact functor R I'.(X, F*) that computes the cohomology with
proper support for any perfect complex F°.

By suitably adapting the classical construction, we define the L-function of such
a complex F* as an element L(F*, T') of K;(A[[T]]). The automorphism id — §rT
on A[[T]]® 4R I'.(X, F*) gives rise to another class in K (A[[T]]). Below, we shall
prove the following theorem.

Theorem 1. Let F° be a perfect complex of adic sheaves of A-modules on X. Then

id—F§T
_—

-1
L(F*.T) = [A[[T]] QisRT.(X,5°) AT ®4RT.(X, 3")}

in Ky (A[[T]).

The rough line of argumentation in the proof is as follows. As in the proof of the
classical Grothendieck trace formula, one may reduce everything to the case of X
being a smooth geometrically connected curve over the finite field F. Moreover, one
can replace A by Z,[Gal(L/K)], where L is a Galois extension of the function field
K of X. By the classical Grothendieck trace formula, we know that our theorem
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is true if we further enlarge Z,[Gal(L/K)] to the maximal order M in a split
semisimple algebra. The crucial step is then to show that

SK(Ze[Gal(L/ K)][[T]]) = ker Ky (Ze[Gal(L/K)][[TT]) — Ki(M[[T]))

vanishes in the limit as L tends to the separable closure of K. This is achieved as
follows: By using results of Oliver (1988) we prove that

SKi (Or[GIIT]]) = SKi(OF[G])

for any finite group G and the valuation ring O of any finite extension F of
Q. (This fact also has some other interesting applications, see e.g. Chinburg et al.
(2012).) The vanishing of

lim SK; (O p[Gal(L/K)])
L

then follows by using an argument from Fukaya and Kato (2006).

Outline. Section 2 recalls briefly Waldhausen’s construction of algebraic
K-theory. In Sect.3 we introduce a special Waldhausen category that computes
the K-theory of an adic ring. A similar construction is then used in Sect.4 to
define the categories of perfect complexes of adic sheaves. In Sect. 5 we prove the
abovementioned results for SK;(Z[G][[T]]). In Sect. 6 we define the L-function of
a perfect complex of adic sheaves. Section 7 contains the proof of the Grothendieck
trace formula for these L-functions.

2 Waldhausen Categories

Waldhausen (1985) introduced a construction of algebraic K-theory that is both
more transparent and more flexible than Quillen’s original approach. He associates
K-groups to any category of the following kind.

Definition 1. A Waldhausen category W is a category with a zero object x*,
together with two subcategories co(W) (cofibrations) and w(W) (weak equiva-
lences) subject to the following set of axioms.

1. Any isomorphism in W is a morphism in co(W) and w(W).
2. For every object A in W, the unique map * — A is in co(W).
3.1f A — B is amap in co(W) and A — C is a map in W, then the pushout

B Uy C exists and the canonical map C — B Uy C is in co(W).
4. If in the commutative diagram

B<—A——C

B’<—A’T>C’
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the morphisms f and g are cofibrations and the downwards pointing arrows
are weak equivalences, then the natural map B Uy C — B’ Uy C' is a weak
equivalence.

We denote maps from A to B in co(W) by A >> B, those in w(W) by A = B.
If C = B Uy * is a cokernel of the cofibration A >> B, then we denote the natural
quotient map from B to C by B — C. The sequence

A>> B —>» C

is called exact sequence or cofibre sequence.

Definition 2. A functor between Waldhausen categories is called (Waldhausen)
exact if it preserves cofibrations, weak equivalences, and pushouts along cofibra-
tions.

If W is a Waldhausen category, then Waldhausen’s S-construction yields a
topological space K(W) and Waldhausen exact functors F:W — W’ yield
continuous maps K(F): K(W) — K(W’) (Waldhausen 1985).

Definition 3. The n-th K-group of W is defined to be the n-th homotopy group of
K(W):

K, (W) = 7, (K(W)).

Example 1.

1. Any exact category E may be viewed as a Waldhausen category by taking
the admissible monomorphisms as cofibrations and isomorphisms as weak
equivalences. Then the Waldhausen K-groups of E agree with the Quillen
K-groups of E (Thomason and Trobaugh 1990, Theorem 1.11.2).

2. Let Kom”(E) be the category of bounded complexes over the exact category
E with degreewise admissible monomorphisms as cofibrations and quasi-iso-
morphisms (in the category of complexes of an ambient abelian category A) as
weak equivalences. By the Gillet-Waldhausen theorem (Thomason and Trobaugh
1990, Theorem 1.11.7), the Waldhausen K-groups of Kom” (E) also agree with
the K-groups of E.

3. In fact, Thomason showed that if W is any sufficiently nice Waldhausen category
of complexes and F: W — Kom” (E) a Waldhausen exact functor that induces
an equivalence of the derived categories of W and Kom” (E), then F induces
an isomorphism of the corresponding K-groups (Thomason and Trobaugh 1990,
Theorem 1.9.8).

Remark 1. In the view of Example 1.(3) one might wonder wether it is possible
to define a reasonable K-theory for triangulated categories. However, Schlichting
(2002) shows that such a construction fails to exist.
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The zeroth K-group of a Waldhausen category can be described fairly explicitly
as follows.

Proposition 1. Let W be a Waldhausen category. The group Ko(W) is the abelian
group generated by the objects of W modulo the relations

1. [A] = [B] if there exists a weak equivalence A = B,
2. [B] = [A]l[C] if there exists a cofibre sequence A — B — C.

Proof. See Thomason and Trobaugh (1990, §1.5.6). O

There also exists a description of K;(W) for general W as the kernel of a
certain group homomorphism (Muro and Tonks 2007). We shall come back to this
description later in a more specific situation.

3 The K-Theory of Adic Rings

All rings will be associative with unity, but not necessarily commutative. For any
ring R, we let

Jac(R) = {x € R|1 — rx is invertible for any r € R}

denote the Jacobson radical of R, i.e. the intersection of all maximal left ideals. It
is the largest two-sided ideal I of R such that 1 + I C R* (Lam 1991, Chapter 2,
§4). The ring R is called semilocal if R/ Jac(R) is artinian.

Definition 4. A ring A is called an adic ring if it satisfies any of the following
equivalent conditions:

1. A is compact, semilocal and the Jacobson radical is finitely generated.

2. For each integer n > 1, the ideal Jac(A)" is of finite index in A and

A= @A/JaC(A) .

n

3. There exists a twosided ideal / such that for each integer n > 1, the ideal 1" is
of finite index in A and

A=TlmA/I"
<«

n

Example 2. The following rings are adic rings:

1. Any finite ring,
2. Zy,
3. The group ring A[G] for any finite group G and any adic ring A,
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4. The power series ring A[[T']] for any adic ring A and an indeterminate 7 that
commutes with all elements of A,

5. The profinite group ring A[[G]], when A is a adic Z,-algebra and G is a
topologically finitely generated profinite group whose £-Sylow subgroup has
finite index in G.

Note that adic rings are not noetherian in general, the power series over Z; in two
noncommuting indeterminates being a counterexample.

We will now examine the K-theory of A.

Definition 5. Let R be any ring. A complex M ® of left R-modules is called strictly
perfect if it is strictly bounded and for every n, the module M"” is finitely generated
and projective. We let SP(R) denote the Waldhausen category of strictly perfect
complexes, with quasi-isomorphisms as weak equivalences and injective complex
morphisms as cofibrations.

Definition 6. Let R and S be two rings. We denote by R°P-SP(SS) the Waldhausen
category of complexes of S-R-bimodules (with S acting from the left, R acting
from the right) which are strictly perfect as complexes of S-modules. The weak
equivalences are given by quasi-isomorphisms, the cofibrations are the injective
complex morphisms.

By Example 1 we know that the Waldhausen K-theory of SP(R) coincides with
the Quillen K-theory of R:

K, (SP(R)) = K, (R).
For complexes M ® and N *® of right and left R-modules, respectively, we let
(M ®r N)*

denote the total complex of the bicomplex M* ®g N°®. Any complex M*® in
R°P-SP(S) clearly gives rise to a Waldhausen exact functor

(M ®r (—))*:SP(R) — SP(S).

and hence, to homomorphisms K, (R) — K, (S).
Let now A be an adic ring. The first algebraic K-group of A has the following
useful property.

Proposition 2 (Fukaya and Kato 2006, Prop. 1.5.3). Let A be an adic ring. Then

Ki(A) = lim K, (A/T)
1€7/4

In particular, K| (A) is a profinite group.
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It will be convenient to introduce another Waldhausen category that computes
the K-theory of A.

Definition 7. Let R be any ring. A complex M ® of left R-modules is called DG-
flat if every module M" is flat (but not necessarily finitely generated) and for every
acyclic complex N*® of right R-modules, the complex (N ® g M)® is acyclic.

Remark 2. The notion of DG-flatness goes back to Avramov and Foxby (1991).
Every bounded above complex of flat modules is DG-flat, but a DG-flat complex
does not need to be bounded above and not every unbounded complex of flat
modules is DG-flat. We refer to the cited reference for examples. Unbounded
complexes will appear quite naturally in later constructions. If one desires, one
can avoid the homological algebra of unbounded complexes by using appropriate
truncation operations, but the author feels that the concept of DG-flatness is the
more elegant solution. See also Remark 5 in this regard.

We shall denote the lattice of open ideals of an adic ring A by J4.

Definition 8. Let A be an adic ring. We denote by PDG®™(A) the following
Waldhausen category. The objects of PDG™(A) are inverse system (P));e3,
satisfying the following conditions:

1. Foreach I € 3,4, P} is a DG-flat complex of left A//-modules and perfect, i.e.
quasi-isomorphic to a complex in SP(A/ 1),
2. Foreach I C J € J4, the transition morphism of the system

. ° °
Dy - PI — PJ
induces an isomorphism

AT ®a/1 PI. = PJ..

A morphism of inverse systems (f;: P} — Q%)se3, in PDG*™(A) is a weak
equivalence if every f; is a quasi-isomorphism. It is a cofibration if every f; is
injective and the system (coker f7);e3, is in PDG®™(A).

To see that PDG®"(A) is indeed a Waldhausen category one uses that the
category PDG®"(A) is a full subcategory of the category of complexes over the
abelian category of J,-systems of A-modules which is closed under shifts and
extensions; see Witte (2008, Prop. 5.4.5) for a detailed proof.

Proposition 3. The Waldhausen exact functor
SP(A) — PDG*™(A), P* > (A/I ®4 P%)rer,

identifies SP(A) with a full Waldhausen subcategory of PDG*™(A). Moreover, it
induces isomorphisms

K, (SP(A)) = K, (PDG™(A)).
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Proof. The main step is to show that for every object (0})/e3, in PDG*"(A), the
complex

lim OF
lim 0
1€T7,

is a perfect complex of A-modules. This is proved using the argument of Fukaya
and Kato (2006, Proposition 1.6.5). The assertion about the K-theory is then an easy
consequence of the Waldhausen approximation theorem. We refer to Witte (2008,
Proposition 5.2.5) for the details. O

We will now extend the definition of the tensor product to PDG*"(A).
Definition 9. For (P});e3, € PDG"(A) and M* € AP-SP(A’) we set

Wy ((PD)res,) = ( lim AT @x (M &4 Pr)%)ies,
JET )

and obtain a Waldhausen exact functor
Wy PDG™(A) — PDG™(A').
Note that the annihilator
A={xeA| A/I®y M*x =0}

is an open two-sided ideal of A and therefore, an element of J4. If J € J, is
contained in this annihilator, then we have

ANJT@y(M®p Pr)®=(A/I A MRpa/aA/A® )y Pr)*=AJI®y (M®4Py)°.
In particular, since J 4 is filtered,

lim A'/1 @ (M @4 Py)* 2= A'/1 @x (M &4 Py)*,
JET )

With this description, it is clear that ¥y, ((5";) 1€ A) is indeed an object in the
category PDG®" (X, A’). We refer to Witte (2008, Prop.5.5.4) for the easy proof
that ¥, is Waldhausen exact.

Proposition 4. Let M*® be a complex in A°°-SP(A’). Then the following diagram
commutes.

K, (SP(A)) ——= K, (PDG ™ (A))
lx,,w-w—» lmm

K, (SP(A’)) —— K,(PDG*"(A’))
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Proof. Let P*® be a strictly perfect complex in SP(A). There exists a canonical
isomorphism

(A/T®x (M ®4P)), oy, = (lim A'/T @y (M @4 A)]®4 P))ies, -
JET )

O

From Muro and Tonks (2007) we deduce the following properties of the group
Ki(A).

Proposition 5. The group K (A) is generated by the weak autoequivalences

(fr: P} = P)iea,
in PDG™(A). Moreover, we have the following relations:
8

L [(fi:Pr = PMies,] = [(gr: P = P)ieayll(hi: PP = PP)ien,] if for
each I € Jy, one has f; = gy o hy,

2. [(fr: Pp = PP)res,) = [(g1: Q3 = Oien,] if for each I € 34, there exists
a quasi-isomorphism ay: P; — Q7 such that the square

fi

by

81
o ——0;

commutes up to homotopy,

3 [(gr: PP = PPiea, = [(fi: Pr = P)ien,ll(hr: P)* = P/®)ies,] if for
each I € J,, there exists an exact sequence Py > P; —> P| such that the
diagram

Rﬁ——%—ﬂ’44a>ﬁh

ol

R&“e’ﬂ.Aga’H“

commutes in the strict sense.

Proof. The description of K; (PDG**"(A)) as the kernel of

D,PDGO"(A) > DPDGO™(A)

given in Muro and Tonks (2007) shows that the weak autoequivalences are indeed
elements of K;(PDG*™(A)). Together with Proposition 2 this description also
implies that relations (1) and (3) are satisfied. For relation (2), one can use



452 M. Witte

(Witte 2008, Lemma 3.1.6). Finally, the classical description of K;(A) implies

that K; (PDG™(A)) is already generated by isomorphisms of finitely generated,

projective modules viewed as strictly perfect complexes concentrated in degree 0.
O

Remark 3. Despite the relatively explicit description of K; (W) for a Waldhausen
category W in Muro and Tonks (2007) it is not an easy task to deduce from it a
presentation of K; (W) as an abelian group. We refer to Muro and Tonks (2008) for
a partial result in this direction.

In particular, one should not expect that the relations (1)—(3) describe the group
K (PDG*"(A)) completely. However, they will suffice for the purpose of this

paper.

4 Perfect Complexes of Adic Sheaves

We let IF denote a finite field of characteristic p, withg = p" elements. Furthermore,
we fix an algebraic closure I of FF.

Write Schy” for the category of separated F-schemes of finite type. For any
scheme X in Schi’ and any adic ring A we introduced in Witte (2008) a
Waldhausen category PDG®™ (X, A) of perfect complexes of adic sheaves on X.
Below, we will recall the definition.

Definition 10. Let R be a finite ring and X be a scheme in Schy”. A complex
F* of étale sheaves of left R-modules on X is called strictly perfect if it is strictly
bounded and each 3" is constructible and flat. A complex is called perfect if it is
quasi-isomorphic to a strictly perfect complex. It is D G-flat if for each geometric
point of X, the complex of stalks is DG-flat.

Definition 11. We will denote by PDG(X, R) the category of DG-flat per-
fect complexes of R-modules on X. It is a Waldhausen category with quasi-
isomorphisms as weak equivalences and injective complex morphisms with cok-
ernel in PDG(X, R) as cofibrations.

Definition 12. Let X be a scheme in Sch]SFep and let A be an adic ring. The category
of perfect complexes of adic sheaves PDG*™(X, A) is the following Waldhausen
category. The objects of PDG“™ (X, A) are inverse system (F9);¢3, such that:

1. Foreach I € J,, 37 is in PDG(X, A/ 1),
2. Foreach I C J € J4, the transition morphism

o1 2 F] > F;
of the system induces an isomorphism

AlT ®ay1 Fy = F75.
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Weak equivalences and cofibrations are those morphisms of inverse systems that are
weak equivalences or cofibrations for each I € J 4, respectively.

We refer to Witte (2008, Cor. 4.1.4, Prop. 5.4.5) for the straightforward verifica-
tion that PDG(X, A) and PDG®" (X, A) are indeed Waldhausen categories.

Remark 4. If A is a finite ring, the zero ideal is open and hence, an element in
J4. In particular, the following Waldhausen exact functors are mutually inverse
equivalences for finite rings A:

PDG"(X,A) - PDG(X. A),  (F)iea, = Ty
PDG(X, A) — PDG" (X, A), T (A/I ®4F)e5,.

We use these functors to identify the two categories.

If A = Z, then the subcategory of complexes concentrated in degree O of
PDG*™(X, Z;) corresponds precisely to the exact category of those constructible
£-adic sheaves on X in the sense of Grothendieck (1977, Exp. VI, Def. 1.1.1, Exp. V,
Def. 3.1.1) which are flat. In this sense, we recover the classical theory.

If £:Y — X is a morphism in Schy;", we define a Waldhausen exact functor

*. cont cont * 1@
A
¥ PDG™(X, A) — PDG(Y, A), (FDress, = (T iea,

We will also need a Waldhausen exact functor that computes higher direct images
with proper support. For the purposes of this article it suffices to use the following
construction.

For any X in Sch?Fep and any complex G° of abelian étale sheaves on X we
let G% G denote the Godement resolution of G* (Witte 2008, Def. 4.2.1). We note
that G% G is a complex of flabby sheaves quasi-isomorphic to G* (Witte 2008,
Lemma 4.2.3, Prop. 4.26). Moreover, for any finite ring A the Godement resolution
is a Waldhausen exact functor

G%:PDG(X, A) — PDG(X, A)

(Witte 2008, Cor. 4.2.8).

Remark 5. 'We point out that with the above definition, G} § is in general not
bounded above, even if G° is concentrated in degree O and that G G is not a
constructible sheaf of A-modules, even if this is true for all §", n € Z. Since
X 1is of finite Krull dimension, one can also work with a truncated version of the
Godement resolution that preserves boundedness of complexes, but we do not know
of any resolution with good functorial properties taking strictly perfect complexes
to strictly perfect complexes.

By a theorem of Nagata (1963, Thm.2) there exist a factorisation f = p o j
for any morphism f: X — Y in the category Schy;" of separated schemes of finite
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type over IF such that j: X <o X’ is an open immersion and p: X’ — Y is a proper
morphism.

Definition 13. Define a Waldhausen exact functor

R fi:PDG™(X, A) — PDG*"(Y, A)
FDies, = (P« Gy 1 FDies,
For the verification that the definition of R f; makes sense and produces a Wald-
hausen exact functor we refer to Witte (2008, Prop.4.3.4, Prop.4.3.8, Def. 5.4.13).

Obviously, this definition depends on the particular choice of the compactifica-
tion f = poj.However, all possible choices will induce the same homomorphisms

K, (R £): K, (PDG™"(X, A)) — K, (PDG"(Y, A))

and this is all we need.

Remark 6. In Witte (2008, Section 4.5) we present a way to make the construction
of R f; independent of the choice of a particular compactification.

Proposition 6. Let f: X — Y be a morphism in Schy,".

1. K, (R f)) is independent of the choice of a compactification f = po j.

2. Let ¥’/ be a subfield of F and consider | as a morphism in Sch;f:,p. Then K, (R f1)
remains the same.

3. If g:Y — Z is another morphism in Schy.’, then

K, (R(go f)) =K,(Rg) o K,(R /)

4. For any cartesian square

ot
YxxzZ sz
T
y — o x

in Schi}ep we have

K,(f*Rg) =K,Rg f"™)

Proof.  All of this follows easily from Artin et al. (1972, Exposé XXVII). See also
Witte (2008, Section 4.5). ]

Definition 14. Let X be a scheme in Schy” and write i: X — SpecF for the
structure map, s: Spec F — Spec I for the map induced by the embedding into the
algebraic closure. We define the Waldhausen exact functor
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Rr I'.(X,—):PDG™ (X, A) — PDG™"(A)
to be the composition of
R hi: PDG® ™ (X, A) — PDG*™(SpecF, A)
with the section functor
PDG*"(SpecF, A) — PDG"(A), (TN 1es, — (I'(SpecF, s*F)))res, -
Remark 7. If F is a subfield of I, then Ry I".(X, —) and Ry I'.(X, —) are in fact
quasi-isomorphic and hence, they induce the same homomorphism of K-groups.

Nevertheless, it will be convenient to distinguish between the two functors. We will
omit the index if the base field is clear from the context.

The definition of ¥, extends to PDG* ™ (X, A).
Definition 15. For (37);e5, € PDG*™(X, A) and M* € A°P-SP(A’) we set

Uy ((F))1eaq) = (lim AT @y (M ®4F)))ies,
JETH

and obtain a Waldhausen exact functor
Wy PDG™(X, A) — PDG™"(X, A').
Proposition 7. Let M® be a complex in A°°-SP(A’). Then the natural morphism
Wi RIe(X, =) > RI(X, Wy (=)

is a weak equivalence. In particular, the following diagram commutes.

Ka(PDG(x, 7)) “EET g ppGe(a))
lKu(WM) lKn(‘Hw)
K, (PDGM (X, A7) SR g ppGeom(a7))
Proof. See Witte (2008, Proposition 5.5.7). ]

Finally, we need the following result. Let X be a connected scheme and f:Y —
X a finite Galois covering of X with Galois group G, i.e. f is finite étale and the
degree of f is equal to the order of G = Auty (Y). We set

Zu[Gly = (ZulG)/ I ®zie) hif *D)1ess .
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Then Z; [G]& is a system of locally constant sheaves which we may view as
an object of PDG*™(X, Z([G]) concentrated in degree 0. It corresponds to the
continuous Galois module Z;[G] on which the fundamental group of X acts
contragrediently.

Lemma 1. Let X be a connected scheme in Schi}ep. Let R be a finite Zy-algebra
and let F* be a bounded complex of flat, locally constant, and constructible sheaves
of R-modules. Then there exists a finite Galois covering Y of X with Galois group
G and a complex M *® in Z¢[G]°?-SP(R) such that

F* = Wy (Ze[Gly)

in PDG(X, R).

Proof. Choose a large enough Galois covering f:Y — X such that f*F® is a
complex of constant sheaves and set M* = I'(Y, f*F*). This is in a natural way a
complex in Z;[G]°?-SP(R) and

M*® ®z[G] Z([G]i ~F°

See Witte (2008, Section 5.6) for further details. ]

5 OnSK(ZJGIIIT1D

In this section, we will fix a finite extension F' of Q; and write O ¢ for the valuation
ring of F. Let G be a finite group and let 7 denote an indeterminate that commutes
with every element of O z[G]. In the end, we will only need the case F = Qy, but the
more general results of this section may be interesting also for other applications.

Recall that there exists a finite extension F’ of F such that F’'[G] is split
semisimiple:

F'[G] = [ | End (F'™)
k=1

for some integers r,sy,...,s,. Let M be a maximal Op-order in F'[G], i.e. an
Op-lattice in F'[G] which is a subring and which is maximal with respect to this
property. Then

M = []Endg ,(0%)
k=1
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according to Oliver (1988, Theorem 1.9). In particular, the determinant map induces
an isomorphism

,
Ki(M) = P 0.
k=1

If Or[G] C M, then Theorem 2.5 of loc. cit. implies
SK(OF[G]) = kerK (OF[G]) — K (F[G]) = kerK; (Ofr[G]) — K{(M).

Analogously, we define a subgroup in K{ (O [G][[T]])-

Definition 16. Let G be a finite group and choose a finite extension F’ of F' such
that F'[G] is split semisimple. We set

SKi(OF[GIIIT]]) = ker Ky (Of[G]I[T]]) — Ki(MI[T]])

where M denotes a maximal O g-order in F'[G] containing O ¢[G].

Remark 8. Let Q be an algebraic closure of the fraction field of O z[[T’]]. Then
SKi(Or[GIT])) = kerKi(OF[G][[T]) — Ki(Q[G])

such that our definition agrees with the definition given in Chinburg and Pappas
(2013).

Lemma 2. For any finite group G,

SKi(OF[G]IT]]) = lim SKi (O [G x Z/(€")]).

n

Proof. Let F’ and F” be splitting fields for O¢[G] and Ofr[G x Z/({")], respec-
tively and denote the corresponding maximal orders by M and M'. The commuta-
tivity of the diagram

Ki(M[Z/(£")]) ——Ki(M")

gldet %ldet

@ Op/[Z/(t")* — & 05,
k=1 k=1

implies that

SKi(Or[G x Z/(£")]) = kerKi(Or[G x Z/(£")]) — Ki(M[Z/(£"))).
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By Neukirch et al. (2000, Theorem 5.3.5) the choice of a topological generator
y € Z induces an isomorphism

Op[[T] =limOF[Z/(")],  TrHy-1L

n

In particular, we have compatible isomorphisms

Ki(Or[GIIT]) = ImKi (OF[G x Z/(ED)),  Ki(M[[T]]) = lim Ky (M[Z/(€")])

n n

by Proposition 2. Hence, we obtain an isomorphism

SKi(OF[G]I[T]) = lim SKi (O [G x Z/(€)])

n

as claimed. ]

Proposition 8. For any finite group G,
SKi(Or[GIIT]) = SKi(OF[G)).

Proof. By Lemma 2 it suffices to prove that the projection Or[G x Z/({")] —
Or[G] induces an isomorphism

SKi(Or[G x Z/(£")]) = SK,(Of[G]).

Let g1,..., gk be a system of representatives for the F-conjugacy classes of
elements of order prime to £ in G. (Two elements g, & of order r prime to £ are called
F-conjugated if g¢ = xhx™! for some x € G, a € Gal(F(¢,)/F) C (Z/(r))*.)
Let r; denote the order of g; and set

Ni(G)={xeG |xgix~' =g forsomea € Gal(F({,)/F)},
Zi(G)={xeG |xgix'=g}.

Furthermore, let

HY(Z;(G).2) =Im| @ Hy(H.Z) — Hy(Zi(G).2Z)

HCZ;(G)
abelian

denote the subgroup of the second homology group generated by elements induced
up from abelian subgroups of Z;(G). According to Oliver (1988, Theorem 12.5)
there exists an isomorphism
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k
SK(Of[G]) = @HO(Ni(G)/Zi (G).Ha(Zi(G). Z)/ H"(Zi(G), Z)) o).

i=1

Now, (g1,0), ..., (gk,0) is a system of representatives for the F-conjugacy classes
of elements of order prime to £ in G x Z/(£") and

Ni(G X Z/(t")) = Ni(G) x Z/ ("), Zi(G X L/ (t")) = Zi(G) x L] (£").

By Oliver (1988, Prop. 8.12), we have

Hy(Zi(G) x Z/(£"), Z) HS"(Z: (G) x Z/ (0)", Z) =
H)(Z:(G),Z)/ B (Zi(G), Z) x Ha(Z/(£"), Z) | H& (Z/ (L"), Z)

and clearly,
Ha(Z/ ("), Z) = B (Z/ (¢"). Z).

From this, the claim of the proposition follows. O

Remark 9. In the case that F is unramified over Q; the above equality was
independently observed by Chinburg, Pappas, and Taylor (Chinburg and Pappas
2013) (using a different approach) some years after the first version of this article
had been made available.

The following proposition was proved in Fukaya and Kato (2006, Proposi-
tion 2.3.7) in the case of number fields and F = Q.

Proposition 9. Let Q be a function field of transcendence degree 1 over a finite
field F and let £ be any prime. Then

l(iLgSKl(OF[Gal(L/Q)]) = 0.

where L runs through the finite Galois extensions of Q in a fixed separable closure

Qof 0.

Proof. Let F’ be a totally ramified extension of F. Using Oliver (1988, Theo-
rem 8.7.(1)) and the functoriality of the construction of the isomorphism in Oliver
(1988, Theorem 12.5) one checks that the inclusion O — Ops induces an
isomorphism

SK(Ofr[G]) — SKi(Ofr/[G])

for any finite group G. Hence, we may assume that F is unramified over Q;. We
then have a surjection
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Hy (G, Ofr[G,]) — SK;(Ofr[G])

with O ¢[G,] denoting the O p-module generated by the elements in G of order prime
to £ (Oliver 1988, Theorem 12.10).

By the same argument as in the proof of Proposition 2.3.7 in Fukaya and Kato
(2006), it now suffices to prove that

H*(Gal(Q /L), F/OF) =0
for any finite extension L of Q.
If £ is different from the characteristic of I, then the vanishing of this group can

be deduced via the same argument as the analogous statement for number fields
given in Schneider (1979, § 4, Satz 1): Let

Loo = JL(Gm).

Then
H*(Gal(Q/L), F/OF) = H'(Gal(Leo/ L), H'(Gal(Q/ L), F/Or))
and by Kummer theory,
H'(Gal(Q /L), F/Or) = LY, ®z F/Or(—1).
Now

H'(Gal(Loo/L), LY, ®2F/OF(—1)) = li_r)nHl(Gal(Loo/L), L&) ®zF/Op(-1))

n

by Neukirch et al. (2000, Proposition 1.5.1) and
H'(Gal(Loo/L). L({en)™ ®2 F/Or(—1)) = (L({e)” ®2 F/OF(_l))Gal(Loo/L)
by loc. cit., Proposition 1.6.13. Since the latter group is a factor group of
X —
(L(Cl”) ®z F/OF(_I))Gal(LOO/L(Qn)) =0,
the claim is proved.
If £ is equal to the characteristic of F, then the cohomological £-dimension of

Gal(a/ L) is known to be 1 (Neukirch et al. 2000, Theorem 10.1.11.(iv)) and hence,
the second cohomology group of F/OF vanishes for trivial reasons. O
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6 L-Functions

Consider an adic ring A and let A[[T]] denote the ring of power series in the
indeterminate 7' (where T is assumed to commute with every element of A). The
ring A[[T]] is still an adic ring whose Jacobson radical Jac(A[[T]]) is generated by
Jac(A) and T'. In particular, we conclude from Proposition 2 that

Ki (A[[T]]) = lim K, (A[[T]}/ Jac(A[[T]])")

n

is a profinite group.
Let IF be a finite field. We write X, for the set of closed points of a scheme X in
Sch”. If x € X is a closed point, then

X = X XgpecF Spec I

consists of finitely many points, whose number is given by the degree deg(x) of x,
i.e. the degree of the residue field k(x) of x as a field extension of F. Let

Sei X > X
denote the structure map. For any complex
F* = FDies
in PDG" (X, A), we write
Iy =T x.s5F)) e,
This defines a Waldhausen exact functor
PDG" (X, A) — PDG*"(A), F* - I

Note that % can also be written as the product over the stalks of J in the points of x:

Fr = [[(@Do)rea

£ex
The geometric Frobenius automorphism
Fr € Gal(F/F)
operates on J}§ through its action on X. Hence, it also operates on ¥, 771(J7). Here,

WA[[T]]Z PDGCOH[(A) —> PDGCOM(A[[T]])
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denotes the change of ring functor with respect to the A[[T]]-A-bimodule A[[T]],
as constructed in Definition 9. The morphism

id = JpT: Yarry(F3) — Yagry(37).

is a natural isomorphism whose inverse is given by

o0
> oET.
n=0
Definition 17. The class

o id—3¥T _
Ex(F°.T) = [Wagry(F3) —— Wagry (T

in K (A[[T]]) is called the Euler factor of F* at x.

One can easily verify that the Euler factor is multiplicative on exact sequences
and that

E.(3°.T) = Ex(§°.T)

if the complexes F°* and G* are quasi-isomorphic. Hence, the above assignment
extends to a homomorphism

Ex (=, T):Ko(PDG™" (X, A)) — Ki(A[[T]).
Lemma 3. Let & € X be a geometric point. Then

. id— k() T9E -1
E (T, T) = [Pagr(F7) ———— Yagry (T

Proof. The Frobenius automorphism §r induces isomorphisms ?%" x~ 3"; for

k = 1,...,deg(x). For k = deg(x) we have S’Hff = £ and the isomorphism is
given by the operation of §(x) on 3";. Hence, we may identify J§ with the complex
(S"g)deg("), on which the Frobenius Fr acts through the matrix

0...... 0 Sk
id O ...... 0
0id O 0
0 0 id 0

Let A be the automorphism of Wy ((F7)**=™) given by the matrix
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idT d 0 ...0
id7?  idT id 0

: . . .0
id7dee®—1  id72idT id

Then A(id — §¥7T') corresponds to the matrix

id0..0 ~Zkw T
0id 0 ... —FuwT?

O e 0 ld _gk(x) Tdeg(x)_l
0...... 0 (id — Freo T9EW)
Moreover, we have [A] = 1 in K;(A[[T]]). Hence,

id—FpT o id=Fk(o TIEW .
[Wary (F2) —— Yaprn (D] = [Wagry(Fp) ————— aqry(F7)]

as claimed. O

Proposition 10. The infinite product

[] E«@.7)

x€Xp

converges in the profinite topology of Ky (A[[T]]).

Proof. For each integer m, there exist only finitely many closed points x € X, with
deg(x) < m. If deg(x) > m, then we conclude from Lemma 3 that the image of
E.(F°,T)in K (A[T]/(T™)) is 1. O

Definition 18. The L-function of the complex F* in PDG*™(X, A) is given by

Le(3*,T) = [ ] E<(3°.T) € Ki(A[IT])

XE€Xo
Remark 10. TIf F’ is a subfield of IF, then Lemma 3 implies that

Ly (3°.T) = Le(*. TE¥) € Ki(A[IT]).
Remark 11. If A is commutative, the determinant induces an isomorphism

det: Ky (A[[T]]) — A[ITT".
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In particular, we see that the L-function agrees with the one defined in Deligne
(1977, Fonction L mod £") in the case of commutative adic rings.

7 The Grothendieck Trace Formula

In this section, we will prove the Grothendieck trace formula for our L-functions.

Definition 19. For a scheme X in Schy” and a complex F* in PDG™" (X, A) we
let Lp(F*®, T') denote the element

[y (Re (K. 5) 2 Wy (Re Te(X. 5%)]

in K (A[[T']D.

Theorem 2 (Grothendieck trace formula). Let IF be a finite field of characteristic
p and let A be an adic ring such that p is invertible in A. Then

Ly(F°,T) = Lp(F°,T)

for every scheme X in Schy" and every complex F* in PDG*™ (X, A).

We proceed by a series of lemmas, following closely along the lines of Milne
(1980, Chapter VI, §13).

Lemmad. Let U be an open subscheme of X with closed complement Z.
Theorem 2 is true for X if it is true for U and Z.

Proof. Write j:U <o X andi: Z <& X for the corresponding immersions,
u:U — SpecF, x: X — SpecF, z:.Z — SpecF

for the structure morphisms. Clearly,

Ly(F*,T) = Ly(j*F*, T)Lp(i*F*,T)
On the other hand, we have an exact sequence

Rx1jij*F® »> Rx)F* — Rxyini*F*
and (chains of) quasi-isomorphisms

Ruij*F* ~Ruxjij*F* Rzii*F® ~ Rxii*F°.

Hence,

[Rx;&"'] = [R u!j*gf.][RZ!i*gr.] @))]
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in Ko PDG*"(Spec I, A) by Proposition 1. Using Proposition 5 one checks that the
assignment

. — o, i0—FFT — -
G* > [Wagry (I (SpecF. 5*G%)) ——— Wagry(I"(SpecF. s* %)) ™!
extends to a homomorphism
Ko PDG"(SpecIF, A) — K1 (A[[T])]),

which preserves relation (1). |
Lemma 5. Let A’ be a second adic ring and M ® be a complex in A°P-SP(A"). For
any F° in PDG*" (X, A) we have

Ki(Pue,am) (Le (3, 7)) = Le(¥uIF°. T),

Ki(Wmeqaqry) (Le(F*. T)) = Ly(¥uF°, T)

in PDG™ (A[[T])).

Proof. For Ly(F*®, T), this follows from the definition and from Proposition 7. It is
true for Lp(F°, T') because it is true for all E(F°, T), x € Xj. O

Next, we prove that the formula is compatible with change of the base field.

Lemma 6. Let F' be a subfield of F and X a scheme in Schi}e P Then
L (F°,T) = La(F*, TFFD),

Proof. Letr:SpecF — SpecF’ be the morphism induced by the inclusion F' C F
and write

h:X Xspecr SpecF — X, B':X Xspecr Spec F — X

s:Spec F — SpecF, s":SpecF — SpecF’

for the corresponding structure morphisms. For any F° in PDG*™(X, A), the
complexes r« RmJF*, RrRmF*, and RF* in PDG"(SpecF/, A) are quasi-
isomorphic. Moreover, for any complex G°® in PDG*"(SpecF, A), the following
diagram is commutative:

_ ~  [FF _
I'(SpecF,s*r*r.§*) —— @ I'(SpecF,s*G*)
k=1

0 .. 0 Fp
id 0 .. 0
S cr
0 .. id 0

_ ~ [FF) _
I'(SpecF,s*r*r.§*) —— @ I'(SpecF,s*G*)
k=1
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As in the proof of Lemma 3 one concludes

[agry (Rer T (X, F%) s gy (Rer (X, F%)) | =

= id—Fw T _
[lIIA[[T]] (F(Spec F.s*r*r. Rhg.’f’)) LN Wy (F(SpecIF, S*rtr, Rh!fr"'))] _

[WA[[T]] (F(SpecF S* Rh!fF.)) M lI/A[[T]] (F(Spec F, S* Rh!?o))] =

_ id—z TIFF] _
[Wapry(Re Te(X, 7)) =, Yapry(Re T (X, F%))].

|

Clearly, Theorem 2 is true for schemes of dimension 0. Next, we consider the
case that X is a curve.

Lemma 7. The formula in Theorem 2 is true for any smooth and geometrically
connected curve X, A = Zy|G), and F* = 7 [G]gf, where £ is a prime different
from the characteristic of F and G is the Galois group of a finite Galois covering
of X.

Proof. Let Q be the function field of X and let F the function field of a finite
Galois covering of X, i.e. F/(Q is a finite Galois extension unramified in the closed
points of X. Let dr denote the element

dr = L(Z/[Gal(F/ Q). T)L(Z[Gal(F/ Q). T) ™!
in K (Ze[Gal(F/ OIT]D.
Note that dr does not change if we replace X by an open subscheme of X.
Hence, by shrinking X appropriately, we may extend the definition of dr to arbitrary

finite Galois extensions F of Q.If F C F’ and F’/Q is Galois, then d s is mapped
onto dr under the canonical homomorphism

Ky (Ze[Gal(F'/ QT — Ki(Zc[Gal(F/ QIITD-
To see this, choose X sufficiently small such that F’/Q is unramified in the closed
points of X and apply Lemma 5.
Let L be a splitting field for Q¢[Gal(F/ Q)] and
M C L[Gal(F/Q)]

a maximal Z;-order containing O [G]. Recall that

.
M =[] End} (Po)
k=1
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for some finitely generated free Or-modules Py and some r > 0 (Oliver 1988,
Theorem 1.9). We may thus consider P; as an element in Z;[G]°°-SP(O.). By
the classical Grothendieck trace formula (Deligne 1977, Fonction L mod £",
Theorem 2.2.(a)) applied to the O -sheaves ¥p, (Z¢[Gal(F/ Q)]g() and by Lemma 5,
the image of dr under the homomorphism

K1 (Ze[Gal(F/ Q)NITIN) — Ki(MTT) = € 0,171

k=1

is trivial; hence dp € SK;(Z¢[Gal(F/Q)][[T]]) = SKi(Z¢[Gal(F/Q)]). From
Proposition 9 we conclude dp = 1. O

Lemma 8. The formula in Theorem 2 is true for any scheme X in Sch]SFep of

dimension less or equal 1, any adic ring A with p € A* and any complex F*
in PDG*™(X, A).

Proof. By Proposition 2 it suffices to consider finite rings A. The £-Sylow
subgroups of A are subrings of A and A is equal to their direct product. Since
p is invertible, the p-Sylow subgroup is trivial. Hence, we may further assume that
A is a Zy-algebra for £ # p.

Shrinking X if necessary we may assume that X is smooth, irreducible curve and
that F* is a strictly perfect complex of locally constant sheaves. By replacing F with
its algebraic closure in the function field of X and using Lemma 6, we may assume
that X is geometrically connected. By Lemmas 1 and 5 we have

LG T) = Ki(Wney, e zdenr) (L(Ze (G}, 7))

for a suitable Galois group G and a complex M ® in Z;[G]°P-SP(A). Likewise,

L3 T) = Ki(¥mes,ezdcnrn) (L(Ze (G, T)).

Now the assertion follows from Lemma 7. ]

We complete the proof of Theorem 2 by induction on the dimension d of X. By
shrinking X if necessary we may assume that there exists a morphism f: X — Y
such that Y and all fibres of f have dimension less than d. Then Proposition 6.(3)
and the induction hypothesis imply

LEF,T)=LR (F*,T)=LR HTF*, T).
Let now y be a closed point of Y. Write f,: X, — X for the fibre over y. Then

EyR AT T) = [Wagry(RT(X,. £5%) = Wy (R Te(X,. £75%)]7
= L(fF°.T)



468 M. Witte

by Proposition 6.(4) and the induction hypothesis. Since clearly

L& T) =[] L5 1),

€Yy

Theorem 2 follows.

Remark 12. The formula in Theorem 2 is also valid if A is a finite field of
characteristic p, see Deligne (1977, Fonction L mod £", Theorem 2.2.(b)). However,
it does not extend to general adic Z,-algebras. We refer to loc.cit., §4.5 for
a counterexample. More precisely, if A is a commutative Z,-algebra, then the
difference between Ly(F®, T) and Lp(F*®, T) is given by a unit in

A(T) = tim A/I[T]
1€3(A)

(Emerton and Kisin 2001). In Witte (2013) we generalise this result to noncommu-
tative Z,-algebras A.
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On Z-Zeta Function

Zdzistaw Wojtkowiak

1 Introduction

In this note we propose a definition of zeta function for Q which generalizes or rather
incorporates all p-adic L-series of Kubota-Leopoldt for Q. It also incorporates so
—

called Soulé classes — which we call £-adic polylogarithms evaluated at 10 — which
are elements of H}(Q; Z¢(n)).

This is very important because the Soulé class in H}(Q; Z¢(n)) is an analog of
the real number ¢ (n). Both determine an extension of Z(0) by Z(n) in different
realizations. .

We shall define this new Z-zeta function as a measure more precisely as
a cocycle on Gg with values in measures. This point of view on p-adic zeta
functions is indicated in de Shalit (1987, pages 15-16). This measure appears
naturally when studying the representation of the absolute Galois group Gg on

i (Pg \ {0. 1. 00}, 01).

During the meeting IWASAWA 2012 in Heidelberg Prof. John Coates mentioned
the need of zeta functions defined on Z and with values in Z, if the author of the
present note understood correctly his remark. The measure we are studying, has
perhaps some properties required by him. Therefore the author decided to write this
note.

Another remark, which somebody made during his talk was that in the p-adic
case one must work very hard to prove congruence relations and then construct a
measure. In this approach one gets immediately measures which however depend
on elements of Galois group.

Z. Wojtkowiak (D<)
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Some time ago the author has planned to write together with Hiroaki Nakamura
a paper on adelic polylogarithms, which should generalize our work (Nakamura and
Wojtkowiak 2002). Though we never even started such a paper, this project served
also as a motivation to write the present note.

The action of Gk on 7§ (E g\ {0}, O) where Ek is an elliptic curve over K, leads
also to measures (see Nakamura 1995, 2013). We do not know if one gets p-adic
non-Archimedean zeta functions of Ex in this case. However if the elliptic curve
has a complex multiplication then it seems clear that the obtained measure leads
to p-adic non-Archimedean zeta functions of the elliptic curves with a complex
multiplication. This was our impression when we looked at various papers on the
subject, for example Yager (1986) or de Shalit (1987).

On the other side in Wojtkowiak, studying the action of Gg on torsors of
paths on ]P’é—2 \ {0, 1, 0o} we get measures on (Z,)", which should lead to p-adic

non-Archimedean multi-zeta functions. We do not have generalizations of these
measures to Z @ (Q-valued measures on (Z)".

2 Formulation of Main Results

Let us define
7 :=1limZ/NZ,
<
where the structure maps are the projections
Z/MNZ — Z/NZ.
We define the Iwasawa algebra
ZIZ]) := l(ng/NZ[Z/MZ] ,
where the structure maps are
Z/NN\ZZ/MM\Z) - Z/NZ[Z/MZ] .

We define an action of the group Z* on Z[[Z]] We define this action on finite levels.
If c € 2% and Zl 0 a;[i] € Z|Z/NZ] then

N—1
(Y ailil) = anl[c il (M
i=0

where [a] denotes the class of @ modulo N.
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Let y : Gg — 7" be the cyclotomic character. Composing y with the action of
Z> on Z]||Z]] defined above, we get an action of Gg on Z[[Z]]. Let

Z\(Go. ZI[Z]))

be the set of cocycles on Gg with values in the Gg-module Z[[Z]]
Using the action of Gg on the tower of coverings ]P’(l@ \ ({0, 00} U ) of ]P’(l@ \

{0, 1, 0o} we get an element belonging to Z!(Gg, Z[[Z]]) and which we denote by

~

{q-

In fact this element already appeared in Nakamura and Wojtkowiak (2002) and
before in Ichimura and Sakaguchi (1987). In Nakamura and Wojtkowiak (2002)
it is called adelic Kummer-Heisenberg values.

For any rational prime p there is a projection

prp : ZIZ]] = Z,[[Z,]]

compatible with the action of Gg on Z[[Z]] and Z,[[Z,]]. Composing QCQ with the
projection pr, we get an element which we denote

¢p € ZI(GQ% Z,[1Z,))).

In Wojtkowiak where we are dealing only with one fixed prime, the element ¢, is

N
denoted K(10). The element {, allows to recover p-adic L-functions of Kubota-
Leopoldt. We recall definitions and results from Wojtkowiak.

Letw : Z; — pp—1 C Z, be the Teichmiiller character. For x € Z7 we set

[x] := xw(x)7".

We denote by x, : Gg — Z; the cyclotomic character restricted to

Gal(Q(up)/Q).
Definition 1. Let p be a rational prime. Let 0 < 8 < p — 1. We define the function

Z]ﬁ,:prGQ—>Zp

by the formula

Z’z(l —5,0):= / [x]“x_lw(x)ﬂdé‘p(o)(x).

Zy
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Theorem 1 (see Wojtkowiak, Corollary 8.3). Let p be a rational prime. Let 8 be
evenand 0 < B < p — 1. Let 0 € Gg be such that (x,(0))?~" # 1. Then

(Lxp @ @(xp(@)! =1)L,(1 =5, 0F),

=

B(1— —
Z2,(1=s,0) =

where L,(1 — s, wP) is the Kubota-Leopoldt p-adic L-function.

We recall that p-adic L-functions were first defined in Kubota and Leopoldt
(1964). The definition we used in Wojtkowiak is that of Lang (1990).

Now we shall look at functions Z,’,g, for B odd.

Definition 2. Lets € Z,. Leto € Gg and let x € Z,. We define a Gg-module
Lp (s)
defining the action of Gg on Z, by
(%) = [1p(@)'x.
Let0 < 8 < p — 1. We define a Gg-module
(‘U(X p)ﬂ)
defining the action of Gg on Z, by
o (x) := (@(xp(0)) x.
We denote by
Zy(s) ®z, (0(1,)")
the Z,-module Z, equipped with the action of Gg given by
o(x) =[x, ()] (@(1,(©))) x .
Observe that if k is an integer then
Zp(k) = Zp (k) ®z, (0(x,)")-

In Theorem 1 we have seen that for 8 even the element QCQ gives non-Archimedean
p-adic L-series. The next result shows that for 8 odd we get Soulé classes for the

—
field Q (£-adic Galois polylogarithms evaluated at 10).
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Theorem 2. Let p be a rational prime and let B be an integer such that 0 < f <
p— 1L
(i) For afixeds € Z,, the function

Gg3 o> 26(1—s.0) € Zy(s) ®z, (0(x,)’)
on Go with values in a Go-module Z,(s) ®z, (a)()(p)ﬁ) is a cocycle;

(ii) Let B be odd and let k be a positive integer such that k = B modulo p — 1.
Then

(1= k,0) = (1 = p)(k = DUL(10)(0) = 51(0)

N
where I;;(10) is the p-adic Galois polylogarithm (see Wojtkowiak 2005) and sy
is the Soulé class (see Soulé 1987).

(The point (ii)) of the theorem is of course well known, see Ihara (1986, Corollary
of Theorem 10) and Deligne (1989). The proof of the point (i) of the theorem is
indicated in Sect. 3.)

3 Measures
In this section we define the element fQ. Let
Vy = Pé \ ({0, 00} U puy)
and let
SN Vi = Vy
be given by f, A’,” N(3) = 3M. We get a projective system of finite coverings of
14 :%\{o, 1,00}.
Applying the functor {* we get a projective system of pro-finite groups

{ri' (W, 01)}wen. 2)

We fix an embedding Q C C. Hence we have a comparison homomorphism

T (VN((C), 01) —> ﬂfl(VN, 01)
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and therefore the natural topological generators of 7{*(Vy, 01). We denote by
XN

(loop around 0) and by
Yi.N

(loop around sjv) for 0 < i < N, the standard free generators of rrf‘(VN, 01). We
denote by

r*z(Vy,01)

the commutator subgroup of the group 7§'(Vy, 01).
We have

(™) (emn) = (xn)™ (3)

and

R
(™) (yimn) = yiry mod 278" (Viy,01) 4)

for0 < i <MNandwherei/EimodulongdO f_i)’ < N.

Let py be the canonical path on Vy from 01 to %10, the interval [0, 1]. For any
o € Gg, the elements

Fou(0) = py' - 0(py) € 78 (V. 01)

form a coherent family of the projective system (2).

Here and later our convention of composing a path « from y to z with a path
from x to y will be that « - § is defined as a path from x to z.

For N e Nand 0 <i < N we define elements

a (o) € Z
by the congruence
N—1
— Ot-N((I) 2_et .
Fov (@) = [T i) @ mod I*xf'(Vy,01). )
i=0

It follows immediately from the congruences (4) that the functions

Z/NZ3iw o) (o) el (6)
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form a distribution on 7 with values in Z, hence they form a measure. This measure
we denote by

Lo(0).
The element fQ (o) belongs to Z[[Z]]. Hence we get a function
{0+ Go — 2[(2]].
Definition 3. The function
{o + Go — Z[2]

we call Z-zeta function of the field Q.
We shall study properties of the function f - First however we state a result about

N
the action of Gg on 7j'(Vy, 01). Next we shall calculate explicitly the coefficients
ol (0). .

We recall that Q C C. We set

i.‘m — eZJr\”{jl

forany m € N.
Below the suffix i y(0) at y;,(s),y means the unique integer 0 < r < N such that

ix(0) = r modulo N. The same remark applies to other situations when suffixes
arein{0,1,...,N —1}.

Proposition 1. Let o € Gg. We have

o(xy) = (xn)*@

and

N
o(yin) = (y,-x(a),N)X(”) mod anf‘(VN,Ol)
for0<i <N.

Proof. Let j be alocal parameter at 0 corresponding to 01. We apply o y; v -0~ ! to
the germ of (1 — é;i’((");,)i at01. :After applying 0! we get (1 — E;"g,)#. Then we
apply y; v and we get &, (1—&53) = . Hence finally after acting by o we get g1 (1—
£5/493)m . The effect is the same as applying (i y(o).v)*@ to (1 — £ 73w, O

Proposition 2. The coefficient

aiN(O—) = (aiN’m (0))m€N

€ lim(Z/mZ) = 7

m
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is given by the formula

o((1-&"" %)
(1 =&y

for0 < i < N and by the formula

N.m
a; " (

=&y

o)

1 )" (@) =1
O'(N ”1) = Sm N m

fori = 0.
Proof. We act on the germ of (1 — S;"g)i by the path py' - o(py). Notice that the

local parameter at 1 corresponding to % 10is s = N(1 —3). We get that

o((1-&"" %)

— (1 &5 5)7 .
(1—&3)m !

Py o(py) s (1—Eyi)n —

N.m 3
On the other side it follows from the congruences (5) that we get &, © (1-£y'3) -
Hence we get the formulafor 0 <i < N.

To calculate the coefficient aé\' (o) we act on the germ of (1 — 5)# Applying py -
o to(1 —5)% we get N s . Next applying py' -0 we get a(N_%)N% (1 —3)#.
|

We indicate the cocycle and the continuity properties. Let 7 and o belong to Gg.
Then it follows from the equality

fon (T0) = Fpy (7) - T(fpy (0))
(see for example the proof of Wojtkowiak 2004, Proposition 1.0.7) that
ol (z0) = o (1) + x(De] -1 (0). (7

The direct consequences of the equality (7) are the point (i) of Theorem 2 and the
following result.

Proposition 3. (i) The function
fo - Gg — ZI[2]

is a cocycle.
(ii) Let k be a positive integer. We have
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/ xk_lw(x)ﬂdé‘p(ro) =
Zp

/Z xk_la)(x)ﬂdé-p(f) + Xp(f)kw()(p(f))ﬁ/ Xk_lw(x)ﬂdgp(o)‘

Zp

Observe that in the point (ii) of the proposition we recover the cocycle property of

p-adic Galois polylogarithms /i (10) (Soulé classes for the field QQ), see for example
Wojtkowiak (2005, Corollary 11.0.12.).

The proof of the continuity of the function Z,f, (s,0) is also straightforward, so
we formulate only the result.

Proposition 4. The function of two variables
Z,]ﬁ, 12y x Go = Zy

is continuous.

Theorem 1 is the main reason that we call the cocycle fQ, the Z-zeta function of
the field Q. The paper Wojtkowiak is still not published. Hence we give a sketch of
a proof of Theorem 1.

Proof of Theorem 1.

Proof. It follows from Nakamura and Wojtkowiak (2002, Proposition 3) that

10 _ 1 k1
K100) = gy [ g0, ®)
In Wojtkowiak (2009, Proposition 3.1) we have shown that
B(10)(0) =~ 2 (1,(0)* ~ 1) ©)
* ~ 20 ’

where By is the 2kth Bernoulli number. (The result is already stated in Thara (1990)
without proof.) It is an elementary property of the measure ¢, (o) that

/ g, (0)(x) = 1—;171“1/% e, (0)(x) . (10)

Zp

It follows immediately from the equalities (8)—(10) that

2 2%—1 _ 1 a1 Ba
m/;gx dé.p(O')(x) = (1 p )Zk ]

Theorem 1 follows from the last equality. O
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4 Relations with Iwasawa Theory

We recall that we have defined the action of Z; (which we identify with the group
Gal(Q(upoo)/Q) via the cyclotomic character x ) on Z,[[Z,]] via the formula (1).
This action of Z; is the consequence of the equality

fon (to) = fon (z)- T(fmv (0)).

Let Mo be the maximal abelian pro-p extension of Q(i4po0), which is unram-
ified outside p. In the Iwasawa theory the action of Z; = Gal(Q(up~)/Q) on
Gal(Moo/Q(p poo)) is given via inner automorphisms. If 0 € Gal(Moo/Q(1t po0)),
T € Z, and 7 is a lifting of 7 to Gal(Moo/Q) then

7(0) = Tot !

(see Coates and Sujatha 2006, page 5).
It follows from Wojtkowiak (2004) that for any 7, 0 € Gg we have

Fon (20T™") = Fpy (0) - 2(fpy (0)) - (ot ) ((Fpy (D)7H)
Hence comparing coefficients modulo "7 (Vy, (ﬁ) we get
o (tor™") = & (1) = 4(O)et)y ) (1) + 2Dy (1 (0).
Now we assume that N = p" and 0 € Gg(u,)- Then we get
of (tot™) = 1, (D)), ().

Hence for 0 € Gu,), the Iwasawa action of Zy, on measures §,(0) is given by
the formula (1).
Letn > m. We set

K 1= Q) (1 = €577 | 0 < i < p")

and

Koo = |J Kum-

n>m>1

It follows from Proposition 2 that the cocycle {, : Gg — Z,[[Z,]] factors through
the quotient group

Gal(Xeo/Q)

of GQ.
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Observe that K is an abelian pro-p extension of Q(ut pe0) which is unramified
outside p. Moreover K, is Galois over Q. Hence we have a surjective morphism
of Zp[[Z}]]-modules

Gal(Mao/ Q1)) — Gal(Koo/Qpt o)) -

Proposition 5. (i) The cocycle §, : Go — Z,[[Z,]] vanishes on G, hence it
induces

{p 1 GalKeo/Q) — Zp[[Z,]].

(ii) The restriction of {, to Gal(Keo/Q(poe)) is a morphism of Zp[[Z;]]-
modules.
(iii) The cocycle §, : Gal(Koo /Q) — Z,[[Z,]] is injective.

Proof. The points (i) and (iii) follow from Proposition 2. The point (ii) was shown
in the discussion before the proposition when we observe that the Iwasawa action
on measures ¢, (0) for 0 € Gg(u,) is given by the formula (1). O

Let p > 2. The action of —1 € Z; decomposes any Z;-module M on the direct
sum

M=M'"e M,
where —1 acts on M as the identity and on M ~ as the multiplication by —1.

Proposition 6. Let p > 2. The image of Gal(Koo/Q(upo0)) in Zp[[Z]] by ¢ is
contained in Z.,([Z,]]”.

Proof. Let 0 € Ggu,e0)- Observe that the involution induced by —1 maps the
element Zfigl of "(0)[i] into — Zf;gl of ': (0)[i]. It follows from Proposition 2
that

St el (0)i] = I o (0)[i] = 0. Hence £, (0) € Z,[[Z,]] O
Corollary 1. The plus part ofGal(iKoo/Q(,upoo)) is 0.

We denote by (—1)« the morphism induced by —1 € Z7. We denote by §y the
Dirac distribution on Z, concentrated at 0.

We recall the definition of the Bernoulli measure £, on Z, (see Lang 1990).
Letc € Z;. The Bernoulli measure

Eic = (E\" :2/p"Z — Q,)

neN

on Z, is defined by

(™) n c—1

i
E(") 1) — _
lc (l) p" ¢ p" 2
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for0 <i < p",where 0 < (c7'i) < p" and (¢~'i) = ¢~'i modulo p".

Proposition 7. Let p > 2 and let 0 € Gg. We have

1—
Ep(0) + (=Ds8p(0) = E1y,0) + %(0)80.

Proof. Tt follows from Wojtkowiak, Lemma 4.1 (see also Nakamura and
Wojtkowiak 2012, proof of Proposition 5.13) that &/ (o) —a”;(0) = E {”)?p @)
for 0 < i < p". On the other side E{f;p(a)(o) = % for any n. Hence the

proposition follows. O
We were hoping that studying the representation of Gg on the étale fundamental

group nlé‘ (IP’(I@ \ {0, 1, 00}, 01) pro—p We can recover the Main Conjecture (see Coates
and Sujatha 2006, Theorem 1.4.3). It seems however that it is not the case. In
fact in Ichimura and Sakaguchi (1987) one can find more relations with the Main
Conjecture that in the present paper.

On the other side the Main Conjecture should appear, manifest somewhere, when
studying representations of Gg on ;.
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